[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4660890B2 - Operation method of electrodeionization equipment - Google Patents

Operation method of electrodeionization equipment Download PDF

Info

Publication number
JP4660890B2
JP4660890B2 JP2000199288A JP2000199288A JP4660890B2 JP 4660890 B2 JP4660890 B2 JP 4660890B2 JP 2000199288 A JP2000199288 A JP 2000199288A JP 2000199288 A JP2000199288 A JP 2000199288A JP 4660890 B2 JP4660890 B2 JP 4660890B2
Authority
JP
Japan
Prior art keywords
chamber
water
exchange resin
electrodeionization apparatus
electrodeionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000199288A
Other languages
Japanese (ja)
Other versions
JP2002011478A (en
Inventor
伸 佐藤
隆行 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000199288A priority Critical patent/JP4660890B2/en
Publication of JP2002011478A publication Critical patent/JP2002011478A/en
Application granted granted Critical
Publication of JP4660890B2 publication Critical patent/JP4660890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、液晶、製薬、食品、電力等の分野の各種産業、民生用、又は研究設備で利用される脱イオン水の製造に用いられる電気脱イオン装置の運転方法に係り、特に、電気脱イオン装置でシリカやホウ素等の弱電解物質を効率的に除去して、高水質の生産水を製造するための電気脱イオン装置の運転方法に関する。
【0002】
【従来の技術】
従来、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される脱イオン水の製造には、図1に示す如く、電極(陽極11,陰極12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成し、脱塩室16にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填した電気脱イオン装置が多用されている(特許第1782943号、特許第2751090号、特許第2699256号)。なお、図1において、17は陽極室、18は陰極室である。
【0003】
電気脱イオン装置は、水解離によってHイオンとOHイオンを生成させ、脱塩室内に充填されているイオン交換体を連続して再生することによって、効率的な脱塩処理が可能であり、従来から広く用いられてきたイオン交換樹脂装置のような薬品を用いた再生処理を必要とせず、完全な連続採水が可能で、高純度の水が得られるという優れた効果を発揮する。
【0004】
このような電気脱イオン装置において、従来、脱塩室に充填されているイオン交換体の残留イオン交換容量を測定した例は「イオン交換セミナー98講演集」(平成10年12月8日イオン交換学会)第33頁に示されているが、イオン交換体の再生比率と生産水の水質との関係において定量的に言及しているものはみられない。
【0005】
【発明が解決しようとする課題】
電気脱イオン装置にあっては、生産水の水質の向上、特に電気脱イオン装置における除去が比較的困難とされているシリカやホウ素等の弱電解物質の除去効率の向上を図ることにより、より一層高純度の生産水を得ることが望まれている。
【0006】
従って、本発明は、電気脱イオンにおいてシリカ、ホウ素等の弱電解物質を効率的に除去して高水質の生産水を安定かつ確実に製造することができる電気脱イオン装置の運転方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の電気脱イオン装置の運転方法は、陽極と陰極との間に複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成し、脱塩室にアニオン交換体とを含むイオン交換体を充填してなる電気脱イオン装置の運転方法において、該アニオン交換体の、全アニオン交換体中のOH型アニオン交換体の割合(再生比率が60%以上となるように、該電気脱イオン装置に印加する電圧条件、脱塩室の通水流量、濃縮室の通水流量、該電気脱イオン装置への供給水のpH、又は該電気脱イオン装置への供給水の電気伝導度を調整して運転する電気脱イオン装置の運転方法であって、該脱塩室内のイオン交換体のうちの50%以上がアニオン交換体であり、該脱塩室の水の流路方向の長さが300mm以上であることを特徴とする。
【0008】
本発明者らは、電気脱イオン装置における生産水の水質向上、中でもシリカ、ホウ素等の弱電解物質の除去性の向上において、電気脱イオン装置の脱塩室に充填されているイオン交換樹脂、特にアニオン交換樹脂の再生比率との相関があること、特に95%を超えるシリカ除去率を得るための条件として、アニオン交換樹脂の再生比率が重要な因子であることを知見した。
【0009】
即ち、電気脱イオン装置では、脱塩室内のアニオン交換樹脂によりシリカが除去され、除去されたシリカ及び他のイオンは、電気により連続的に再生されることで濃縮水中に濃縮される。このため、アニオン交換樹脂の再生比率が高く、またアニオン交換樹脂量が多く、脱塩室の流路が長い程、シリカを高度に除去することができることが考えられる。
【0010】
しかしながら、本発明者らはアニオン交換樹脂の再生比率とシリカ除去率との関係について鋭意検討を重ねた結果、電気脱イオン装置においては、アニオン交換樹脂の再生比率がある値より低くなると、シリカ除去率が大きく低下することを見出し、本発明を完成させた。
【0011】
本発明に従って、脱塩室内のアニオン交換体の再生比率(全アニオン交換体中のOH型アニオン交換体の割合)が60%以上となるような条件で電気脱イオン装置の運転を行えば、シリカ除去率95%以上を達成することができる。しかしながら、この再生比率が60%未満の場合、例えば55%程度の場合には、シリカ除去率は80〜90%と大幅に低下する。
【0012】
本発明では、特に、電気脱イオン装置の脱塩室の水の流路方向の長さ(以下「流路長」と称す。)は、300mm以上で、また、脱塩室内のイオン交換体中のアニオン交換体の割合は50%以上であるときに、高いシリカ除去率を確実に達成することができる。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0014】
なお、以下において電気脱イオン装置の脱塩室内に充填されるイオン交換体として、アニオン交換樹脂とカチオン交換樹脂との混合イオン交換樹脂を用いる場合を例示して説明するが、本発明においてイオン交換体はイオン交換樹脂に限らず、イオン交換繊維又はグラフト交換体等からなるアニオン交換体とカチオン交換体を混合して或いは複層状に脱塩室に充填したものであっても良い。
【0015】
本発明においては、電気脱イオン装置の脱塩室内に充填されたイオン交換樹脂のうち、アニオン交換樹脂の再生比率が60%以上となる条件で電気脱イオン装置を運転する。アニオン交換樹脂の再生比率が60%未満であると、シリカ除去率が著しく低下するため好ましくない。このような再生比率となるように電気脱イオン装置を運転するには、電気脱イオン装置に印加する電圧条件や脱塩室及び濃縮室の通水流量、供給水のpH及び電気伝導度等を調整すれば良く、この調整条件は、予備実験等により容易に設定することができる。処理効率、シリカ除去率、電気エネルギーコスト等を考慮した場合、脱塩室中のアニオン交換樹脂の好ましい再生比率は特に70〜80%である。
【0016】
前述の如く、シリカ除去率は脱塩室の流路長や脱塩室内のアニオン交換樹脂の混合比率(全イオン交換樹脂中のアニオン交換樹脂の割合)とも相関があり、脱塩室の流路長が極端に短い場合や脱塩室内のアニオン交換樹脂の混合比率が極端に少ない場合には、上記再生比率を満足する場合であっても、シリカ除去率が低下するため、用いる電気脱イオン装置の脱塩室の流路長は300mm以上であり、脱塩室中のアニオン交換樹脂の混合比率は50%以上である。
【0017】
脱塩室の流路長は長いほど生産水の水質を高めることができ、特に400mm以上であることが好ましいが、電気脱イオン装置の組み立て作業性や製造コスト、電気脱イオン装置の寸法等を考慮した場合、脱塩室の流路長は800mm以下であることが好ましい。
【0018】
また、脱塩室中のアニオン交換樹脂の混合比率も多い程シリカやホウ素等の弱電解物質の除去率を高めることができ、特に60%以上であることが好ましいが、アニオン交換樹脂の混合比率が過度に多いと相対的にカチオン交換樹脂が少なくなって、カチオン成分の除去率が低下するため、アニオン交換樹脂の混合比率は90%以下とすることが好ましい。
【0019】
本発明の方法は、このように脱塩室内のアニオン交換樹脂の再生比率を60%以上とすること、更に脱塩室内のアニオン交換樹脂の混合比率を50%以上とし、脱塩室の流路長を300mm以上として、常法に従って電気脱イオン装置の運転を行うことができる。
【0020】
従って、原水(この水は、通常、活性炭塔及び逆浸透膜分離装置等で順次前処理される。)の一部を電気脱イオン装置の濃縮室に供給し、残部を脱塩室に供給して脱イオン処理し、脱塩室の流出水を処理水(生産水)として取り出せば良い。なお、通常の場合、濃縮室の流出水は一部が系外に排出され、残部は濃縮室の供給側へ循環される。
【0021】
この濃縮室の流出水の循環は、水回収率の向上のために行われるが、この循環水量は本発明の運転条件が維持される範囲であれば良く、特に制限はないが、通常、濃縮室の流出水の50〜95%程度とし、電気脱イオン装置の水回収率は0.5〜0.95程度の条件で運転を実施するのが好ましい。
【0022】
前述の如く、電気脱イオン装置の脱塩室内のアニオン交換樹脂の再生比率を60%以上、アニオン交換樹脂の混合比率を50%以上、脱塩室の流路長を300mm以上とすることにより、シリカ除去率95%を達成することができるが、更にシリカ除去率を高めようとする場合には、上記条件において、濃縮水のシリカ濃度を低下させることが有効である。この制御方法としては、系外への濃縮水排出量を多くして水回収率を低くする方法もあるが、濃縮水に生産水の一部や純水などのシリカ濃度の低い水を混合させる方法を採用することもできる。
【0023】
本発明において用いる電気脱イオン装置は、複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成した一般的なものであり、脱塩室にアニオン交換樹脂とカチオン交換樹脂との混合イオン交換樹脂等のイオン交換体が充填されたものである。また、濃縮室にもこのようなイオン交換体が充填されていても良い。
【0024】
[実施例]
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0025】
実施例1〜4、比較例1〜4
野木町水を活性炭装置、逆浸透膜装置及び脱気膜装置で順次処理した水を電気脱イオン装置に通水した。この電気脱イオン装置のイオン交換膜及び脱塩室に充填するイオン交換樹脂としては次のものを用い、図1に示す構成の電気脱イオンスタックを組み立てた。脱塩室内のイオン交換樹脂中のアニオン交換樹脂の割合(アニオン交換樹脂混合比率)は表1に示す通りとした。
【0026】
アニオン交換膜:(株)トクヤマ製「ネオセプタAHA」
カチオン交換膜:(株)トクヤマ製「ネオセプタCMB」
アニオン交換樹脂:ダウケミカル社製「550A」
カチオン交換樹脂:ダウケミカル社製「650C」
電気脱イオン装置の脱塩室は横187mm、厚さ2.5mmであり、流路長は表1に示す通りである。脱塩室は3室とし、濃縮室及び電極室にはメッシュスペーサーを装填した。
【0027】
電気脱イオン装置の水収支は、生産水量40L/hr、濃縮水循環水量(濃縮室流出水のうち、濃縮室入口側へ循環する水量)15L/hr、濃縮水排出量(濃縮室流出水のうち、系外へ排出する水量)2L/hrとした。
【0028】
各電気脱イオン装置毎に任意の電圧条件で4日間運転を行い、生産水のシリカ濃度から電気脱イオン装置におけるシリカ除去率を調べ、結果を表1に示した。また、4日間の運転直後に電気脱イオン装置を解体して脱塩室内のアニオン交換樹脂を取り出し、均一に混合した状態で再生比率を測定し、結果を表1に示した。
【0029】
【表1】

Figure 0004660890
【0030】
表1より、アニオン交換樹脂の再生比率が60%以上、アニオン交換樹脂の混合比率が50%以上で、脱塩室の流路長が300mm以上であれば、シリカ除去率95%を達成することができることがわかる。
【0031】
【発明の効果】
以上詳述した通り、本発明によれば、電気脱イオン装置においてシリカ、ホウ素等の弱電解物質を効率的に除去して高水質の生産水を安定かつ確実に製造することができる。
【図面の簡単な説明】
【図1】 電気脱イオン装置の一般的な構成を示す模式的な断面図である。
【符号の説明】
10 イオン交換体
11 陽極
12 陰極
13 アニオン交換膜
14 カチオン交換膜
15 濃縮室
16 脱塩室
17 陽極室
18 陰極室[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of operating an electrodeionization apparatus used for the production of deionized water used in various industries in the fields of semiconductors, liquid crystals, pharmaceuticals, foods, power, etc., consumer use, or research facilities. The present invention relates to a method for operating an electrodeionization apparatus for producing high quality product water by efficiently removing weak electrolytic substances such as silica and boron by an electrodeionization apparatus.
[0002]
[Prior art]
Conventionally, in the manufacture of deionized water used in various industries such as semiconductor manufacturing factory, liquid crystal manufacturing factory, pharmaceutical industry, food industry, electric power industry, etc. or consumer use or research facilities, as shown in FIG. A plurality of anion exchange membranes 13 and cation exchange membranes 14 are alternately arranged between the anode 11 and the cathode 12) to alternately form a concentration chamber 15 and a desalting chamber 16, and an ion exchange resin, An anion exchanger made of an ion exchange fiber or a graft exchanger, and an electrodeionization apparatus in which a cation exchanger is mixed or filled in a multilayer form are used (Patent No. 1784293, Patent No. 2751090, Patent No. 2699256). . In FIG. 1, 17 is an anode chamber and 18 is a cathode chamber.
[0003]
The electrodeionization device generates H + ions and OH ions by water dissociation and continuously regenerates the ion exchanger filled in the desalting chamber, enabling efficient desalting treatment. Thus, it does not require a regeneration treatment using chemicals such as the ion exchange resin apparatus that has been widely used so far, and complete continuous water sampling is possible, and an excellent effect that high-purity water is obtained is exhibited.
[0004]
An example of measuring the residual ion exchange capacity of an ion exchanger filled in a demineralization chamber in such an electrodeionization apparatus is “Ion Exchange Seminar 98 Lectures” (December 8, 1998, ion exchange). Although it is shown on page 33 of the academic society, nothing is quantitatively mentioned in the relationship between the regeneration ratio of the ion exchanger and the quality of the production water.
[0005]
[Problems to be solved by the invention]
In the electrodeionization apparatus, by improving the water quality of the product water, especially by improving the removal efficiency of weak electrolytic substances such as silica and boron, which are considered to be relatively difficult to remove in the electrodeionization apparatus, It is desired to obtain higher-purity production water.
[0006]
Therefore, the present invention provides a method for operating an electrodeionization apparatus that can efficiently remove weak electrolytic substances such as silica and boron in electrodeionization and stably and reliably produce high quality product water. For the purpose.
[0007]
[Means for Solving the Problems]
The operation method of the electrodeionization apparatus of the present invention comprises a plurality of anion exchange membranes and cation exchange membranes arranged alternately between an anode and a cathode to alternately form a concentration chamber and a desalting chamber, In the operation method of the electrodeionization apparatus in which the chamber is filled with an ion exchanger containing an anion exchanger, the proportion of the OH type anion exchanger ( regeneration ratio ) in the total anion exchanger of the anion exchanger is 60. %, The voltage condition applied to the electrodeionization device, the water flow rate of the demineralization chamber, the water flow rate of the concentration chamber, the pH of the water supplied to the electrodeionization device, or the electrodeionization An operation method of an electrodeionization apparatus that operates by adjusting the electric conductivity of water supplied to the apparatus, wherein 50% or more of the ion exchangers in the desalting chamber are anion exchangers, The length of the water flow direction in the chamber is 300 mm or more And features.
[0008]
In order to improve the quality of production water in an electrodeionization apparatus, and particularly to improve the ability to remove weak electrolytic substances such as silica and boron, the present inventors have provided an ion exchange resin filled in the demineralization chamber of the electrodeionization apparatus, In particular, it was found that there is a correlation with the regeneration ratio of the anion exchange resin, and in particular, the regeneration ratio of the anion exchange resin is an important factor as a condition for obtaining a silica removal rate exceeding 95%.
[0009]
That is, in the electrodeionization apparatus, silica is removed by the anion exchange resin in the desalting chamber, and the removed silica and other ions are continuously regenerated by electricity to be concentrated in concentrated water. For this reason, it is considered that the higher the regeneration ratio of the anion exchange resin, the larger the amount of the anion exchange resin, and the longer the flow path of the desalting chamber, the higher the silica can be removed.
[0010]
However, as a result of intensive studies on the relationship between the regeneration ratio of the anion exchange resin and the silica removal rate, the present inventors have found that in the electrodeionization apparatus, when the regeneration ratio of the anion exchange resin becomes lower than a certain value, the silica removal The present invention was completed by finding that the rate was greatly reduced.
[0011]
In accordance with the present invention, when the electrodeionization apparatus is operated under conditions such that the regeneration ratio of the anion exchanger in the demineralization chamber (the ratio of the OH type anion exchanger in the total anion exchanger) is 60% or more, silica A removal rate of 95% or more can be achieved. However, when the regeneration ratio is less than 60%, for example, about 55%, the silica removal rate is greatly reduced to 80 to 90%.
[0012]
In the present invention, in particular, the length of the water flow direction of the demineralization chamber of the electrodeionization apparatus (hereinafter referred to as “flow path length”) is 300 mm or more , and in the ion exchanger in the demineralization chamber. When the ratio of the anion exchanger is 50% or more, a high silica removal rate can be reliably achieved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are described in detail below.
[0014]
In the following description, a case where a mixed ion exchange resin of an anion exchange resin and a cation exchange resin is used as the ion exchanger filled in the demineralization chamber of the electrodeionization apparatus will be described as an example. The body is not limited to an ion exchange resin, but may be a mixture of an anion exchanger and an cation exchanger made of ion exchange fibers or graft exchangers or filled in a desalting chamber in a multilayered form.
[0015]
In the present invention, among the ion exchange resins filled in the demineralization chamber of the electrodeionization apparatus, the electrodeionization apparatus is operated under the condition that the regeneration ratio of the anion exchange resin is 60% or more. If the regeneration ratio of the anion exchange resin is less than 60%, the silica removal rate is remarkably lowered, which is not preferable. In order to operate the electrodeionization apparatus so as to achieve such a regeneration ratio, the voltage conditions applied to the electrodeionization apparatus, the water flow rate of the demineralization chamber and the concentration chamber, the pH of the feed water, the electric conductivity, etc. This adjustment condition can be easily set by a preliminary experiment or the like. Considering the treatment efficiency, silica removal rate, electric energy cost, etc., the preferable regeneration ratio of the anion exchange resin in the desalting chamber is particularly 70 to 80%.
[0016]
As described above, the silica removal rate is also correlated with the channel length of the desalting chamber and the mixing ratio of the anion exchange resin in the desalting chamber (the ratio of the anion exchange resin in the total ion exchange resin). When the length is extremely short or the mixing ratio of the anion exchange resin in the demineralization chamber is extremely small, the silica removal rate is lowered even when the regeneration ratio is satisfied. flow path length of the desalination chamber is at least 300 mm, the mixing ratio of the anion exchange resin in the desalting compartment Ru der 50% or more.
[0017]
The longer the channel length of the demineralization chamber is, the higher the quality of the produced water can be, and it is particularly preferable that it is 400 mm or more, but the assembly workability and manufacturing cost of the electrodeionization device, the dimensions of the electrodeionization device, etc. In consideration, the flow path length of the desalting chamber is preferably 800 mm or less.
[0018]
Further, the larger the mixing ratio of the anion exchange resin in the desalting chamber, the higher the removal rate of weak electrolytic substances such as silica and boron can be increased, and the mixing ratio of the anion exchange resin is particularly preferably 60% or more. If the amount is excessively large, the amount of the cation exchange resin is relatively reduced, and the removal rate of the cation component is lowered. Therefore, the mixing ratio of the anion exchange resin is preferably 90% or less.
[0019]
The method of the present invention, adopting such a regeneration ratio of anion exchange resin desalting compartment 60%, further to the mixing ratio of the anion exchange resin desalting compartment is 50% or more, the flow of the desalination chamber the pathlength set to be greater than or equal to 300 mm, it is possible to perform the operation of electrodeionization apparatus according to a conventional method.
[0020]
Accordingly, a part of the raw water (this water is usually pretreated in order by an activated carbon tower and a reverse osmosis membrane separator, etc.) is supplied to the concentration chamber of the electrodeionization device, and the remainder is supplied to the demineralization chamber. The deionized treatment is performed, and the effluent from the desalination chamber is taken out as treated water (product water). In a normal case, part of the effluent from the concentrating chamber is discharged out of the system, and the rest is circulated to the supply side of the concentrating chamber.
[0021]
Circulation of the effluent of the concentrating chamber is performed for the purpose of improving the water recovery rate, and the amount of the circulating water is not particularly limited as long as the operating conditions of the present invention are maintained. It is preferable that the operation is carried out under conditions where the effluent of the chamber is about 50 to 95% and the water recovery rate of the electrodeionization apparatus is about 0.5 to 0.95.
[0022]
As described above, the regeneration ratio of the anion exchange resin in the demineralization chamber of the electrodeionization apparatus is 60% or more, the mixing ratio of the anion exchange resin is 50% or more, and the flow path length of the demineralization chamber is 300 mm or more. A silica removal rate of 95% can be achieved, but when the silica removal rate is to be further increased, it is effective to reduce the silica concentration of the concentrated water under the above conditions. As a control method, there is a method of increasing the amount of concentrated water discharged outside the system to lower the water recovery rate, but the concentrated water is mixed with a part of production water or water with low silica concentration such as pure water. A method can also be adopted.
[0023]
The electrodeionization apparatus used in the present invention is a general apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged to alternately form a concentration chamber and a desalting chamber. It is filled with an ion exchanger such as a mixed ion exchange resin of a resin and a cation exchange resin. The concentration chamber may also be filled with such an ion exchanger.
[0024]
[Example]
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0025]
Examples 1-4, Comparative Examples 1-4
Water obtained by sequentially treating Nogicho water with an activated carbon device, a reverse osmosis membrane device and a deaeration membrane device was passed through an electrodeionization device. As an ion exchange resin for filling the ion exchange membrane and the desalting chamber of this electrodeionization apparatus, the following was used, and an electrodeionization stack having the configuration shown in FIG. 1 was assembled. The ratio of the anion exchange resin in the ion exchange resin in the desalting chamber (anion exchange resin mixing ratio) was as shown in Table 1.
[0026]
Anion exchange membrane: "Neocepta AHA" manufactured by Tokuyama Corporation
Cation exchange membrane: “Neocepta CMB” manufactured by Tokuyama Corporation
Anion exchange resin: “550A” manufactured by Dow Chemical
Cation exchange resin: “650C” manufactured by Dow Chemical
The deionization chamber of the electrodeionization apparatus has a width of 187 mm and a thickness of 2.5 mm, and the flow path length is as shown in Table 1. There were three desalting chambers, and mesh spacers were loaded in the concentration chamber and the electrode chamber.
[0027]
The water balance of the electrodeionization device is: the production water volume is 40 L / hr, the concentrated water circulating water volume (of the concentrated chamber effluent water is circulated to the inlet side of the concentrating chamber) 15 L / hr, the concentrated water discharge volume (of the concentrated chamber effluent water The amount of water discharged out of the system) was 2 L / hr.
[0028]
Each electrodeionization apparatus was operated for 4 days under an arbitrary voltage condition, the silica removal rate in the electrodeionization apparatus was examined from the silica concentration of the produced water, and the results are shown in Table 1. Further, immediately after the operation for 4 days, the electrodeionization apparatus was disassembled, the anion exchange resin in the demineralization chamber was taken out, the regeneration ratio was measured in a uniformly mixed state, and the results are shown in Table 1.
[0029]
[Table 1]
Figure 0004660890
[0030]
From Table 1, if the regeneration ratio of the anion exchange resin is 60% or more, the mixing ratio of the anion exchange resin is 50% or more, and the channel length of the desalting chamber is 300 mm or more, a silica removal rate of 95% is achieved. You can see that
[0031]
【The invention's effect】
As described in detail above, according to the present invention, weak electrolytic substances such as silica and boron can be efficiently removed in an electrodeionization apparatus, and high-quality product water can be produced stably and reliably.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a general configuration of an electrodeionization apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Ion exchanger 11 Anode 12 Cathode 13 Anion exchange membrane 14 Cation exchange membrane 15 Concentration chamber 16 Desalination chamber 17 Anode chamber 18 Cathode chamber

Claims (2)

陽極と陰極との間に複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成し、脱塩室にアニオン交換体を含むイオン交換体を充填してなる電気脱イオン装置の運転方法において、
該アニオン交換体の、全アニオン交換体中のOH型アニオン交換体の割合が60%以上となるように、該電気脱イオン装置に印加する電圧条件、脱塩室の通水流量、濃縮室の通水流量、該電気脱イオン装置への供給水のpH、又は該電気脱イオン装置への供給水の電気伝導度を調整して運転する電気脱イオン装置の運転方法であって、
該脱塩室内のイオン交換体のうちの50%以上がアニオン交換体であり、該脱塩室の水の流路方向の長さが300mm以上であることを特徴とする電気脱イオン装置の運転方法。
A plurality of anion exchange membranes and cation exchange membranes are alternately arranged between the anode and the cathode to alternately form a concentration chamber and a desalting chamber, and the desalting chamber is filled with an ion exchanger including an anion exchanger. In the operation method of the electrodeionization device,
The voltage condition applied to the electrodeionization apparatus, the flow rate of water in the desalting chamber, the flow rate of the concentration chamber, so that the proportion of the OH type anion exchanger in the total anion exchanger is 60% or more . An operation method of an electrodeionization apparatus that operates by adjusting the flow rate of water, the pH of the feedwater to the electrodeionization apparatus, or the electric conductivity of the feedwater to the electrodeionization apparatus,
50% or more of the ion exchangers in the demineralization chamber are anion exchangers, and the length of the water flow direction in the demineralization chamber is 300 mm or more. Method.
請求項1において、該脱塩室内のイオン交換体のうちの60〜90%がアニオン交換体であり、該脱塩室の水の流路方向の長さが400〜800mmであることを特徴とする電気脱イオン装置の運転方法。In Claim 1, 60-90% of the ion exchangers in the desalting chamber are anion exchangers, and the length of the water flow direction in the desalting chamber is 400-800 mm. To operate the electrodeionization apparatus.
JP2000199288A 2000-06-30 2000-06-30 Operation method of electrodeionization equipment Expired - Fee Related JP4660890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199288A JP4660890B2 (en) 2000-06-30 2000-06-30 Operation method of electrodeionization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199288A JP4660890B2 (en) 2000-06-30 2000-06-30 Operation method of electrodeionization equipment

Publications (2)

Publication Number Publication Date
JP2002011478A JP2002011478A (en) 2002-01-15
JP4660890B2 true JP4660890B2 (en) 2011-03-30

Family

ID=18697329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199288A Expired - Fee Related JP4660890B2 (en) 2000-06-30 2000-06-30 Operation method of electrodeionization equipment

Country Status (1)

Country Link
JP (1) JP4660890B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103010150B (en) * 2012-12-28 2015-07-22 浙江吉利汽车研究院有限公司杭州分公司 Seat belt height self-adaptive adjustment method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564786A (en) * 1991-09-05 1993-03-19 Nippon Rensui Kk Production of pure water
JPH05181249A (en) * 1991-12-29 1993-07-23 Konica Corp Concentration processing device and concentration processing method for aqueous solution
JPH1157420A (en) * 1997-08-14 1999-03-02 Japan Organo Co Ltd Water run treatment method for electric deionized water manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564786A (en) * 1991-09-05 1993-03-19 Nippon Rensui Kk Production of pure water
JPH05181249A (en) * 1991-12-29 1993-07-23 Konica Corp Concentration processing device and concentration processing method for aqueous solution
JPH1157420A (en) * 1997-08-14 1999-03-02 Japan Organo Co Ltd Water run treatment method for electric deionized water manufacturing device

Also Published As

Publication number Publication date
JP2002011478A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US5316637A (en) Electrodeionization apparatus
JP3826690B2 (en) Electrodeionization device and pure water production device
JP4065664B2 (en) Electric desalination equipment
JP3956836B2 (en) Electrodeionization equipment
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP4250922B2 (en) Ultrapure water production system
JP3644759B2 (en) Electric regenerative pure water manufacturing method and pure water manufacturing apparatus
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP5114307B2 (en) Electric deionized water production equipment
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP3952127B2 (en) Electrodeionization treatment method
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP4599668B2 (en) Operation method of electrodeionization equipment
JP4660890B2 (en) Operation method of electrodeionization equipment
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP2003001258A (en) Electrolytic deionizing apparatus
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP2007301430A (en) Electric regeneration type pure water producing apparatus, and method for producing pure water
JP4016663B2 (en) Operation method of electrodeionization equipment
KR100692698B1 (en) Electric deionizing apparatus and electric deionizing treatment method using the same
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP2003326270A (en) Electric regenerative demineralizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4660890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees