JP2001259376A - Deionized water making apparatus - Google Patents
Deionized water making apparatusInfo
- Publication number
- JP2001259376A JP2001259376A JP2000074227A JP2000074227A JP2001259376A JP 2001259376 A JP2001259376 A JP 2001259376A JP 2000074227 A JP2000074227 A JP 2000074227A JP 2000074227 A JP2000074227 A JP 2000074227A JP 2001259376 A JP2001259376 A JP 2001259376A
- Authority
- JP
- Japan
- Prior art keywords
- water
- reverse osmosis
- deionized water
- chamber
- osmosis membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
- C02F1/4695—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体製造分野、
医製薬製造分野、原子力や火力等の発電分野、食品工業
などの各種の産業又は研究所施設において使用され、逆
浸透膜装置や電気式脱イオン水製造装置の長期間の通水
による差圧上昇を抑制できる電気式脱イオン水製造装置
を使用した脱イオン水製造装置に関するものである。The present invention relates to the field of semiconductor manufacturing,
Used in various industries or research laboratories such as medical and pharmaceutical manufacturing, power generation such as nuclear power and thermal power, food industry, etc., the differential pressure rise due to long-term water flow in reverse osmosis membrane devices and electric deionized water manufacturing devices The present invention relates to a deionized water production apparatus using an electric deionized water production apparatus capable of suppressing the occurrence of water.
【0002】[0002]
【従来の技術】脱イオン水を製造する方法として、従来
からイオン交換樹脂に被処理水を通して脱イオンを行う
方法が知られているが、この方法ではイオン交換樹脂が
イオンで飽和されたときに薬剤によって再生を行う必要
があり、このような処理操作上の不利な点を解消するた
め、近年、薬剤による再生が全く不要な電気式脱イオン
法による脱イオン水製造方法が確立され、実用化に至っ
ている。2. Description of the Related Art As a method for producing deionized water, there has been conventionally known a method in which deionized water is passed through ion-exchange resin through water to be treated. In order to eliminate such disadvantages in the treatment operation, it is necessary to regenerate with a chemical, and in recent years, a method for producing deionized water by an electric deionization method that does not require regeneration with a chemical has been established and put into practical use. Has been reached.
【0003】図5はその従来の典型的な電気式脱イオン
水製造装置の模式断面図を示す。図5に示すように、カ
チオン交換膜101及びアニオン交換膜102を離間し
て交互に配置し、カチオン交換膜101とアニオン交換
膜102で形成される空間内に一つおきにイオン交換体
103を充填して脱塩室とする。脱塩室の被処理水流入
側(前段)にはアニオン交換樹脂103aが充填され、
脱塩室の被処理水流出側(後段)にはカチオン交換樹脂
とアニオン交換樹脂の混合イオン交換樹脂103bが充
填されている。また、脱塩室104のそれぞれ隣に位置
するアニオン交換膜102とカチオン交換膜101で形
成されるイオン交換体103を充填していない部分は濃
縮水を流すための濃縮室105とする。FIG. 5 is a schematic sectional view of a typical conventional electric deionized water producing apparatus. As shown in FIG. 5, the cation exchange membranes 101 and the anion exchange membranes 102 are alternately arranged at a distance from each other, and the ion exchange bodies 103 are alternately placed in a space formed by the cation exchange membranes 101 and the anion exchange membranes 102. Fill to form a desalination chamber. The anion exchange resin 103a is filled on the inflow side (front stage) of the water to be treated in the desalination chamber,
A mixed ion exchange resin 103b of a cation exchange resin and an anion exchange resin is filled on the outflow side (the latter stage) of the water to be treated in the desalination chamber. In addition, the portions not adjacent to the ion-exchanger 103 formed by the anion exchange membrane 102 and the cation exchange membrane 101 located next to the desalination chamber 104 are used as the concentration chamber 105 for flowing the concentrated water.
【0004】また、脱塩室の一側に陰極109を配設す
ると共に、他端側に陽極110を配設する。なお、前述
したスペーサーを挟んだ位置が濃縮室105であり、ま
た両端の濃縮室105の両外側に必要に応じカチオン交
換膜101、アニオン交換膜102、あるいはイオン交
換性のない単なる隔膜等の仕切り膜を配設し、仕切り膜
で仕切られた両電極109、110が接触する部分をそ
れぞれ陰極室112及び陽極室113とする。このよう
に、従来の電気式脱イオン水製造装置においては、濃縮
室の数は脱塩室の数より1つ多い形態のものであるか、
あるいは両端に濃縮室を仕切り膜無しで電極室とした場
合、1つ少ない形態のものであった。A cathode 109 is provided on one side of the desalting chamber, and an anode 110 is provided on the other end. The enrichment chamber 105 is located between the above-described spacers, and a partition such as a cation exchange membrane 101, an anion exchange membrane 102, or a simple non-ion exchange membrane is provided on both outer sides of the enrichment chamber 105 at both ends. The membrane is provided, and the portions where the two electrodes 109 and 110 are separated by the partition membrane are referred to as a cathode chamber 112 and an anode chamber 113, respectively. Thus, in the conventional electric deionized water producing apparatus, the number of the concentrating chambers is one more than the number of the desalting chambers,
Alternatively, when the concentrating chambers at both ends were used as electrode chambers without a partition membrane, the configuration was one less.
【0005】このような電気式脱イオン水製造装置によ
って脱イオン水を製造する場合を図5を参照して説明す
る。すなわち、陰極109と陽極110間に直流電流を
通じ、また、被処理水流入ライン111から被処理水が
流入すると共に、濃縮水流入ライン115から濃縮水が
流入し、且つ電極水流入ライン117、117からそれ
ぞれ電極水が流入する。被処理水流入ライン111から
流入した被処理水は脱塩室104を流下し、先ず、前段
のアニオン交換樹脂103aを通過する際、塩酸イオン
や硫酸イオンなどのアニオン成分が除去され、次に、後
段のカチオン交換樹脂及びアニオン交換樹脂の混合イオ
ン交換樹脂103bを通過する際、マグネシウムやカル
シウムなどのカチオン成分が除去される。濃縮水流入ラ
イン115から流入した濃縮水は各濃縮室105を上昇
し、カチオン交換膜101及びアニオン交換膜102を
介して移動してくる不純物イオンを受取り、不純物イオ
ンを濃縮した濃縮水として濃縮水流出ライン116から
流出され、さらに電極水流入ライン117、117から
流入した電極水は電極水流出ライン118、118から
流出される。従って、脱イオン水流出ライン114から
脱塩水が得られる。A case of producing deionized water by such an electric deionized water producing apparatus will be described with reference to FIG. That is, a direct current is passed between the cathode 109 and the anode 110, the water to be treated flows in from the water inflow line 111, the concentrated water flows in from the concentrated water inflow line 115, and the electrode water inflow lines 117, 117 From each of the electrode water flows. The water to be treated flowing from the treated water inflow line 111 flows down the desalting chamber 104, and firstly, when passing through the anion exchange resin 103a at the preceding stage, anion components such as hydrochloric acid ions and sulfate ions are removed. Upon passing through the mixed ion exchange resin 103b of the latter cation exchange resin and anion exchange resin, cation components such as magnesium and calcium are removed. The concentrated water flowing from the concentrated water inflow line 115 rises in each concentration chamber 105, receives impurity ions moving through the cation exchange membrane 101 and the anion exchange membrane 102, and forms concentrated water as concentrated water in which the impurity ions are concentrated. Electrode water flowing out of the outflow line 116 and further flowing in through the electrode water inflow lines 117 and 117 flows out of the electrode water outflow lines 118 and 118. Therefore, deionized water is obtained from the deionized water outflow line 114.
【0006】[0006]
【発明が解決しようとする課題】従来、逆浸透膜装置と
上記のような電気式脱イオン水製造装置を組み合わせた
脱イオン水製造装置は半導体製造分野、医製薬製造分
野、原子力や火力等の発電分野、食品工業などの各種の
産業において、無薬品の脱イオン水製造装置として利用
されてきた。しかし、このような脱イオン水製造装置に
おいても長期間の運転では、逆浸透膜装置においては通
水差圧の上昇が、電気式脱イオン水製造装置においては
濃縮室の通水差圧の上昇が起こり、薬品洗浄の原因とな
っていた。Conventionally, a deionized water producing apparatus combining a reverse osmosis membrane apparatus and the above-mentioned electric deionized water producing apparatus has been used in the fields of semiconductor production, medicine and pharmaceutical production, nuclear power and thermal power. It has been used as a non-chemical deionized water production device in various industries such as the power generation field and the food industry. However, even in such a deionized water producing apparatus, in a long-term operation, the reverse pressure of the reverse osmosis membrane apparatus causes an increase in the differential water pressure, whereas the electric deionized water apparatus increases the differential pressure of the condensing chamber. Occurred, causing chemical cleaning.
【0007】逆浸透膜装置における通水差圧の上昇は、
放置すると透過水量が低下する。ある程度までは薬品洗
浄することなく、バルブ操作やポンプインバーターを制
御することにより運転圧力を高くして透過水量を確保す
ることはできるものの、通水差圧の上昇を放置すると最
終的には逆浸透膜の破損の原因となり、重大なトラブル
に繋がる。一方、電気式脱イオン水製造装置においては
濃縮室の通水差圧の上昇はある程度までは薬品洗浄する
ことなく、バルブ操作で運転圧力を高くして濃縮水量は
確保できるが、通水差圧の上昇を放置すると濃縮水の流
量分布が不均一になり、難溶性物質の析出、微生物の発
生などの原因となり更に圧力上昇を招くことになる。ま
た、脱塩室と濃縮室の圧力バランスが崩れることによ
り、濃縮水がイオン交換膜を通って脱塩室にリークし、
処理水質の変動を引き起こす原因にもなる。このような
トラブルを事前に防止するために、定期的あるいは差圧
上昇が一定限度を越えた場合には、逆浸透膜装置や電気
式脱イオン水製造装置を薬品で洗浄することが通例であ
り、薬品洗浄に伴う装置の停止は、運転管理面でも、コ
スト面でも不都合なことであった。[0007] The rise of the pressure difference in water flow in the reverse osmosis membrane device is as follows.
If left untreated, the amount of permeated water will decrease. It is possible to secure the amount of permeated water by increasing the operating pressure by controlling the valve operation and the pump inverter without performing chemical cleaning to a certain extent, but eventually reverse osmosis if the rise in the differential pressure of water flow is left unchecked This can cause damage to the membrane, leading to serious trouble. On the other hand, in the electric deionized water production system, the pressure difference in water flow in the concentrating chamber can be increased to some extent without chemical washing, and the operating pressure can be increased by operating the valve to secure the amount of concentrated water. If the rise is left unchecked, the flow rate distribution of the concentrated water will become non-uniform, causing precipitation of poorly soluble substances, generation of microorganisms, etc., and further increase in pressure. Also, the pressure balance between the desalting chamber and the concentrating chamber is lost, so that the concentrated water leaks to the desalting chamber through the ion exchange membrane,
It can also cause fluctuations in treated water quality. In order to prevent such troubles in advance, it is customary to wash the reverse osmosis membrane device and the electric deionized water production device with chemicals periodically or when the differential pressure rise exceeds a certain limit. In addition, stopping the apparatus due to chemical cleaning is inconvenient in terms of operation management and cost.
【0008】また、従来の電気式脱イオン水製造装置に
おいて、脱塩室にアニオン交換樹脂とカチオン交換樹脂
の混合イオン交換樹脂が充填されたものは、脱塩室のp
Hは7近傍にあり、流入する被処理水中の糸状菌やカビ
の胞子などが脱塩室内で成長し、脱塩室の差圧を上昇さ
せたり、水質の低下、処理水への微生物混入といった問
題があった。また、脱塩室の上流側にアニオン交換樹脂
が充填され、下流側にアニオン交換樹脂とカチオン交換
樹脂の混合イオン交換樹脂が充填されたものは、脱塩室
から得られる処理水中への微生物混入は抑制されるもの
の、上記のような長期間の運転における逆浸透膜装置や
電気式脱イオン水製造装置における通水差圧の上昇の問
題は依然として解決されないものであった。In a conventional electric deionized water producing apparatus, a deionization chamber filled with a mixed ion exchange resin of an anion exchange resin and a cation exchange resin is used in the deionization chamber.
H is in the vicinity of 7, and filamentous fungi and mold spores and the like in the inflowing treated water grow in the desalting chamber, increasing the pressure difference in the desalting chamber, lowering the water quality, and contaminating microorganisms in the treated water. There was a problem. In addition, the upstream side of the desalting chamber is filled with an anion exchange resin, and the downstream side is filled with a mixed ion exchange resin of an anion exchange resin and a cation exchange resin. However, the problem of the increase in the differential pressure of water in the reverse osmosis membrane device and the electric deionized water production device in the long-term operation as described above has not been solved.
【0009】従って、本発明の目的は、長期間の運転に
おける逆浸透膜装置や電気式脱イオン水製造装置の通水
による差圧上昇の抑制を薬剤を使用することなく、電気
式脱イオン水製造装置の構造面からの抜本的な改善によ
り達成すること、更に脱イオン水中への微生物混入を抑
制する脱イオン水製造装置を提供することにある。[0009] Accordingly, an object of the present invention is to suppress the rise in the differential pressure due to the passage of water in a reverse osmosis membrane device or an electric deionized water production apparatus during a long-term operation without using a chemical. It is an object of the present invention to provide a deionized water production apparatus which can be achieved by a fundamental improvement in the structure of a production apparatus and further suppresses the incorporation of microorganisms into deionized water.
【0010】[0010]
【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、(1)従来の電気式
脱イオン水製造装置の濃縮室内に発生する通水差圧は、
濃縮室側のカチオン交換膜面上に付着するスライム(粘
着状物)に起因すること、(2)このカチオン交換膜面
上に付着するスライムは被処理水の硬度成分とは無関係
の微生物、その代謝物及び水中の微粒子に起因するもの
で、電気式脱イオン水製造装置の前段部分で軟化処理な
どの硬度成分除去対策を十分実施しても、運転数カ月の
比較的短期間にカチオン交換膜面上に発生すること、
(3)該装置の濃縮水を逆浸透膜装置の前段に戻す場
合、逆浸透膜装置の膜面上にはスライムが付着し、これ
により逆浸透膜装置の通水差圧が発生するが、この現象
は電気式脱イオン水製造装置の濃縮室で増殖した微生物
とスライムに起因すること、(4)枠体の一側にカチオ
ン交換膜が封着され、他側にアニオン交換膜が封着され
た従来の脱塩室構造において、このカチオン交換膜とア
ニオン交換膜の間にさらに、脱塩室を2分割する中間イ
オン交換膜を配設して、2つの小脱塩室を隣合わせに有
する脱塩室とし、最初に被処理水が流入する陽極側の小
脱塩室にはアニオン交換体を、この小脱塩室の流出水が
流入する陰極側の小脱塩室にはアニオン交換体とカチオ
ン交換体の混合交換体をそれぞれ充填し、前記カチオン
交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室
を設け、これらの脱塩室及び濃縮室を陽極と陰極の間に
配置した構造の電気式脱イオン水製造装置を使用すれ
ば、上記(1)〜(3)の現象はことごとく改善され、
更に脱塩室から得られる脱イオン水は微生物混入のない
安定した水質のものが得られること、等を見出し、本発
明を完成するに至った。Under such circumstances, the present inventors have conducted intensive studies. As a result, (1) the differential pressure of water flow generated in the enrichment chamber of the conventional electric deionized water producing apparatus is as follows:
(2) The slime adhering on the cation exchange membrane surface on the cation exchange membrane surface on the side of the concentration chamber is a microorganism which is unrelated to the hardness component of the water to be treated. It is caused by metabolites and fine particles in water. Even if sufficient measures are taken to remove hardness components such as softening in the front part of the electric deionized water production equipment, the surface of the cation exchange membrane can be That occur on,
(3) When the concentrated water of the apparatus is returned to the previous stage of the reverse osmosis membrane apparatus, slime adheres to the membrane surface of the reverse osmosis membrane apparatus, and this causes a difference in water flow through the reverse osmosis membrane apparatus. This phenomenon is caused by microorganisms and slime grown in the concentration chamber of the electrodeionized water production system. (4) A cation exchange membrane is sealed on one side of the frame and an anion exchange membrane is sealed on the other side. In the conventional structure of the conventional desalination chamber, an intermediate ion exchange membrane that divides the desalination chamber into two parts is further disposed between the cation exchange membrane and the anion exchange membrane, and two small desalination chambers are provided adjacent to each other. An anion exchanger is placed in the small desalination chamber on the anode side where the water to be treated first flows, and an anion exchanger is placed in the small desalination chamber on the cathode side where the effluent of the small desalination chamber flows. And a mixed exchanger of a cation exchanger and the cation exchange membrane, anion exchange The above-mentioned (1) can be achieved by using an electric deionized water producing apparatus having a structure in which concentration chambers are provided on both sides of a desalination chamber via a membrane, and the desalination chamber and the concentration chamber are arranged between an anode and a cathode. The phenomena of (3) are all improved,
Furthermore, the inventors have found that deionized water obtained from the desalting chamber can be of a stable water quality free of microorganisms, and have completed the present invention.
【0011】すなわち、本発明(1)は、逆浸透膜装置
及び電気式脱イオン水製造装置をこの順序で連接する脱
イオン水製造装置であって、前記電気式脱イオン水製造
装置は、一側のカチオン交換膜、他側のアニオン交換膜
及び当該カチオン交換膜と当該アニオン交換膜の間に位
置する中間イオン交換膜で区画される2つの小脱塩室の
うち陰極側の小脱塩室にはカチオン交換体とアニオン交
換体の混合イオン交換体を、陽極側の小脱塩室にはアニ
オン交換体をそれぞれ充填して脱塩室を構成し、前記カ
チオン交換膜、アニオン交換膜を介して脱塩室の両側に
濃縮室を設け、これらの脱塩室及び濃縮室を陽極と陰極
の間に配置して形成される脱イオン水製造装置を提供す
るものである。かかる構成を採ることにより、被処理水
の一部を濃縮室に供給すると、通常負に帯電している微
生物は直流電流が印加されて陽極側に移動する。濃縮室
の陽極側には濃縮室と脱塩室とを区画するカチオン交換
膜が存在し、微生物はこのカチオン交換膜面上に捕捉さ
れる。一方、一側のカチオン交換膜と中間イオン交換膜
で区画される小脱塩室(陰極側)にはカチオン交換体と
アニオン交換体の混合イオン交換体が充填されており、
このカチオン交換膜の全面からナトリウムイオンなどの
カチオンが濃縮室に移動するため、カチオン交換膜全面
の近傍の濃縮水はナトリウムイオンリッチでアルカリ状
態となり微生物が増殖し難い。このため、カチオン交換
膜面には微生物に起因する粘着状のスライムが発生する
ことはなく、濃縮室内の通水差圧は長期間に渡り一定状
態を保つことができる。また、被処理水が最初に流入す
る小脱塩室の入口側は、被処理水中に存在する微細な濁
質の蓄積は不可避であり、該濁質中に糸状菌やカビの胞
子などが存在した場合、該小脱塩室はアニオン交換体が
充填されておりアニオンが選択的に除去されてアルカリ
性となる。このため、次いで流入する小脱塩室には微生
物が存在しない水を供給でき、この結果、電気式脱イオ
ン水製造装置からは微生物が実質的に存在しない水が得
られる。That is, the present invention (1) relates to a deionized water producing apparatus in which a reverse osmosis membrane apparatus and an electric deionized water producing apparatus are connected in this order. Small desalination chamber on the cathode side of two small desalination chambers partitioned by a cation exchange membrane on the side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane A deionization chamber is formed by filling a mixed ion exchanger of a cation exchanger and an anion exchanger, and filling an anion exchanger in a small desalination chamber on the anode side, respectively, through the cation exchange membrane and the anion exchange membrane. The present invention provides a deionized water production apparatus formed by providing concentration chambers on both sides of a deionization chamber and arranging the deionization chamber and the concentration chamber between an anode and a cathode. With this configuration, when a part of the water to be treated is supplied to the concentration chamber, the microorganisms that are usually negatively charged are applied with a direct current and move to the anode side. On the anode side of the concentration chamber, there is a cation exchange membrane that separates the concentration chamber and the desalination chamber, and microorganisms are captured on the cation exchange membrane surface. On the other hand, a small desalination chamber (cathode side) partitioned by a cation exchange membrane and an intermediate ion exchange membrane on one side is filled with a mixed ion exchanger of a cation exchanger and an anion exchanger,
Since cations such as sodium ions move from the entire surface of the cation exchange membrane to the concentration chamber, the concentrated water in the vicinity of the entire surface of the cation exchange membrane becomes rich in sodium ions and becomes an alkaline state, so that microorganisms are unlikely to grow. Therefore, no sticky slime caused by microorganisms is generated on the cation exchange membrane surface, and the pressure difference in water flow in the concentration chamber can be kept constant for a long period of time. In addition, on the inlet side of the small desalination chamber into which the water to be treated first flows, accumulation of fine turbid substances present in the treated water is inevitable, and filamentous fungi and mold spores are present in the turbid substance. In this case, the small desalting chamber is filled with an anion exchanger, and the anion is selectively removed to be alkaline. Therefore, water free of microorganisms can be supplied to the small inflow desalting chamber that flows in, and as a result, water substantially free of microorganisms can be obtained from the electric deionized water producing apparatus.
【0012】また、本発明(2)は、更に、前記濃縮室
から流出する濃縮水を前記逆浸透膜装置の被処理水側に
返送する配管を備える前記(1)記載の脱イオン水製造
装置を提供するものである。かかる構成を採ることによ
り、逆浸透膜装置の被処理水側に返送する濃縮水は微生
物が増殖し難いものであり、従って、逆浸透膜装置の膜
面への影響も無く、従来のものに比して遙に通水差圧は
発生し難い。Further, the present invention (2) further comprises a pipe for returning the concentrated water flowing out of the concentration chamber to the water to be treated side of the reverse osmosis membrane device, wherein the deionized water producing apparatus according to the above (1) is provided. Is provided. By adopting such a configuration, the concentrated water returned to the water to be treated side of the reverse osmosis membrane device is difficult for microorganisms to proliferate, and therefore has no influence on the membrane surface of the reverse osmosis membrane device, and is thus different from the conventional one. In contrast, a pressure difference is much less likely to occur.
【0013】また、本発明(3)は、前記逆浸透膜装置
は、第1段逆浸透膜装置及び該第1段逆浸透膜装置の透
過水を更に処理する第2段逆浸透膜装置とからなり、且
つ前記濃縮室から流出する濃縮水を前記第1段逆浸透膜
装置の透過水側で、前記第2段逆浸透膜装置の被処理水
側に返送する配管を備える前記(1)記載の脱イオン水
製造装置を提供するものである。かかる構成を採ること
により、前記発明と同様の効果を奏する他、水の利用率
を向上させることができ、また、濃縮水の返送を第1段
逆浸透膜装置の透過水側とするため第1段逆浸透膜装置
の処理量が軽減され合理的な装置となる。Further, the present invention (3) provides a reverse osmosis membrane device, wherein the reverse osmosis membrane device includes a first stage reverse osmosis membrane device and a second stage reverse osmosis membrane device for further treating permeated water of the first stage reverse osmosis membrane device. And (1) comprising a pipe for returning the concentrated water flowing out of the concentration chamber from the permeated water side of the first-stage reverse osmosis membrane device to the treated water side of the second-stage reverse osmosis membrane device. It is intended to provide a deionized water producing apparatus as described above. By adopting such a configuration, in addition to achieving the same effects as the above-described invention, it is possible to improve the water utilization rate, and to return the concentrated water to the permeated water side of the first-stage reverse osmosis membrane device. The processing amount of the one-stage reverse osmosis membrane device is reduced, and the device becomes a reasonable device.
【0014】また、本発明(4)は、更に、前記第2段
逆浸透膜装置の濃縮水を前記第1段逆浸透膜装置の被処
理水側に返送する配管を備える前記(3)記載の脱イオ
ン水製造装置を提供するものである。かかる構成を採る
ことにより、前記発明と同様の効果を奏する他、更に水
の利用率を向上させることができる。Further, the present invention (4) further comprises a pipe for returning the concentrated water of the second-stage reverse osmosis membrane device to the treated water side of the first-stage reverse osmosis membrane device. To provide a deionized water producing apparatus. By adopting such a configuration, the same effects as those of the above-described invention can be obtained, and the water utilization rate can be further improved.
【0015】また、本発明(5)は、前記逆浸透膜装置
で使用される逆浸透膜が、ポリアミド系膜である前記
(1)記載の脱イオン水製造装置を提供するものであ
る。かかる構成を採ることにより、従来、運転圧力が高
く(1.5〜3.0MPa )、分離性能が劣るものの、次
亜塩素酸ソーダなどの殺菌剤で殺菌できる点、膜表面の
荷電が中性であり汚れにくい点等から通水差圧が上昇し
難い酢酸セルロース系の膜がスライム発生対策の面から
は有利とされていたが、スライムの発生は極力抑制でき
るため、次亜塩素酸ソーダなどの殺菌剤で殺菌できず、
酸化劣化を受けると分離性能が低下し易く、膜表面の荷
電や疎水性により、膜表面が汚れやすいなどの欠点はあ
るものの、運転圧力が低く(0.3〜1.5MPa )、分
離性能が高いポリアミド系膜が使用でき、膜を使用する
際、選択の余地が広がる。Further, the present invention (5) provides the apparatus for producing deionized water according to the above (1), wherein the reverse osmosis membrane used in the reverse osmosis membrane device is a polyamide membrane. By adopting such a configuration, the operation pressure is conventionally high (1.5 to 3.0 MPa) and the separation performance is inferior, but it can be sterilized with a disinfectant such as sodium hypochlorite, and the charge on the membrane surface is neutral. Cellulose acetate-based membranes, which are difficult to contaminate because of their low contamination, were considered advantageous in terms of slime generation countermeasures.However, since the generation of slime can be minimized, sodium hypochlorite etc. Can not be sterilized with the disinfectant of
The separation performance is liable to decrease when subjected to oxidative deterioration, and the membrane surface is easily contaminated due to the charge and hydrophobicity of the membrane surface, but the operating pressure is low (0.3 to 1.5 MPa) and the separation performance is low. High polyamide-based membranes can be used, and when using the membranes, there is more choice.
【0016】本発明(6)は、更に、前記逆浸透膜装置
又は前記電気式脱イオン水製造装置の前段に、紫外線酸
化装置又は紫外線殺菌装置を備える前記(1)記載の脱
イオン水製造装置を提供するものである。かかる構成を
採ることにより、前記発明と同様の効果を奏する他、被
処理水中の微生物は事前に殺菌されたり、有機物の酸化
により微生物の栄養源が絶たれるため、更に微生物の増
殖は抑制される。In the present invention (6), the apparatus for producing deionized water according to (1), further comprising an ultraviolet oxidizer or an ultraviolet sterilizer before the reverse osmosis membrane apparatus or the electric deionized water producing apparatus. Is provided. By adopting such a configuration, in addition to achieving the same effects as the above-described invention, the microorganisms in the water to be treated are sterilized in advance, or the nutrient sources of the microorganisms are cut off by oxidation of organic substances, so that the growth of microorganisms is further suppressed. .
【0017】[0017]
【発明の実施の形態】本発明で使用する電気式脱イオン
水製造装置を図1を参照して説明する。図1は本実施の
形態における電気式脱イオン水製造装置の模式図であ
る。図1に示すように、カチオン交換膜3、中間イオン
交換膜5及びアニオン交換膜4を離間して交互に配置
し、カチオン交換膜3と中間イオン交換膜5で形成され
る空間内にイオン交換体8を充填して第1小脱塩室
d1 、d3 、d5 、d7 を形成し、中間イオン交換膜5
とアニオン交換膜4で形成される空間内にイオン交換体
8を充填して第2小脱塩室d2 、d4 、d6 、d8 を形
成し、第1小脱塩室d1 と第2小脱塩室d2 で脱塩室D
1 、第1小脱塩室d3 と第2小脱塩室d4 で脱塩室
D2 、第1小脱塩室d5 と第2小脱塩室d6 で脱塩室D
3 、第1小脱塩室d7 と第2小脱塩室d8 で脱塩室D4
とする。また、脱塩室D2 、D3 のそれぞれ隣に位置す
るアニオン交換膜4とカチオン交換膜3で形成されるイ
オン交換体8を充填していない部分は濃縮水を流すため
の濃縮室1とする。これを順次に併設して図中、左より
脱塩室D1 、濃縮室1、脱塩室D2 、濃縮室1、脱塩室
D3 、濃縮室1、脱塩室D4 を形成する。また、中間膜
を介して隣合う2つの小脱塩室において、第2小脱塩室
の処理水流出ライン12は第1脱塩室の被処理水流入ラ
イン13に連接されている。ここで、第1小脱塩室
d1 、d3 、d5 、d7 に充填されるイオン交換体はア
ニオン交換体とカチオン交換体の混合イオン交換体であ
り、第2小脱塩室d2 、d4 、d6 、d8 に充填される
イオン交換体はアニオン交換体である。なお、濃縮室1
にはスペーサーとしてまたは濃縮室の電気抵抗を下げる
ためにイオン交換体を充填することもできる。DESCRIPTION OF THE PREFERRED EMBODIMENTS An electric deionized water producing apparatus used in the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of an electric deionized water producing apparatus according to the present embodiment. As shown in FIG. 1, the cation exchange membrane 3, the intermediate ion exchange membrane 5, and the anion exchange membrane 4 are alternately arranged while being separated from each other, and ion exchange is performed in a space formed by the cation exchange membrane 3 and the intermediate ion exchange membrane 5. The body 8 is filled to form first small desalination chambers d 1 , d 3 , d 5 , d 7 , and the intermediate ion exchange membrane 5
And by filling the ion exchanger 8 in the space formed by the anion exchange membrane 4 to form a second small depletion chambers d 2, d 4, d 6 , d 8, a first small depletion chamber d 1 Desalting room D in second small desalting room d 2
1, the first small depletion chambers d 3 and the second small depletion chamber d 4 desalting compartment D 2, desalting compartment between the first small depletion chamber d 5 second small depletion chambers d 6 D
3, desalting compartment between the first small depletion chamber d 7 second small depletion chambers d 8 D 4
And In addition, the portion not filled with the ion exchanger 8 formed by the anion exchange membrane 4 and the cation exchange membrane 3 located next to the desalting chambers D 2 and D 3 respectively has the enrichment chamber 1 for flowing the concentrated water. I do. These are sequentially provided side by side to form a desalting room D 1 , a concentration room 1, a desalination room D 2 , a concentration room 1, a desalination room D 3 , a concentration room 1, and a desalination room D 4 from the left in the figure. . Further, in two small desalination chambers adjacent to each other via the intermediate film, the treated water outflow line 12 of the second small desalination chamber is connected to the treated water inflow line 13 of the first desalination chamber. Here, the ion exchanger packed in the first small desalting chambers d 1 , d 3 , d 5 and d 7 is a mixed ion exchanger of an anion exchanger and a cation exchanger, and the second small desalting chamber d 2, d 4, the ion exchange material packed in d 6, d 8 is an anion exchanger. The enrichment room 1
Can also be filled with ion exchangers as spacers or to reduce the electrical resistance of the concentration chamber.
【0018】このような脱塩室は2つの内部がくり抜か
れた枠体と3つのイオン交換膜によって形成される脱イ
オンモジュールからなる。すなわち、図では省略する
が、第1枠体の一側にカチオン交換膜を封着し、第1枠
体のくり抜かれた部分にカチオン交換体とアニオン交換
体の混合交換体を充填し、次いで、第1枠体の他方の部
分に中間イオン交換膜を封着して第1小脱塩室を形成す
る。次に中間イオン交換膜を挟み込むように第2枠体を
封着し、第2枠体のくり抜かれた部分にアニオン交換体
を充填し、次いで、第2枠体の他方の部分にアニオン交
換膜を封着して第2小脱塩室を形成する。なお、イオン
交換膜は比較的柔らかいものであり、第1枠体、第2枠
体内部にイオン交換体を充填してその両面をイオン交換
膜で封着した時、イオン交換膜が湾曲してイオン交換体
の充填層が不均一となるのを防止するため、第1枠体、
第2枠体の空間部に複数のリブを縦設する。また、第1
枠体、第2枠体の上方部に被処理水の流入口又は処理水
の流出口が、また枠体の下方部に被処理水の流出口又は
処理水の流入口が付設されている。このような脱イオン
モジュールの複数個をその間に図では省略するスペーサ
ーを挟んで、並設した状態が図1に示されたものであ
り、並設した脱イオンモジュールの一側に陰極6を配設
すると共に、他端側に陽極7を配設する。なお、前述し
たスペーサーを挟んだ位置が濃縮室1であり、また両端
の脱塩室Dの両外側に必要に応じカチオン交換膜、アニ
オン交換膜、あるいはイオン交換性のない単なる隔膜等
の仕切り膜を配設し、仕切り膜で仕切られた両電極6、
7が接触する部分をそれぞれ電極室2、2としてもよ
い。Such a desalting chamber is composed of a deionized module formed by two internally hollowed frames and three ion exchange membranes. That is, although not shown in the figure, a cation exchange membrane is sealed on one side of the first frame, and a hollow portion of the first frame is filled with a mixed exchanger of a cation exchanger and an anion exchanger, and then Then, an intermediate ion exchange membrane is sealed to the other part of the first frame to form a first small desalting chamber. Next, the second frame is sealed so as to sandwich the intermediate ion exchange membrane, the hollowed portion of the second frame is filled with an anion exchanger, and then the other portion of the second frame is anion exchange membrane. To form a second small desalination chamber. The ion exchange membrane is relatively soft, and when the inside of the first frame and the second frame is filled with the ion exchanger and both surfaces thereof are sealed with the ion exchange membrane, the ion exchange membrane is curved. In order to prevent the packed bed of the ion exchanger from becoming non-uniform, the first frame,
A plurality of ribs are provided vertically in the space of the second frame. Also, the first
An inlet for treated water or an outlet for treated water is provided above the frame and the second frame, and an outlet for treated water and an inlet for treated water are provided below the frame. FIG. 1 shows a state in which a plurality of such deionization modules are juxtaposed with a spacer (not shown) interposed therebetween, and a cathode 6 is arranged on one side of the juxtaposed deionization modules. And the anode 7 is disposed on the other end. The position sandwiching the above-mentioned spacer is the concentration chamber 1, and a partition membrane such as a cation exchange membrane, an anion exchange membrane, or a simple membrane having no ion exchange property is provided on both outer sides of the desalting chamber D at both ends as necessary. Are disposed, and the two electrodes 6 separated by the partition film,
The portions contacting with each other may be the electrode chambers 2 and 2, respectively.
【0019】このような電気式脱イオン水製造装置によ
って脱イオン水を製造する場合、以下のように操作され
る。すなわち、陰極6と陽極7間に直流電流を通じ、ま
た被処理水流入ライン11から被処理水が流入すると共
に、濃縮水流入ライン15から濃縮水が流入し、かつ電
極水流入ライン17、17からそれぞれ電極水が流入す
る。被処理水流入ライン11から流入した被処理水は第
2小脱塩室d2 、d4、d6 、d8 を流下し、アニオン
交換体81の充填層を通過する際にアニオン成分が除去
される。更に、第2小脱塩室の処理水流出ライン12を
通った流出水は、第1小脱塩室の被処理水流入ライン1
3を通って第1小脱塩室d1 、d3 、d 5 、d7 を流下
し、ここでもアニオン交換体とカチオン交換体の混合イ
オン交換体82の充填層を通過する際にカチオン及びア
ニオンの不純物イオンが除去され、脱イオン水が脱イオ
ン水流出ライン14から得られる。また、濃縮水流入ラ
イン15から流入した濃縮水は各濃縮室1を上昇し、カ
チオン交換膜3及びアニオン交換膜4を介して移動して
くる不純物イオンを受取り、不純物イオンを濃縮した濃
縮水として濃縮水流出ライン16から流出され、さらに
電極水流入ライン17、17から流入した電極水は電極
水流出ライン18、18から流出される。上述の操作に
よって、被処理水中の不純物イオンは電気的に除去され
る。なお、第1小脱塩室及び第2小脱塩室の厚さは特に
制限されないが、第1小脱塩室の厚さを0.8〜8mm、
好ましくは2〜5mm、第2小脱塩室の厚さを5〜15m
m、好ましくは6〜10mmとすれば、より低い電気抵抗
及びより高い電流効率が得られ、またより良い水質が得
られる点で好適である。According to such an electric deionized water producing apparatus,
When producing deionized water by
You. That is, a direct current is passed between the cathode 6 and the anode 7,
When treated water flows in from the treated water inflow line 11
The concentrated water flows from the concentrated water inflow line 15
Electrode water flows from the polar water inflow lines 17 and 17, respectively.
You. The treated water flowing from the treated water inflow line 11
2 small desalination room dTwo, DFour, D6, D8Down the anion
Anion components are removed when passing through the packed bed of exchanger 81
Is done. Further, the treated water outflow line 12 of the second small desalination chamber is
The effluent that has passed is the treated water inflow line 1 in the first small desalination chamber.
3 through the first small desalination chamber d1, DThree, D Five, D7Flow down
Here, too, a mixture of an anion exchanger and a cation exchanger is used.
When passing through the packed bed of the on-exchanger 82, cations and
Nion impurity ions are removed and deionized water is deionized
From the water outflow line 14. The concentrated water inflow
The concentrated water flowing from the in 15 rises in each of the concentration chambers 1 and
Moving through the thione exchange membrane 3 and the anion exchange membrane 4
Incoming impurity ions and concentrates the impurity ions.
The condensate is discharged from the concentrated water discharge line 16 as compressed water,
Electrode water flowing from the electrode water inflow lines 17 and 17
The water flows out of the water outflow lines 18, 18. The above operation
Therefore, impurity ions in the water to be treated are electrically removed.
You. In addition, the thickness of the first small desalination chamber and the second small desalination chamber is particularly
Although not limited, the thickness of the first small desalination chamber is 0.8 to 8 mm,
Preferably 2 to 5 mm, thickness of the second small desalination chamber 5 to 15 m
m, preferably 6-10mm, lower electrical resistance
And higher current efficiency and better water quality
This is preferred in that
【0020】また、上記の通水方法において、濃縮室1
を流れる濃縮水に存在する微生物は、通常負に帯電して
いるから直流電流が印加されて陽極7側に移動する。濃
縮室1の陽極側には濃縮室1と第1小脱塩室d1 、
d3 、d5 、d7 とを区画するカチオン交換膜3が存在
し、微生物はこのカチオン交換膜3面上に捕捉される。
一方、一側のカチオン交換膜3と中間イオン交換膜5で
区画される第1小脱塩室d 1 、d3 、d5 、d7 にはカ
チオン交換体とアニオン交換体の混合イオン交換体82
が充填されており、このカチオン交換膜3の全面からナ
トリウムイオンなどのカチオンが濃縮室1に移動するた
め、カチオン交換膜3全面の近傍の濃縮水はナトリウム
イオンリッチとなりアルカリ状態となり微生物が増殖し
難い。このため、カチオン交換膜面には微生物に起因す
る粘着状のスライムが発生することはなく、濃縮室1内
の通水差圧は長期間に渡り一定状態を保つことができ
る。また、被処理水が最初に流入する第2小脱塩室
d2 、d4 、d6 、d8 の入口側は、被処理水中に存在
する微細な濁質の蓄積は不可避であり、該濁質中に糸状
菌やカビの胞子などが存在した場合、該第2小脱塩室d
2 、d4 、d6 、d8 はアニオン交換体が充填されてお
りアニオンが選択的に除去されてアルカリ性となり、微
生物の増殖が抑制される。このため、次いで流入する第
1小脱塩室d1 、d3 、d5 、d7 には微生物が存在し
ない水を供給でき、この結果、電気式脱イオン水製造装
置から流出する処理水も実質的に微生物が存在しない水
が得られる。なお、中間イオン交換膜については、カチ
オン交換膜であるとカチオンが第2小脱塩室から第1小
脱塩室へ移動してしまい第2小脱塩室での殺菌効果が薄
れてしまうので、アニオン交換膜とすることが好まし
い。Further, in the above-mentioned water passing method, the concentration chamber 1
Microorganisms present in concentrated water flowing through
Therefore, a direct current is applied to move to the anode 7 side. Dark
On the anode side of the contraction chamber 1, the concentration chamber 1 and the first small desalination chamber d1,
dThree, DFive, D7Cation exchange membrane 3 that separates
Then, microorganisms are captured on the surface of the cation exchange membrane 3.
On the other hand, one side of the cation exchange membrane 3 and the intermediate ion exchange membrane 5
1st small desalination chamber d 1, DThree, DFive, D7Mosquito
Mixed ion exchanger 82 of thione exchanger and anion exchanger
Is filled from the entire surface of the cation exchange membrane 3.
When cations such as thorium ions move to the concentration chamber 1
Therefore, the concentrated water near the entire surface of the cation exchange membrane 3 is sodium.
It becomes ion-rich and becomes alkaline, and microorganisms grow.
hard. For this reason, the surface of the cation exchange membrane
No sticky slime is generated, and
Water pressure difference can be maintained for a long time
You. The second small desalination chamber into which the water to be treated flows first
dTwo, DFour, D6, D8Is located in the water to be treated
Accumulation of fine turbid matter is inevitable,
If bacteria or mold spores are present, the second small desalination chamber d
Two, DFour, D6, D8Is filled with an anion exchanger
The anion is selectively removed to make it alkaline,
The growth of organisms is suppressed. Therefore, the next
One desalting room d1, DThree, DFive, D7Microorganisms
Water can be supplied, resulting in an electric deionized water production system.
The treated water flowing out of the storage is also substantially free of microorganisms.
Is obtained. For the intermediate ion exchange membrane, click
In the case of an on-exchange membrane, cations are transferred from the second small desalting chamber to the first small
Moved to the desalination chamber and the sterilization effect in the second small desalination chamber is weak.
Therefore, it is preferable to use an anion exchange membrane.
No.
【0021】このように、カチオン交換膜3全面の近傍
の濃縮水はナトリウムイオンリッチでアルカリ状態とな
り微生物が増殖し難く、一方、最終的に脱塩室から得ら
れる処理水中にも微生物が存在しない水が得られるのは
図1に示すような特異な脱塩室構造に由来するものであ
る。これを従来の脱塩室構造のものと比較する。すなわ
ち、従来例の1例である図5の電気式脱イオン水製造装
置100は脱塩室上流側にアニオン交換体103aが、
脱塩室下流側にアニオン交換体とカチオン交換体の混合
イオン交換体103bがそれぞれ充填されている。この
場合、被処理水は先ずアニオン交換されるからpHがア
ルカリ側に移行し、微生物の増殖を防止でき、この点は
好都合である。しかし、濃縮室の上流側ではカチオン交
換膜101の近傍の濃縮水は脱塩室からのカチオンの流
入が相対的に少ないため濃縮水がアルカリ性になり難く
微生物の増殖は抑制できない。更に、従来例の他の例に
脱塩室にアニオン交換体とカチオン交換体の混合イオン
交換体を充填したものがある。この場合、脱塩室はアニ
オン交換とカチオン交換が共に行われ、中性であり、脱
塩水への微生物混入は避けられない。As described above, the concentrated water in the vicinity of the entire surface of the cation exchange membrane 3 becomes rich in sodium ions and becomes alkaline, so that microorganisms are unlikely to grow. On the other hand, no microorganisms are present in the treated water finally obtained from the desalting chamber. Water is obtained because of the unique structure of the desalination chamber as shown in FIG. This is compared with a conventional desalination chamber structure. That is, the electric deionized water production apparatus 100 of FIG. 5 which is an example of the conventional example has an anion exchanger 103a on the upstream side of the desalination chamber.
A mixed ion exchanger 103b of an anion exchanger and a cation exchanger is filled on the downstream side of the desalting chamber. In this case, since the water to be treated is first subjected to anion exchange, the pH shifts to the alkaline side, and the growth of microorganisms can be prevented, which is advantageous. However, in the concentrated water near the cation exchange membrane 101 on the upstream side of the concentration chamber, since the inflow of cations from the desalting chamber is relatively small, the concentrated water hardly becomes alkaline, and thus the growth of microorganisms cannot be suppressed. Another conventional example is one in which a desalination chamber is filled with a mixed ion exchanger of an anion exchanger and a cation exchanger. In this case, both the anion exchange and the cation exchange are performed in the desalting chamber, which is neutral, and it is inevitable that microorganisms enter the desalted water.
【0022】また、被処理水の第1小脱塩室及び第2小
脱塩室での流れ方向は、特に制限されず、上記実施の形
態例の他、第1小脱塩室と第2小脱塩室での流れ方向が
異なっていてもよい。また、被処理水が流入する小脱塩
室は、上記実施の形態例の他、先ず、被処理水を第1脱
塩室に流入させ、流下した後、第1脱塩室の流出水を第
2脱塩室に流入させてもよい。また、濃縮水の流れ方向
も適宜決定される。The flow direction of the water to be treated in the first small-scale desalination chamber and the second small-scale desalination chamber is not particularly limited. The flow direction in the small desalination chamber may be different. The small desalination chamber into which the water to be treated flows is, in addition to the above-described embodiment, first, the water to be treated flows into the first desalination chamber, and then flows down. You may make it flow into a 2nd desalination chamber. Also, the flow direction of the concentrated water is appropriately determined.
【0023】次に、本発明の実施の形態例における脱イ
オン水製造装置を図2〜図4を参照して説明する。図2
は第1の実施の形態における脱イオン水製造装置を示す
ブロック図であり、脱イオン水製造装置20aは脱炭酸
塔22、逆浸透膜装置21、電気式脱イオン水製造装置
10をこの順序で直列に、配管30b、30cで接続し
たものである。電気式脱イオン水製造装置10は図1の
構造のものであり、配管30cから分岐した配管33は
濃縮室流入配管であり、配管34aは濃縮水戻り配管で
あり、濃縮室の流出配管35と被処理水流入配管30a
と連接している。また、配管31は第2小脱塩室d2 、
d4 、d6 、d8 流入配管(図1中の記号11)であ
り、脱イオン水流出配管30dは第1小脱塩室d1 、d
3 、d5 、d7 流出配管30dである。211は逆浸透
膜である。Next, an apparatus for producing deionized water according to an embodiment of the present invention will be described with reference to FIGS. FIG.
FIG. 2 is a block diagram showing a deionized water producing apparatus according to the first embodiment. A deionized water producing apparatus 20a includes a decarbonation tower 22, a reverse osmosis membrane device 21, and an electric deionized water producing device 10 in this order. They are connected in series by pipes 30b and 30c. The electric deionized water producing apparatus 10 has the structure shown in FIG. 1, a pipe 33 branched from a pipe 30 c is an inflow pipe of a concentration chamber, a pipe 34 a is a return pipe of a concentrated water, and an outflow pipe 35 of the concentration chamber. Treated water inflow pipe 30a
Is linked to Further, the pipe 31 is connected to the second small desalination chamber d 2 ,
d 4, d 6, is d 8 inlet pipe (symbol 11 in FIG. 1), deionized water outlet pipe 30d is first small depletion chambers d 1, d
3, is a d 5, d 7 outlet pipe 30d. 211 is a reverse osmosis membrane.
【0024】脱炭酸塔22は原水中の炭酸などの溶存ガ
ス成分、特に炭酸を除去するために設置されるもので、
公知の脱炭酸塔が使用できる。なお、脱炭酸塔の代わり
に膜脱炭酸装置を使用してもよい。逆浸透膜装置21は
後段の電気式脱イオン水製造装置10の負荷を低減する
ために設置されるもので、公知の逆浸透膜装置(逆浸透
膜モジュール)が使用できる。逆浸透膜装置21に使用
される逆浸透膜としては、特に制限されず、酢酸セルロ
ース系非対称性膜、ポリアミド系複合合成膜などが例示
される。酢酸セルロース系非対称性膜は運転圧力が高く
(1.5〜3.0MPa )、分離性能が劣るものの、次亜
塩素酸ソーダなどの殺菌剤で殺菌できる点、膜表面の荷
電が中性であり汚れにくい点で有利である。また、ポリ
アミド系複合合成膜は次亜塩素酸ソーダなどの殺菌剤で
殺菌できず、酸化劣化を受けると分離性能が低下し易
く、膜表面の荷電や疎水性により、膜表面が汚れやすい
などの欠点はあるものの、運転圧力が低く(0.3〜
1.5MPa )、分離性能が高い点で有利である。本発明
の逆浸透膜装置21においては、スライムの発生が極力
抑制できるため、ポリアミド系複合合成膜でも使用でき
る。また、逆浸透膜装置の形態としては、スパイラルモ
ジュール、中空糸モジュール、平膜モジュールなどが例
示される。The decarbonation tower 22 is installed to remove dissolved gas components such as carbonic acid in raw water, especially carbonic acid.
A known decarbonation tower can be used. In addition, you may use a membrane decarbonation apparatus instead of a decarbonation tower. The reverse osmosis membrane device 21 is installed in order to reduce the load on the electric deionized water production device 10 in the subsequent stage, and a known reverse osmosis membrane device (reverse osmosis membrane module) can be used. The reverse osmosis membrane used for the reverse osmosis membrane device 21 is not particularly limited, and examples thereof include a cellulose acetate-based asymmetric membrane and a polyamide-based composite synthetic membrane. The cellulose acetate asymmetric membrane has a high operating pressure (1.5 to 3.0 MPa) and poor separation performance, but can be sterilized with a disinfectant such as sodium hypochlorite, and has a neutral charge on the membrane surface. This is advantageous in that it is difficult to stain. In addition, the polyamide-based composite synthetic membrane cannot be sterilized with a disinfectant such as sodium hypochlorite, and when subjected to oxidative deterioration, the separation performance tends to decrease, and the membrane surface is easily stained due to the charge and hydrophobicity of the membrane surface. Despite the disadvantages, the operating pressure is low (0.3 ~
1.5 MPa), which is advantageous in that the separation performance is high. In the reverse osmosis membrane device 21 of the present invention, since the generation of slime can be suppressed as much as possible, it can be used even with a polyamide-based composite synthetic membrane. Examples of the form of the reverse osmosis membrane device include a spiral module, a hollow fiber module, and a flat membrane module.
【0025】電気式脱イオン水製造装置10は、逆浸透
膜装置21の透過水の水質を更に高度の脱イオン水にす
るものであり、構造及び脱イオン作用並びにスライム発
生抑制作用は前述の通りである。また、電気式脱イオン
水製造装置10の濃縮水を脱炭酸塔の被処理水側に戻し
て、水の利用率を高めている。The electric deionized water producing apparatus 10 is for making the quality of the permeated water of the reverse osmosis membrane apparatus 21 higher deionized water. The structure, deionizing action and slime generation suppressing action are as described above. It is. In addition, the concentrated water of the electric deionized water producing apparatus 10 is returned to the water to be treated side of the decarbonation tower to increase the water utilization rate.
【0026】図3は第2の実施の形態における脱イオン
水製造装置を示すブロック図であり、図3において、図
2と同一構成要素には同一符号を付して、その説明を省
略し異なる点についてのみ説明する。すなわち、図3
中、図2と異なる点は、脱炭酸塔22の代わりに、膜脱
炭酸装置24を使用し、膜脱炭酸装置24の前段で且つ
濃縮水戻り配管34aの接続点Aよりも上流側に更に逆
浸透膜装置21aを設け、逆浸透膜装置21aと膜脱炭
酸装置24を配管30eで接続した点にあり、更に逆浸
透膜装置21の濃縮水側と逆浸透膜装置21aの被処理
水流入配管30aとを連接した点にある。以下の説明で
は21aを第1段逆浸透膜装置、21を第2段逆浸透膜
装置という。FIG. 3 is a block diagram showing a deionized water producing apparatus according to the second embodiment. In FIG. 3, the same components as those in FIG. Only the points will be described. That is, FIG.
2 is different from FIG. 2 in that a membrane decarbonation device 24 is used instead of the decarbonation tower 22, and further upstream of the connection point A of the concentrated water return pipe 34 a before the membrane decarbonation device 24. A reverse osmosis membrane device 21a is provided, and the reverse osmosis membrane device 21a and the membrane decarbonation device 24 are connected by a pipe 30e. Further, the concentrated water side of the reverse osmosis membrane device 21 and the inflow of treated water of the reverse osmosis membrane device 21a The point is that it is connected to the pipe 30a. In the following description, 21a is referred to as a first-stage reverse osmosis membrane device, and 21 is referred to as a second-stage reverse osmosis membrane device.
【0027】膜脱炭酸装置24は、原水中の炭酸などの
溶存ガス成分、特に、炭酸を除去するために設置される
もので、公知の膜脱炭酸装置が使用できる。また、膜脱
炭酸装置24で使用される脱気膜は疎水性の材質からな
る多孔膜であり、気体は透過するが液体は透過しない特
性を有するものである。脱気膜の材質としては、ポリプ
ロピレン、ポエチレン、シリコン樹脂、フッ素樹脂など
からなる多孔膜が挙げられる。なお、この場合、膜脱炭
酸装置の代わりに脱炭酸塔を使用することもできるが、
処理水の水質を維持するためには膜脱炭酸装置が好まし
い。すなわち、膜脱炭酸装置は被処理水を通水する膜の
反対側を減圧して脱気するので、装置内で被処理水は汚
染されにくく、逆浸透膜の透過水の脱気に好都合であ
る。一方、脱炭酸塔は空気を被処理水に吹き込むので、
空気中の汚染物質が被処理水に移行する可能性があり、
逆浸透膜の透過水に利用するのは得策ではない。The membrane decarbonation device 24 is installed to remove dissolved gas components such as carbon dioxide in raw water, particularly, carbon dioxide, and a known membrane decarbonation device can be used. Further, the degassing membrane used in the membrane decarbonation device 24 is a porous membrane made of a hydrophobic material, and has a property of transmitting gas but not liquid. Examples of the material of the degassing film include a porous film made of polypropylene, polyethylene, silicone resin, fluororesin, or the like. In this case, a decarbonation tower can be used instead of the membrane decarbonation device,
In order to maintain the quality of the treated water, a membrane decarbonation device is preferable. That is, since the membrane decarbonation device degass by depressurizing the opposite side of the membrane through which the water to be treated flows, the water to be treated is hardly contaminated in the device, which is convenient for degassing the permeated water of the reverse osmosis membrane. is there. On the other hand, the decarbonation tower blows air into the water to be treated,
Contaminants in the air may migrate to the water to be treated,
It is not advisable to use it for the permeated water of a reverse osmosis membrane.
【0028】本第2の実施の形態例の脱イオン水製造装
置20bによれば、第1の実施の形態例の脱イオン水製
造装置20aと同様の効果を奏する他、水の利用率を向
上させることができ、また、電気式脱イオン水製造装置
10の濃縮室から流出する濃縮水の返送を第1段逆浸透
膜装置の透過水側とするため第1段逆浸透膜装置の処理
量が軽減され合理的な装置となる。According to the deionized water producing apparatus 20b of the second embodiment, the same effect as that of the deionized water producing apparatus 20a of the first embodiment can be obtained, and the water utilization rate can be improved. In order to return the concentrated water flowing out of the concentration chamber of the electric deionized water production apparatus 10 to the permeated water side of the first-stage reverse osmosis membrane apparatus, the throughput of the first-stage reverse osmosis membrane apparatus Is reduced and the device becomes reasonable.
【0029】図4は第3の実施の形態における脱イオン
水製造装置を示すブロック図であり、図4において、図
2と同一構成要素には同一符号を付して、その説明を省
略し異なる点についてのみ説明する。すなわち、図4
中、図2と異なる点は、逆浸透膜装置21と、電気式脱
イオン水製造装置10との間に紫外線殺菌装置23を設
置し、逆浸透膜装置21と紫外線殺菌装置23を配管3
0fで接続し、紫外線殺菌装置23と電気式脱イオン水
製造装置10とを配管30gで接続したところにある。
紫外線殺菌装置としては、254nm付近の波長を照射可
能な紫外線ランプを備え、被処理水の殺菌可能なもので
あればよい。FIG. 4 is a block diagram showing a deionized water producing apparatus according to a third embodiment. In FIG. 4, the same components as those in FIG. Only the points will be described. That is, FIG.
2 is different from FIG. 2 in that an ultraviolet sterilizer 23 is installed between the reverse osmosis membrane device 21 and the electric deionized water producing device 10, and the reverse osmosis membrane device 21 and the ultraviolet sterilizer 23 are connected to the piping 3.
0f, and the ultraviolet sterilizer 23 and the electric deionized water producing apparatus 10 are connected by a pipe 30g.
The ultraviolet sterilizer may be any device that has an ultraviolet lamp capable of irradiating a wavelength around 254 nm and can sterilize the water to be treated.
【0030】本第3の実施の形態例の脱イオン水製造装
置20cによれば、第1の実施の形態例の脱イオン水製
造装置20aと同様の効果を奏する他、電気式脱イオン
水製造装置10の流入水中の微生物などがほとんど存在
しないため、カチオン交換膜面には微生物に起因する粘
着状のスライムが発生することはほとんどなく、濃縮室
1内の通水差圧は更に長期間に渡り一定状態を保つこと
ができる。また、逆浸透膜装置21の膜面にも微生物に
起因する粘着状のスライムが発生することはほとんどな
く、同様に逆浸透膜装置21内の通水差圧は更に長期間
に渡り一定状態を保つことができる。According to the deionized water producing apparatus 20c of the third embodiment, the same effects as those of the deionized water producing apparatus 20a of the first embodiment can be obtained, and the electric deionized water producing apparatus can be produced. Since almost no microorganisms or the like are present in the influent water of the apparatus 10, almost no sticky slime caused by the microorganisms is generated on the cation exchange membrane surface, and the pressure difference in water flow in the concentrating chamber 1 becomes longer. A constant state can be maintained. Also, sticky slime caused by microorganisms hardly occurs on the membrane surface of the reverse osmosis membrane device 21, and similarly, the pressure difference in water flow in the reverse osmosis membrane device 21 remains constant for a long period of time. Can be kept.
【0031】本第3の実施の形態例の脱イオン水製造装
置20cにおいて、紫外線殺菌装置23に代えて、ある
いは紫外線殺菌装置23と共に、紫外線酸化装置を使用
してもよい。紫外線酸化装置を使用することにより、被
処理水中の有機物の酸化により微生物の栄養源が絶たれ
るため、更に微生物の増殖は抑制される。紫外線酸化装
置としては、被処理水に少なくとも185nm付近の波長
を照射可能な紫外線ランプを備え、被処理水中の有機物
を分解可能なものであればよい。紫外線酸化装置は、通
常185nm付近の波長の紫外線に加えて、それより有機
物分解能力が低い254nm付近の波長の紫外線も照射可
能な装置である。In the deionized water producing apparatus 20c according to the third embodiment, an ultraviolet oxidizing apparatus may be used instead of or together with the ultraviolet sterilizing apparatus 23. By using an ultraviolet oxidation device, nutrient sources of microorganisms are cut off by oxidation of organic matter in the water to be treated, and thus the growth of microorganisms is further suppressed. The ultraviolet oxidation device may be any device that has an ultraviolet lamp capable of irradiating at least a wavelength around 185 nm to the water to be treated and can decompose organic substances in the water to be treated. An ultraviolet oxidation apparatus is an apparatus capable of irradiating ultraviolet rays having a wavelength of about 254 nm, which has a lower ability to decompose organic substances, in addition to ultraviolet rays having a wavelength of about 185 nm.
【0032】本第3の実施の形態例の脱イオン水製造装
置20cにおいて、脱イオン水製造装置20cの脱炭酸
塔22の前段に更にもう1台の逆浸透膜装置を設置して
もよい。この場合、第2の実施の形態例のように、第2
逆浸透膜装置の濃縮水を第1逆浸透膜装置の被処理水側
に戻してもよい。これにより、水の利用率を向上させる
ことができる。また、濃縮室から流出する濃縮水戻り配
管34aを省略し、この濃縮水を系外へブローするよう
にしてもよい。更に、濃縮室から流出する濃縮水戻り配
管を配管33に接続して、濃縮水循環形態を採ってもよ
い。また、濃縮水循環形態においては、更に該濃縮水循
環系内に紫外線殺菌装置又は紫外線酸化装置を設置して
もよい。また、紫外線殺菌装置23の設置位置を図4に
示す位置に代えて、逆浸透膜装置21の前段側、すなわ
ち、配管30aの途中、配管30bの途中とすることも
できる。In the deionized water producing apparatus 20c according to the third embodiment, another reverse osmosis membrane apparatus may be installed in front of the decarbonation tower 22 of the deionized water producing apparatus 20c. In this case, as in the second embodiment, the second
The concentrated water of the reverse osmosis membrane device may be returned to the treated water side of the first reverse osmosis membrane device. Thereby, the utilization rate of water can be improved. Further, the concentrated water return pipe 34a flowing out of the concentrated chamber may be omitted, and the concentrated water may be blown out of the system. Further, a concentrated water return pipe flowing out of the concentrating chamber may be connected to the pipe 33 to adopt a concentrated water circulation mode. Further, in the concentrated water circulation mode, an ultraviolet sterilizer or an ultraviolet oxidizer may be further installed in the concentrated water circulation system. Further, the installation position of the ultraviolet sterilizer 23 may be replaced with the position shown in FIG. 4, that is, on the upstream side of the reverse osmosis membrane device 21, that is, in the middle of the pipe 30 a or the middle of the pipe 30 b.
【0033】本発明において、被処理水としては、特に
制限されず、例えば、井水、水道水、下水、工業用水、
川の水、半導体製造工場の半導体デバイスなどの洗浄排
水又は濃縮室からの回収水などが挙げられ、これらを単
独又は組み合わせ混合状態で使用することができる。In the present invention, the water to be treated is not particularly limited and includes, for example, well water, tap water, sewage, industrial water,
Examples include river water, washing wastewater for semiconductor devices in a semiconductor manufacturing plant, or recovered water from a concentration chamber, and these can be used alone or in a mixed state.
【0034】[0034]
【発明の効果】本発明(1)によれば、被処理水の一部
を濃縮室に供給すると、通常負に帯電している微生物は
直流電流が印加されて陽極側に移動し、カチオン交換膜
面上に捕捉される。一方、カチオン交換膜全面の近傍の
濃縮水はナトリウムイオンリッチでアルカリ状態となり
微生物が増殖し難い。このため、カチオン交換膜面には
微生物に起因する粘着状のスライムが発生することはな
く、濃縮室内の通水差圧は長期間に渡り一定状態を保つ
ことができる。また、被処理水が最初に流入する小脱塩
室の入口側は、被処理水中に存在する微細な濁質の蓄積
は不可避であり、該濁質中に糸状菌やカビの胞子などが
存在した場合、該小脱塩室はアニオン交換体が充填され
ておりアニオンが選択的に除去されてアルカリ性とな
る。このため、次の小脱塩室には微生物が存在しない水
を供給でき、この結果、電気式脱イオン水製造装置から
は微生物が実質的に存在しない水が得られる。According to the present invention (1), when a part of the water to be treated is supplied to the concentration chamber, the microorganisms which are usually negatively charged are moved to the anode side by applying a direct current, and the cation exchange is performed. Captured on the membrane surface. On the other hand, the concentrated water in the vicinity of the entire surface of the cation exchange membrane is rich in sodium ions and becomes in an alkaline state, and it is difficult for microorganisms to grow. Therefore, no sticky slime caused by microorganisms is generated on the cation exchange membrane surface, and the pressure difference in water flow in the concentration chamber can be kept constant for a long period of time. In addition, on the inlet side of the small desalination chamber into which the water to be treated first flows, accumulation of fine turbid substances present in the treated water is inevitable, and filamentous fungi and mold spores are present in the turbid substance. In this case, the small desalting chamber is filled with an anion exchanger, and the anion is selectively removed to be alkaline. Therefore, water free of microorganisms can be supplied to the next small desalination chamber, and as a result, water substantially free of microorganisms can be obtained from the electric deionized water production device.
【0035】また、本発明(2)によれば、逆浸透膜装
置の被処理水側に返送する濃縮水は微生物が増殖し難い
ものであり、従って、逆浸透膜装置の膜面への影響も無
く、従来のものに比して遙に通水差圧は発生し難い。ま
た、本発明(3)によれば、水の利用率を向上させるこ
とができ、また、濃縮水の返送を第1段逆浸透膜装置の
透過水側とするため第1段逆浸透膜装置の処理量が軽減
され合理的な装置となる。また、本発明(4)によれ
ば、更に水の利用率を向上させることができる。また、
本発明(5)によれば、従来、スライム発生対策の面か
らは有利とされていた酢酸セルロース系の膜以外にも、
運転圧力が低く(0.3〜1.5MPa )、分離性能が高
いポリアミド系膜が使用でき、膜を使用する際の選択の
余地が広がる。また、本発明(6)によれば、被処理水
中の微生物は事前に殺菌されたり、有機物の酸化により
微生物の栄養源が絶たれるため、更に微生物の増殖は抑
制される。According to the present invention (2), the concentrated water returned to the water to be treated of the reverse osmosis membrane device is such that microorganisms are unlikely to proliferate, and therefore the influence on the membrane surface of the reverse osmosis membrane device is reduced. Therefore, the water pressure difference is much less likely to occur than the conventional one. Further, according to the present invention (3), the utilization rate of water can be improved, and the concentrated water is returned to the permeated water side of the first-stage reverse osmosis membrane device. The amount of processing is reduced, and the device becomes a reasonable device. Further, according to the present invention (4), the water utilization rate can be further improved. Also,
According to the present invention (5), in addition to the cellulose acetate-based membrane, which has conventionally been considered advantageous in terms of slime generation countermeasures,
A polyamide-based membrane having a low operating pressure (0.3 to 1.5 MPa) and a high separation performance can be used, so that there is a wider range of choices when using the membrane. Further, according to the present invention (6), the microorganisms in the water to be treated are sterilized in advance or the nutrient sources of the microorganisms are cut off by the oxidation of organic substances, so that the growth of the microorganisms is further suppressed.
【図1】本発明で使用する電気式脱イオン水製造装置の
1例を示す模式図である。FIG. 1 is a schematic view showing one example of an electric deionized water producing apparatus used in the present invention.
【図2】本発明の実施の形態における脱イオン水製造装
置のブロック図である。FIG. 2 is a block diagram of a deionized water producing apparatus according to the embodiment of the present invention.
【図3】本発明の他の実施の形態における脱イオン水製
造装置のブロック図である。FIG. 3 is a block diagram of a deionized water producing apparatus according to another embodiment of the present invention.
【図4】本発明の他の実施の形態における脱イオン水製
造装置のブロック図である。FIG. 4 is a block diagram of a deionized water producing apparatus according to another embodiment of the present invention.
【図5】従来の電気式脱イオン水製造装置の模式図であ
る。FIG. 5 is a schematic view of a conventional electric deionized water producing apparatus.
D、D1 〜D4 、104 脱塩室 d1 、d3 、d5 、d7 第1小脱塩室 d2 、d4 、d6 、d8 第2小脱塩室 1、105 濃縮室 2、112、113 電極室 3、101 カチオン膜 4、102 アニオン膜 5 中間イオン交換膜 6、109 陰極 7、110 陽極 8、103 イオン交換体 10、100 電気式脱イオン水製造装置 11、31、111 被処理水流入ライン 12 第2小脱塩室の処理水流出
ライン 13 第1小脱塩室の被処理水流
入ライン 14、30d、114 脱イオン水流出ライン 15、33、115 濃縮水流入ライン 16、116 濃縮水流出ライン 17、117 電極水流入ライン 18、118 電極水流出ライン 20a〜20c 脱イオン水製造装置 21、21a 逆浸透膜装置 22 脱炭酸塔 23 紫外線殺菌装置 24 膜脱炭酸装置 30a〜30g 配管 34a〜34b 濃縮水戻り配管 81 アニオン交換体 82 アニオンとカチオンの混合
イオン交換体D, D 1 to D 4 , 104 Desalination chamber d 1 , d 3 , d 5 , d 7 First small desalination chamber d 2 , d 4 , d 6 , d 8 Second small desalination chamber 1 , 105 Concentration Chamber 2, 112, 113 Electrode chamber 3, 101 Cation membrane 4, 102 Anion membrane 5 Intermediate ion exchange membrane 6, 109 Cathode 7, 110 Anode 8, 103 Ion exchanger 10, 100 Electric deionized water producing apparatus 11, 31 , 111 treated water inflow line 12 treated water outflow line in second small desalination chamber 13 treated water inflow line in first small desalination chamber 14, 30d, 114 deionized water outflow line 15, 33, 115 concentrated water inflow Line 16, 116 Concentrated water outflow line 17, 117 Electrode water inflow line 18, 118 Electrode water outflow line 20a to 20c Deionized water production device 21, 21a Reverse osmosis membrane device 22 Decarbonation tower 23 Ultraviolet sterilizer 24 Membrane Carbonate apparatus 30a~30g pipe 34a~34b mixed ion exchangers concentrated water return pipe 81 anion exchanger 82 anion and a cation
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/469 C02F 1/46 103 Fターム(参考) 4D006 GA03 GA17 HA01 HA41 HA47 HA61 JA30A JA42A JA43A JA44A KA02 KA51 KB04 KB17 MA03 MA13 MA14 MC54 PB04 PB05 PB06 PB07 PB08 PC01 PC02 PC11 PC31 PC32 PC33 PC42 4D037 AA03 AA11 AB03 BA18 BA23 CA03 CA11 4D061 DA03 DA08 DB13 EA09 EB13 ED17 FA03 FA07 FA09 FA16──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/469 C02F 1/46 103 F term (Reference) 4D006 GA03 GA17 HA01 HA41 HA47 HA61 JA30A JA42A JA43A JA44A KA02 KA51 KB04 KB17 MA03 MA13 MA14 MC54 PB04 PB05 PB06 PB07 PB08 PC01 PC02 PC11 PC31 PC32 PC33 PC42 4D037 AA03 AA11 AB03 BA18 BA23 CA03 CA11 4D061 DA03 DA08 DB13 EA09 EB13 ED17 FA03 FA07 FA09 FA16
Claims (6)
装置をこの順序で連接する脱イオン水製造装置であっ
て、前記電気式脱イオン水製造装置は、一側のカチオン
交換膜、他側のアニオン交換膜及び当該カチオン交換膜
と当該アニオン交換膜の間に位置する中間イオン交換膜
で区画される2つの小脱塩室のうち陰極側の小脱塩室に
はカチオン交換体とアニオン交換体の混合イオン交換体
を、陽極側の小脱塩室にはアニオン交換体をそれぞれ充
填して脱塩室を構成し、前記カチオン交換膜、アニオン
交換膜を介して脱塩室の両側に濃縮室を設け、これらの
脱塩室及び濃縮室を陽極と陰極の間に配置して形成され
ることを特徴とする脱イオン水製造装置。1. A deionized water producing apparatus in which a reverse osmosis membrane device and an electric deionized water producing device are connected in this order, wherein the electric deionized water producing device comprises a cation exchange membrane on one side, Of the two small desalination chambers partitioned by the anion exchange membrane on the negative side and the intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane, the cation exchanger and anion The mixed ion exchanger of the exchanger is filled with an anion exchanger in the small desalting chamber on the anode side to form a desalting chamber, and the cation exchange membrane and the anion exchange membrane are provided on both sides of the desalination chamber via the anion exchange membrane. An apparatus for producing deionized water, comprising: a concentration chamber; and a desalination chamber and a concentration chamber arranged between an anode and a cathode.
前記逆浸透膜装置の被処理水側に返送する配管を備える
ことを特徴とする請求項1記載の脱イオン水製造装置。2. The deionized water producing apparatus according to claim 1, further comprising a pipe for returning the concentrated water flowing out of the concentration chamber to the treated water side of the reverse osmosis membrane device.
置及び該第1段逆浸透膜装置の透過水を更に処理する第
2段逆浸透膜装置とからなり、且つ前記濃縮室から流出
する濃縮水を前記第1段逆浸透膜装置の透過水側で、前
記第2段逆浸透膜装置の被処理水側に返送する配管を備
えることを特徴とする請求項1記載の脱イオン水製造装
置。3. The reverse osmosis membrane device comprises a first-stage reverse osmosis membrane device and a second-stage reverse osmosis membrane device for further processing permeated water of the first-stage reverse osmosis membrane device, and the concentration chamber. A pipe for returning the concentrated water flowing out from the permeated water side of the first-stage reverse osmosis membrane device to the treated water side of the second-stage reverse osmosis membrane device. Ion water production equipment.
を前記第1段逆浸透膜装置の被処理水側に返送する配管
を備えることを特徴とする請求項3記載の脱イオン水製
造装置。4. The deionization system according to claim 3, further comprising a pipe for returning the concentrated water of the second-stage reverse osmosis membrane device to the water to be treated of the first-stage reverse osmosis membrane device. Water production equipment.
が、ポリアミド系膜であることを特徴とする請求項1記
載の脱イオン水製造装置。5. The deionized water production apparatus according to claim 1, wherein the reverse osmosis membrane used in the reverse osmosis membrane device is a polyamide-based membrane.
脱イオン水製造装置の前段に、紫外線酸化装置又は紫外
線殺菌装置を備えることを特徴とする請求項1記載の脱
イオン水製造装置。6. The apparatus for producing deionized water according to claim 1, further comprising an ultraviolet oxidizing apparatus or an ultraviolet sterilizing apparatus in front of the reverse osmosis membrane apparatus or the electric deionized water producing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000074227A JP4499239B2 (en) | 2000-03-16 | 2000-03-16 | Deionized water production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000074227A JP4499239B2 (en) | 2000-03-16 | 2000-03-16 | Deionized water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001259376A true JP2001259376A (en) | 2001-09-25 |
JP4499239B2 JP4499239B2 (en) | 2010-07-07 |
Family
ID=18592314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000074227A Expired - Fee Related JP4499239B2 (en) | 2000-03-16 | 2000-03-16 | Deionized water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4499239B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004167423A (en) * | 2002-11-21 | 2004-06-17 | Kurita Water Ind Ltd | Apparatus and method for pure water production |
JP2004243194A (en) * | 2003-02-13 | 2004-09-02 | Nomura Micro Sci Co Ltd | Membrane treatment apparatus for water treatment |
EP1534409A4 (en) * | 2002-08-02 | 2005-09-21 | Univ South Carolina | Production of purified water and high value chemicals from salt water |
JP2005347231A (en) * | 2003-10-01 | 2005-12-15 | Kurita Water Ind Ltd | Water processing device for fuel cell |
JP2006021119A (en) * | 2004-07-08 | 2006-01-26 | Chuden Kankyo Technos Co Ltd | Fluid treatment method and fluid treatment system |
WO2006038325A1 (en) * | 2004-09-30 | 2006-04-13 | Kurita Water Industries Ltd. | Water treatment apparatus for fuel cell |
JP2007245120A (en) * | 2006-03-20 | 2007-09-27 | Japan Organo Co Ltd | Electrically operated apparatus for producing deionized water |
EP1846143A2 (en) * | 2005-01-06 | 2007-10-24 | EET Corporation | Integrated electro-pressure membrane deionization system |
JP2011045824A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | Apparatus for producing pure water |
JP2012040560A (en) * | 2011-10-24 | 2012-03-01 | Japan Organo Co Ltd | Water treatment system and water treatment method |
CN102690009A (en) * | 2012-06-14 | 2012-09-26 | 南昌大学 | Seawater desalination system for removing boron by using electrodeionization |
JP2015080765A (en) * | 2013-10-23 | 2015-04-27 | オルガノ株式会社 | Pure water production apparatus |
WO2020045061A1 (en) * | 2018-08-28 | 2020-03-05 | 野村マイクロ・サイエンス株式会社 | Pure water production system and pure water production method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0240220A (en) * | 1988-07-27 | 1990-02-09 | Kurita Water Ind Ltd | Pure water producing device |
JPH03186400A (en) * | 1989-09-08 | 1991-08-14 | Millipore Corp | Method for electric deionization and ultraviolet treatment of water for purification |
JPH0679268A (en) * | 1992-09-03 | 1994-03-22 | Toray Ind Inc | Production of ultra-pure water |
JPH11262771A (en) * | 1998-03-16 | 1999-09-28 | Kurita Water Ind Ltd | Production of pure water |
JP3385553B2 (en) * | 1999-03-25 | 2003-03-10 | オルガノ株式会社 | Electric deionized water production apparatus and deionized water production method |
-
2000
- 2000-03-16 JP JP2000074227A patent/JP4499239B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0240220A (en) * | 1988-07-27 | 1990-02-09 | Kurita Water Ind Ltd | Pure water producing device |
JPH03186400A (en) * | 1989-09-08 | 1991-08-14 | Millipore Corp | Method for electric deionization and ultraviolet treatment of water for purification |
JPH0679268A (en) * | 1992-09-03 | 1994-03-22 | Toray Ind Inc | Production of ultra-pure water |
JPH11262771A (en) * | 1998-03-16 | 1999-09-28 | Kurita Water Ind Ltd | Production of pure water |
JP3385553B2 (en) * | 1999-03-25 | 2003-03-10 | オルガノ株式会社 | Electric deionized water production apparatus and deionized water production method |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1534409A4 (en) * | 2002-08-02 | 2005-09-21 | Univ South Carolina | Production of purified water and high value chemicals from salt water |
JP2004167423A (en) * | 2002-11-21 | 2004-06-17 | Kurita Water Ind Ltd | Apparatus and method for pure water production |
JP2004243194A (en) * | 2003-02-13 | 2004-09-02 | Nomura Micro Sci Co Ltd | Membrane treatment apparatus for water treatment |
JP2005347231A (en) * | 2003-10-01 | 2005-12-15 | Kurita Water Ind Ltd | Water processing device for fuel cell |
JP2006021119A (en) * | 2004-07-08 | 2006-01-26 | Chuden Kankyo Technos Co Ltd | Fluid treatment method and fluid treatment system |
WO2006038325A1 (en) * | 2004-09-30 | 2006-04-13 | Kurita Water Industries Ltd. | Water treatment apparatus for fuel cell |
EP1846143A4 (en) * | 2005-01-06 | 2010-01-27 | Eet Corp | Integrated electro-pressure membrane deionization system |
EP1846143A2 (en) * | 2005-01-06 | 2007-10-24 | EET Corporation | Integrated electro-pressure membrane deionization system |
JP2007245120A (en) * | 2006-03-20 | 2007-09-27 | Japan Organo Co Ltd | Electrically operated apparatus for producing deionized water |
JP2011045824A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | Apparatus for producing pure water |
JP2012040560A (en) * | 2011-10-24 | 2012-03-01 | Japan Organo Co Ltd | Water treatment system and water treatment method |
CN102690009A (en) * | 2012-06-14 | 2012-09-26 | 南昌大学 | Seawater desalination system for removing boron by using electrodeionization |
JP2015080765A (en) * | 2013-10-23 | 2015-04-27 | オルガノ株式会社 | Pure water production apparatus |
WO2020045061A1 (en) * | 2018-08-28 | 2020-03-05 | 野村マイクロ・サイエンス株式会社 | Pure water production system and pure water production method |
CN112424128A (en) * | 2018-08-28 | 2021-02-26 | 野村微科学股份有限公司 | Pure water production system and pure water production method |
JPWO2020045061A1 (en) * | 2018-08-28 | 2021-08-10 | 野村マイクロ・サイエンス株式会社 | Pure water production system and pure water production method |
JP7246399B2 (en) | 2018-08-28 | 2023-03-27 | 野村マイクロ・サイエンス株式会社 | Pure water production system and pure water production method |
CN112424128B (en) * | 2018-08-28 | 2023-05-02 | 野村微科学股份有限公司 | Pure water production system and pure water production method |
Also Published As
Publication number | Publication date |
---|---|
JP4499239B2 (en) | 2010-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7147785B2 (en) | Electrodeionization device and methods of use | |
JP3826690B2 (en) | Electrodeionization device and pure water production device | |
WO2012133664A1 (en) | Ultrapure water producing system and ultrapure water producing method | |
WO1996003350A1 (en) | Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same | |
KR20010050042A (en) | Electrodeionization apparatus and pure water producing apparatus | |
JPH08126886A (en) | Production of ultrapure water and device therefor | |
JP2001047054A (en) | Sterilizing method of deionized water making apparatus and deionized water making method | |
US20060091077A1 (en) | Concentrate recycle loop with filtration module | |
MX2007016257A (en) | Water treatment systems and methods . | |
JP2001259376A (en) | Deionized water making apparatus | |
JP2004283710A (en) | Pure water producer | |
JPH11244853A (en) | Production of pure water | |
JP2004033976A (en) | Deionized water manufacturing method and apparatus therefor | |
JPH09206743A (en) | Superpure water producing and supplying device and washing method thereof | |
JP4439674B2 (en) | Deionized water production equipment | |
JP2011000576A (en) | Electric deionized water producing apparatus and method for producing deionized water | |
JP4819026B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP2001029752A (en) | Manufacture of high-purity water and device therefor | |
JP2001170630A (en) | Pure water production device | |
JP2004243194A (en) | Membrane treatment apparatus for water treatment | |
US20080264773A1 (en) | In vitro prophylactic on site ion-exchange purification process. | |
JP3965001B2 (en) | Deionized water production equipment | |
JP2002205071A (en) | Electric deionized water manufacturing apparatus and method of manufacturing deionized water | |
JP2001276821A (en) | Method of preventing clogging of reverse osmosis membrane device and reverse osmosis membrane device | |
JP2005254201A (en) | Bacterium growth inhibition method in electric desalted water production device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20090910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100413 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100415 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |