WO2020045061A1 - Pure water production system and pure water production method - Google Patents
Pure water production system and pure water production method Download PDFInfo
- Publication number
- WO2020045061A1 WO2020045061A1 PCT/JP2019/031658 JP2019031658W WO2020045061A1 WO 2020045061 A1 WO2020045061 A1 WO 2020045061A1 JP 2019031658 W JP2019031658 W JP 2019031658W WO 2020045061 A1 WO2020045061 A1 WO 2020045061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- water
- pure water
- production system
- treated
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 357
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 103
- 239000012528 membrane Substances 0.000 claims abstract description 137
- 238000002242 deionisation method Methods 0.000 claims abstract description 129
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 86
- 230000003647 oxidation Effects 0.000 claims abstract description 37
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 37
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 27
- 238000005341 cation exchange Methods 0.000 claims abstract description 27
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 32
- 150000002500 ions Chemical class 0.000 claims description 30
- 230000001590 oxidative effect Effects 0.000 claims description 25
- 238000010612 desalination reaction Methods 0.000 claims description 22
- 239000007800 oxidant agent Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000011033 desalting Methods 0.000 abstract description 29
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000007872 degassing Methods 0.000 description 12
- 239000003456 ion exchange resin Substances 0.000 description 12
- 229920003303 ion-exchange polymer Polymers 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000011084 recovery Methods 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- -1 hydrogen ions Chemical class 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000003957 anion exchange resin Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000003729 cation exchange resin Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009296 electrodeionization Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 102100026794 Carboxypeptidase A5 Human genes 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 101000910789 Homo sapiens Carboxypeptidase A5 Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/48—Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/54—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
- C02F1/4695—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a pure water production system and a pure water production method.
- an electric deionization apparatus (EDI) has been used in the production of pure water used for cleaning water, medical water and the like used in the production process of semiconductors and liquid crystal displays.
- the electric deionization device performs deionization treatment of raw water while electrically regenerating an ion exchanger in the device. Therefore, in the electric deionization apparatus, continuous water sampling is possible without requiring regeneration with a chemical unlike the ion exchange resin tower.
- the electric deionization apparatus comprises a deionization chamber filled with an ion exchanger between a cation exchange membrane that allows only cations (cations) to permeate and an anion exchange membrane that allows only anions (anions) to permeate,
- a concentration chamber is arranged outside the cation exchange membrane and the anion exchange membrane. Then, an anode is disposed on the anion exchange membrane side via an electrode chamber (anode chamber) and a cathode is disposed on the cation exchange membrane side via an electrode chamber (cathode chamber) as viewed from the desalting chamber.
- the ionic components in the water to be treated are captured by the ion exchanger in the desalination chamber, and the water dissociation reaction occurs.
- the ion exchanger is regenerated by hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) generated by the ion exchanger.
- the water to be treated is deionized and purified by passing through the deionization chamber.
- water to be treated is also passed through the concentration chamber and the electrode chamber.
- the ionic components moved from the desalting chamber are concentrated and discharged as concentrated water outside the electric deionization apparatus.
- deionized water is obtained by a reverse osmosis membrane device (RO), and organic components in the deionized water are decomposed by an ultraviolet oxidizer (TOC-UV).
- RO reverse osmosis membrane device
- TOC-UV ultraviolet oxidizer
- an ionic component such as a low molecular weight organic acid generated in an ultraviolet oxidation device
- an electric deionization device As a system provided with such an electric deionization device, a system in which an electric deionization device is provided in two stages and a part of the treated water in a desalination chamber is passed through a concentration chamber (for example, see Patent Document 1).
- an ultraviolet sterilizer that irradiates ultraviolet light having a longer wavelength than the ultraviolet oxidizer between the ultraviolet oxidizer and the electric deionizer.
- a providing system for example, see Patent Document 2.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a pure water production system and a pure water production method capable of producing high-quality pure water stably for a long period of time. I do.
- the pure water production system of the present invention is a pure water production system including a reverse osmosis membrane device, an ultraviolet oxidation device, an electric deionization device, and a treatment water pipe connecting these devices in order from the upstream side.
- the electric deionization apparatus includes a cation exchange membrane and an anion exchange membrane that are alternately arranged, a concentration chamber and a desalination chamber that are alternately formed between the cation exchange membrane and the anion exchange membrane, and the cation exchange membrane. And a pair of electrode chambers disposed outside the anion exchange membrane, wherein the treated water pipe supplies treated water treated by the ultraviolet oxidizer to at least a desalination chamber of the electric deionizer.
- the pure water production system is connected to the electric deionization apparatus so that the permeated water of the reverse osmosis membrane apparatus does not pass through the ultraviolet oxidizing apparatus. Characterized in that it comprises a first bypass pipe for supplying the
- the pure water production system of the present invention may further include a second bypass pipe for supplying permeated water of the reverse osmosis membrane device to the concentration chamber of the electric deionization device without passing through the ultraviolet oxidizing device. preferable.
- the electric deionizer has a common inlet nozzle communicating with a concentration chamber and an electrode chamber of the electric deionizer, and the first bypass pipe and the second Preferably, all bypass pipes are connected to the common inlet nozzle.
- the electric deionizer has a concentration chamber inlet nozzle communicating with a concentration chamber of the electric deionizer and an electrode chamber inlet nozzle communicating with an electrode chamber. Is preferably connected to the electrode chamber inlet nozzle, and the second bypass pipe is preferably connected to the concentration chamber inlet nozzle.
- an ion exchanger is provided in the concentration chamber and the electrode chamber.
- the concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidizing device is preferably 100 ⁇ g / L or less.
- the pure water production method of the present invention is a pure water production method in which raw water is sequentially treated with a reverse osmosis membrane device, an ultraviolet oxidizing device, and an electric deionization device, wherein the electric deionization device is alternately treated.
- a pair of electrode chambers and supplies the treated water treated by the ultraviolet oxidizing apparatus to at least a desalting chamber of the electric deionization apparatus, and the permeated water of the reverse osmosis membrane apparatus,
- the power is supplied to the electrode chamber of the electric deionization apparatus without passing through the ultraviolet oxidation apparatus.
- the permeated water of the reverse osmosis membrane device is supplied to the concentration chamber of the electric deionization device without passing through the ultraviolet oxidation device.
- the concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidizing apparatus is preferably 100 ⁇ g / L or less.
- high-quality pure water can be produced stably for a long period of time.
- FIG. 1 is a block diagram schematically illustrating an example of a pure water production system according to an embodiment.
- FIG. 2 is a diagram schematically illustrating an example of an electric deionization device used in the pure water production system illustrated in FIG. 1. It is a figure which shows roughly another example of the electric deionization apparatus used in the pure water production system shown in FIG. It is a block diagram showing roughly another example of the pure water production system of an embodiment. It is a block diagram showing roughly another example of the pure water production system of an embodiment. It is a block diagram showing roughly the pure water production system used in the example.
- the pure water production system 1 of the embodiment shown in FIG. 1 includes a reverse osmosis membrane device 10, an ultraviolet oxidation device (TOC-UV) 11, an electric deionization device (EDI) 12, and these devices from the upstream side.
- the processing water pipe 133 connected in that order is provided.
- the pure water production system 1 processes pure water by treating the raw water supplied from the raw water supply unit 20, and supplies the pure water to a use point (POU) 14, which is a place of use. It is.
- the treated water pipe 133 is a first treated water pipe 133 a that supplies treated water from the treated water supply unit 20 to the reverse osmosis membrane device 10, and an ultraviolet oxidation device that transmits permeated water of the reverse osmosis membrane device 10.
- a second treated water pipe 133b for supplying the treated water treated by the ultraviolet oxidizing apparatus 11 to the electric deionization apparatus 12, and a second treated water pipe 133c for supplying treated water treated by the ultraviolet oxidizing apparatus 11 to the electric deionization apparatus 12.
- a fourth treated water pipe 133d for sending the liquid to a use point 14 where pure water is used.
- the pure water production system 1 branches from the second treated water pipe 133b that supplies the permeated water of the reverse osmosis membrane device 10 to the ultraviolet oxidizing device 11, and transfers the permeated water of the reverse osmosis membrane device 10 to the electric deionization device 12. It has a first bypass pipe 131 for supplying. A discharge pipe 135 for discharging the concentrated water is connected to the reverse osmosis membrane device 10.
- the electric deionization apparatus 12 includes a cation exchange membrane and an anion exchange membrane that are alternately arranged, and a concentration chamber and a deionization chamber that are alternately formed between the cation exchange membrane and the anion exchange membrane. It has a salt room. Further, the electrodeionization device 12 includes a pair of electrode chambers disposed outside the cation exchange membrane and the anion exchange membrane.
- a third treated water pipe 133c and a first bypass pipe 131 are connected to the electric deionizer 12 as a water supply pipe.
- the treated water treated by the ultraviolet oxidizer 11 supplied from the ultraviolet oxidizer 11 to the electric deionizer 12 through the third treated water pipe 133c is supplied to at least the desalting chamber of the electric deionizer 12.
- the permeated water of the reverse osmosis membrane device 10 supplied from the reverse osmosis membrane device 10 to the electric deionization device 12 via the first bypass pipe 131 is supplied to the electric deionization device 12. It is supplied to the electrode chamber.
- a fourth treated water pipe 133d for discharging permeated water as deionized water and a concentrated water discharge pipe 136 for discharging concentrated water are connected to the electric deionization device 12 as drain pipes.
- FIG. 2A and 2B schematically show an example of the electric deionization device 12 used in the pure water production system 1 and another example.
- FIG. 2A shows an example of the electric deionization apparatus 12 in the case where the treated water treated by the ultraviolet oxidation apparatus 11 is supplied to the desalination chamber and the concentration chamber, and the permeated water of the reverse osmosis membrane apparatus 10 is supplied to the electrode chamber. Is shown.
- FIG. 2B shows an example of the electric deionization device 12 in the case where the treated water treated by the ultraviolet oxidation device 11 is supplied to the desalting chamber and the permeated water of the reverse osmosis membrane device 10 is supplied to the electrode chamber and the concentration chamber. Is shown.
- the water flowing directions of the desalting chamber, the concentrating chamber, and the electrode chamber are not limited to the directions of FIGS.
- the water flow direction of the desalting chamber and the water flow direction of the concentration chamber and the electrode chamber can be reversed.
- the electric deionization device 12 shown in FIG. 2A includes a cation exchange membrane 21 and an anion exchange membrane 22 which are arranged alternately, and a concentration chamber 23 and a desalination are provided between the cation exchange membrane 21 and the anion exchange membrane 22.
- the chambers 24 are formed alternately. Further, outside the cation exchange membrane 21 and the anion exchange membrane 22, a pair of electrode chambers including an anode chamber 25a and a cathode chamber 25b is arranged.
- the electric deionization apparatus 12 includes an anode 26a adjacent to the anode chamber 25a and a cathode 26b adjacent to the cathode chamber 25b, and the anode 26a and the cathode 26b (hereinafter, also referred to as “electrodes 26a, 26b”). Is connected to a power supply 27 for applying a DC voltage.
- the electric deionization device 12 shown in FIG. 2A is a water supply pipe in a concentration chamber that supplies treated water treated by the ultraviolet oxidizing apparatus 11 supplied from a third treated water pipe 133c to a concentration chamber 23 and a desalination chamber 24, respectively. 123 and a desalination chamber water supply pipe 124. Further, an electrode chamber water supply pipe 125 for supplying permeated water of the reverse osmosis membrane device 10 supplied from the first bypass pipe 131 to the anode chamber 25a and the cathode chamber 25b (hereinafter, also referred to as “electrode chambers 25a, 25b”). Having.
- the electric deionization apparatus 12 shown in FIG. 2A has a deionization chamber drain pipe 224 for transferring deionized water (permeated water) deionized in the deionization chamber 24 to the fourth treated water pipe 133d. Further, it has a concentration chamber drain pipe 223 and an electrode chamber drain pipe 225 for transferring concentrated water in which ionic components discharged from the concentration chamber 23 and the electrode chambers 25a and 25b are concentrated to the concentrated water discharge pipe 136.
- the electric deionization device 12 shown in FIG. 2B has the same configuration as the electric deionization device 12 shown in FIG. 2A, except that the connection destination on the upstream side of the water supply pipe 123 for the concentration chamber is the first bypass pipe 131. .
- the permeated water of the reverse osmosis membrane device 10 is treated by the ultraviolet oxidation device 11, at least the desalination of the electric deionization device 12 is performed through the third treated water pipe 133c.
- the permeated water of the reverse osmosis membrane device 10 is supplied to at least the electrode chambers 25 a and 25 b of the electric deionization device 12 via the first bypass pipe 131, bypassing the ultraviolet oxidation device 11. .
- the concentrated water 23 may be supplied with the treated water treated by the ultraviolet oxidizing device 11 or the permeated water of the reverse osmosis membrane device 10. However, it is preferable that the permeated water of the reverse osmosis membrane device 10 is supplied, for example, when the concentration chamber 23 is filled with the ion exchanger.
- OH radicals that do not contribute to the oxidative decomposition of organic substances react with each other to generate hydrogen peroxide.
- the generated hydrogen peroxide may degrade the electrodes and the ion exchanger of the downstream electric deionizer.
- a voltage is applied to the electric deionization apparatus.
- the hydrogen peroxide-containing water is supplied to the electrode chamber as the treated water of the ultraviolet oxidation device.
- the voltage energy promotes the corrosion of the electrode by the hydrogen peroxide, and the quality of the permeated water of the electric deionization device discharged from the desalting chamber is easily reduced.
- the deterioration of the ion exchanger is promoted, and the quality of the permeated water of the electric deionization apparatus is easily reduced.
- a voltage near the allowable upper limit may be applied to the electric deionization apparatus. It is considered that the quality of the permeated water decreases more easily due to the progress of body corrosion.
- the permeated water of the reverse osmosis membrane device 10 that has not passed through the ultraviolet oxidation device 11 is introduced into the electrode chambers 25a and 25b and the concentration chamber 23.
- a conventional pure water production system in which the permeated water of the reverse osmosis membrane device 10 is supplied to a desalting chamber, an electrode room, and a concentration room of an electric deionization device via an ultraviolet oxidation device.
- water may be supplied to the electric deionization apparatus from the secondary pure water system disposed immediately before the point of use.
- the pure water production system 1 of the embodiment such a necessity is not required.
- the permeated water of the reverse osmosis membrane device 10 is supplied to the electrode chambers 25 a and 25 b of the electric deionization device 12, or both the electrode chambers 25 a and 25 b and the concentration chamber 23.
- Hardness scale hardly occurs in the chambers 25a and 25b or the electrode chambers 25a and 25b and the concentration chamber 23, and the deterioration of the quality of boron or silica in the treated water of the electric deionization apparatus 12 is reduced.
- the pure water production system according to the embodiment may include, if necessary, other water treatment devices other than these, in addition to the reverse osmosis membrane device, the ultraviolet oxidation device, and the electric deionization device.
- other water treatment devices include, for example, a degassing membrane device, a vacuum degassing device, an ion exchange resin tower, a hardness removing device (softener), an activated carbon packed tower, a coagulating sedimentation tank, and a filtering device.
- Pneumatic membrane devices are preferably used. If the pure water production system of the embodiment has another water treatment device, the arrangement location may be before the reverse osmosis membrane device, even between the above-mentioned essential water treatment devices, and may be an electric deionization device. It may be at the subsequent stage of the device.
- the pure water production system 1A of the embodiment shown in FIG. 3 is an example in which a degassing membrane device is provided downstream of the electric deionization device as another water treatment device.
- the pure water production system 1A shown in FIG. 3 includes a reverse osmosis membrane device 10, an ultraviolet oxidation device 11, an electric deionization device 12A, a degassing membrane device (MGD) 13, and these devices in that order from the upstream side.
- the processing water pipe 133 to be connected is provided. Specifically, the reverse osmosis membrane device 10, the ultraviolet oxidation device 11, the electric deionization device 12A and the degassing membrane device 13 are connected by the second treated water pipe 133b to the fourth treated water pipe 133d.
- To-be-treated water is supplied to the reverse osmosis membrane device 10 via the first treated water pipe 133a.
- the permeated water of the degassing membrane device 13 is sent to a use point (POU) 14 which is a place where pure water is used by a fifth treated water pipe 133e.
- POU use point
- the pure water production system 1A includes a first bypass pipe 131 and a second bypass pipe 132 which branch off from the second treated water pipe 133b and extend to the electric deionization apparatus 12A.
- the electric deionization apparatus 12A can be, for example, an electric deionization apparatus having the same configuration as that shown in FIG. 2B except for the connection destination of the water supply pipe 123 in the concentration chamber.
- the electric deionization apparatus 12A includes a concentration chamber inlet nozzle 23c communicating with the concentration chamber 23 inside the electric deionization apparatus, a desalination chamber inlet nozzle 24c communicating with the desalination chamber 24, and an electrode chamber communicating with the electrode chambers 25a and 25b.
- An inlet nozzle 25c is an electric deionization apparatus having the same configuration as that shown in FIG. 2B except for the connection destination of the water supply pipe 123 in the concentration chamber.
- the electric deionization apparatus 12A includes a concentration chamber inlet nozzle 23c communicating with the concentration chamber 23 inside the electric deionization apparatus, a desalination chamber inlet nozzle 24c communicating with the desalination chamber 24, and an electrode chamber communicating with the electrode chambers 25a and 25b.
- the third treated water pipe 133c is connected to the deionization chamber inlet nozzle 24c of the electric deionization device 12A, and the reverse osmosis membrane device 10 and the ultraviolet oxidation device 11 The water treated in this order is supplied to the desalting chamber 24 of the electric deionizer 12A.
- the first bypass pipe 131 branched from the second treated water pipe 133b is connected to the electrode chamber inlet nozzle 25c of the electric deionization apparatus 12A.
- a second bypass pipe 132 branched from the second treated water pipe 133b is connected to the enrichment chamber inlet nozzle 23c of the electric deionization apparatus 12A.
- the first bypass pipe 131 supplies the permeated water of the reverse osmosis membrane device 10 to the electrode chambers 25a and 25b of the electric deionization device 12A without passing through the ultraviolet oxidation device 11.
- the second bypass pipe 132 supplies the permeated water of the reverse osmosis membrane device 10 to the concentration chamber 23 of the electric deionization device 12A without passing through the ultraviolet oxidation device 11.
- the pure water production system 1A shown in FIG. 3 instead of branching the second bypass pipe 132 from the second treated water pipe 133b, it is also possible to branch the second bypass pipe 132 from the third treated water pipe 133c. In that case, the treated water treated by the ultraviolet oxidizing device 11 is supplied to the concentration chamber 23 of the electric deionization device 12A.
- the pure water production system 1B shown in FIG. 4 is a pure water production system having the same configuration as the pure water production system 1A shown in FIG. 3, except that the electric deionization device 12A is replaced with an electric deionization device 12B.
- the electric deionization apparatus 12B has the same configuration as the electric deionization apparatus 12A except that the electrode chamber inlet nozzle 25c and the concentration chamber inlet nozzle 23c are replaced with a common inlet nozzle 31c serving also as these two nozzles.
- both the first bypass pipe 131 and the second bypass pipe 132 are connected to the common inlet nozzle 31c of the electric deionization apparatus 12B.
- the treated water treated by the ultraviolet oxidizer 11 is supplied to the desalting chamber 24, and the permeated water of the reverse osmosis membrane apparatus 10 is supplied to the electrode chambers 25a and 25b and the concentration chamber 23.
- the first bypass pipe 131 may have the function of the second bypass pipe without providing the second bypass pipe 132.
- a pure water production method according to the embodiment will be described using a pure water production method using the pure water production system 1A shown in FIG. 3 as an example.
- a reverse osmosis membrane device, an ultraviolet oxidation device, and an electric deionization device used in the pure water production system of the embodiment will be described in detail.
- the water to be treated in the pure water production system 1A is, for example, raw water or raw water pretreated by a pretreatment unit.
- Raw water is pre-processed by a pre-processing unit as necessary, and supplied to the reverse osmosis membrane device 10.
- a pre-processing unit As raw water, municipal water, well water, groundwater, industrial water, semiconductor manufacturing plants, and the like, water that is collected and pretreated (recovered water) is used.
- the pretreatment unit removes suspended substances in raw water to generate pretreatment water.
- the pretreatment unit is configured by appropriately selecting a sand filtration device, a microfiltration device, and the like for removing suspended substances in raw water, and further, a heat exchanger for adjusting the temperature of the pretreatment water as necessary. It is comprised including. Note that the pretreatment unit may be omitted depending on the quality of the raw water.
- the water to be treated is subjected to reverse osmosis membrane filtration to remove salts, ionic organic substances, colloidal organic substances, and the like in the water to be treated.
- the reverse osmosis membrane included in the reverse osmosis membrane device 10 include a cellulose triacetate-based asymmetric membrane and a polyamide-based, polyvinyl alcohol-based, or polysulfone-based composite membrane.
- the membrane shape is a sheet flat membrane, a spiral membrane, a tubular membrane, a hollow fiber membrane, or the like, but is not limited thereto. Above all, a polyamide-based composite film is preferable in terms of high rejection, and a cross-linked wholly aromatic polyamide-based composite film is more preferable.
- the shape of the film is preferably a spiral film.
- the desalination rate of the reverse osmosis membrane device 10 is preferably 96 to 99.8%.
- the water recovery of the reverse osmosis membrane device 10 is preferably from 60 to 98%, more preferably from 80 to 95%, from the viewpoint of efficiently removing salts and ionic organic substances.
- the reverse osmosis membrane device 10 may be any of an ultra-low pressure type, a low pressure type, and a high pressure type reverse osmosis membrane device, and from the viewpoint of the production efficiency of ultrapure water, an ultra low pressure type or a low pressure type reverse osmosis membrane device. It is preferred that Further, it is preferable that a water supply pump is provided upstream of the reverse osmosis membrane device 10 to pressurize the water to be treated to a predetermined pressure and supply the water to the reverse osmosis membrane device 10. Further, a scale inhibitor, a bacteriostat, a pH adjuster, and the like may be added to the water supply of the reverse osmosis membrane device 10 as necessary.
- the operating pressure of the ultra-low pressure reverse osmosis membrane is 0.4 MPa to 0.8 MPa, preferably 0.6 MPa to 0.7 MPa.
- the low pressure type reverse osmosis membrane has an operating pressure of more than 0.8 MPa and less than 2.5 MPa, preferably 1 MPa to 1.6 MPa.
- the high pressure type reverse osmosis membrane has an operating pressure of more than 2 MPa and 8 MPa or less, preferably more than 5 MPa and 6 MPa or less.
- the ultra-low pressure type, low pressure type and high pressure type are distinguished by the design pressure (standard pressure) at the time of production of each reverse osmosis membrane. There is also.
- the reverse osmosis membrane device 10 may be constituted by a two-stage reverse osmosis membrane device in which two reverse osmosis membrane devices are connected in series.
- the water recovery rate is preferably 60 to 98%, more preferably 80 to 95% in the first-stage reverse osmosis membrane device.
- the reverse osmosis membrane device of the second stage it is preferably 80 to 95%, more preferably 85 to 95%.
- the ultraviolet oxidizer 11 irradiates the permeated water of the reverse osmosis membrane device 10 with ultraviolet rays to decompose and remove organic substances (TOC) in the water.
- the ultraviolet oxidation device 11 is, for example, a device having an ultraviolet lamp and generating ultraviolet light having a wavelength of about 185 nm.
- the ultraviolet oxidizing device 11 may further generate ultraviolet light having a wavelength of about 254 nm.
- the ultraviolet oxidizer 11 When excessive ultraviolet irradiation is performed in the ultraviolet oxidizer 11, OH radicals that do not contribute to the oxidative decomposition of organic substances react with each other to generate hydrogen peroxide.
- the generated hydrogen peroxide may deteriorate the electrodes 26a and 26b and the ion exchanger of the downstream electric deionizer 12A.
- the amount of ultraviolet irradiation in the ultraviolet oxidizer 11 is , 0.02 to 0.5 kWh / m 3 .
- the concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidizer 11 is preferably 100 ⁇ g / L or less, more preferably about 10 ⁇ g / L to about 40 ⁇ g / L.
- the treated water of the ultraviolet oxidizing apparatus 11 is supplied into the desalting chamber 24 from the desalting chamber inlet nozzle 24c of the electric deionization apparatus 12A via the third treated water pipe 133c.
- the permeated water of the reverse osmosis membrane device 10 is supplied to the concentration chamber 23 and the electrode chambers 25a and 25b of the electric deionization apparatus 12A via the second bypass pipe 132 and the first bypass pipe 131, respectively.
- the second bypass pipe 132 is branched from the third treated water pipe 133c instead of the second treated water pipe 133b. Then, the treated water of the ultraviolet oxidizing apparatus 11 may be supplied to the desalting chamber 24 and the concentrating chamber 23 of the electric deionization apparatus 12A, and the permeated water of the reverse osmosis membrane apparatus 10 may be supplied to the electrode chambers 25a and 25b.
- the treated water of the ultraviolet oxidizer is supplied to at least the desalting chamber of the electric deionizer, and the permeated water of the reverse osmosis membrane device is supplied to at least the electric deionizer. It is supplied to the electrode chamber.
- the configuration of the electric deionizer 12A is as described above.
- the desalting chamber 24 is filled with an ion exchanger.
- the interior of the concentration chamber 23 and the electrode chambers 25a and 25b may be hollow, or may be filled with an electrical conductor made of an ion exchanger, activated carbon, metal, or the like.
- the amount of water supplied to the desalination chamber 24 of the electric deionization apparatus 12A and the total amount of water supplied to the concentration chamber 23 and the electrode chambers 25a and 25b of the electric deionization apparatus 12A Is a value expressed as (water supplied into the desalting chamber 24) / (total water supplied into the concentrating chamber 23 and the electrode chambers 25a and 25b) and is 6 to 20. Is preferred. Thereby, the effect of suppressing the deterioration of the electric deionization device 12A and the effect of improving the treated water quality can be easily improved.
- the ion exchange membrane arranged on the anode 26a side in contact with the desalting chamber 24 is the anion exchange membrane 22, and the ion exchange membrane arranged on the cathode 26b side in contact with the desalination chamber 24. Is a cation exchange membrane 21.
- the electric deionization apparatus 12A may be configured such that a plurality of cells are juxtaposed by alternately having a plurality of desalting chambers 24 and a concentration chamber 23 between the anode 26a and the cathode 26b. .
- the cation exchange membrane 21 and the anion exchange membrane 22 there are a heterogeneous membrane, a semi-homogeneous membrane, and a homogeneous membrane in view of the membrane structure. This is preferable in terms of suppressing an increase in resistance in the ion device.
- an ion exchanger obtained by mixing a cation exchange resin and an anion exchange resin can be used.
- the mixing ratio of the cation exchange resin and the anion exchange resin is, in terms of volume ratio, that the anion exchange resin ratio is from 20 to 80% in view of the efficiency of removing the ionic components and the increase in the resistance in the electric deionizer 12A. It is preferable in terms of suppression.
- As the ion exchanger it is also possible to use an ion exchanger obtained by laminating a cation exchange resin and an anion exchange resin in the flow direction.
- the anode is made of a platinum group element or a metal material coated with a platinum group element, and the cathode is made of stainless steel.
- the concentration chamber 23 or the electrode chambers 25a and 25b be filled with an ion exchange resin as an ion exchanger.
- the use of the method of the present invention suppresses the deterioration of the ion exchange resin in the concentration chamber 23 or the electrode chambers 25a and 25b. Deterioration of the deionizer 12A is suppressed, and high-quality treated water can be continuously obtained.
- the effect of the present invention is remarkably obtained, and the ion exchange resin is filled in both the concentration chamber 23 and the electrode chambers 25a and 25b. If so, the effect of the present invention can be more remarkably obtained.
- the water to be treated is supplied from one end of the desalting chamber 24 and flows out from the other end of the desalting chamber 24.
- ion components in the water to be treated are adsorbed by the ion exchanger in the desalting chamber 24.
- a rectified DC current is supplied between the anode 26a and the cathode 26b.
- the current flows in a direction orthogonal to the flow of the water to be treated in the desalting chamber 24.
- the current dissociates water into hydrogen ions and hydroxide ions, and the dissociated hydrogen ions and hydroxide ions exchange with the ion components adsorbed on the ion exchanger, respectively.
- the exchanged ion components move to the concentration chamber 23, the anode chamber 25a, and the cathode chamber 25b, and are discharged from the electric deionization apparatus 12A via the concentrated water discharge pipe 136 via these.
- the water recovery in the electric deionizer 12A is preferably 90 to 96%, and the current density in the electric deionizer 12A is preferably 300 to 3000 mA / dm 2 , and 1500 to 2500 mA / dm 2. Is more preferred.
- the current density is 300 mA / dm 2 or more, electrode corrosion due to hydrogen peroxide is likely to occur normally.
- at least in the electrode chamber of the electric deionization apparatus preferably in the electrode chamber and the concentration chamber. This is because water that has not passed through the ultraviolet oxidizing device is supplied, and this can be suppressed.
- the removal rate of a weak electrolyte such as boron can be stabilized for a long time.
- a commercially available electric deionizer can be used as the electric deionizer 12A.
- As commercial products of the electric deionization apparatus 12A for example, VNX50, VNX55, VNX-55EX (all manufactured by Evoqua), EDI-50 (manufactured by IONICS) and the like can be used.
- the power supply 27 is, for example, an AC-DC converter that converts an alternating current (AC) current supplied from an alternating current power supply into a direct current (DC) current.
- the power supply 27 is preferably a switching type AC-DC converter or a full-wave rectification type AC-DC converter because the voltage ripple is small and high-quality treated water can be easily obtained at an early stage.
- the water quality of the permeated water that has passed through the electric deionization apparatus 12A has a boron concentration of, for example, 1 ⁇ g / L (as B, the same applies hereinafter) and a specific resistance of 17.5 M ⁇ ⁇ cm or more even when one unit is used in a single stage. Can be obtained.
- the electric deionization apparatus 12A one unit may be used in a single stage, or two or more units may be connected in series and used as a plurality of stages.
- the permeated water that has passed through the electric deionization device 12A is then supplied to the degassing membrane device 13.
- the degassing film device 13 mainly removes carbon dioxide gas generated by decomposing organic components in the ultraviolet oxidation device 11.
- the degassing membrane device 13 dissolves the dissolved gas in the water to be treated by passing the water to be treated through the primary side of the gas-permeable membrane (degassing membrane) while reducing the pressure on the secondary side of the membrane as necessary.
- An inert gas source such as nitrogen may be connected to the decompression side (secondary side) of this film to improve the degassing performance.
- the degassing film may be a film that allows gas such as oxygen, nitrogen, and vapor to pass through but does not allow water to permeate, and examples thereof include a silicon rubber-based, polytetrafluoroethylene-based, polyolefin-based, and polyurethane-based film.
- the pure water production system of the embodiment described above deterioration of the electrodes and the ion exchanger in the electric deionization device can be suppressed, so that high-quality pure water can be obtained for a long period of time.
- the permeated water of the reverse osmosis membrane device is introduced into at least the electrode chamber, preferably into the electrode chamber and the concentration chamber, silica scale can be suppressed, and the removal rate of trace impurities such as silica and boron can be improved or removed. The effect of suppressing the rate reduction is also easily obtained.
- FIG. 5 is a diagram illustrating a configuration of the pure water production system 50 used in Example 1 and Comparative Example 1.
- the electric deionization device 53 is used in Example 1
- the electric deionization device 54 is used in Comparative Example 1. Otherwise, the apparatus included in the pure water production system 50 is commonly used in Example 1 and Comparative Example 1.
- the pure water production system 50 includes a reverse osmosis membrane device 51 (Toray Industries, Inc., TM820K-400) and an ultraviolet oxidizing device 52 (Nihon Photo Science Co., Ltd., AUV-8000TOC, ultraviolet irradiation amount 0.3 kWh / m 3 ).
- An electric deionizer 53, 54 (EVOQUA, VNX-55EX, treated water amount 10 m 3 / h, in which the ion exchange resin is filled in the concentration chamber and the electrode chamber, is provided downstream of the ultraviolet oxidizer 52. (95% water recovery).
- the pure water production system 50 includes a makeup water line 55a for supplying the water to be treated to the reverse osmosis membrane device 51, a makeup water line 55b for connecting the reverse osmosis membrane device 51 and the ultraviolet oxidizer 52, an ultraviolet oxidizer 52 and an electric type.
- a replenishment water line 55c connecting the inlets of the deionization chambers of the deionizers 53 and 54 and a treated water line 55d for discharging the permeated water of the electric deionizers 53 and 54 are provided.
- the permeated water of the reverse osmosis membrane device 51 flows through the makeup water line 55b.
- the concentrated water of the reverse osmosis membrane device 51 is discharged through a drain pipe 57.
- the concentrated water of the electric deionizers 53 and 54 is discharged through a drain pipe 56.
- the permeated water of the reverse osmosis membrane device 51 is supplied to the electrode chamber and the concentration chamber inlet of the electric deionization device without passing through the ultraviolet oxidizing device 52 to the electric deionization device 53 used in Example 1.
- the bypass makeup water line 53a is connected.
- a replenishing water line 54a for supplying the treated water of the ultraviolet oxidizing device 52 to the electrode chamber and the concentration chamber is connected to the electric deionization device 54 used in Comparative Example 1.
- Example 1 and Comparative Example 1 treated water from which tap water was passed through activated carbon to remove chlorine was supplied to the pure water production system 50 from the makeup water line 55a, and continuous operation was performed for 24 hours. Pure water was produced.
- a direct current was applied in a constant voltage mode of 180 V in order to easily evaluate a decrease in performance due to deterioration of the electric deionization device.
- the current density was 1810 mA / dm 2 at the beginning of water flow.
- Example 2 and Comparative Example 2 In the system of FIG. 5, the electric deionizers 53 and 54 in which the ion exchange resin is not filled in the concentration chamber and the electrode chamber (IONICS, EDI-50, treated water amount 10 m 3 / h, concentrated water circulating water amount 15 m 3 / h , Water recovery 95%), and the same test as in Example 1 and Comparative Example 1.
- EDI-50 usually requires circulation of concentrated water and injection of sodium chloride into the concentrated water, and was also performed in Example 2 and Comparative Example 2, but is omitted in the drawings.
- a direct current was applied in a constant voltage mode of 580V. The current density was 314 mA / dm 2 at the beginning of water flow. Table 2 shows the results.
- the method of supplying the permeated water of the osmosis membrane apparatus to the concentration chamber and the electrode chamber of the electric deionization apparatus without passing through the ultraviolet oxidation apparatus is different from that of the pure water production system of Example 2 in that the concentration chamber and It can be seen that the effect is also obtained when an electric deionization apparatus in which the electrode chamber is not filled with the ion exchange resin is used.
- the difference in the quality of the treated water after 300 days between the pure water production system of Example 2 and the pure water production system of Comparative Example 2 is due to the fact that the ion concentration in the concentrating chamber and the electrode chamber was different as in Example 1 and Comparative Example 1. It is smaller than the difference in the quality of the treated water when an electric deionization apparatus filled with exchange resin is used. This is presumably because the concentration chamber and the electrode chamber are not filled with the ion exchange resin, and there are few locations affected by hydrogen peroxide.
- reverse water not containing hydrogen peroxide which is a by-product of the ultraviolet oxidizer is used as makeup water to the electrode chamber inlet of the electric deionizer.
- 1, 1A, 1B ... pure water production system 10 ... reverse osmosis membrane device, 11 ... ultraviolet oxidation device (TOC-UV), 12, 12A, 12B ... electric deionization device (EDI), 13 ... degassing membrane device (MDG), 14 ... Point of use (POU), 23c ... Enrichment chamber inlet nozzle, 24c ... Demineralization chamber inlet nozzle, 25c ... Electrode chamber inlet nozzle, 31c ... Common inlet nozzle, 131 ... First bypass pipe, 132 ... 2nd bypass pipe, 133 ... treated water pipe, 21 ... cation exchange membrane, 22 ... anion exchange membrane, 23 ... concentration chamber, 24 ... desalination chamber, 25a ... anode chamber, 25b ... cathode chamber, 26a ... anode, 26b ... Cathode, 27 power supply.
- TOC-UV ultraviolet oxidation device
- EDI electric deionization device
- MDG degass
Landscapes
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Urology & Nephrology (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Water Treatments (AREA)
Abstract
The present invention provides a pure water production system and a pure water production method, which are capable of stably producing pure water of high water quality for a long period of time. A pure water production system which is provided with a reverse osmosis membrane device, an ultraviolet oxidation device, an electric deionization device and a treated water pipe that sequentially connects these devices in this order. This pure water production system is characterized in that: the electric deionization device comprises a cation exchange membrane and an anion exchange membrane, which are alternately arranged, a concentration chamber and a desalting chamber, which are alternately arranged between the cation exchange membrane and the anion exchange membrane, and a pair of electrode chambers which are arranged outside the cation exchange membrane and the anion exchange membrane; the treated water pipe is connected to the electric deionization device in such a manner that the treated water of the ultraviolet oxidation device is supplied to at least the desalting chamber of the electric deionization device; and this pure water production system is provided with a first bypass pipe which supplies the permeated water of the reverse osmosis membrane device to the electrode chambers of the electric deionization device without the intermediary of the ultraviolet oxidation device.
Description
本発明は、純水製造システム及び純水製造方法に関する。
The present invention relates to a pure water production system and a pure water production method.
従来、半導体や液晶ディスプレイの製造工程で用いられる洗浄用水や医薬用水等に適用される純水の製造において、電気式脱イオン装置(EDI)が用いられている。電気式脱イオン装置は、装置内のイオン交換体を電気的に再生しながら、原水の脱イオン処理を行う。そのため、電気式脱イオン装置では、イオン交換樹脂塔のように薬剤による再生を必要とせず、連続採水が可能である。
Conventionally, an electric deionization apparatus (EDI) has been used in the production of pure water used for cleaning water, medical water and the like used in the production process of semiconductors and liquid crystal displays. The electric deionization device performs deionization treatment of raw water while electrically regenerating an ion exchanger in the device. Therefore, in the electric deionization apparatus, continuous water sampling is possible without requiring regeneration with a chemical unlike the ion exchange resin tower.
電気式脱イオン装置は、カチオン(陽イオン)のみを透過させるカチオン交換膜とアニオン(陰イオン)のみを透過させるアニオン交換膜との間にイオン交換体を充填して脱塩室を構成し、カチオン交換膜及びアニオン交換膜の外側に濃縮室を配置した構成である。そして、脱塩室から見てアニオン交換膜側に電極室(陽極室)を介して陽極を、カチオン交換膜側に電極室(陰極室)を介して陰極を配置する。陽極と陰極との間に直流電圧を印加した状態で脱塩室に被処理水を通水すると、被処理水中のイオン成分は脱塩室内のイオン交換体に捕捉されるとともに、水の解離反応によって生成する水素イオン(H+)と水酸化物イオン(OH-)によって、イオン交換体の再生が行われる。
The electric deionization apparatus comprises a deionization chamber filled with an ion exchanger between a cation exchange membrane that allows only cations (cations) to permeate and an anion exchange membrane that allows only anions (anions) to permeate, In this configuration, a concentration chamber is arranged outside the cation exchange membrane and the anion exchange membrane. Then, an anode is disposed on the anion exchange membrane side via an electrode chamber (anode chamber) and a cathode is disposed on the cation exchange membrane side via an electrode chamber (cathode chamber) as viewed from the desalting chamber. When the water to be treated is passed through the desalination chamber with a DC voltage applied between the anode and the cathode, the ionic components in the water to be treated are captured by the ion exchanger in the desalination chamber, and the water dissociation reaction occurs. The ion exchanger is regenerated by hydrogen ions (H + ) and hydroxide ions (OH − ) generated by the ion exchanger.
このようにして、電気式脱イオン装置において被処理水は脱塩室を通過することで脱イオンされ精製される。一方、濃縮室および電極室にも、例えば、被処理水が通水される。濃縮室および電極室を通水する被処理水中には脱塩室から移動したイオン成分が濃縮されて、濃縮水となって電気式脱イオン装置の外に排出される。
よ う Thus, in the electric deionization apparatus, the water to be treated is deionized and purified by passing through the deionization chamber. On the other hand, for example, water to be treated is also passed through the concentration chamber and the electrode chamber. In the water to be treated passing through the concentration chamber and the electrode chamber, the ionic components moved from the desalting chamber are concentrated and discharged as concentrated water outside the electric deionization apparatus.
この電気式脱イオン装置を用いた純水製造システムとして、逆浸透膜装置(RO)で脱イオン水を得て、紫外線酸化装置(TOC-UV)でこの脱イオン水中の有機物成分を分解したのち、紫外線酸化装置で生じた低分子量の有機酸などのイオン成分を電気式脱イオン装置で処理するシステムがある。このような電気式脱イオン装置を設けたシステムとして、電気式脱イオン装置を2段で設け、脱塩室処理水の一部を濃縮室に通水するシステムや(例えば、特許文献1参照。)、紫外線酸化装置で発生する酸化成分によるイオン交換体の劣化を防止する目的で、紫外線酸化装置と電気式脱イオン装置の間に紫外線酸化装置よりも長波長の紫外線を照射する紫外線殺菌装置を設けるシステムも提案されている(例えば、特許文献2参照。)。
As a pure water production system using this electric deionizer, deionized water is obtained by a reverse osmosis membrane device (RO), and organic components in the deionized water are decomposed by an ultraviolet oxidizer (TOC-UV). There is a system in which an ionic component such as a low molecular weight organic acid generated in an ultraviolet oxidation device is treated by an electric deionization device. As a system provided with such an electric deionization device, a system in which an electric deionization device is provided in two stages and a part of the treated water in a desalination chamber is passed through a concentration chamber (for example, see Patent Document 1). ) In order to prevent deterioration of the ion exchanger due to oxidizing components generated by the ultraviolet oxidizer, an ultraviolet sterilizer that irradiates ultraviolet light having a longer wavelength than the ultraviolet oxidizer between the ultraviolet oxidizer and the electric deionizer. There is also proposed a providing system (for example, see Patent Document 2).
近年、大規模集積回路(LSI)の超高集積化に伴い、半導体製造用の超純水のさらなる高水質化の要望が高まっている。特に、水中のシリカやホウ素などの微量不純物を著しく低濃度化した超純水が求められている。しかしながら、微量不純物の除去率を向上させようとすると、従来の電気脱イオン装置を2段で設ける方法では、電気脱イオン装置における水回収率や電流効率が低下するという問題がある。紫外線ランプを2段設ける装置では、使用する装置の数が増えることで、システムが複雑化したりコストが増大したりする問題がある。そのため、高水質の純水を長期間効率よく製造することのできる方法が求められていた。
In recent years, with the ultra-high integration of large-scale integrated circuits (LSIs), there has been an increasing demand for higher quality of ultrapure water for semiconductor production. In particular, there is a demand for ultrapure water in which trace impurities such as silica and boron in water are significantly reduced in concentration. However, in an attempt to improve the removal rate of trace impurities, the conventional method of providing a two-stage electrodeionization apparatus has a problem in that the water recovery rate and current efficiency in the electrodeionization apparatus decrease. In a device provided with two stages of ultraviolet lamps, there is a problem that the number of devices to be used increases, which complicates the system and increases costs. Therefore, a method capable of efficiently producing high-quality pure water for a long period of time has been required.
本発明は上記した課題を解決するためになされたものであって、高水質の純水を長期間安定的に製造することのできる純水製造システム及び純水製造方法を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a pure water production system and a pure water production method capable of producing high-quality pure water stably for a long period of time. I do.
本発明の純水製造システムは、逆浸透膜装置と、紫外線酸化装置と、電気式脱イオン装置と、これらの装置を上流側からその順に接続する処理水管を備える純水製造システムであって、前記電気式脱イオン装置は、交互に配置されたカチオン交換膜及びアニオン交換膜と、前記カチオン交換膜及びアニオン交換膜の間に交互に形成された濃縮室及び脱塩室と、前記カチオン交換膜及びアニオン交換膜の外側に配置される1対の電極室と、を備えており、前記処理水管は前記紫外線酸化装置で処理された処理水を前記電気式脱イオン装置の少なくとも脱塩室に供給するように前記電気式脱イオン装置に接続されるとともに、前記純水製造システムは、前記逆浸透膜装置の透過水を前記紫外線酸化装置を介さずに前記電気式脱イオン装置の電極室に供給する第1のバイパス管を具備することを特徴とする
The pure water production system of the present invention is a pure water production system including a reverse osmosis membrane device, an ultraviolet oxidation device, an electric deionization device, and a treatment water pipe connecting these devices in order from the upstream side. The electric deionization apparatus includes a cation exchange membrane and an anion exchange membrane that are alternately arranged, a concentration chamber and a desalination chamber that are alternately formed between the cation exchange membrane and the anion exchange membrane, and the cation exchange membrane. And a pair of electrode chambers disposed outside the anion exchange membrane, wherein the treated water pipe supplies treated water treated by the ultraviolet oxidizer to at least a desalination chamber of the electric deionizer. The pure water production system is connected to the electric deionization apparatus so that the permeated water of the reverse osmosis membrane apparatus does not pass through the ultraviolet oxidizing apparatus. Characterized in that it comprises a first bypass pipe for supplying the
本発明の純水製造システムは、前記逆浸透膜装置の透過水を、前記紫外線酸化装置を介さずに前記電気式脱イオン装置の濃縮室に供給する第2のバイパス管をさらに具備することが好ましい。
The pure water production system of the present invention may further include a second bypass pipe for supplying permeated water of the reverse osmosis membrane device to the concentration chamber of the electric deionization device without passing through the ultraviolet oxidizing device. preferable.
本発明の純水製造システムにおいて、前記電気式脱イオン装置は、前記電気式脱イオン装置の、濃縮室及び電極室に通じる共通入口ノズルを有し、前記第1のバイパス管及び前記第2のバイパス管はいずれも前記共通入口ノズルに接続されることが好ましい。
In the pure water production system of the present invention, the electric deionizer has a common inlet nozzle communicating with a concentration chamber and an electrode chamber of the electric deionizer, and the first bypass pipe and the second Preferably, all bypass pipes are connected to the common inlet nozzle.
本発明の純水製造システムにおいて、前記電気式脱イオン装置は、前記電気式脱イオン装置の、濃縮室に通じる濃縮室入口ノズルと電極室に通じる電極室入口ノズルとを有し、前記第1のバイパス管は前記電極室入口ノズルに接続され、前記第2のバイパス管は前記濃縮室入口ノズルに接続されることが好ましい。
In the pure water production system of the present invention, the electric deionizer has a concentration chamber inlet nozzle communicating with a concentration chamber of the electric deionizer and an electrode chamber inlet nozzle communicating with an electrode chamber. Is preferably connected to the electrode chamber inlet nozzle, and the second bypass pipe is preferably connected to the concentration chamber inlet nozzle.
本発明の純水製造システムにおいて、前記濃縮室及び前記電極室内にイオン交換体を有することが好ましい。
に お い て In the pure water production system of the present invention, it is preferable that an ion exchanger is provided in the concentration chamber and the electrode chamber.
本発明の純水製造システムにおいて、紫外線酸化装置で処理された処理水の過酸化水素濃度が100μg/L以下であることが好ましい。
に お い て In the pure water production system of the present invention, the concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidizing device is preferably 100 μg / L or less.
本発明の純水製造方法は、原水を、逆浸透膜装置と、紫外線酸化装置と、電気式脱イオン装置とで順に処理する純水製造方法であって、前記電気式脱イオン装置は、交互に配置されたカチオン交換膜及びアニオン交換膜と、前記カチオン交換膜及びアニオン交換膜の間に交互に形成された濃縮室及び脱塩室と、前記カチオン交換膜及びアニオン交換膜の外側に配置される1対の電極室と、を備えており、前記紫外線酸化装置で処理された処理水を、前記電気式脱イオン装置の少なくとも脱塩室に供給し、前記逆浸透膜装置の透過水を、前記紫外線酸化装置を介さずに前記電気式脱イオン装置の電極室に供給することを特徴とする。
The pure water production method of the present invention is a pure water production method in which raw water is sequentially treated with a reverse osmosis membrane device, an ultraviolet oxidizing device, and an electric deionization device, wherein the electric deionization device is alternately treated. A cation exchange membrane and an anion exchange membrane, and a concentration chamber and a desalination chamber alternately formed between the cation exchange membrane and the anion exchange membrane, and are disposed outside the cation exchange membrane and the anion exchange membrane. A pair of electrode chambers, and supplies the treated water treated by the ultraviolet oxidizing apparatus to at least a desalting chamber of the electric deionization apparatus, and the permeated water of the reverse osmosis membrane apparatus, The power is supplied to the electrode chamber of the electric deionization apparatus without passing through the ultraviolet oxidation apparatus.
本発明の純水製造方法において、前記逆浸透膜装置の透過水を、前記紫外線酸化装置を介さずに前記電気式脱イオン装置の濃縮室に供給することが好ましい。
In the pure water production method of the present invention, it is preferable that the permeated water of the reverse osmosis membrane device is supplied to the concentration chamber of the electric deionization device without passing through the ultraviolet oxidation device.
本発明の純水製造方法において、紫外線酸化装置で処理された処理水の過酸化水素濃度が100μg/L以下であることが好ましい。
に お い て In the pure water production method of the present invention, the concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidizing apparatus is preferably 100 μg / L or less.
本発明の純水製造システム及び純水製造方法によれば、高水質の純水を長期間安定的に製造することができる。
According to the pure water production system and the pure water production method of the present invention, high-quality pure water can be produced stably for a long period of time.
以下、図面を参照して、実施形態を詳細に説明する。なお、本発明は、これらの実施形態に限定されるものではなく、これらの実施形態を、本発明の趣旨および範囲を逸脱することなく、変更または変形することができる。また、以下の複数の図面において同一の構成には同一の符号を付して、重複する動作については説明を省略する。
Hereinafter, embodiments will be described in detail with reference to the drawings. The present invention is not limited to these embodiments, and these embodiments can be changed or modified without departing from the spirit and scope of the present invention. In the following drawings, the same components are denoted by the same reference numerals, and description of overlapping operations will be omitted.
図1に示す実施形態の純水製造システム1は、逆浸透膜装置10と、紫外線酸化装置(TOC-UV)11と、電気式脱イオン装置(EDI)12と、これらの装置を上流側からその順に接続する処理水管133を備える。純水製造システム1は、被処理水供給部20から供給される被処理水を処理して純水を製造し、得られた純水を使用場所であるユースポイント(POU)14に供給するシステムである。
The pure water production system 1 of the embodiment shown in FIG. 1 includes a reverse osmosis membrane device 10, an ultraviolet oxidation device (TOC-UV) 11, an electric deionization device (EDI) 12, and these devices from the upstream side. The processing water pipe 133 connected in that order is provided. The pure water production system 1 processes pure water by treating the raw water supplied from the raw water supply unit 20, and supplies the pure water to a use point (POU) 14, which is a place of use. It is.
純水製造システム1において、処理水管133は被処理水供給部20から被処理水を逆浸透膜装置10に供給する第1の処理水管133aと、逆浸透膜装置10の透過水を紫外線酸化装置11に供給する第2の処理水管133bと、紫外線酸化装置11で処理された処理水を電気式脱イオン装置12に供給する第3の処理水管133cと、電気式脱イオン装置12の透過水を純水の使用場所であるユースポイント14に送液する第4の処理水管133dとからなる。
In the pure water production system 1, the treated water pipe 133 is a first treated water pipe 133 a that supplies treated water from the treated water supply unit 20 to the reverse osmosis membrane device 10, and an ultraviolet oxidation device that transmits permeated water of the reverse osmosis membrane device 10. A second treated water pipe 133b for supplying the treated water treated by the ultraviolet oxidizing apparatus 11 to the electric deionization apparatus 12, and a second treated water pipe 133c for supplying treated water treated by the ultraviolet oxidizing apparatus 11 to the electric deionization apparatus 12. And a fourth treated water pipe 133d for sending the liquid to a use point 14 where pure water is used.
純水製造システム1は、逆浸透膜装置10の透過水を紫外線酸化装置11に供給する第2の処理水管133bから分岐して、逆浸透膜装置10の透過水を電気式脱イオン装置12に供給する第1のバイパス管131を有する。逆浸透膜装置10には濃縮水を排出する排出管135が接続されている。
The pure water production system 1 branches from the second treated water pipe 133b that supplies the permeated water of the reverse osmosis membrane device 10 to the ultraviolet oxidizing device 11, and transfers the permeated water of the reverse osmosis membrane device 10 to the electric deionization device 12. It has a first bypass pipe 131 for supplying. A discharge pipe 135 for discharging the concentrated water is connected to the reverse osmosis membrane device 10.
電気式脱イオン装置12は、以下に例示するように、交互に配置されたカチオン交換膜及びアニオン交換膜と、これらのカチオン交換膜及びアニオン交換膜の間に交互に形成された濃縮室及び脱塩室を有している。また、電気式脱イオン装置12は、カチオン交換膜及びアニオン交換膜の外側に配置される1対の電極室を備えている。
As illustrated below, the electric deionization apparatus 12 includes a cation exchange membrane and an anion exchange membrane that are alternately arranged, and a concentration chamber and a deionization chamber that are alternately formed between the cation exchange membrane and the anion exchange membrane. It has a salt room. Further, the electrodeionization device 12 includes a pair of electrode chambers disposed outside the cation exchange membrane and the anion exchange membrane.
純水製造システム1において、電気式脱イオン装置12には給水管として、第3の処理水管133cおよび第1のバイパス管131が接続されている。紫外線酸化装置11から第3の処理水管133cを経て電気式脱イオン装置12に供給される紫外線酸化装置11で処理された処理水は、電気式脱イオン装置12の少なくとも脱塩室に供給される。また、純水製造システム1において、逆浸透膜装置10から第1のバイパス管131を経て電気式脱イオン装置12に供給される逆浸透膜装置10の透過水は、電気式脱イオン装置12の電極室に供給される。また、電気式脱イオン装置12には排水管として、脱イオン水である透過水を排出する第4の処理水管133dおよび濃縮水を排出する濃縮水排出管136が接続されている。
In the pure water production system 1, a third treated water pipe 133c and a first bypass pipe 131 are connected to the electric deionizer 12 as a water supply pipe. The treated water treated by the ultraviolet oxidizer 11 supplied from the ultraviolet oxidizer 11 to the electric deionizer 12 through the third treated water pipe 133c is supplied to at least the desalting chamber of the electric deionizer 12. . In the pure water production system 1, the permeated water of the reverse osmosis membrane device 10 supplied from the reverse osmosis membrane device 10 to the electric deionization device 12 via the first bypass pipe 131 is supplied to the electric deionization device 12. It is supplied to the electrode chamber. Further, a fourth treated water pipe 133d for discharging permeated water as deionized water and a concentrated water discharge pipe 136 for discharging concentrated water are connected to the electric deionization device 12 as drain pipes.
図2Aおよび図2Bに、純水製造システム1で使用する電気式脱イオン装置12の一例をおよび別の一例をそれぞれ概略的に示す。図2Aに、紫外線酸化装置11で処理された処理水が脱塩室と濃縮室に供給され、逆浸透膜装置10の透過水が電極室に供給される場合の電気式脱イオン装置12の例を示す。図2Bに、紫外線酸化装置11で処理された処理水が脱塩室に供給され、逆浸透膜装置10の透過水が電極室と濃縮室に供給される場合の電気式脱イオン装置12の例を示す。なお、電気式脱イオン装置12において、脱塩室、濃縮室、電極室の通水方向は、図2Aおよび図2Bの向きに限定されない。例えば、脱塩室の通水方向と、濃縮室および電極室の通水方向を逆向きにすることもできる。
2A and 2B schematically show an example of the electric deionization device 12 used in the pure water production system 1 and another example. FIG. 2A shows an example of the electric deionization apparatus 12 in the case where the treated water treated by the ultraviolet oxidation apparatus 11 is supplied to the desalination chamber and the concentration chamber, and the permeated water of the reverse osmosis membrane apparatus 10 is supplied to the electrode chamber. Is shown. FIG. 2B shows an example of the electric deionization device 12 in the case where the treated water treated by the ultraviolet oxidation device 11 is supplied to the desalting chamber and the permeated water of the reverse osmosis membrane device 10 is supplied to the electrode chamber and the concentration chamber. Is shown. Note that, in the electric deionization device 12, the water flowing directions of the desalting chamber, the concentrating chamber, and the electrode chamber are not limited to the directions of FIGS. For example, the water flow direction of the desalting chamber and the water flow direction of the concentration chamber and the electrode chamber can be reversed.
図2Aに示す電気式脱イオン装置12は、交互に配置されたカチオン交換膜21とアニオン交換膜22とを備えており、カチオン交換膜21及びアニオン交換膜22の間に濃縮室23と脱塩室24とが交互に形成されている。また、カチオン交換膜21及びアニオン交換膜22の外側には、陽極室25aと陰極室25bからなる1対の電極室が配置されている。また、電気式脱イオン装置12は、陽極室25aに隣接した陽極26aと、陰極室25bに隣接した陰極26bを備えており、陽極26aと陰極26b(以下、「電極26a、26b」ともいう)は直流電圧を印加する電源27に接続される。
The electric deionization device 12 shown in FIG. 2A includes a cation exchange membrane 21 and an anion exchange membrane 22 which are arranged alternately, and a concentration chamber 23 and a desalination are provided between the cation exchange membrane 21 and the anion exchange membrane 22. The chambers 24 are formed alternately. Further, outside the cation exchange membrane 21 and the anion exchange membrane 22, a pair of electrode chambers including an anode chamber 25a and a cathode chamber 25b is arranged. Further, the electric deionization apparatus 12 includes an anode 26a adjacent to the anode chamber 25a and a cathode 26b adjacent to the cathode chamber 25b, and the anode 26a and the cathode 26b (hereinafter, also referred to as “ electrodes 26a, 26b”). Is connected to a power supply 27 for applying a DC voltage.
図2Aに示す電気式脱イオン装置12は、第3の処理水管133cから供給される紫外線酸化装置11で処理された処理水を、濃縮室23及び脱塩室24にそれぞれ供給する濃縮室給水管123及び脱塩室給水管124を有する。また、第1のバイパス管131から供給される逆浸透膜装置10の透過水を、陽極室25aと陰極室25b(以下、「電極室25a、25b」ともいう)に供給する電極室給水管125を有する。
The electric deionization device 12 shown in FIG. 2A is a water supply pipe in a concentration chamber that supplies treated water treated by the ultraviolet oxidizing apparatus 11 supplied from a third treated water pipe 133c to a concentration chamber 23 and a desalination chamber 24, respectively. 123 and a desalination chamber water supply pipe 124. Further, an electrode chamber water supply pipe 125 for supplying permeated water of the reverse osmosis membrane device 10 supplied from the first bypass pipe 131 to the anode chamber 25a and the cathode chamber 25b (hereinafter, also referred to as “ electrode chambers 25a, 25b”). Having.
図2Aに示す電気式脱イオン装置12は、脱塩室24で脱イオン処理された脱イオン水(透過水)を第4の処理水管133dに移送する脱塩室排水管224を有する。また、濃縮室23及び電極室25a、25bから排出されるイオン成分が濃縮された濃縮水を濃縮水排出管136に移送する濃縮室排水管223及び電極室排水管225を有する。
電 気 The electric deionization apparatus 12 shown in FIG. 2A has a deionization chamber drain pipe 224 for transferring deionized water (permeated water) deionized in the deionization chamber 24 to the fourth treated water pipe 133d. Further, it has a concentration chamber drain pipe 223 and an electrode chamber drain pipe 225 for transferring concentrated water in which ionic components discharged from the concentration chamber 23 and the electrode chambers 25a and 25b are concentrated to the concentrated water discharge pipe 136.
図2Bに示す電気式脱イオン装置12は、濃縮室給水管123の上流側の接続先が第1のバイパス管131である以外は、図2Aに示す電気式脱イオン装置12と同じ構成である。
The electric deionization device 12 shown in FIG. 2B has the same configuration as the electric deionization device 12 shown in FIG. 2A, except that the connection destination on the upstream side of the water supply pipe 123 for the concentration chamber is the first bypass pipe 131. .
このように、純水製造システム1においては、逆浸透膜装置10の透過水を、紫外線酸化装置11で処理した後、第3の処理水管133cを介して電気式脱イオン装置12の少なくとも脱塩室24に供給するとともに、逆浸透膜装置10の透過水を、紫外線酸化装置11をバイパスして第1のバイパス管131を介して電気式脱イオン装置12の少なくとも電極室25a、25bに供給する。濃縮室23には、紫外線酸化装置11で処理された処理水が供給されてもよく、逆浸透膜装置10の透過水が供給されてもよい。ただし、濃縮室23にイオン交換体が充填されている場合などには、逆浸透膜装置10の透過水が供給されるのが好ましい。
As described above, in the pure water production system 1, after the permeated water of the reverse osmosis membrane device 10 is treated by the ultraviolet oxidation device 11, at least the desalination of the electric deionization device 12 is performed through the third treated water pipe 133c. While supplying to the chamber 24, the permeated water of the reverse osmosis membrane device 10 is supplied to at least the electrode chambers 25 a and 25 b of the electric deionization device 12 via the first bypass pipe 131, bypassing the ultraviolet oxidation device 11. . The concentrated water 23 may be supplied with the treated water treated by the ultraviolet oxidizing device 11 or the permeated water of the reverse osmosis membrane device 10. However, it is preferable that the permeated water of the reverse osmosis membrane device 10 is supplied, for example, when the concentration chamber 23 is filled with the ion exchanger.
上に説明した構成により、実施形態の純水製造システムにおいては、従来の純水製造システムと比べて、例えば、次のような効果が得られる。
With the configuration described above, for example, the following effects can be obtained in the pure water production system of the embodiment as compared with the conventional pure water production system.
紫外線酸化装置において過剰の紫外線照射が行われた場合、有機物の酸化分解に寄与しないOHラジカル同士が反応して過酸化水素が発生する。この発生した過酸化水素は、下流の電気式脱イオン装置が有する電極やイオン交換体を劣化させることがある。例えば、紫外線酸化装置の処理水を電気式脱イオン装置の脱塩室、電極室及び濃縮室に供給していた従来の純水製造システムでは、電気式脱イオン装置に電圧が印加された状態で、電極室に、紫外線酸化装置の処理水として過酸化水素含有水が供給される。その結果、電圧のエネルギーによって、過酸化水素による電極の腐食が促進され、脱塩室から排出される電気式脱イオン装置の透過水の水質の低下を招きやすくなる。
場合 When excessive ultraviolet irradiation is performed in the ultraviolet oxidizing apparatus, OH radicals that do not contribute to the oxidative decomposition of organic substances react with each other to generate hydrogen peroxide. The generated hydrogen peroxide may degrade the electrodes and the ion exchanger of the downstream electric deionizer. For example, in a conventional pure water production system in which treated water of an ultraviolet oxidizing apparatus is supplied to a desalting chamber, an electrode chamber, and a concentrating chamber of an electric deionization apparatus, a voltage is applied to the electric deionization apparatus. Then, the hydrogen peroxide-containing water is supplied to the electrode chamber as the treated water of the ultraviolet oxidation device. As a result, the voltage energy promotes the corrosion of the electrode by the hydrogen peroxide, and the quality of the permeated water of the electric deionization device discharged from the desalting chamber is easily reduced.
また、濃縮室にイオン交換体が充填されている場合には、このイオン交換体の劣化も促進され、電気式脱イオン装置の透過水の水質の低下を招きやすくなる。電気式脱イオン装置に、シリカやホウ素などの微量不純物の除去率を向上させるために、その許容上限付近での電圧が印加されることがあるが、このような場合は特に、電極やイオン交換体の腐食の進行による透過水の水質の低下が一層進みやすくなると考えられる。
In addition, when the ion exchanger is filled in the concentration chamber, the deterioration of the ion exchanger is promoted, and the quality of the permeated water of the electric deionization apparatus is easily reduced. In order to improve the removal rate of trace impurities such as silica and boron, a voltage near the allowable upper limit may be applied to the electric deionization apparatus. It is considered that the quality of the permeated water decreases more easily due to the progress of body corrosion.
これに対して、実施形態の純水製造システム1では、電気式脱イオン装置12の少なくとも脱塩室24には紫外線酸化装置11で処理した処理水を供給しながら、電極室25a、25b、又は電極室25a、25bと濃縮室23には、紫外線酸化装置11を経ていない逆浸透膜装置10の透過水を導入することとした。これによれば、例えば、逆浸透膜装置10の透過水を、紫外線酸化装置を経由して電気式脱イオン装置の脱塩室、電極室及び濃縮室に供給していた従来の純水製造システムにおける配管及びその接続箇所を変更することのみで、処理装置の数を増やすことなく、紫外線酸化装置で発生する過酸化水素による電気式脱イオン装置への悪影響を抑制することができる。
On the other hand, in the pure water production system 1 of the embodiment, the electrode chambers 25a, 25b, or, while supplying the treated water treated by the ultraviolet oxidizing apparatus 11 to at least the desalting chamber 24 of the electric deionization apparatus 12, The permeated water of the reverse osmosis membrane device 10 that has not passed through the ultraviolet oxidation device 11 is introduced into the electrode chambers 25a and 25b and the concentration chamber 23. According to this, for example, a conventional pure water production system in which the permeated water of the reverse osmosis membrane device 10 is supplied to a desalting chamber, an electrode room, and a concentration room of an electric deionization device via an ultraviolet oxidation device. By simply changing the pipes and their connection points in the above, the adverse effect on the electric deionization apparatus due to hydrogen peroxide generated in the ultraviolet oxidation apparatus can be suppressed without increasing the number of processing apparatuses.
また、従来の方法では上記した電極やイオン交換体の腐食の進行を防ぐために、ユースポイントの直前段に配置される二次純水システムから、電気式脱イオン装置に水を供給することもあったが、実施形態の純水製造システム1ではこのような必要もない。また、純水製造システム1では、逆浸透膜装置10の透過水が電気式脱イオン装置12の電極室25a、25b、又は電極室25a、25bと濃縮室23の両方に供給されるため、電極室25a、25b、又は電極室25a、25bと濃縮室23における硬度スケールが起きにくく、また、電気式脱イオン装置12の処理水のホウ素やシリカの水質悪化も軽減される。
In addition, in the conventional method, in order to prevent the above-mentioned corrosion of the electrodes and the ion exchanger from progressing, water may be supplied to the electric deionization apparatus from the secondary pure water system disposed immediately before the point of use. However, in the pure water production system 1 of the embodiment, such a necessity is not required. Further, in the pure water production system 1, the permeated water of the reverse osmosis membrane device 10 is supplied to the electrode chambers 25 a and 25 b of the electric deionization device 12, or both the electrode chambers 25 a and 25 b and the concentration chamber 23. Hardness scale hardly occurs in the chambers 25a and 25b or the electrode chambers 25a and 25b and the concentration chamber 23, and the deterioration of the quality of boron or silica in the treated water of the electric deionization apparatus 12 is reduced.
実施形態の純水製造システムは、必要に応じて、逆浸透膜装置、紫外線酸化装置、電気式脱イオン装置とともに、これら以外のその他の水処理装置を有してもよい。このようなその他の水処理装置として、例えば、脱気膜装置、真空脱気装置、イオン交換樹脂塔、硬度除去装置(ソフナー)、活性炭充填塔、凝集沈殿槽、ろ過装置等が挙げられ、脱気膜装置が好ましく用いられる。実施形態の純水製造システムがその他の水処理装置を有する場合、その配置箇所は逆浸透膜装置の前段であっても、上記各必須の水処理装置の間であっても、電気式脱イオン装置の後段であってもよい。
The pure water production system according to the embodiment may include, if necessary, other water treatment devices other than these, in addition to the reverse osmosis membrane device, the ultraviolet oxidation device, and the electric deionization device. Examples of such other water treatment devices include, for example, a degassing membrane device, a vacuum degassing device, an ion exchange resin tower, a hardness removing device (softener), an activated carbon packed tower, a coagulating sedimentation tank, and a filtering device. Pneumatic membrane devices are preferably used. If the pure water production system of the embodiment has another water treatment device, the arrangement location may be before the reverse osmosis membrane device, even between the above-mentioned essential water treatment devices, and may be an electric deionization device. It may be at the subsequent stage of the device.
図3に示す、実施形態の純水製造システム1Aは、その他の水処理装置として脱気膜装置を電気式脱イオン装置の後段に有する例である。図3に示す純水製造システム1Aは、逆浸透膜装置10と、紫外線酸化装置11と、電気式脱イオン装置12Aと、脱気膜装置(MGD)13とこれらの装置を上流側からその順に接続する処理水管133を備える。具体的には、逆浸透膜装置10、紫外線酸化装置11、電気式脱イオン装置12A及び脱気膜装置13は第2の処理水管133b~第4処理水管133dにより接続されている。逆浸透膜装置10には、第1の処理水管133aを介して被処理水が供給される。脱気膜装置13の透過水は第5の処理水管133eによって純水の使用場所であるユースポイント(POU)14に送液される。
純 The pure water production system 1A of the embodiment shown in FIG. 3 is an example in which a degassing membrane device is provided downstream of the electric deionization device as another water treatment device. The pure water production system 1A shown in FIG. 3 includes a reverse osmosis membrane device 10, an ultraviolet oxidation device 11, an electric deionization device 12A, a degassing membrane device (MGD) 13, and these devices in that order from the upstream side. The processing water pipe 133 to be connected is provided. Specifically, the reverse osmosis membrane device 10, the ultraviolet oxidation device 11, the electric deionization device 12A and the degassing membrane device 13 are connected by the second treated water pipe 133b to the fourth treated water pipe 133d. To-be-treated water is supplied to the reverse osmosis membrane device 10 via the first treated water pipe 133a. The permeated water of the degassing membrane device 13 is sent to a use point (POU) 14 which is a place where pure water is used by a fifth treated water pipe 133e.
純水製造システム1Aは、第2の処理水管133bから分岐して電気式脱イオン装置12Aまで延びる第1のバイパス管131および第2のバイパス管132を備える。
The pure water production system 1A includes a first bypass pipe 131 and a second bypass pipe 132 which branch off from the second treated water pipe 133b and extend to the electric deionization apparatus 12A.
電気式脱イオン装置12Aは、例えば、濃縮室給水管123の接続先を除いて図2Bに示すのと同様の構成の電気式脱イオン装置とすることができる。電気式脱イオン装置12Aは、電気式脱イオン装置内部の濃縮室23に通じる濃縮室入口ノズル23cと、脱塩室24に通じる脱塩室入口ノズル24cと、電極室25a、25bに通じる電極室入口ノズル25cとを備えている。
The electric deionization apparatus 12A can be, for example, an electric deionization apparatus having the same configuration as that shown in FIG. 2B except for the connection destination of the water supply pipe 123 in the concentration chamber. The electric deionization apparatus 12A includes a concentration chamber inlet nozzle 23c communicating with the concentration chamber 23 inside the electric deionization apparatus, a desalination chamber inlet nozzle 24c communicating with the desalination chamber 24, and an electrode chamber communicating with the electrode chambers 25a and 25b. An inlet nozzle 25c.
図3に示す純水製造システム1Aにおいては、第3の処理水管133cは、電気式脱イオン装置12Aの脱塩室入口ノズル24cに接続されており、逆浸透膜装置10と、紫外線酸化装置11とで順に処理された処理水が電気式脱イオン装置12Aの脱塩室24に供給される。
In the pure water production system 1A shown in FIG. 3, the third treated water pipe 133c is connected to the deionization chamber inlet nozzle 24c of the electric deionization device 12A, and the reverse osmosis membrane device 10 and the ultraviolet oxidation device 11 The water treated in this order is supplied to the desalting chamber 24 of the electric deionizer 12A.
第2の処理水管133bから分岐して設けられた第1のバイパス管131は、電気式脱イオン装置12Aの電極室入口ノズル25cに接続されている。また、第2の処理水管133bから分岐して設けられた第2のバイパス管132は、電気式脱イオン装置12Aの濃縮室入口ノズル23cに接続されている。第1のバイパス管131は、逆浸透膜装置10の透過水を、紫外線酸化装置11を介さずに電気式脱イオン装置12Aの電極室25a、25bに供給する。第2のバイパス管132は、逆浸透膜装置10の透過水を、紫外線酸化装置11を介さずに電気式脱イオン装置12Aの濃縮室23に供給する。
第 The first bypass pipe 131 branched from the second treated water pipe 133b is connected to the electrode chamber inlet nozzle 25c of the electric deionization apparatus 12A. In addition, a second bypass pipe 132 branched from the second treated water pipe 133b is connected to the enrichment chamber inlet nozzle 23c of the electric deionization apparatus 12A. The first bypass pipe 131 supplies the permeated water of the reverse osmosis membrane device 10 to the electrode chambers 25a and 25b of the electric deionization device 12A without passing through the ultraviolet oxidation device 11. The second bypass pipe 132 supplies the permeated water of the reverse osmosis membrane device 10 to the concentration chamber 23 of the electric deionization device 12A without passing through the ultraviolet oxidation device 11.
なお、図3に示す純水製造システム1Aにおいて、第2のバイパス管132を第2の処理水管133bから分岐させる代わりに、第3の処理水管133cから分岐させることも可能である。その場合、電気式脱イオン装置12Aの濃縮室23には、紫外線酸化装置11で処理された処理水が供給される。
In the pure water production system 1A shown in FIG. 3, instead of branching the second bypass pipe 132 from the second treated water pipe 133b, it is also possible to branch the second bypass pipe 132 from the third treated water pipe 133c. In that case, the treated water treated by the ultraviolet oxidizing device 11 is supplied to the concentration chamber 23 of the electric deionization device 12A.
図3に示す純水製造システム1Aにおいて、電極室入口ノズル25cと濃縮室入口ノズル23cをそれぞれ独立して有する電気式脱イオン装置12Aを使用する例について説明した。実施形態の純水製造システムにおいては、例えば、電極室入口ノズルと濃縮室入口ノズルを兼ねた共通入口ノズルを有する電気式脱イオン装置を用いてもよい。
し た In the pure water production system 1A shown in FIG. 3, an example has been described in which the electric deionization apparatus 12A having the electrode chamber inlet nozzle 25c and the concentration chamber inlet nozzle 23c independently of each other is used. In the pure water production system of the embodiment, for example, an electric deionization apparatus having a common inlet nozzle that also serves as an electrode chamber inlet nozzle and a concentration chamber inlet nozzle may be used.
図4に示す純水製造システム1Bは、電気式脱イオン装置12Aを電気式脱イオン装置12Bに代えた以外は図3に示す純水製造システム1Aと同様の構成の純水製造システムである。電気式脱イオン装置12Bは、電極室入口ノズル25cと濃縮室入口ノズル23cを、これら2つのノズルを兼ねた共通入口ノズル31cに代えた以外は電気式脱イオン装置12Aと同様の構成を有する。純水製造システム1Bでは、第1のバイパス管131及び第2のバイパス管132の両方が電気式脱イオン装置12Bの共通入口ノズル31cに接続されている。
純 The pure water production system 1B shown in FIG. 4 is a pure water production system having the same configuration as the pure water production system 1A shown in FIG. 3, except that the electric deionization device 12A is replaced with an electric deionization device 12B. The electric deionization apparatus 12B has the same configuration as the electric deionization apparatus 12A except that the electrode chamber inlet nozzle 25c and the concentration chamber inlet nozzle 23c are replaced with a common inlet nozzle 31c serving also as these two nozzles. In the pure water production system 1B, both the first bypass pipe 131 and the second bypass pipe 132 are connected to the common inlet nozzle 31c of the electric deionization apparatus 12B.
電気式脱イオン装置12Bでは、紫外線酸化装置11で処理された処理水が脱塩室24に供給され、逆浸透膜装置10の透過水が電極室25a、25bと濃縮室23に供給される。
In the electric deionizer 12B, the treated water treated by the ultraviolet oxidizer 11 is supplied to the desalting chamber 24, and the permeated water of the reverse osmosis membrane apparatus 10 is supplied to the electrode chambers 25a and 25b and the concentration chamber 23.
なお、図4に示す純水製造システム1Bにおいては、第2のバイパス管132を配設せずに、第1のバイパス管131に第2のバイパス管の機能を併せもたせるようにしてもよい。
In the pure water production system 1B shown in FIG. 4, the first bypass pipe 131 may have the function of the second bypass pipe without providing the second bypass pipe 132.
次に、図3に示す純水製造システム1Aを用いた純水製造方法を例にして実施形態の純水製造方法について説明する。また、併せて、実施形態の純水製造システムに用いる逆浸透膜装置、紫外線酸化装置、及び電気式脱イオン装置を詳細に説明する。
Next, a pure water production method according to the embodiment will be described using a pure water production method using the pure water production system 1A shown in FIG. 3 as an example. In addition, a reverse osmosis membrane device, an ultraviolet oxidation device, and an electric deionization device used in the pure water production system of the embodiment will be described in detail.
純水製造システム1Aで処理される被処理水は、例えば、原水または前処理部により前処理された原水である。原水は必要に応じて前処理部によって前処理されて、逆浸透膜装置10に供給される。原水としては、市水、井水、地下水、工業用水、半導体製造工場などで使用され、回収されて前処理された水(回収水)などが使用される。前処理部は、原水中の懸濁物質を除去して、前処理水を生成する。前処理部は例えば、原水中の懸濁物質を除去するための砂ろ過装置、精密ろ過装置等を適宜選択して構成され、さらに必要に応じて前処理水の温度調節を行う熱交換器等を備えて構成される。なお、原水の水質によっては、前処理部は省略してもよい。
被 The water to be treated in the pure water production system 1A is, for example, raw water or raw water pretreated by a pretreatment unit. Raw water is pre-processed by a pre-processing unit as necessary, and supplied to the reverse osmosis membrane device 10. As raw water, municipal water, well water, groundwater, industrial water, semiconductor manufacturing plants, and the like, water that is collected and pretreated (recovered water) is used. The pretreatment unit removes suspended substances in raw water to generate pretreatment water. The pretreatment unit is configured by appropriately selecting a sand filtration device, a microfiltration device, and the like for removing suspended substances in raw water, and further, a heat exchanger for adjusting the temperature of the pretreatment water as necessary. It is comprised including. Note that the pretreatment unit may be omitted depending on the quality of the raw water.
逆浸透膜装置10では、被処理水を逆浸透膜ろ過して被処理水中の塩類やイオン性の有機物、コロイド性の有機物等を除去する。逆浸透膜装置10が有する逆浸透膜としては、例えば、三酢酸セルロース系非対称膜や、ポリアミド系、ポリビニルアルコール系又はポリスルホン系の複合膜等が挙げられる。膜形状は、シート平膜、スパイラル膜、管状膜、中空糸膜等であるが、これらに限定されない。なかでも、阻止率が高い点で、ポリアミド系の複合膜であることが好ましく、架橋全芳香族ポリアミド系の複合膜であることがより好ましい。膜形状は、スパイラル膜であることが好ましい。
In the reverse osmosis membrane device 10, the water to be treated is subjected to reverse osmosis membrane filtration to remove salts, ionic organic substances, colloidal organic substances, and the like in the water to be treated. Examples of the reverse osmosis membrane included in the reverse osmosis membrane device 10 include a cellulose triacetate-based asymmetric membrane and a polyamide-based, polyvinyl alcohol-based, or polysulfone-based composite membrane. The membrane shape is a sheet flat membrane, a spiral membrane, a tubular membrane, a hollow fiber membrane, or the like, but is not limited thereto. Above all, a polyamide-based composite film is preferable in terms of high rejection, and a cross-linked wholly aromatic polyamide-based composite film is more preferable. The shape of the film is preferably a spiral film.
逆浸透膜装置10の脱塩率は、96~99.8%であることが好ましい。脱塩率は、25℃、pH=7、NaCl濃度0.2質量%の給水を水回収率15%、給水圧力は標準圧力(例えば、低圧逆浸透膜装置なら1.5MPa、超低圧逆浸透膜装置なら0.75MPa)で逆浸透膜に通水した際のナトリウムイオンの除去率として計測することができる。逆浸透膜装置10の水回収率は、塩類やイオン性の有機物を効率的に除去する点で、60~98%が好ましく、80~95%がより好ましい。
脱 The desalination rate of the reverse osmosis membrane device 10 is preferably 96 to 99.8%. The desalination rate is 25 ° C., pH = 7, water supply rate of NaCl concentration 0.2% by mass is water recovery rate 15%, and feed water pressure is standard pressure (for example, 1.5 MPa for a low pressure reverse osmosis membrane device, ultra low pressure reverse osmosis). In the case of a membrane device, it can be measured as the removal rate of sodium ions when water is passed through the reverse osmosis membrane at 0.75 MPa). The water recovery of the reverse osmosis membrane device 10 is preferably from 60 to 98%, more preferably from 80 to 95%, from the viewpoint of efficiently removing salts and ionic organic substances.
逆浸透膜装置10は、超低圧型、低圧型、高圧型の逆浸透膜装置のいずれであってもよく、超純水の製造効率の点から、超低圧型又は低圧型の逆浸透膜装置であることが好ましい。また、逆浸透膜装置10の前段には、被処理水を所定の圧力に加圧して逆浸透膜装置10に供給する給水ポンプが備えられることが好ましい。また、逆浸透膜装置10の給水には、必要に応じて、スケール防止剤、制菌剤、pH調整剤等が添加されてもよい。
The reverse osmosis membrane device 10 may be any of an ultra-low pressure type, a low pressure type, and a high pressure type reverse osmosis membrane device, and from the viewpoint of the production efficiency of ultrapure water, an ultra low pressure type or a low pressure type reverse osmosis membrane device. It is preferred that Further, it is preferable that a water supply pump is provided upstream of the reverse osmosis membrane device 10 to pressurize the water to be treated to a predetermined pressure and supply the water to the reverse osmosis membrane device 10. Further, a scale inhibitor, a bacteriostat, a pH adjuster, and the like may be added to the water supply of the reverse osmosis membrane device 10 as necessary.
ここで、超低圧型の逆浸透膜は、運転圧力が、0.4MPa~0.8MPaであり、好ましくは0.6MPa~0.7MPaである。低圧型の逆浸透膜は、運転圧力が0.8MPaを超え2.5MPa未満であり、好ましくは1MPa~1.6MPaである。高圧型の逆浸透膜は、運転圧力が2MPaを超え8MPa以下であり、好ましくは5MPaを超え6MPa以下である。なお、上記超低圧型、低圧型、高圧型は、各逆浸透膜の製造時の設計圧力(標準圧力)で区別したものであるが、実際には、上記範囲以外の圧力で運転されることもある。
Here, the operating pressure of the ultra-low pressure reverse osmosis membrane is 0.4 MPa to 0.8 MPa, preferably 0.6 MPa to 0.7 MPa. The low pressure type reverse osmosis membrane has an operating pressure of more than 0.8 MPa and less than 2.5 MPa, preferably 1 MPa to 1.6 MPa. The high pressure type reverse osmosis membrane has an operating pressure of more than 2 MPa and 8 MPa or less, preferably more than 5 MPa and 6 MPa or less. The ultra-low pressure type, low pressure type and high pressure type are distinguished by the design pressure (standard pressure) at the time of production of each reverse osmosis membrane. There is also.
逆浸透膜装置10は、2基の逆浸透膜装置を直列に接続した2段逆浸透膜装置で構成してもよい。この場合、塩類やイオン性の有機物を効率的に除去する点で、水回収率は、第1段の逆浸透膜装置では60~98%が好ましく、80~95%がより好ましい。第2段の逆浸透膜装置では、80~95%が好ましく、85~95%がより好ましい。
The reverse osmosis membrane device 10 may be constituted by a two-stage reverse osmosis membrane device in which two reverse osmosis membrane devices are connected in series. In this case, in terms of efficiently removing salts and ionic organic substances, the water recovery rate is preferably 60 to 98%, more preferably 80 to 95% in the first-stage reverse osmosis membrane device. In the reverse osmosis membrane device of the second stage, it is preferably 80 to 95%, more preferably 85 to 95%.
逆浸透膜装置10の市販品としては、東レ社製のTM820K-400、TM720-400、TM720D-400、SUL-G20、DOW社製のBW30-400、BW30-400FR、日東電工社製のCPA5、CPA5-LD等を使用することができる。
Commercial products of the reverse osmosis membrane device 10 include TM820K-400, TM720-400, TM720D-400 and SUL-G20 manufactured by Toray Industries, BW30-400 and BW30-400FR manufactured by DOW, CPA5 manufactured by Nitto Denko Corporation, CPA5-LD or the like can be used.
逆浸透膜装置10の透過水は、次いで、紫外線酸化装置11に導入される。紫外線酸化装置11は、逆浸透膜装置10の透過水に紫外線を照射して、水中の有機物成分(TOC)を分解除去する。紫外線酸化装置11は例えば、紫外線ランプを有し、波長185nm付近の紫外線を発生する装置である。紫外線酸化装置11は、さらに波長254nm付近の紫外線を発生してもよい。紫外線酸化装置11内で水に紫外線が照射されると紫外線が水を分解してOHラジカルを生成し、このOHラジカルが、水中の有機物を酸化分解する。
Next, the permeated water of the reverse osmosis membrane device 10 is introduced into the ultraviolet oxidation device 11. The ultraviolet oxidizer 11 irradiates the permeated water of the reverse osmosis membrane device 10 with ultraviolet rays to decompose and remove organic substances (TOC) in the water. The ultraviolet oxidation device 11 is, for example, a device having an ultraviolet lamp and generating ultraviolet light having a wavelength of about 185 nm. The ultraviolet oxidizing device 11 may further generate ultraviolet light having a wavelength of about 254 nm. When water is irradiated with ultraviolet light in the ultraviolet oxidation device 11, the ultraviolet light decomposes water to generate OH radicals, and the OH radicals oxidize and decompose organic substances in the water.
紫外線酸化装置11において過剰の紫外線照射が行われた場合、有機物の酸化分解に寄与しないOHラジカル同士が反応して過酸化水素が発生する。この発生した過酸化水素は、下流の電気式脱イオン装置12Aが有する電極26a、26bやイオン交換体を劣化させることがある。紫外線酸化装置11から流出する過酸化水素を低減して、下流の電気式脱イオン装置12Aが有する電極26a、26bやイオン交換体の劣化を抑制するために、紫外線酸化装置11における紫外線照射量は、0.02~0.5kWh/m3であることが好ましい。紫外線酸化装置11で処理された処理水中の過酸化水素濃度は、100μg/L以下であることが好ましく、より好ましくは、10μg/L~40μg/L程度である。
When excessive ultraviolet irradiation is performed in the ultraviolet oxidizer 11, OH radicals that do not contribute to the oxidative decomposition of organic substances react with each other to generate hydrogen peroxide. The generated hydrogen peroxide may deteriorate the electrodes 26a and 26b and the ion exchanger of the downstream electric deionizer 12A. In order to reduce the hydrogen peroxide flowing out of the ultraviolet oxidizer 11 and to suppress the deterioration of the electrodes 26a and 26b and the ion exchanger of the downstream electric deionizer 12A, the amount of ultraviolet irradiation in the ultraviolet oxidizer 11 is , 0.02 to 0.5 kWh / m 3 . The concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidizer 11 is preferably 100 μg / L or less, more preferably about 10 μg / L to about 40 μg / L.
紫外線酸化装置11の処理水は、第3の処理水管133cを介して、電気式脱イオン装置12Aの脱塩室入口ノズル24cから、脱塩室24内に供給される。電気式脱イオン装置12Aの濃縮室23と電極室25a、25bには、それぞれ第2のバイパス管132及び第1のバイパス管131を介して、逆浸透膜装置10の透過水が供給される。
処理 The treated water of the ultraviolet oxidizing apparatus 11 is supplied into the desalting chamber 24 from the desalting chamber inlet nozzle 24c of the electric deionization apparatus 12A via the third treated water pipe 133c. The permeated water of the reverse osmosis membrane device 10 is supplied to the concentration chamber 23 and the electrode chambers 25a and 25b of the electric deionization apparatus 12A via the second bypass pipe 132 and the first bypass pipe 131, respectively.
なお、電気式脱イオン装置12Aを用いた図3に示す純水製造システム1Aにおいて、第2のバイパス管132を第2の処理水管133bから分岐させる代わりに、第3の処理水管133cから分岐させて、紫外線酸化装置11の処理水を電気式脱イオン装置12Aの脱塩室24と濃縮室23に、逆浸透膜装置10の透過水を電極室25a、25bに供給させてもよい。このように、実施形態の純水製造方法においては、紫外線酸化装置の処理水を電気式脱イオン装置の少なくとも脱塩室に供給し、逆浸透膜装置の透過水を電気式脱イオン装置の少なくとも電極室に供給するものである。
Note that, in the pure water production system 1A shown in FIG. 3 using the electric deionization device 12A, the second bypass pipe 132 is branched from the third treated water pipe 133c instead of the second treated water pipe 133b. Then, the treated water of the ultraviolet oxidizing apparatus 11 may be supplied to the desalting chamber 24 and the concentrating chamber 23 of the electric deionization apparatus 12A, and the permeated water of the reverse osmosis membrane apparatus 10 may be supplied to the electrode chambers 25a and 25b. As described above, in the pure water production method of the embodiment, the treated water of the ultraviolet oxidizer is supplied to at least the desalting chamber of the electric deionizer, and the permeated water of the reverse osmosis membrane device is supplied to at least the electric deionizer. It is supplied to the electrode chamber.
電気式脱イオン装置12Aの構成は上記のとおりである。電気式脱イオン装置12Aにおいて、脱塩室24には、イオン交換体が充填されている。濃縮室23、電極室25a、25b内は空洞であってもよいし、イオン交換体、活性炭、又は金属等からなる電気導電体が充填されていてもよい。
構成 The configuration of the electric deionizer 12A is as described above. In the electric deionizer 12A, the desalting chamber 24 is filled with an ion exchanger. The interior of the concentration chamber 23 and the electrode chambers 25a and 25b may be hollow, or may be filled with an electrical conductor made of an ion exchanger, activated carbon, metal, or the like.
このとき、電気式脱イオン装置12Aの脱塩室24内に供給される水の量と、電気式脱イオン装置12Aの濃縮室23内及び電極室25a、25b内に供給される水の合計量の比は、(脱塩室24内に供給される水)/(濃縮室23内及び電極室25a、25b内に供給される水の合計)で表わされる比の値で6~20であることが好ましい。これにより、電気式脱イオン装置12Aの劣化抑制効果と、処理水質向上効果を向上させやすくなる。
At this time, the amount of water supplied to the desalination chamber 24 of the electric deionization apparatus 12A and the total amount of water supplied to the concentration chamber 23 and the electrode chambers 25a and 25b of the electric deionization apparatus 12A Is a value expressed as (water supplied into the desalting chamber 24) / (total water supplied into the concentrating chamber 23 and the electrode chambers 25a and 25b) and is 6 to 20. Is preferred. Thereby, the effect of suppressing the deterioration of the electric deionization device 12A and the effect of improving the treated water quality can be easily improved.
電気式脱イオン装置12Aにおいて、脱塩室24と接して陽極26a側に配置されるイオン交換膜はアニオン交換膜22であり、脱塩室24と接して陰極26b側に配置されるイオン交換膜はカチオン交換膜21である。また、電気式脱イオン装置12Aは、陽極26aと陰極26bとの間に複数の脱塩室24と濃縮室23を交互に有することで、複数のセルが並置されるように構成されてもよい。
In the electric deionization apparatus 12A, the ion exchange membrane arranged on the anode 26a side in contact with the desalting chamber 24 is the anion exchange membrane 22, and the ion exchange membrane arranged on the cathode 26b side in contact with the desalination chamber 24. Is a cation exchange membrane 21. Further, the electric deionization apparatus 12A may be configured such that a plurality of cells are juxtaposed by alternately having a plurality of desalting chambers 24 and a concentration chamber 23 between the anode 26a and the cathode 26b. .
カチオン交換膜21及びアニオン交換膜22としては、膜の構造から不均質膜、半均質膜、均質膜があるが、均質膜であることが、イオン成分の除去効率の点、また、電気式脱イオン装置における抵抗増大の抑制の点で好ましい。
As the cation exchange membrane 21 and the anion exchange membrane 22, there are a heterogeneous membrane, a semi-homogeneous membrane, and a homogeneous membrane in view of the membrane structure. This is preferable in terms of suppressing an increase in resistance in the ion device.
脱塩室24に充填されるイオン交換体としては、カチオン交換樹脂とアニオン交換樹脂を混合したイオン交換体を使用することができる。このカチオン交換樹脂とアニオン交換樹脂の混合比は、体積比で、アニオン交換樹脂比率を20~80%であることがイオン成分の除去効率の点、また、電気式脱イオン装置12Aにおける抵抗増大の抑制の点で好ましい。イオン交換体としては、カチオン交換樹脂とアニオン交換樹脂を流路方向に積層したイオン交換体を使用することも可能である。電極(陽極26aと陰極26b)は、例えば、陽極は白金族元素又は白金族元素を被覆した金属材料で、陰極はステンレスで構成される。
は As the ion exchanger filled in the desalting chamber 24, an ion exchanger obtained by mixing a cation exchange resin and an anion exchange resin can be used. The mixing ratio of the cation exchange resin and the anion exchange resin is, in terms of volume ratio, that the anion exchange resin ratio is from 20 to 80% in view of the efficiency of removing the ionic components and the increase in the resistance in the electric deionizer 12A. It is preferable in terms of suppression. As the ion exchanger, it is also possible to use an ion exchanger obtained by laminating a cation exchange resin and an anion exchange resin in the flow direction. For the electrodes (anode 26a and cathode 26b), for example, the anode is made of a platinum group element or a metal material coated with a platinum group element, and the cathode is made of stainless steel.
電気式脱イオン装置12Aにおいては、濃縮室23又は電極室25a、25bにイオン交換体としてイオン交換樹脂が充填されていることが好ましい。濃縮室23又は電極室25a、25bにイオン交換樹脂が充填されている場合、本発明の方法を用いると、濃縮室23又は電極室25a、25bのイオン交換樹脂の劣化が抑制されるため、電気式脱イオン装置12Aの劣化が抑制され、高品質の水質の処理水を継続的に得ることができる。なお、イオン交換樹脂は、濃縮室23又は電極室25a、25bのいずれかに充填されていれば、本発明の効果が顕著に得られ、濃縮室23と電極室25a、25bの両方に充填されていれば、本発明の効果がさらに顕著に得られる。
In the electric deionizer 12A, it is preferable that the concentration chamber 23 or the electrode chambers 25a and 25b be filled with an ion exchange resin as an ion exchanger. In the case where the ion exchange resin is filled in the concentration chamber 23 or the electrode chambers 25a and 25b, the use of the method of the present invention suppresses the deterioration of the ion exchange resin in the concentration chamber 23 or the electrode chambers 25a and 25b. Deterioration of the deionizer 12A is suppressed, and high-quality treated water can be continuously obtained. If the ion exchange resin is filled in either the concentration chamber 23 or the electrode chambers 25a and 25b, the effect of the present invention is remarkably obtained, and the ion exchange resin is filled in both the concentration chamber 23 and the electrode chambers 25a and 25b. If so, the effect of the present invention can be more remarkably obtained.
なお、図2Aに示す電気式脱イオン装置12のように、逆浸透膜装置10の透過水が電極室25a、25bのみに供給される場合は、イオン交換樹脂が電極室25a、25bに充填されている場合に、本発明の効果が顕著である。
When the permeated water of the reverse osmosis membrane device 10 is supplied only to the electrode chambers 25a and 25b as in the electric deionization device 12 shown in FIG. 2A, the ion exchange resin is filled in the electrode chambers 25a and 25b. In this case, the effect of the present invention is remarkable.
電気式脱イオン装置12Aにおいては、被処理水は脱塩室24の一端から供給されて、脱塩室24の他端から流出する。この過程で、被処理水中のイオン成分が脱塩室24内のイオン交換体に吸着される。また、このときに、陽極26a及び陰極26b間に整流された直流電流が供給される。当該電流は、脱塩室24内の被処理水の流れと直交する方向に流れる。この電流により水が水素イオンと水酸化物イオンに解離して、この解離した水素イオンと水酸化物イオンがそれぞれイオン交換体に吸着されたイオン成分と交換する。交換されたイオン成分は、濃縮室23、陽極室25a及び陰極室25bに移動し、これらを経て電気式脱イオン装置12Aから濃縮水排出管136を介して流出される。
In the electric deionizer 12A, the water to be treated is supplied from one end of the desalting chamber 24 and flows out from the other end of the desalting chamber 24. In this process, ion components in the water to be treated are adsorbed by the ion exchanger in the desalting chamber 24. At this time, a rectified DC current is supplied between the anode 26a and the cathode 26b. The current flows in a direction orthogonal to the flow of the water to be treated in the desalting chamber 24. The current dissociates water into hydrogen ions and hydroxide ions, and the dissociated hydrogen ions and hydroxide ions exchange with the ion components adsorbed on the ion exchanger, respectively. The exchanged ion components move to the concentration chamber 23, the anode chamber 25a, and the cathode chamber 25b, and are discharged from the electric deionization apparatus 12A via the concentrated water discharge pipe 136 via these.
電気式脱イオン装置12Aにおける水回収率は90~96%が好ましく、電気式脱イオン装置12Aにおける電流密度は、300~3000mA/dm2であることが好ましく、1500~2500mA/dm2であることがより好ましい。電流密度が300mA/dm2以上になると通常過酸化水素による電極腐食が起こり易いが、実施形態の純水製造システムでは、電気式脱イオン装置の少なくとも電極室に、好ましくは電極室と濃縮室に、紫外線酸化装置を経ていない水を供給するため、これを抑制することができるためである。また、電流密度をより好ましい範囲とすることにより、ホウ素等の弱電解質の除去率を長期間安定させることができる。
The water recovery in the electric deionizer 12A is preferably 90 to 96%, and the current density in the electric deionizer 12A is preferably 300 to 3000 mA / dm 2 , and 1500 to 2500 mA / dm 2. Is more preferred. When the current density is 300 mA / dm 2 or more, electrode corrosion due to hydrogen peroxide is likely to occur normally. However, in the pure water production system of the embodiment, at least in the electrode chamber of the electric deionization apparatus, preferably in the electrode chamber and the concentration chamber. This is because water that has not passed through the ultraviolet oxidizing device is supplied, and this can be suppressed. In addition, by setting the current density in a more preferable range, the removal rate of a weak electrolyte such as boron can be stabilized for a long time.
電気式脱イオン装置12Aとしては、市販の電気式脱イオン装置が使用可能である。電気式脱イオン装置12Aの市販品としては、例えば、VNX50、VNX55、VNX-55EX(以上、Evoqua社製)、EDI-50(IONICS社製)などが使用可能である。
市 販 A commercially available electric deionizer can be used as the electric deionizer 12A. As commercial products of the electric deionization apparatus 12A, for example, VNX50, VNX55, VNX-55EX (all manufactured by Evoqua), EDI-50 (manufactured by IONICS) and the like can be used.
電源27は、例えば交流電源から供給される交流(AC)電流を直流(DC)電流に変換する、AC-DC変換器である。電源27は、電圧リップルが小さく、高水質の処理水を早期に得やすいことから、スイッチング方式によるAC-DC変換器又は全波整流方式によるAC-DC変換器が好適である。
The power supply 27 is, for example, an AC-DC converter that converts an alternating current (AC) current supplied from an alternating current power supply into a direct current (DC) current. The power supply 27 is preferably a switching type AC-DC converter or a full-wave rectification type AC-DC converter because the voltage ripple is small and high-quality treated water can be easily obtained at an early stage.
電気式脱イオン装置12Aを経た透過水の水質は、1台を単段で用いてもホウ素濃度が例えば、1μg/L(as B、以下同じ。)以下、比抵抗が17.5MΩ・cm以上を得ることができる。電気式脱イオン装置12Aは、1台を単段で用いてもよく、2台以上を直列に接続して複数段として用いてもよい。電気式脱イオン装置12Aを経た透過水は次いで、脱気膜装置13に供給される。
The water quality of the permeated water that has passed through the electric deionization apparatus 12A has a boron concentration of, for example, 1 μg / L (as B, the same applies hereinafter) and a specific resistance of 17.5 MΩ · cm or more even when one unit is used in a single stage. Can be obtained. As the electric deionization apparatus 12A, one unit may be used in a single stage, or two or more units may be connected in series and used as a plurality of stages. The permeated water that has passed through the electric deionization device 12A is then supplied to the degassing membrane device 13.
脱気膜装置13は、紫外線酸化装置11で有機物成分が分解されて生じた炭酸ガスを主に除去する。脱気膜装置13は、気体透過性の膜(脱気膜)の一次側に被処理水を通水しながら、膜の2次側を必要に応じて減圧することで被処理水中の溶存気体のみを2次側に移行させて除去する装置である。この膜の減圧側(二次側)には窒素等の不活性ガス源を接続し、脱気性能を向上させてもよい。脱気膜は、酸素、窒素、蒸気等のガスは通過するが水は透過しない膜であれば良く、例えば、シリコンゴム系、ポリテトラフルオロエチレン系、ポリオレフィン系、ポリウレタン系等の膜がある。
(4) The degassing film device 13 mainly removes carbon dioxide gas generated by decomposing organic components in the ultraviolet oxidation device 11. The degassing membrane device 13 dissolves the dissolved gas in the water to be treated by passing the water to be treated through the primary side of the gas-permeable membrane (degassing membrane) while reducing the pressure on the secondary side of the membrane as necessary. This is an apparatus that removes only by transferring to the secondary side. An inert gas source such as nitrogen may be connected to the decompression side (secondary side) of this film to improve the degassing performance. The degassing film may be a film that allows gas such as oxygen, nitrogen, and vapor to pass through but does not allow water to permeate, and examples thereof include a silicon rubber-based, polytetrafluoroethylene-based, polyolefin-based, and polyurethane-based film.
以上説明した実施形態の純水製造システムによれば、電気式脱イオン装置における電極やイオン交換体の劣化を抑制できるので、長期にわたって高水質の純水を得ることができる。また、逆浸透膜装置の透過水を少なくとも電極室に、好ましくは電極室と濃縮室に導入するため、シリカスケールを抑制することができるとともに、シリカやホウ素などの微量不純物の除去率向上や除去率低下の抑制の効果も得やすい。
According to the pure water production system of the embodiment described above, deterioration of the electrodes and the ion exchanger in the electric deionization device can be suppressed, so that high-quality pure water can be obtained for a long period of time. Further, since the permeated water of the reverse osmosis membrane device is introduced into at least the electrode chamber, preferably into the electrode chamber and the concentration chamber, silica scale can be suppressed, and the removal rate of trace impurities such as silica and boron can be improved or removed. The effect of suppressing the rate reduction is also easily obtained.
次に実施例について説明する。本発明は以下の実施例に限定されない。
Next, examples will be described. The present invention is not limited to the following examples.
(実施例1及び比較例1)
図5は、実施例1及び比較例1に用いた純水製造システム50の構成を示した図である。純水製造システム50において、実施例1では、電気式脱イオン装置53が使用され、比較例1では電気式脱イオン装置54が使用される。それ以外は、純水製造システム50が有する装置が、実施例1及び比較例1で共通して使用される。 (Example 1 and Comparative Example 1)
FIG. 5 is a diagram illustrating a configuration of the purewater production system 50 used in Example 1 and Comparative Example 1. In the pure water production system 50, the electric deionization device 53 is used in Example 1, and the electric deionization device 54 is used in Comparative Example 1. Otherwise, the apparatus included in the pure water production system 50 is commonly used in Example 1 and Comparative Example 1.
図5は、実施例1及び比較例1に用いた純水製造システム50の構成を示した図である。純水製造システム50において、実施例1では、電気式脱イオン装置53が使用され、比較例1では電気式脱イオン装置54が使用される。それ以外は、純水製造システム50が有する装置が、実施例1及び比較例1で共通して使用される。 (Example 1 and Comparative Example 1)
FIG. 5 is a diagram illustrating a configuration of the pure
純水製造システム50は逆浸透膜装置51(東レ(株)、TM820K-400)と、紫外線酸化装置52(日本フォトサイエンス(株)、AUV-8000TOC、紫外線照射量0.3kWh/m3)を順に備えており、紫外線酸化装置52の後段に、濃縮室と電極室にイオン交換樹脂が充填されている電気式脱イオン装置53、54(EVOQUA社、VNX-55EX、処理水量10m3/h、水回収率95%)が並列に配置されている。
The pure water production system 50 includes a reverse osmosis membrane device 51 (Toray Industries, Inc., TM820K-400) and an ultraviolet oxidizing device 52 (Nihon Photo Science Co., Ltd., AUV-8000TOC, ultraviolet irradiation amount 0.3 kWh / m 3 ). An electric deionizer 53, 54 (EVOQUA, VNX-55EX, treated water amount 10 m 3 / h, in which the ion exchange resin is filled in the concentration chamber and the electrode chamber, is provided downstream of the ultraviolet oxidizer 52. (95% water recovery).
純水製造システム50には、逆浸透膜装置51に被処理水を供給する補給水ライン55a、逆浸透膜装置51と紫外線酸化装置52を接続する補給水ライン55b、紫外線酸化装置52と電気式脱イオン装置53、54の各脱塩室入口を接続する補給水ライン55c、電気式脱イオン装置53、54の透過水をそれぞれ排出する処理水ライン55dが設けられている。上記において補給水ライン55bには逆浸透膜装置51の透過水が流通する。逆浸透膜装置51の濃縮水は排水管57により排出される。電気式脱イオン装置53、54の濃縮水は排水管56により排出される。
The pure water production system 50 includes a makeup water line 55a for supplying the water to be treated to the reverse osmosis membrane device 51, a makeup water line 55b for connecting the reverse osmosis membrane device 51 and the ultraviolet oxidizer 52, an ultraviolet oxidizer 52 and an electric type. A replenishment water line 55c connecting the inlets of the deionization chambers of the deionizers 53 and 54 and a treated water line 55d for discharging the permeated water of the electric deionizers 53 and 54 are provided. In the above, the permeated water of the reverse osmosis membrane device 51 flows through the makeup water line 55b. The concentrated water of the reverse osmosis membrane device 51 is discharged through a drain pipe 57. The concentrated water of the electric deionizers 53 and 54 is discharged through a drain pipe 56.
さらに、実施例1に用いる電気式脱イオン装置53には、逆浸透膜装置51の透過水を、紫外線酸化装置52を介さずに、電気式脱イオン装置の電極室及び濃縮室入口へ供給するバイパス補給水ライン53aが接続されている。また、比較例1に用いる電気式脱イオン装置54には、紫外線酸化装置52の処理水を、電極室及び濃縮室に供給する補給水ライン54aが接続されている。
Further, the permeated water of the reverse osmosis membrane device 51 is supplied to the electrode chamber and the concentration chamber inlet of the electric deionization device without passing through the ultraviolet oxidizing device 52 to the electric deionization device 53 used in Example 1. The bypass makeup water line 53a is connected. Further, a replenishing water line 54a for supplying the treated water of the ultraviolet oxidizing device 52 to the electrode chamber and the concentration chamber is connected to the electric deionization device 54 used in Comparative Example 1.
実施例1及び比較例1では、水道水を活性炭に通水して塩素を除去した被処理水を、補給水ライン55aより純水製造システム50に供給し、24時間の連続運転を行って、純水を製造した。この際、電気式脱イオン装置53、54では、電気式脱イオン装置の劣化による性能の低下を評価しやすくするため、直流電流を180Vの定電圧モードにて印加した。電流密度は通水初期時で1810mA/dm2であった。
In Example 1 and Comparative Example 1, treated water from which tap water was passed through activated carbon to remove chlorine was supplied to the pure water production system 50 from the makeup water line 55a, and continuous operation was performed for 24 hours. Pure water was produced. At this time, in the electric deionization devices 53 and 54, a direct current was applied in a constant voltage mode of 180 V in order to easily evaluate a decrease in performance due to deterioration of the electric deionization device. The current density was 1810 mA / dm 2 at the beginning of water flow.
運転開始直後(通水初期)及び運転開始後300日を経過した時点で、各ポイント(逆浸透膜装置51の透過水出口(補給水ライン55bの逆浸透膜装置51との接続点付近)、紫外線酸化装置52の処理水出口(補給水ライン55cの紫外線酸化装置52との接続点付近)、電気式脱イオン装置53、54の透過水出口(各処理水ライン55dの電気式脱イオン装置53、54との接続点付近))における水質(導電率[μS/cm])を測定した。結果を表1に示す。
Immediately after the start of operation (initial flow of water) and 300 days after the start of operation, at each point (permeate outlet of the reverse osmosis membrane device 51 (near the connection point of the make-up water line 55b with the reverse osmosis membrane device 51), The treated water outlet of the ultraviolet oxidizer 52 (near the connection point of the makeup water line 55c with the ultraviolet oxidizer 52), the permeated water outlet of the electric deionizers 53 and 54 (the electric deionizer 53 of each treated water line 55d) , 54)) (water conductivity (conductivity [μS / cm])). Table 1 shows the results.
表1より、実施例1の純水製造システムにおいて、電気式脱イオン装置53の透過水出口から排出される処理水の導電率は運転開始後300日経過後も通水初期の値と変わらず、また、比較例1の純水製造システムにおける電気式脱イオン装置54の透過水出口から排出される処理水の導電率と比較しても処理水の水質が向上していることがわかる。
From Table 1, in the pure water production system of Example 1, the conductivity of the treated water discharged from the permeated water outlet of the electric deionization device 53 was not changed from the initial value of the water flow after 300 days from the start of operation. Further, it can be seen that the quality of the treated water is improved even when compared with the conductivity of the treated water discharged from the permeated water outlet of the electric deionization device 54 in the pure water production system of Comparative Example 1.
(実施例2及び比較例2)
図5のシステムにおいて、濃縮室と電極室にイオン交換樹脂が充填されていない電気式脱イオン装置53、54(IONICS社、EDI-50、処理水量10m3/h、濃縮水循環水量15m3/h、水回収率95%)を用い、実施例1及び比較例1と同じ試験を行った。なお、EDI-50は通常、濃縮水の循環と濃縮水への塩化ナトリウムの注入を必要とし、実施例2及び比較例2においても実施したが、図面では省略する。また、この際、電気式脱イオン装置53、54では、直流電流を580Vの定電圧モードにて印加した。電流密度は通水初期時で314mA/dm2であった。結果を表2に示す。 (Example 2 and Comparative Example 2)
In the system of FIG. 5, the electric deionizers 53 and 54 in which the ion exchange resin is not filled in the concentration chamber and the electrode chamber (IONICS, EDI-50, treated water amount 10 m 3 / h, concentrated water circulating water amount 15 m 3 / h , Water recovery 95%), and the same test as in Example 1 and Comparative Example 1. EDI-50 usually requires circulation of concentrated water and injection of sodium chloride into the concentrated water, and was also performed in Example 2 and Comparative Example 2, but is omitted in the drawings. At this time, in the electric deionizers 53 and 54, a direct current was applied in a constant voltage mode of 580V. The current density was 314 mA / dm 2 at the beginning of water flow. Table 2 shows the results.
図5のシステムにおいて、濃縮室と電極室にイオン交換樹脂が充填されていない電気式脱イオン装置53、54(IONICS社、EDI-50、処理水量10m3/h、濃縮水循環水量15m3/h、水回収率95%)を用い、実施例1及び比較例1と同じ試験を行った。なお、EDI-50は通常、濃縮水の循環と濃縮水への塩化ナトリウムの注入を必要とし、実施例2及び比較例2においても実施したが、図面では省略する。また、この際、電気式脱イオン装置53、54では、直流電流を580Vの定電圧モードにて印加した。電流密度は通水初期時で314mA/dm2であった。結果を表2に示す。 (Example 2 and Comparative Example 2)
In the system of FIG. 5, the electric deionizers 53 and 54 in which the ion exchange resin is not filled in the concentration chamber and the electrode chamber (IONICS, EDI-50, treated water amount 10 m 3 / h, concentrated water circulating water amount 15 m 3 / h , Water recovery 95%), and the same test as in Example 1 and Comparative Example 1. EDI-50 usually requires circulation of concentrated water and injection of sodium chloride into the concentrated water, and was also performed in Example 2 and Comparative Example 2, but is omitted in the drawings. At this time, in the electric deionizers 53 and 54, a direct current was applied in a constant voltage mode of 580V. The current density was 314 mA / dm 2 at the beginning of water flow. Table 2 shows the results.
表2より、浸透膜装置の透過水を、紫外線酸化装置を介さずに電気式脱イオン装置の濃縮室及び電極室に供給する方法は、実施例2の純水製造システムのように濃縮室と電極室にイオン交換樹脂が充填されていない電気式脱イオン装置を用いた場合にも効果があることがわかる。しかしながら、実施例2の純水製造システムと比較例2の純水製造システムとの300日後の処理水の水質の差は、上記実施例1と比較例1のように濃縮室と電極室にイオン交換樹脂が充填されている電気式脱イオン装置を用いた場合の処理水の水質の差よりも小さい。これは、濃縮室と電極室にイオン交換樹脂が充填されていない分、過酸化水素による影響を受ける箇所が少ないためと考えられる。
From Table 2, the method of supplying the permeated water of the osmosis membrane apparatus to the concentration chamber and the electrode chamber of the electric deionization apparatus without passing through the ultraviolet oxidation apparatus is different from that of the pure water production system of Example 2 in that the concentration chamber and It can be seen that the effect is also obtained when an electric deionization apparatus in which the electrode chamber is not filled with the ion exchange resin is used. However, the difference in the quality of the treated water after 300 days between the pure water production system of Example 2 and the pure water production system of Comparative Example 2 is due to the fact that the ion concentration in the concentrating chamber and the electrode chamber was different as in Example 1 and Comparative Example 1. It is smaller than the difference in the quality of the treated water when an electric deionization apparatus filled with exchange resin is used. This is presumably because the concentration chamber and the electrode chamber are not filled with the ion exchange resin, and there are few locations affected by hydrogen peroxide.
以上のように、逆浸透膜装置51の透過水を電気式脱イオン装置53の電極室入口への補給水として使用する実施例1、2の純水製造システムでは、紫外線酸化装置52の出口の水を電気式脱イオン装置54の脱塩室入口及び電極室入口への補給水として使用する比較例1、2の純水製造システムに比べて、長期にわたって導電率の低い処理水を供給できることが確認された。
As described above, in the pure water production systems of Examples 1 and 2 in which the permeated water of the reverse osmosis membrane device 51 is used as makeup water to the electrode chamber inlet of the electric deionization device 53, the outlet of the ultraviolet oxidizer 52 is used. Compared to the pure water production systems of Comparative Examples 1 and 2, in which water is used as makeup water at the inlet of the desalting chamber and the inlet of the electrode chamber of the electric deionization device 54, it is possible to supply treated water having a low conductivity for a long time. confirmed.
以上、詳述したように、本発明による純水製造システムによれば、電気式脱イオン装置の電極室入口への補給水として、紫外線酸化装置の副生成物である過酸化水素を含まない逆浸透膜装置の透過水を用いることで、電極の腐食なく、長期にわたって高純度の処理水を提供することができる。
As described above in detail, according to the pure water production system of the present invention, reverse water not containing hydrogen peroxide which is a by-product of the ultraviolet oxidizer is used as makeup water to the electrode chamber inlet of the electric deionizer. By using the permeated water of the permeable membrane device, high-purity treated water can be provided for a long period of time without corrosion of the electrode.
1,1A,1B…純水製造システム、10…逆浸透膜装置、11…紫外線酸化装置(TOC-UV)、12,12A,12B…電気式脱イオン装置(EDI)、13…脱気膜装置(MDG)、14…ユースポイント(POU)、23c…濃縮室入口ノズル、24c…脱塩室入口ノズル、25c…電極室入口ノズル、31c…共通入口ノズル、131…第1のバイパス管、132…第2のバイパス管、133…処理水管、21…カチオン交換膜、22…アニオン交換膜、23…濃縮室、24…脱塩室、25a…陽極室、25b…陰極室、26a…陽極、26b…陰極、27…電源。
1, 1A, 1B ... pure water production system, 10 ... reverse osmosis membrane device, 11 ... ultraviolet oxidation device (TOC-UV), 12, 12A, 12B ... electric deionization device (EDI), 13 ... degassing membrane device (MDG), 14 ... Point of use (POU), 23c ... Enrichment chamber inlet nozzle, 24c ... Demineralization chamber inlet nozzle, 25c ... Electrode chamber inlet nozzle, 31c ... Common inlet nozzle, 131 ... First bypass pipe, 132 ... 2nd bypass pipe, 133 ... treated water pipe, 21 ... cation exchange membrane, 22 ... anion exchange membrane, 23 ... concentration chamber, 24 ... desalination chamber, 25a ... anode chamber, 25b ... cathode chamber, 26a ... anode, 26b ... Cathode, 27 power supply.
Claims (9)
- 逆浸透膜装置と、紫外線酸化装置と、電気式脱イオン装置と、これらの装置を上流側からその順に接続する処理水管を備える純水製造システムであって、
前記電気式脱イオン装置は、交互に配置されたカチオン交換膜及びアニオン交換膜と、
前記カチオン交換膜及びアニオン交換膜の間に交互に形成された濃縮室及び脱塩室と、
前記カチオン交換膜及びアニオン交換膜の外側に配置される1対の電極室と、を備えており、
前記処理水管は前記紫外線酸化装置で処理された処理水を前記電気式脱イオン装置の少なくとも脱塩室に供給するように前記電気式脱イオン装置に接続されるとともに、
前記純水製造システムは、前記逆浸透膜装置の透過水を前記紫外線酸化装置を介さずに前記電気式脱イオン装置の電極室に供給する第1のバイパス管を具備することを特徴とする純水製造システム。 A reverse osmosis membrane device, an ultraviolet oxidation device, an electric deionization device, and a pure water production system including a treatment water pipe connecting these devices in that order from the upstream side,
The electrodeion deionizer, a cation exchange membrane and an anion exchange membrane that are alternately arranged,
A concentration chamber and a desalination chamber alternately formed between the cation exchange membrane and the anion exchange membrane,
A pair of electrode chambers disposed outside the cation exchange membrane and the anion exchange membrane,
The treated water pipe is connected to the electric deionizer so as to supply treated water treated by the ultraviolet oxidizer to at least a desalination chamber of the electric deionizer,
The pure water production system includes a first bypass pipe that supplies permeated water of the reverse osmosis membrane device to an electrode chamber of the electric deionization device without passing through the ultraviolet oxidizing device. Water production system. - 前記逆浸透膜装置の透過水を、前記紫外線酸化装置を介さずに前記電気式脱イオン装置の濃縮室に供給する第2のバイパス管をさらに具備することを特徴とする請求項1に記載の純水製造システム。 The method according to claim 1, further comprising a second bypass pipe configured to supply permeated water of the reverse osmosis membrane device to a concentration chamber of the electric deionization device without passing through the ultraviolet oxidation device. Pure water production system.
- 前記電気式脱イオン装置は、前記電気式脱イオン装置の、濃縮室及び電極室に通じる共通入口ノズルを有し、
前記第1のバイパス管及び前記第2のバイパス管はいずれも前記共通入口ノズルに接続されることを特徴とする請求項2に記載の純水製造システム。 The electric deionizer has a common inlet nozzle communicating with the concentration chamber and the electrode chamber of the electric deionizer,
The pure water production system according to claim 2, wherein both the first bypass pipe and the second bypass pipe are connected to the common inlet nozzle. - 前記電気式脱イオン装置は、前記電気式脱イオン装置の、濃縮室に通じる濃縮室入口ノズルと電極室に通じる電極室入口ノズルとを有し、
前記第1のバイパス管は前記電極室入口ノズルに接続され、
前記第2のバイパス管は前記濃縮室入口ノズルに接続されることを特徴とする
請求項2に記載の純水製造システム。 The electric deionization device, the electric deionization device, has an enrichment chamber inlet nozzle and an electrode chamber entrance nozzle that communicates with the electrode chamber, leading to the concentration chamber,
The first bypass pipe is connected to the electrode chamber inlet nozzle,
The pure water production system according to claim 2, wherein the second bypass pipe is connected to the concentration chamber inlet nozzle. - 前記電極室内及び前記濃縮室内にイオン交換体を有することを特徴とする請求項1乃至4のいずれか1項に記載の純水製造システム。 The pure water production system according to any one of claims 1 to 4, wherein an ion exchanger is provided in the electrode chamber and the concentration chamber.
- 前記紫外線酸化装置で処理された処理水の過酸化水素濃度が100μg/L以下であることを特徴とする請求項1乃至5のいずれか1項に記載の純水製造システム。 6. The pure water production system according to claim 1, wherein the concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidation device is 100 μg / L or less. 7.
- 原水を、逆浸透膜装置と、紫外線酸化装置と、電気式脱イオン装置とで順に処理する純水製造方法であって、
前記電気式脱イオン装置は、交互に配置されたカチオン交換膜及びアニオン交換膜と、
前記カチオン交換膜及びアニオン交換膜の間に交互に形成された濃縮室及び脱塩室と、
前記カチオン交換膜及びアニオン交換膜の外側に配置される1対の電極室と、を備えており、
前記紫外線酸化装置で処理された処理水を、前記電気式脱イオン装置の少なくとも脱塩室に供給し、
前記逆浸透膜装置の透過水を、前記紫外線酸化装置を介さずに前記電気式脱イオン装置の電極室に供給することを特徴とする純水製造方法。 Raw water, a reverse osmosis membrane device, an ultraviolet oxidation device, and a pure water production method of sequentially treating with an electric deionization device,
The electrodeion deionizer, a cation exchange membrane and an anion exchange membrane that are alternately arranged,
A concentration chamber and a desalination chamber alternately formed between the cation exchange membrane and the anion exchange membrane,
A pair of electrode chambers disposed outside the cation exchange membrane and the anion exchange membrane,
The treated water treated by the ultraviolet oxidation device is supplied to at least a desalination chamber of the electric deionization device,
A method for producing pure water, wherein the permeated water of the reverse osmosis membrane device is supplied to an electrode chamber of the electric deionization device without passing through the ultraviolet oxidation device. - 前記逆浸透膜装置の透過水を、前記紫外線酸化装置を介さずに前記電気式脱イオン装置の濃縮室に供給することを特徴とする請求項7に記載の純水製造方法。 The pure water production method according to claim 7, wherein the permeated water of the reverse osmosis membrane device is supplied to a concentration chamber of the electric deionization device without passing through the ultraviolet oxidizing device.
- 前記紫外線酸化装置で処理された処理水の過酸化水素濃度が100μg/L以下であることを特徴とする請求項7又は8に記載の純水製造方法。 The pure water production method according to claim 7 or 8, wherein the concentration of hydrogen peroxide in the treated water treated by the ultraviolet oxidation apparatus is 100 µg / L or less.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980046915.7A CN112424128B (en) | 2018-08-28 | 2019-08-09 | Pure water production system and pure water production method |
KR1020207037308A KR102708851B1 (en) | 2018-08-28 | 2019-08-09 | Pure manufacturing system and pure manufacturing method |
JP2020539312A JP7246399B2 (en) | 2018-08-28 | 2019-08-09 | Pure water production system and pure water production method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018159570 | 2018-08-28 | ||
JP2018-159570 | 2018-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045061A1 true WO2020045061A1 (en) | 2020-03-05 |
Family
ID=69644970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031658 WO2020045061A1 (en) | 2018-08-28 | 2019-08-09 | Pure water production system and pure water production method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7246399B2 (en) |
KR (1) | KR102708851B1 (en) |
CN (1) | CN112424128B (en) |
WO (1) | WO2020045061A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7205576B1 (en) | 2021-07-19 | 2023-01-17 | 栗田工業株式会社 | Operation method of pure water production system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11244853A (en) * | 1998-03-06 | 1999-09-14 | Kurita Water Ind Ltd | Production of pure water |
JP2000279967A (en) * | 1999-03-29 | 2000-10-10 | Japan Organo Co Ltd | Deionized water production device |
JP2001259376A (en) * | 2000-03-16 | 2001-09-25 | Japan Organo Co Ltd | Deionized water making apparatus |
US6365023B1 (en) * | 2000-06-22 | 2002-04-02 | Millipore Corporation | Electrodeionization process |
JP2006051423A (en) * | 2004-08-10 | 2006-02-23 | Kurita Water Ind Ltd | Electric deionization system, electric deionization method, and pure water production device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7470366B2 (en) * | 2004-05-07 | 2008-12-30 | Ge Mobile Water, Inc. | Water purification system and method using reverse osmosis reject stream in an electrodeionization unit |
JP4978098B2 (en) * | 2006-08-02 | 2012-07-18 | 栗田工業株式会社 | Electrodeionization equipment |
JP5257619B2 (en) | 2009-08-26 | 2013-08-07 | 栗田工業株式会社 | Pure water production equipment |
CN207121510U (en) * | 2017-08-24 | 2018-03-20 | 天津市金通正水处理技术开发有限公司 | A kind of high purity water device for making |
-
2019
- 2019-08-09 WO PCT/JP2019/031658 patent/WO2020045061A1/en active Application Filing
- 2019-08-09 KR KR1020207037308A patent/KR102708851B1/en active IP Right Grant
- 2019-08-09 JP JP2020539312A patent/JP7246399B2/en active Active
- 2019-08-09 CN CN201980046915.7A patent/CN112424128B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11244853A (en) * | 1998-03-06 | 1999-09-14 | Kurita Water Ind Ltd | Production of pure water |
JP2000279967A (en) * | 1999-03-29 | 2000-10-10 | Japan Organo Co Ltd | Deionized water production device |
JP2001259376A (en) * | 2000-03-16 | 2001-09-25 | Japan Organo Co Ltd | Deionized water making apparatus |
US6365023B1 (en) * | 2000-06-22 | 2002-04-02 | Millipore Corporation | Electrodeionization process |
JP2006051423A (en) * | 2004-08-10 | 2006-02-23 | Kurita Water Ind Ltd | Electric deionization system, electric deionization method, and pure water production device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7205576B1 (en) | 2021-07-19 | 2023-01-17 | 栗田工業株式会社 | Operation method of pure water production system |
WO2023002693A1 (en) * | 2021-07-19 | 2023-01-26 | 栗田工業株式会社 | Method for operating pure-water production system |
JP2023014927A (en) * | 2021-07-19 | 2023-01-31 | 栗田工業株式会社 | Operational method for pure water production system |
Also Published As
Publication number | Publication date |
---|---|
KR102708851B1 (en) | 2024-09-23 |
CN112424128A (en) | 2021-02-26 |
JPWO2020045061A1 (en) | 2021-08-10 |
JP7246399B2 (en) | 2023-03-27 |
CN112424128B (en) | 2023-05-02 |
KR20210044187A (en) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6780328B1 (en) | Fluid purification devices and methods employing deionization followed by ionization followed by deionization | |
JP3180348B2 (en) | Pure water production method | |
JP5616771B2 (en) | Dilution water production equipment for dialysate preparation | |
US10442708B2 (en) | Method and appliance for treating water | |
JP2011194402A (en) | Ultrapure water production plant | |
JP3575271B2 (en) | Pure water production method | |
WO2011065222A1 (en) | Device and method for treating nitrogen compound-containing acidic solutions | |
JP2004283710A (en) | Pure water producer | |
JP6161954B2 (en) | Ultrapure water production apparatus and ultrapure water production method | |
EP1027136A1 (en) | Fluid purification devices and methods employing deionization followed by ionization followed by deionization | |
CN114616212A (en) | Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system | |
KR102637681B1 (en) | Electric deionization device, ultrapure water production system, and ultrapure water production method | |
WO2020045061A1 (en) | Pure water production system and pure water production method | |
JP2000015257A (en) | Apparatus and method for making high purity water | |
JP4439674B2 (en) | Deionized water production equipment | |
JP2003266097A (en) | Ultrapure water making apparatus | |
JP2001191080A (en) | Electric deionizing device and electric deionizing treatment method using the same | |
JP7200014B2 (en) | Pure water production device and pure water production method | |
JP7368310B2 (en) | Boron removal equipment and boron removal method, and pure water production equipment and pure water production method | |
JP4599668B2 (en) | Operation method of electrodeionization equipment | |
JP7460729B1 (en) | Pure water production method, pure water production equipment, and ultrapure water production system | |
JPH08173978A (en) | Method for removing organic substance | |
WO2022190608A1 (en) | Method and apparatus for treating water | |
JP7205576B1 (en) | Operation method of pure water production system | |
JP4660890B2 (en) | Operation method of electrodeionization equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19855783 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020539312 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19855783 Country of ref document: EP Kind code of ref document: A1 |