WO2019230132A1 - Photo-fabrication composition set - Google Patents
Photo-fabrication composition set Download PDFInfo
- Publication number
- WO2019230132A1 WO2019230132A1 PCT/JP2019/010942 JP2019010942W WO2019230132A1 WO 2019230132 A1 WO2019230132 A1 WO 2019230132A1 JP 2019010942 W JP2019010942 W JP 2019010942W WO 2019230132 A1 WO2019230132 A1 WO 2019230132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- support material
- mass
- parts
- model
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/40—Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to an optical modeling composition set in which a composition for a model material and a composition for a support material used in a material jet optical modeling method are combined, and a method for manufacturing an optical modeling object using the same.
- the material jet (inkjet) method for forming a cured layer having a predetermined shape by discharging a photocurable resin composition from a nozzle and immediately irradiating it with ultraviolet rays or the like to cure.
- material jet stereolithography also known as “material jet stereolithography”.
- the material jet stereolithography has been attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
- the material jet stereolithography method is easy to model complex shapes compared to the conventional method of obtaining stereolithography by irradiating a liquid photocurable composition with light, curing the irradiated part, and laminating it. .
- the amount of the photocurable composition required is small and there are merits such as easy adjustment of mechanical properties by simultaneously emitting photocurable compositions with different properties from multiple nozzles, various prototypes are available. Used for applications.
- Patent Documents 1 to 3 Various model material compositions that can be produced have been proposed.
- the model material composition is usually used in the material jet stereolithography together with the support material composition.
- a water-soluble composition for a support material has been developed, and the above-mentioned patent document also describes a composition for a model material described in the document as a water-soluble composition for a support material. It is described that it can be used in combination with a product.
- the conventionally widely known composition for a support material as exemplified in the above-mentioned patent document contains a water-soluble polymer such as polypropylene glycol having high hydrophilicity.
- the support material obtained may be less self-supporting, so that there is a problem in that the dimensional accuracy of an optically shaped product formed using such a support material composition decreases. It was.
- a model material formed from a composition for a model material having elongation and elasticity such as rubber tends to decrease in dimensional accuracy, and the composition accuracy for the support material to be combined easily has a large influence on the modeling accuracy. .
- the present invention proposes a combination of a composition for a model material having elongation and elasticity like rubber, and a composition for a support material having both high support power and excellent water removability for the model material composition. And it aims at providing the composition set for optical modeling which can model the optical modeling thing which has elongation and elasticity like rubber
- a composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
- the composition for a model material comprises a monofunctional monomer (A) and a polyfunctional monomer (B) having a plurality of polymerizable functional groups containing a carbon-carbon double bond in the molecule, and the monofunctional monomer
- the molar fraction of (A) and the polyfunctional monomer (B) (monofunctional monomer (A) / polyfunctional monomer (B)) is 99.9 / 0.1 to 92/8
- the support material composition is based on 100 parts by mass of the support material composition. 15 parts by mass or more and 75 parts by mass or less of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more, 19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b), and A composition set for optical modeling containing a photopolymerization initiator.
- the polymerizable functional group which the polyfunctional monomer (B) constituting the composition for model material has is selected from the group consisting of an acryl group, a methacryl group, a vinyl ether group and an allyl ether group, [1] or The composition set for stereolithography according to [2].
- the content of the photopolymerization initiator in the composition for support material is 1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the composition for support material.
- the composition set for stereolithography in any one.
- the composition for a support material further contains a surface conditioner in an amount of 0.005 parts by mass to 3 parts by mass with respect to 100 parts by mass of the composition for a support material.
- the support material composition contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the support material composition.
- a method for producing an optically shaped article by a material jet stereolithography method using the optical shaping composition set according to any one of [1] to [10], A step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material; and Step (II) for removing the support material A method for producing an optically shaped object.
- an optical modeling composition set capable of modeling an optical modeling object having elongation and elasticity like rubber with high accuracy.
- the optical modeling composition set of the present invention includes a model material composition.
- the composition for a model material included in the optical modeling composition set of the present invention includes a monofunctional monomer (A) and a polyfunctional monomer (B) having a plurality of polymerizable functional groups containing carbon-carbon double bonds in the molecule. ).
- the monofunctional monomer (A) is a component having a property of being polymerized and cured by irradiation with active energy rays such as ultraviolet rays, and is a polymerizable compound having one radical polymerizable group in the molecule.
- the radically polymerizable group possessed by the monofunctional monomer (A) includes (meth) acryl group, vinyl ether group, allyl ether group, styrene group, (meth) acrylamide group, acetyl vinyl group, vinyl amide group and other ethylene groups and acetylene groups. Etc.
- (meth) acrylate is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl”, “(meth) acryl” and the like.
- the composition for a model material is a (meth) acrylate (A1) having a molecular weight of 150 or more and less than 400 as a monofunctional monomer (A) and a glass transition temperature of 5 ° C. or less as a homopolymer. Containing.
- the model material composition contains (meth) acrylate (A1), the model material (photofabricated product) obtained by curing the model material composition is imparted with rubber-like elongation and elasticity. Can do.
- (Meth) acrylate (A1) has a glass transition temperature of 5 ° C. or lower when it is a homopolymer. When the glass transition temperature is not more than the above upper limit, rubber-like properties can be imparted to the model material obtained by photocuring the clear composition for model material.
- the lower limit of the glass transition temperature in (meth) acrylate (A1) is not particularly limited, but is usually ⁇ 55 ° C. or higher, preferably ⁇ 50 ° C. or higher.
- the (meth) acrylate (A1) having the above molecular weight and glass transition temperature include isoamyl acrylate, lauryl (meth) acrylate, octyl acrylate, isooctyl (meth) acrylate, isononyl acrylate, decyl acrylate, and isodecyl acrylate.
- Tridecyl (meth) acrylate Tridecyl (meth) acrylate, isomyristyl acrylate, isostearyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl-diglycol acrylate, 4-hydroxybutyl acrylate, methoxydiethylene glycol acrylate, methoxytriethylene glycol acrylate, ethoxydiethylene glycol acrylate, 2- (2-Ethoxyethoxy) ethyl acrylate, 2-ethylhexylcal Tall acrylate, phenoxyethyl acrylate, phenoxyethyl ethoxyethyl acrylate.
- Content of the said (meth) acrylate (A1) in a composition for model materials is 85 mass% or more with respect to the total mass of the monofunctional monomer (A) which the composition for model materials contains, Preferably it is 90 mass%. That's it.
- the content of (meth) acrylate (A1) is 85% by mass or more, dimensional stability can be improved while imparting sufficient rubber-like properties to the obtained model material.
- the upper limit of the content of (meth) acrylate (A1) contained in the model material composition is not particularly limited, and all of the monofunctional monomer (A) (that is, 100% by mass with respect to the total mass).
- (Meth) acrylate (A1) may be used, but from the viewpoint of imparting elasticity, it is, for example, 98% by mass or less, and preferably 95% or less.
- the composition for model material may contain only one kind of (meth) acrylate (A1).
- the model material composition has a dimensional stability by accelerating stress relaxation that causes a range of curing speed and causes curing shrinkage. Since improvement can be expected, it is preferable to contain two or more (meth) acrylates (A1).
- the model material composition may contain a monofunctional monomer other than (meth) acrylate (A1).
- a monofunctional monomer other than (meth) acrylate (A1) examples include (meth) acrylates (A2) other than the (meth) acrylate (A1), such as methyl (meth) acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and pentyl.
- the other monofunctional monomer includes a monofunctional monomer having a vinyl ether group, a monofunctional monomer having an allyl ether group, a monofunctional monomer having an acetyl vinyl group, a monofunctional monomer having a (meth) acrylamide group, and a vinylamide group. It may be a monofunctional monomer having, a monofunctional monomer having an acetylene group, or the like.
- Monofunctional monomers having an allyl ether group include, for example, phenyl allyl ether, o-, (m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl-4-ol monoallyl ether, butyl Examples include allyl ether, cyclohexyl allyl ether, and cyclohexane methanol monoallyl ether.
- Examples of the monofunctional monomer having an acetyl vinyl group include vinyl acetate.
- Examples of the monofunctional monomer having a (meth) acrylamide group include acrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide, and methacrylamide.
- Examples of the monofunctional monomer having a vinylamide group include N-vinyl- ⁇ -caprolactam, N-vinylformamide, N-vinylpyrrolidone and the like.
- Examples of the monofunctional monomer having an acetylene group include acetylene.
- the polyfunctional monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays such as ultraviolet rays, and has a polymerizable property having a plurality of polymerizable functional groups containing carbon-carbon double bonds in the molecule.
- Monomer examples include a (meth) acryl group, a vinyl ether group, an allyl ether group, a styrene group, and a (meth) acrylamide group.
- a polyfunctional monomer (B) contains the polymerizable functional group selected from the group which consists of an acryl group, a methacryl group, a vinyl ether group, and an allyl ether group.
- the polymerizable functional groups containing a plurality of carbon-carbon double bonds in the molecule may be the same as or different from each other.
- a polyfunctional monomer (B) only 1 type may be used independently and you may use in combination of multiple types.
- polyfunctional (meth) acrylate for example, Triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, bisphenol A bifunctional monomer such as PO adduct di (meth) acrylate of A, neopentyl glycol di (meth) acrylate hydroxypivalate, poly (tetramethylene glycol di (meth) acrylate); Trimethylolpropan
- the (meth) acrylate compound may be a modified product.
- modified products include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; caprolactone such as caprolactone-modified trimethylolpropane tri (meth) acrylate Modified (meth) acrylate compounds; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate.
- the polyfunctional vinyl ether compound may be difunctional, trifunctional, tetrafunctional or higher.
- the bifunctional vinyl ether include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, neopentyl glycol divinyl ether, and cyclohexane.
- Examples thereof include diol divinyl ether, cyclohexane dimethanol divinyl ether, norbornyl dimethanol divinyl ether, isovinyl divinyl ether, divinyl resorcin, and divinyl hydroquinone.
- Examples of the trifunctional vinyl ether include glycerin trivinyl ether, glycerin ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 3), and the like. included.
- Examples of tetrafunctional or higher functional vinyl ethers include pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether, and their oxyethylene adducts.
- the polyfunctional allyl ether may be difunctional, trifunctional or higher.
- the bifunctional allyl ether include 1,4-cyclohexanedimethanol diallyl ether, alkylene (2 to 5 carbon atoms) glycol diallyl ether, and polyethylene glycol (weight average molecular weight: 100 to 4000) diallyl ether.
- glyceryl diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, polyglycerol (degree of polymerization 2 to 5) diallyl ether and the like can be mentioned.
- trifunctional or higher functional allyl ether examples include trimethylolpropane triallyl ether, glyceryl triallyl ether, pentaerythritol tetraallyl ether, and tetraallyloxyethane. Further, pentaerythritol triallyl ether, diglycerin triallyl ether, sorbitol triallyl ether, polyglycerin (degree of polymerization 3 to 13) polyallyl ether and the like can be mentioned.
- examples of other polyfunctional monomers include diallyl phthalate, diallyl isophthalate, divinylbenzene, and N, N-ethylenebisacrylamide.
- the molar fraction (monofunctional monomer (A) / polyfunctional monomer (B)) of the monofunctional monomer (A) and the polyfunctional monomer (B) contained in the model material composition is 99.9 / It is preferably 0.1 to 92/8.
- the polyfunctional monomer (B) functions as a crosslinking agent, By appropriately cross-linking, high elongation and elasticity can be imparted to the obtained model material.
- the molar fraction is more preferably 99.5 / 0.5 to 92/8.
- the (meth) acrylate (A1) is contained in an amount of 85% by mass or more based on the total mass of the monofunctional monomer (A) contained in the model material composition, and the polyfunctional monomer (B) is contained.
- the extensibility (rubber elasticity) and dimensional stability of the model material obtained can be made compatible.
- the monofunctional monomer having a low glass transition temperature of the cured product has a higher rate of viscosity increase during the curing reaction than the monofunctional monomer having a high glass transition temperature of the homopolymer.
- composition for a model material containing a monofunctional monomer having a low glass transition temperature as a homopolymer is cured, it is possible to secure time for alleviating the curing shrinkage. It is considered that a model material having both rubber elasticity and dimensional stability can be obtained if the time for relaxing the curing shrinkage can be secured.
- the composition for model material may further contain a photopolymerization initiator.
- a photopolymerization initiator may not be included.
- the actinic ray is an ultraviolet ray, it is preferable to include a photopolymerization initiator.
- the photopolymerization initiator includes a cleavage type and a hydrogen abstraction type.
- the model material composition preferably contains at least an open-type photopolymerization initiator. That is, the composition for model material may contain (i) both a cleavage type and a hydrogen abstraction type photopolymerization initiator, or (ii) contain only a cleavage type photopolymerization initiator. Good. What is necessary is just to use properly the aspect of a photoinitiator according to the desired effect.
- composition for model material contains (i) both a cleavage type and a hydrogen abstraction type photopolymerization initiator
- the ratio of the hydrogen abstraction type initiator in the photopolymerization initiator is preferably 30% by mass or less, more preferably 20% by mass or more and 30% by mass or less, based on the total mass of the photopolymerization initiator.
- the curing rate of the stereolithography composition tends to increase.
- the reason is not clear, it is thought that when the photopolymerization initiator of the cleavage type and the hydrogen abstraction type coexist, the hydrogen abstraction type initiator plays a role as a sensitizer and thus the polymerization rate is improved.
- the improvement in the polymerization rate is more advantageous in a material jet stereolithography method for modeling a three-dimensional solid that requires much longer time than ordinary two-dimensional printing (inkjet printing).
- the model material composition contains (ii) only a cleavage type photopolymerization initiator (no hydrogen abstraction type initiator), both the cleavage type and hydrogen abstraction type light Compared to the case where a polymerization initiator is contained, the extensibility or elasticity of the model material formed from the model material composition may be improved. The reason for this is not clear, but is presumed as follows. Irregular crosslinking may occur when a graft reaction occurs between linear polymers obtained by polymerization of monofunctional monomers due to a hydrogen abstraction type initiator. When the cross-linking is regular, the cured product receives a uniform force when stretched, so that high stretchability can be maintained.
- the cured product has irregular cross-linking, the cured product When the is stretched, stress concentrates on a specific part in the cured product. For this reason, it is considered that the crosslinking site or the linear polymer chain is easily broken, and the extensibility and elasticity are rather lowered.
- the model material composition includes (i) both types of polymerization initiators, that is, a cleavage type and a hydrogen abstraction type.
- polymerization initiators that is, a cleavage type and a hydrogen abstraction type.
- a cleavage type photopolymerization initiator substantially no hydrogen abstraction type.
- cleavage type photopolymerization initiator examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy- 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethyl) Acetophenones such as phenyl) propan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether and benzoin isopropyl ether; 6-Trimethylbenzoindiphenylphosphineoxy Acylphosphine oxide and the like; benzyl and methyl phenylglyoxylate esters.
- hydrogen abstraction type photopolymerization initiators examples include benzophenones (benzophenone, N, N-diethylbenzophenone, etc.), thioxanthones (2,4-diethylthioxanthone, isopropylthioxanthone, chlorothioxanthone, isopropoxychlorothioxanthone, etc.) And anthraquinones (ethyl anthraquinone, benzanthraquinone, aminoanthraquinone, chloroanthraquinone, etc.), acridines (9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.) and the like.
- the content of the photopolymerization initiator in the model material composition may be appropriately selected according to the type and amount of the polymerizable compound constituting the model material composition, the type of initiator used, the type of actinic rays, and the like. However, it is preferably 0.01% by mass to 10% by mass with respect to the total mass of the model material composition.
- composition for model material can contain other additives as necessary within the range not impairing the effects of the present invention.
- additives include, for example, photopolymerization initiation aids, storage stabilizers, surface conditioners, antioxidants, colorants, UV absorbers, light stabilizers, chain transfer agents, fillers, diluent solvents, thickening agents. Agents and the like.
- the photopolymerization initiation assistant is, for example, a tertiary amine compound, and preferably an aromatic tertiary amine compound.
- aromatic tertiary amine compound include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like can be mentioned.
- N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. These compounds may be used alone or in combination of two or more.
- the surface conditioner is a component that adjusts the surface tension of the model material composition to an appropriate range, and the type thereof is not particularly limited. By making the surface tension of the model material composition within an appropriate range, it is possible to stabilize the ejection properties and to suppress interfacial mixing between the model material composition and the support material composition. As a result, it is possible to obtain a shaped article with good dimensional accuracy.
- Examples of the surface conditioner include silicone compounds.
- Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane.
- the content thereof is preferably 0.005 to 3 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the model material composition. 1 part by mass.
- the content of the surface conditioner is within the above range, the surface tension of the model material composition is easily adjusted to an appropriate range.
- the storage stabilizer is a component that can enhance the storage stability of the model material composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented.
- the storage stabilizer include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like.
- the content thereof is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the composition for a model material from the viewpoint of easily obtaining the above effect. More preferably, it is 0.1 to 2 parts by mass.
- the viscosity of the composition for model material of the present invention is preferably 150 mPa ⁇ s or less at 25 ° C. from the viewpoint of improving dischargeability from the material jet nozzle.
- the above-mentioned viscosity can be measured using a rotational viscometer in accordance with JIS Z 8803.
- the viscosity of the composition for a model material can be controlled by adjusting the type of the polymerizable compound and the blending ratio thereof, the type of the diluent solvent and the thickener, the amount of addition thereof, and the like.
- the glass transition temperature (Tg) of the cured product of the composition for model material of the present invention is preferably 5 ° C. or less. By setting the glass transition temperature of the cured product of the model material composition to 5 ° C. or less, good elasticity can be maintained even at low temperatures.
- the glass transition temperature of the cured product of the model material composition is more preferably 3 ° C. or lower.
- the glass transition temperature can be measured, for example, by differential thermal analysis (DTA) or differential scanning calorimetry (DSC).
- the method for producing the model material composition of the present invention is not particularly limited.
- the model material composition may be produced by uniformly mixing the components constituting the model material composition using a mixing stirrer, a disperser, or the like. it can.
- the optical modeling composition set of the present invention includes a support material composition.
- the composition for support material constituting the composition set for optical modeling of the present invention is based on 100 parts by mass of the composition for support material. 15 to 75 parts by mass of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more, and 19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b) It is a composition containing this.
- the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group in the above content, a support material having both excellent water removal property and support capability can be provided. Moreover, the support material composition excellent in low-temperature stability can be provided. While the polyalkylene glycol (a) containing the oxybutylene group is water-soluble, it does not have hydrophilicity to reduce the support force of the support material when the support material is formed, while the oxybutylene group is Since the polyalkylene glycol (a) contained is water-soluble, the support material is excellent in water removability when the support material is formed.
- water-soluble means a property that can be dissolved in water or dispersed in water. Moreover, the composition for a support material is not easily solidified (solidified) at low temperatures, and the fluidity is not easily lowered.
- the composition for a support material comprises the above polyalkylene glycol (a) containing an oxybutylene group, a water-soluble monofunctional ethylenically unsaturated monomer (b), and a photopolymerization initiator. Containing.
- the polyalkylene glycol (a) containing an oxybutylene group that can be included in the support material composition may be either a linear type or a multi-chain type.
- the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
- the polyalkylene glycol (a) containing an oxybutylene group is a water-soluble resin for imparting appropriate hydrophilicity to a support material, and by adding this, a support material having both water removability and support power Can be obtained.
- the polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group.
- the polyalkylene glycol having only an oxybutylene group (oxytetramethylene group) is a single polybutylene glycol.
- it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group.
- polybutylene glycol is represented by the following chemical formula (1)
- polybutylene polyethylene glycol is represented by the following chemical formula (2).
- m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100.
- the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more. Since the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group, the removability by water can be further improved without reducing the support force of the support material, It supports a model material having elasticity and becomes a support material suitable for modeling a model material with high accuracy.
- the support material can sufficiently support the model material during stereolithography, so modeling at the stage of stereolithography Accuracy can be improved. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
- the weight average molecular weight (M w ) of the polyalkylene glycol (a) containing an oxybutylene group is 300 or more.
- the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is more preferably 400 or more, and even more preferably 500 or more.
- the upper limit of the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is not particularly limited, but is usually 3000 or less, preferably 2000 or less.
- the weight average molecular weight is within the above range, the water-soluble monofunctional ethylenically unsaturated monomer (b) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
- the content of the polyalkylene glycol (a) containing an oxybutylene group in the support material composition is preferably 15 parts by mass or more and 75 parts by mass or less with respect to 100 parts by mass of the support material composition. Is 17 parts by mass or more, more preferably 20 parts by mass or more, preferably 72 parts by mass or less, more preferably 70 parts by mass or less.
- the content of the polyalkylene glycol (a) containing an oxybutylene group is less than 15 parts by mass, the hydrophilicity of the support material decreases, so the water removability of the support material decreases, and the content is 75 masses.
- the amount of the water-soluble monofunctional ethylenically unsaturated monomer (b) that is a polymerizable component is reduced, and the support material is softened and the self-supporting property is lowered. To do.
- the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the support material composition includes, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acry Etc.], (meth) acrylamide derivatives [eg (meth)
- Content of the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the composition for support material is 19 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the composition for support material.
- the amount is preferably 22 parts by mass or more, more preferably 25 parts by mass or more, preferably 76 parts by mass or less, and more preferably 73 parts by mass or less.
- composition for support material may contain a water-soluble organic solvent.
- a water-soluble organic solvent is a component which improves the solubility to water of the support material obtained by photocuring the composition for support materials. Moreover, it has the function to adjust the composition for support materials to low viscosity.
- a glycol-based solvent is preferably used. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate, triethylene glycol monoacetate, and the like.
- Glycol ester solvents such as propylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl ether, ethylene Glycol monoethyl ether, propylene glycol Ethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, ethylene Glycol ether solvents such as glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibut
- examples of the water-soluble organic solvent include triethylene glycol monomethyl ether, diethylene glycol diethyl ether and Dipropylene glycol monomethyl ether acetate is preferred.
- the content of the water-soluble organic solvent in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, further preferably 100 parts by mass of the support material composition. 25 parts by mass or less.
- the content of the water-soluble organic solvent is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material.
- the composition for a support material contains a water-soluble organic solvent
- the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
- the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner.
- the content of the photopolymerization initiator in the composition for support material is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the composition for support material. Moreover, More preferably, it is 18 mass parts or less, More preferably, it is 15 mass parts or less.
- a composition for a support material that has both excellent water solubility and support ability can be obtained.
- the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained.
- the support material composition may contain other additives as necessary.
- additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, chain transfer agents, and fillers.
- the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained.
- the surface conditioner that can be contained in the support material composition the same as those exemplified as the surface conditioner that can be used in the previous model material composition can be used, the content of which is the composition for the support material It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
- the storage stability can be improved by blending a storage stabilizer into the support material composition.
- a storage stabilizer that can be contained in the support material composition
- those exemplified as the storage stabilizer that can be used in the previous model material composition can be used, and the content thereof can be determined by the support material composition. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts.
- the viscosity of the composition for a support material is preferably 30 to 200 mPa ⁇ s at 25 ° C., more preferably 35 mPa ⁇ s or more, from the viewpoint of improving dischargeability from a material jet nozzle.
- it is 40 mPa * s or more, More preferably, it is 170 mPa * s or less, More preferably, it is 150 mPa * s or less.
- the measurement of the said viscosity can be performed using R100 type
- the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m.
- the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
- composition set for stereolithography is excellent in a three-dimensional modeled object (model material) having high elongation and elasticity because the support material is excellent in self-supporting property and removability and does not impair the dimensional accuracy of the optical modeled object. Can be shaped with accuracy.
- the manufacturing method of the optical modeling thing of this invention is a manufacturing method of the optical modeling thing using the composition set for optical modeling of this invention, and is a composition for model materials, and a support material using a material jet (inkjet) type printer.
- the model material composition is photocured to obtain a model material
- the water soluble support material composition is photocured to obtain a water soluble support material
- the manufacturing method of the present invention uses the optical modeling composition set of the present invention, an optical modeling object having rubber-like properties can be formed with high modeling accuracy.
- FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays.
- the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12.
- the ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c.
- the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material composition 13, and a support material inkjet head 11aS filled with the support material composition 14.
- the model material composition 13 is ejected from the model material inkjet head 11aM
- the support material composition 14 is ejected from the support material inkjet head 11aS
- the energy beam 15 is irradiated and ejected from the light source 11c.
- the model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS.
- FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
- the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet head for model material is used.
- the composition 13 for model material is discharged from 11aM
- the composition 14 for support material is discharged from the inkjet head 11aS for support material.
- the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange
- the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 ⁇ / b> M and the support material precursor 14 ⁇ / b> S with the roller 11 b.
- the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS.
- a layer consisting of is formed.
- the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
- optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
- a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source.
- UV-LED is preferable.
- the amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product.
- a UV-LED it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved.
- ultraviolet rays As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, ⁇ rays, ⁇ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
- the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data.
- the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
- each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 ⁇ m from the balance with the modeling speed.
- the obtained stereolithography is a combination of a model material and a support material.
- the support material is removed from the stereolithography product to obtain a stereolithography product as a model material.
- the support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
- a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
- Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
- the above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
- Model Material Composition In the formulation shown in Table 2, the components constituting each model material composition were uniformly mixed using a mixing stirrer, and Examples M1 to M6 and Comparative Examples The composition for model materials of m1 and m2 was manufactured.
- a frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 100 mm, a width of 20 mm, and a thickness of 1 mm.
- the composition for each model material is poured into the frame, and a metal halide lamp is used.
- a model material was obtained by irradiating with an ultraviolet ray having an integrated light quantity of 600 mJ / cm 2 .
- the obtained model material was measured and evaluated for the following characteristics. The results are shown in Table 2.
- Tg Glass transition temperature
- composition for Support Material Details of components constituting the composition for support material used in Examples are shown in Table 3.
- a frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp.
- a metal halide lamp was irradiated to produce a cured support material.
- the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
- Support strength A excellent
- Support strength B good
- Support force C defect
- a cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
- Stereolithographic Composition Set Examples 1 to 3 and Comparative Examples 1 and 2 were prepared by combining the model material composition and the support material composition as shown in Table 6.
- a spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm), and was partitioned into 10 cm ⁇ 10 cm squares.
- an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
- UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
- spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm ⁇ 10 cm.
- an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
- UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2.
- cured to obtain a model material.
- the set of optical shaping compositions of Examples 1 to 3 satisfying the requirements of the present invention does not cause peeling at the interface between the model material and the support material, and the model material and the support material Was more closely attached.
- the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The present invention relates to a photo-fabrication composition set that is for use in material jet photo-fabrication and includes a model material composition and a support material composition. The model material composition includes a monofunctional monomer (A) and a polyfunctional monomer (B) that has, in the molecule thereof, a plurality of polymerizable functional groups that include a carbon-carbon double bond. The molar fractions (monofunctional monomer (A)/polyfunctional monomer (B)) of the monofunctional monomer (A) and the polyfunctional monomer (B) are 99.9/0.1–92/8. The monofunctional monomer (A) contains, relative to the total mass of the monofunctional monomer (A), at least 85 mass% of a (meth)acrylate (A1) that has a molecular weight of at least 150 but less than 400 and, as a homopolymer, has a glass transition temperature of 5°C or lower. The support material composition contains, relative to 100 parts by mass of the support material composition, 15–75 parts by mass of a polyalkylene glycol (a) that includes an oxybutylene group and has a weight average molecular weight of at least 300, 19–80 parts by mass of a water-soluble monofunctional ethylenically unsaturated monomer (b), and a photopolymerization initiator.
Description
本発明は、マテリアルジェット光造形法に用いられるモデル材用組成物とサポート材用組成物を組み合わせた光造形用組成物セット、およびそれを用いた光造形物の製造方法に関する。
The present invention relates to an optical modeling composition set in which a composition for a model material and a composition for a support material used in a material jet optical modeling method are combined, and a method for manufacturing an optical modeling object using the same.
ノズルから光硬化性樹脂組成物を吐出させ、その直後に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成するマテリアルジェット(インクジェット)方式による光造形法(以下、「マテリアルジェット光造形法」ともいう)が知られている。マテリアルジェット光造形法は、CAD(Computer Aided Design)データに基づいて、自由に立体造形物を作成可能な3Dプリンタによって実現される造形法として、注目されている。
An optical molding method (hereinafter referred to as “the material jet (inkjet) method) for forming a cured layer having a predetermined shape by discharging a photocurable resin composition from a nozzle and immediately irradiating it with ultraviolet rays or the like to cure. Also known as “material jet stereolithography”. The material jet stereolithography has been attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
マテリアルジェット光造形法は、液体状の光硬化性組成物に光を照射し、その照射部分を硬化させ、積層させることにより光造形物を得る従来の方法に比べて複雑な形状を造形しやすい。また、必要となる光硬化性組成物の量が少なく、複数のノズルから性質の異なる光硬化性組成物を同時に出射することで機械的特性を調整しやすい等のメリットもあるため、様々な試作用途に使用されている。
The material jet stereolithography method is easy to model complex shapes compared to the conventional method of obtaining stereolithography by irradiating a liquid photocurable composition with light, curing the irradiated part, and laminating it. . In addition, since the amount of the photocurable composition required is small and there are merits such as easy adjustment of mechanical properties by simultaneously emitting photocurable compositions with different properties from multiple nozzles, various prototypes are available. Used for applications.
近年、ゴム状材料を用いた試作用途に対する要望が高まっており、ゴムのような伸びと弾性を有し、かつ、経時的な寸法安定性にも優れた、マテリアルジェット光造形法に用いることができる種々のモデル材用組成物が提案されている(特許文献1~3)。
In recent years, there has been an increasing demand for trial applications using rubber-like materials, and it is used for material jet stereolithography, which has rubber-like elongation and elasticity, and has excellent dimensional stability over time. Various model material compositions that can be produced have been proposed (Patent Documents 1 to 3).
モデル材用組成物は、通常、サポート材用組成物とともにマテリアルジェット光造形法に用いられる。近年、取扱性や環境的な観点から、水溶性のサポート材用組成物が開発されており、上記特許文献にも、該文献に記載されるモデル材用組成物を水溶性のサポート材用組成物と組み合わせて用い得ることが記載されている。しかしながら、上記特許文献において例示されるような従来広く知られているサポート材用組成物は、親水性の高いポリプロピレングリコール等の水溶性高分子を含んでおり、このようなサポート材用組成物に含まれる成分の種類や含有量によっては、得られるサポート材の自立性が劣ることから、そのようなサポート材用組成物を用いて造形された光造形品の寸法精度が低下するという問題があった。特に、ゴムのような伸びや弾性を有するモデル材用組成物から形成されるモデル材は寸法精度が低下しやすい傾向にあり、組み合わせるサポート材用組成物によって、その造形精度に大きな影響が及びやすい。
The model material composition is usually used in the material jet stereolithography together with the support material composition. In recent years, from the viewpoint of handling and environment, a water-soluble composition for a support material has been developed, and the above-mentioned patent document also describes a composition for a model material described in the document as a water-soluble composition for a support material. It is described that it can be used in combination with a product. However, the conventionally widely known composition for a support material as exemplified in the above-mentioned patent document contains a water-soluble polymer such as polypropylene glycol having high hydrophilicity. Depending on the type and content of the contained components, the support material obtained may be less self-supporting, so that there is a problem in that the dimensional accuracy of an optically shaped product formed using such a support material composition decreases. It was. In particular, a model material formed from a composition for a model material having elongation and elasticity such as rubber tends to decrease in dimensional accuracy, and the composition accuracy for the support material to be combined easily has a large influence on the modeling accuracy. .
そこで、本発明は、ゴムのような伸びと弾性を有するモデル材用組成物と、該モデル材用組成物に対する高いサポート力と優れた水除去性を併せ持つサポート材用組成物との組み合わせを提案し、ゴムのような伸びと弾性を有する光造形物を高い精度で造形し得る光造形用組成物セットを提供することを目的とする。
Therefore, the present invention proposes a combination of a composition for a model material having elongation and elasticity like rubber, and a composition for a support material having both high support power and excellent water removability for the model material composition. And it aims at providing the composition set for optical modeling which can model the optical modeling thing which has elongation and elasticity like rubber | gum with high precision.
本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の好適な態様を提供するものである。
[1]モデル材用組成物とサポート材用組成物とを含んでなるマテリアルジェット光造形法に使用される光造形用組成物セットであって、
前記モデル材用組成物が、単官能モノマー(A)と、分子内に炭素-炭素二重結合を含む重合性官能基を複数有する多官能モノマー(B)とを含んでなり、前記単官能モノマー(A)と前記多官能モノマー(B)とのモル分率(単官能モノマー(A)/多官能モノマー(B))が99.9/0.1~92/8であり、
前記単官能モノマー(A)として、分子量が150以上400未満であり、かつ、ホモポリマーとしてのガラス転移温度が5℃以下である(メタ)アクリレート(A1)を、前記単官能モノマー(A)の全質量に対して85質量%以上含有し、
前記サポート材用組成物が、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)、および、
光重合開始剤
を含有する、光造形用組成物セット。
[2]モデル材用組成物の硬化物のガラス転移温度は5℃以下である、前記[1]に記載の光造形用組成物セット。
[3]モデル材用組成物を構成する多官能モノマー(B)が有する重合性官能基は、アクリル基、メタクリル基、ビニルエーテル基およびアリルエーテル基からなる群から選択される、前記[1]または[2]に記載の光造形用組成物セット。
[4]モデル材用組成物は2種以上の前記(メタ)アクリレート(A1)を含有する、前記[1]~[3]のいずれかに記載の光造形用組成物セット。
[5]モデル材用組成物は光重合開始剤をさらに含有する、前記[1]~[4]のいずれかに記載の光造形用組成物セット。
[6]モデル材用組成物の25℃における粘度は150mPa・s以下である、前記[1]~[5]のいずれかに記載の光造形用組成物セット。
[7]サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、1質量部以上15質量部以下である、前記[1]~[6]のいずれかに記載の光造形用組成物セット。
[8]サポート材用組成物は、サポート材用組成物100質量部に対して0.005質量部以上3質量部以下の表面調整剤をさらに含有する、前記[1]~[7]のいずれかに記載の光造形用組成物セット。
[9]サポート材用組成物が水溶性有機溶剤を含有し、前記水溶性有機溶剤の含有量は、サポート材用組成物100質量部に対して30質量部以下である、前記[1]~[8]のいずれかに記載の光造形用組成物セット。
[10]サポート材用組成物は保存安定化剤をさらに含有する、前記[1]~[9]のいずれかに記載の光造形用組成物セット。
[11]マテリアルジェット光造形法により、前記[1]~[10]のいずれかに記載の光造形用組成物セットに含まれるモデル材用組成物を光硬化させて得られるモデル材を含む、光造形物。
[12]マテリアルジェット光造形法により、前記[1]~[10]のいずれかに記載の光造形用組成物セットを用いて光造形物を製造する方法であって、
モデル材用組成物を光硬化させてモデル材を得るとともに、サポート材用組成物を光硬化させてサポート材を得る工程(I)、および、
前記サポート材を除去する工程(II)
を有する、光造形物の製造方法。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention provides the following preferred embodiments.
[1] A composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
The composition for a model material comprises a monofunctional monomer (A) and a polyfunctional monomer (B) having a plurality of polymerizable functional groups containing a carbon-carbon double bond in the molecule, and the monofunctional monomer The molar fraction of (A) and the polyfunctional monomer (B) (monofunctional monomer (A) / polyfunctional monomer (B)) is 99.9 / 0.1 to 92/8,
As the monofunctional monomer (A), a (meth) acrylate (A1) having a molecular weight of 150 or more and less than 400 and having a glass transition temperature of 5 ° C. or less as a homopolymer is used as the monofunctional monomer (A). Contains 85% by mass or more based on the total mass,
The support material composition is based on 100 parts by mass of the support material composition.
15 parts by mass or more and 75 parts by mass or less of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more,
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b), and
A composition set for optical modeling containing a photopolymerization initiator.
[2] The composition set for stereolithography according to [1], wherein the glass transition temperature of the cured product of the composition for model material is 5 ° C. or lower.
[3] The polymerizable functional group which the polyfunctional monomer (B) constituting the composition for model material has is selected from the group consisting of an acryl group, a methacryl group, a vinyl ether group and an allyl ether group, [1] or The composition set for stereolithography according to [2].
[4] The composition set for stereolithography according to any one of [1] to [3], wherein the composition for model material contains two or more kinds of the (meth) acrylates (A1).
[5] The composition set for optical modeling according to any one of [1] to [4], wherein the composition for a model material further contains a photopolymerization initiator.
[6] The composition set for optical modeling according to any one of [1] to [5], wherein the composition for a model material has a viscosity at 25 ° C. of 150 mPa · s or less.
[7] The content of the photopolymerization initiator in the composition for support material is 1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the composition for support material. The composition set for stereolithography in any one.
[8] The composition for a support material further contains a surface conditioner in an amount of 0.005 parts by mass to 3 parts by mass with respect to 100 parts by mass of the composition for a support material. The composition set for optical modeling according to crab.
[9] The support material composition contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the support material composition. [8] The composition set for optical modeling according to any one of [8].
[10] The composition set for stereolithography according to any one of [1] to [9], wherein the composition for support material further contains a storage stabilizer.
[11] A model material obtained by photocuring the model material composition contained in the composition set for optical modeling according to any one of [1] to [10] by a material jet stereolithography method, Stereolithography.
[12] A method for producing an optically shaped article by a material jet stereolithography method using the optical shaping composition set according to any one of [1] to [10],
A step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material; and
Step (II) for removing the support material
A method for producing an optically shaped object.
[1]モデル材用組成物とサポート材用組成物とを含んでなるマテリアルジェット光造形法に使用される光造形用組成物セットであって、
前記モデル材用組成物が、単官能モノマー(A)と、分子内に炭素-炭素二重結合を含む重合性官能基を複数有する多官能モノマー(B)とを含んでなり、前記単官能モノマー(A)と前記多官能モノマー(B)とのモル分率(単官能モノマー(A)/多官能モノマー(B))が99.9/0.1~92/8であり、
前記単官能モノマー(A)として、分子量が150以上400未満であり、かつ、ホモポリマーとしてのガラス転移温度が5℃以下である(メタ)アクリレート(A1)を、前記単官能モノマー(A)の全質量に対して85質量%以上含有し、
前記サポート材用組成物が、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)、および、
光重合開始剤
を含有する、光造形用組成物セット。
[2]モデル材用組成物の硬化物のガラス転移温度は5℃以下である、前記[1]に記載の光造形用組成物セット。
[3]モデル材用組成物を構成する多官能モノマー(B)が有する重合性官能基は、アクリル基、メタクリル基、ビニルエーテル基およびアリルエーテル基からなる群から選択される、前記[1]または[2]に記載の光造形用組成物セット。
[4]モデル材用組成物は2種以上の前記(メタ)アクリレート(A1)を含有する、前記[1]~[3]のいずれかに記載の光造形用組成物セット。
[5]モデル材用組成物は光重合開始剤をさらに含有する、前記[1]~[4]のいずれかに記載の光造形用組成物セット。
[6]モデル材用組成物の25℃における粘度は150mPa・s以下である、前記[1]~[5]のいずれかに記載の光造形用組成物セット。
[7]サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、1質量部以上15質量部以下である、前記[1]~[6]のいずれかに記載の光造形用組成物セット。
[8]サポート材用組成物は、サポート材用組成物100質量部に対して0.005質量部以上3質量部以下の表面調整剤をさらに含有する、前記[1]~[7]のいずれかに記載の光造形用組成物セット。
[9]サポート材用組成物が水溶性有機溶剤を含有し、前記水溶性有機溶剤の含有量は、サポート材用組成物100質量部に対して30質量部以下である、前記[1]~[8]のいずれかに記載の光造形用組成物セット。
[10]サポート材用組成物は保存安定化剤をさらに含有する、前記[1]~[9]のいずれかに記載の光造形用組成物セット。
[11]マテリアルジェット光造形法により、前記[1]~[10]のいずれかに記載の光造形用組成物セットに含まれるモデル材用組成物を光硬化させて得られるモデル材を含む、光造形物。
[12]マテリアルジェット光造形法により、前記[1]~[10]のいずれかに記載の光造形用組成物セットを用いて光造形物を製造する方法であって、
モデル材用組成物を光硬化させてモデル材を得るとともに、サポート材用組成物を光硬化させてサポート材を得る工程(I)、および、
前記サポート材を除去する工程(II)
を有する、光造形物の製造方法。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention provides the following preferred embodiments.
[1] A composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
The composition for a model material comprises a monofunctional monomer (A) and a polyfunctional monomer (B) having a plurality of polymerizable functional groups containing a carbon-carbon double bond in the molecule, and the monofunctional monomer The molar fraction of (A) and the polyfunctional monomer (B) (monofunctional monomer (A) / polyfunctional monomer (B)) is 99.9 / 0.1 to 92/8,
As the monofunctional monomer (A), a (meth) acrylate (A1) having a molecular weight of 150 or more and less than 400 and having a glass transition temperature of 5 ° C. or less as a homopolymer is used as the monofunctional monomer (A). Contains 85% by mass or more based on the total mass,
The support material composition is based on 100 parts by mass of the support material composition.
15 parts by mass or more and 75 parts by mass or less of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more,
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b), and
A composition set for optical modeling containing a photopolymerization initiator.
[2] The composition set for stereolithography according to [1], wherein the glass transition temperature of the cured product of the composition for model material is 5 ° C. or lower.
[3] The polymerizable functional group which the polyfunctional monomer (B) constituting the composition for model material has is selected from the group consisting of an acryl group, a methacryl group, a vinyl ether group and an allyl ether group, [1] or The composition set for stereolithography according to [2].
[4] The composition set for stereolithography according to any one of [1] to [3], wherein the composition for model material contains two or more kinds of the (meth) acrylates (A1).
[5] The composition set for optical modeling according to any one of [1] to [4], wherein the composition for a model material further contains a photopolymerization initiator.
[6] The composition set for optical modeling according to any one of [1] to [5], wherein the composition for a model material has a viscosity at 25 ° C. of 150 mPa · s or less.
[7] The content of the photopolymerization initiator in the composition for support material is 1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the composition for support material. The composition set for stereolithography in any one.
[8] The composition for a support material further contains a surface conditioner in an amount of 0.005 parts by mass to 3 parts by mass with respect to 100 parts by mass of the composition for a support material. The composition set for optical modeling according to crab.
[9] The support material composition contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the support material composition. [8] The composition set for optical modeling according to any one of [8].
[10] The composition set for stereolithography according to any one of [1] to [9], wherein the composition for support material further contains a storage stabilizer.
[11] A model material obtained by photocuring the model material composition contained in the composition set for optical modeling according to any one of [1] to [10] by a material jet stereolithography method, Stereolithography.
[12] A method for producing an optically shaped article by a material jet stereolithography method using the optical shaping composition set according to any one of [1] to [10],
A step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material; and
Step (II) for removing the support material
A method for producing an optically shaped object.
本発明によれば、ゴムのような伸びと弾性を有する光造形物を高い精度で造形し得る光造形用組成物セットを提供することができる。
According to the present invention, it is possible to provide an optical modeling composition set capable of modeling an optical modeling object having elongation and elasticity like rubber with high accuracy.
以下に、実施形態を挙げて本発明を説明するが、本発明は以下の実施形態に限定されるものではない。
Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments.
<モデル材用組成物>
本発明の光造形用組成物セットは、モデル材用組成物を含む。本発明の光造形用組成物セットに含まれるモデル材用組成物は、単官能モノマー(A)と、分子内に炭素-炭素二重結合を含む重合性官能基を複数有する多官能モノマー(B)とを含む。 <Model material composition>
The optical modeling composition set of the present invention includes a model material composition. The composition for a model material included in the optical modeling composition set of the present invention includes a monofunctional monomer (A) and a polyfunctional monomer (B) having a plurality of polymerizable functional groups containing carbon-carbon double bonds in the molecule. ).
本発明の光造形用組成物セットは、モデル材用組成物を含む。本発明の光造形用組成物セットに含まれるモデル材用組成物は、単官能モノマー(A)と、分子内に炭素-炭素二重結合を含む重合性官能基を複数有する多官能モノマー(B)とを含む。 <Model material composition>
The optical modeling composition set of the present invention includes a model material composition. The composition for a model material included in the optical modeling composition set of the present invention includes a monofunctional monomer (A) and a polyfunctional monomer (B) having a plurality of polymerizable functional groups containing carbon-carbon double bonds in the molecule. ).
単官能モノマー(A)は、紫外線等の活性エネルギー線の照射により重合して硬化する特性を有する成分であり、分子内に1つのラジカル重合性基を有する重合性化合物である。単官能モノマー(A)が有するラジカル重合性基としては、(メタ)アクリル基、ビニルエーテル基、アリルエーテル基、スチレン基、(メタ)アクリルアミド基、アセチルビニル基、ビニルアミド基などのエチレン基およびアセチレン基等が挙げられる。なお、本発明において「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称であり、アクリレートおよびメタクリレートの一方または両方を意味するものである。「(メタ)アクリロイル」、「(メタ)アクリル」等についても同様である。
The monofunctional monomer (A) is a component having a property of being polymerized and cured by irradiation with active energy rays such as ultraviolet rays, and is a polymerizable compound having one radical polymerizable group in the molecule. The radically polymerizable group possessed by the monofunctional monomer (A) includes (meth) acryl group, vinyl ether group, allyl ether group, styrene group, (meth) acrylamide group, acetyl vinyl group, vinyl amide group and other ethylene groups and acetylene groups. Etc. In the present invention, “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl”, “(meth) acryl” and the like.
本発明において、モデル材用組成物は、単官能モノマー(A)として、分子量が150以上400未満であり、かつ、ホモポリマーとしてのガラス転移温度が5℃以下である(メタ)アクリレート(A1)を含有する。モデル材用組成物が、(メタ)アクリレート(A1)を含むことにより、該モデル材用組成物を硬化して得られるモデル材(光造形物)にゴムのような伸びと弾性を付与することができる。
In the present invention, the composition for a model material is a (meth) acrylate (A1) having a molecular weight of 150 or more and less than 400 as a monofunctional monomer (A) and a glass transition temperature of 5 ° C. or less as a homopolymer. Containing. When the model material composition contains (meth) acrylate (A1), the model material (photofabricated product) obtained by curing the model material composition is imparted with rubber-like elongation and elasticity. Can do.
(メタ)アクリレート(A1)は、ホモポリマーとした際に5℃以下のガラス転移温度を有する。ガラス転移温度が上記上限以下であることにより、モデル材用クリア組成物を光硬化して得られるモデル材にゴム状特性を付与することができる。(メタ)アクリレート(A1)におけるガラス転移温度の下限は、特に限定されるものではないが、通常、-55℃以上であり、好ましくは-50℃以上である。
(Meth) acrylate (A1) has a glass transition temperature of 5 ° C. or lower when it is a homopolymer. When the glass transition temperature is not more than the above upper limit, rubber-like properties can be imparted to the model material obtained by photocuring the clear composition for model material. The lower limit of the glass transition temperature in (meth) acrylate (A1) is not particularly limited, but is usually −55 ° C. or higher, preferably −50 ° C. or higher.
上記分子量およびガラス転移温度を有する前記(メタ)アクリレート(A1)の具体例としては、イソアミルアクリレート、ラウリル(メタ)アクリレート、オクチルアクリレート、イソオクチル(メタ)アクリレート、イソノニルアクリレート、デシルアクリレート、イソデシルアクリレート、トリデシル(メタ)アクリレート、イソミリスチルアクリレート、イソステアリルアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシル-ジグリコールアクリレート、4-ヒドロキシブチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシトリエチレングリコールアクリレート、エトキシジエチレングリコールアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、2-エチルヘキシルカルビトールアクリレート、フェノキシエチルアクリレート、フェノキシエトキシエチルアクリレート等が挙げられる。
Specific examples of the (meth) acrylate (A1) having the above molecular weight and glass transition temperature include isoamyl acrylate, lauryl (meth) acrylate, octyl acrylate, isooctyl (meth) acrylate, isononyl acrylate, decyl acrylate, and isodecyl acrylate. , Tridecyl (meth) acrylate, isomyristyl acrylate, isostearyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl-diglycol acrylate, 4-hydroxybutyl acrylate, methoxydiethylene glycol acrylate, methoxytriethylene glycol acrylate, ethoxydiethylene glycol acrylate, 2- (2-Ethoxyethoxy) ethyl acrylate, 2-ethylhexylcal Tall acrylate, phenoxyethyl acrylate, phenoxyethyl ethoxyethyl acrylate.
モデル材用組成物における前記(メタ)アクリレート(A1)の含有量は、モデル材用組成物が含む単官能モノマー(A)の全質量に対して85質量%以上であり、好ましくは90質量%以上である。(メタ)アクリレート(A1)の含有量が85質量%以上であると、得られるモデル材に十分なゴム状特性を付与しながら、寸法安定性を向上させることができる。本発明において、モデル材用組成物に含まれる(メタ)アクリレート(A1)の含有量の上限は特に限定されず、単官能モノマー(A)の全て(すなわち、全質量に対して100質量%)が(メタ)アクリレート(A1)であってもよいが、弾性を付与する観点から、例えば98質量%以下であり、好ましくは95%以下である。
Content of the said (meth) acrylate (A1) in a composition for model materials is 85 mass% or more with respect to the total mass of the monofunctional monomer (A) which the composition for model materials contains, Preferably it is 90 mass%. That's it. When the content of (meth) acrylate (A1) is 85% by mass or more, dimensional stability can be improved while imparting sufficient rubber-like properties to the obtained model material. In the present invention, the upper limit of the content of (meth) acrylate (A1) contained in the model material composition is not particularly limited, and all of the monofunctional monomer (A) (that is, 100% by mass with respect to the total mass). (Meth) acrylate (A1) may be used, but from the viewpoint of imparting elasticity, it is, for example, 98% by mass or less, and preferably 95% or less.
モデル材用組成物は、(メタ)アクリレート(A1)を1種のみ含んでいてもよいが、硬化速度に幅が出て硬化収縮の原因となる応力緩和を促進することにより、寸法安定性の向上が期待できるため、2種以上の(メタ)アクリレート(A1)を含むことが好ましい。
The composition for model material may contain only one kind of (meth) acrylate (A1). However, the model material composition has a dimensional stability by accelerating stress relaxation that causes a range of curing speed and causes curing shrinkage. Since improvement can be expected, it is preferable to contain two or more (meth) acrylates (A1).
本発明においてモデル材用組成物は、(メタ)アクリレート(A1)以外の他の単官能モノマーを含んでいてもよい。そのような他の単官能モノマーとしては、前記(メタ)アクリレート(A1)以外の(メタ)アクリレート(A2)が挙げられ、例えば、メチル(メタ)アクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ペンチルアクリレート、n-ステアリルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、ブトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシエチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、t-ブチルシクロヘキシル(メタ)アクリレートなどが挙げられる。
In the present invention, the model material composition may contain a monofunctional monomer other than (meth) acrylate (A1). Examples of such other monofunctional monomers include (meth) acrylates (A2) other than the (meth) acrylate (A1), such as methyl (meth) acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and pentyl. Acrylate, n-stearyl acrylate, cyclohexyl acrylate, benzyl acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, butoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, methoxyethyl acrylate 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyl Kishipuropiru (meth) acrylate, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl - phthalic acid, such as t- butyl cyclohexyl (meth) acrylate.
また、前記他の単官能モノマーは、ビニルエーテル基を有する単官能モノマー、アリルエーテル基を有する単官能モノマー、アセチルビニル基を有する単官能モノマー、(メタ)アクリルアミド基を有する単官能モノマー、ビニルアミド基を有する単官能モノマー、アセチレン基を有する単官能モノマーなどであってもよい。
The other monofunctional monomer includes a monofunctional monomer having a vinyl ether group, a monofunctional monomer having an allyl ether group, a monofunctional monomer having an acetyl vinyl group, a monofunctional monomer having a (meth) acrylamide group, and a vinylamide group. It may be a monofunctional monomer having, a monofunctional monomer having an acetylene group, or the like.
ビニルエーテル基を有する単官能モノマーとしては、例えば、ブチルビニルエーテル、ブチルプロペニルエーテル、ブチルブテニルエーテル、ヘキシルビニルエーテル、エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、エチルエトキシビニルエーテル、アセチルエトキシエトキシビニルエーテル、シクロヘキシルビニルエーテル、アダマンチルビニルエーテルなどが挙げられる。
Examples of the monofunctional monomer having a vinyl ether group include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, ethyl hexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy vinyl ether, acetyl ethoxy ethoxy vinyl ether, cyclohexyl vinyl ether, and adamantyl vinyl ether. Etc.
アリルエーテル基を有する単官能モノマーとしては、例えば、フェニルアリルエーテル、o-,(m-,p-クレゾールモノアリルエーテル、ビフェニル-2-オールモノアリルエーテル、ビフェニル-4-オールモノアリルエーテル、ブチルアリルエーテル、シクロヘキシルアリルエーテル、シクロヘキサンメタノールモノアリルエーテル等が挙げられる。
Monofunctional monomers having an allyl ether group include, for example, phenyl allyl ether, o-, (m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl-4-ol monoallyl ether, butyl Examples include allyl ether, cyclohexyl allyl ether, and cyclohexane methanol monoallyl ether.
アセチルビニル基を有する単官能モノマーとしては、例えば、酢酸ビニルなどが挙げられる。(メタ)アクリルアミド基を有する単官能モノマーとしては、アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、メタクリルアミドなどが挙げられる。ビニルアミド基を有する単官能モノマーとしては、例えば、N-ビニル-ε-カプロラクタム、N-ビニルホルムアミド、N-ビニルピロリドンなどが含まれる。アセチレン基を有する単官能モノマーとしては、アセチレンなどが含まれる。
Examples of the monofunctional monomer having an acetyl vinyl group include vinyl acetate. Examples of the monofunctional monomer having a (meth) acrylamide group include acrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide, and methacrylamide. Examples of the monofunctional monomer having a vinylamide group include N-vinyl-ε-caprolactam, N-vinylformamide, N-vinylpyrrolidone and the like. Examples of the monofunctional monomer having an acetylene group include acetylene.
多官能モノマー(B)は、紫外線等の活性エネルギー線の照射により重合して硬化する特性を有する成分であり、その分子内に炭素-炭素二重結合を含む重合性官能基を複数有する重合性モノマーである。多官能モノマー(B)が有する炭素-炭素二重結合を含む重合性官能基としては、(メタ)アクリル基、ビニルエーテル基、アリルエーテル基、スチレン基及び(メタ)アクリルアミド基などが挙げられる。中でも、光重合感度が良好となるため、多官能モノマー(B)はアクリル基、メタクリル基、ビニルエーテル基およびアリルエーテル基からなる群から選択される重合性官能基を含むことが好ましい。分子内にある複数の炭素-炭素二重結合を含む重合性官能基は、互いに同一であっても、異なっていてもよい。多官能モノマー(B)として、1種のみを単独で用いてもよく、複数種を組み合わせて用いてもよい。
The polyfunctional monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays such as ultraviolet rays, and has a polymerizable property having a plurality of polymerizable functional groups containing carbon-carbon double bonds in the molecule. Monomer. Examples of the polymerizable functional group containing a carbon-carbon double bond of the polyfunctional monomer (B) include a (meth) acryl group, a vinyl ether group, an allyl ether group, a styrene group, and a (meth) acrylamide group. Especially, since photopolymerization sensitivity becomes favorable, it is preferable that a polyfunctional monomer (B) contains the polymerizable functional group selected from the group which consists of an acryl group, a methacryl group, a vinyl ether group, and an allyl ether group. The polymerizable functional groups containing a plurality of carbon-carbon double bonds in the molecule may be the same as or different from each other. As a polyfunctional monomer (B), only 1 type may be used independently and you may use in combination of multiple types.
多官能(メタ)アクリレートとしては、例えば、
トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等の二官能モノマー;
トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート等の三官能以上の多官能モノマーなど
が挙げられる。 As polyfunctional (meth) acrylate, for example,
Triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, bisphenol A bifunctional monomer such as PO adduct di (meth) acrylate of A, neopentyl glycol di (meth) acrylate hydroxypivalate, poly (tetramethylene glycol di (meth) acrylate);
Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerin propoxytri (meth) acrylate And trifunctional or higher polyfunctional monomers such as pentaerythritol ethoxytetra (meth) acrylate.
トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等の二官能モノマー;
トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート等の三官能以上の多官能モノマーなど
が挙げられる。 As polyfunctional (meth) acrylate, for example,
Triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, bisphenol A bifunctional monomer such as PO adduct di (meth) acrylate of A, neopentyl glycol di (meth) acrylate hydroxypivalate, poly (tetramethylene glycol di (meth) acrylate);
Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerin propoxytri (meth) acrylate And trifunctional or higher polyfunctional monomers such as pentaerythritol ethoxytetra (meth) acrylate.
(メタ)アクリレート化合物は、変性物であってもよい。変性物としては、例えば、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート等のエチレンオキサイド変性(メタ)アクリレート化合物;カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレート化合物;およびカプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレート化合物等が挙げられる。
The (meth) acrylate compound may be a modified product. Examples of modified products include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; caprolactone such as caprolactone-modified trimethylolpropane tri (meth) acrylate Modified (meth) acrylate compounds; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate.
多官能ビニルエーテル化合物は、二官能、三官能、四官能またはそれ以上であってもよい。
二官能ビニルエーテルとしては、例えば、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ノルボルニルジメタノールジビニルエーテル、イソバイニルジビニルエーテル、ジビニルレゾルシン、ジビニルハイドロキノンなどが挙げられる。
三官能ビニルエーテルとしては、例えば、グリセリントリビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)などが含まれる。四官能以上のビニルエーテルの例には、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテル、それらのオキシエチレン付加物などが挙げられる。 The polyfunctional vinyl ether compound may be difunctional, trifunctional, tetrafunctional or higher.
Examples of the bifunctional vinyl ether include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, neopentyl glycol divinyl ether, and cyclohexane. Examples thereof include diol divinyl ether, cyclohexane dimethanol divinyl ether, norbornyl dimethanol divinyl ether, isovinyl divinyl ether, divinyl resorcin, and divinyl hydroquinone.
Examples of the trifunctional vinyl ether include glycerin trivinyl ether, glycerin ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 3), and the like. included. Examples of tetrafunctional or higher functional vinyl ethers include pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether, and their oxyethylene adducts.
二官能ビニルエーテルとしては、例えば、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ノルボルニルジメタノールジビニルエーテル、イソバイニルジビニルエーテル、ジビニルレゾルシン、ジビニルハイドロキノンなどが挙げられる。
三官能ビニルエーテルとしては、例えば、グリセリントリビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)などが含まれる。四官能以上のビニルエーテルの例には、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテル、それらのオキシエチレン付加物などが挙げられる。 The polyfunctional vinyl ether compound may be difunctional, trifunctional, tetrafunctional or higher.
Examples of the bifunctional vinyl ether include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, neopentyl glycol divinyl ether, and cyclohexane. Examples thereof include diol divinyl ether, cyclohexane dimethanol divinyl ether, norbornyl dimethanol divinyl ether, isovinyl divinyl ether, divinyl resorcin, and divinyl hydroquinone.
Examples of the trifunctional vinyl ether include glycerin trivinyl ether, glycerin ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 3), and the like. included. Examples of tetrafunctional or higher functional vinyl ethers include pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether, and their oxyethylene adducts.
多官能アリルエーテルは、二官能、三官能またはそれ以上であってもよい。
二官能アリルエーテルとしては、例えば、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル、及びポリエチレングリコール(重量平均分子量:100~4000)ジアリルエーテルなどが挙げられる。また、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル及びポリグリセリン(重合度2~5)ジアリルエーテルなどが挙げられる。
三官能以上のアリルエーテルとしては、例えば、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタンなどが含まれる。また、ペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル、ソルビトールトリアリルエーテルおよびポリグリセリン(重合度3~13)ポリアリルエーテルなどが挙げられる。 The polyfunctional allyl ether may be difunctional, trifunctional or higher.
Examples of the bifunctional allyl ether include 1,4-cyclohexanedimethanol diallyl ether, alkylene (2 to 5 carbon atoms) glycol diallyl ether, and polyethylene glycol (weight average molecular weight: 100 to 4000) diallyl ether. Further, glyceryl diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, polyglycerol (degree of polymerization 2 to 5) diallyl ether and the like can be mentioned.
Examples of the trifunctional or higher functional allyl ether include trimethylolpropane triallyl ether, glyceryl triallyl ether, pentaerythritol tetraallyl ether, and tetraallyloxyethane. Further, pentaerythritol triallyl ether, diglycerin triallyl ether, sorbitol triallyl ether, polyglycerin (degree of polymerization 3 to 13) polyallyl ether and the like can be mentioned.
二官能アリルエーテルとしては、例えば、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル、及びポリエチレングリコール(重量平均分子量:100~4000)ジアリルエーテルなどが挙げられる。また、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル及びポリグリセリン(重合度2~5)ジアリルエーテルなどが挙げられる。
三官能以上のアリルエーテルとしては、例えば、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタンなどが含まれる。また、ペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル、ソルビトールトリアリルエーテルおよびポリグリセリン(重合度3~13)ポリアリルエーテルなどが挙げられる。 The polyfunctional allyl ether may be difunctional, trifunctional or higher.
Examples of the bifunctional allyl ether include 1,4-cyclohexanedimethanol diallyl ether, alkylene (2 to 5 carbon atoms) glycol diallyl ether, and polyethylene glycol (weight average molecular weight: 100 to 4000) diallyl ether. Further, glyceryl diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, polyglycerol (degree of polymerization 2 to 5) diallyl ether and the like can be mentioned.
Examples of the trifunctional or higher functional allyl ether include trimethylolpropane triallyl ether, glyceryl triallyl ether, pentaerythritol tetraallyl ether, and tetraallyloxyethane. Further, pentaerythritol triallyl ether, diglycerin triallyl ether, sorbitol triallyl ether, polyglycerin (degree of polymerization 3 to 13) polyallyl ether and the like can be mentioned.
さらに、他の多官能モノマーとしては、例えば、フタル酸ジアリル、イソフタル酸ジアリル、ジビニルベンゼン、N,N-エチレンビスアクリルアミドなどが挙げられる。
Furthermore, examples of other polyfunctional monomers include diallyl phthalate, diallyl isophthalate, divinylbenzene, and N, N-ethylenebisacrylamide.
本発明において、モデル材用組成物に含まれる単官能モノマー(A)と多官能モノマー(B)とのモル分率(単官能モノマー(A)/多官能モノマー(B))が99.9/0.1~92/8となることが好ましい。単官能モノマー(A)の含有量と、多官能モノマー(B)の含有量とのモル分率が上記範囲内であると、多官能モノマー(B)が架橋剤として機能し、線状ポリマー同士を適度に架橋することにより、得られるモデル材に高い伸びや弾性を付与することができる。本発明において、上記モル分率は、より好ましくは99.5/0.5~92/8である。
In the present invention, the molar fraction (monofunctional monomer (A) / polyfunctional monomer (B)) of the monofunctional monomer (A) and the polyfunctional monomer (B) contained in the model material composition is 99.9 / It is preferably 0.1 to 92/8. When the molar fraction of the content of the monofunctional monomer (A) and the content of the polyfunctional monomer (B) is within the above range, the polyfunctional monomer (B) functions as a crosslinking agent, By appropriately cross-linking, high elongation and elasticity can be imparted to the obtained model material. In the present invention, the molar fraction is more preferably 99.5 / 0.5 to 92/8.
本発明においては、特に、(メタ)アクリレート(A1)をモデル材用組成物が含む単官能モノマー(A)の全質量に対して85質量%以上含有し、かつ、多官能モノマー(B)を単官能モノマー(A)との関係で上記モル分率の範囲となるよう含有することで、得られるモデル材の伸び性(ゴム弾性)と寸法安定性とを両立させることができる。これは、限定されるわけではないが、例えば、その硬化物のガラス転移温度が低い単官能モノマーは、そのホモポリマーのガラス転移温度が高い単官能モノマーよりも、硬化反応中における粘度の増加速度は遅く、そのため、ホモポリマーとしてのガラス転移温度が低い単官能モノマーを含むモデル材用組成物を硬化させる際に、その硬化収縮を緩和するための時間が確保できる。硬化収縮を緩和する時間が確保できると、ゴム弾性と寸法安定性とを両立するモデル材が得られると考えられる。
In the present invention, in particular, the (meth) acrylate (A1) is contained in an amount of 85% by mass or more based on the total mass of the monofunctional monomer (A) contained in the model material composition, and the polyfunctional monomer (B) is contained. By containing in the range of the said molar fraction in relation to a monofunctional monomer (A), the extensibility (rubber elasticity) and dimensional stability of the model material obtained can be made compatible. This is not limited, but for example, the monofunctional monomer having a low glass transition temperature of the cured product has a higher rate of viscosity increase during the curing reaction than the monofunctional monomer having a high glass transition temperature of the homopolymer. Therefore, when the composition for a model material containing a monofunctional monomer having a low glass transition temperature as a homopolymer is cured, it is possible to secure time for alleviating the curing shrinkage. It is considered that a model material having both rubber elasticity and dimensional stability can be obtained if the time for relaxing the curing shrinkage can be secured.
モデル材用組成物は、光重合開始剤をさらに含んでいてもよい。通常、活性光線が電子線である場合には光重合開始剤を含まなくてもよいが、活性光線が紫外線である場合には光重合開始剤を含むことが好ましい。
The composition for model material may further contain a photopolymerization initiator. Usually, when the actinic ray is an electron beam, the photopolymerization initiator may not be included. However, when the actinic ray is an ultraviolet ray, it is preferable to include a photopolymerization initiator.
光重合開始剤には、開裂型と水素引き抜き型とがある。本発明においてモデル材用組成物は、少なくとも開列型の光重合開始剤を含むことが好ましい。すなわち、モデル材用組成物は、(i)開裂型と水素引き抜き型の両方の光重合開始剤を含有していてもよく、(ii)開裂型の光重合開始剤のみを含有していてもよい。所望の効果に応じて、光重合開始剤の態様を適宜使い分ければよい。
The photopolymerization initiator includes a cleavage type and a hydrogen abstraction type. In the present invention, the model material composition preferably contains at least an open-type photopolymerization initiator. That is, the composition for model material may contain (i) both a cleavage type and a hydrogen abstraction type photopolymerization initiator, or (ii) contain only a cleavage type photopolymerization initiator. Good. What is necessary is just to use properly the aspect of a photoinitiator according to the desired effect.
モデル材用組成物が、(i)開裂型と水素引き抜き型の両方の光重合開始剤を含有している場合には、開裂型の開始剤を質量比として多く含有していることが好ましい。光重合開始剤における水素引き抜き型開始剤の割合は、光重合開始剤の総質量に対して30質量%以下であることが好ましく、20質量%以上30質量%以下であることがより好ましい。
When the composition for model material contains (i) both a cleavage type and a hydrogen abstraction type photopolymerization initiator, it is preferable to contain a large amount of the cleavage type initiator as a mass ratio. The ratio of the hydrogen abstraction type initiator in the photopolymerization initiator is preferably 30% by mass or less, more preferably 20% by mass or more and 30% by mass or less, based on the total mass of the photopolymerization initiator.
モデル材用組成物中に光重合開始剤として開裂型と水素引き抜き型の両方の種類の重合開始剤を含有していると、光造形用組成物の硬化速度が上昇する傾向にある。理由は明らかではないが、開裂型と水素引き抜き型の光重合開始剤が並存すると、水素引き抜き型開始剤が増感剤のような役割を果たすために重合速度が向上するものと考えられる。重合速度の向上は、通常の二次元の印刷(インクジェットプリント)に比べてはるかに長い時間を要する三次元立体を造形するマテリアルジェット光造形法において、より有利となる。
When the model material composition contains both a cleavage type and a hydrogen abstraction type polymerization initiator as a photopolymerization initiator, the curing rate of the stereolithography composition tends to increase. Although the reason is not clear, it is thought that when the photopolymerization initiator of the cleavage type and the hydrogen abstraction type coexist, the hydrogen abstraction type initiator plays a role as a sensitizer and thus the polymerization rate is improved. The improvement in the polymerization rate is more advantageous in a material jet stereolithography method for modeling a three-dimensional solid that requires much longer time than ordinary two-dimensional printing (inkjet printing).
モデル材用組成物が、(ii)開裂型の光重合開始剤のみを含有している(水素引き抜き型の開始剤を含有していない)場合には、開裂型と水素引き抜き型の両方の光重合開始剤を含有している場合と比較して、モデル材用組成物から形成されるモデル材の伸び性または弾性が向上することがある。この理由は明らかではないが、以下のように推察される。単官能モノマーの重合により得られる線状高分子間で、水素引き抜き型開始剤によってグラフト反応が発生すると不規則な架橋が起きることがある。架橋が規則的である場合には、硬化物を伸長させた際に均一に力を受けるため、高い伸縮性を維持することができるが、硬化物中に不規則な架橋がある場合、硬化物を伸長させた際に硬化物中の特定の部位に応力が集中する。このため、架橋部位または線状高分子鎖の破断が生じやすくなり、かえって伸び性や弾性が低下すると考えられる。
When the model material composition contains (ii) only a cleavage type photopolymerization initiator (no hydrogen abstraction type initiator), both the cleavage type and hydrogen abstraction type light Compared to the case where a polymerization initiator is contained, the extensibility or elasticity of the model material formed from the model material composition may be improved. The reason for this is not clear, but is presumed as follows. Irregular crosslinking may occur when a graft reaction occurs between linear polymers obtained by polymerization of monofunctional monomers due to a hydrogen abstraction type initiator. When the cross-linking is regular, the cured product receives a uniform force when stretched, so that high stretchability can be maintained. However, if the cured product has irregular cross-linking, the cured product When the is stretched, stress concentrates on a specific part in the cured product. For this reason, it is considered that the crosslinking site or the linear polymer chain is easily broken, and the extensibility and elasticity are rather lowered.
したがって、三次元立体の光造形物の造形速度を向上させるためには、モデル材用組成物に(i)開裂型と水素引き抜き型の両方の種類の重合開始剤を含有させることが好ましい。一方、硬化物の耐久性を重視する場合には、(ii)開裂型の光重合開始剤のみを含有させる(水素引き抜き型を実質的に含有させない)ことが好ましい。
Therefore, in order to improve the modeling speed of the three-dimensional stereolithography, it is preferable that the model material composition includes (i) both types of polymerization initiators, that is, a cleavage type and a hydrogen abstraction type. On the other hand, when importance is attached to the durability of the cured product, it is preferable to contain only (ii) a cleavage type photopolymerization initiator (substantially no hydrogen abstraction type).
開裂型の光重合開始剤の例としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等のアシルホスフィンオキシド系;ベンジルおよびメチルフェニルグリオキシエステルなどが挙げられる。
Examples of the cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy- 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethyl) Acetophenones such as phenyl) propan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether and benzoin isopropyl ether; 6-Trimethylbenzoindiphenylphosphineoxy Acylphosphine oxide and the like; benzyl and methyl phenylglyoxylate esters.
水素引き抜き型の光重合開始剤の例としては、ベンゾフェノン類(ベンゾフェノン、N,N-ジエチルベンゾフェノン、等)、チオキサントン類(2,4-ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントン、イソプロポキシクロロチオキサントン等)、アントラキノン類(エチルアントラキノン、ベンズアントラキノン、アミノアントラキノン、クロロアントラキノン等)、アクリジン類(9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等)等が挙げられる。
Examples of hydrogen abstraction type photopolymerization initiators include benzophenones (benzophenone, N, N-diethylbenzophenone, etc.), thioxanthones (2,4-diethylthioxanthone, isopropylthioxanthone, chlorothioxanthone, isopropoxychlorothioxanthone, etc.) And anthraquinones (ethyl anthraquinone, benzanthraquinone, aminoanthraquinone, chloroanthraquinone, etc.), acridines (9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.) and the like.
モデル材用組成物における光重合開始剤の含有量は、モデル材用組成物を構成する重合性化合物の種類やその量、用いる開始剤の種類、活性光線の種類等に応じて適宜選択すればよいが、モデル材用組成物の総質量に対して、0.01質量%~10質量%であることが好ましい。
The content of the photopolymerization initiator in the model material composition may be appropriately selected according to the type and amount of the polymerizable compound constituting the model material composition, the type of initiator used, the type of actinic rays, and the like. However, it is preferably 0.01% by mass to 10% by mass with respect to the total mass of the model material composition.
モデル材用組成物は、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、光重合開始助剤、保存安定剤、表面調整剤、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、連鎖移動剤、充填剤、希釈溶媒、増粘剤等が挙げられる。
The composition for model material can contain other additives as necessary within the range not impairing the effects of the present invention. Other additives include, for example, photopolymerization initiation aids, storage stabilizers, surface conditioners, antioxidants, colorants, UV absorbers, light stabilizers, chain transfer agents, fillers, diluent solvents, thickening agents. Agents and the like.
光重合開始助剤は、例えば、第3級アミン化合物であり、芳香族第3級アミン化合物が好ましい。芳香族第3級アミン化合物としては、例えば、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステル、N,N-ジヒドロキシエチルアニリン、トリエチルアミンおよびN,N-ジメチルヘキシルアミン等が挙げられる。中でも、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステルが好ましい。これらの化合物は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
The photopolymerization initiation assistant is, for example, a tertiary amine compound, and preferably an aromatic tertiary amine compound. Examples of the aromatic tertiary amine compound include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like can be mentioned. Of these, N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. These compounds may be used alone or in combination of two or more.
表面調整剤は、モデル材用組成物の表面張力を適切な範囲に調整する成分であり、その種類は特に限定されない。モデル材用組成物の表面張力を適切な範囲にすることで、吐出性を安定化させることができるとともに、モデル材用組成物とサポート材用組成物との界面混じりを抑制することができる。その結果、寸法精度が良好な造形物を得ることができる。
The surface conditioner is a component that adjusts the surface tension of the model material composition to an appropriate range, and the type thereof is not particularly limited. By making the surface tension of the model material composition within an appropriate range, it is possible to stabilize the ejection properties and to suppress interfacial mixing between the model material composition and the support material composition. As a result, it is possible to obtain a shaped article with good dimensional accuracy.
表面調整剤としては、例えば、シリコーン系化合物等が挙げられる。シリコーン系化合物としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物等が挙げられる。具体的には、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等が挙げられる。これらとして、商品名でBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-315、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-344、BYK-370、BYK-375、BYK-377、BYK-UV3500、BYK-UV3510、BYK-UV3570(以上、ビックケミー社製)、TEGO-Rad2100、TEGO-Rad2200N、TEGO-Rad2250、TEGO-Rad2300、TEGO-Rad2500、TEGO-Rad2600、TEGO-Rad2700(以上、デグサ社製)、グラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B-1484、ポリフローATF-2、KL-600、UCR-L72、UCR-L93(共栄社化学社製)等を用いてもよい。また、シリコーン系化合物以外の表面調整剤(例えば、フッ素系表面調整剤等、ノニオン系表面調整剤)を用いてもよい。これらは単独で用いてもよいし、2種以上を併用してもよい。
Examples of the surface conditioner include silicone compounds. Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. These include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570 (above, manufactured by BYK Chemie), TEGO-Rad2100 , TEGO-Rad2200N, TEGO-Rad2250, TEGO-Rad2300, TEGO-Rad2500, TEGO-Rad2600, TEGO-Rad2700 (above, manufactured by Degussa), Granol 100, Granol 115, Granol 400, Grano Le 410, Granol 435, Granol 440, Granol 450, B-1484, Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like may be used. Further, a surface conditioner other than the silicone compound (for example, a nonionic surface conditioner such as a fluorine-based surface conditioner) may be used. These may be used alone or in combination of two or more.
モデル材用組成物が表面調整剤を含有する場合、その含有量は、モデル材用組成物100質量部に対して、好ましくは0.005~3質量部であり、より好ましくは0.01~1質量部である。表面調整剤の含有量が上記の範囲内である場合、モデル材用組成物の表面張力を適切な範囲に調整しやすい。
When the model material composition contains a surface conditioner, the content thereof is preferably 0.005 to 3 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the model material composition. 1 part by mass. When the content of the surface conditioner is within the above range, the surface tension of the model material composition is easily adjusted to an appropriate range.
保存安定剤は、モデル材用組成物の保存安定性を高めることができる成分である。また、熱エネルギーにより重合性化合物が重合することで生じるヘッド詰まりを防止することができる。保存安定剤としては、例えば、ヒンダードアミン系化合物(HALS)、フェノール系酸化防止剤、リン系酸化防止剤、ニトロソアミン系化合物等が挙げられる。具体的には、ハイドロキノン、メトキノン、ベンゾキノン、p-メトキシフェノール、ハイドロキノンモノメチルエーテル、ハイドロキノンモノブチルエーテル、TEMPO、4-ヒドロキシ-TEMPO、TEMPOL、クペロンAl、IRGASTAB UV-10、IRGASTAB UV-22、FIRSTCURE ST-1(ALBEMARLE社製)、t-ブチルカテコール、ピロガロール、BASF社製のTINUVIN 111 FDL、TINUVIN 144、TINUVIN 292、TINUVIN XP40、TINUVIN XP60、TINUVIN 400等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
The storage stabilizer is a component that can enhance the storage stability of the model material composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented. Examples of the storage stabilizer include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more.
モデル材用組成物が保存安定剤を含有する場合、上記効果を得やすい観点から、その含有量はモデル材用組成物100質量部に対して、好ましくは0.05~3質量部であり、より好ましくは0.1~2質量部である。
When the composition for a model material contains a storage stabilizer, the content thereof is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the composition for a model material from the viewpoint of easily obtaining the above effect. More preferably, it is 0.1 to 2 parts by mass.
本発明のモデル材用組成物の粘度は、マテリアルジェットノズルからの吐出性を良好にする観点から、25℃において150mPa・s以下であることが好ましい。上記粘度の測定は、JIS Z 8803に準拠し、回転粘度計を用いて行うことができる。モデル材用組成物の粘度は、重合性化合物の種類およびその配合比率、希釈溶媒や増粘剤の種類およびその添加量等を調整することにより制御することができる。
The viscosity of the composition for model material of the present invention is preferably 150 mPa · s or less at 25 ° C. from the viewpoint of improving dischargeability from the material jet nozzle. The above-mentioned viscosity can be measured using a rotational viscometer in accordance with JIS Z 8803. The viscosity of the composition for a model material can be controlled by adjusting the type of the polymerizable compound and the blending ratio thereof, the type of the diluent solvent and the thickener, the amount of addition thereof, and the like.
本発明のモデル材用組成物の硬化物のガラス転移温度(Tg)は、5℃以下であることが好ましい。モデル材用組成物の硬化物のガラス転移温度を5℃以下とすることで、低温下においても良好な弾性を維持することができる。モデル材用組成物の硬化物のガラス転移温度は、より好ましくは3℃以下である。ガラス転移温度は、例えば、示差熱分析(DTA)または示差走査熱量測定(DSC)により測定することができる。
The glass transition temperature (Tg) of the cured product of the composition for model material of the present invention is preferably 5 ° C. or less. By setting the glass transition temperature of the cured product of the model material composition to 5 ° C. or less, good elasticity can be maintained even at low temperatures. The glass transition temperature of the cured product of the model material composition is more preferably 3 ° C. or lower. The glass transition temperature can be measured, for example, by differential thermal analysis (DTA) or differential scanning calorimetry (DSC).
本発明のモデル材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置、分散機等を用いて、モデル材用組成物を構成する成分を均一に混合することにより製造することができる。
The method for producing the model material composition of the present invention is not particularly limited. For example, the model material composition may be produced by uniformly mixing the components constituting the model material composition using a mixing stirrer, a disperser, or the like. it can.
<サポート材用組成物>
本発明の光造形用組成物セットは、サポート材用組成物を含む。本発明の光造形用組成物セットを構成するサポート材用組成物は、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、および、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)
を含有する組成物である。サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を上記含有量で含有していることにより、優れた水除去性とサポート力とを兼ね備えたサポート材を提供することができ、また、低温安定性に優れたサポート材組成物を提供することができる。上記オキシブチレン基を含むポリアルキレングリコール(a)は水溶性ではあるが、サポート材を形成した際にサポート材のサポート力を低下させるほどの親水性を有さない一方で、上記オキシブチレン基を含むポリアルキレングリコール(a)が水溶性であることにより、サポート材を形成した際のサポート材の水による除去性に優れている。ここで、水溶性とは、水に溶解し得るまたは水に分散し得る特性を意味する。また、上記サポート材用組成物は、低温時に凝固(固化)し難く、流動性が低下し難いため、低温安定性にも優れている。 <Composition for support material>
The optical modeling composition set of the present invention includes a support material composition. The composition for support material constituting the composition set for optical modeling of the present invention is based on 100 parts by mass of the composition for support material.
15 to 75 parts by mass of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more, and
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b)
It is a composition containing this. When the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group in the above content, a support material having both excellent water removal property and support capability can be provided. Moreover, the support material composition excellent in low-temperature stability can be provided. While the polyalkylene glycol (a) containing the oxybutylene group is water-soluble, it does not have hydrophilicity to reduce the support force of the support material when the support material is formed, while the oxybutylene group is Since the polyalkylene glycol (a) contained is water-soluble, the support material is excellent in water removability when the support material is formed. Here, water-soluble means a property that can be dissolved in water or dispersed in water. Moreover, the composition for a support material is not easily solidified (solidified) at low temperatures, and the fluidity is not easily lowered.
本発明の光造形用組成物セットは、サポート材用組成物を含む。本発明の光造形用組成物セットを構成するサポート材用組成物は、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、および、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)
を含有する組成物である。サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を上記含有量で含有していることにより、優れた水除去性とサポート力とを兼ね備えたサポート材を提供することができ、また、低温安定性に優れたサポート材組成物を提供することができる。上記オキシブチレン基を含むポリアルキレングリコール(a)は水溶性ではあるが、サポート材を形成した際にサポート材のサポート力を低下させるほどの親水性を有さない一方で、上記オキシブチレン基を含むポリアルキレングリコール(a)が水溶性であることにより、サポート材を形成した際のサポート材の水による除去性に優れている。ここで、水溶性とは、水に溶解し得るまたは水に分散し得る特性を意味する。また、上記サポート材用組成物は、低温時に凝固(固化)し難く、流動性が低下し難いため、低温安定性にも優れている。 <Composition for support material>
The optical modeling composition set of the present invention includes a support material composition. The composition for support material constituting the composition set for optical modeling of the present invention is based on 100 parts by mass of the composition for support material.
15 to 75 parts by mass of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more, and
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b)
It is a composition containing this. When the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group in the above content, a support material having both excellent water removal property and support capability can be provided. Moreover, the support material composition excellent in low-temperature stability can be provided. While the polyalkylene glycol (a) containing the oxybutylene group is water-soluble, it does not have hydrophilicity to reduce the support force of the support material when the support material is formed, while the oxybutylene group is Since the polyalkylene glycol (a) contained is water-soluble, the support material is excellent in water removability when the support material is formed. Here, water-soluble means a property that can be dissolved in water or dispersed in water. Moreover, the composition for a support material is not easily solidified (solidified) at low temperatures, and the fluidity is not easily lowered.
より具体的には、本発明においてサポート材用組成物は、上記オキシブチレン基を含むポリアルキレングリコール(a)と、水溶性単官能エチレン性不飽和単量体(b)と、光重合開始剤とを含有している。これにより、優れた水除去性とサポート力とを兼ね備えたサポート材を実現可能で、かつ、低温安定性に優れたサポート材用組成物を提供することができる。
More specifically, in the present invention, the composition for a support material comprises the above polyalkylene glycol (a) containing an oxybutylene group, a water-soluble monofunctional ethylenically unsaturated monomer (b), and a photopolymerization initiator. Containing. Thereby, it is possible to provide a support material having both excellent water removability and support force, and can provide a support material composition having excellent low-temperature stability.
サポート材用組成物に含まれ得るオキシブチレン基を含むポリアルキレングリコール(a)としては、直鎖型、多鎖型のいずれであってもよい。また、水に溶解するものであれば、末端にアルキル基を含んでいてもよく、例えば、好ましくは炭素数6以下のアルキル鎖を含んでいてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The polyalkylene glycol (a) containing an oxybutylene group that can be included in the support material composition may be either a linear type or a multi-chain type. Moreover, as long as it melt | dissolves in water, the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
オキシブチレン基を含むポリアルキレングリコール(a)は、サポート材に適度の親水性を付与するための水溶性樹脂であり、これを添加することによりに水除去性とサポート力とを兼ね備えたサポート材を得ることができる。上記オキシブチレン基を含むポリアルキレングリコールは、オキシブチレン基を含んでいれば、特にそのアルキレン部分の構造は限定されず、例えば、オキシブチレン基(オキシテトラメチレン基)のみ有するポリブチレングリコール単体であってもよく、また、オキシブチレン基と他のオキシアルキレン基とを共に有するポリブチレンポリオキシアルキレングリコール(例えば、ポリブチレンポリエチレングリコール)であってもよい。
The polyalkylene glycol (a) containing an oxybutylene group is a water-soluble resin for imparting appropriate hydrophilicity to a support material, and by adding this, a support material having both water removability and support power Can be obtained. The polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group. For example, the polyalkylene glycol having only an oxybutylene group (oxytetramethylene group) is a single polybutylene glycol. Alternatively, it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group.
例えば、上記ポリブチレングリコールは、下記化学式(1)で示され、上記ポリブチレンポリエチレングリコールは、下記化学式(2)で示される。
For example, the polybutylene glycol is represented by the following chemical formula (1), and the polybutylene polyethylene glycol is represented by the following chemical formula (2).
上記化学式(2)において、mは5~300の整数であることが好ましく、nは2~150の整数であることが好ましい。より好ましくは、mは6~200、nは3~100である。また、化学式(1)および化学式(2)中のオキシブチレン基は、直鎖であってもよいが、分岐していてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができ、ゴム状の伸びや弾性を有するモデル材を支持し、精度の高いモデル材を造形するのに適したサポート材となる。特に、ゴムのような伸びや弾性を有し、成形時に寸法精度が低下しやすいモデル材に対して、光造形中にサポート材がモデル材を十分に支えることができるため光造形の段階における造形精度を向上させることができる。さらに、その後、サポート材を除去する段階においてはサポート材の容易な除去が可能であるため、光造形中に高い精度で成形した立体モデルの微細構造においてもその精度の低下を抑えながらサポート材を除去することができる。これにより、サポート材の水による除去性を向上させることによりサポート材除去時における寸法精度の低下を抑制するだけでなく、サポート材の自立性を向上させることにより光造形中におけるモデル材の寸法精度を高めることで、より良好な寸法精度を有する光造形物を得ることができる。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
Since the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group, the removability by water can be further improved without reducing the support force of the support material, It supports a model material having elasticity and becomes a support material suitable for modeling a model material with high accuracy. In particular, for model materials that have elasticity and elasticity like rubber and whose dimensional accuracy tends to decrease during molding, the support material can sufficiently support the model material during stereolithography, so modeling at the stage of stereolithography Accuracy can be improved. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(a)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができ、ゴム状の伸びや弾性を有するモデル材を支持し、精度の高いモデル材を造形するのに適したサポート材となる。特に、ゴムのような伸びや弾性を有し、成形時に寸法精度が低下しやすいモデル材に対して、光造形中にサポート材がモデル材を十分に支えることができるため光造形の段階における造形精度を向上させることができる。さらに、その後、サポート材を除去する段階においてはサポート材の容易な除去が可能であるため、光造形中に高い精度で成形した立体モデルの微細構造においてもその精度の低下を抑えながらサポート材を除去することができる。これにより、サポート材の水による除去性を向上させることによりサポート材除去時における寸法精度の低下を抑制するだけでなく、サポート材の自立性を向上させることにより光造形中におけるモデル材の寸法精度を高めることで、より良好な寸法精度を有する光造形物を得ることができる。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
Since the composition for a support material contains the polyalkylene glycol (a) containing an oxybutylene group, the removability by water can be further improved without reducing the support force of the support material, It supports a model material having elasticity and becomes a support material suitable for modeling a model material with high accuracy. In particular, for model materials that have elasticity and elasticity like rubber and whose dimensional accuracy tends to decrease during molding, the support material can sufficiently support the model material during stereolithography, so modeling at the stage of stereolithography Accuracy can be improved. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
オキシブチレン基を含むポリアルキレングリコール(a)の重量平均分子量(Mw)は、300以上である。前記ポリアルキレングリコール(a)の重量平均分子量が300未満であると、サポート材用組成物を構成する成分との相溶性が低下し、ブリーディングが生じやすくなる。したがって、オキシブチレン基を含むポリアルキレングリコール(a)の重量平均分子量は、より好ましくは400以上、さらに好ましくは500以上である。また、オキシブチレン基を含むポリアルキレングリコール(a)の重量平均分子量の上限は特に限定されるものではないが、通常、3000以下であり、好ましくは2000以下である。重量平均分子量が上記範囲であると、硬化前の組成物中で水溶性単官能エチレン性不飽和単量体(b)と相溶しやすくなる一方、光照射後の水溶性単官能エチレン性不飽和単量体の硬化物とは相溶し難くなり、サポート材の水または水溶性溶剤による除去が容易になる。
The weight average molecular weight (M w ) of the polyalkylene glycol (a) containing an oxybutylene group is 300 or more. When the weight average molecular weight of the polyalkylene glycol (a) is less than 300, the compatibility with the components constituting the composition for a support material is lowered, and bleeding tends to occur. Therefore, the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is more preferably 400 or more, and even more preferably 500 or more. The upper limit of the weight average molecular weight of the polyalkylene glycol (a) containing an oxybutylene group is not particularly limited, but is usually 3000 or less, preferably 2000 or less. When the weight average molecular weight is within the above range, the water-soluble monofunctional ethylenically unsaturated monomer (b) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
上述したとおり、サポート材用組成物におけるオキシブチレン基を含むポリアルキレングリコール(a)の含有量は、サポート材用組成物100質量部に対して、15質量部以上75質量部以下であり、好ましくは17質量部以上であり、より好ましくは20質量部以上であり、好ましくは72質量部以下であり、より好ましくは70質量部以下である。オキシブチレン基を含むポリアルキレングリコール(a)の含有量が、15質量部未満であると、サポート材の親水性が低下するため、サポート材の水除去性が低下し、上記含有量が75質量部を上回ると、重合性成分の水溶性単官能エチレン性不飽和単量体(b)の添加量が低下し、サポート材が軟化して自立性が低下するため、サポート材のサポート力が低下する。
As described above, the content of the polyalkylene glycol (a) containing an oxybutylene group in the support material composition is preferably 15 parts by mass or more and 75 parts by mass or less with respect to 100 parts by mass of the support material composition. Is 17 parts by mass or more, more preferably 20 parts by mass or more, preferably 72 parts by mass or less, more preferably 70 parts by mass or less. When the content of the polyalkylene glycol (a) containing an oxybutylene group is less than 15 parts by mass, the hydrophilicity of the support material decreases, so the water removability of the support material decreases, and the content is 75 masses. If the amount exceeds 50 parts, the amount of the water-soluble monofunctional ethylenically unsaturated monomer (b) that is a polymerizable component is reduced, and the support material is softened and the self-supporting property is lowered. To do.
本発明において、サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(b)としては、例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、数平均分子量(Mn)200~1,000の水酸基含有(メタ)アクリレート〔例えばポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEG-PPGブロックポリマーのモノ(メタ)アクリレート等〕、(メタ)アクリルアミド誘導体〔例えば(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルホリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
In the present invention, the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the support material composition includes, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acry Etc.], (meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N , N′-dimethyl (meth) acrylamide, N, N′-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.] (Meth) acryloylmorpholine and the like can be mentioned. These may be used alone or in combination of two or more.
サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(b)の含有量は、上記サポート材用組成物100質量部に対して、19質量部以上80質量部以下であり、好ましくは22質量部以上であり、より好ましくは25質量部以上であり、好ましくは76質量部以下であり、より好ましくは73質量部以下である。水溶性単官能エチレン性不飽和単量体(b)の含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水によるサポート材の除去性を向上させることができる。
Content of the water-soluble monofunctional ethylenically unsaturated monomer (b) contained in the composition for support material is 19 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the composition for support material. The amount is preferably 22 parts by mass or more, more preferably 25 parts by mass or more, preferably 76 parts by mass or less, and more preferably 73 parts by mass or less. When the content of the water-soluble monofunctional ethylenically unsaturated monomer (b) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
さらに、サポート材用組成物は、水溶性有機溶剤を含んでいてもよい。水溶性有機溶剤は、サポート材用組成物を光硬化させて得られるサポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する機能も有する。
Furthermore, the composition for support material may contain a water-soluble organic solvent. A water-soluble organic solvent is a component which improves the solubility to water of the support material obtained by photocuring the composition for support materials. Moreover, it has the function to adjust the composition for support materials to low viscosity.
水溶性有機溶剤としては、グリコール系溶剤を用いることが好ましく、具体的には、例えば、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート、エチレングリコールジアセテート、プロピレングリコールジアセテートなどのグリコールエステル系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテルなどのグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどのグリコールモノエーテルアセテート系溶剤等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
As the water-soluble organic solvent, a glycol-based solvent is preferably used. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate, triethylene glycol monoacetate, and the like. Glycol ester solvents such as propylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl ether, ethylene Glycol monoethyl ether, propylene glycol Ethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, ethylene Glycol ether solvents such as glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, propylene glycol monomer Ether ether, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monobutyl ether acetate, etc. And glycol monoether acetate solvents. These may be used alone or in combination of two or more.
中でも、低粘度のサポート材用組成物を調製しやすく、また、硬化して得られるサポート材が水溶解性に優れる点から、水溶性有機溶剤としては、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテルおよびジプロピレングリコールモノメチルエーテルアセテートが好ましい。
Among them, since it is easy to prepare a composition for a support material having a low viscosity and the support material obtained by curing is excellent in water solubility, examples of the water-soluble organic solvent include triethylene glycol monomethyl ether, diethylene glycol diethyl ether and Dipropylene glycol monomethyl ether acetate is preferred.
サポート材用組成物における水溶性有機溶剤の含有量は、サポート材用組成物100質量部に対して、30質量部以下であることが好ましく、より好ましくは28質量部以下であり、さらに好ましくは25質量部以下である。水溶性有機溶剤の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。サポート材用組成物が水溶性有機溶剤を含む場合、その含有量は、サポート材用組成物を低粘度に調整し得る観点から、サポート材用組成物100質量部に対して、好ましくは3質量部以上である。
The content of the water-soluble organic solvent in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, further preferably 100 parts by mass of the support material composition. 25 parts by mass or less. When the content of the water-soluble organic solvent is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material. When the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
光重合開始剤としては、モデル材用組成物に含有され得る光重合開始剤として上記に述べた化合物を同様に使用することができる。サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは2質量部以上であり、また、より好ましくは18質量部以下、さらに好ましくは15質量部以下である。光重合開始剤の含有量が上記範囲内であると、未反応の重合成分を十分に低減させて、サポート材の硬化性を十分に高めやすい。
As the photopolymerization initiator, the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner. The content of the photopolymerization initiator in the composition for support material is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the composition for support material. Moreover, More preferably, it is 18 mass parts or less, More preferably, it is 15 mass parts or less. When the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
上記各成分を上記範囲の含有量で含むことにより、優れた水溶解性とサポート力とを兼ね備えたサポート材用組成物を得ることができる。特に、サポート力に優れるため造形中に空気中の水分を取り込みサポート力が低下するという懸念がなく、寸法精度が良好な光造形品が得られる。
By including each of the above components in a content within the above range, a composition for a support material that has both excellent water solubility and support ability can be obtained. In particular, since the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained.
上記サポート材用組成物には、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、表面調整剤、酸化防止剤、着色剤、顔料分散剤、保存安定剤、紫外線吸収剤、光安定剤、連鎖移動剤、充填剤等が挙げられる。
The support material composition may contain other additives as necessary. Examples of other additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, chain transfer agents, and fillers.
サポート材用組成物に、表面調整剤を配合することによりサポート材用組成物の表面張力を適当な範囲に制御することができ、モデル材用組成物とサポート材用組成物がその界面で混合することを抑制することができる。これにより、寸法精度の良好な光造形物を得ることができる。サポート材用組成物が含み得る表面調整剤としては、先のモデル材用組成物に用い得る表面調整剤として例示したものと同様のものを用いることができ、その含有量は、サポート材用組成物100質量部に対して0.005質量部以上3質量部以下であることが好ましい。
By adding a surface conditioner to the support material composition, the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained. As the surface conditioner that can be contained in the support material composition, the same as those exemplified as the surface conditioner that can be used in the previous model material composition can be used, the content of which is the composition for the support material It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
また、サポート材用組成物に保存安定剤を配合することにより保存安定性を向上させることができる。サポート材用組成物が含み得る保存安定剤としては、先のモデル材用組成物に用い得る保存安定剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.05質量部以上3質量部以下であることが好ましい。
Moreover, the storage stability can be improved by blending a storage stabilizer into the support material composition. As the storage stabilizer that can be contained in the support material composition, those exemplified as the storage stabilizer that can be used in the previous model material composition can be used, and the content thereof can be determined by the support material composition. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts.
本発明において、サポート材用組成物の粘度は、マテリアルジェットノズルからの吐出性を良好にする観点から、25℃において30~200mPa・sであることが好ましく、より好ましくは35mPa・s以上、さらに好ましくは40mPa・s以上であり、より好ましくは170mPa・s以下、さらに好ましくは150mPa・s以下である。なお、上記粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。
In the present invention, the viscosity of the composition for a support material is preferably 30 to 200 mPa · s at 25 ° C., more preferably 35 mPa · s or more, from the viewpoint of improving dischargeability from a material jet nozzle. Preferably it is 40 mPa * s or more, More preferably, it is 170 mPa * s or less, More preferably, it is 150 mPa * s or less. In addition, the measurement of the said viscosity can be performed using R100 type | mold viscosity meter based on JISZ8803.
本発明において、サポート材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5~29.5mN/mであり、さらに好ましくは25~29mN/mである。表面張力が上記範囲内であると、ノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、高い造形精度を確保しやすくなる。なお、サポート材用組成物の表面張力は、モデル材用組成物における表面張力の測定方法と同様の方法に従い測定することができる。
In the present invention, the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m. When the surface tension is within the above range, it is possible to normally form droplets ejected from the nozzle, to ensure an appropriate droplet amount and landing accuracy, and to suppress the occurrence of satellites, It becomes easy to ensure high modeling accuracy. In addition, the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
本発明のサポート材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置、分散機等を用いて、サポート材用組成物を構成する成分を均一に混合することにより製造することができる。
The method for producing the composition for a support material of the present invention is not particularly limited. For example, the composition for a support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer, a disperser, or the like. it can.
<光造形用組成物セット>
本発明の光造形用組成物セットは、サポート材が自立性および除去性に優れるために光造形物の寸法精度を損なわないので、高い伸びや弾性を有する立体造形物(モデル材)を優れた精度で造形し得る。 <Composition set for stereolithography>
The composition set for optical modeling of the present invention is excellent in a three-dimensional modeled object (model material) having high elongation and elasticity because the support material is excellent in self-supporting property and removability and does not impair the dimensional accuracy of the optical modeled object. Can be shaped with accuracy.
本発明の光造形用組成物セットは、サポート材が自立性および除去性に優れるために光造形物の寸法精度を損なわないので、高い伸びや弾性を有する立体造形物(モデル材)を優れた精度で造形し得る。 <Composition set for stereolithography>
The composition set for optical modeling of the present invention is excellent in a three-dimensional modeled object (model material) having high elongation and elasticity because the support material is excellent in self-supporting property and removability and does not impair the dimensional accuracy of the optical modeled object. Can be shaped with accuracy.
<光造形品およびその製造方法>
本発明の光造形物の製造方法は、本発明の光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンタを用いてモデル材用組成物およびサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に接触させることにより除去する工程とを備えている。 <Optical modeling product and its manufacturing method>
The manufacturing method of the optical modeling thing of this invention is a manufacturing method of the optical modeling thing using the composition set for optical modeling of this invention, and is a composition for model materials, and a support material using a material jet (inkjet) type printer. After discharging the composition for use, the model material composition is photocured to obtain a model material, the water soluble support material composition is photocured to obtain a water soluble support material, and the water soluble support material Is removed by contacting with water.
本発明の光造形物の製造方法は、本発明の光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンタを用いてモデル材用組成物およびサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に接触させることにより除去する工程とを備えている。 <Optical modeling product and its manufacturing method>
The manufacturing method of the optical modeling thing of this invention is a manufacturing method of the optical modeling thing using the composition set for optical modeling of this invention, and is a composition for model materials, and a support material using a material jet (inkjet) type printer. After discharging the composition for use, the model material composition is photocured to obtain a model material, the water soluble support material composition is photocured to obtain a water soluble support material, and the water soluble support material Is removed by contacting with water.
本発明の製造方法は、上記本発明の光造形用組成物セットを用いているため、高い造形精度でゴム状特性を有する光造形物を形成することができる。
Since the manufacturing method of the present invention uses the optical modeling composition set of the present invention, an optical modeling object having rubber-like properties can be formed with high modeling accuracy.
以下、本発明の光造形物の製造方法について図面に基づき説明する。図1は、マテリアルジェット造形法によりサポート材用組成物およびモデル材用組成物を吐出してエネルギー線を照射している状態を示す模式側面図である。図1において、三次元造形装置10は、インクジェットヘッドモジュール11と、造形テーブル12とを備えている。また、インクジェットヘッドモジュール11は、光造形用インクユニット11aと、ローラー11bと、光源11cとを備えている。さらに、光造形用インクユニット11aは、モデル材用組成物13が充填されたモデル材用インクジェットヘッド11aMと、サポート材用組成物14が充填されたサポート材用インクジェットヘッド11aSとを備えている。
Hereinafter, a method for manufacturing an optically shaped object of the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays. In FIG. 1, the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12. The ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c. Furthermore, the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material composition 13, and a support material inkjet head 11aS filled with the support material composition 14.
モデル材用インクジェットヘッド11aMからは、モデル材用組成物13が吐出され、サポート材用インクジェットヘッド11aSからは、サポート材用組成物14が吐出され、光源11cからエネルギー線15が照射され、吐出されたモデル材用組成物13およびサポート材用組成物14を硬化させて、モデル材13PMとサポート材14PSを形成している。図1では、一層目のモデル材13PMおよびサポート材14PSを形成する状態を示している。
The model material composition 13 is ejected from the model material inkjet head 11aM, the support material composition 14 is ejected from the support material inkjet head 11aS, and the energy beam 15 is irradiated and ejected from the light source 11c. The model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS. FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
次に、本発明の光造形物の製造方法について図面に基づき更に詳細に説明する。本発明の光造形物の製造方法では、先ず、図2に示すように、インクジェットヘッドモジュール11を造形テーブル12に対してX方向(図2では右方向)に走査させる共に、モデル材用インクジェットヘッド11aMからモデル材用組成物13を吐出し、サポート材用インクジェットヘッド11aSからサポート材用組成物14を吐出する。これにより、造形テーブル12の上に、モデル材前駆体13Mからなる層とサポート材前駆体14Sからなる層とを、それぞれの界面同士が接触するように隣接して配置する。
Next, the method for manufacturing an optically shaped product of the present invention will be described in more detail based on the drawings. In the method for producing an optically shaped article of the present invention, first, as shown in FIG. 2, the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet head for model material is used. The composition 13 for model material is discharged from 11aM, and the composition 14 for support material is discharged from the inkjet head 11aS for support material. Thereby, on the modeling table 12, the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange | positioned adjacently so that each interface may contact.
次に、図3に示すように、インクジェットヘッドモジュール11を造形テーブル12に対して逆X方向(図3では左方向)に走査させると共に、ローラー11bでモデル材前駆体13Mおよびサポート材前駆体14Sからなる層の表面を平滑にした後、光源11cからエネルギー線15を照射し、モデル材前駆体13Mおよびサポート材前駆体14Sからなる層を硬化させて、一層目のモデル材13PMおよびサポート材14PSからなる層を形成す
る。 Next, as shown in FIG. 3, theinkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 </ b> M and the support material precursor 14 </ b> S with the roller 11 b. After smoothing the surface of the layer made of the material, the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS. A layer consisting of is formed.
る。 Next, as shown in FIG. 3, the
続いて、造形テーブル12をZ方向に一層分だけ下降させて、上記と同様の工程を行い、二層目のモデル材およびサポート材からなる層を形成する。その後、上記の工程を繰り返すことにより、図4に示すように、モデル材13PMとサポート材14PSからなる光造形品前駆体16が形成される。
Subsequently, the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
最後に、図4に示した光造形品前駆体16を水に接触させる、例えば、水に浸漬することによりサポート材14PSを溶解して除去し、図5に示すような光造形品17が形成される。
Finally, the optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
本発明の光造形物の製造方法において、光源として、例えば、高圧水銀灯、メタルハライドランプ、UV-LED等を使用できる。三次元造形装置10の小型化が可能であり、消費電力が小さいという観点から、UV-LEDが好ましい。光量は、造形品の硬度および寸法精度の観点から、200~500mJ/cm2が好ましい。光源としてUV-LEDを用いる場合、光が深層まで届きやすくなり、光造形品の硬度および寸法精度を向上させることができることから、中心波長が385~415nmのものを用いることが好ましい。また、光源11cから照射するエネルギー線15についは、紫外線、近紫外線、可視光線、赤外線、遠赤外線、電子線、α線、γ線およびエックス線等を使用することができるが、硬化作業の容易性及び効率性の観点から、紫外線又は近紫外線が好ましい。
In the method for producing an optically shaped article of the present invention, for example, a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source. From the viewpoint that the three-dimensional modeling apparatus 10 can be miniaturized and the power consumption is small, UV-LED is preferable. The amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product. When a UV-LED is used as the light source, it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved. As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, α rays, γ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
本発明の製造方法において、例えば、作製する物体の3次元CADデータをもとに、マテリアルジェット方式で積層して立体造形物を構成するモデル材用組成物のデータ、および、作製途上の立体造形物を支持するサポート材用組成物のデータを作製し、さらにマテリアルジェット方式の3Dプリンタで各組成物を吐出するスライスデータを作製し、作製したスライスデータに基づきモデル材用およびサポート材用の各組成物を吐出後、光硬化処理を層ごとに繰り返し、モデル材用組成物の硬化物(モデル材)およびサポート材用組成物の硬化物(サポート材)からなる光造形物を作製することができる。
In the manufacturing method of the present invention, for example, based on the three-dimensional CAD data of the object to be manufactured, the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data. After discharging the composition, the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
立体造形物を構成する各層の厚みは、造形精度の観点からは薄いほうが好ましいが、造形速度とのバランスからは5~30μmが好ましい。
The thickness of each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 μm from the balance with the modeling speed.
得られた光造形物は、モデル材とサポート材とが組み合わされたものである。かかる光造形物からサポート材を除去してモデル材である光造形品を得る。サポート材の除去は、例えば、サポート材を溶解させる除去溶剤に得られた光造形物を浸漬し、サポート材を柔軟にした後、ブラシなどでモデル材表面からサポート材を除去して行うことが好ましい。サポート材の除去溶剤には水、水溶性溶剤、例えばグリコール系溶剤、アルコール系溶剤などを用いてもよい。これらは、単独で、あるいは複数用いてもよい。
The obtained stereolithography is a combination of a model material and a support material. The support material is removed from the stereolithography product to obtain a stereolithography product as a model material. The support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like. preferable. Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
上記光造形品は、水に接触した場合の吸水及び膨潤が抑制されており、微細構造部分の破損及び変形を起こしにくいものである。また、上記光造形品は撥水撥油性に優れ、汚染されにくいものである。
The above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
以上の工程により得られた光造形品は、ある実施形態においては、比較的高い表面硬度を有する。例えば、上記光造形品は、ショア-D硬度で50以上、好ましくは60以上、より好ましくは70以上の表面硬度を有する。上記光造形品は、サポート材を除去する際に水に接触する時間が短時間で済むために吸水及び膨潤が抑制されており、寸法精度が高いものである。
The stereolithographic product obtained by the above steps has a relatively high surface hardness in an embodiment. For example, the stereolithographic product has a surface hardness of Shore-D hardness of 50 or more, preferably 60 or more, more preferably 70 or more. The optically shaped article has a high dimensional accuracy because water absorption and swelling are suppressed because it takes a short time to contact water when removing the support material.
以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部である。
Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “parts” in the examples are% by mass and parts by mass.
1.モデル材用組成物
実施例において用いたモデル材用組成物を構成する成分の詳細を表1に示す。 1. Model Material Composition Table 1 shows the details of the components constituting the model material composition used in the examples.
実施例において用いたモデル材用組成物を構成する成分の詳細を表1に示す。 1. Model Material Composition Table 1 shows the details of the components constituting the model material composition used in the examples.
(1)モデル材用組成物の調製
表2に示す配合で、各モデル材用組成物を構成する成分を、それぞれ、混合攪拌装置を用いて均一に混合し、実施例M1~M6並びに比較例m1およびm2のモデル材用組成物を製造した。 (1) Preparation of Model Material Composition In the formulation shown in Table 2, the components constituting each model material composition were uniformly mixed using a mixing stirrer, and Examples M1 to M6 and Comparative Examples The composition for model materials of m1 and m2 was manufactured.
表2に示す配合で、各モデル材用組成物を構成する成分を、それぞれ、混合攪拌装置を用いて均一に混合し、実施例M1~M6並びに比較例m1およびm2のモデル材用組成物を製造した。 (1) Preparation of Model Material Composition In the formulation shown in Table 2, the components constituting each model material composition were uniformly mixed using a mixing stirrer, and Examples M1 to M6 and Comparative Examples The composition for model materials of m1 and m2 was manufactured.
(2)モデル材用組成物の物性
<粘度の測定>
各モデル材用組成物の粘度は、回転粘度計を用いて測定した。結果を表2に示す。 (2) Physical properties of model material composition <Measurement of viscosity>
The viscosity of each composition for model materials was measured using a rotational viscometer. The results are shown in Table 2.
<粘度の測定>
各モデル材用組成物の粘度は、回転粘度計を用いて測定した。結果を表2に示す。 (2) Physical properties of model material composition <Measurement of viscosity>
The viscosity of each composition for model materials was measured using a rotational viscometer. The results are shown in Table 2.
(3)モデル材の特性
ガラス板上に、縦100mm、横20mm、厚さ1mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各モデル材用組成物を流し込み、メタルハライドランプにより積算光量600mJ/cm2の紫外線を照射して、モデル材を得た。得られたモデル材について下記特性を、測定、評価した。結果を表2に示す。 (3) Characteristics of the model material A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 100 mm, a width of 20 mm, and a thickness of 1 mm. The composition for each model material is poured into the frame, and a metal halide lamp is used. A model material was obtained by irradiating with an ultraviolet ray having an integrated light quantity of 600 mJ / cm 2 . The obtained model material was measured and evaluated for the following characteristics. The results are shown in Table 2.
ガラス板上に、縦100mm、横20mm、厚さ1mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各モデル材用組成物を流し込み、メタルハライドランプにより積算光量600mJ/cm2の紫外線を照射して、モデル材を得た。得られたモデル材について下記特性を、測定、評価した。結果を表2に示す。 (3) Characteristics of the model material A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 100 mm, a width of 20 mm, and a thickness of 1 mm. The composition for each model material is poured into the frame, and a metal halide lamp is used. A model material was obtained by irradiating with an ultraviolet ray having an integrated light quantity of 600 mJ / cm 2 . The obtained model material was measured and evaluated for the following characteristics. The results are shown in Table 2.
<ガラス転移温度(Tg)>
ガラス転移度はDSC(示差走査熱量測定)で測定した。 <Glass transition temperature (Tg)>
The glass transition degree was measured by DSC (differential scanning calorimetry).
ガラス転移度はDSC(示差走査熱量測定)で測定した。 <Glass transition temperature (Tg)>
The glass transition degree was measured by DSC (differential scanning calorimetry).
<ゴム特性>
室温で、引張速度500mm/分で一定荷重をかけて破断強度および破断伸びを測定した。X軸を伸び(%)、Y軸を破断強度(MPa)としたときに、曲線A(40%、6.8MPa)、(100%、3MPa)、(300%、1.1MPa)、曲線B(40%、5.2MPa)、(100%、2.2MPa)、(300%、0.75MPa)を結ぶ線を基準にして、以下の評価基準により評価した。
評価基準:
○:曲線Aから原点の反対側
△:曲線Aと曲線Bの間
×:曲線Bから原点の間 <Rubber properties>
The breaking strength and breaking elongation were measured by applying a constant load at a tensile speed of 500 mm / min at room temperature. Curve A (40%, 6.8 MPa), (100%, 3 MPa), (300%, 1.1 MPa), curve B, where X-axis is elongation (%) and Y-axis is breaking strength (MPa) Evaluation was performed according to the following evaluation criteria with reference to a line connecting (40%, 5.2 MPa), (100%, 2.2 MPa), and (300%, 0.75 MPa).
Evaluation criteria:
○: On the opposite side of the origin from curve A Δ: Between curve A and curve B ×: Between curve B and origin
室温で、引張速度500mm/分で一定荷重をかけて破断強度および破断伸びを測定した。X軸を伸び(%)、Y軸を破断強度(MPa)としたときに、曲線A(40%、6.8MPa)、(100%、3MPa)、(300%、1.1MPa)、曲線B(40%、5.2MPa)、(100%、2.2MPa)、(300%、0.75MPa)を結ぶ線を基準にして、以下の評価基準により評価した。
評価基準:
○:曲線Aから原点の反対側
△:曲線Aと曲線Bの間
×:曲線Bから原点の間 <Rubber properties>
The breaking strength and breaking elongation were measured by applying a constant load at a tensile speed of 500 mm / min at room temperature. Curve A (40%, 6.8 MPa), (100%, 3 MPa), (300%, 1.1 MPa), curve B, where X-axis is elongation (%) and Y-axis is breaking strength (MPa) Evaluation was performed according to the following evaluation criteria with reference to a line connecting (40%, 5.2 MPa), (100%, 2.2 MPa), and (300%, 0.75 MPa).
Evaluation criteria:
○: On the opposite side of the origin from curve A Δ: Between curve A and curve B ×: Between curve B and origin
<寸法安定性>
硬化物の硬化直後の寸法と、7日後の寸法とを測定した。
評価基準:
○:寸法の差が1%未満
△:寸法の差が1~3%未満
×:寸法の差が3%以上 <Dimensional stability>
The dimensions immediately after curing of the cured product and the dimensions after 7 days were measured.
Evaluation criteria:
○: Dimensional difference is less than 1% △: Dimensional difference is less than 1-3% ×: Dimensional difference is 3% or more
硬化物の硬化直後の寸法と、7日後の寸法とを測定した。
評価基準:
○:寸法の差が1%未満
△:寸法の差が1~3%未満
×:寸法の差が3%以上 <Dimensional stability>
The dimensions immediately after curing of the cured product and the dimensions after 7 days were measured.
Evaluation criteria:
○: Dimensional difference is less than 1% △: Dimensional difference is less than 1-3% ×: Dimensional difference is 3% or more
2.サポート材用組成物
実施例において用いたサポート材用組成物を構成する成分の詳細を表3に示す。 2. Composition for Support Material Details of components constituting the composition for support material used in Examples are shown in Table 3.
実施例において用いたサポート材用組成物を構成する成分の詳細を表3に示す。 2. Composition for Support Material Details of components constituting the composition for support material used in Examples are shown in Table 3.
(1)サポート材用組成物の調製
表4に示す配合で、各サポート材用組成物を構成する成分を、それぞれ、混合攪拌装置を用いて均一に混合し、実施例S1~S13および比較例s1のサポート材用組成物を製造した。 (1) Preparation of Support Material Composition In the formulation shown in Table 4, the components constituting each support material composition were uniformly mixed using a mixing and stirring device, respectively, and Examples S1 to S13 and Comparative Examples The composition for support material of s1 was manufactured.
表4に示す配合で、各サポート材用組成物を構成する成分を、それぞれ、混合攪拌装置を用いて均一に混合し、実施例S1~S13および比較例s1のサポート材用組成物を製造した。 (1) Preparation of Support Material Composition In the formulation shown in Table 4, the components constituting each support material composition were uniformly mixed using a mixing and stirring device, respectively, and Examples S1 to S13 and Comparative Examples The composition for support material of s1 was manufactured.
(2)サポート材用組成物およびその硬化物の特性
上記実施例S1~S13および比較例s1のサポート材用組成物について、下記に示す方法によって、サポート材用組成物の低温安定性、サポート材組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)および水除去性を評価した。 (2) Characteristics of Support Material Composition and Cured Product thereof With respect to the support material compositions of Examples S1 to S13 and Comparative Example s1, the low temperature stability of the support material composition and the support material are obtained by the following method. The high-temperature and high-humidity condition stability (supporting power) and water removability of the cured support material obtained by curing the composition were evaluated.
上記実施例S1~S13および比較例s1のサポート材用組成物について、下記に示す方法によって、サポート材用組成物の低温安定性、サポート材組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)および水除去性を評価した。 (2) Characteristics of Support Material Composition and Cured Product thereof With respect to the support material compositions of Examples S1 to S13 and Comparative Example s1, the low temperature stability of the support material composition and the support material are obtained by the following method. The high-temperature and high-humidity condition stability (supporting power) and water removability of the cured support material obtained by curing the composition were evaluated.
<サポート材用組成物の低温安定性>
低温でのサポート材用組成物の安定性について評価した。各サポート材用組成物をガラス瓶に入れ、そのサポート材用組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材用組成物の状態を目視で確認して、下記基準でサポート材用組成物の低温安定性を評価した。 <Low temperature stability of support material composition>
The stability of the composition for the support material at low temperature was evaluated. Each composition for support material was put into a glass bottle, and the glass bottle with the composition for support material was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
低温でのサポート材用組成物の安定性について評価した。各サポート材用組成物をガラス瓶に入れ、そのサポート材用組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材用組成物の状態を目視で確認して、下記基準でサポート材用組成物の低温安定性を評価した。 <Low temperature stability of support material composition>
The stability of the composition for the support material at low temperature was evaluated. Each composition for support material was put into a glass bottle, and the glass bottle with the composition for support material was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
サポート材用組成物が液体状を維持している場合:低温安定性A(優良)
サポート材用組成物が一部凝固(固化)している場合:低温安定性B(良)
サポート材用組成物が凝固(固化)している場合:低温安定性C(不良) When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): Low temperature stability B (good)
When the composition for the support material is solidified (solidified): low temperature stability C (poor)
サポート材用組成物が一部凝固(固化)している場合:低温安定性B(良)
サポート材用組成物が凝固(固化)している場合:低温安定性C(不良) When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): Low temperature stability B (good)
When the composition for the support material is solidified (solidified): low temperature stability C (poor)
<サポート材硬化物のサポート力>
ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。 <Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。 <Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
硬化物の表面に液体状物質の発生がなく、硬化物の軟化も確認されない場合:サポート力A(優良)
硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良) When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良) When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
<サポート材硬化物の水除去性>
上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。 <Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。 <Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
硬化物が完全に溶解するまでの時間が1時間未満であった:水除去性A(優良)
硬化物が完全に溶解するまでの時間が1時間以上2時間未満であった:水除去性B(良)
硬化物が完全に溶解するまでの時間が2時間以上であった:水除去性C(不良) The time until the cured product completely dissolved was less than 1 hour: water removability A (excellent)
The time until the cured product was completely dissolved was 1 hour or more and less than 2 hours: Water removability B (good)
The time until the cured product was completely dissolved was 2 hours or more: water removability C (poor)
硬化物が完全に溶解するまでの時間が1時間以上2時間未満であった:水除去性B(良)
硬化物が完全に溶解するまでの時間が2時間以上であった:水除去性C(不良) The time until the cured product completely dissolved was less than 1 hour: water removability A (excellent)
The time until the cured product was completely dissolved was 1 hour or more and less than 2 hours: Water removability B (good)
The time until the cured product was completely dissolved was 2 hours or more: water removability C (poor)
上記結果を表5に示す。
The results are shown in Table 5.
実施例S1~S13のサポート材用組成物は、全ての評価項目で満足できる結果(優良または良)を得たことが分かる。
It can be seen that the support material compositions of Examples S1 to S13 obtained satisfactory results (excellent or good) in all evaluation items.
3.光造形用組成物セット
表6に示す通りに上記モデル材用組成物およびサポート材用組成物を組み合わせることにより、実施例1~3並びに比較例1および2を調製した。 3. Stereolithographic Composition Set Examples 1 to 3 and Comparative Examples 1 and 2 were prepared by combining the model material composition and the support material composition as shown in Table 6.
表6に示す通りに上記モデル材用組成物およびサポート材用組成物を組み合わせることにより、実施例1~3並びに比較例1および2を調製した。 3. Stereolithographic Composition Set Examples 1 to 3 and Comparative Examples 1 and 2 were prepared by combining the model material composition and the support material composition as shown in Table 6.
ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にサポート材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させ、サポート材を得た。
A spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into 10 cm × 10 cm squares. After casting the composition for the support material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
次に、上記サポート材の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にモデル材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させ、モデル材を得た。
Next, spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm × 10 cm. After casting the composition for the model material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a model material.
<密着性の評価>
この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表9に示す。
○:モデル材とサポート材とは密着していた。
△:モデル材とサポート材とは密着していたが、モデル材とサポート材との界面を爪でひっかくと剥がれが生じた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。 <Evaluation of adhesion>
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 9.
○: The model material and the support material were in close contact.
Δ: The model material and the support material were in close contact with each other, but peeling occurred when the interface between the model material and the support material was scratched with a nail.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表9に示す。
○:モデル材とサポート材とは密着していた。
△:モデル材とサポート材とは密着していたが、モデル材とサポート材との界面を爪でひっかくと剥がれが生じた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。 <Evaluation of adhesion>
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 9.
○: The model material and the support material were in close contact.
Δ: The model material and the support material were in close contact with each other, but peeling occurred when the interface between the model material and the support material was scratched with a nail.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
表6の結果から分かるように、本発明の要件を満たす実施例1~3の光造形用組成物のセットは、モデル材とサポート材との界面に剥がれが生じず、モデル材とサポート材とがより密着していた。このように、モデル材とサポート材とが密着していれば、寸法精度が良好な光造形品が得られる。
As can be seen from the results in Table 6, the set of optical shaping compositions of Examples 1 to 3 satisfying the requirements of the present invention does not cause peeling at the interface between the model material and the support material, and the model material and the support material Was more closely attached. Thus, if the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
10 三次元造形装置
11 インクジェットヘッドモジュール
11a 光造形用インクユニット
11aM モデル材用インクジェットヘッド
11aS サポート材用インクジェットヘッド
11b ローラー
11c 光源
12 造形テーブル
13 モデル材用組成物
13M モデル材前駆体
13PM モデル材
14 サポート材用組成物
14S サポート材前駆体
14PS サポート材
15 エネルギー線
16 光造形品前駆体(光造形物)
17 光造形品 DESCRIPTION OFSYMBOLS 10 3D modeling apparatus 11 Inkjet head module 11a Optical modeling ink unit 11aM Model material inkjet head 11aS Support material inkjet head 11b Roller 11c Light source 12 Modeling table 13 Model material composition 13M Model material precursor 13PM Model material 14 Support Material composition 14S Support material precursor 14PS Support material 15 Energy beam 16 Stereolithography product precursor (Optical fabrication product)
17 Stereolithography
11 インクジェットヘッドモジュール
11a 光造形用インクユニット
11aM モデル材用インクジェットヘッド
11aS サポート材用インクジェットヘッド
11b ローラー
11c 光源
12 造形テーブル
13 モデル材用組成物
13M モデル材前駆体
13PM モデル材
14 サポート材用組成物
14S サポート材前駆体
14PS サポート材
15 エネルギー線
16 光造形品前駆体(光造形物)
17 光造形品 DESCRIPTION OF
17 Stereolithography
Claims (12)
- モデル材用組成物とサポート材用組成物とを含んでなるマテリアルジェット光造形法に使用される光造形用組成物セットであって、
前記モデル材用組成物が、単官能モノマー(A)と、分子内に炭素-炭素二重結合を含む重合性官能基を複数有する多官能モノマー(B)とを含んでなり、前記単官能モノマー(A)と前記多官能モノマー(B)とのモル分率(単官能モノマー(A)/多官能モノマー(B))が99.9/0.1~92/8であり、
前記単官能モノマー(A)として、分子量が150以上400未満であり、かつ、ホモポリマーとしてのガラス転移温度が5℃以下である(メタ)アクリレート(A1)を、前記単官能モノマー(A)の全質量に対して85質量%以上含有し、
前記サポート材用組成物が、該サポート材用組成物100質量部に対して、
15質量部以上75質量部以下の、オキシブチレン基を含み、かつ、重量平均分子量が300以上であるポリアルキレングリコール(a)、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体(b)、および、
光重合開始剤
を含有する、光造形用組成物セット。 A composition set for stereolithography used in a material jet stereolithography method comprising a composition for model material and a composition for support material,
The composition for a model material comprises a monofunctional monomer (A) and a polyfunctional monomer (B) having a plurality of polymerizable functional groups containing a carbon-carbon double bond in the molecule, and the monofunctional monomer The molar fraction of (A) and the polyfunctional monomer (B) (monofunctional monomer (A) / polyfunctional monomer (B)) is 99.9 / 0.1 to 92/8,
As the monofunctional monomer (A), a (meth) acrylate (A1) having a molecular weight of 150 or more and less than 400 and having a glass transition temperature of 5 ° C. or less as a homopolymer is used as the monofunctional monomer (A). Contains 85% by mass or more based on the total mass,
The support material composition is based on 100 parts by mass of the support material composition.
15 parts by mass or more and 75 parts by mass or less of a polyalkylene glycol (a) containing an oxybutylene group and having a weight average molecular weight of 300 or more,
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer (b), and
A composition set for optical modeling containing a photopolymerization initiator. - モデル材用組成物の硬化物のガラス転移温度は5℃以下である、請求項1に記載の光造形用組成物セット。 The glass transition temperature of the hardened | cured material of the composition for model materials is 5 degrees C or less, The composition set for optical modeling of Claim 1.
- モデル材用組成物を構成する多官能モノマー(B)が有する重合性官能基は、アクリル基、メタクリル基、ビニルエーテル基およびアリルエーテル基からなる群から選択される、請求項1または2に記載の光造形用組成物セット。 The polymerizable functional group which the polyfunctional monomer (B) which comprises the composition for model materials has is selected from the group which consists of an acryl group, a methacryl group, a vinyl ether group, and an allyl ether group of Claim 1 or 2 Stereolithography composition set.
- モデル材用組成物は2種以上の前記(メタ)アクリレート(A1)を含有する、請求項1~3のいずれかに記載の光造形用組成物セット。 The composition set for optical modeling according to any one of claims 1 to 3, wherein the composition for a model material contains two or more kinds of the (meth) acrylates (A1).
- モデル材用組成物は光重合開始剤をさらに含有する、請求項1~4のいずれかに記載の光造形用組成物セット。 The composition for optical modeling according to any one of claims 1 to 4, wherein the composition for model material further contains a photopolymerization initiator.
- モデル材用組成物の25℃における粘度は150mPa・s以下である、請求項1~5のいずれかに記載の光造形用組成物セット。 The composition set for optical modeling according to any one of claims 1 to 5, wherein the composition for a model material has a viscosity at 25 ° C of 150 mPa · s or less.
- サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、1質量部以上15質量部以下である、請求項1~6のいずれかに記載の光造形用組成物セット。 The light according to any one of claims 1 to 6, wherein the content of the photopolymerization initiator in the support material composition is 1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the composition for support material. Composition set for modeling.
- サポート材用組成物は、サポート材用組成物100質量部に対して0.005質量部以上3質量部以下の表面調整剤をさらに含有する、請求項1~7のいずれかに記載の光造形用組成物セット。 The stereolithography according to any one of claims 1 to 7, wherein the support material composition further comprises 0.005 parts by mass or more and 3 parts by mass or less of a surface conditioner with respect to 100 parts by mass of the support material composition. Composition set.
- サポート材用組成物が水溶性有機溶剤を含有し、前記水溶性有機溶剤の含有量は、サポート材用組成物100質量部に対して30質量部以下である、請求項1~8のいずれかに記載の光造形用組成物セット。 The support material composition contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the support material composition. The composition set for stereolithography according to 1.
- サポート材用組成物は保存安定化剤をさらに含有する、請求項1~9のいずれかに記載の光造形用組成物セット。 The composition for optical modeling according to any one of claims 1 to 9, wherein the composition for a support material further contains a storage stabilizer.
- マテリアルジェット光造形法により、請求項1~10のいずれかに記載の光造形用組成物セットに含まれるモデル材用組成物を光硬化させて得られるモデル材を含む、光造形物。 An optically modeled article comprising a model material obtained by photocuring the model material composition contained in the composition for optical modeling according to any one of claims 1 to 10 by a material jet stereolithography method.
- マテリアルジェット光造形法により、請求項1~10のいずれかに記載の光造形用組成物セットを用いて光造形物を製造する方法であって、
モデル材用組成物を光硬化させてモデル材を得るとともに、サポート材用組成物を光硬化させてサポート材を得る工程(I)、および、
前記サポート材を除去する工程(II)
を有する、光造形物の製造方法。 A method for producing an optically shaped object by using the composition set for optical modeling according to any one of claims 1 to 10 by a material jet stereolithography method,
A step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material; and
Step (II) for removing the support material
A method for producing an optically shaped object.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018102757A JP2021130724A (en) | 2018-05-29 | 2018-05-29 | Composition set for photo-molding |
JP2018-102757 | 2018-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230132A1 true WO2019230132A1 (en) | 2019-12-05 |
Family
ID=68696690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010942 WO2019230132A1 (en) | 2018-05-29 | 2019-03-15 | Photo-fabrication composition set |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021130724A (en) |
WO (1) | WO2019230132A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024043039A1 (en) * | 2022-08-26 | 2024-02-29 | 国立大学法人大阪大学 | Method for manufacturing three-dimensional shaped article and inset for production of three-dimensional shaped article |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016121587A1 (en) * | 2015-01-26 | 2016-08-04 | Kjケミカルズ株式会社 | Active energy ray-curable resin composition for three-dimensional model supporting material |
JP2016163992A (en) * | 2010-11-01 | 2016-09-08 | 株式会社キーエンス | Supporting material applied to three-dimensional molding method using inkjet photofabrication apparatus, and combination of modeling material and supporting material |
WO2017047692A1 (en) * | 2015-09-15 | 2017-03-23 | 日立マクセル株式会社 | Optical shaping ink set, and method for manufacturing optically shaped article |
JP2018058974A (en) * | 2016-10-04 | 2018-04-12 | 共栄社化学株式会社 | Active ray-curable resin composition |
-
2018
- 2018-05-29 JP JP2018102757A patent/JP2021130724A/en active Pending
-
2019
- 2019-03-15 WO PCT/JP2019/010942 patent/WO2019230132A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016163992A (en) * | 2010-11-01 | 2016-09-08 | 株式会社キーエンス | Supporting material applied to three-dimensional molding method using inkjet photofabrication apparatus, and combination of modeling material and supporting material |
WO2016121587A1 (en) * | 2015-01-26 | 2016-08-04 | Kjケミカルズ株式会社 | Active energy ray-curable resin composition for three-dimensional model supporting material |
WO2017047692A1 (en) * | 2015-09-15 | 2017-03-23 | 日立マクセル株式会社 | Optical shaping ink set, and method for manufacturing optically shaped article |
JP2018058974A (en) * | 2016-10-04 | 2018-04-12 | 共栄社化学株式会社 | Active ray-curable resin composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024043039A1 (en) * | 2022-08-26 | 2024-02-29 | 国立大学法人大阪大学 | Method for manufacturing three-dimensional shaped article and inset for production of three-dimensional shaped article |
Also Published As
Publication number | Publication date |
---|---|
JP2021130724A (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017018453A1 (en) | Resin composition for model materials, resin composition for support materials, optically shaped article and method for producing optically shaped article | |
JP6571297B2 (en) | Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product | |
JP2015078255A (en) | Inkjet ink composition for three-dimensional shaping and method for producing three-dimensionally shaped article | |
TWI685415B (en) | Composition for model material | |
JP6937300B2 (en) | Manufacturing method of resin composition for model material and stereolithography | |
TW201833252A (en) | Support material composition and photo fabrication ink set | |
WO2015056614A1 (en) | Inkjet ink composition for three-dimensional modeling, and method for manufacturing three-dimensional modeled object | |
WO2018142485A1 (en) | Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article | |
JP2019156932A (en) | Model material composition | |
WO2018143303A1 (en) | Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article | |
WO2017159358A1 (en) | Composition for model materials, optically shaped article, and method for producing optically shaped articles | |
WO2019176139A1 (en) | Model material composition and photo fabrication composition set | |
JP6399084B2 (en) | Photocurable composition for 3D modeling and method for producing 3D modeling | |
WO2019230132A1 (en) | Photo-fabrication composition set | |
WO2019230134A1 (en) | Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article | |
JP7186508B2 (en) | Composition for model material | |
JP7217160B2 (en) | model material clear composition | |
JP2019155801A (en) | Composition for model material, and composition set for material jetting optical shaping | |
JP2019155826A (en) | Composition for model material and composition set for optical shaping including the same | |
JP2019206112A (en) | Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article | |
JP2020040408A (en) | Composition for model material | |
JP2020040407A (en) | Composition for model material | |
WO2018143299A1 (en) | Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article | |
WO2019230135A1 (en) | Photo-fabrication ink set, and production method for photo-fabricated article | |
WO2019230136A1 (en) | Photo-fabrication ink set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19811629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19811629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |