[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019239721A1 - 圧力緩衝装置 - Google Patents

圧力緩衝装置 Download PDF

Info

Publication number
WO2019239721A1
WO2019239721A1 PCT/JP2019/016969 JP2019016969W WO2019239721A1 WO 2019239721 A1 WO2019239721 A1 WO 2019239721A1 JP 2019016969 W JP2019016969 W JP 2019016969W WO 2019239721 A1 WO2019239721 A1 WO 2019239721A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
channel
flow
oil
control valve
Prior art date
Application number
PCT/JP2019/016969
Other languages
English (en)
French (fr)
Inventor
剛太 中野
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Priority to DE112019002974.6T priority Critical patent/DE112019002974T5/de
Priority to CN201980030498.7A priority patent/CN112105835B/zh
Publication of WO2019239721A1 publication Critical patent/WO2019239721A1/ja
Priority to US17/089,834 priority patent/US20210054902A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units
    • F16F9/187Bitubular units with uni-directional flow of damping fluid through the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3484Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of the annular discs per se, singularly or in combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3485Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of supporting elements intended to guide or limit the movement of the annular discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/464Control of valve bias or pre-stress, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/516Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/41Dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • B60G2500/114Damping valves pressure regulating valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • B60G2800/162Reducing road induced vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • F16F1/027Planar, e.g. in sheet form; leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/08Linear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/02Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5126Piston, or piston-like valve elements

Definitions

  • the present invention relates to a pressure buffering device.
  • a damping force variable shock absorber that includes a damping valve and a solenoid that can variably control the generated damping force characteristics by varying the set load of the compression side damping valve.
  • a plurality of flow paths for generating damping force may be formed, and it may be desired to adjust the damping force in the plurality of flow paths for each flow path.
  • providing a mechanism for adjusting the damping force for each of the plurality of flow paths leads to complication of the apparatus.
  • An object of this invention is to adjust the damping force in a some flow path, suppressing the complication of an apparatus.
  • the present invention is connected to a cylinder that contains liquid, a rod that moves in the axial direction, a piston that moves in the cylinder, and liquid that moves in one direction of the piston.
  • the pressure buffering device includes a valve unit that controls the flow of the liquid and a single advance / retreat unit that advances and retracts the valve unit with respect to the first flow path and the second flow path.
  • the present invention is connected to a cylinder that stores liquid, a rod that moves in the axial direction, and a piston that moves in the cylinder, and oil flows as the piston moves.
  • a first valve section for restricting the first flow path; a storage section for storing liquid; a pressing section for pressing the first valve section against the first flow path by the pressure of the liquid in the storage chamber; and the first flow path
  • a second valve portion for restricting the flow of liquid in the second flow path provided in parallel with the second flow passage, and adjustment for adjusting the amount of restriction of the second flow path by the second valve portion in accordance with the adjustment of the liquid pressure in the storage chamber
  • a mechanical shock absorber for a mechanical shock absorber.
  • FIG. 1 is an overall view of a hydraulic shock absorber according to a first embodiment. It is sectional drawing of the outer side attenuation
  • (A) And (B) is explanatory drawing of the control valve and control valve seat of 1st Embodiment. It is explanatory drawing of operation
  • (A) And (B) is operation
  • A) And (B) is explanatory drawing of the flow of the oil in an outer side attenuation
  • (A) And (B) is explanatory drawing of the flow of the oil in an outer side attenuation
  • (A) And (B) is explanatory drawing of the flow of the oil in an outer side attenuation
  • (A) And (B) is explanatory drawing of the control valve and control valve seat of 3rd Embodiment.
  • (A) And (B) is explanatory drawing of the flow of the oil in the outer side attenuation part of 3rd Embodiment.
  • (A) And (B) is explanatory drawing of the flow of the oil in the outer side attenuation part of 3rd Embodiment.
  • (A) And (B) is explanatory drawing of the damping-force adjustment part of 4th Embodiment.
  • FIG. 1 is an overall view of a hydraulic shock absorber 1 according to the first embodiment.
  • the hydraulic shock absorber 1 includes a cylinder portion 10 that contains oil, a rod 20 that is provided so that the other side protrudes from the cylinder portion 10 and one side is slidably inserted into the cylinder portion 10, Is provided.
  • the hydraulic shock absorber 1 includes a piston portion 30 provided at one end of the rod 20 and a bottom piston portion 40 provided at one end of the cylinder portion 10.
  • the hydraulic shock absorber 1 includes an outer damping portion 100 that is provided outside (in the radial direction) of the cylinder portion 10 and generates a damping force.
  • a hydraulic shock absorber 1 (an example of a pressure shock absorber) according to a first embodiment includes a cylinder portion 10 (an example of a cylinder) that contains oil (an example of a liquid), and a rod that moves in an axial direction. 20 and a piston part 30 (an example of a piston part) that moves within the cylinder part 10, and a back pressure channel 77 (of the first channel) through which oil flows as the piston part 30 moves in one direction.
  • control valve seat 75 an example of the second passage
  • low-speed passage 78 an example of a second passage
  • control valve 70 valve part
  • It comprises a single forward and reverse part 61 (an example of the forward and reverse part), a to.
  • the longitudinal direction of the cylinder portion 10 shown in FIG. 1 is referred to as an “axial direction”. Further, the lower side of the cylinder part 10 in the axial direction is referred to as “one side”, and the upper side of the cylinder part 10 is referred to as “the other side”. Moreover, the left-right direction of the cylinder part 10 shown in FIG. 1 is called "radial direction.” In the radial direction, the axial side is referred to as “radial inner side”, and the side away from the axis is referred to as “radial outer side”.
  • the cylinder portion 10 includes a cylinder 11 that contains oil, an outer cylinder 12 that is provided radially outside the cylinder 11, and a damper that is provided radially outside the cylinder 11 and further outside the outer cylinder 12. And a case 13.
  • the cylinder 11 is formed in a cylindrical shape and has a cylinder opening 11H on the other side.
  • the outer cylinder 12 is formed in a cylindrical shape.
  • the outer cylinder 12 forms a communication path L between the outer cylinder 12 and the cylinder 11.
  • the outer cylinder 12 has an outer cylinder opening 12H and an outer connection part 12J at a position facing the outer attenuation part 100.
  • the outer connecting portion 12J has an oil flow path, protrudes radially outward, and forms a connection point with the outer attenuating portion 100.
  • the damper case 13 is formed in a cylindrical shape.
  • the damper case 13 forms a reservoir chamber R in which oil is accumulated between the damper case 13 and the outer cylinder 12.
  • the reservoir chamber R absorbs oil in the cylinder 11 (first oil chamber Y1) or supplies oil into the cylinder 11 (first oil chamber Y1) as the rod 20 moves relative to the cylinder 11. To do.
  • the reservoir chamber R stores oil that has flowed out of the outer damping portion 100.
  • the damper case 13 has a case opening 13 ⁇ / b> H at a position facing the outer attenuation portion 100.
  • the rod 20 is a rod-like member that extends long in the axial direction.
  • the rod 20 is connected to the piston part 30 on one side. Further, the rod 20 is connected to the vehicle body side via a connecting member or the like (not shown) on the other side.
  • the rod 20 may be either a hollow shape with a hollow inside or a solid shape without a hollow inside.
  • the piston portion 30 is provided between a piston body 31 having a plurality of piston oil passage ports 311, a piston valve 32 that opens and closes the other side of the piston oil passage ports 311, and one end portion of the piston valve 32 and the rod 20. And a spring 33. And the piston part 30 partitions the oil in the cylinder 11 into the 1st oil chamber Y1 and the 2nd oil chamber Y2.
  • the bottom piston portion 40 includes a valve seat 41, a check valve portion 43 provided on the other side of the valve seat 41, and a fixing member 44 provided in the axial direction.
  • the bottom piston portion 40 separates the first oil chamber Y1 and the reservoir chamber R.
  • FIG. 2 is a cross-sectional view of the outer attenuation portion 100 of the first embodiment.
  • FIG. 3 is an explanatory diagram of the control valve 70 and the control valve seat 75 of the first embodiment.
  • 3A is a perspective view of the control valve 70 and the control valve seat 75, and
  • FIG. 3A is a top view of the control valve 70 and the control valve seat 75.
  • the longitudinal direction of the outer damping part 100 shown in FIG. 2 (the crossing direction (substantially orthogonal direction) with respect to the axial direction of the cylinder part 10) is referred to as a “second axial direction”.
  • the left side of the outer attenuating portion 100 in the second axis direction is referred to as “second axis inner side”
  • the right side of the outer attenuating portion 100 is referred to as “second axis outer side”.
  • the vertical direction (direction intersecting the second axis direction) of the outer attenuating portion 100 shown in FIG. 2 is referred to as a “second radial direction”.
  • the second axis side is referred to as “second radial direction inner side”
  • the side away from the second axis is referred to as “second radial direction outer side”.
  • the outer damping unit 100 has a main valve unit 50 that mainly generates a damping force and a magnitude of the damping force generated by the outer damping unit 100 in the hydraulic shock absorber 1 of the first embodiment.
  • the outer attenuating portion 100 is connected to the connecting portion 80 that forms a parallel flow path with respect to the main valve portion 50, and the connection that forms the oil flow path from the connecting passage L to the main valve portion 50 and the connecting portion 80 A flow path section 90.
  • the outer attenuation unit 100 includes an outer housing 100 ⁇ / b> C that accommodates various components constituting the outer attenuation unit 100.
  • the main valve unit 50 is configured to generate a damping force by controlling the oil flow to be throttled (an example of another valve unit, an example of a first valve unit), and the main valve 51 is opposed to the main valve 51. And a main valve seat 52 (an example of a second flow path forming part) with which 51 contacts.
  • the main valve 51 is a disk-shaped member that has an opening 51H on the inner side in the second radial direction and elastically deforms.
  • a metal such as iron can be used as the material of the main valve 51.
  • the connection part 80 penetrates the opening part 51H.
  • the main valve 51 is sandwiched between the main valve seat 52 and a spacer member 684 (described later) on the inner side in the second radial direction.
  • the main valve 51 faces the second shaft outside of the main valve seat 52.
  • the movement of the position of the main valve 51 in the second radial direction is restricted by the connecting portion 80. Further, the movement in the second axial direction is restricted by the main valve seat 52 and the spacer member 684 (described later) on the inner side in the second radial direction of the main valve 51. On the other hand, the outer side in the second radial direction of the main valve 51 is movable in the second axial direction by being deformed. And the main valve 51 restrict
  • the main valve seat 52 is a cylindrical member having an opening 52H on the inner side in the second radial direction. And as for the main valve seat 52, the connection part 80 penetrates the opening part 52H.
  • the main valve seat 52 has an inner round 521 provided on the inner side in the second radial direction and an outer round 522 provided on the outer side in the second radial direction on the main valve 51 side (outside the second shaft).
  • the main valve seat 52 has a main flow path 53 formed so as to penetrate in the second axial direction.
  • the inner round 521 protrudes in an annular shape toward the main valve 51 side (outside the second shaft). In the first embodiment, the protruding height of the inner round 521 is lower than that of the outer round 522.
  • the outer round 522 protrudes in an annular shape toward the main valve 51 side (the second shaft outer side). The inner round 521 and the outer round 522 form a contact point with the main valve 51.
  • the main flow channel 53 (an example of a third flow channel, an example of a single flow channel) constitutes a parallel flow channel with respect to a back pressure flow channel 77 and a low speed flow channel 78 described later.
  • a plurality of main flow paths 53 of the first embodiment are provided.
  • the flow path port 531 on the inner side of the second axis of each main flow path 53 faces the connection flow path section 90.
  • the second shaft outer side channel port 532 of each main channel 53 is located between the inner round 521 and the outer round 522 on the second axis outer side.
  • the damping force adjusting unit 60 includes a control valve 70 that controls the oil flow in the communication unit 80 by restricting it, and a control valve seat 75 that faces the control valve 70 and contacts the control valve 70.
  • the damping force adjusting unit 60 includes an advancing / retreating unit 61 (an example of an adjusting mechanism unit) that advances and retracts the control valve 70 with respect to the control valve seat 75, and a cap that covers the control shaft 70 and the second outside of the control valve seat 75. Part 67.
  • the damping force adjusting unit 60 has a back pressure forming unit 68 that changes the ease of deformation of the main valve 51 with respect to the main valve seat 52.
  • control valve 70 (an example of a valve portion, an example of a second valve portion) is a substantially circular plate-like member that is elastically deformed.
  • a material of the control valve 70 for example, a metal such as iron can be used.
  • the control valve 70 is provided to face the second shaft outer side of the control valve seat 75.
  • the control valve 70 has a back pressure flow channel facing portion 71 that faces a back pressure flow channel 77 described later, and a low speed flow channel facing portion 72 that faces a low speed flow channel 78 described later.
  • the control valve 70 is provided on the inner side in the second radial direction and makes the control valve 70 easier to deform in the second axial direction.
  • the control valve 70 is provided on the outer side in the second radial direction than the inner opening 73. And an outer opening 74 that facilitates deformation of the 70 in the second axial direction.
  • the back pressure flow path facing portion 71 is circular and has a plate shape.
  • the back pressure flow path facing portion 71 is formed larger than the inner diameter of the back pressure flow path 77, and can cover the back pressure flow path round 77R.
  • the back pressure flow channel facing portion 71 is formed in the central portion (in the second radial direction) of the control valve 70.
  • the low-speed flow path facing portion 72 is annular and has a plate shape.
  • the low-speed channel facing portion 72 is formed larger than the inner diameter of the low-speed channel 78 and can cover the low-speed channel round 78R.
  • the low speed flow path facing portion 72 is formed on the outer side in the second radial direction than the back pressure flow path facing portion 71. Further, the low speed flow path facing portion 72 is formed as an annular region in the control valve 70. Accordingly, in the first embodiment, the low-speed flow path facing portion 72 always faces the low-speed flow path 78 regardless of the position of the control valve 70 in the circumferential direction with respect to the control valve seat 75.
  • the inner opening 73 is formed in a substantially arc shape.
  • a plurality of inner openings 73 are provided and are arranged at substantially equal intervals in the circumferential direction.
  • a portion between two adjacent inner openings 73 is referred to as an inner arm 73A.
  • the inner opening 73 is provided in the control valve 70 on the second radial direction outside of the back pressure flow path facing portion 71 and on the second radial direction inner side of the low speed flow path facing portion 72. That is, the inner opening 73 is provided between the back pressure flow path facing portion 71 and the low speed flow path facing portion 72 in the second radial direction.
  • the plurality of inner openings 73 are formed in a spiral shape as a whole. That is, each inner opening 73 is formed such that the distance from the central portion (inner side in the second radial direction) becomes longer toward the circumferential direction. Further, the plurality of inner arm portions 73A are formed in a spiral shape as a whole.
  • the outer opening 74 is formed in a substantially arc shape.
  • a plurality of outer openings 74 are provided, and are arranged at substantially equal intervals in the circumferential direction.
  • a portion between two adjacent outer opening portions 74 is referred to as an outer arm portion 74A.
  • the plurality of outer openings 74 are formed in a spiral shape as a whole. That is, each outer opening 74 is formed such that the distance from the central portion (inner side in the second radial direction) becomes longer as it goes in the circumferential direction. Further, the plurality of outer openings 74 are formed in a spiral shape as a whole.
  • the outer opening 74 is on the outer side in the second radial direction from the back pressure flow path facing portion 71 and the low speed flow path facing portion 72, and is outside the round 76 of the control valve seat 75. It is formed on the inner side in the second radial direction with respect to the opposing portion (described later).
  • the control valve 70 of the first embodiment improves the durability of the control valve 70 by making the thickness of the control valve 70 itself a certain value or more.
  • the rigidity of the portion where the inner arm portion 73A is formed is reduced, and the portion where the inner arm portion 73A is formed is easily deformed.
  • the rigidity of the portion where the outer arm portion 74A is formed is reduced, and the portion where the outer arm portion 74A is formed is easily deformed.
  • the back pressure flow path facing portion 71 and the low speed flow path facing portion 72 are integrally formed on the control valve 70 that is a single member.
  • the damping force can be easily set by adjusting the spring rate by changing the plate thickness of the control valve 70, for example. I am doing so.
  • Control valve seat 75 includes an outer round 76 that holds the control valve 70, and a back pressure passage 77 that forms an oil passage for adjusting the oil pressure in a back pressure chamber 68P (an example of a storage chamber) described later.
  • An example of a first flow path) and a low speed flow path 78 (an example of a second flow path, an example of another flow path) that forms a flow path of oil at a low speed.
  • the outer round 76 protrudes in an annular shape toward the control valve 70 (outside the second shaft) on the outer side in the second radial direction.
  • the outer round 76 forms a portion between the cap portion 67 and the control valve 70 that holds the outer side in the second radial direction.
  • the back pressure channel 77 is provided through the control valve seat 75 in the second axial direction.
  • the back pressure channel 77 communicates with the communication chamber 82 of the communication unit 80 on the inner side of the second shaft and faces the control valve 70 on the outer side of the second shaft. Further, the back pressure channel 77 has a back pressure channel round 77R that protrudes in an annular shape toward the control valve 70 side (outside the second shaft).
  • the back pressure channel 77 is a channel that controls the oil pressure in the back pressure chamber 68P that adjusts the ease of opening the main channel 53 by the main valve 51.
  • the low speed flow path 78 is provided penetrating in the second axial direction in the control valve seat 75.
  • a plurality of low-speed channels 78 are provided, and are arranged on the outer side in the second radial direction with respect to the back pressure channel 77.
  • the low-speed flow path 78 communicates with the low-speed communication path 85 of the communication unit 80 on the inner side of the second axis and faces the control valve 70 on the outer side of the second axis.
  • the low-speed flow path 78 has a low-speed flow path round 78R that protrudes in an annular shape toward the control valve 70 side (outside the second shaft).
  • the protruding height of the outer round 76 is higher than the back pressure channel round 77R and the low speed channel round 78R. Further, the protruding height of the back pressure channel round 77R is higher than that of the low speed channel round 78R. In the first embodiment, the protrusion height of the back pressure flow path round 77R only needs to be higher than that of the low speed flow path round 78R, and the low speed flow path round 78R may not necessarily protrude from the surroundings.
  • the low speed flow path 78 opens the main valve 51 and adjusts the damping force when the speed is lower than the moving speed of the piston portion 30 that causes the oil flow in the main flow path 53. It is a flow path that enables oil to flow in the portion 60.
  • the back pressure flow path 77 and the low speed flow path 78 are integrally formed in the control valve seat 75 that is a single member. In the control valve seat 75, the back pressure channel 77 and the low speed channel 78 are separated, and a parallel channel is configured.
  • the advancing / retreating part 61 uses an electromagnet, a solenoid part 62 for advancing / retreating a plunger 64 described later, a compression coil spring 63 provided between the plunger 64 and the advancing / retracting member 65, and a plunger 64 for advancing / retreating along the second axis direction.
  • the advancing / retreating part 61 has an advancing / retreating member 65 that presses the control valve 70 against the control valve seat 75, and a non-energizing control part 66 that increases the oil pressure in the back pressure chamber 68P when the solenoid part 62 is de-energized.
  • the advancing / retreating part 61 has a solenoid case 60 ⁇ / b> C that accommodates or supports the parts constituting the advancing / retreating part 61.
  • the solenoid 62 pushes the plunger 64 toward the advance / retreat member 65 when the electromagnet is energized.
  • the compression coil spring 63 contacts the advance / retreat member 65 on the inner side of the second shaft, and is connected to the plunger 64 on the outer side of the second shaft.
  • the compression coil spring 63 applies a force in a direction in which the advance / retreat member 65 and the plunger 64 are separated from each other to the advance / retreat member 65 and the plunger 64.
  • the plunger 64 is pushed out toward the advance / retreat member 65 when the solenoid 62 is energized, and is pulled back by the compression coil spring 63 when the solenoid 62 is in a non-energized state.
  • the advance / retreat member 65 has a valve contact portion 651 that protrudes toward the control valve 70 (inner side of the second shaft).
  • a plurality of valve contact portions 651 are provided, and are arranged at substantially equal intervals in the circumferential direction. Further, the valve contact portion 651 is formed at a position facing the low speed flow path facing portion 72. The valve contact portion 651 contacts the low speed flow path facing portion 72 of the control valve 70.
  • An opening 652 is formed between two adjacent valve contact portions 651. The opening 652 allows oil to flow from the second radial inner side of the advance / retreat member 65 toward the second radial outer side.
  • the non-energized control unit 66 is fixed to the inner end of the plunger 64 on the second shaft. Therefore, the non-energized control unit 66 moves according to the movement of the plunger 64.
  • the non-energized control unit 66 moves to the outside of the second axis, it opposes a radial channel 672, which will be described later, of the cap 67, and when it moves to the inside of the second axis, the radial channel 672 is moved. Forms a state out of the range.
  • the non-energized control unit 66 forms an orifice channel 66 ⁇ / b> F that allows oil to flow between the cap unit 67.
  • the orifice channel 66F is always formed regardless of the position of the non-energized controller 66 in the second axis direction.
  • the non-energizing control unit 66 has a through channel 661 that penetrates in the second axial direction. The oil passage sectional area of the through passage 661 is larger than the orifice passage 66F described above.
  • the control part 66 when the solenoid part 62 is a non-energized state, when the solenoid part 62 is a non-energized state, the control part 66 at the time of the non-energization of 1st Embodiment opposes the radial direction flow path 672 mentioned later, Only the orifice channel 66F, not the channel 661, is the oil channel to the radial channel 672. Thus, the non-energized control unit 66 suppresses the outflow of oil from the back pressure chamber 68P, which will be described later, through the back pressure channel 77 when the solenoid unit 62 is in a non-energized state.
  • the cap portion 67 holds an in-cap oil chamber 671 formed on the inner side in the second radial direction, a radial flow path 672 penetrating in the second radial direction, the control valve 70, the control valve seat 75, and the connecting portion 80.
  • the cap inner oil chamber 671 is formed outside the second shaft of the control valve 70.
  • the cap oil chamber 671 forms a region where the plunger 64, the advance / retreat member 65, and the non-energized control unit 66 can move in the second axial direction.
  • the radial flow path 672 communicates with the in-cap oil chamber 671 on the inner side in the second radial direction, and communicates with the in-housing flow path 111 described later on the second radial direction outer side.
  • the holding portion 673 holds these members by press-fitting the control valve 70, the control valve seat 75, and the connecting portion 80 inside in the radial direction.
  • the back pressure forming portion 68 (an example of a pressing portion) includes a case portion 681 that forms a back pressure chamber 68P on the opposite side (the second radius outside) of the main valve seat 52 with respect to the main valve 51, a cap portion 67, and a case. And a seal portion 682 that is liquid-tight with the portion 681. Further, the back pressure forming portion 68 includes a case return spring 683 that applies a force to the case portion 681 to press the case portion 681 against the main valve 51, a spacer member 684 interposed between the case return spring 683 and the main valve 51, Have
  • the case portion 681 has a main valve contact portion 681T that contacts the main valve 51 on the inner side of the second shaft.
  • the case portion 681 is movable in the second axis direction. Then, the case portion 681 presses the main valve 51 against the main flow path 53 by the oil pressure in the back pressure chamber 68P. Further, the pressing force applied to the main valve 51 of the case portion 681 changes according to the oil pressure in the back pressure chamber 68P.
  • the seal portion 682 can be made of an elastically deformable resin material such as rubber. The seal portion 682 suppresses the outflow of oil in the back pressure chamber 68P to the outside, and holds the case portion 681 so as to be movable in the second axial direction.
  • the communication unit 80 includes an inflow channel 81 into which oil from the communication channel L flows, a communication chamber 82 that communicates with the back pressure channel 77 of the control valve seat 75, and a back pressure that connects the communication chamber 82 and the back pressure chamber 68P. And a communication path 83. Furthermore, the communication unit 80 includes a back pressure orifice channel 84 that connects the inflow channel 81 and the communication chamber 82, and a low-speed communication channel 85 that connects the low-speed channel 78 of the control valve seat 75 and the communication chamber 82. .
  • the inflow channel 81 is formed along the second axial direction.
  • the communication chamber 82 communicates with the back pressure orifice channel 84 inside the second shaft, communicates with the back pressure channel 77 outside the second shaft, and faces the back pressure communication channel 83 in the second radial direction.
  • the back pressure communication path 83 communicates with the communication chamber 82 on the inner side in the second radial direction, and communicates with the back pressure chamber 68P on the outer side in the second radial direction.
  • the back pressure orifice channel 84 has an oil channel cross-sectional area smaller than the back pressure communication channel 83 and the back pressure channel 77. Thereby, the back pressure orifice channel 84 makes it difficult for the oil in the back pressure chamber 68P to return to the inflow channel 81 through the back pressure orifice channel 84.
  • the low-speed communication path 85 has a larger oil flow path cross-sectional area than the low-speed flow path 78. In the first embodiment, the flow of oil at a low speed, which will be described later, is adjusted in the low speed flow path 78 of the control valve seat 75. Therefore, the oil flow is not restricted on the upstream side of the oil flow with respect to the low-speed flow path 78.
  • connection flow path section 90 includes an inner flow path 91 provided on the inner side in the second radial direction and an outer flow path 92 provided on the outer side in the second radial direction.
  • the inner channel 91 communicates with the outer cylindrical body opening 12H on the inner side of the second shaft, and communicates with the inflow channel 81 of the communication unit 80 and the main channel 53 of the main valve seat 52 on the outer side of the second shaft.
  • a plurality of outer flow paths 92 are provided in the first embodiment.
  • the outer channel 92 communicates with the case opening 13H on the inner side of the second shaft and communicates with the in-housing channel 111 on the outer side of the second shaft.
  • the outer housing 100C is a substantially cylindrical member.
  • the outer housing 100C is fixed to the damper case 13 by welding, for example, on the inner side of the second shaft. Further, the outer housing 100C forms an in-housing channel 111 that is an oil channel in the outer housing 100C outside the main valve unit 50 and the damping force adjusting unit 60 in the second radial direction.
  • the oil flowing out from the radial flow path 672 of the cap portion 67 and the oil flowing out of the main flow path 53 of the main valve seat 52 flow into the in-housing flow path 111. .
  • FIG. 4 is an explanatory view of the operation of the control valve 70, the control valve seat 75 and the advance / retreat member 65.
  • the control valve 70 is pressed against the control valve seat 75 by pushing the advance / retreat member 65 toward the inside of the second shaft. Then, the pressing force of the advance / retreat member 65 changes according to the amount of current flowing through the solenoid portion 62 (see FIG. 2).
  • the damping force adjusting unit 60 forms a state where the pressing force of the advance / retreat member 65 is maximized.
  • the control valve 70 is most strongly pressed against the control valve seat 75.
  • the valve contact portion 651 of the advance / retreat member 65 brings the low-speed flow channel facing portion 72 closer to the low-speed flow channel 78, and the low-speed flow into the low-speed flow channel 78 (low-speed flow round 78R).
  • the road facing part 72 is pressed.
  • the low speed flow path facing portion 72 of the first embodiment is connected to the back pressure flow path facing portion 71 via the inner arm portion 73A. Therefore, the back pressure flow path facing portion 71 approaches the back pressure flow path 77 as the valve contact portion 651 of the advance / retreat member 65 moves the low speed flow path facing portion 72. Then, a back pressure flow channel facing portion 71 (back pressure flow round 77R) is pressed against the back pressure flow channel 77.
  • the back pressure channel 77 protrudes higher than the low speed channel 78. Therefore, in the first embodiment, the back pressure flow path facing portion 71 forms a state where the back pressure flow path 77 is more reliably pressed down.
  • the back pressure flow channel facing portion 71 contacts the back pressure flow channel round 77R, and the back pressure flow channel 77 is closed.
  • the low speed flow path facing portion 72 contacts the low speed flow path round 78R, and the low speed flow path 78 is closed.
  • the damping force adjusting unit 60 forms a state where the pressing force of the advance / retreat member 65 is minimized.
  • the back pressure flow channel facing portion 71 is separated from the back pressure flow channel round 77R, and the back pressure flow channel 77 is opened.
  • the low speed flow path facing portion 72 is separated from the low speed flow path round 78R, and the low speed flow path 78 is opened.
  • a state between a state where the pressing force of the advance / retreat member 65 is minimized and a state where it is maximized is set.
  • the back pressure flow path facing portion 71 is farther from the back pressure flow round 77R than the state where the pressing force is the largest, and is closer to the back pressure flow round 77R than the state where the pressing force is the smallest.
  • the low-speed flow path facing portion 72 is farther from the low-speed flow round 78R than the state where the pressing force is the largest, and is closer to the low-speed flow round 78R than the state where the pressing force is the smallest.
  • the low-speed channel 78 has a lower projection height than the back pressure channel 77, and the low-speed channel facing portion 72 that faces the lower low-speed channel 78 is pushed by the advance / retreat member 65. I have to.
  • the protruding height of the back pressure channel 77 is made lower than that of the low speed channel 78, the back pressure channel facing portion 71 facing the lower back pressure channel 77 is pushed by the advance / retreat member 65. Just do it.
  • valve contact portion 651 of the advance / retreat member 65 may be brought into contact with both the back pressure flow passage facing portion 71 and the low speed flow passage facing portion 72 so as to advance and retreat with respect to the low speed flow passage 78 and the back pressure flow passage 77.
  • FIG. 5 is an operation explanatory diagram of the hydraulic shock absorber 1 according to the first embodiment.
  • 5A shows the oil flow during the expansion stroke
  • FIG. 5B shows the oil flow during the compression stroke.
  • the operation of the hydraulic shock absorber 1 during the expansion stroke will be described.
  • the rod 20 moves to the other side with respect to the cylinder 11 during the extension stroke.
  • the piston valve 32 remains blocking the piston oil passage port 311.
  • the volume of the second oil chamber Y2 decreases due to the movement of the piston portion 30 to the other side.
  • the oil in the second oil chamber Y2 flows out from the cylinder opening 11H to the communication path L.
  • the oil flows into the outer damping portion 100 through the communication path L and the outer cylindrical opening 12H.
  • the oil first flows into the inner channel 91 of the connection channel unit 90. Thereafter, a damping force is generated in the main valve 51 or the control valve 70 in the outer damping unit 100. The oil flow at this time will be described in detail later.
  • the oil that has flowed to the main valve 51 or the control valve 70 flows out to the in-housing channel 111. Further, the oil flows into the reservoir chamber R from the case opening 13H through the outer flow path 92 of the connection flow path section 90.
  • the pressure in the first oil chamber Y1 is relatively low with respect to the reservoir chamber R. Therefore, the oil in the reservoir chamber R flows into the first oil chamber Y1 through the bottom piston portion 40.
  • the rod 20 moves relative to the cylinder 11 to one side during the compression stroke.
  • the piston valve 32 that closes the piston oil passage port 311 is opened by the differential pressure between the first oil chamber Y1 and the second oil chamber Y2.
  • the oil in the first oil chamber Y1 flows out to the second oil chamber Y2 through the piston oil passage port 311.
  • the rod 20 is disposed in the second oil chamber Y2. Therefore, the oil flowing from the first oil chamber Y1 into the second oil chamber Y2 becomes excessive by the volume of the rod 20. Accordingly, an amount of oil corresponding to the volume of the rod 20 flows out from the cylinder opening 11H to the communication path L.
  • the oil flows into the outer damping part 100 through the communication path L and the outer cylindrical opening 12H.
  • the oil flow in the outer damping portion 100 is the same as the oil flow during the extension stroke described above. That is, in the hydraulic shock absorber 1 according to the first embodiment, the oil flows in the outer damping portion 100 in the same direction both during the compression stroke and during the expansion stroke.
  • the oil in the first oil chamber Y1 flows into the flow path formed in the valve seat 41 in the bottom piston portion 40.
  • the outer damping portion 100 generates a damping force in both strokes during the compression stroke and the expansion stroke.
  • FIG. 6 is an explanatory diagram of the oil flow in the outer damping portion 100.
  • 6A shows the flow of oil at a low speed when the pressing force of the advance / retreat member 65 is relatively small
  • FIG. 6B shows the state where the pressing force of the advance / retreat member 65 is relatively small.
  • the flow of oil at high speed is shown.
  • the oil that has flowed into the inner flow path 91 flows into the inflow flow path 81 and the main flow path 53.
  • the oil that has flowed into the inflow channel 81 is a low-speed communication channel 85, a low-speed channel 78, an inner opening 73 or an outer opening 74 (see FIG. 3), a through channel 661 or an orifice channel 66F, a radial flow. It flows in order of the path 672. Then, the oil flows out to the in-housing channel 111.
  • the damping force is generated by the oil flow in the low speed flow path 78 of the control valve seat 75.
  • the oil that has flowed into the inflow channel 81 flows through the back pressure orifice channel 84 and the back pressure communication channel 83 and flows into the back pressure chamber 68P.
  • the back pressure flow path 77 communicating with the back pressure chamber 68P is opened by the control valve 70. Therefore, the pressure in the back pressure chamber 68 ⁇ / b> P is lower than that in the state where the control valve 70 is pressed against the back pressure channel 77.
  • the main valve 51 that is in contact with the case portion 681 (see FIG. 2) is relatively easy to open the main flow path 53. Therefore, when the pressing force of the advance / retreat member 65 is relatively small, the damping force generated by the oil flow in the main flow path 53 that opens the main valve 51 is relatively small.
  • control valve 70 will be described using an example in which the control valve 70 is pressed against the back pressure channel round 77R and the low speed channel round 78R.
  • FIG. 7 is an explanatory diagram of the oil flow in the outer damping portion 100.
  • 7A shows a flow of oil at a low speed when the pushing force of the advance / retreat member 65 is relatively large
  • FIG. 7B shows a state where the pushing force of the advance / retreat member 65 is relatively large.
  • the flow of oil at high speed is shown.
  • the damping force is generated by the oil flow in the low-speed flow path 78 of the control valve seat 75.
  • the damping force when flowing through the low-speed flow path 78 is higher than when the control valve 70 is separated from the low-speed flow path 78.
  • the oil that has flowed into the inflow channel 81 flows through the back pressure orifice channel 84 and the back pressure communication channel 83 and flows into the back pressure chamber 68P.
  • the back pressure flow path 77 communicating with the back pressure chamber 68P is pressed by the control valve 70. Therefore, the pressure in the back pressure chamber 68P is higher than that in the state where the back pressure channel 77 is opened.
  • the main valve 51 that is in contact with the case portion 681 is relatively difficult to open the main flow path 53. Therefore, in a state where the pressing force of the advance / retreat member 65 is relatively high, the damping force generated by the oil flow in the main flow path 53 that opens the main valve 51 is relatively large.
  • both the adjustment of the damping force at the low speed and the adjustment of the damping force at the high speed are performed by operating the advance / retreat member 65. . That is, by changing the pressing force of the control valve 70 against the control valve seat 75 by the advance / retreat member 65, the flow area of the low-speed flow path 78, which is the flow path of oil at low speed, and the flow area of oil at high speed The flow area of the back pressure flow channel 77 for adjusting the pressure of the back pressure chamber 68P related to the above is adjusted.
  • the oil flow in the back pressure flow path 77 and the oil flow in the low speed flow path 78 can be simultaneously controlled by a single control valve 70.
  • the flow of oil at a low speed in the low-speed flow path 78 can be controlled, adjustment when the main valve 51 opens the main flow path 53 (so-called blow point) can be performed. As a result, the damping force can be controlled more finely than in the prior art.
  • the present invention is not limited to the two patterns described above.
  • the pressing force of the advance / retreat member 65 can be arbitrarily set within the adjustable range according to the amount of current to the solenoid unit 62.
  • the damping force adjusting unit 60 of the first embodiment can adjust the damping force at the low speed and the damping force at the high speed in a plurality of stages.
  • FIG. 8 is an explanatory diagram of the oil flow in the outer damping portion 100.
  • 8A shows the oil flow when the solenoid 62 is in a non-energized state and at low speed
  • FIG. 8B shows the oil flow when the solenoid 62 is in a non-energized state and at high speed. Show the flow.
  • the oil that has flowed into the inflow channel 81 flows through the back pressure orifice channel 84 and the back pressure communication channel 83 and flows into the back pressure chamber 68P.
  • the back pressure chamber 68 ⁇ / b> P communicates with the in-cap oil chamber 671 through the back pressure flow channel 77.
  • the oil flow between the cap internal oil chamber 671 and the housing internal flow path 111 needs to pass through the orifice flow path 66F. Therefore, the outflow of oil from the back pressure chamber 68P is suppressed, and the pressure in the back pressure chamber 68P is maintained in a relatively high state.
  • the main valve 51 that is in contact with the case portion 681 is relatively difficult to open the main flow path 53. Therefore, when the solenoid 62 is in a non-energized state, the damping force generated by the oil flow in the main flow path 53 that opens the main valve 51 is relatively large.
  • both the damping force at the low speed and the damping force at the high speed are relatively high even when the solenoid unit 62 is not energized. Try to be high.
  • FIG. 9 is an explanatory diagram of the damping force adjustment unit 60 of the second embodiment.
  • the damping force adjustment unit 60 of the second embodiment is different from the control valve 70 of the first embodiment described above in the configuration of the control valve 270.
  • the control valve 270 has a first control valve 270A and a second control valve 270B.
  • the first control valve 270A and the second control valve 270B are provided in this order from the inner side of the second shaft to the outer side of the second shaft with respect to the control valve seat 75.
  • the first control valve 270A is a plate-like member that is elastically deformed and has a generally circular shape.
  • the first control valve 270A includes a circular back pressure flow channel facing portion 271 that faces the back pressure flow channel 77, and a plurality of (four in the second embodiment) arm portions that support the back pressure flow channel facing portion 271. 272.
  • the second control valve 270B is a plate-like member that is elastically deformed and has a circular shape.
  • the second control valve 270B includes an annular low-speed flow channel facing portion 273 that faces the low-speed flow channel 78, and a plurality of (two in the second embodiment) arm portions that support the low-speed flow channel facing portion 273. 274.
  • the second control valve 270B and the first control valve 270A are brought into contact with the second control valve 270B by contacting the valve contact section 651 of the advance / retreat member 65. Is moved forward and backward with respect to the control valve seat 75.
  • the control of the oil flow in the back pressure flow path 77 by the back pressure flow path facing section 271 of the first control valve 270A and the low speed flow path facing section 273 of the second control valve 270B are performed.
  • the single oil advance / retreat member 65 can simultaneously control the oil flow in the low-speed flow path 78.
  • FIG. 10 is a cross-sectional view of the outer attenuation portion 300 of the third embodiment.
  • FIG. 11 is a perspective cross-sectional view of the outer attenuation portion 300 of the third embodiment.
  • FIG. 12 is an explanatory diagram of the control valve 370 and the control valve seat 75 of the third embodiment.
  • 12A is a perspective view of the control valve 370 and the control valve seat 375, and
  • FIG. 12B is a top view of the control valve 370 and the control valve seat 375.
  • the outer damping unit 300 has a main valve unit 50 that mainly generates a damping force and a magnitude of the damping force generated by the outer damping unit 300 in the hydraulic shock absorber 1 of the third embodiment.
  • the outer damping part 300 includes a connecting part 380 that forms a parallel flow path with respect to the main valve part 50, a connection flow path part 90, and an outer housing 100C.
  • the damping force adjustment unit 360 of the third embodiment includes an advance / retreat unit 61, a cap unit 367 that covers various components such as the main valve unit 50, and a back pressure forming unit 68.
  • the damping force adjustment unit 360 includes a control valve 370 that controls the flow of oil in the communication unit 380 by controlling, a control valve seat 375 that faces the control valve 370 and contacts the control valve 370, and a throttle that throttles the flow of oil. Member 379.
  • the cap part 367 accommodates the main valve part 50, the control valve 370, the control valve seat 375, the throttle member 379, the second shaft inner side of the plunger 64, and the advance / retreat member 65 inside.
  • the cap portion 367 is fixed by being sandwiched between the solenoid case 60 ⁇ / b> C and the connection flow path portion 90.
  • the cap part 367 forms the cap flow path 367R through which oil flows between the solenoid case 60C.
  • the cap channel 367R communicates with an opening 367H, which will be described later, and also communicates with the in-housing channel 111.
  • the cap portion 367 has an opening 367H in which the plunger 64 is provided at the end on the outer side of the second shaft.
  • the advance / retreat member 65 advances / retreats with respect to the opening 367H.
  • the opening 367H allows oil to flow between the control valve 370 side and the cap channel 367R in a state where the advance / retreat member 65 is separated.
  • the opening 367H restricts the flow of oil between the control valve 370 side and the cap channel 367R in a state where the advance / retreat member 65 is in contact.
  • control valve 370 is a substantially circular plate-like member that is elastically deformed.
  • a material of the control valve 370 for example, a metal such as iron can be used.
  • the control valve 370 is provided facing the outer side of the second shaft of the control valve seat 375.
  • the control valve 370 includes an outer annular portion 370 ⁇ / b> C (an example of a held portion) formed in an annular shape and a back pressure flow channel facing portion 371 (second control) that faces the back pressure flow channel 77. And a low-speed flow channel facing portion 372 (an example of a first control unit) that faces the low-speed flow channel 78. Further, the control valve 370 is provided on the inner side in the second radial direction, and the control valve 370 is easily deformed in the second axial direction. The control valve 370 is provided on the outer side in the second radial direction than the inner opening 373. An outer opening 374 that facilitates deformation of the 370 in the second axial direction.
  • the outer annular portion 370C is provided on the outer side in the second radial direction.
  • the outer annular portion 370C functions as a portion that is sandwiched between the cap portion 367 and the control valve seat 375.
  • the control valve 370 of the third embodiment is held by the control valve seat 375 when the outer annular portion 370C is sandwiched (see FIG. 10).
  • the back pressure flow path facing portion 371 is circular and has a plate shape.
  • the back pressure flow channel facing portion 371 is formed larger than the inner diameter of the back pressure flow channel 77 and can cover the back pressure flow channel round 77R.
  • the back pressure flow channel facing portion 371 is formed in the central portion (in the second radial direction) of the control valve 370.
  • the low-speed flow path facing portion 372 is annular and formed in a plate shape.
  • the low speed flow path facing portion 372 is formed larger than the inner diameter of the low speed flow path 78 and can cover the low speed flow path round 78R.
  • the low speed flow path facing portion 372 is formed on the outer side in the second radial direction than the back pressure flow path facing portion 371. Further, the low speed flow path facing portion 372 is formed as an annular region in the control valve 370.
  • the low-speed flow path facing portion 372 always faces the low-speed flow path 78 regardless of the position of the control valve 370 in the circumferential direction with respect to the control valve seat 375.
  • the inner opening 373 is provided to extend long along the circumferential direction of the control valve 370.
  • a plurality of inner openings 373 are provided.
  • An inner arm portion 373A (an example of a second support portion) is formed between two adjacent inner opening portions 373.
  • Each inner arm 373A is formed so that at least a part thereof extends in the circumferential direction.
  • the plurality of inner arm portions 373A are formed in a spiral shape as a whole.
  • the inner arm portion 373A is provided in the control valve 370 on the second radial direction outer side than the back pressure flow channel facing portion 371 and on the second radial direction inner side than the low speed flow channel facing portion 372. That is, the inner arm portion 373A is provided between the back pressure flow channel facing portion 371 and the low speed flow channel facing portion 372 in the second radial direction.
  • the inner arm portion 373A has a width B11 closer to the back pressure flow path facing portion 371 than a width B12 farther from the back pressure flow path facing portion 371. Further, the inner arm portion 373A has a width B13 closer to the low-speed flow path facing portion 372 than the width B12 farther from the low-speed flow path facing portion 372.
  • the outer opening 374 is provided extending in the circumferential direction of the control valve 370.
  • a plurality of outer openings 374 are provided and are arranged at substantially equal intervals in the circumferential direction.
  • two different outer openings 374 are arranged so as to overlap in the second radial direction.
  • the outer opening 374 is formed in the second radial direction outside of the low-speed flow channel facing portion 372 and in the second radial direction inside of the outer annular portion 370C. .
  • an outer arm portion 374A (an example of a first support portion) is formed between two adjacent outer opening portions 374. And each outer arm part 374A is formed so that at least one part may extend along the circumferential direction.
  • the plurality of outer arm portions 374A are formed in a spiral shape as a whole.
  • the outer arm portion 374A is provided on the outer side in the second radial direction of the low-speed flow channel facing portion 372 and on the inner side in the second radial direction than the outer annular portion 370C. That is, the outer arm portion 374A is provided between the low-speed flow channel facing portion 372 and the outer annular portion 370C in the second radial direction.
  • each outer opening 374 has a width H1 of an inner region 3741 formed inside the outer arm 374A in the second radial direction so that the second radius of the outer arm 374A is the second radius.
  • the outer region 3742 formed on the outer side in the direction is larger than the width H2.
  • the area of the opening of the outer opening 374 is the largest compared to other openings formed in the control valve 370.
  • the inner region 3741 of the outer opening 374 constitutes the main flow path of oil that flows through the control valve 370.
  • the outer arm portion 374A is disposed outside the inner region 3741 of the outer opening portion 374 having a larger opening area in the second radial direction.
  • the outer arm portion 374A is arranged on the outer side in the second radial direction than the inner region 3741 of the outer opening portion 374, so that the outer arm portion 374A having a lower rigidity is disposed on the outer side. The influence of the dynamic pressure of oil flowing through the opening 374 is reduced.
  • the outer arm 374A has a width B21 closer to the low-speed flow channel facing portion 372 than a width B22 far from the low-speed flow channel facing portion 372. . Further, the outer arm portion 374A has a width B23 closer to the outer annular portion 370C than a width B22 farther from the outer annular portion 370C.
  • control valve 370 of the third embodiment improves the durability of the control valve 370 by making the thickness of the control valve 370 itself a certain level or more.
  • the rigidity of the portion where the inner arm portion 373A and the outer arm portion 374A are formed is lowered, and the portion where the inner arm portion 373A and the outer arm portion 374A are formed is deformed. It becomes easy.
  • the inner arm portion 373A and the outer arm portion 374A are formed so as to extend along the circumferential direction, respectively, the length of the deformable arm is ensured, and the deformable arm is more easily deformed. .
  • the control valve seat 375 includes an outer round 76 that holds the control valve 370 and a back pressure channel that forms an oil channel for adjusting the oil pressure in the back pressure chamber 68P. 77 and a low-speed flow path 78 that forms a flow path for oil at low speed. Further, as shown in FIG. 10, the control valve seat 375 includes a communication chamber 382 that communicates with the back pressure channel 77, a back pressure communication channel 383 that connects the communication chamber 382 and the back pressure chamber 68P, and a low speed channel 78. A low-speed communication path 385 connecting the communication chamber 382.
  • the communication chamber 382 communicates with the back pressure orifice channel 384 on the inner side of the second axis, communicates with the back pressure channel 77 on the outer side of the second axis, and communicates with the back pressure in the second radial direction. Opposite the path 383.
  • the back pressure communication path 383 communicates with the communication chamber 382 on the inner side in the second radial direction, and communicates with the back pressure chamber 68P on the outer side in the second radial direction.
  • the low-speed communication path 385 has a larger oil flow path cross-sectional area than the low-speed flow path 78. In the third embodiment, the oil flow at a low speed, which will be described later, is adjusted in the low-speed flow path 78. Therefore, the oil flow is not restricted on the upstream side of the oil flow with respect to the low-speed flow path 78.
  • the throttle member 379 has a back pressure orifice channel 384 that connects the inflow channel 81 and the communication chamber 382.
  • the back pressure orifice channel 384 has an oil channel cross-sectional area smaller than the back pressure communication channel 383 and the back pressure channel 77. Thereby, the back pressure orifice channel 384 makes it difficult for the oil in the back pressure chamber 68P to return to the inflow channel 81 through the back pressure orifice channel 384.
  • the connecting part 380 of the third embodiment has an inflow channel 81 into which oil from the connecting path L flows, and a connecting part 389 connected to the control valve seat 375.
  • the inner diameter of the connection portion 389 is substantially equal to the outer diameter inside the second shaft of the control valve seat 375. Then, the end portion on the inner side of the second shaft of the control valve seat 375 is press-fitted into the connection portion 389.
  • the connecting portion 380 may be press-fitted inside the control valve seat 375.
  • the adjustment operation in the damping force adjustment unit 360 of the third embodiment configured as described above is the same as that of the first embodiment. That is, the control valve 370 is pressed against the control valve seat 375 by pushing the advance / retreat member 65 toward the inside of the second shaft. Then, the pressing force of the advance / retreat member 65 changes according to the amount of current flowing through the solenoid portion 62 (see FIG. 10).
  • the operation of the hydraulic shock absorber 1 according to the third embodiment is the same as that of the hydraulic shock absorber 1 according to the first embodiment. That is, during the expansion stroke of the hydraulic shock absorber 1, a damping force is generated in the main valve 51 or the control valve 370 in the outer damping unit 300. Further, during the compression stroke of the hydraulic shock absorber 1, a damping force is generated in the main valve 51 or the control valve 370 in the outer damping section 300.
  • FIG. 13 is an explanatory diagram of the oil flow in the outer damping section 300 of the third embodiment.
  • 13A shows the oil flow at a low speed when the pressing force of the advance / retreat member 65 is relatively small
  • FIG. 13B shows the state where the pressing force of the advance / retreat member 65 is relatively small. And the flow of oil at high speed is shown.
  • the oil that has flowed into the inner flow path 91 flows into the inflow flow path 81 and the main flow path 53.
  • the oil that has flowed into the inflow channel 81 is a low-speed communication channel 385, a low-speed channel 78, a low-speed channel round 78R, mainly an outer opening 374 (see FIGS. 12A and 12B), an opening.
  • the part 367H and the cap channel 367R flow in this order.
  • the oil flows out from the in-housing channel 111 to the reservoir chamber R.
  • the damping force is generated by the oil flow being throttled by the gap between the low speed flow path round 78R of the low speed flow path 78 and the control valve 370.
  • the oil that has flowed into the inflow channel 81 transmits pressure to the back pressure chamber 68P through the back pressure orifice channel 384 and the back pressure communication channel 383.
  • the back pressure flow channel 77 communicating with the back pressure chamber 68P is opened by the control valve 370. Therefore, the pressure in the back pressure chamber 68P is lower than that in the state where the control valve 370 is pressed against the back pressure channel 77.
  • the main valve 51 that is in contact with the back pressure forming portion 68 is relatively easy to open the main flow path 53. Therefore, when the pressing force of the advance / retreat member 65 is relatively small, the damping force generated by the oil flow in the main flow path 53 that opens the main valve 51 is relatively small.
  • control valve 370 will be described using an example in which the control valve 370 is pressed against the back pressure channel round 77R and the low speed channel round 78R.
  • FIG. 14 is an explanatory diagram of the oil flow in the outer damping section 300 of the third embodiment.
  • 14A shows the flow of oil at a low speed when the pushing force of the advance / retreat member 65 is relatively large
  • FIG. 14B shows the state where the pushing force of the advance / retreat member 65 is relatively large.
  • the flow of oil at high speed is shown.
  • the damping force is generated when oil flows while opening the control valve 370 in the low-speed flow path round 78R of the control valve seat 375. .
  • the damping force when flowing through the low-speed flow path round 78R is higher than that when the control valve 370 is separated from the low-speed flow path round 78R.
  • the oil that has flowed into the inflow channel 81 transmits pressure to the back pressure chamber 68P through the back pressure orifice channel 384 and the back pressure communication channel 383.
  • the back pressure flow path 77 communicating with the back pressure chamber 68P is pressed by the control valve 370. Therefore, the pressure in the back pressure chamber 68P is higher than that in the state where the back pressure channel 77 is opened.
  • the main valve 51 that is in contact with the back pressure forming portion 68 is relatively difficult to open the main flow path 53. Therefore, in a state where the pressing force of the advance / retreat member 65 is relatively high, the damping force generated by the oil flow in the main flow path 53 that opens the main valve 51 is relatively large.
  • both the adjustment of the damping force at the low speed and the adjustment of the damping force at the high speed are performed by operating the advance / retreat member 65. . That is, by changing the pressing force of the control valve 370 against the control valve seat 375 by the advance / retreat member 65, the flow area of the low speed flow path 78 that is the flow path of oil at low speed and the flow area of oil at high speed The flow area of the back pressure flow channel 77 for adjusting the pressure of the back pressure chamber 68P related to the above is adjusted.
  • the oil flow in the back pressure flow channel 77 and the oil flow in the low speed flow channel 78 can be controlled simultaneously by a single control valve 370.
  • the flow of oil at a low speed in the low-speed flow path 78 can be controlled, so that adjustment when the main valve 51 opens the main flow path 53 (so-called blow point) can be performed.
  • the damping force can be controlled more finely than in the prior art.
  • FIG. 15 is an explanatory diagram of the damping force adjustment unit 60 of the fourth embodiment.
  • the damping force adjusting unit 60 of the fourth embodiment is different from the control valve 70 of the first embodiment described above in the configuration of the control valve 470.
  • control valve 470 is a substantially circular plate-like member that is elastically deformed.
  • a material of the control valve 470 for example, a metal such as iron can be used.
  • the control valve 470 is provided facing the outer side of the second shaft of the control valve seat 75.
  • the control valve 470 includes an annular outer ring portion 470C (an example of a held portion) and a back pressure flow channel facing portion 471 (first control) facing the back pressure flow channel 77. Part), an opening 473 that facilitates deformation of the control valve 470 in the second axial direction, and a low-speed flow path facing part 472 (an example of a second control part) that faces the low-speed flow path 78.
  • the outer annular portion 470C is provided on the outer side in the second radial direction.
  • the outer annular portion 470C functions as a portion sandwiched between the cap portion 67 and the control valve seat 75.
  • the control valve 470 of the fourth embodiment is held by the control valve seat 75 and positioned and held by the positioning fitting portion 600 when the outer annular portion 470C is sandwiched.
  • Examples of the positioning fitting portion 600 include a concave portion 470N formed in the control valve 470 and a convex portion 75P formed in the control valve seat 75 and fitted into the concave portion 470N.
  • the positioning fitting portion 600 only needs to be able to position the control valve 470 and the control valve seat 75 in the circumferential direction, and the relationship between the concave portion and the convex portion may be reversed.
  • the back pressure flow path facing portion 471 is circular and has a plate shape.
  • the back pressure flow channel facing portion 471 is formed larger than the inner diameter of the back pressure flow channel 77 and can cover the back pressure flow channel round 77R.
  • the back pressure flow channel facing portion 471 is formed in the central portion (in the second radial direction) of the control valve 470.
  • the opening 473 is formed in an elliptical shape.
  • a plurality of openings 473 are provided and are arranged at substantially equal intervals in the circumferential direction.
  • the area of the opening of the opening 473 is the largest in the control valve 470.
  • the opening part 473 comprises the main flow path of the oil which flows through the control valve 470.
  • a back pressure arm 473A (an example of a first support part) is formed.
  • the back pressure arm portion 473A is provided extending along the radial direction. Then, the back pressure arm portion 473A connects the back pressure flow channel facing portion 471 and the outer annular portion 470C.
  • the low-speed flow path facing portion 472 is formed in a leaf shape having a circular shape on the inner side in the second radial direction and a triangular shape on the outer side in the second radial direction.
  • the low-speed channel facing portion 472 is formed larger than the inner diameter of the low-speed channel 78 and can cover the low-speed channel round 78R.
  • the low speed flow path facing portion 472 is formed on the outer side in the second radial direction than the back pressure flow path facing portion 471.
  • the low speed flow path facing portion 472 is provided to face the low speed flow path 78.
  • the low-speed channel facing portion 472 is in contact with the valve contact portion 651 (see FIG.
  • the relationship between the opening degree of the low-speed flow path 78 and the pressing force of the advance / retreat member 65 is made nonlinear.
  • low-pressure arm portions 474A are formed at the center portions of the openings 473, respectively.
  • the low-pressure arm 474A is provided to extend along the radial direction.
  • the low-pressure arm 474A connects the low-speed flow path facing portion 472 and the back pressure flow path facing portion 471. That is, the low-pressure arm portion 474A is supported by the back pressure flow channel facing portion 471 on the inner side in the second radial direction, and supports the low speed flow channel facing portion 472 on the outer side in the second radial direction. That is, in the fourth embodiment, the low-speed flow path facing portion 472 is supported in a cantilever state by the low-pressure arm portion 474A.
  • the control valve 470 is moved forward and backward with respect to the control valve seat 75 by contacting the control valve 470 with the advance / retreat member 65.
  • the control of the oil flow in the back pressure flow path 77 by the back pressure flow path facing section 471 of the control valve 470 and the oil flow in the low speed flow path 78 by the low speed flow path facing section 472 are performed.
  • the flow can be controlled simultaneously by a single advance / retreat member 65.
  • the opening degree of the low-speed flow path facing portion 472 that controls the low-speed flow path 78 becomes non-linear, and a linear variable characteristic of the damping force can be obtained.
  • the piston part 30 and the bottom piston part 40 are not limited to the structure shown in the above embodiment, but may have other shapes or shapes as long as they satisfy the function as a damping mechanism. Other configurations may be used.
  • the function of the outer damping portion 100 or the outer damping portion 300 provided outside the cylinder 11 may be provided in the piston portion 30 or the like inside the cylinder 11.
  • the function of the outer damping portion 100 or the outer damping portion 300 provided outside the cylinder 11 may be provided in the bottom piston portion 40 or the like.
  • the hydraulic shock absorber 1 according to the first to fourth embodiments is not limited to a so-called triple pipe structure in which the cylinder 11, the outer cylindrical body 12, and the damper case 13 are each configured in a cylindrical shape. A so-called double tube structure with the damper case 13 may be used.
  • SYMBOLS 1 Hydraulic shock absorber, 10 ... Cylinder part, 30 ... Piston part, 50 ... Main valve part, 51 ... Main valve, 52 ... Main valve seat, 53 ... Main flow path, 60 ... Damping force adjustment part, 61 ... Advance / retreat part , 70 ... Control valve, 71 ... Back pressure flow path facing part, 72 ... Low speed flow path facing part, 75 ... Control valve seat, 77 ... Back pressure flow path, 78 ... Low speed flow path

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

圧力緩衝装置は、液体を収容するシリンダと、軸方向に移動するロッドに接続するとともに、シリンダ内にて移動するピストン部と、ピストン部の一方向への移動に伴って液体が流れる第1流路、およびピストン部の一方向の移動に伴って第1流路と並列に液体が流れる第2流路を有する流路形成部と、第1流路および第2流路における液体の流れを制御するバルブ部と、第1流路および第2流路に対してバルブ部を進退させる単一の進退部と、を備えている。

Description

圧力緩衝装置
 本発明は、圧力緩衝装置に関する。
 例えば、特許文献1には、ベース側に、圧行程においてシリンダ内に侵入するピストンロッドの体積分に相当する液体のリザーバ室方向への流出を制限的に許容することで減衰力を発生させる圧側減衰バルブと、圧側減衰バルブのセット荷重を可変することで発生減衰力特性を可変制御可能なソレノイドとを備える減衰力可変型緩衝器が記載されている。
特開平7-91476号公報
 ところで、圧力緩衝装置において、減衰力を発生させるための複数の流路が形成され、複数の流路における減衰力の調整を流路ごとに行いたい場合がある。このような場合に、複数の流路ごとに減衰力を調整するための機構をそれぞれ設けると、装置の複雑化につながる。
 本発明は、装置の複雑化を抑制しつつ、複数の流路における減衰力の調整を行うことを目的とする。
 かかる目的のもと、本発明は、液体を収容するシリンダと、軸方向に移動するロッドに接続するとともに、シリンダ内にて移動するピストン部と、ピストン部の一方向への移動に伴って液体が流れる第1流路、およびピストン部の一方向への移動に伴って第1流路と並列に液体が流れる第2流路を有する流路形成部と、第1流路および第2流路における液体の流れを制御するバルブ部と、第1流路および第2流路に対してバルブ部を進退させる単一の進退部と、を備える圧力緩衝装置である。
 また、かかる目的のもと、本発明は、液体を収容するシリンダと、軸方向に移動するロッドに接続するとともに、シリンダ内にて移動するピストン部と、ピストン部の移動に伴ってオイルが流れる第1流路を絞る第1バルブ部と、液体を収容する収容室を有し、収容室における液体の圧力によって第1バルブ部を第1流路に対して押し付ける押付部と、第1流路と並列に設けられた第2流路の液体の流れを絞る第2バルブ部と、収容室における液体の圧力の調整に伴って、第2バルブ部による第2流路の絞り量を調整する調整機構部と、を備える圧力緩衝装置である。
 本発明によれば、装置の複雑化を抑制しつつ、複数の流路における減衰力の調整を行うことができる。
第1実施形態の油圧緩衝装置の全体図である。 第1実施形態の外側減衰部の断面図である。 (A)および(B)は、第1実施形態のコントロールバルブおよびコントロールバルブシートの説明図である。 コントロールバルブ、コントロールバルブシートおよび進退部材の動作の説明図である。 (A)および(B)は、第1実施形態の油圧緩衝装置の動作説明図である。 (A)および(B)は、外側減衰部におけるオイルの流れの説明図である。 (A)および(B)は、外側減衰部におけるオイルの流れの説明図である。 (A)および(B)は、外側減衰部におけるオイルの流れの説明図である。 第2実施形態の外側減衰部の説明図である。 第3実施形態の外側減衰部の断面図である。 第3実施形態の外側減衰部の斜視断面図である。 (A)および(B)は、第3実施形態のコントロールバルブおよびコントロールバルブシートの説明図である。 (A)および(B)は、第3実施形態の外側減衰部におけるオイルの流れの説明図である。 (A)および(B)は、第3実施形態の外側減衰部におけるオイルの流れの説明図である。 (A)および(B)は、第4実施形態の減衰力調整部の説明図である。
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。
<第1実施形態>
[油圧緩衝装置1の構成・機能]
 図1は、第1実施形態の油圧緩衝装置1の全体図である。
 図1に示すように、油圧緩衝装置1は、オイルを収容するシリンダ部10と、他方側がシリンダ部10から突出して設けられるとともに一方側がシリンダ部10内にスライド可能に挿入されるロッド20と、を備える。また、油圧緩衝装置1は、ロッド20の一方側の端部に設けられるピストン部30と、シリンダ部10の一方側の端部に設けられるボトムピストン部40と、を備える。さらに、油圧緩衝装置1は、シリンダ部10の外部(半径方向外側)に設けられて減衰力を発生させる外側減衰部100を備える。
 そして、第1実施形態に係る油圧緩衝装置1の概略構成を説明する。
 図1に示すように、第1実施形態の油圧緩衝装置1(圧力緩衝装置の一例)は、オイル(液体の一例)を収容するシリンダ部10(シリンダの一例)と、軸方向に移動するロッド20に接続するとともに、シリンダ部10内にて移動するピストン部30(ピストン部の一例)と、ピストン部30の一方向への移動に伴ってオイルが流れる背圧流路77(第1流路の一例)、およびピストン部30の一方向への移動に伴って背圧流路77と並列にオイルが流れる低速流路78(第2流路の一例)を有するコントロールバルブシート75(流路形成部の一例)と、背圧流路77および低速流路78におけるオイルの流れを制御するコントロールバルブ70(バルブ部)と、背圧流路77および低速流路78に対してコントロールバルブ70を進退させる単一の進退部61(進退部の一例)と、を備える。
 以下、これらの構成について詳述する。
 なお、以下の説明において、図1に示すシリンダ部10の長手方向は、「軸方向」と称する。また、軸方向におけるシリンダ部10の下側は、「一方側」と称し、シリンダ部10の上側は、「他方側」と称する。
 また、図1に示すシリンダ部10の左右方向は、「半径方向」と称する。そして、半径方向において、軸側は、「半径方向内側」と称し、軸から離れる側は、「半径方向外側」と称する。
〔シリンダ部10の構成・機能〕
 シリンダ部10は、オイルを収容するシリンダ11と、シリンダ11の半径方向外側に設けられる外筒体12と、シリンダ11の半径方向外側であって外筒体12のさらに半径方向外側に設けられるダンパケース13とを有する。
 シリンダ11は、円筒状に形成され、他方側にシリンダ開口11Hを有する。
 外筒体12は、円筒状に形成される。そして、外筒体12は、シリンダ11との間に、連絡路Lを形成する。また、外筒体12は、外側減衰部100との対向位置に、外筒体開口部12Hおよび外側接続部12Jを有する。外側接続部12Jは、オイルの流路を有するとともに、半径方向外側に向けて突出し外側減衰部100との接続箇所を形成する。
 ダンパケース13は、円筒状に形成される。そして、ダンパケース13は、外筒体12との間においてオイルが溜まるリザーバ室Rを形成する。リザーバ室Rは、ロッド20のシリンダ11に対する相対移動に伴って、シリンダ11(第1油室Y1)内のオイルを吸収したり、シリンダ11(第1油室Y1)内にオイルを供給したりする。また、リザーバ室Rは、外側減衰部100から流れ出たオイルを溜める。また、ダンパケース13は、外側減衰部100との対向位置に、ケース開口部13Hを有する。
〔ロッド20の構成・機能〕
 ロッド20は、軸方向に長く延びる棒状の部材である。ロッド20は、一方側にてピストン部30に接続する。また、ロッド20は、他方側にて図示しない連結部材等を介して車体側に接続する。ロッド20は、内側が空洞になっている中空状、内側に空洞を有さない中実状のいずれでも良い。
〔ピストン部30の構成・機能〕
 ピストン部30は、複数のピストン油路口311を有するピストンボディ31と、ピストン油路口311の他方側を開閉するピストンバルブ32と、ピストンバルブ32とロッド20の一方側端部との間に設けられるスプリング33とを有する。そして、ピストン部30は、シリンダ11内のオイルを第1油室Y1と第2油室Y2とに区画する。
〔ボトムピストン部40の構成・機能〕
 ボトムピストン部40は、バルブシート41と、バルブシート41の他方側に設けられるチェックバルブ部43と、軸方向に設けられる固定部材44と、を有する。そして、ボトムピストン部40は、第1油室Y1とリザーバ室Rとを区分する。
〔外側減衰部100の構成・機能〕
 図2は、第1実施形態の外側減衰部100の断面図である。
 図3は、第1実施形態のコントロールバルブ70およびコントロールバルブシート75の説明図である。
 なお、図3(A)は、コントロールバルブ70およびコントロールバルブシート75の斜視図であり、図3(A)は、コントロールバルブ70およびコントロールバルブシート75の上面図である。
 以下の説明では、図2に示す外側減衰部100の長手方向(シリンダ部10の軸方向に対する交差方向(略直交方向))は、「第2軸方向」と称する。また、第2軸方向において外側減衰部100の左側は、「第2軸内側」と称し、外側減衰部100の右側は、「第2軸外側」と称する。
 また、図2に示す外側減衰部100の上下方向(第2軸方向に交差する方向)は、「第2半径方向」と称する。そして、第2半径方向において、第2軸側は、「第2半径方向内側」と称し、第2軸に対して離れる側は、「第2半径方向外側」と称する。
 図2に示すように、外側減衰部100は、第1実施形態の油圧緩衝装置1において主に減衰力を発生させるメインバルブ部50と、外側減衰部100にて発生させる減衰力の大きさを調整する減衰力調整部60と、を備える。さらに、外側減衰部100は、メインバルブ部50に対して並列流路を形成する連絡部80と、メインバルブ部50および連絡部80に対して連絡路Lからのオイルの流路を形成する接続流路部90と、を備える。そして、外側減衰部100は、外側減衰部100を構成する各種の部品を収容する外側ハウジング100Cを備える。
(メインバルブ部50)
 メインバルブ部50は、オイルの流れを絞るように制御することで減衰力を発生させるメインバルブ51(他のバルブ部の一例、第1バルブ部の一例)と、メインバルブ51と対向しメインバルブ51が接触するメインバルブシート52(第2流路形成部の一例)と、を有する。
 メインバルブ51は、第2半径方向内側に開口部51Hを有し、弾性変形する円盤形状の部材である。メインバルブ51の材料には、例えば鉄などの金属を用いることができる。メインバルブ51は、開口部51Hに連絡部80が貫通する。また、メインバルブ51は、第2半径方向内側にて、メインバルブシート52とスペーサ部材684(後述)とに挟まれる。そして、メインバルブ51は、メインバルブシート52の第2軸外側に対向する。
 そして、メインバルブ51は、連絡部80によって第2半径方向における位置の移動が制限される。また、メインバルブ51の第2半径方向内側は、メインバルブシート52およびスペーサ部材684(後述)によって第2軸方向における移動が制限される。一方、メインバルブ51の第2半径方向外側は、変形することで第2軸方向において移動可能になっている。そして、メインバルブ51は、メインバルブシート52の後述するメイン流路53におけるオイルの流れを絞って減衰力を発生させる。
 メインバルブシート52は、第2半径方向内側に開口部52Hを有し、円柱形状の部材である。そして、メインバルブシート52は、開口部52Hに連絡部80が貫通する。
 メインバルブシート52は、メインバルブ51側(第2軸外側)に、第2半径方向内側に設けられる内側ラウンド521と、第2半径方向外側に設けられる外側ラウンド522とを有する。また、メインバルブシート52は、第2軸方向に貫通して形成されるメイン流路53を有する。
 内側ラウンド521は、メインバルブ51側(第2軸外側)に向けて円環状に突出している。また、第1実施形態では、内側ラウンド521の突出高さは、外側ラウンド522よりも低くなっている。外側ラウンド522は、メインバルブ51側(第2軸外側)に向けて円環状に突出している。そして、内側ラウンド521および外側ラウンド522は、メインバルブ51との接触箇所を形成する。
 メイン流路53(第3流路の一例、一の流路の一例)は、後述する背圧流路77および低速流路78に対して、並列流路を構成する。また、第1実施形態のメイン流路53は、複数設けられる。そして、各々のメイン流路53の第2軸内側の流路口531は、接続流路部90に対向する。また、各々のメイン流路53の第2軸外側の流路口532は、第2軸外側が内側ラウンド521および外側ラウンド522との間に位置する。
(減衰力調整部60)
 減衰力調整部60は、連絡部80におけるオイルの流れを絞って制御するコントロールバルブ70と、コントロールバルブ70と対向しコントロールバルブ70が接触するコントロールバルブシート75と、を有する。また、減衰力調整部60は、コントロールバルブ70をコントロールバルブシート75に対して進退させる進退部61(調整機構部の一例)と、コントロールバルブ70およびコントロールバルブシート75の第2軸外側を覆うキャップ部67と、を有する。さらに、減衰力調整部60は、メインバルブシート52に対するメインバルブ51の変形し易さを変更する背圧形成部68を有している。
-コントロールバルブ70-
 図3(A)に示すように、コントロールバルブ70(バルブ部の一例、第2バルブ部の一例)は、弾性変形するとともに、略円形状の板状部材である。コントロールバルブ70の材料には、例えば鉄などの金属を用いることができる。そして、コントロールバルブ70は、コントロールバルブシート75の第2軸外側に対向して設けられる。
 図3(B)に示すように、コントロールバルブ70は、後述する背圧流路77に対向する背圧流路対向部71と、後述する低速流路78に対向する低速流路対向部72とを有する。さらに、コントロールバルブ70は、第2半径方向内側に設けられコントロールバルブ70を第2軸方向において変形し易くする内側開口部73と、内側開口部73よりも第2半径方向外側に設けられコントロールバルブ70を第2軸方向において変形し易くする外側開口部74と、を有する。
 背圧流路対向部71は、円形状であって板状に形成される。そして、背圧流路対向部71は、背圧流路77の内径よりも大きく形成され、背圧流路ラウンド77Rを覆うことが可能になっている。第1実施形態において、背圧流路対向部71は、コントロールバルブ70の中央部(第2半径方向内側)に形成している。
 低速流路対向部72は、円環状であって板状に形成される。そして、低速流路対向部72は、低速流路78の内径よりも大きく形成され、低速流路ラウンド78Rを覆うことが可能になっている。低速流路対向部72は、背圧流路対向部71よりも第2半径方向外側に形成される。また、低速流路対向部72は、コントロールバルブ70において円環状の領域として形成される。これによって、第1実施形態では、コントロールバルブシート75に対するコントロールバルブ70の周方向における位置にかかわらず、低速流路対向部72は、低速流路78と常に対向するようになっている。
 内側開口部73は、略円弧状に形成される。また、内側開口部73は、第1実施形態では、複数設けられるとともに、周方向において略等間隔に並べられている。なお、以下の説明において、隣り合う2つの内側開口部73の間の部分を、内側腕部73Aと呼ぶ。また、内側開口部73は、コントロールバルブ70において、背圧流路対向部71よりも第2半径方向外側であって低速流路対向部72よりも第2半径方向内側に設けられる。すなわち、内側開口部73は、第2半径方向において、背圧流路対向部71および低速流路対向部72の間に設けられる。
 そして、複数の内側開口部73は、全体として渦状に形成される。すなわち、各々の内側開口部73は、中央部(第2半径方向内側)からの距離が、周方向に向かうに従って長くなるように形成される。また、複数の内側腕部73Aは、全体として渦状に形成される。
 外側開口部74は、略円弧状に形成される。また、外側開口部74は、第1実施形態では、複数設けられるとともに、周方向において略等間隔に並べられている。なお、以下の説明において、隣り合う2つの外側開口部74の間の部分を、外側腕部74Aと呼ぶ。
 そして、複数の外側開口部74は、全体として渦状に形成される。すなわち、各々の外側開口部74は、中央部(第2半径方向内側)からの距離が、周方向に向かうに従って長くなるように形成される。また、複数の外側開口部74は、全体として渦状に形成される。
 また、図3(B)に示すように、外側開口部74は、背圧流路対向部71および低速流路対向部72よりも第2半径方向外側であって、コントロールバルブシート75の外側ラウンド76(後述)の対向部よりも第2半径方向内側に形成される。
 第1実施形態のコントロールバルブ70は、コントロールバルブ70自体の厚みを一定以上にすることでコントロールバルブ70の耐久性を向上させている。一方で、第1実施形態のコントロールバルブ70は、内側腕部73Aが形成される箇所の剛性が低下し、内側腕部73Aが形成される箇所が変形し易くなる。また、第1実施形態のコントロールバルブ70は、外側腕部74Aが形成される箇所の剛性が低下し、外側腕部74Aが形成される箇所が変形し易くなる。
 第1実施形態の油圧緩衝装置1では、単一の部材であるコントロールバルブ70に、背圧流路対向部71および低速流路対向部72を一体的に形成している。
 そして、第1実施形態では、コントロールバルブ70を単一の部材で構成することで、例えばコントロールバルブ70の板厚などを変更してばねレートを調整することにより、容易に減衰力の設定を行えるようにしている。
-コントロールバルブシート75-
 コントロールバルブシート75は、コントロールバルブ70を保持する外側ラウンド76と、後述する背圧室68P(収容室の一例)におけるオイルの圧力を調整するためのオイルの流路を形成する背圧流路77(第1流路の一例)と、低速時のオイルの流路を形成する低速流路78(第2流路の一例、他の流路の一例)と、を有する。
 外側ラウンド76は、第2半径方向外側にて、コントロールバルブ70側(第2軸外側)に向けて環状に突出する。そして、外側ラウンド76は、キャップ部67との間にコントロールバルブ70の第2半径方向外側を挟んで保持する箇所を形成する。
 背圧流路77は、コントロールバルブシート75において第2軸方向に貫通して設けられる。そして、背圧流路77は、第2軸内側にて連絡部80の連絡室82に連絡し、第2軸外側にてコントロールバルブ70と対向する。
 また、背圧流路77は、コントロールバルブ70側(第2軸外側)に向けて環状に突出する背圧流路ラウンド77Rを有する。
 そして、第1実施形態の油圧緩衝装置1において、背圧流路77は、メインバルブ51によるメイン流路53の開き易さを調整する背圧室68Pのオイルの圧力を制御する流路である。
 低速流路78は、コントロールバルブシート75において第2軸方向に貫通して設けられる。また、低速流路78は、複数設けられ、背圧流路77に対して第2半径方向外側に配置される。そして、低速流路78は、第2軸内側にて連絡部80の低速連絡路85に連絡し、第2軸外側にてコントロールバルブ70と対向する。
 また、低速流路78は、コントロールバルブ70側(第2軸外側)に向けて環状に突出する低速流路ラウンド78Rを有する。
 また、外側ラウンド76の突出高さは、背圧流路ラウンド77Rおよび低速流路ラウンド78Rよりも高くなっている。また、背圧流路ラウンド77Rの突出高さは、低速流路ラウンド78Rよりも高くなっている。
 なお、第1実施形態において、背圧流路ラウンド77Rの突出高さは、低速流路ラウンド78Rよりも高くなっていれば良く、低速流路ラウンド78Rが周囲よりも必ずしも突出していなくても良い。
 そして、第1実施形態の油圧緩衝装置1において、低速流路78は、メインバルブ51を開いてメイン流路53におけるオイルの流れを生じさせるピストン部30の移動速度よりも低速時に、減衰力調整部60におけるオイルの流れを可能にする流路である。
 第1実施形態の油圧緩衝装置1では、単一の部材であるコントロールバルブシート75に、背圧流路77および低速流路78を一体的に形成している。そして、コントロールバルブシート75では、背圧流路77および低速流路78が分離されるとともに、並列流路を構成している。
-進退部61-
 進退部61は、電磁石を用いて、後述のプランジャ64を進退させるソレノイド部62とプランジャ64と進退部材65との間に設けられる圧縮コイルバネ63と、第2軸方向に沿って進退するプランジャ64と、を有する。さらに、進退部61は、コントロールバルブ70をコントロールバルブシート75に対して押し付ける進退部材65と、ソレノイド部62の非通電時に背圧室68Pのオイルの圧力を高める非通電時制御部66とを有する。また、進退部61は、進退部61を構成する部品を収容したり、支持したりするソレノイドケース60Cを有している。
 ソレノイド部62は、電磁石が通電状態になることで、プランジャ64を進退部材65に向けて押し出す。
 圧縮コイルバネ63は、第2軸内側にて進退部材65に接触し、第2軸外側にてプランジャ64に接続する。そして、圧縮コイルバネ63は、進退部材65とプランジャ64とが互いに離れる方向の力を、進退部材65およびプランジャ64にそれぞれ与える。
 プランジャ64は、ソレノイド部62が通電状態のときに進退部材65に向けて押し出され、ソレノイド部62が非通電状態のときに圧縮コイルバネ63により引き戻される。
 進退部材65は、コントロールバルブ70側(第2軸内側)に向けて突出するバルブ接触部651を有している。バルブ接触部651は、複数設けられ、周方向において略等間隔に配置される。さらに、バルブ接触部651は、低速流路対向部72に対向する位置に形成されている。そして、バルブ接触部651は、コントロールバルブ70の低速流路対向部72に接触する。
 また、隣り合う2つのバルブ接触部651との間には、開口部652が形成される。開口部652は、進退部材65の第2半径方向内側から第2半径方向外側に向けたオイルの流れを可能にする。
 非通電時制御部66は、プランジャ64の第2軸内側の端部に固定されている。従って、非通電時制御部66は、プランジャ64の動きに従って移動する。そして、非通電時制御部66は、第2軸外側に移動した際に、キャップ部67の後述する半径方向流路672に対向し、第2軸内側に移動した際に、半径方向流路672から外れた状態を形成する。
 さらに、非通電時制御部66は、キャップ部67との間にオイルの流れを可能にするオリフィス流路66Fを形成する。このオリフィス流路66Fは、非通電時制御部66の第2軸方向における位置にかかわらず常に形成される。
 また、非通電時制御部66は、第2軸方向に貫通する貫通流路661を有している。貫通流路661のオイルの流路断面積は、上述したオリフィス流路66Fよりも大きい。
 そして、第1実施形態の非通電時制御部66(抑制部の一例)は、ソレノイド部62が非通電状態である場合に、キャップ部67の後述する半径方向流路672に対向し、貫通流路661ではなくオリフィス流路66Fだけが半径方向流路672へのオイルの流路となるようにする。これによって、非通電時制御部66は、ソレノイド部62が非通電状態である場合に、後述する背圧室68Pから背圧流路77を介したオイルの流出を抑制する。
-キャップ部67-
 キャップ部67は、第2半径方向内側に形成されるキャップ内油室671と、第2半径方向に貫通する半径方向流路672と、コントロールバルブ70、コントロールバルブシート75および連絡部80を保持する保持部673と、を有する。
 キャップ内油室671は、コントロールバルブ70の第2軸外側に形成される。また、キャップ内油室671は、プランジャ64、進退部材65および非通電時制御部66が第2軸方向において移動可能な領域を形成する。
 半径方向流路672は、第2半径方向内側にてキャップ内油室671に連絡し、第2半径方向外側にて後述するハウジング内流路111に連絡する。
 保持部673は、半径方向内側に、コントロールバルブ70、コントロールバルブシート75および連絡部80が圧入されることで、これらの部材を保持する。
-背圧形成部68-
 背圧形成部68(押付部の一例)は、メインバルブ51に対してメインバルブシート52の逆側(第2半径外側)に背圧室68Pを形成するケース部681と、キャップ部67とケース部681との間を液密するシール部682と、を有する。さらに、背圧形成部68は、ケース部681をメインバルブ51に押し付ける力をケース部681に与えるケース戻バネ683と、ケース戻バネ683とメインバルブ51との間に介在するスペーサ部材684と、を有する。
 ケース部681は、第2軸内側に、メインバルブ51に接触するメインバルブ接触部681Tを有している。また、ケース部681は、第2軸方向において移動可能になっている。そして、ケース部681は、背圧室68Pにおけるオイルの圧力によってメインバルブ51をメイン流路53に押し付ける。また、ケース部681は、背圧室68Pにおけるオイルの圧力に応じて、メインバルブ51に付与する押付力が変化するようになっている。
 シール部682には、ゴムなどの弾性変形する樹脂材料を用いることができる。そして、シール部682は、背圧室68P内のオイルの外側への流出を抑制するとともに、ケース部681を第2軸方向において移動可能に保持する。
-連絡部80-
 連絡部80は、連絡路Lからのオイルが流入する流入流路81と、コントロールバルブシート75の背圧流路77に連絡する連絡室82と、連絡室82と背圧室68Pとをつなぐ背圧連絡路83と、を有する。さらに、連絡部80は、流入流路81と連絡室82とをつなぐ背圧オリフィス流路84と、コントロールバルブシート75の低速流路78と連絡室82とをつなぐ低速連絡路85と、を有する。
 流入流路81は、第2軸方向に沿って形成される。
 連絡室82は、第2軸内側にて背圧オリフィス流路84に連絡し、第2軸外側にて背圧流路77に連絡し、第2半径方向において背圧連絡路83に対向する。
 背圧連絡路83は、第2半径方向内側にて連絡室82に連絡し、第2半径方向外側にて背圧室68Pに連絡する。
 背圧オリフィス流路84は、オイルの流路断面積が背圧連絡路83および背圧流路77よりも小さく形成される。これにより、背圧オリフィス流路84は、背圧室68P内のオイルが背圧オリフィス流路84を通って流入流路81へと戻り難くしている。
 低速連絡路85は、低速流路78よりもオイルの流路断面積が大きくなっている。第1実施形態では、後述する低速時におけるオイルの流れについては、コントロールバルブシート75の低速流路78において調整するようにしている。従って、低速流路78よりもオイルの流れにおける上流側にてオイルの流れを絞らないようにしている。
-接続流路部90-
 接続流路部90は、第2半径方向内側に設けられる内側流路91と、第2半径方向外側に設けられる外側流路92とを有する。
 内側流路91は、第2軸内側にて外筒体開口部12Hに連絡し、第2軸外側にて連絡部80の流入流路81およびメインバルブシート52のメイン流路53にそれぞれ連絡する。
 外側流路92は、第1実施形態では複数設けられている。そして、外側流路92は、第2軸内側にてケース開口部13Hに連絡し、第2軸外側にてハウジング内流路111に連絡する。
(外側ハウジング100C)
 外側ハウジング100Cは、略円筒形状の部材である。外側ハウジング100Cは、第2軸内側にて、例えば溶接等によってダンパケース13に固定される。
 また、外側ハウジング100Cは、メインバルブ部50および減衰力調整部60の第2半径方向外側に、外側ハウジング100C内におけるオイルの流路であるハウジング内流路111を形成する。
 ハウジング内流路111には、キャップ部67の半径方向流路672から流れ出たオイル、およびメインバルブ51を開いてメインバルブシート52のメイン流路53から流れ出たオイルが流入するようになっている。
[減衰力調整部60の調整動作]
 次に、減衰力調整部60における調整動作について説明する。
 図4は、コントロールバルブ70、コントロールバルブシート75および進退部材65の動作の説明図である。
 図4に示すように、進退部材65を第2軸内側に向けて押し込むことにより、コントロールバルブ70がコントロールバルブシート75に押し付けられる。そして、進退部材65の押付力は、ソレノイド部62(図2参照)に流す電流量に応じて変化する。
 例えば、減衰力調整部60において、進退部材65の押付力を最も大きくした状態を形成する。このとき、コントロールバルブ70は、コントロールバルブシート75に対して最も強く押し付けられる。具体的には、図4に示すように、進退部材65のバルブ接触部651は、低速流路対向部72を低速流路78に近づけ、低速流路78(低速流路ラウンド78R)に低速流路対向部72を押し付ける。
 さらに、第1実施形態の低速流路対向部72は、内側腕部73Aを介して背圧流路対向部71につながっている。そのため、進退部材65のバルブ接触部651が低速流路対向部72を移動させることに伴って、背圧流路対向部71が背圧流路77に近づく。そして、背圧流路77には、背圧流路対向部71(背圧流路ラウンド77R)が押し付けられる。ここで、第1実施形態では、背圧流路77は、低速流路78よりも高く突出している。そのため、第1実施形態では、背圧流路対向部71によって、背圧流路77がより確実に押さえ付けられた状態が形成される。
 以上のようにして、背圧流路対向部71が背圧流路ラウンド77Rに接触し、背圧流路77が閉じられる。同時に、低速流路対向部72が低速流路ラウンド78Rに接触し、低速流路78が閉じられる。
 また、例えば、減衰力調整部60において、進退部材65の押付力を最も小さくした状態を形成する。このとき、減衰力調整部60では、背圧流路対向部71が背圧流路ラウンド77Rから離れ、背圧流路77が開けられた状態になる。同時に、低速流路対向部72が低速流路ラウンド78Rから離れ、低速流路78が開けられた状態になる。
 さらに、例えば、減衰力調整部60において、進退部材65の押付力を最も小さくする状態と最も大きくする状態との間の状態にする。このとき、減衰力調整部60では、背圧流路対向部71は、押付力が最も大きい状態よりは背圧流路ラウンド77Rから離れ、押付力が最も小さい状態よりは背圧流路ラウンド77Rに近づく。同時に、低速流路対向部72は、押付力が最も大きい状態よりは低速流路ラウンド78Rから離れ、押付力が最も小さい状態よりは低速流路ラウンド78Rに近づく。
 なお、上述した第1実施形態では、低速流路78が背圧流路77よりも突出高さが低く、低い方の低速流路78に対向する低速流路対向部72を進退部材65によって押すようにしている。これに対して、背圧流路77の突出高さを低速流路78よりも低くした場合には、低い方の背圧流路77に対向する背圧流路対向部71を進退部材65によって押すようにすれば良い。
 さらに、進退部材65のバルブ接触部651を背圧流路対向部71および低速流路対向部72の両方に接触させて、低速流路78および背圧流路77に対して進退させても良い。
[油圧緩衝装置1の動作]
 図5は、第1実施形態の油圧緩衝装置1の動作説明図である。なお、図5(A)は伸張行程時におけるオイルの流れを示し、図5(B)は圧縮行程時におけるオイルの流れを示す。
 まず、油圧緩衝装置1の伸張行程時における動作を説明する。
 図5(A)に示すように、伸張行程時において、ロッド20は、シリンダ11に対して他方側に移動する。このとき、ピストンバルブ32は、ピストン油路口311を塞いだままである。また、ピストン部30の他方側への移動によって、第2油室Y2の容積は、減少する。そして、第2油室Y2のオイルは、シリンダ開口11Hから連絡路Lに流れ出る。
 さらに、オイルは、連絡路Lおよび外筒体開口部12Hを通って、外側減衰部100に流れ込む。そして、外側減衰部100において、オイルは、先ず、接続流路部90の内側流路91に流れ込む。その後、外側減衰部100において、メインバルブ51またはコントロールバルブ70において減衰力が発生する。なお、このときのオイルの流れについては、後に詳しく説明する。
 その後、メインバルブ51またはコントロールバルブ70に流れたオイルは、ハウジング内流路111に流れ出る。さらに、オイルは、接続流路部90の外側流路92を通ってケース開口部13Hからリザーバ室Rに流れ込む。
 また、第1油室Y1の圧力は、リザーバ室Rに対して相対的に低くなる。そのため、リザーバ室Rのオイルは、ボトムピストン部40を通って、第1油室Y1に流れ込む。
 次に、油圧緩衝装置1の圧縮行程時における動作を説明する。
 図5(B)に示すように、圧縮行程時において、ロッド20は、シリンダ11に対して一方側に相対移動する。ピストン部30においては、第1油室Y1と第2油室Y2との差圧によって、ピストン油路口311を塞ぐピストンバルブ32が開く。そして、第1油室Y1のオイルは、ピストン油路口311を通って第2油室Y2に流れ出る。ここで、第2油室Y2には、ロッド20が配置されている。そのため、第1油室Y1から第2油室Y2に流れ込むオイルは、ロッド20の体積分だけ過剰になる。従って、このロッド20の体積分に相当する量のオイルが、シリンダ開口11Hから連絡路Lに流出する。
 さらに、オイルは、連絡路L、外筒体開口部12Hを通って、外側減衰部100に流れ込む。なお、外側減衰部100におけるオイルの流れは、上述した伸張行程時におけるオイルの流れと同様である。すなわち、第1実施形態の油圧緩衝装置1では、圧縮行程時および伸張行程時との両方において、外側減衰部100においてオイルが流れる方向は同じになる。
 また、ロッド20がシリンダ11に対して一方側に相対移動することで、第1油室Y1のオイルは、ボトムピストン部40におけるバルブシート41に形成される流路に流れ込む。
 以上のとおり、第1実施形態の油圧緩衝装置1では、圧縮行程時および伸張行程時の両行程において外側減衰部100にて減衰力を発生させる。
 続いて、外側減衰部100におけるオイルの流れについて詳細に説明する。
 まず、進退部材65の押付力が比較的小さい状態でのオイルの流れを説明する。なお、以下では、コントロールバルブ70が、背圧流路ラウンド77Rおよび低速流路ラウンド78Rから離れた状態の例を用いて説明する。
 図6は、外側減衰部100におけるオイルの流れの説明図である。なお、図6(A)は、進退部材65の押付力が比較的小さい状態であって低速時のオイルの流れを示し、図6(B)は、進退部材65の押付力が比較的小さい状態であって高速時のオイルの流れを示す。
(低速時)
 図6(A)に示すように、ピストン部30の移動速度が低速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。ここで、ピストン部30の移動速度が低速であるため、メイン流路53においてメインバルブ51を開くオイルの流れは生じない。
 一方、流入流路81に流れ込んだオイルは、低速連絡路85、低速流路78、内側開口部73または外側開口部74(図3参照)、貫通流路661またはオリフィス流路66F、半径方向流路672の順に流れる。そして、オイルは、ハウジング内流路111に流れ出る。
 以上のように、ピストン部30の移動速度が低速である場合、減衰力は、コントロールバルブシート75の低速流路78におけるオイルの流れにより発生する。
(高速時)
 図6(B)に示すように、ピストン部30の移動速度が高速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。ここで、上述した低速時のオイルの経路においては、流路断面積が比較的小さい低速流路78があり、オイルが流れ難くなる。一方で、メイン流路53に流れ込んだオイルは、メインバルブ51を開いてハウジング内流路111に流れ出る。
 以上のように、ピストン部30の移動速度が高速である場合、減衰力は、メインバルブシート52のメイン流路53におけるオイルの流れにより発生する。
 また、流入流路81に流れ込んだオイルは、背圧オリフィス流路84および背圧連絡路83を流れて、背圧室68Pに流れ込む。ただし、背圧室68Pに連絡する背圧流路77は、コントロールバルブ70によって開かれた状態になっている。そのため、背圧室68Pの圧力は、背圧流路77に対してコントロールバルブ70が押さえ付けられた状態の場合と比較して低くなっている。そして、ケース部681(図2参照)に接触しているメインバルブ51は、メイン流路53を比較的開き易くなっている。従って、進退部材65の押付力が比較的小さい状態では、メインバルブ51を開くメイン流路53におけるオイルの流れにより発生する減衰力は、比較的小さくなる。
 次に、進退部材65の押付力が比較的大きい状態でのオイルの流れを説明する。
 なお、以下では、コントロールバルブ70が、背圧流路ラウンド77Rおよび低速流路ラウンド78Rに押さえ付けられた状態の例を用いて説明する。
 図7は、外側減衰部100におけるオイルの流れの説明図である。なお、図7(A)は、進退部材65の押付力が比較的大きい状態であって低速時のオイルの流れを示し、図7(B)は、進退部材65の押付力が比較的大きい状態であって高速時のオイルの流れを示す。
(低速時)
 図7(A)に示すように、ピストン部30の移動速度が低速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。ここで、ピストン部30の移動速度が低速であるため、メインバルブ51を開いてメイン流路53を流れるオイルの流れは生じない。
 一方、流入流路81に流れ込んだオイルは、低速連絡路85を通り、低速流路78に流れる。そして、オイルは、コントロールバルブ70を開きながら低速流路78を流れる。さらに、オイルは、内側開口部73または外側開口部74(図3参照)、貫通流路661またはオリフィス流路66F、半径方向流路672の順に流れる。そして、オイルは、ハウジング内流路111に流れ出る。
 以上のように、ピストン部30の移動速度が低速である場合、減衰力は、コントロールバルブシート75の低速流路78におけるオイルの流れにより発生する。この低速流路78を流れる際の減衰力は、低速流路78に対してコントロールバルブ70が離れている場合と比較して高くなる。
(高速時)
 図7(B)に示すように、ピストン部30の移動速度が高速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。ここで、上述した低速時のオイルの経路においては、流路断面積が比較的小さい低速流路78があり、オイルが流れ難くなる。一方で、メイン流路53に流れ込んだオイルは、メインバルブ51を開いてハウジング内流路111に流れ出る。
 以上のように、ピストン部30の移動速度が高速である場合、減衰力は、メインバルブシート52のメイン流路53におけるオイルの流れにより発生する。
 また、流入流路81に流れ込んだオイルは、背圧オリフィス流路84および背圧連絡路83を流れて、背圧室68Pに流れ込む。そして、背圧室68Pに連絡する背圧流路77は、コントロールバルブ70により押さえ付けられた状態になっている。そのため、背圧室68Pの圧力は、背圧流路77が開かれた状態の場合と比較して高くなる。そして、ケース部681に接触しているメインバルブ51は、メイン流路53を比較的開き難くなっている。従って、進退部材65の押付力が比較的高い状態では、メインバルブ51を開くメイン流路53におけるオイルの流れにより発生する減衰力は、比較的大きくなる。
 上述したように、第1実施形態の油圧緩衝装置1では、進退部材65を操作することで、低速時における減衰力の調整と、高速時における減衰力の調整との両方を行うようにしている。すなわち、進退部材65によってコントロールバルブシート75に対するコントロールバルブ70の押付力を変更することで、低速時におけるオイルの流路である低速流路78の流路面積と、高速時におけるオイルの流路面積に係わる背圧室68Pの圧力を調整する背圧流路77の流路面積とを調整するようになっている。
 また、第1実施形態の油圧緩衝装置1では、単一のコントロールバルブ70によって背圧流路77におけるオイルの流れと低速流路78におけるオイルの流れとを同時に制御することができる。特に、第1実施形態の油圧緩衝装置1では、低速流路78における低速時のオイルの流れを制御できるため、メインバルブ51がメイン流路53を開くとき(所謂、ブローポイント)の調整ができるようになり、従来技術よりも、きめの細かい減衰力の制御が可能になっている。
 なお、上述した動作例では、進退部材65の押付力が比較的大きい状態と比較的小さい状態との2パターンについて説明したが、上述した2パターンに限定されない。ソレノイド部62に対する電流量に応じて進退部材65の押付力を調整可能な範囲で任意に設定することができる。そして、この設定に伴って、第1実施形態の減衰力調整部60では、低速時における減衰力と高速時における減衰力とについても複数段階の調整が可能になる。
 次に、ソレノイド部62が非通電状態となっている場合におけるオイルの流れを説明する。
 図8は、外側減衰部100におけるオイルの流れの説明図である。なお、図8(A)は、ソレノイド部62が非通電状態であって低速時のオイルの流れを示し、図8(B)は、ソレノイド部62が非通電状態であって高速時のオイルの流れを示す。
 図8(A)および図8(B)に示すように、ソレノイド部62が非通電状態であると、圧縮コイルバネ63によってプランジャ64が第2軸外側に押し戻される。これに伴って、プランジャ64に固定された非通電時制御部66は、ソレノイドケース60Cに押し付けられた状態になる。そして、非通電時制御部66は、キャップ部67の半径方向流路672に対向する。さらに、非通電時制御部66の貫通流路661の第2軸外側の端部は、ソレノイドケース60Cによって閉じられた状態になる。
(低速時)
 図8(A)に示すように、ピストン部30の移動速度が低速である場合、図6(A)を参照しながら説明したオイルの流れと同様に、流入流路81に流れ込んだオイルは、低速連絡路85、低速流路78、内側開口部73または外側開口部74、オリフィス流路66F、半径方向流路672の順に流れる。そして、オイルは、ハウジング内流路111に流れ出る。
 そして、ピストン部30の移動速度が低速である場合、減衰力は、オリフィス流路66Fにおけるオイルの流れにより発生する。第1実施形態では、オリフィス流路66Fの流路断面積は、低速流路78よりも小さくなっている。従って、オリフィス流路66Fにおけるオイルの流れによって生じる減衰力は、例えば低速流路78におけるオイルの流れにより生じる減衰力よりも大きくなる。
(高速時)
 図8(B)に示すように、ピストン部30の移動速度が高速である場合、図7(B)を参照しながら説明したオイルの流れと同様に、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。ここで、上述した低速時のオイルの経路においては、流路断面積が比較的小さい低速流路78があり、オイルが流れ難くなる。従って、メイン流路53に流れ込んだオイルは、メインバルブ51を開いてハウジング内流路111に流れ出る。
 以上のように、ピストン部30の移動速度が高速である場合、減衰力は、メインバルブシート52のメイン流路53におけるオイルの流れにより発生する。
 また、流入流路81に流れ込んだオイルは、背圧オリフィス流路84および背圧連絡路83を流れて、背圧室68Pに流れ込む。ここで、背圧室68Pは、背圧流路77を介してキャップ内油室671と連絡している。そして、キャップ内油室671とハウジング内流路111との間のオイルの流れは、オリフィス流路66Fを通る必要がある。そのため、背圧室68Pからのオイルの流出が抑制され、背圧室68Pの圧力が比較的高い状態に維持される。そして、ケース部681に接触しているメインバルブ51は、メイン流路53を比較的開き難くなっている。従って、ソレノイド部62が非通電状態では、メインバルブ51を開くメイン流路53におけるオイルの流れにより発生する減衰力は、比較的大きくなる。
 以上のとおり、第1実施形態の油圧緩衝装置1では、ソレノイド部62に通電が行われない状態になった場合であっても、低速時における減衰力および高速時における減衰力の両方が比較的高くなるようにしている。
<第2実施形態>
 次に、第2実施形態の外側減衰部100の減衰力調整部60について説明する。
 図9は、第2実施形態の減衰力調整部60の説明図である。
 第2実施形態の減衰力調整部60は、コントロールバルブ270の構成が上述した第1実施形態のコントロールバルブ70とは異なる。
 コントロールバルブ270は、第1コントロールバルブ270Aと第2コントロールバルブ270Bと、を有している。第2実施形態の外側減衰部100では、コントロールバルブシート75に対し、第2軸内側から第2軸外側に向けて、第1コントロールバルブ270A、第2コントロールバルブ270Bの順に設けられる。
 第1コントロールバルブ270Aは、弾性変形するとともに、概形が円形状に形成された板状部材である。そして、第1コントロールバルブ270Aは、背圧流路77に対向する円形状の背圧流路対向部271と、背圧流路対向部271を支持する複数(第2実施形態においては4本)の腕部272とを有する。
 第2コントロールバルブ270Bは、弾性変形するとともに、概形が円形状に形成された板状部材である。そして、第2コントロールバルブ270Bは、低速流路78に対向する円環状の低速流路対向部273と、低速流路対向部273を支持する複数(第2実施形態においては2本)の腕部274とを有する。
 以上のように構成される第2実施形態の減衰力調整部60においては、第2コントロールバルブ270Bに進退部材65のバルブ接触部651を接触させて、第2コントロールバルブ270Bおよび第1コントロールバルブ270Aをコントロールバルブシート75に対して進退させる。そして、第2実施形態の外側減衰部100では、第1コントロールバルブ270Aの背圧流路対向部271による背圧流路77のオイルの流れの制御と、第2コントロールバルブ270Bの低速流路対向部273による低速流路78のオイルの流れの制御とを単一の進退部材65によって同時に行えるようにしている。
<第3実施形態>
 次に、第3実施形態の外側減衰部300について説明する。なお、第3実施形態の説明において、上述した他の実施形態と同様な構成については、同一の符号を付してその詳細な説明を省略する。
 図10は、第3実施形態の外側減衰部300の断面図である。
 図11は、第3実施形態の外側減衰部300の斜視断面図である。
 図12は、第3実施形態のコントロールバルブ370およびコントロールバルブシート75の説明図である。
 なお、図12(A)は、コントロールバルブ370およびコントロールバルブシート375の斜視図であり、図12(B)は、コントロールバルブ370およびコントロールバルブシート375の上面図である。
〔外側減衰部300の構成・機能〕
 図10に示すように、外側減衰部300は、第3実施形態の油圧緩衝装置1において主に減衰力を発生させるメインバルブ部50と、外側減衰部300にて発生させる減衰力の大きさを調整する減衰力調整部360と、を備える。さらに、外側減衰部300は、メインバルブ部50に対して並列流路を形成する連絡部380と、接続流路部90と、外側ハウジング100Cを備える。
(減衰力調整部360)
 図11に示すように、第3実施形態の減衰力調整部360は、進退部61と、メインバルブ部50などの各種部品を覆うキャップ部367と、背圧形成部68とを有している。また、減衰力調整部360は、連絡部380におけるオイルの流れを絞って制御するコントロールバルブ370と、コントロールバルブ370と対向しコントロールバルブ370が接触するコントロールバルブシート375と、オイルの流れを絞る絞り部材379と、を有する。
 図10に示すように、キャップ部367は、メインバルブ部50、コントロールバルブ370、コントロールバルブシート375、絞り部材379、プランジャ64の第2軸内側、および進退部材65を内側に収容する。また、キャップ部367は、ソレノイドケース60Cと接続流路部90との間に挟み込まれることで固定される。
 そして、キャップ部367は、ソレノイドケース60Cとの間にて、オイルが流れるキャップ流路367Rを形成する。キャップ流路367Rは、後述の開口部367Hに連絡するとともに、ハウジング内流路111に連絡する。
 さらに、キャップ部367は、第2軸外側の端部に、プランジャ64が貫通して設けられる開口部367Hを有する。開口部367Hに対しては、進退部材65が進退する。そして、開口部367Hは、進退部材65が離れた状態で、コントロールバルブ370側とキャップ流路367Rとの間におけるオイルの流れを可能にする。一方、開口部367Hは、進退部材65が接触した状態で、コントロールバルブ370側とキャップ流路367Rとの間におけるオイルの流れを制限する。
-コントロールバルブ370-
 図12(A)に示すように、コントロールバルブ370は、弾性変形するとともに、略円形状の板状部材である。コントロールバルブ370の材料には、例えば鉄などの金属を用いることができる。そして、コントロールバルブ370は、コントロールバルブシート375の第2軸外側に対向して設けられる。
 図12(B)に示すように、コントロールバルブ370は、環状に形成される外側環状部370C(被保持部の一例)と、背圧流路77に対向する背圧流路対向部371(第2制御部の一例)と、低速流路78に対向する低速流路対向部372(第1制御部の一例)とを有する。さらに、コントロールバルブ370は、第2半径方向内側に設けられコントロールバルブ370を第2軸方向において変形し易くする内側開口部373と、内側開口部373よりも第2半径方向外側に設けられコントロールバルブ370を第2軸方向において変形し易くする外側開口部374と、を有する。
 外側環状部370Cは、第2半径方向外側に設けられる。そして、外側環状部370Cは、キャップ部367とコントロールバルブシート375との間に挟み込まれる部分として機能する。第3実施形態のコントロールバルブ370は、外側環状部370Cが挟み込まれることで、コントロールバルブシート375に保持される(図10参照)。
 背圧流路対向部371は、円形状であって板状に形成される。そして、背圧流路対向部371は、背圧流路77の内径よりも大きく形成され、背圧流路ラウンド77Rを覆うことが可能になっている。第3実施形態において、背圧流路対向部371は、コントロールバルブ370の中央部(第2半径方向内側)に形成している。
 低速流路対向部372は、円環状であって板状に形成される。そして、低速流路対向部372は、低速流路78の内径よりも大きく形成され、低速流路ラウンド78Rを覆うことが可能になっている。低速流路対向部372は、背圧流路対向部371よりも第2半径方向外側に形成される。また、低速流路対向部372は、コントロールバルブ370において円環状の領域として形成される。これによって、第3実施形態では、コントロールバルブシート375に対するコントロールバルブ370の周方向における位置にかかわらず、低速流路対向部372は、低速流路78と常に対向するようになっている。
 内側開口部373は、コントロールバルブ370の周方向に沿って長く延びて設けられる。また、内側開口部373は、複数設けられる。そして、隣り合う2つの内側開口部373の間には、内側腕部373A(第2支持部の一例)が形成される。各々の内側腕部373Aは、少なくとも一部が周方向に沿って延びるように形成される。第3実施形態において、複数の内側腕部373Aは、全体として、螺旋状に形成されている。また、内側腕部373Aは、コントロールバルブ370において、背圧流路対向部371よりも第2半径方向外側であって低速流路対向部372よりも第2半径方向内側に設けられる。すなわち、内側腕部373Aは、第2半径方向において、背圧流路対向部371および低速流路対向部372の間に設けられる。
 また、内側腕部373Aは、背圧流路対向部371に近い側の幅B11が、背圧流路対向部371から遠い側の幅B12よりも大きくなっている。さらに、内側腕部373Aは、低速流路対向部372に近い側の幅B13が、低速流路対向部372から遠い側の幅B12よりも大きくなっている。
 図12(A)に示すように、外側開口部374は、コントロールバルブ370の周方向に延びて設けられる。また、外側開口部374は、複数設けられるとともに、周方向において略等間隔に並べられている。さらに、第3実施形態のコントロールバルブ370では、第2半径方向において、異なる2つの外側開口部374が重なるように配置されている。
 そして、図12(B)に示すように、外側開口部374は、低速流路対向部372よりも第2半径方向外側であって、外側環状部370Cよりも第2半径方向内側に形成される。
 また、隣り合う2つの外側開口部374の間には、外側腕部374A(第1支持部の一例)が形成される。そして、各々の外側腕部374Aは、少なくとも一部が周方向に沿って延びるように形成される。また、第3実施形態において、複数の外側腕部374Aは、全体として、螺旋状に形成されている。そして、外側腕部374Aは、コントロールバルブ370において、低速流路対向部372の第2半径方向外側であって、外側環状部370Cよりも第2半径方向内側に設けられる。すなわち、外側腕部374Aは、第2半径方向において、低速流路対向部372および外側環状部370Cの間に設けられる。
 さらに、図12(A)に示すように、各々の外側開口部374は、外側腕部374Aの第2半径方向内側に形成される内側領域3741の幅H1が、外側腕部374Aの第2半径方向外側に形成される外側領域3742の幅H2よりも大きくなっている。そして、外側開口部374の開口の面積は、コントロールバルブ370に形成される他の開口と比較して、最も大きくなっている。第3実施形態では、外側開口部374の内側領域3741がコントロールバルブ370を貫通して流れるオイルの主な流路を構成する。
 また、第3実施形態のコントロールバルブ370において、外側腕部374Aは、開口面積がより大きい外側開口部374の内側領域3741の第2半径方向外側に配置している。第3実施形態のコントロールバルブ370においては、後述するようにオイルが流れた際、第2半径方向外側における流速が第2半径方向内側よりも小さくなる。そこで、第3実施形態では、外側腕部374Aを外側開口部374の内側領域3741よりも第2半径方向外側に配置することで、剛性がより低く構成された外側腕部374Aに対して、外側開口部374を流れるオイルの動圧の影響が小さくなるようにしている。
 さらに、図12(B)に示すように、外側腕部374Aは、低速流路対向部372に近い側の幅B21が、低速流路対向部372から遠い側の幅B22よりも大きくなっている。さらに、外側腕部374Aは、外側環状部370Cに近い側の幅B23が、外側環状部370Cから遠い側の幅B22よりも大きくなっている。
 そして、第3実施形態のコントロールバルブ370は、コントロールバルブ370自体の厚みを一定以上にすることでコントロールバルブ370の耐久性を向上させている。一方で、第3実施形態のコントロールバルブ370は、内側腕部373Aや外側腕部374Aが形成される箇所の剛性が低下し、内側腕部373Aや外側腕部374Aが形成される箇所が変形し易くなる。特に、第3実施形態では、例えば内側腕部373Aや外側腕部374Aは、それぞれ周方向に沿って延びるように形成され、変形可能な腕の長さが確保され、より変形し易くなっている。
-コントロールバルブシート375-
 図12(A)に示すように、コントロールバルブシート375は、コントロールバルブ370を保持する外側ラウンド76と、背圧室68Pにおけるオイルの圧力を調整するためのオイルの流路を形成する背圧流路77と、低速時のオイルの流路を形成する低速流路78と、を有する。さらに、図10に示すように、コントロールバルブシート375は、背圧流路77に連絡する連絡室382と、連絡室382と背圧室68Pとをつなぐ背圧連絡路383と、低速流路78と連絡室382とをつなぐ低速連絡路385と、を有する。
 図11に示すように、連絡室382は、第2軸内側にて背圧オリフィス流路384に連絡し、第2軸外側にて背圧流路77に連絡し、第2半径方向において背圧連絡路383に対向する。
 背圧連絡路383は、第2半径方向内側にて連絡室382に連絡し、第2半径方向外側にて背圧室68Pに連絡する。
 低速連絡路385は、低速流路78よりもオイルの流路断面積が大きくなっている。第3実施形態では、後述する低速時におけるオイルの流れについては、低速流路78において調整するようにしている。従って、低速流路78よりもオイルの流れにおける上流側にてオイルの流れを絞らないようにしている。
-絞り部材379-
 図11に示すように、絞り部材379は、流入流路81と連絡室382とをつなぐ背圧オリフィス流路384を有する。背圧オリフィス流路384は、オイルの流路断面積が背圧連絡路383および背圧流路77よりも小さく形成される。これにより、背圧オリフィス流路384は、背圧室68P内のオイルが背圧オリフィス流路384を通って流入流路81へと戻り難くしている。
(連絡部380)
 第3実施形態の連絡部380は、連絡路Lからのオイルが流入する流入流路81と、コントロールバルブシート375と接続する接続部389と、を有する。
 接続部389の内径は、コントロールバルブシート375の第2軸内側の外径と略等しくなっている。そして、接続部389には、コントロールバルブシート375の第2軸内側の端部が圧入される。
 なお、連絡部380は、コントロールバルブシート375の内側に圧入されても良い。
 以上のように構成される第3実施形態の減衰力調整部360における調整動作は、第1実施形態と同様である。すなわち、進退部材65を第2軸内側に向けて押し込むことにより、コントロールバルブ370がコントロールバルブシート375に押し付けられる。そして、進退部材65の押付力は、ソレノイド部62(図10参照)に流す電流量に応じて変化する。
 また、第3実施形態の油圧緩衝装置1の動作についても、第1実施形態の油圧緩衝装置1と同様である。すなわち、油圧緩衝装置1の伸張行程時には、外側減衰部300にて、メインバルブ51またはコントロールバルブ370において減衰力が発生する。また、油圧緩衝装置1の圧縮行程時には、外側減衰部300にて、メインバルブ51またはコントロールバルブ370において減衰力が発生する。
 次に、第3実施形態の外側減衰部300におけるオイルの流れについて詳細に説明する。
 まず、進退部材65の押付力が比較的小さい状態でのオイルの流れを説明する。なお、以下では、コントロールバルブ370が、背圧流路ラウンド77Rおよび低速流路ラウンド78Rから離れた状態の例を用いて説明する。
 図13は、第3実施形態の外側減衰部300におけるオイルの流れの説明図である。なお、図13(A)は、進退部材65の押付力が比較的小さい状態であって低速時のオイルの流れを示し、図13(B)は、進退部材65の押付力が比較的小さい状態であって高速時のオイルの流れを示す。
(低速時)
 図13(A)に示すように、ピストン部30(図1参照)の移動速度が低速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。ここで、ピストン部30の移動速度が低速であるため、メイン流路53においてメインバルブ51を開くオイルの流れは生じない。
 一方、流入流路81に流れ込んだオイルは、低速連絡路385、低速流路78、低速流路ラウンド78R、主に外側開口部374(図12(A)および図12(B)参照)、開口部367Hおよびキャップ流路367Rの順に流れる。そして、オイルは、ハウジング内流路111からリザーバ室Rに流れ出る。
 以上のように、ピストン部30の移動速度が低速である場合、減衰力は、低速流路78の低速流路ラウンド78Rとコントロールバルブ370との隙間によってオイルの流れが絞られることによって発生する。
(高速時)
 図13(B)に示すように、ピストン部30(図1参照)の移動速度が高速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。なお、移動速度が高速である場合も、流入流路81に流れ込んだオイルは、低速時と同様に、低速流路ラウンド78Rとコントロールバルブ370との隙間によって流量を絞られることによって差圧を発生させながらハウジング内流路111まで流れ、さらにリザーバ室Rに流れ出る。一方で、メイン流路53に流れ込んだオイルは、メインバルブ51を開いてリザーバ室Rに流れ出る。
 以上のように、ピストン部30の移動速度が高速である場合、減衰力は、メインバルブシート52のメイン流路53におけるオイルの流れにより発生する。
 また、流入流路81に流れ込んだオイルは、背圧オリフィス流路384および背圧連絡路383を通じて、背圧室68Pに圧力を伝達する。ただし、背圧室68Pに連絡する背圧流路77は、コントロールバルブ370によって開かれた状態になっている。そのため、背圧室68Pの圧力は、背圧流路77に対してコントロールバルブ370が押さえ付けられた状態の場合と比較して低くなっている。そして、背圧形成部68に接触しているメインバルブ51は、メイン流路53を比較的開き易くなっている。従って、進退部材65の押付力が比較的小さい状態では、メインバルブ51を開くメイン流路53におけるオイルの流れにより発生する減衰力は、比較的小さくなる。
 次に、進退部材65の押付力が比較的大きい状態でのオイルの流れを説明する。
 なお、以下では、コントロールバルブ370が、背圧流路ラウンド77Rおよび低速流路ラウンド78Rに押さえ付けられた状態の例を用いて説明する。
 図14は、第3実施形態の外側減衰部300におけるオイルの流れの説明図である。なお、図14(A)は、進退部材65の押付力が比較的大きい状態であって低速時のオイルの流れを示し、図14(B)は、進退部材65の押付力が比較的大きい状態であって高速時のオイルの流れを示す。
(低速時)
 図14(A)に示すように、ピストン部30の移動速度が低速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。ここで、ピストン部30の移動速度が低速であるため、メインバルブ51を開いてメイン流路53を流れるオイルの流れは生じない。
 一方、流入流路81に流れ込んだオイルは、低速連絡路385を通り、低速流路78および低速流路ラウンド78R(図12(A)および図12(B)参照)を流れる。そして、オイルは、コントロールバルブ370を開きながら低速流路78を流れる。さらに、オイルは、主に外側開口部374(図12(A)および図12(B)参照)、開口部367Hおよびキャップ流路367Rの順に流れる。そして、オイルは、ハウジング内流路111からリザーバ室Rに流れ出る。
 以上のように、ピストン部30(図1参照)の移動速度が低速である場合、減衰力は、コントロールバルブシート375の低速流路ラウンド78Rにおいてオイルがコントロールバルブ370を開きながら流れることにより発生する。この低速流路ラウンド78Rを流れる際の減衰力は、低速流路ラウンド78Rに対してコントロールバルブ370が離れている場合と比較して高くなる。
(高速時)
 図14(B)に示すように、ピストン部30の移動速度が高速である場合、内側流路91に流れたオイルは、流入流路81およびメイン流路53に流れ込む。なお、移動速度が高速である場合も、流入流路81に流れ込んだオイルは、進退部材65の押付力が比較的小さい時と同様に、低速流路ラウンド78Rとコントロールバルブ370との隙間によって流量を絞られることによって差圧を発生させながらハウジング内流路111まで流れ、さらにリザーバ室Rに流れ出る。一方で、メイン流路53に流れ込んだオイルは、メインバルブ51を開いてリザーバ室Rに流れ出る。
 以上のように、ピストン部30の移動速度が高速である場合、減衰力は、メインバルブシート52のメイン流路53におけるオイルの流れにより発生する。
 また、流入流路81に流れ込んだオイルは、背圧オリフィス流路384および背圧連絡路383を通じて、背圧室68Pに圧力を伝達する。そして、背圧室68Pに連絡する背圧流路77は、コントロールバルブ370により押さえ付けられた状態になっている。そのため、背圧室68Pの圧力は、背圧流路77が開かれた状態の場合と比較して高くなる。そして、背圧形成部68に接触しているメインバルブ51は、メイン流路53を比較的開き難くなっている。従って、進退部材65の押付力が比較的高い状態では、メインバルブ51を開くメイン流路53におけるオイルの流れにより発生する減衰力は、比較的大きくなる。
 上述したように、第3実施形態の油圧緩衝装置1では、進退部材65を操作することで、低速時における減衰力の調整と、高速時における減衰力の調整との両方を行うようにしている。すなわち、進退部材65によってコントロールバルブシート375に対するコントロールバルブ370の押付力を変更することで、低速時におけるオイルの流路である低速流路78の流路面積と、高速時におけるオイルの流路面積に係わる背圧室68Pの圧力を調整する背圧流路77の流路面積とを調整するようになっている。
 また、第3実施形態の油圧緩衝装置1では、単一のコントロールバルブ370によって背圧流路77におけるオイルの流れと低速流路78におけるオイルの流れとを同時に制御することができる。特に、第3実施形態の油圧緩衝装置1では、低速流路78における低速時のオイルの流れを制御できるため、メインバルブ51がメイン流路53を開くとき(所謂、ブローポイント)の調整ができるようになり、従来技術よりも、きめの細かい減衰力の制御が可能になっている。
 なお、ソレノイド部62(図10参照)が非通電状態となっている場合におけるオイルの流れは、第1実施形態と同様である。すなわち、ソレノイド部62が非通電状態であると、圧縮コイルバネ63によってプランジャ64が第2軸外側に押し戻される。これに伴って、プランジャ64に固定された進退部材65は、キャップ部367に押し付けられた状態になる。そして、進退部材65は、キャップ部367の開口部367Hに対向する。進退部材65には開口部367Hに対向する位置に切欠きが設けられ、キャップ流路367Rは、進退部材65によってオイルの流れが一定量のみ流れる状態になる。
 そして、第3実施形態の油圧緩衝装置1では、ソレノイド部62に通電が行われない状態になった場合であっても、低速時における減衰力および高速時における減衰力の両方が比較的高くなるようになっている。
<第4実施形態>
 次に、第4実施形態の外側減衰部100の減衰力調整部60について説明する。
 図15は、第4実施形態の減衰力調整部60の説明図である。
 第4実施形態の減衰力調整部60は、コントロールバルブ470の構成が上述した第1実施形態のコントロールバルブ70とは異なる。
-コントロールバルブ470-
 図15(A)に示すように、コントロールバルブ470は、弾性変形するとともに、略円形状の板状部材である。コントロールバルブ470の材料には、例えば鉄などの金属を用いることができる。そして、コントロールバルブ470は、コントロールバルブシート75の第2軸外側に対向して設けられる。
 図15(B)に示すように、コントロールバルブ470は、環状に形成される外側環状部470C(被保持部の一例)と、背圧流路77に対向する背圧流路対向部471(第1制御部の一例)と、コントロールバルブ470を第2軸方向において変形し易くする開口部473と、低速流路78に対向する低速流路対向部472(第2制御部の一例)と、を有する。
 外側環状部470Cは、第2半径方向外側に設けられる。そして、外側環状部470Cは、キャップ部67とコントロールバルブシート75との間に挟み込まれる部分として機能する。第4実施形態のコントロールバルブ470は、外側環状部470Cが挟み込まれることで、コントロールバルブシート75に保持されるとともに位置決め用嵌合部600により位置決めされて保持される。位置決め用嵌合部600は、例えばコントロールバルブ470に形成される凹部470Nと、コントロールバルブシート75に形成され凹部470Nに嵌まり込む凸部75Pとを例示することができる。なお、位置決め用嵌合部600は、コントロールバルブ470とコントロールバルブシート75の周方向における位置決めができれば良く、凹部と凸部の関係は逆でも良い。
 背圧流路対向部471は、円形状であって板状に形成される。そして、背圧流路対向部471は、背圧流路77の内径よりも大きく形成され、背圧流路ラウンド77Rを覆うことが可能になっている。第4実施形態において、背圧流路対向部471は、コントロールバルブ470の中央部(第2半径方向内側)に形成している。
 開口部473は、楕円形状に形成される。また、開口部473は、第4実施形態では、複数設けられるとともに、周方向において略等間隔に並べられている。開口部473の開口の面積は、コントロールバルブ470において、最も大きくなっている。そして、第4実施形態では、開口部473がコントロールバルブ470を貫通して流れるオイルの主な流路を構成する。
 そして、隣り合う2つの開口部473の間には、背圧腕部473A(第1支持部の一例)が形成される。背圧腕部473Aは、半径方向に沿って延びて設けられる。そして、背圧腕部473Aは、背圧流路対向部471と外側環状部470Cとを接続する。
 低速流路対向部472は、第2半径方向内側が円形状であって第2半径方向外側が三角形状となる葉形状に形成される。そして、低速流路対向部472は、低速流路78の内径よりも大きく形成され、低速流路ラウンド78Rを覆うことが可能になっている。低速流路対向部472は、背圧流路対向部471よりも第2半径方向外側に形成される。そして、低速流路対向部472は、低速流路78と対向して設けられる。
 そして、低速流路対向部472は、低速流路対向部472の先端側(この例では、三角形状の部分)に対して進退部材65のバルブ接触部651(図2参照)が接触する。これによって、第4実施形態では、低速流路78の開度と進退部材65の押付力との関係が非線形になるようにしている。
 また、開口部473の中央部には、それぞれ、低圧腕部474A(第2支持部の一例)が形成される。低圧腕部474Aは、半径方向に沿って延びて設けられる。そして、低圧腕部474Aは、低速流路対向部472と背圧流路対向部471とを接続する。すなわち、低圧腕部474Aは、第2半径方向内側にて背圧流路対向部471に支持され、第2半径方向外側にて低速流路対向部472を支持する。つまり、第4実施形態において、低速流路対向部472は、低圧腕部474Aによって片持ち状態で支持される。
 以上のように構成される第4実施形態の減衰力調整部60においては、コントロールバルブ470に進退部材65を接触させて、コントロールバルブ470をコントロールバルブシート75に対して進退させる。そして、第4実施形態の外側減衰部100では、コントロールバルブ470の背圧流路対向部471による背圧流路77のオイルの流れの制御と、低速流路対向部472による低速流路78のオイルの流れの制御とを単一の進退部材65によって同時に行えるようにしている。また、特に第4実施形態の減衰力調整部60では、低速流路78を制御する低速流路対向部472の開度が非線形になり、リニアな減衰力の可変刻みの特性が得られる。
 なお、第1実施形態から第4実施形態において、ピストン部30およびボトムピストン部40は、上記の実施形態で示した構造に限らず、減衰機構としての機能を満たすのであれば、他の形状や他の構成でも良い。
 例えば、シリンダ11の外部に設けられた外側減衰部100または外側減衰部300の機能を、シリンダ11の内部のピストン部30等に設けても良い。同様に、シリンダ11の外部に設けられた外側減衰部100または外側減衰部300の機能を、ボトムピストン部40等に設けても良い。そして、第1実施形態から第4実施形態の油圧緩衝装置1は、シリンダ11、外筒体12およびダンパケース13のそれぞれ筒形状にて構成された所謂三重管構造に限定されず、シリンダ11とダンパケース13とによる所謂二重管構造であっても良い。
1…油圧緩衝装置、10…シリンダ部、30…ピストン部、50…メインバルブ部、51…メインバルブ、52…メインバルブシート、53…メイン流路、60…減衰力調整部、61…進退部、70…コントロールバルブ、71…背圧流路対向部、72…低速流路対向部、75…コントロールバルブシート、77…背圧流路、78…低速流路

Claims (15)

  1.  液体を収容するシリンダと、
     軸方向に移動するロッドに接続するとともに、前記シリンダ内にて移動するピストン部と、
     前記ピストン部の一方向への移動に伴って前記液体が流れる第1流路、および前記ピストン部の前記一方向への移動に伴って前記第1流路と並列に前記液体が流れる第2流路を有する流路形成部と、
     前記第1流路および前記第2流路における前記液体の流れを制御するバルブ部と、
     前記第1流路および前記第2流路に対して前記バルブ部を進退させる単一の進退部と、
    を備える圧力緩衝装置。
  2.  前記バルブ部は、前記第1流路に対向する板状の第1流路対向部および前記第2流路に対向する板状の第2流路対向部を有する請求項1に記載の圧力緩衝装置。
  3.  前記バルブ部は、前記第1流路対向部および前記第2流路対向部が一体形成された板状部材を含む請求項2に記載の圧力緩衝装置。
  4.  前記板状部材は、少なくとも前記第1流路対向部と前記第2流路対向部との間に開口部を有する請求項3に記載の圧力緩衝装置。
  5.  前記第1流路は、前記第2流路よりも前記バルブに向けて突出し、
     前記進退部は、前記バルブ部の前記第2流路対向部に接触することで、前記バルブ部を前記第1流路および前記第2流路に近づける請求項2に記載の圧力緩衝装置。
  6.  前記流路形成部は、前記第1流路と前記第2流路とが一体形成されている請求項1に記載の圧力緩衝装置。
  7.  前記ピストン部の前記一方向への移動に伴って前記第1流路および前記第2流路と並列に前記液体が流れる第3流路を形成する第2流路形成部と、
     前記第3流路の前記液体の流れを制御する他のバルブ部と、
     前記液体を収容する収容室を有し、前記収容室における前記液体の圧力によって前記他のバルブ部を前記第3流路に押し付ける押付部と、
    を備え、
     前記第1流路は、前記収容室の前記液体の圧力を調整する流路である請求項1に記載の圧力緩衝装置。
  8.  前記進退部は、通電状態に応じて前記バルブ部を前記第1流路および前記第2流路に対して進退させ、
     前記進退部は、非通電状態である場合に、前記収容部から前記第1流路を介した前記液体の流出を抑制する抑制部を有する請求項7に記載の圧力緩衝装置。
  9.  前記バルブ部は、
     前記流路形成部に保持される被保持部と、
     前記被保持部に接続するとともに、前記第1流路における液体の流れを制御する第1制御部を支持する第1支持部と、
     前記第1制御部に接続するとともに、前記第2流路における液体の流れを制御する第2制御部を支持する第2支持部と、
    を有する請求項1に記載の圧力緩衝装置。
  10.  前記第1支持部または前記第2支持部のうち少なくとも一方は、周方向に沿って延びる部分を有している請求項9に記載の圧力緩衝装置。
  11.  前記第1支持部は、前記被保持部に近い側が前記被保持部から遠い側よりも幅が広く、前記第1制御部に近い側が前記第1制御部から遠い側よりも幅が広い請求項9に記載の圧力緩衝装置。
  12.  前記第2支持部は、前記第1制御部に近い側が前記第1制御部から遠い側よりも幅が広く、前記第2制御部に近い側が前記第2制御部から遠い側よりも幅が広い請求項9に記載の圧力緩衝装置。
  13.  前記第1支持部は、前記バルブ部に形成される開口面積が最も大きい開口部の径方向外側に設けられる請求項9に記載の圧力緩衝装置。
  14.  前記第1制御部は、前記バルブ部の中央に設けられ、
     前記第2制御部は、前記第1制御部から半径方向外側に向けて延びる前記第2支持部の端部に支持されている請求項9に記載の圧力緩衝装置。
  15.  液体を収容するシリンダと、
     軸方向に移動するロッドに接続するとともに、前記シリンダ内にて移動するピストン部と、
     前記ピストン部の移動に伴ってオイルが流れる一の流路を絞る第1バルブ部と、
     前記液体を収容する収容室を有し、前記収容室における前記液体の圧力によって前記第1バルブ部を前記一の流路に対して押し付ける押付部と、
     前記一の流路と並列に設けられた他の流路の前記液体の流れを絞る第2バルブ部と、
     前記収容室における前記液体の圧力の調整に伴って、前記第2バルブ部による前記他の流路の絞り量を調整する調整機構部と、
    を備える圧力緩衝装置。
PCT/JP2019/016969 2018-06-13 2019-04-22 圧力緩衝装置 WO2019239721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019002974.6T DE112019002974T5 (de) 2018-06-13 2019-04-22 Hydraulischer Dämpfer
CN201980030498.7A CN112105835B (zh) 2018-06-13 2019-04-22 压力缓冲装置
US17/089,834 US20210054902A1 (en) 2018-06-13 2020-11-05 Hydraulic damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/022582 WO2019239521A1 (ja) 2018-06-13 2018-06-13 圧力緩衝装置
JPPCT/JP2018/022582 2018-06-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022582 Continuation-In-Part WO2019239521A1 (ja) 2018-06-13 2018-06-13 圧力緩衝装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/089,834 Continuation US20210054902A1 (en) 2018-06-13 2020-11-05 Hydraulic damper

Publications (1)

Publication Number Publication Date
WO2019239721A1 true WO2019239721A1 (ja) 2019-12-19

Family

ID=68842095

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2018/022582 WO2019239521A1 (ja) 2018-06-13 2018-06-13 圧力緩衝装置
PCT/JP2019/016968 WO2019239720A1 (ja) 2018-06-13 2019-04-22 減衰力発生機構および圧力緩衝装置
PCT/JP2019/016965 WO2019239718A1 (ja) 2018-06-13 2019-04-22 減衰力発生機構、減衰力発生機構の製造方法、および圧力緩衝装置
PCT/JP2019/016969 WO2019239721A1 (ja) 2018-06-13 2019-04-22 圧力緩衝装置
PCT/JP2019/016967 WO2019239719A1 (ja) 2018-06-13 2019-04-22 減衰力発生機構および圧力緩衝装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/022582 WO2019239521A1 (ja) 2018-06-13 2018-06-13 圧力緩衝装置
PCT/JP2019/016968 WO2019239720A1 (ja) 2018-06-13 2019-04-22 減衰力発生機構および圧力緩衝装置
PCT/JP2019/016965 WO2019239718A1 (ja) 2018-06-13 2019-04-22 減衰力発生機構、減衰力発生機構の製造方法、および圧力緩衝装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016967 WO2019239719A1 (ja) 2018-06-13 2019-04-22 減衰力発生機構および圧力緩衝装置

Country Status (5)

Country Link
US (4) US11466747B2 (ja)
JP (4) JP6719035B2 (ja)
CN (3) CN112105835B (ja)
DE (3) DE112019001541T5 (ja)
WO (5) WO2019239521A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110442A (ja) * 2020-01-15 2021-08-02 日立Astemo株式会社 バルブ機構および圧力緩衝装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL266688B2 (en) * 2019-05-16 2024-03-01 Evco Pro 2018 Ltd Hydraulic shock absorber for vehicles
US11718137B2 (en) * 2020-02-27 2023-08-08 Fox Factory, Inc. Shock assembly with automatically adjustable ride height
JP7253514B2 (ja) * 2020-03-27 2023-04-06 日立Astemo株式会社 緩衝器
WO2021195554A1 (en) * 2020-03-27 2021-09-30 DRiV Automotive Inc. Damper assembly
US11466746B2 (en) * 2020-08-14 2022-10-11 DRiV Automotive Inc. Damper assembly
DE102020134820A1 (de) * 2020-12-23 2022-06-23 Ktm Ag Ventilanordnung für einen Schwingungsdämpfer
US11780285B2 (en) 2022-02-14 2023-10-10 Ree Automotive Ltd Adaptive suspension system
EP4343168A1 (en) * 2022-09-23 2024-03-27 DRiV Automotive Inc. Insert arrangement and a method of assembling a damping arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243636A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 減衰力調整式緩衝器及びこれを用いたサスペンション制御装置
WO2012105556A1 (ja) * 2011-01-31 2012-08-09 日立オートモティブシステムズ株式会社 サスペンション制御装置
JP2014011352A (ja) * 2012-06-29 2014-01-20 Hitachi Automotive Systems Ltd ソレノイド

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009151B2 (ja) * 1988-04-04 2000-02-14 株式会社ユニシアジェックス 液圧緩衝器
JP3388330B2 (ja) * 1994-08-26 2003-03-17 トキコ株式会社 減衰力調整式油圧緩衝器
DE19624895C1 (de) * 1996-06-21 1997-12-11 Mannesmann Sachs Ag Schwingungsdämpfer mit veränderbarer Dämpfkraft
JP3887760B2 (ja) * 1996-08-09 2007-02-28 株式会社日立製作所 減衰力調整式油圧緩衝器
JP4055023B2 (ja) * 1997-09-24 2008-03-05 株式会社日立製作所 減衰力調整式油圧緩衝器
JP4048512B2 (ja) * 1998-03-31 2008-02-20 株式会社日立製作所 減衰力調整式油圧緩衝器
JP4147502B2 (ja) * 1998-06-26 2008-09-10 株式会社日立製作所 減衰力調整式油圧緩衝器
JP4403475B2 (ja) * 1999-02-26 2010-01-27 日立オートモティブシステムズ株式会社 サスペンション装置
JP2004257507A (ja) * 2003-02-27 2004-09-16 Tokico Ltd 油圧緩衝器
KR100544488B1 (ko) 2004-02-03 2006-01-23 주식회사 만도 감쇠력 가변 밸브 및 감쇠력 가변 밸브가 장착된 쇽 업소버
US7562750B2 (en) * 2004-02-10 2009-07-21 Tenneco Automotive Operating Company Inc. Air pressure proportional damper for shock absorber
KR100773362B1 (ko) * 2006-02-20 2007-11-05 주식회사 만도 감쇠력 가변식 밸브 및 이를 이용한 쇽업소버
US20080185246A1 (en) * 2007-02-02 2008-08-07 Mando Corporation Damping force variable shock absorber
KR101568042B1 (ko) * 2008-03-31 2015-11-10 가부시끼가이샤 히다치 세이사꾸쇼 감쇠력 조정식 완충기
KR101254288B1 (ko) * 2008-08-21 2013-04-12 주식회사 만도 쇽업소버의 감쇠력 가변 밸브
JP5387841B2 (ja) * 2009-09-30 2014-01-15 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器
JP5365804B2 (ja) * 2009-12-22 2013-12-11 日立オートモティブシステムズ株式会社 緩衝器
KR101068992B1 (ko) * 2010-02-16 2011-09-30 주식회사 만도 쇽업소버의 감쇠력 가변 밸브
JP5468465B2 (ja) * 2010-05-28 2014-04-09 日立オートモティブシステムズ株式会社 緩衝器
JP5648790B2 (ja) * 2010-08-31 2015-01-07 日立オートモティブシステムズ株式会社 緩衝器
JP5796995B2 (ja) * 2011-04-25 2015-10-21 日立オートモティブシステムズ株式会社 緩衝器
JP5924979B2 (ja) * 2011-05-31 2016-05-25 日立オートモティブシステムズ株式会社 緩衝器
US8794588B1 (en) * 2011-08-04 2014-08-05 Metrex Valve Corp. High pressure actuator regulating valve
KR101288613B1 (ko) * 2011-08-11 2013-07-22 주식회사 만도 쇽업소버의 피스톤 어셈블리
JP6071646B2 (ja) * 2012-11-30 2017-02-01 日立オートモティブシステムズ株式会社 緩衝器
JP5952761B2 (ja) * 2013-03-13 2016-07-13 Kyb株式会社 減衰弁
JP5952760B2 (ja) * 2013-03-13 2016-07-13 Kyb株式会社 減衰弁
JP5843842B2 (ja) * 2013-05-30 2016-01-13 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器
DE102013218658B4 (de) 2013-09-18 2022-08-25 Zf Friedrichshafen Ag Verstellbare Dämpfventileinrichtung
JP6238473B2 (ja) * 2013-11-29 2017-11-29 日立オートモティブシステムズ株式会社 緩衝器
JP6188598B2 (ja) * 2014-01-31 2017-08-30 日立オートモティブシステムズ株式会社 シリンダ装置
KR102172160B1 (ko) * 2014-04-30 2020-10-30 주식회사 만도 감쇠력 가변밸브 조립체 및 감쇠력 가변밸브 조립체를 갖는 감쇠력 가변식 쇽업소버
JP2016050613A (ja) * 2014-08-29 2016-04-11 日立オートモティブシステムズ株式会社 緩衝器
JP6351443B2 (ja) * 2014-08-29 2018-07-04 日立オートモティブシステムズ株式会社 緩衝器
JP6378027B2 (ja) * 2014-09-30 2018-08-22 株式会社ショーワ 緩衝器
JP2016102574A (ja) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 緩衝器
JP6487804B2 (ja) * 2015-08-07 2019-03-20 Kyb株式会社 緩衝器のバルブ構造
JP2017048825A (ja) 2015-08-31 2017-03-09 日立オートモティブシステムズ株式会社 緩衝器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243636A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 減衰力調整式緩衝器及びこれを用いたサスペンション制御装置
WO2012105556A1 (ja) * 2011-01-31 2012-08-09 日立オートモティブシステムズ株式会社 サスペンション制御装置
JP2014011352A (ja) * 2012-06-29 2014-01-20 Hitachi Automotive Systems Ltd ソレノイド

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110442A (ja) * 2020-01-15 2021-08-02 日立Astemo株式会社 バルブ機構および圧力緩衝装置
JP7297693B2 (ja) 2020-01-15 2023-06-26 日立Astemo株式会社 バルブ機構および圧力緩衝装置

Also Published As

Publication number Publication date
CN112105835B (zh) 2022-03-08
DE112019002974T5 (de) 2021-02-25
JPWO2019239719A1 (ja) 2020-06-25
CN112105835A (zh) 2020-12-18
JP6728510B2 (ja) 2020-07-22
US20210033163A1 (en) 2021-02-04
WO2019239718A1 (ja) 2019-12-19
JPWO2019239718A1 (ja) 2020-06-25
JP6735429B2 (ja) 2020-08-05
DE112019001541T5 (de) 2020-12-10
WO2019239720A1 (ja) 2019-12-19
US20210054902A1 (en) 2021-02-25
DE112019001540T5 (de) 2020-12-10
US11603900B2 (en) 2023-03-14
JPWO2019239521A1 (ja) 2020-07-02
US11761509B2 (en) 2023-09-19
US20210102595A1 (en) 2021-04-08
WO2019239719A1 (ja) 2019-12-19
CN112041585A (zh) 2020-12-04
CN112041585B (zh) 2022-03-18
JP6719035B2 (ja) 2020-07-08
JPWO2019239720A1 (ja) 2020-06-25
WO2019239521A1 (ja) 2019-12-19
US11466747B2 (en) 2022-10-11
US20220412427A1 (en) 2022-12-29
CN112041586A (zh) 2020-12-04
CN112041586B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2019239721A1 (ja) 圧力緩衝装置
JP5387841B2 (ja) 減衰力調整式緩衝器
JP4967091B2 (ja) 流体圧緩衝器
JP2018091393A (ja) 減衰力調整機構
JP5368917B2 (ja) 減衰バルブ
JP6597191B2 (ja) 減衰力調整機構
US20160280031A1 (en) Shock absorber
JP5678348B2 (ja) 減衰力調整式緩衝器
JP3198843B2 (ja) 減衰力可変式ショックアブソーバ
JP7297693B2 (ja) バルブ機構および圧力緩衝装置
US20200080612A1 (en) Hydraulic damping device
JP2022129991A (ja) 減衰力発生装置、圧力緩衝装置
WO2020022177A1 (ja) 緩衝器
JP6799722B1 (ja) 減衰力発生機構および圧力緩衝装置
JP6302148B1 (ja) 圧力緩衝装置
KR100272300B1 (ko) 감쇠력 조정식 유압 완충기
JP6621352B2 (ja) 圧力緩衝装置
JP2022094977A (ja) バルブ機構および圧力緩衝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819293

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19819293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP