WO2019176139A1 - Model material composition and photo fabrication composition set - Google Patents
Model material composition and photo fabrication composition set Download PDFInfo
- Publication number
- WO2019176139A1 WO2019176139A1 PCT/JP2018/033072 JP2018033072W WO2019176139A1 WO 2019176139 A1 WO2019176139 A1 WO 2019176139A1 JP 2018033072 W JP2018033072 W JP 2018033072W WO 2019176139 A1 WO2019176139 A1 WO 2019176139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- parts
- weight
- meth
- acrylate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/112—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/40—Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
Definitions
- the present invention relates to a composition for a model material used in a material jet stereolithography method, and a material jet stereolithography used in a material jet stereolithography method, which combines the composition for a model material and a composition for a water-soluble support material.
- the present invention relates to a composition set.
- the material jet (inkjet) method for forming a cured layer having a predetermined shape by discharging a photocurable resin composition from a nozzle and immediately irradiating it with ultraviolet rays or the like to cure.
- “Material Jet Stereolithography” is known. The material jet stereolithography attracts attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
- model material the material of the three-dimensional structure
- a three-dimensional model formed by the material jet stereolithography method is referred to as a “three-dimensional model”.
- the composition for model material is ejected smoothly from a 3D printer to form droplets having an appropriate size and viscosity. The characteristic that the dimensions do not change after wearing is required.
- ⁇ Through stereolithic objects are sometimes used as industrial products or parts, and excellent physical properties such as dimensional accuracy, strength, and friction resistance are required. Therefore, excellent curability is required for the model material composition for such applications.
- Patent Document 1 discloses an active energy ray for inkjet ink that has a low viscosity even when the composition is solvent-free, has excellent ejection properties, is excellent in curability, and has excellent adhesion, hardness, and scratch resistance of a cured product of the composition.
- a curable composition is described.
- the active energy ray-curable composition for inkjet ink of Patent Document 1 contains a (meth) acrylate mixture (A) containing glycerin tri (meth) acrylate as a main component.
- the curable composition of Patent Document 1 uses a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups, thereby increasing the crosslinking point in the curable composition and enhancing its curability. Has been.
- the curable composition containing a polyfunctional monomer is liable to increase in viscosity, resulting in insufficient storage stability.
- Patent Document 2 describes an ink composition for forming a clear layer that has both adhesiveness and curability suitable for forming a thick clear layer.
- the ink composition of Patent Document 2 contains an amine-modified reactive oligomer and a monofunctional (meth) acrylate.
- the ink composition of Patent Document 2 uses an amine-modified reactive oligomer to enhance ink curability.
- Patent Document 2 the ink composition of Patent Document 2 is easily shrunk when a three-dimensional model is manufactured by the ink jet optical modeling method, and the dimensional stability at the time of curing is insufficient. Moreover, as a hard three-dimensional molded item used as an industrial product or a part, surface hardness and friction resistance are inadequate.
- the present invention solves the above-mentioned conventional problems, and the object thereof is a hard three-dimensional modeled article having excellent dimensional accuracy, surface hardness and friction resistance because of low curing shrinkage and excellent curability. It is in providing the composition for model materials which can form. Another object of the present invention is to provide a composition set for material jet stereolithography in which the model material composition and the support material composition are combined.
- the present invention is a composition for a model material used for modeling an optical modeling object by a material jet optical modeling method, For 100 parts by weight of the entire resin composition, A monofunctional ethylenically unsaturated monomer (A); 15 to 50 parts by weight of a bifunctional or higher polyfunctional ethylenically unsaturated monomer (B); 2 to 40 parts by weight of (meth) acrylated amine compound (C), 10 to 40 parts by weight of oligomer (D); 1 to 15 parts by weight of a photopolymerization initiator (E), 0.005 to 3.0 parts by weight of a surface conditioner (F) A composition for a model material is provided.
- the component (A) contains 19 to 49 parts by weight of the monofunctional ethylenically unsaturated monomer (A-2) with respect to 100 parts by weight of the entire resin composition.
- the component (C) has a tertiary amino group in the molecule.
- the component (C) has the same number of hydroxyl groups as tertiary amino groups in the molecule.
- the content of the component (B) is 20 to 45 parts by weight with respect to 100 parts by weight of the entire resin composition.
- the content of the component (C) is 5 to 30 parts by weight with respect to 100 parts by weight of the entire resin composition.
- the content of the component (E) is 2 to 13 parts by weight with respect to 100 parts by weight of the entire resin composition.
- the present invention is a composition set for material jet stereolithography used in a material jet stereolithography method having any one of the above-described composition for model materials and a composition for water-soluble support materials,
- a composition set for material jet stereolithography wherein the composition for water-soluble support material contains polyalkylene glycol, a water-soluble monofunctional ethylenically unsaturated monomer, and a photopolymerization initiator.
- the polyalkylene glycol is a polyalkylene glycol having an oxybutylene group.
- the composition for water-soluble support materials is contained in an amount of 15 to 75 parts by weight with respect to 100 parts by weight of the entire support material composition.
- content of the water-soluble monofunctional ethylenically unsaturated monomer is 19 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the total composition for water-soluble support material,
- the content of the photopolymerization initiator is 1 part by weight or more and 20 parts by weight or less.
- the composition for water-soluble support materials Further containing a water-soluble organic solvent, Content of the said water-soluble organic solvent is 30 weight part or less with respect to 100 weight part of the said whole composition for water-soluble support materials.
- the present invention also provides an optically shaped article including a model material obtained by photocuring any of the above-described compositions for a model material by a material jet stereolithography method.
- the present invention is a method for producing the optically shaped article by material jet stereolithography
- a model material is obtained by photocuring any of the composition for model material
- a water-soluble support material is obtained by photocuring the composition for water-soluble support material of the composition set for any material jet stereolithography.
- a method for producing an optically shaped object is provided.
- composition for a model material and a material jet stereolithography that are capable of forming a hard three-dimensional structure excellent in dimensional accuracy, surface hardness, and friction resistance because it hardly shrinks during curing and has excellent curability.
- a composition set is provided.
- (meth) acrylate is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate.
- Model Material Composition contains at least the components (A) to (F) described below.
- the monofunctional ethylenically unsaturated monomer (A) is a component that is polymerized by light irradiation to cure the model material composition.
- the content of the component (A) is 19 to 49 parts by weight with respect to 100 parts by weight of the entire resin composition.
- the optically shaped article obtained by photocuring the model material composition has a large curing shrinkage. As a result, the dimensional accuracy of the optically shaped object deteriorates.
- the content of the component (A) is preferably 25 parts by weight or more, and preferably 47 parts by weight or less.
- the component (A) is a polymerizable monomer having one ethylenic double bond in the molecule having the property of being cured by energy rays.
- Examples of the component (A) include linear or branched alkyl (meth) acrylates having 1 to 30 carbon atoms [for example, methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, lauryl (meth) ) Acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, t-butyl (meth) acrylate, etc.] C6-C20 alicyclic ring-containing (meth) acrylates [for example, cyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate
- the component (A) may contain 5 to 40 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (A-2) based on 100 parts by weight of the entire resin composition.
- A-2 a water-soluble monofunctional ethylenically unsaturated monomer
- Examples of the component (A-2) include hydroxyl group-containing (meth) acrylates having 5 to 15 carbon atoms (C) [hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.
- isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate are preferable from the viewpoint of improving the curability of the model material composition.
- the model material composition is isobornyl (meth) acrylate from the viewpoint of improving the dimensional accuracy of the optically shaped article by having heat resistance that can withstand the temperature (50 to 90 ° C.) during photocuring. More preferred.
- the composition for model materials of this invention contains a polyfunctional ethylenically unsaturated monomer (B) as a polymeric compound.
- the polyfunctional ethylenically unsaturated monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays, and a polymerizable monomer having two or more ethylenic double bonds in the molecule. . Only one type may be used as the polyfunctional ethylenically unsaturated monomer (B), or two or more types may be used in combination.
- the content of the component (B) is 15 to 50 parts by weight with respect to 100 parts by weight of the entire resin composition.
- the content of the component (B) is less than 15 parts by weight, the optically shaped product obtained by photocuring the model material composition has insufficient curability. As a result, the dimensional accuracy of the optically shaped object deteriorates.
- the content of the component (B) exceeds 50 parts by weight, the optically shaped article obtained by photocuring the model material composition has a large curing shrinkage. As a result, the dimensional accuracy of the optically shaped object deteriorates.
- the content of the component (B) is preferably 20 parts by weight or more, and preferably 45 parts by weight or less.
- the component (B) is, for example, a linear or branched alkylene glycol di (meth) acrylate or alkylene glycol tri (meth) acrylate having 10 to 25 carbon atoms, alkylene glycol tetra (meth) acrylate, alkylene glycol penta (meth).
- 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate are preferable.
- vinyl ether group-containing (meth) acrylic acid esters examples include 2- (vinyloxyethoxy) ethyl (meth) acrylate.
- the composition for a model material it is preferably a (meth) acrylate monomer, such as dipropylene glycol di (meth) acrylate or tripropylene glycol di (meth) acrylate.
- Glycerin propoxy tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate and bifunctional or higher amino acrylate are more preferable, and dipropylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate, glycerin propoxy tri (meth) acrylate and bifunctional or higher functional amino acrylates are more preferable, dipropylene glycol diacrylate, tripropylene glycol dia It relates and bifunctional or more amino acrylates are particularly preferred.
- the (meth) acrylated amine compound (C) can be rephrased as an amino (meth) acrylate compound.
- the composition for model materials of this invention contains a (meth) acrylate amine compound, the composition for model materials becomes difficult to shrink at the time of hardening, and it can form the hard three-dimensional molded item excellent in dimensional accuracy.
- the composition for a model material of the present invention contains a (meth) acrylated amine compound, so that the polymerization inhibition that occurs when oxygen is present is alleviated, and the curability on the surface of the model agent is improved. As a result, it is possible to form a hard three-dimensional model having excellent surface hardness and friction resistance.
- amino acrylates include amino (meth) acrylate, amine-modified polyether (meth) acrylate, amine-modified polyester (meth) acrylate, amine-modified epoxy (meth) acrylate, and amine-modified urethane (meth) acrylate.
- the (meth) acrylated amine compound is a compound having at least one amino group and (meth) acryloyl group.
- the (meth) acryloyl group is photopolymerized together with the ethylenically unsaturated monomer component, whereby the (meth) acrylated amine compound is fixed to the resin skeleton of the optically shaped article.
- a (meth) acrylated amine compound obtained by reacting a polyfunctional (meth) acrylate and an amine compound is preferable.
- bifunctional (meth) acrylate examples include 1,6-hexanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2,4-dimethyl -1,5-pentanediol di (meth) acrylate, butylethylpropanediol (meth) acrylate, ethoxylated cyclohexanemethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, oligoethylene glycol di (meth) acrylate, Ethylene glycol di (meth) acrylate, 2-ethyl-2-butyl-butanediol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate Bisphenol
- trifunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, trimethylolpropane alkylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol tri (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ether, isocyanuric acid alkylene oxide modified tri (meth) acrylate, propionate dipentaerythritol tri (meth) acrylate, tri ((meta ) Acryloyloxyethyl) isocyanurate, hydroxypivalaldehyde-modified dimethylolpropane tri (meth) acrylate, sorbitol tri (meth) a Relate, propoxylated trimethylolpropane tri (meth) acrylate,
- tetrafunctional (meth) acrylates include pentaerythritol tetra (meth) acrylate, sorbitol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate propionate, ethoxylated penta Examples include erythritol tetra (meth) acrylate.
- pentafunctional (meth) acrylates include sorbitol penta (meth) acrylate and dipentaerythritol penta (meth) acrylate.
- hexafunctional (meth) acrylate examples include dipentaerythritol hexa (meth) acrylate, sorbitol hexa (meth) acrylate, phosphazene alkylene oxide modified hexa (meth) acrylate, captolactone modified dipentaerythritol hexa (meth) acrylate Etc.
- Examples of the amine compound include, but are not limited to, benzylamine, phenethylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, n-pentylamine, isopentylamine, n-hexylamine.
- Monofunctional amines preferably have the same number of hydroxyl groups as amino groups in the molecule such as 2-aminoethanol and 3-amino-1-propanol.
- Multifunctional (meta) Amine compound to be reacted with the acrylates is preferably a primary amine compound, further, is preferably a primary amine compound having one hydroxyl group in the molecule.
- the (meth) acrylated amine compound is not particularly limited, and can be obtained, for example, by reacting a polyfunctional (meth) acrylate with a primary amine compound.
- the (meth) acrylated amine compound thus obtained has a tertiary amino group in the molecule.
- 2-aminoethanol, 3-amino-1-propanol, or the like is used as the amine compound, a (meth) acrylated amine compound having the same number of hydroxyl groups as tertiary amino groups in the molecule can be obtained.
- the (meth) acrylated amine compound preferably has a tertiary amino group in the molecule, particularly from the viewpoint of suppressing curing shrinkage of the composition for model material, and has a tertiary amino group in the molecule. It is more preferable to have the same number of hydroxyl groups. There are preferably 1 to 10 tertiary amino groups in the molecule, preferably 2 to 6 in the molecule. Examples of commercially available (meth) acrylated amine compounds having a tertiary amino group include “CN371” (trade name) manufactured by Sartomer, “EBECRYL 7100” (trade name) manufactured by Cytec, and “GC1100Z manufactured by QualyPolychemical Corporation”. (Product name) and the like.
- the (meth) acrylated amine compound may be used alone or in combination of two or more.
- the content of the (meth) acrylated amine compound is 2 to 45 parts by weight, preferably 2 to 40 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the entire model material composition.
- the content of the (meth) acrylated amine compound is less than 2 parts by weight relative to 100 parts by weight of the entire model material composition, the curability of the model material composition is insufficient, and when it exceeds 45 parts by weight, The composition for a model material exceeds the viscosity range for imparting ink jet suitability, and the water solubility increases.
- the support material is impregnated with water, it may swell and deform.
- the oligomer (D) is a component that is polymerized by light irradiation to cure the model material composition and increases the breaking strength of the model material obtained by the curing.
- the content of the component (D) is 5 to 40 parts by weight with respect to 100 parts by weight of the entire resin composition.
- the curing shrinkage of the model material obtained by photocuring the model material composition is slightly increased.
- the breaking strength of the model material obtained by photocuring the composition for model material is inferior.
- the content of the component (D) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and preferably 30 parts by weight or less.
- component (D) examples include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and the like.
- urethane (meth) acrylate oligomers epoxy (meth) acrylate oligomers
- polyester (meth) acrylate oligomers polyether (meth) acrylate oligomers
- the component (D) examples include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and the like.
- urethane (meth) acrylate oligomer epoxy (meth) acrylate oligomer
- polyester (meth) acrylate oligomer polyester (meth) acrylate oligomer
- composition for model material is a urethane (meth) acrylate oligomer from the viewpoint of improving the dimensional accuracy of the model material by having heat resistance that can withstand the temperature during photocuring (50 to 90 ° C.). More preferred. These may be used alone or in combination of two or more.
- the said (D) component is contained 2 or more types, the said content is defined as the sum total of content of each (D) component.
- oligomer has a weight average molecular weight of 800 to 10,000.
- the weight average molecular weight means a weight average molecular weight in terms of polystyrene measured by GPC (Gel Permeation Chromatography).
- the composition for model materials of this invention contains a photoinitiator.
- the photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region.
- the photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds.
- acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide.
- ⁇ -aminoalkylphenone compound examples include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination.
- Examples of ⁇ -aminoalkylphenone compounds available on the market include “IRGACURE 369” and “IRGACURE 907” manufactured by BASF.
- ⁇ -hydroxyquinone compound examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of ⁇ -hydroxyquinone compounds available on the market include “IRGACURE 184” “DAROCURE 1173” “IRGACURE 2959” “IRGACURE 127”.
- thioxanthone compound examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
- benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
- anthraquinone compound examples include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
- ketal compound examples include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
- the content of the component (E) is 1 to 15 parts by weight with respect to 100 parts by weight of the entire resin composition. When the content of the component (E) is within the above range, the curability of the model material composition is improved, and the dimensional accuracy of the optically shaped object is improved.
- the content of the component (E) is preferably 2 parts by weight or more, and preferably 13 parts by weight or less. In addition, when the said (E) component is contained 2 or more types, the said content is defined as the sum total of content of each (E) component.
- the surface conditioner (F) is contained in order to adjust the surface tension of the resin composition to an appropriate range.
- the model material composition and the support material composition can be prevented from being mixed at the interface.
- the content of the component (F) is 0.005 to 3.0 parts by weight with respect to 100 parts by weight of the whole resin composition.
- Examples of the component (F) include silicone compounds.
- Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane.
- silicone compounds for example, fluorine-based surface conditioners and nonionic surface conditioners
- fluorine-based surface conditioners and nonionic surface conditioners can also be used. These may be used alone or in combination of two or more.
- the said content is defined as the sum total of content of each (E) component.
- the model material composition according to the present embodiment preferably further contains a storage stabilizer (G).
- the storage stabilizer (G) can enhance the storage stability of the resin composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented.
- the content of the component (G) is preferably 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the entire resin composition.
- the component (G) examples include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more. In addition, when the said (G) component is contained 2 or more types, the said content is defined as the sum total of content of each (G
- additives can be contained as necessary within a range not impairing the effects of the present invention.
- examples of other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler.
- the model material composition according to the present embodiment is not particularly limited.
- the components (A) to (F) and, if necessary, the component (G) and other additives, It can manufacture by mixing uniformly using a mixing stirring apparatus, a disperser, etc.
- the composition for a model material according to this embodiment produced in this manner preferably has a viscosity at 25 ° C. of 150 mPa ⁇ s or less from the viewpoint of improving the dischargeability from the inkjet head, and is 120 mPa ⁇ s. It is more preferably s or less, and further preferably 100 mPa ⁇ s or less.
- the measurement of the viscosity of the composition for model materials can be performed using R100 type
- the surface tension of the composition for a model material of the present invention is preferably 24 to 30 mN / m, more preferably 24.5 mN / m or more, further preferably 25 mN / m or more, more preferably 29. 5 mN / m or less, more preferably 29 mN / m or less.
- the surface tension of the model material composition can be controlled by adjusting the type and content of the surface conditioner.
- the surface tension of the model material composition can be measured according to the du Nouey method or the Wilhelmy method in accordance with JIS K2241.
- composition set for material jet stereolithography The composition for a model material of the present invention is used alone in an optical modeling method such as a liquid tank photopolymerization method in which a composition is cured by filling a tank or the like to perform light irradiation to produce a three-dimensional modeled object.
- an optical modeling method such as a liquid tank photopolymerization method in which a composition is cured by filling a tank or the like to perform light irradiation to produce a three-dimensional modeled object.
- the material jet stereolithography method it can be used in combination with a support material for supporting a model material during three-dimensional modeling in order to model a complicated shape or a dense shape with high accuracy. Therefore, the present invention also covers a composition set for material jet stereolithography comprising the composition for model material of the present invention and a composition for support material for modeling a support material by a material jet stereolithography method. To do.
- composition for support material is a photocurable composition for a support material that provides the support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water.
- the composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. It is preferable that the support material composition that constitutes the stereolithography composition set of the present invention is water-soluble because the support material can be easily removed cleanly and easily in detail.
- the water-soluble support material composition includes at least one water-soluble monofunctional ethylenically unsaturated monomer (a), at least one polyalkylene glycol (b), and a photopolymerization initiator. It is preferable.
- Examples of the water-soluble monofunctional ethylenically unsaturated monomer contained in the support material composition of the present invention include, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meth) acrylate, Hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, monoalkoxy (carbon 1 to 4) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEG-PPG block polymer, etc.
- Mn number average molecular weight
- (Meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N′-dimethyl ( (Meth) acrylamide, N, N′-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.], (meth) acryloylmorpholine, etc. Is mentioned. These may be used alone or in combination of two or more.
- the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition is preferably 19 to 80 parts by mass with respect to 100 parts by mass of the support material composition. More preferably, it is 22 parts by mass or more, more preferably 25 parts by mass or more, more preferably 76 parts by mass or less, and further preferably 73 parts by mass or less.
- the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
- the polyalkylene glycol (b) that can be included in the support material composition may be either a linear type or a multi-chain type. Moreover, as long as it melt
- the polyalkylene glycol (b) that can be contained in the support material composition is not particularly limited in the structure of the alkylene portion.
- it may be a polybutylene polyoxyalkylene glycol having both an oxybutylene group and another oxyalkylene group (for example, polybutylene polyethylene glycol).
- the polybutylene glycol is represented by the following chemical formula (1)
- the polybutylene polyethylene glycol is represented by the following chemical formula (2).
- m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100.
- the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched.
- the composition for a support material contains the polyalkylene glycol (b)
- the removability by water can be further improved without reducing the support force of the support material.
- the number average molecular weight (M n ) of the polyalkylene glycol (b) is preferably 100 to 5000.
- the composition becomes easily compatible with the water-soluble monofunctional ethylenically unsaturated monomer (a) in the composition before curing. It becomes difficult to be compatible with the cured product of the water-soluble monofunctional ethylenically unsaturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
- the content of the polyalkylene glycol (b) in the support material composition is preferably 15 to 75 parts by mass, more preferably 17 parts by mass or more, with respect to 100 parts by mass of the support material composition. More preferably, it is 20 mass parts or more, More preferably, it is 72 mass parts or less, More preferably, it is 70 mass parts or less.
- the content of the polyalkylene glycol (b) is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material.
- the support material composition may contain a water-soluble organic solvent (c).
- the water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
- the water-soluble organic solvent (c) it is preferable to use a glycol solvent.
- a glycol solvent Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate.
- Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether,
- the low-viscosity support material composition is easy to prepare, and the support material obtained by curing is excellent in water solubility. Therefore, as the water-soluble organic solvent (c), triethylene glycol monomethyl ether, diethylene glycol diethyl Ether and dipropylene glycol monomethyl ether acetate are preferred.
- the content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less.
- the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material.
- the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner.
- the content of the photopolymerization initiator in the support material composition is preferably 1 to 20 parts by mass and more preferably 2 to 18 parts by mass with respect to 100 parts by mass of the support material composition.
- the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
- the composition for a support material is based on 100 parts by mass of the composition for a support material. 19 to 80 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a), 15 to 75 parts by weight of polyalkylene glycol (b), 30 parts by weight or less of a water-soluble organic solvent (c), and 1 to 20 parts by mass of a photopolymerization initiator is contained.
- a composition for a support material having both excellent water solubility and support ability can be obtained.
- the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy is obtained.
- the support material composition may contain other additives as necessary.
- additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. .
- the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained.
- the surface conditioner that can be contained in the support material composition the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used.
- the amount is preferably 0.005 to 3 parts by mass with respect to 100 parts by mass of the product.
- the storage stability can be improved by blending a storage stabilizer into the support material composition.
- a storage stabilizer that can be contained in the support material composition
- those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used.
- the amount is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the product.
- the viscosity of the composition for a support material is preferably 30 to 200 mPa ⁇ s at 25 ° C., more preferably 35 mPa ⁇ s or more, from the viewpoint of improving dischargeability from a material jet nozzle.
- it is 40 mPa * s or more, More preferably, it is 170 mPa * s or less, More preferably, it is 150 mPa * s or less.
- the measurement of the said viscosity can be performed using R100 type
- the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m.
- the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
- the method for producing the composition for a support material of the present invention is not particularly limited.
- the composition for a support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer, a disperser or the like. it can.
- composition set for material jet stereolithography The composition set for material jet stereolithography of this invention is provided by combining the composition for model materials of this invention, and the composition for support materials of this invention.
- the composition set for material jet stereolithography of this invention is used for the use which manufactures a stereolithography thing by photocuring the composition for model materials by material jet stereolithography.
- the modeling material is excellent in modeling accuracy
- the support material is excellent in self-sustainability and removability. Things can be provided.
- Stereolithography and production method thereof is a fabrication method of stereolithography using the material jet stereolithography composition set described in the above embodiment, and is a material jet (inkjet). ) After discharging the composition for the model material and the composition for the support material using a method printer, the model material composition is photocured to obtain the model material, and the water soluble support material composition is photocured. A step of obtaining a water-soluble support material, and a step of removing the water-soluble support material by bringing the water-soluble support material into contact with water.
- the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for material jet optical modeling, it can form the optical modeling thing excellent in modeling precision.
- FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays.
- the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12.
- the ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c.
- the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
- the model material composition 13 is ejected from the model material inkjet head 11aM
- the support material composition 14 is ejected from the support material inkjet head 11aS
- the energy beam 15 is irradiated and ejected from the light source 11c.
- the model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS.
- FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
- the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used.
- the model material composition 13 is discharged from the head 11aM
- the support material composition 14 is discharged from the support material inkjet head 11aS.
- the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange
- the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 ⁇ / b> M and the support material precursor 14 ⁇ / b> S are scanned by the roller 11 b.
- the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS.
- a layer consisting of is formed.
- the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
- optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
- a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source.
- UV-LED is preferable.
- the amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product.
- a UV-LED it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved.
- ultraviolet rays As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, ⁇ rays, ⁇ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
- the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data.
- the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
- each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 ⁇ m from the balance with the modeling speed.
- the obtained stereolithography is a combination of a model material and a support material.
- the support material is removed from the stereolithography product to obtain a stereolithography product as a model material.
- the support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
- a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
- Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
- the above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
- the stereolithographic product obtained by the above steps has a relatively high surface hardness in an embodiment.
- the stereolithographic product has a surface hardness of Shore-D hardness of 50 or more, preferably 60 or more, more preferably 70 or more.
- the optically shaped article has a high dimensional accuracy because water absorption and swelling are suppressed because it takes a short time to contact water when removing the support material.
- ⁇ Model material composition> Manufacture of compositions for model materials
- the components shown in Tables 1 to 5 were uniformly mixed in a predetermined amount using a mixing and stirring device, and the pigment was dispersed by a bead mill or the like using zirconia beads as necessary, thereby allowing Examples 1 to 31 and Comparative Examples. 1 to 9 model material compositions were produced.
- the example may be displayed as “actual”, and the comparative example may be displayed as “ratio”. Details of the components used are as follows.
- MA-8 Acidic carbon black pigment [MA-8 (trade name), manufactured by Mitsubishi Chemical Corporation] Yellow 4G01: Condensed azo pigment [NOVOPERM YELLOW 4G01 (trade name), manufactured by Clariant Corporation] RT355D: Quinacridone pigment [CINQUASIA Magenda RT-355-D (trade name), manufactured by Ciba] P-BFS: Copper phthalocyanine pigment [HOSTAPER BLUE P-BFS (trade name), manufactured by Clariant Corporation] JR-806: Titanium oxide (rutile type, alumina-silica surface modification) [JR806 (trade name), manufactured by Teika Co., Ltd.] Sol.
- each model material composition was printed on a film made of polyethylene terephthalate (A4300, manufactured by Toyobo Co., Ltd., 100 mm ⁇ 150 mm ⁇ thickness 188 ⁇ m) with a bar coater (# 4), and printed with a thickness of 3 ⁇ m. A film was formed. The printed film was cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 using an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) as the irradiation means.
- NCCU001E an ultraviolet LED
- the printed film thus cured was touched with a finger, the presence or absence of ink adhering to the finger was visually examined, and the curability was evaluated according to the following criteria.
- the evaluation was performed by rubbing the image with a finger from the image portion toward the non-print portion.
- ⁇ The surface was smooth and there was no adhesion to the finger.
- delta The surface was a little moist and there was a feeling of stickiness to the finger.
- X The surface was sticky and a part of uncured ink adhered to the finger.
- a spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm), and was partitioned into 10 cm ⁇ 10 cm squares. After casting the composition for each model material in the square, another glass plate was placed on top of the other. Then, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) was used as the irradiating means, and cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 .
- NCU001E manufactured by Nichia Corporation
- the cured product was released from the glass plate and cut into a shape having a width of 5 mm and a length of 50 mm with a cutter to obtain a test piece.
- the following method evaluated the performance.
- an evaluation result shows the average result of the result obtained by evaluating about 5 test pieces.
- Curing shrinkage (%) (specific gravity of test piece ⁇ specific gravity of composition for model material) / specific gravity of test piece (i)
- the glass transition point Tg of the test piece obtained from each model material composition was measured using a thermogravimetric apparatus (TG-DTA2000S Thermo Plus EvoII DSC8230, manufactured by Rigaku Corporation). The measurement was performed at a temperature elevation temperature of 10 ° C./min and a measurement temperature range of ⁇ 60 ° C. to 200 ° C.
- breaking strength evaluation of breaking strength
- Shimadzu Corporation Using an autograph (manufactured by Shimadzu Corporation), a test piece obtained from each model material composition was pulled at a test speed of 50 mm / min, and the tensile breaking strength was measured according to JIS K7113 to obtain the breaking strength. .
- the breaking strength was evaluated according to the following criteria.
- compositions for model materials of Examples 1 to 31 that satisfy all the requirements of the present invention were all good in curability, curing shrinkage, breaking strength, and viscosity.
- the compositions for model materials of Comparative Examples 1 to 9 were inferior in curability, curing shrinkage, breaking strength or viscosity.
- Table 6 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
- Example 1 to 10 and Comparative Examples 1 to 8) First, the support material compositions of Examples 1 to 10 were prepared as follows. That is, each support material composition was prepared by measuring the components (A) to (G) shown in Table 7 in a plastic bottle in the blending amounts (unit: parts by mass) shown in Table 7 and mixing them. .
- the support material composition was cooled at low temperatures and the support material cured product obtained by curing the support material composition under high temperature and high humidity condition stability ( Support power) and water removability were evaluated.
- ⁇ Low temperature stability of support material composition The stability of the support material composition at low temperature was evaluated. Each support material composition was put into a glass bottle, and the glass bottle with the support material composition was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Thereafter, the state of the support material composition after storage was visually confirmed, and the low temperature stability of the support material composition was evaluated according to the following criteria.
- a frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp.
- a metal halide lamp was irradiated to produce a cured support material.
- the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
- Support strength A excellent
- Support strength B good
- Support force C defect
- a cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
- composition set for material jet stereolithography Examples 1 to 8 were prepared by combining the composition for model material and the composition for support material as shown in Table 9.
- a spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm), and was partitioned into 10 cm ⁇ 10 cm squares.
- an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
- UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
- spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm ⁇ 10 cm.
- an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
- UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2.
- cured to obtain a model material.
- composition for a model material and the composition set for material jet stereolithography of the present invention can provide a three-dimensional molded article excellent in dimensional accuracy, surface hardness, and friction resistance by photocuring. Therefore, these resin compositions can be suitably used for the production of a three-dimensional structure by the material jet stereolithography.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
Abstract
The present invention addresses the problem of providing a model material composition having low curing shrinkage property and excellent curing ability and being able to form a hard three-dimensionally shaped object having excellent dimensional precision, surface hardness, and wear resistance. The problem is solved by a model material composition that is used to form a photo fabrication object by means of material-jetting photo fabrication, the model material composition comprising, with respect to 100 parts by weight of the total weight of a resin composition, a monofunctional ethylenic unsaturated monomer (A), 15-50 parts by weight of a polyfunctional ethylenic unsaturated monomer (B) which has at least two functional groups, 2-40 parts by weight of a (meth)acrylated amine compound (C), 5-40 parts by weight of an oligomer (D), 3-15 parts by weight of a photopolymerization initiator (E), and 0.005-3.0 parts by weight of a surface conditioner (F).
Description
本発明は、マテリアルジェット光造形法に用いられるモデル材用組成物、及び当該モデル材用組成物と水溶性サポート材用組成物を組み合わせた、マテリアルジェット光造形法に使用されるマテリアルジェット光造形用組成物セットに関する。
The present invention relates to a composition for a model material used in a material jet stereolithography method, and a material jet stereolithography used in a material jet stereolithography method, which combines the composition for a model material and a composition for a water-soluble support material. The present invention relates to a composition set.
ノズルから光硬化性樹脂組成物を吐出させ、その直後に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成するマテリアルジェット(インクジェット)方式による光造形法(以下、「マテリアルジェット光造形法」という)が知られている。マテリアルジェット光造形法は、CAD(Computer Aided Design)データに基づいて、自由に立体造形物を作成可能な3Dプリンターによって実現される造形法として、注目されている。
An optical molding method (hereinafter referred to as “the material jet (inkjet) method) for forming a cured layer having a predetermined shape by discharging a photocurable resin composition from a nozzle and immediately irradiating it with ultraviolet rays or the like to cure. "Material Jet Stereolithography" is known. The material jet stereolithography attracts attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
本明細書において、立体造形物の素材を「モデル材」という。マテリアルジェット光造形法によって形成される立体造形物を「光造形物」という。CAD等で設計した形状に正確に対応した立体造形を形成するために、モデル材用組成物には、3Dプリンターからスムーズに吐出され、適切な大きさ及び粘性を有する液滴を形成し、吐着後は寸法が変化しない特性が要求される。
In this specification, the material of the three-dimensional structure is referred to as “model material”. A three-dimensional model formed by the material jet stereolithography method is referred to as a “three-dimensional model”. In order to form a three-dimensional model that accurately corresponds to the shape designed by CAD, etc., the composition for model material is ejected smoothly from a 3D printer to form droplets having an appropriate size and viscosity. The characteristic that the dimensions do not change after wearing is required.
光造形物の中でも硬質のものは工業製品又は部品として使用されることがあり、寸法精度、強度及び耐摩擦性等の優れた物理的特性が要求される。そのため、かかる用途のモデル材用組成物には、優れた硬化性が要求される。
¡Through stereolithic objects are sometimes used as industrial products or parts, and excellent physical properties such as dimensional accuracy, strength, and friction resistance are required. Therefore, excellent curability is required for the model material composition for such applications.
特許文献1には、組成物が無溶剤においても低粘度で、吐出性に優れ、さらに硬化性に優れ、組成物の硬化物の密着性、硬度及び耐擦過性に優れるインクジェットインキ用活性エネルギー線硬化型組成物が記載されている。特許文献1のインクジェットインキ用活性エネルギー線硬化型組成物は、グリセリントリ(メタ)アクリレートを主成分とする(メタ)アクリレート混合物(A)を含むものである。特許文献1の硬化型組成物は、2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートを使用することで、硬化型組成物中の架橋点を増加させ、その硬化性が増強されている。
Patent Document 1 discloses an active energy ray for inkjet ink that has a low viscosity even when the composition is solvent-free, has excellent ejection properties, is excellent in curability, and has excellent adhesion, hardness, and scratch resistance of a cured product of the composition. A curable composition is described. The active energy ray-curable composition for inkjet ink of Patent Document 1 contains a (meth) acrylate mixture (A) containing glycerin tri (meth) acrylate as a main component. The curable composition of Patent Document 1 uses a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups, thereby increasing the crosslinking point in the curable composition and enhancing its curability. Has been.
しかしながら、硬化型組成物中の架橋点を増加させた場合、含まれる樹脂が硬化する際に収縮が生じ、光造形物に反り又は変形が生じる結果、CAD等で設計した形状に対応した立体造形を得ることが困難になる。また、多官能モノマーを含有する硬化型組成物は粘度が上昇し易く、保存安定性が不十分になる。
However, when the number of crosslinking points in the curable composition is increased, shrinkage occurs when the contained resin is cured, resulting in warping or deformation of the optically shaped object, resulting in a three-dimensional modeling corresponding to the shape designed by CAD or the like. It becomes difficult to get. Moreover, the curable composition containing a polyfunctional monomer is liable to increase in viscosity, resulting in insufficient storage stability.
特許文献2には、厚膜のクリア層を形成するのに適した密着性と硬化性を兼ね備えたクリア層形成用インク組成物が記載されている。特許文献2のインク組成物は、アミン変性された反応性オリゴマー及び単官能(メタ)アクリレートを含むものである。特許文献2のインク組成物は、アミン変性された反応性オリゴマーを使用することで、インクの硬化性が増強されている。
Patent Document 2 describes an ink composition for forming a clear layer that has both adhesiveness and curability suitable for forming a thick clear layer. The ink composition of Patent Document 2 contains an amine-modified reactive oligomer and a monofunctional (meth) acrylate. The ink composition of Patent Document 2 uses an amine-modified reactive oligomer to enhance ink curability.
しかしながら、特許文献2のインク組成物は、インクジェット光造形法で立体造形物を製造する場合に収縮し易く、硬化時の寸法安定性が不十分である。また、工業製品又は部品として使用される硬質立体造形物としては、表面硬度及び耐摩擦性が不十分である。
However, the ink composition of Patent Document 2 is easily shrunk when a three-dimensional model is manufactured by the ink jet optical modeling method, and the dimensional stability at the time of curing is insufficient. Moreover, as a hard three-dimensional molded item used as an industrial product or a part, surface hardness and friction resistance are inadequate.
本発明は上記従来の問題を解決するものであり、その目的とするところは、硬化収縮性が低く、硬化性に優れるために、寸法精度、表面硬度及び耐摩擦性に優れた硬質立体造形物を形成できるモデル材用組成物を提供することにある。また、本発明は、当該モデル材用組成物とサポート材用組成物を組み合わせたマテリアルジェット光造形用組成物セットを提供することも目的とする。
The present invention solves the above-mentioned conventional problems, and the object thereof is a hard three-dimensional modeled article having excellent dimensional accuracy, surface hardness and friction resistance because of low curing shrinkage and excellent curability. It is in providing the composition for model materials which can form. Another object of the present invention is to provide a composition set for material jet stereolithography in which the model material composition and the support material composition are combined.
本発明は、マテリアルジェット光造形法により光造形物を造形するために使用されるモデル材用組成物であって、
樹脂組成物全体100重量部に対して、
単官能エチレン性不飽和単量体(A)と、
15~50重量部の二官能以上の多官能エチレン性不飽和単量体(B)と、
2~40重量部の(メタ)アクリル化アミン化合物(C)と、
10~40重量部のオリゴマー(D)と、
1~15重量部の光重合開始剤(E)と、
0.005~3.0重量部の表面調整剤(F)とを、
含有する、モデル材用組成物を提供する。 The present invention is a composition for a model material used for modeling an optical modeling object by a material jet optical modeling method,
For 100 parts by weight of the entire resin composition,
A monofunctional ethylenically unsaturated monomer (A);
15 to 50 parts by weight of a bifunctional or higher polyfunctional ethylenically unsaturated monomer (B);
2 to 40 parts by weight of (meth) acrylated amine compound (C),
10 to 40 parts by weight of oligomer (D);
1 to 15 parts by weight of a photopolymerization initiator (E),
0.005 to 3.0 parts by weight of a surface conditioner (F)
A composition for a model material is provided.
樹脂組成物全体100重量部に対して、
単官能エチレン性不飽和単量体(A)と、
15~50重量部の二官能以上の多官能エチレン性不飽和単量体(B)と、
2~40重量部の(メタ)アクリル化アミン化合物(C)と、
10~40重量部のオリゴマー(D)と、
1~15重量部の光重合開始剤(E)と、
0.005~3.0重量部の表面調整剤(F)とを、
含有する、モデル材用組成物を提供する。 The present invention is a composition for a model material used for modeling an optical modeling object by a material jet optical modeling method,
For 100 parts by weight of the entire resin composition,
A monofunctional ethylenically unsaturated monomer (A);
15 to 50 parts by weight of a bifunctional or higher polyfunctional ethylenically unsaturated monomer (B);
2 to 40 parts by weight of (meth) acrylated amine compound (C),
10 to 40 parts by weight of oligomer (D);
1 to 15 parts by weight of a photopolymerization initiator (E),
0.005 to 3.0 parts by weight of a surface conditioner (F)
A composition for a model material is provided.
ある一形態においては、前記(A)成分は、樹脂組成物全体100重量部に対して、19~49重量部の単官能エチレン性不飽和単量体(A-2)を含有する。
In one embodiment, the component (A) contains 19 to 49 parts by weight of the monofunctional ethylenically unsaturated monomer (A-2) with respect to 100 parts by weight of the entire resin composition.
ある一形態においては、前記(C)成分は、分子内に3級アミノ基を有するものである。
In one embodiment, the component (C) has a tertiary amino group in the molecule.
ある一形態においては、前記(C)成分は、分子内に3級アミノ基と同数の水酸基を有するものである。
In one embodiment, the component (C) has the same number of hydroxyl groups as tertiary amino groups in the molecule.
ある一形態においては、前記(B)成分の含有量は、樹脂組成物全体100重量部に対して、20~45重量部である。
In one embodiment, the content of the component (B) is 20 to 45 parts by weight with respect to 100 parts by weight of the entire resin composition.
ある一形態においては、前記(C)成分の含有量は、樹脂組成物全体100重量部に対して、5~30重量部である。
In one embodiment, the content of the component (C) is 5 to 30 parts by weight with respect to 100 parts by weight of the entire resin composition.
ある一形態においては、前記(E)成分の含有量は、樹脂組成物全体100重量部に対して、2~13重量部である。
In one embodiment, the content of the component (E) is 2 to 13 parts by weight with respect to 100 parts by weight of the entire resin composition.
また、本発明は、前記いずれかのモデル材用組成物と水溶性サポート材用組成物とを有するマテリアルジェット光造形法に使用されるマテリアルジェット光造形用組成物セットであって、
該水溶性サポート材用組成物が、ポリアルキレングリコールと、水溶性単官能エチレン性不飽和単量体と、光重合開始剤とを含有する、マテリアルジェット光造形用組成物セットを提供する。 Moreover, the present invention is a composition set for material jet stereolithography used in a material jet stereolithography method having any one of the above-described composition for model materials and a composition for water-soluble support materials,
There is provided a composition set for material jet stereolithography, wherein the composition for water-soluble support material contains polyalkylene glycol, a water-soluble monofunctional ethylenically unsaturated monomer, and a photopolymerization initiator.
該水溶性サポート材用組成物が、ポリアルキレングリコールと、水溶性単官能エチレン性不飽和単量体と、光重合開始剤とを含有する、マテリアルジェット光造形用組成物セットを提供する。 Moreover, the present invention is a composition set for material jet stereolithography used in a material jet stereolithography method having any one of the above-described composition for model materials and a composition for water-soluble support materials,
There is provided a composition set for material jet stereolithography, wherein the composition for water-soluble support material contains polyalkylene glycol, a water-soluble monofunctional ethylenically unsaturated monomer, and a photopolymerization initiator.
ある一形態においては、前記ポリアルキレングリコールがオキシブチレン基を有するポリアルキレングリコールである。
In one embodiment, the polyalkylene glycol is a polyalkylene glycol having an oxybutylene group.
ある一形態においては、前記水溶性サポート材用組成物が、
前記サポート材用組成物全体100重量部に対して、15重量部以上75重量部以下の量で前記オキシブチレン基を含むポリアルキレングリコールを含有する。 In one certain form, the composition for water-soluble support materials,
The polyalkylene glycol containing the oxybutylene group is contained in an amount of 15 to 75 parts by weight with respect to 100 parts by weight of the entire support material composition.
前記サポート材用組成物全体100重量部に対して、15重量部以上75重量部以下の量で前記オキシブチレン基を含むポリアルキレングリコールを含有する。 In one certain form, the composition for water-soluble support materials,
The polyalkylene glycol containing the oxybutylene group is contained in an amount of 15 to 75 parts by weight with respect to 100 parts by weight of the entire support material composition.
ある一形態においては、前記水溶性サポート材用組成物全体100重量部に対して、前記水溶性単官能エチレン性不飽和単量体の含有量が19重量部以上80重量部以下であり、前記光重合開始剤の含有量が、1重量部以上20重量部以下である。
In one certain form, content of the water-soluble monofunctional ethylenically unsaturated monomer is 19 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the total composition for water-soluble support material, The content of the photopolymerization initiator is 1 part by weight or more and 20 parts by weight or less.
ある一形態においては、前記水溶性サポート材用組成物が、
水溶性有機溶剤を更に含有し、
前記水溶性有機溶剤の含有量が、前記水溶性サポート材用組成物全体100重量部に対して、30重量部以下である。 In one certain form, the composition for water-soluble support materials,
Further containing a water-soluble organic solvent,
Content of the said water-soluble organic solvent is 30 weight part or less with respect to 100 weight part of the said whole composition for water-soluble support materials.
水溶性有機溶剤を更に含有し、
前記水溶性有機溶剤の含有量が、前記水溶性サポート材用組成物全体100重量部に対して、30重量部以下である。 In one certain form, the composition for water-soluble support materials,
Further containing a water-soluble organic solvent,
Content of the said water-soluble organic solvent is 30 weight part or less with respect to 100 weight part of the said whole composition for water-soluble support materials.
また、本発明は、マテリアルジェット光造形法により、前記いずれかのモデル材用組成物を光硬化させて得られるモデル材を含む、光造形物を提供する。
The present invention also provides an optically shaped article including a model material obtained by photocuring any of the above-described compositions for a model material by a material jet stereolithography method.
また、本発明は、マテリアルジェット光造形法により前記光造形物を製造する方法であって、
前記いずれかのモデル材用組成物を光硬化させてモデル材を得るとともに、前記いずれかのマテリアルジェット光造形用組成物セットの水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程(I)と、
前記水溶性サポート材を水に接触させることにより除去する工程(II)と、
を有する、光造形物の製造方法を提供する。 Further, the present invention is a method for producing the optically shaped article by material jet stereolithography,
A model material is obtained by photocuring any of the composition for model material, and a water-soluble support material is obtained by photocuring the composition for water-soluble support material of the composition set for any material jet stereolithography. Obtaining step (I);
Removing the water-soluble support material by bringing it into contact with water (II);
A method for producing an optically shaped object is provided.
前記いずれかのモデル材用組成物を光硬化させてモデル材を得るとともに、前記いずれかのマテリアルジェット光造形用組成物セットの水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程(I)と、
前記水溶性サポート材を水に接触させることにより除去する工程(II)と、
を有する、光造形物の製造方法を提供する。 Further, the present invention is a method for producing the optically shaped article by material jet stereolithography,
A model material is obtained by photocuring any of the composition for model material, and a water-soluble support material is obtained by photocuring the composition for water-soluble support material of the composition set for any material jet stereolithography. Obtaining step (I);
Removing the water-soluble support material by bringing it into contact with water (II);
A method for producing an optically shaped object is provided.
本発明によれば、硬化時に収縮し難く、硬化性に優れるために、寸法精度、表面硬度及び耐摩擦性に優れた硬質立体造形物を形成できる、モデル材用組成物及びマテリアルジェット光造形用組成物セットが提供される。
According to the present invention, a composition for a model material and a material jet stereolithography that are capable of forming a hard three-dimensional structure excellent in dimensional accuracy, surface hardness, and friction resistance because it hardly shrinks during curing and has excellent curability. A composition set is provided.
以下、本発明の一実施形態(以下、本実施形態ともいう)について詳しく説明する。本発明は、以下の内容に限定されるものではない。なお、本発明において「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称であり、アクリレートおよびメタクリレートの一方または両方を意味するものである。「(メタ)アクリロイル」、「(メタ)アクリル」についても同様である。
Hereinafter, an embodiment of the present invention (hereinafter also referred to as the present embodiment) will be described in detail. The present invention is not limited to the following contents. In the present invention, “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl” and “(meth) acryl”.
1.モデル材用組成物
本実施形態に係るモデル材用組成物は、少なくとも以下に説明する(A)~(F)成分を含有するものである。 1. Model Material Composition The model material composition according to this embodiment contains at least the components (A) to (F) described below.
本実施形態に係るモデル材用組成物は、少なくとも以下に説明する(A)~(F)成分を含有するものである。 1. Model Material Composition The model material composition according to this embodiment contains at least the components (A) to (F) described below.
<単官能エチレン性不飽和単量体(A)>
単官能エチレン性不飽和単量体(A)は、光照射により重合して、モデル材用組成物を硬化させる成分である。上記(A)成分の含有量は、樹脂組成物全体100重量部に対して、19~49重量部とする。上記(A)成分の含有量が19重量部未満であると、モデル材用組成物を光硬化させて得られる光造形物は、硬化収縮が大きくなる。その結果、光造形物の寸法精度が悪化する。一方、上記(A)成分の含有量が49重量部を超えると、モデル材用組成物を光硬化させて得られる光造形物には、硬化性不足が生じる。その結果、光造形物の寸法精度が悪化する。上記(A)成分の含有量は、25重量部以上であることが好ましく、47重量部以下であることが好ましい。 <Monofunctional ethylenically unsaturated monomer (A)>
The monofunctional ethylenically unsaturated monomer (A) is a component that is polymerized by light irradiation to cure the model material composition. The content of the component (A) is 19 to 49 parts by weight with respect to 100 parts by weight of the entire resin composition. When the content of the component (A) is less than 19 parts by weight, the optically shaped article obtained by photocuring the model material composition has a large curing shrinkage. As a result, the dimensional accuracy of the optically shaped object deteriorates. On the other hand, when the content of the component (A) exceeds 49 parts by weight, curability deficiency occurs in an optically shaped article obtained by photocuring the model material composition. As a result, the dimensional accuracy of the optically shaped object deteriorates. The content of the component (A) is preferably 25 parts by weight or more, and preferably 47 parts by weight or less.
単官能エチレン性不飽和単量体(A)は、光照射により重合して、モデル材用組成物を硬化させる成分である。上記(A)成分の含有量は、樹脂組成物全体100重量部に対して、19~49重量部とする。上記(A)成分の含有量が19重量部未満であると、モデル材用組成物を光硬化させて得られる光造形物は、硬化収縮が大きくなる。その結果、光造形物の寸法精度が悪化する。一方、上記(A)成分の含有量が49重量部を超えると、モデル材用組成物を光硬化させて得られる光造形物には、硬化性不足が生じる。その結果、光造形物の寸法精度が悪化する。上記(A)成分の含有量は、25重量部以上であることが好ましく、47重量部以下であることが好ましい。 <Monofunctional ethylenically unsaturated monomer (A)>
The monofunctional ethylenically unsaturated monomer (A) is a component that is polymerized by light irradiation to cure the model material composition. The content of the component (A) is 19 to 49 parts by weight with respect to 100 parts by weight of the entire resin composition. When the content of the component (A) is less than 19 parts by weight, the optically shaped article obtained by photocuring the model material composition has a large curing shrinkage. As a result, the dimensional accuracy of the optically shaped object deteriorates. On the other hand, when the content of the component (A) exceeds 49 parts by weight, curability deficiency occurs in an optically shaped article obtained by photocuring the model material composition. As a result, the dimensional accuracy of the optically shaped object deteriorates. The content of the component (A) is preferably 25 parts by weight or more, and preferably 47 parts by weight or less.
上記(A)成分は、エネルギー線により硬化する特性を有する分子内にエチレン性二重結合を1個有する重合性モノマーである。上記(A)成分としては、例えば、炭素数1~30の直鎖または分岐のアルキル(メタ)アクリレート〔例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、t-ブチル(メタ)アクリレート等〕、
炭素数6~20の脂環含有(メタ)アクリレート〔例えば、シクロヘキシル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニルオキシエチル(メタ)アクリレ-ト、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、アダマンチル(メタ)アクリレート等〕、
炭素数5~20の複素環含有(メタ)アクリレート〔例えば、テトラヒドロフルフリル(メタ)アクリレート、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン、環状トリメチロールプロパンフォルマル(メタ)アクリレート等〕、
芳香環含有(メタ)アクリレート〔例えば、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシエチル-3-フノキシプロピル(メタ)アクリレート、エトキシ化フェニルフェノール(メタ)アクリレート、ベンジル(メタ)アクリレート等〕、
が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記(A)成分が2種以上含まれる場合、上記含有量は、各(A)成分の含有量の合計として定める。 The component (A) is a polymerizable monomer having one ethylenic double bond in the molecule having the property of being cured by energy rays. Examples of the component (A) include linear or branched alkyl (meth) acrylates having 1 to 30 carbon atoms [for example, methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, lauryl (meth) ) Acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, t-butyl (meth) acrylate, etc.]
C6-C20 alicyclic ring-containing (meth) acrylates [for example, cyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclo Pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, 3,5,5-trimethylcyclohexyl (meth) acrylate, adamantyl (meth) Acrylate, etc.]
Heterocycle-containing (meth) acrylates having 5 to 20 carbon atoms [for example, tetrahydrofurfuryl (meth) acrylate, 4- (meth) acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, 4- ( (Meth) acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane, cyclic trimethylolpropane formal (meth) acrylate, etc.]
Aromatic ring-containing (meth) acrylates [for example, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxyethyl-3-funoxypropyl (meth) acrylate, ethoxylated phenylphenol (meth) acrylate, benzyl (meth ) Acrylate, etc.]
Is mentioned. These may be used alone or in combination of two or more. In addition, when the said (A) component is contained 2 or more types, the said content is defined as the sum total of content of each (A) component.
炭素数6~20の脂環含有(メタ)アクリレート〔例えば、シクロヘキシル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニルオキシエチル(メタ)アクリレ-ト、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、アダマンチル(メタ)アクリレート等〕、
炭素数5~20の複素環含有(メタ)アクリレート〔例えば、テトラヒドロフルフリル(メタ)アクリレート、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン、環状トリメチロールプロパンフォルマル(メタ)アクリレート等〕、
芳香環含有(メタ)アクリレート〔例えば、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシエチル-3-フノキシプロピル(メタ)アクリレート、エトキシ化フェニルフェノール(メタ)アクリレート、ベンジル(メタ)アクリレート等〕、
が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記(A)成分が2種以上含まれる場合、上記含有量は、各(A)成分の含有量の合計として定める。 The component (A) is a polymerizable monomer having one ethylenic double bond in the molecule having the property of being cured by energy rays. Examples of the component (A) include linear or branched alkyl (meth) acrylates having 1 to 30 carbon atoms [for example, methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, lauryl (meth) ) Acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, t-butyl (meth) acrylate, etc.]
C6-C20 alicyclic ring-containing (meth) acrylates [for example, cyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclo Pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, 3,5,5-trimethylcyclohexyl (meth) acrylate, adamantyl (meth) Acrylate, etc.]
Heterocycle-containing (meth) acrylates having 5 to 20 carbon atoms [for example, tetrahydrofurfuryl (meth) acrylate, 4- (meth) acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, 4- ( (Meth) acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane, cyclic trimethylolpropane formal (meth) acrylate, etc.]
Aromatic ring-containing (meth) acrylates [for example, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxyethyl-3-funoxypropyl (meth) acrylate, ethoxylated phenylphenol (meth) acrylate, benzyl (meth ) Acrylate, etc.]
Is mentioned. These may be used alone or in combination of two or more. In addition, when the said (A) component is contained 2 or more types, the said content is defined as the sum total of content of each (A) component.
上記(A)成分は、樹脂組成物全体100重量部に対して、5~40重量部の水溶性単官能エチレン性不飽和単量体(A-2)を含有してもよい。(A-2)成分の含有量が上記上限値以下であると、光硬化時や硬化後の水または吸湿によるモデル材(光造形品)の膨潤変形を抑制することができる。
The component (A) may contain 5 to 40 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (A-2) based on 100 parts by weight of the entire resin composition. When the content of the component (A-2) is not more than the above upper limit value, swelling deformation of the model material (photofabricated product) due to water or moisture absorption during or after photocuring can be suppressed.
(A-2)成分としては、例えば、炭素数(C)5~15の水酸基含有(メタ)アクリレート[ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート及び4-ヒドロキシブチル(メタ)アクリレート等];
数平均分子量(Mn)200~1000のアルキレンオキサイド付加物含有(メタ)アクリレート[ポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(C1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(C1~4)ポリプロピレングリコールモノ(メタ)アクリレート及びPEG-PPGブロックポリマーのモノ(メタ)アクリレート等];
C3~15の(メタ)アクリルアミド誘導体[(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-(エチルメタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド及びN-ヒドロキシブチル(メタ)アクリルアミド等];
N-ビニル化合物[N-ビニルピロリドン、N-ビニルカプロラクタム等];及び
(メタ)アクリロイルモルホリン等
が使用できる。(A-2)成分は、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the component (A-2) include hydroxyl group-containing (meth) acrylates having 5 to 15 carbon atoms (C) [hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc. ];
Number average molecular weight (Mn) 200-1000 alkylene oxide adduct-containing (meth) acrylate [polyethylene glycol mono (meth) acrylate, monoalkoxy (C1-4) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate Monoalkoxy (C1-4) polypropylene glycol mono (meth) acrylate and mono (meth) acrylate of PEG-PPG block polymer];
C3-15 (meth) acrylamide derivatives [(meth) acrylamide, N-methyl (meth) acrylamide, N- (ethylmeth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N ′ -Dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide and N-hydroxybutyl (meth) acrylamide etc.];
N-vinyl compounds [N-vinylpyrrolidone, N-vinylcaprolactam and the like]; and (meth) acryloylmorpholine and the like can be used. As the component (A-2), one type may be used alone, or two or more types may be used in combination.
数平均分子量(Mn)200~1000のアルキレンオキサイド付加物含有(メタ)アクリレート[ポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(C1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(C1~4)ポリプロピレングリコールモノ(メタ)アクリレート及びPEG-PPGブロックポリマーのモノ(メタ)アクリレート等];
C3~15の(メタ)アクリルアミド誘導体[(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-(エチルメタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド及びN-ヒドロキシブチル(メタ)アクリルアミド等];
N-ビニル化合物[N-ビニルピロリドン、N-ビニルカプロラクタム等];及び
(メタ)アクリロイルモルホリン等
が使用できる。(A-2)成分は、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the component (A-2) include hydroxyl group-containing (meth) acrylates having 5 to 15 carbon atoms (C) [hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc. ];
Number average molecular weight (Mn) 200-1000 alkylene oxide adduct-containing (meth) acrylate [polyethylene glycol mono (meth) acrylate, monoalkoxy (C1-4) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate Monoalkoxy (C1-4) polypropylene glycol mono (meth) acrylate and mono (meth) acrylate of PEG-PPG block polymer];
C3-15 (meth) acrylamide derivatives [(meth) acrylamide, N-methyl (meth) acrylamide, N- (ethylmeth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N ′ -Dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide and N-hydroxybutyl (meth) acrylamide etc.];
N-vinyl compounds [N-vinylpyrrolidone, N-vinylcaprolactam and the like]; and (meth) acryloylmorpholine and the like can be used. As the component (A-2), one type may be used alone, or two or more types may be used in combination.
これらの中でも、モデル材用組成物の硬化性を向上させる観点から、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、および、テトラヒドロフルフリル(メタ)アクリレートであることが好ましい。さらに、モデル材用組成物が光硬化時の温度(50~90℃)に耐え得る耐熱性を有することにより、光造形物の寸法精度を向上させる観点から、イソボルニル(メタ)アクリレートであることがより好ましい。
Among these, isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate are preferable from the viewpoint of improving the curability of the model material composition. Furthermore, the model material composition is isobornyl (meth) acrylate from the viewpoint of improving the dimensional accuracy of the optically shaped article by having heat resistance that can withstand the temperature (50 to 90 ° C.) during photocuring. More preferred.
<二官能以上の多官能エチレン性不飽和単量体(B)>
本発明のモデル材用組成物は、重合性化合物として多官能エチレン性不飽和単量体(B)を含むことが好ましい。多官能エチレン性不飽和単量体(B)は、活性エネルギー線の照射により重合して硬化する特性を有する成分であり、分子内にエチレン性二重結合を2つ以上有する重合性モノマーである。多官能エチレン性不飽和単量体(B)として1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。 <Difunctional or higher polyfunctional ethylenically unsaturated monomer (B)>
It is preferable that the composition for model materials of this invention contains a polyfunctional ethylenically unsaturated monomer (B) as a polymeric compound. The polyfunctional ethylenically unsaturated monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays, and a polymerizable monomer having two or more ethylenic double bonds in the molecule. . Only one type may be used as the polyfunctional ethylenically unsaturated monomer (B), or two or more types may be used in combination.
本発明のモデル材用組成物は、重合性化合物として多官能エチレン性不飽和単量体(B)を含むことが好ましい。多官能エチレン性不飽和単量体(B)は、活性エネルギー線の照射により重合して硬化する特性を有する成分であり、分子内にエチレン性二重結合を2つ以上有する重合性モノマーである。多官能エチレン性不飽和単量体(B)として1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。 <Difunctional or higher polyfunctional ethylenically unsaturated monomer (B)>
It is preferable that the composition for model materials of this invention contains a polyfunctional ethylenically unsaturated monomer (B) as a polymeric compound. The polyfunctional ethylenically unsaturated monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays, and a polymerizable monomer having two or more ethylenic double bonds in the molecule. . Only one type may be used as the polyfunctional ethylenically unsaturated monomer (B), or two or more types may be used in combination.
上記(B)成分の含有量は、樹脂組成物全体100重量部に対して、15~50重量部とする。上記(B)成分の含有量が15重量部未満であると、モデル材用組成物を光硬化させて得られる光造形物には、硬化性不足が生じる。その結果、光造形物の寸法精度が悪化する。一方、上記(B)成分の含有量が50重量部を超えると、モデル材用組成物を光硬化させて得られる光造形物は、硬化収縮が大きくなる。その結果、光造形物の寸法精度が悪化する。上記(B)成分の含有量は、20重量部以上であることが好ましく、45重量部以下であることが好ましい。
The content of the component (B) is 15 to 50 parts by weight with respect to 100 parts by weight of the entire resin composition. When the content of the component (B) is less than 15 parts by weight, the optically shaped product obtained by photocuring the model material composition has insufficient curability. As a result, the dimensional accuracy of the optically shaped object deteriorates. On the other hand, when the content of the component (B) exceeds 50 parts by weight, the optically shaped article obtained by photocuring the model material composition has a large curing shrinkage. As a result, the dimensional accuracy of the optically shaped object deteriorates. The content of the component (B) is preferably 20 parts by weight or more, and preferably 45 parts by weight or less.
上記(B)成分は、例えば、炭素数10~25の直鎖または分岐のアルキレングリコールジ(メタ)アクリレートまたはアルキレングリコールトリ(メタ)アクリレート、アルキレングリコールテトラ(メタ)アクリレート、アルキレングリコールペンタ(メタ)アクリレート、アルキレングリコールヘキサ(メタ)アクリレートとして、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-nブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(200)ジ(メタ)アクリレート、ポリエチレングリコール(400)ジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレート、ポリエチレングリコール(1000)ジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(400)ジ(メタ)アクリレート、ポリプロピレングリコール(700)ジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等、炭素数10~30の環状構造含有ジ(メタ)アクリレートまたはトリ(メタ)アクリレートとして、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート等、ビニルエーテル基含有(メタ)アクリル酸エステル類、2官能以上のアミノアクリレート類等が挙げられる。中でも、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートが好ましい。
The component (B) is, for example, a linear or branched alkylene glycol di (meth) acrylate or alkylene glycol tri (meth) acrylate having 10 to 25 carbon atoms, alkylene glycol tetra (meth) acrylate, alkylene glycol penta (meth). As acrylate and alkylene glycol hexa (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-nbutyl-2-ethyl-1,3-propanediol di (meth) acrylate, 3-methyl-1,5- Pentanediol di (meth) acrylate Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (200) di (meth) acrylate, polyethylene glycol (400) di (meth) acrylate, Polyethylene glycol (600) di (meth) acrylate, polyethylene glycol (1000) di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (400) di (meth) acrylate , Polypropylene glycol (700) di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate neopentylglycol Di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, glycerin propoxytri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, Cyclohexane containing a cyclic structure-containing di (meth) acrylate having 10 to 30 carbon atoms such as pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Dimethanol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) acrylate Rate, bisphenol A propylene oxide adduct di (meth) acrylate, vinyl ether group-containing (meth) acrylic acid esters, bifunctional or more amino acrylates. Among these, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate are preferable.
ビニルエーテル基含有(メタ)アクリル酸エステル類としては、例えば、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル等が挙げられる。
Examples of vinyl ether group-containing (meth) acrylic acid esters include 2- (vinyloxyethoxy) ethyl (meth) acrylate.
これらの中でも、モデル材用組成物の硬化性を向上させる観点から、(メタ)アクリレート系の単量体であることが好ましく、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートおよび2官能以上のアミノアクリレートがより好ましく、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレートおよび2官能以上のアミノアクリレート類がさらに好ましく、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレートおよび2官能以上のアミノアクリレート類が特に好ましい。
Among these, from the viewpoint of improving the curability of the composition for a model material, it is preferably a (meth) acrylate monomer, such as dipropylene glycol di (meth) acrylate or tripropylene glycol di (meth) acrylate. , Glycerin propoxy tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate and bifunctional or higher amino acrylate are more preferable, and dipropylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate, glycerin propoxy tri (meth) acrylate and bifunctional or higher functional amino acrylates are more preferable, dipropylene glycol diacrylate, tripropylene glycol dia It relates and bifunctional or more amino acrylates are particularly preferred.
<(メタ)アクリル化アミン化合物(C)>
(メタ)アクリル化アミン化合物(C)は、アミノ(メタ)アクリレート化合物と換言することができる。本発明のモデル材用組成物が(メタ)アクリル化アミン化合物を含有することにより、モデル材用組成物は硬化時に収縮し難くなり、寸法精度に優れた硬質立体造形物を形成できる。また、本発明のモデル材用組成物が(メタ)アクリル化アミン化合物を含有することにより、酸素が存在する場合に発生する重合阻害を緩和して、モデル剤表面における硬化性が改善され、その結果、表面硬度及び耐摩擦性に優れた硬質立体造形物を形成できる。アミノアクリレート類として、例えば、アミノ(メタ)アクリレート、アミン変性ポリエーテル(メタ)アクリレート、アミン変性ポリエステル(メタ)アクリレート、アミン変性エポキシ(メタ)アクリレート、アミン変性ウレタン(メタ)アクリレート等が挙げられる。 <(Meth) acrylated amine compound (C)>
The (meth) acrylated amine compound (C) can be rephrased as an amino (meth) acrylate compound. When the composition for model materials of this invention contains a (meth) acrylate amine compound, the composition for model materials becomes difficult to shrink at the time of hardening, and it can form the hard three-dimensional molded item excellent in dimensional accuracy. Further, the composition for a model material of the present invention contains a (meth) acrylated amine compound, so that the polymerization inhibition that occurs when oxygen is present is alleviated, and the curability on the surface of the model agent is improved. As a result, it is possible to form a hard three-dimensional model having excellent surface hardness and friction resistance. Examples of amino acrylates include amino (meth) acrylate, amine-modified polyether (meth) acrylate, amine-modified polyester (meth) acrylate, amine-modified epoxy (meth) acrylate, and amine-modified urethane (meth) acrylate.
(メタ)アクリル化アミン化合物(C)は、アミノ(メタ)アクリレート化合物と換言することができる。本発明のモデル材用組成物が(メタ)アクリル化アミン化合物を含有することにより、モデル材用組成物は硬化時に収縮し難くなり、寸法精度に優れた硬質立体造形物を形成できる。また、本発明のモデル材用組成物が(メタ)アクリル化アミン化合物を含有することにより、酸素が存在する場合に発生する重合阻害を緩和して、モデル剤表面における硬化性が改善され、その結果、表面硬度及び耐摩擦性に優れた硬質立体造形物を形成できる。アミノアクリレート類として、例えば、アミノ(メタ)アクリレート、アミン変性ポリエーテル(メタ)アクリレート、アミン変性ポリエステル(メタ)アクリレート、アミン変性エポキシ(メタ)アクリレート、アミン変性ウレタン(メタ)アクリレート等が挙げられる。 <(Meth) acrylated amine compound (C)>
The (meth) acrylated amine compound (C) can be rephrased as an amino (meth) acrylate compound. When the composition for model materials of this invention contains a (meth) acrylate amine compound, the composition for model materials becomes difficult to shrink at the time of hardening, and it can form the hard three-dimensional molded item excellent in dimensional accuracy. Further, the composition for a model material of the present invention contains a (meth) acrylated amine compound, so that the polymerization inhibition that occurs when oxygen is present is alleviated, and the curability on the surface of the model agent is improved. As a result, it is possible to form a hard three-dimensional model having excellent surface hardness and friction resistance. Examples of amino acrylates include amino (meth) acrylate, amine-modified polyether (meth) acrylate, amine-modified polyester (meth) acrylate, amine-modified epoxy (meth) acrylate, and amine-modified urethane (meth) acrylate.
(メタ)アクリル化アミン化合物は、アミノ基及び(メタ)アクリロイル基をそれぞれ1個以上有する化合物である。上記(メタ)アクリロイル基がエチレン性不飽和単量体成分と共に光重合し、そのことで、(メタ)アクリル化アミン化合物は光造形物の樹脂骨格に固定される。(メタ)アクリル化アミン化合物としては、多官能(メタ)アクリレートとアミン化合物とを反応させて得られる(メタ)アクリル化アミン化合物が好ましい。
The (meth) acrylated amine compound is a compound having at least one amino group and (meth) acryloyl group. The (meth) acryloyl group is photopolymerized together with the ethylenically unsaturated monomer component, whereby the (meth) acrylated amine compound is fixed to the resin skeleton of the optically shaped article. As the (meth) acrylated amine compound, a (meth) acrylated amine compound obtained by reacting a polyfunctional (meth) acrylate and an amine compound is preferable.
2官能の(メタ)アクリレートの具体例として、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2,4-ジメチル-1,5-ペンタンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオール(メタ)アクリレート、エトキシ化シクロヘキサンメタノールジ(メタ)アクリレート、ポリエチレングルコールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、2-エチル-2-ブチル-ブタンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、ビスフェノールFポリエトキシジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、オリゴプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、1,9-ノナンジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート等が挙げられる。
Specific examples of the bifunctional (meth) acrylate include 1,6-hexanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2,4-dimethyl -1,5-pentanediol di (meth) acrylate, butylethylpropanediol (meth) acrylate, ethoxylated cyclohexanemethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, oligoethylene glycol di (meth) acrylate, Ethylene glycol di (meth) acrylate, 2-ethyl-2-butyl-butanediol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate Bisphenol F polyethoxydi (meth) acrylate, polypropylene glycol di (meth) acrylate, oligopropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 2-ethyl-2-butylpropanediol di (Meth) acrylate, 1,9-nonane (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, tricyclodecane di (meth) acrylate and the like.
3官能の(メタ)アクリレートの具体例として、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、イソシアヌル酸アルキレンオキサイド変性トリ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ヒドロキシピバルアルデヒド変性ジメチロールプロパントリ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート等を挙げることができる。
Specific examples of trifunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, trimethylolpropane alkylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol tri (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ether, isocyanuric acid alkylene oxide modified tri (meth) acrylate, propionate dipentaerythritol tri (meth) acrylate, tri ((meta ) Acryloyloxyethyl) isocyanurate, hydroxypivalaldehyde-modified dimethylolpropane tri (meth) acrylate, sorbitol tri (meth) a Relate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated glycerin triacrylate.
4官能の(メタ)アクリレートの具体例として、ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート等を挙げることができる。
Specific examples of tetrafunctional (meth) acrylates include pentaerythritol tetra (meth) acrylate, sorbitol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate propionate, ethoxylated penta Examples include erythritol tetra (meth) acrylate.
5官能の(メタ)アクリレートの具体例として、ソルビトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートを挙げることができる。
Specific examples of pentafunctional (meth) acrylates include sorbitol penta (meth) acrylate and dipentaerythritol penta (meth) acrylate.
6官能の(メタ)アクリレートの具体例として、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、フォスファゼンのアルキレンオキサイド変性ヘキサ(メタ)アクリレート、カプトラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。
Specific examples of hexafunctional (meth) acrylate include dipentaerythritol hexa (meth) acrylate, sorbitol hexa (meth) acrylate, phosphazene alkylene oxide modified hexa (meth) acrylate, captolactone modified dipentaerythritol hexa (meth) acrylate Etc.
また、アミン化合物としては、以下に限定されないが、例えば、ベンジルアミン、フェネチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、n-ペンチルアミン、イソペンチルアミン、n-ヘキシルアミン、シクロヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、n-デシルアミン、n-ドデシルアミン、n-テトラデシルアミン、n-ヘキサデシルアミン、n-オクタデシルアミン、2-アミノエタノール、3-アミノ-1-プロパノール等の単官能アミン化合物、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、1,6-ヘキサメチレンジアミン、1,8-オクタメチレンジアミン、1,12-ドデカメチレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミン、o-キシリレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、メンタンジアミン、ビス(4-アミノ-3-メチルシクロヘキシルノメタン、イソフォロンジアミン、1,3-ジアミノシクロヘキサン、エタノールジアミン、及びスピロアセタール系ジアミン等の多官能アミン化合物を挙げることができる。また、ポリエチレンイミン、ポリビニルアミン、及びポリアリルアミン等の高分子量タイプの多官能アミン化合物も挙げられる。単官能アミンとしては、2-アミノエタノール、3-アミノ-1-プロパノール等の分子内にアミノ基と同数の水酸基を有することが好ましい。また、多官能(メタ)アクリレートと反応させるアミン化合物は1級アミン化合物であることが好ましく、さらに、分子内に1つの水酸基を有する1級アミン化合物であることが好ましい。
Examples of the amine compound include, but are not limited to, benzylamine, phenethylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, n-pentylamine, isopentylamine, n-hexylamine. Cyclohexylamine, n-heptylamine, n-octylamine, 2-ethylhexylamine, n-nonylamine, n-decylamine, n-dodecylamine, n-tetradecylamine, n-hexadecylamine, n-octadecylamine, 2 -Monofunctional amine compounds such as aminoethanol and 3-amino-1-propanol, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, 1,6-hexamethylenediamine, 1,8-octamethylenediamine 1,12-dodecamethylenediamine, o-phenylenediamine, p-phenylenediamine, m-phenylenediamine, o-xylylenediamine, p-xylylenediamine, m-xylylenediamine, menthanediamine, bis (4-amino There may be mentioned polyfunctional amine compounds such as 3-methylcyclohexylnomethane, isophoronediamine, 1,3-diaminocyclohexane, ethanoldiamine, and spiroacetal diamine, polyethyleneimine, polyvinylamine, and polyallylamine Also included are polyfunctional amine compounds of high molecular weight type, etc. Monofunctional amines preferably have the same number of hydroxyl groups as amino groups in the molecule such as 2-aminoethanol and 3-amino-1-propanol. , Multifunctional (meta) Amine compound to be reacted with the acrylates is preferably a primary amine compound, further, is preferably a primary amine compound having one hydroxyl group in the molecule.
(メタ)アクリル化アミン化合物は、特に限定されないが、例えば、多官能(メタ)アクリレートと1級アミン化合物とを反応させて得られる。これにより得られた(メタ)アクリル化アミン化合物は分子内に3級アミノ基を有する。アミン化合物として、2-アミノエタノール、3-アミノ-1-プロパノール等を用いた場合、分子内に3級アミノ基と同数の水酸基を有する(メタ)アクリル化アミン化合物が得られる。
The (meth) acrylated amine compound is not particularly limited, and can be obtained, for example, by reacting a polyfunctional (meth) acrylate with a primary amine compound. The (meth) acrylated amine compound thus obtained has a tertiary amino group in the molecule. When 2-aminoethanol, 3-amino-1-propanol, or the like is used as the amine compound, a (meth) acrylated amine compound having the same number of hydroxyl groups as tertiary amino groups in the molecule can be obtained.
上記の中でも、(メタ)アクリル化アミン化合物は、特にモデル材用組成物の硬化収縮を抑制する観点から、その分子内に3級アミノ基を有することが好ましく、分子内に3級アミノ基と同数の水酸基を有することがより好ましい。3級アミノ基は分子内に1~10個存在することが好ましく、2~6個存在することが好ましい。3級アミノ基を有する(メタ)アクリル化アミン化合物の市販品としては、例えばサートマー社製「CN371」(商品名)、サイテック社製「EBECRYL 7100」(商品名)、Qualipoly Chemical Corporation社製「GC1100Z」(商品名)等が挙げられる。(メタ)アクリル化アミン化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Among the above, the (meth) acrylated amine compound preferably has a tertiary amino group in the molecule, particularly from the viewpoint of suppressing curing shrinkage of the composition for model material, and has a tertiary amino group in the molecule. It is more preferable to have the same number of hydroxyl groups. There are preferably 1 to 10 tertiary amino groups in the molecule, preferably 2 to 6 in the molecule. Examples of commercially available (meth) acrylated amine compounds having a tertiary amino group include “CN371” (trade name) manufactured by Sartomer, “EBECRYL 7100” (trade name) manufactured by Cytec, and “GC1100Z manufactured by QualyPolychemical Corporation”. (Product name) and the like. The (meth) acrylated amine compound may be used alone or in combination of two or more.
(メタ)アクリル化アミン化合物の含有量は、モデル材用組成物全体100重量部に対して2~45重量部、好ましくは2~40重量部、より好ましくは5~30重量部である。(メタ)アクリル化アミン化合物の含有量がモデル材用組成物全体100重量部に対して2重量部未満であると、モデル材用組成物の硬化性が不足し、45重量部を超えると、モデル材用組成物がインクジェット適正を付与する粘度範囲を超え、また、水溶性が増大し、サポート材除去時に水に含浸した際、膨潤・変形する恐れが有る。
The content of the (meth) acrylated amine compound is 2 to 45 parts by weight, preferably 2 to 40 parts by weight, and more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the entire model material composition. When the content of the (meth) acrylated amine compound is less than 2 parts by weight relative to 100 parts by weight of the entire model material composition, the curability of the model material composition is insufficient, and when it exceeds 45 parts by weight, The composition for a model material exceeds the viscosity range for imparting ink jet suitability, and the water solubility increases. When the support material is impregnated with water, it may swell and deform.
<オリゴマー(D)>
オリゴマー(D)は、光照射により重合してモデル材用組成物を硬化させ、かつ、該硬化により得られるモデル材の破断強度を高める成分である。上記(D)成分の含有量は、樹脂組成物全体100重量部に対して、5~40重量部とする。上記(D)成分の含有量が5重量部未満であると、モデル材用組成物を光硬化させて得られるモデル材は、硬化収縮がやや大きくなる。その結果、モデル材の寸法精度が悪化する可能性がある。また、モデル材用組成物を光硬化させて得られるモデル材の破断強度が劣る。一方、上記(D)成分の含有量が45重量部を超えると、モデル材用組成物の粘度が高くなる。そのため、モデル材用組成物をインクジェットヘッドから吐出させる際、ジェッティング特性が悪化して、飛行曲がりを起こす可能性がある。その結果、モデル材用組成物を光硬化させて得られるモデル材の寸法精度が悪化する可能性がある。上記(D)成分の含有量は、10重量部以上であることが好ましく、15重量部以上であることがより好ましく、30重量部以下であることが好ましい。 <Oligomer (D)>
The oligomer (D) is a component that is polymerized by light irradiation to cure the model material composition and increases the breaking strength of the model material obtained by the curing. The content of the component (D) is 5 to 40 parts by weight with respect to 100 parts by weight of the entire resin composition. When the content of the component (D) is less than 5 parts by weight, the curing shrinkage of the model material obtained by photocuring the model material composition is slightly increased. As a result, the dimensional accuracy of the model material may deteriorate. Moreover, the breaking strength of the model material obtained by photocuring the composition for model material is inferior. On the other hand, when the content of the component (D) exceeds 45 parts by weight, the viscosity of the model material composition is increased. Therefore, when the composition for model material is ejected from the inkjet head, the jetting characteristics may be deteriorated and the flight may be bent. As a result, the dimensional accuracy of the model material obtained by photocuring the model material composition may deteriorate. The content of the component (D) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and preferably 30 parts by weight or less.
オリゴマー(D)は、光照射により重合してモデル材用組成物を硬化させ、かつ、該硬化により得られるモデル材の破断強度を高める成分である。上記(D)成分の含有量は、樹脂組成物全体100重量部に対して、5~40重量部とする。上記(D)成分の含有量が5重量部未満であると、モデル材用組成物を光硬化させて得られるモデル材は、硬化収縮がやや大きくなる。その結果、モデル材の寸法精度が悪化する可能性がある。また、モデル材用組成物を光硬化させて得られるモデル材の破断強度が劣る。一方、上記(D)成分の含有量が45重量部を超えると、モデル材用組成物の粘度が高くなる。そのため、モデル材用組成物をインクジェットヘッドから吐出させる際、ジェッティング特性が悪化して、飛行曲がりを起こす可能性がある。その結果、モデル材用組成物を光硬化させて得られるモデル材の寸法精度が悪化する可能性がある。上記(D)成分の含有量は、10重量部以上であることが好ましく、15重量部以上であることがより好ましく、30重量部以下であることが好ましい。 <Oligomer (D)>
The oligomer (D) is a component that is polymerized by light irradiation to cure the model material composition and increases the breaking strength of the model material obtained by the curing. The content of the component (D) is 5 to 40 parts by weight with respect to 100 parts by weight of the entire resin composition. When the content of the component (D) is less than 5 parts by weight, the curing shrinkage of the model material obtained by photocuring the model material composition is slightly increased. As a result, the dimensional accuracy of the model material may deteriorate. Moreover, the breaking strength of the model material obtained by photocuring the composition for model material is inferior. On the other hand, when the content of the component (D) exceeds 45 parts by weight, the viscosity of the model material composition is increased. Therefore, when the composition for model material is ejected from the inkjet head, the jetting characteristics may be deteriorated and the flight may be bent. As a result, the dimensional accuracy of the model material obtained by photocuring the model material composition may deteriorate. The content of the component (D) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and preferably 30 parts by weight or less.
上記(D)成分としては、例えば、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー等が挙げられる。これらの中でも、モデル材用組成物の硬化性を向上させる観点から、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、および、ポリエステル(メタ)アクリレートオリゴマーから選択される1種以上であることが好ましい。さらに、モデル材用組成物が光硬化時の温度(50~90℃)に耐え得る耐熱性を有することにより、モデル材の寸法精度を向上させる観点から、ウレタン(メタ)アクリレートオリゴマーであることがより好ましい。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記(D)成分が2種以上含まれる場合、上記含有量は、各(D)成分の含有量の合計として定める。
Examples of the component (D) include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and the like. Among these, from the viewpoint of improving the curability of the composition for model material, it should be one or more selected from urethane (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, and polyester (meth) acrylate oligomer. Is preferred. Furthermore, the composition for model material is a urethane (meth) acrylate oligomer from the viewpoint of improving the dimensional accuracy of the model material by having heat resistance that can withstand the temperature during photocuring (50 to 90 ° C.). More preferred. These may be used alone or in combination of two or more. In addition, when the said (D) component is contained 2 or more types, the said content is defined as the sum total of content of each (D) component.
なお、本明細書中において「オリゴマー」は、重量平均分子量が800~10000である。重量平均分子量は、GPC(Gel Permeation Chromatography)で測定したポリスチレン換算の重量平均分子量を意味する。
In the present specification, “oligomer” has a weight average molecular weight of 800 to 10,000. The weight average molecular weight means a weight average molecular weight in terms of polystyrene measured by GPC (Gel Permeation Chromatography).
<光重合開始剤(E)>
本発明のモデル材用組成物は、光重合開始剤を含むことが好ましい。光重合開始剤は、紫外線、近紫外線または可視光領域の波長の光を照射するとラジカル反応を促進する化合物であれば、特に限定されない。上記光重合開始剤としては、低エネルギーで重合を開始させることができれば特に限定されないが、アシルフォスフィンオキサイド化合物、α-アミノアルキルフェノン化合物、α-ヒドロキシキノン化合物、チオキサントン化合物、ベンゾイン化合物、アントラキノン化合物およびケタール化合物からなる群から選択される少なくとも1種の化合物を含む光重合開始剤を用いることが好ましい。 <Photopolymerization initiator (E)>
It is preferable that the composition for model materials of this invention contains a photoinitiator. The photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region. The photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds.
本発明のモデル材用組成物は、光重合開始剤を含むことが好ましい。光重合開始剤は、紫外線、近紫外線または可視光領域の波長の光を照射するとラジカル反応を促進する化合物であれば、特に限定されない。上記光重合開始剤としては、低エネルギーで重合を開始させることができれば特に限定されないが、アシルフォスフィンオキサイド化合物、α-アミノアルキルフェノン化合物、α-ヒドロキシキノン化合物、チオキサントン化合物、ベンゾイン化合物、アントラキノン化合物およびケタール化合物からなる群から選択される少なくとも1種の化合物を含む光重合開始剤を用いることが好ましい。 <Photopolymerization initiator (E)>
It is preferable that the composition for model materials of this invention contains a photoinitiator. The photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region. The photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds.
上記アシルフォスフィンオキサイド化合物としては、具体的には、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルジフェニルフォスフィンオキサイド、4-メチルベンゾイルジフェニルフォスフィンオキサイド、4-エチルベンゾイルジフェニルフォスフィンオキサイド、4-イソプロピルベンゾイルジフェニルフォスフィンオキサイド、1-メチルシクロヘキサノイルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸イソプロピルエステル、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なアシルフォスフィンオキサイド化合物としては、例えば、BASF社製の“DAROCURE TPO”等が挙げられる。
Specific examples of the acylphosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide. 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoyldiphenylphosphine oxide, 4-methylbenzoyldiphenylphosphine oxide, 4-ethylbenzoyldiphenylphosphine oxide, 4-isopropylbenzoyl Diphenylphosphine oxide, 1-methylcyclohexanoylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoy ) -Phenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2,4,6-trimethylbenzoylphenylphosphinic acid isopropyl ester, bis (2,6-dimethoxybenzoyl) -2,4 , 4-trimethylpentylphosphine oxide and the like. These may be used alone or in combination. Examples of the acylphosphine oxide compound available on the market include “DAROCURE TPO” manufactured by BASF.
上記α-アミノアルキルフェノン化合物としては、具体的には、例えば、2-メチル-1[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1、2-メチル-1-[4-(メトキシチオ)-フェニル]-2-モルホリノプロパン-2-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-アミノアルキルフェノン化合物としては、例えば、BASF社製の“IRGACURE 369”、“IRGACURE 907”等が挙げられる。
Specific examples of the α-aminoalkylphenone compound include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination. Examples of α-aminoalkylphenone compounds available on the market include “IRGACURE 369” and “IRGACURE 907” manufactured by BASF.
上記α-ヒドロキシキノン化合物としては、具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル] -2-ヒドロキシ2-メチル-1-プロパン1-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-ヒドロキシキノン化合物としては“IRGACURE 184” “DAROCURE 1173”“IRGACURE 2959” “IRGACURE 127” 等が挙げられる。
Specific examples of the α-hydroxyquinone compound include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- {4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of α-hydroxyquinone compounds available on the market include “IRGACURE 184” “DAROCURE 1173” “IRGACURE 2959” “IRGACURE 127”.
上記チオキサントン化合物としては、具体的には、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なチオキサントン化合物としては、例えば、日本化薬社製の“MKAYACURE DETX-S”、ダブルボンドケミカル社製の“Chivacure ITX”等が挙げられる。
Specific examples of the thioxanthone compound include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
上記ベンゾイン化合物としては、具体的には、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。
Specific examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
上記アントラキノン化合物としては、具体的には、例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等が挙げられる。
Specific examples of the anthraquinone compound include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
上記ケタール化合物としては、具体的には、例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等が挙げられる。
Specific examples of the ketal compound include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
上記(E)成分の含有量は、樹脂組成物全体100重量部に対して、1~15重量部である。上記(E)成分の含有量が上記範囲であると、モデル材用組成物の硬化性が良好となり、光造形物の寸法精度が向上する。上記(E)成分の含有量は、2重量部以上であることが好ましく、13重量部以下であることが好ましい。なお、上記(E)成分が2種以上含まれる場合、上記含有量は、各(E)成分の含有量の合計として定める。
The content of the component (E) is 1 to 15 parts by weight with respect to 100 parts by weight of the entire resin composition. When the content of the component (E) is within the above range, the curability of the model material composition is improved, and the dimensional accuracy of the optically shaped object is improved. The content of the component (E) is preferably 2 parts by weight or more, and preferably 13 parts by weight or less. In addition, when the said (E) component is contained 2 or more types, the said content is defined as the sum total of content of each (E) component.
<表面調整剤(F)>
表面調整剤(F)は、樹脂組成物の表面張力を適切な範囲に調整するために含有させる。樹脂組成物の表面張力を適切な範囲に調整することにより、モデル材用組成物とサポート材用組成物とが界面で混ざり合うことを抑制することができる。その結果、これらの樹脂組成物を用いて、寸法精度が良好な光造形物を得ることができる。この効果を得るため、上記(F)成分の含有量は、樹脂組成物全体100重量部に対して、0.005~3.0重量部とする。 <Surface conditioner (F)>
The surface conditioner (F) is contained in order to adjust the surface tension of the resin composition to an appropriate range. By adjusting the surface tension of the resin composition to an appropriate range, the model material composition and the support material composition can be prevented from being mixed at the interface. As a result, it is possible to obtain an optically shaped article with good dimensional accuracy using these resin compositions. In order to obtain this effect, the content of the component (F) is 0.005 to 3.0 parts by weight with respect to 100 parts by weight of the whole resin composition.
表面調整剤(F)は、樹脂組成物の表面張力を適切な範囲に調整するために含有させる。樹脂組成物の表面張力を適切な範囲に調整することにより、モデル材用組成物とサポート材用組成物とが界面で混ざり合うことを抑制することができる。その結果、これらの樹脂組成物を用いて、寸法精度が良好な光造形物を得ることができる。この効果を得るため、上記(F)成分の含有量は、樹脂組成物全体100重量部に対して、0.005~3.0重量部とする。 <Surface conditioner (F)>
The surface conditioner (F) is contained in order to adjust the surface tension of the resin composition to an appropriate range. By adjusting the surface tension of the resin composition to an appropriate range, the model material composition and the support material composition can be prevented from being mixed at the interface. As a result, it is possible to obtain an optically shaped article with good dimensional accuracy using these resin compositions. In order to obtain this effect, the content of the component (F) is 0.005 to 3.0 parts by weight with respect to 100 parts by weight of the whole resin composition.
上記(F)成分としては、例えば、シリコーン系化合物等が挙げられる。シリコーン系化合物としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物等が挙げられる。具体的には、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等が挙げられる。これらとして、商品名でBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-315、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-344、BYK-370、BYK-375、BYK-377、BYK-UV3500、BYK-UV3510、BYK-UV3570(以上、ビックケミー社製)、TEGO-Rad2100、TEGO-Rad2200N、TEGO-Rad2250、TEGO-Rad2300、TEGO-Rad2500、TEGO-Rad2600、TEGO-Rad2700(以上、デグサ社製)、グラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B-1484、ポリフローATF-2、KL-600、UCR-L72、UCR-L93(共栄社化学社製)等を用いてもよい。また、シリコーン系化合物以外の(たとえばフッ素系表面調整剤、ノニオン系表面調整剤)を用いることもできる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記(E)成分が2種以上含まれる場合、上記含有量は、各(E)成分の含有量の合計として定める。
Examples of the component (F) include silicone compounds. Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. These include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570 (above, manufactured by BYK Chemie), TEGO-Rad2100 , TEGO-Rad2200N, TEGO-Rad2250, TEGO-Rad2300, TEGO-Rad2500, TEGO-Rad2600, TEGO-Rad2700 (manufactured by Degussa), Granol 100, Granol 115, Granol 400, Grano Le 410, Granol 435, Granol 440, Granol 450, B-1484, Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like may be used. Moreover, other than silicone compounds (for example, fluorine-based surface conditioners and nonionic surface conditioners) can also be used. These may be used alone or in combination of two or more. In addition, when the said (E) component is contained 2 or more types, the said content is defined as the sum total of content of each (E) component.
<保存安定化剤(G)>
本実施形態に係るモデル材用組成物は、さらに、保存安定化剤(G)を含有することが好ましい。保存安定化剤(G)は、樹脂組成物の保存安定性を高めることができる。また、熱エネルギーにより重合性化合物が重合することで生じるヘッド詰まりを防止することができる。これらの効果を得るため、上記(G)成分の含有量は、樹脂組成物全体100重量部に対して、0.05~3.0重量部であることが好ましい。 <Storage stabilizer (G)>
The model material composition according to the present embodiment preferably further contains a storage stabilizer (G). The storage stabilizer (G) can enhance the storage stability of the resin composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented. In order to obtain these effects, the content of the component (G) is preferably 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the entire resin composition.
本実施形態に係るモデル材用組成物は、さらに、保存安定化剤(G)を含有することが好ましい。保存安定化剤(G)は、樹脂組成物の保存安定性を高めることができる。また、熱エネルギーにより重合性化合物が重合することで生じるヘッド詰まりを防止することができる。これらの効果を得るため、上記(G)成分の含有量は、樹脂組成物全体100重量部に対して、0.05~3.0重量部であることが好ましい。 <Storage stabilizer (G)>
The model material composition according to the present embodiment preferably further contains a storage stabilizer (G). The storage stabilizer (G) can enhance the storage stability of the resin composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented. In order to obtain these effects, the content of the component (G) is preferably 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the entire resin composition.
上記(G)成分としては、例えば、ヒンダードアミン系化合物(HALS)、フェノール系酸化防止剤、リン系酸化防止剤、ニトロソアミン系化合物等が挙げられる。具体的には、ハイドロキノン、メトキノン、ベンゾキノン、p-メトキシフェノール、ハイドロキノンモノメチルエーテル、ハイドロキノンモノブチルエーテル、TEMPO、4-ヒドロキシ-TEMPO、TEMPOL、クペロンAl、IRGASTAB UV-10、IRGASTAB UV-22、FIRSTCURE ST-1(ALBEMARLE社製)、t-ブチルカテコール、ピロガロール、BASF社製のTINUVIN 111 FDL、TINUVIN 144、TINUVIN 292、TINUVIN XP40、TINUVIN XP60、TINUVIN 400等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記(G)成分が2種以上含まれる場合、上記含有量は、各(G)成分の含有量の合計として定める。
Examples of the component (G) include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more. In addition, when the said (G) component is contained 2 or more types, the said content is defined as the sum total of content of each (G) component.
モデル材用組成物には、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。
In the composition for model material, other additives can be contained as necessary within a range not impairing the effects of the present invention. Examples of other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler.
本実施形態に係るモデル材用組成物は、特に限定されるものではないが、例えば、上記(A)~(F)成分、および、必要により、上記(G)成分、その他の添加剤を、混合攪拌装置、分散機等を用いて均一に混合することにより、製造することができる。
The model material composition according to the present embodiment is not particularly limited. For example, the components (A) to (F) and, if necessary, the component (G) and other additives, It can manufacture by mixing uniformly using a mixing stirring apparatus, a disperser, etc.
このようにして製造された本実施形態に係るモデル材用組成物は、インクジェットヘッドからの吐出性を良好にする観点から、25℃における粘度が、150mPa・s以下であることが好ましく、120mPa・s以下であることがより好ましく、100mPa・s以下であることがさらに好ましい。なお、モデル材用組成物の粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。
The composition for a model material according to this embodiment produced in this manner preferably has a viscosity at 25 ° C. of 150 mPa · s or less from the viewpoint of improving the dischargeability from the inkjet head, and is 120 mPa · s. It is more preferably s or less, and further preferably 100 mPa · s or less. In addition, the measurement of the viscosity of the composition for model materials can be performed using R100 type | mold viscosity meter based on JISZ8803.
本発明のモデル材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5mN/m以上であり、さらに好ましくは25mN/m以上であり、より好ましくは29.5mN/m以下であり、さらに好ましくは29mN/m以下である。表面張力が上記範囲内であると、マテリアルジェットの高速吐出時においてもノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、造形精度を向上させやすくなる。モデル材用組成物の表面張力は、表面調整剤の種類や含有量を調整することにより制御することができる。なお、モデル材用組成物の表面張力は、JIS K2241に準拠したdu Nouey法やWilhelmy法に従い測定することができる。
The surface tension of the composition for a model material of the present invention is preferably 24 to 30 mN / m, more preferably 24.5 mN / m or more, further preferably 25 mN / m or more, more preferably 29. 5 mN / m or less, more preferably 29 mN / m or less. When the surface tension is within the above range, droplets ejected from the nozzle can be formed normally even during high-speed ejection of material jets, ensuring adequate droplet volume and landing accuracy, and generating satellites. It is possible to suppress, and it becomes easy to improve modeling accuracy. The surface tension of the model material composition can be controlled by adjusting the type and content of the surface conditioner. The surface tension of the model material composition can be measured according to the du Nouey method or the Wilhelmy method in accordance with JIS K2241.
<マテリアルジェット光造形用組成物セット>
本発明のモデル材用組成物は、例えば、タンクなどに満たして光照射を行うことにより組成物を硬化させて立体造形物を作製する液槽光重合法のような光造形方式において単独で用いることもできるが、マテリアルジェット光造形方式において、複雑な形状や緻密な形状を高い精度で造形するために立体造形中にモデル材を支持するためのサポート材と組み合わせて用いることができる。したがって、本発明は、本発明のモデル材用組成物と、マテリアルジェット光造形法によりサポート材を造形するためのサポート材用組成物とを含んでなるマテリアルジェット光造形用組成物セットも対象とする。 <Composition set for material jet stereolithography>
The composition for a model material of the present invention is used alone in an optical modeling method such as a liquid tank photopolymerization method in which a composition is cured by filling a tank or the like to perform light irradiation to produce a three-dimensional modeled object. However, in the material jet stereolithography method, it can be used in combination with a support material for supporting a model material during three-dimensional modeling in order to model a complicated shape or a dense shape with high accuracy. Therefore, the present invention also covers a composition set for material jet stereolithography comprising the composition for model material of the present invention and a composition for support material for modeling a support material by a material jet stereolithography method. To do.
本発明のモデル材用組成物は、例えば、タンクなどに満たして光照射を行うことにより組成物を硬化させて立体造形物を作製する液槽光重合法のような光造形方式において単独で用いることもできるが、マテリアルジェット光造形方式において、複雑な形状や緻密な形状を高い精度で造形するために立体造形中にモデル材を支持するためのサポート材と組み合わせて用いることができる。したがって、本発明は、本発明のモデル材用組成物と、マテリアルジェット光造形法によりサポート材を造形するためのサポート材用組成物とを含んでなるマテリアルジェット光造形用組成物セットも対象とする。 <Composition set for material jet stereolithography>
The composition for a model material of the present invention is used alone in an optical modeling method such as a liquid tank photopolymerization method in which a composition is cured by filling a tank or the like to perform light irradiation to produce a three-dimensional modeled object. However, in the material jet stereolithography method, it can be used in combination with a support material for supporting a model material during three-dimensional modeling in order to model a complicated shape or a dense shape with high accuracy. Therefore, the present invention also covers a composition set for material jet stereolithography comprising the composition for model material of the present invention and a composition for support material for modeling a support material by a material jet stereolithography method. To do.
2.サポート材用組成物
<サポート材用組成物>
サポート材用組成物は、光硬化によりサポート材を与える、サポート材用の光硬化性組成物である。モデル材を作成後、サポート材をモデル材から物理的に剥離することにより、または、サポート材を有機溶媒もしくは水に溶解させることにより、モデル材から除去することができる。本発明のモデル材用組成物は、サポート材用組成物として従来公知の種々の組成物との組み合わせにおいて用いることができるが、サポート材を除去する際にモデル材を破損することがなく、環境に優しく、細部まできれいにかつ容易にサポート材を除去することができるため、本発明の光造形用組成物セットを構成するサポート材用組成物は水溶性であることが好ましい。 2. Composition for support material <Composition for support material>
The composition for a support material is a photocurable composition for a support material that provides the support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water. The composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. It is preferable that the support material composition that constitutes the stereolithography composition set of the present invention is water-soluble because the support material can be easily removed cleanly and easily in detail.
<サポート材用組成物>
サポート材用組成物は、光硬化によりサポート材を与える、サポート材用の光硬化性組成物である。モデル材を作成後、サポート材をモデル材から物理的に剥離することにより、または、サポート材を有機溶媒もしくは水に溶解させることにより、モデル材から除去することができる。本発明のモデル材用組成物は、サポート材用組成物として従来公知の種々の組成物との組み合わせにおいて用いることができるが、サポート材を除去する際にモデル材を破損することがなく、環境に優しく、細部まできれいにかつ容易にサポート材を除去することができるため、本発明の光造形用組成物セットを構成するサポート材用組成物は水溶性であることが好ましい。 2. Composition for support material <Composition for support material>
The composition for a support material is a photocurable composition for a support material that provides the support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water. The composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. It is preferable that the support material composition that constitutes the stereolithography composition set of the present invention is water-soluble because the support material can be easily removed cleanly and easily in detail.
本発明において、水溶性のサポート材用組成物は、少なくとも1種の水溶性単官能エチレン性不飽和単量体(a)、少なくとも1種のポリアルキレングリコール(b)および光重合開始剤を含むことが好ましい。
In the present invention, the water-soluble support material composition includes at least one water-soluble monofunctional ethylenically unsaturated monomer (a), at least one polyalkylene glycol (b), and a photopolymerization initiator. It is preferable.
本発明のサポート材用組成物に含まれる水溶性の単官能エチレン性不飽和単量体としては、例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、数平均分子量(Mn)200~1,000の水酸基含有(メタ)アクリレート〔例えばポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEG-PPGブロックポリマーのモノ(メタ)アクリレート等〕、(メタ)アクリルアミド誘導体〔例えば(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルホリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
Examples of the water-soluble monofunctional ethylenically unsaturated monomer contained in the support material composition of the present invention include, for example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meth) acrylate, Hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, monoalkoxy (carbon 1 to 4) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEG-PPG block polymer, etc. ], (Meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N′-dimethyl ( (Meth) acrylamide, N, N′-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.], (meth) acryloylmorpholine, etc. Is mentioned. These may be used alone or in combination of two or more.
サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(a)の含有量は、上記サポート材用組成物100質量部に対して、19~80質量部であることが好ましく、より好ましくは22質量部以上であり、さらに好ましくは25質量部以上であり、より好ましくは76質量部以下であり、さらに好ましくは73質量部以下である。水溶性単官能エチレン性不飽和単量体(a)の含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水によるサポート材の除去性を向上させることができる。
The content of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition is preferably 19 to 80 parts by mass with respect to 100 parts by mass of the support material composition. More preferably, it is 22 parts by mass or more, more preferably 25 parts by mass or more, more preferably 76 parts by mass or less, and further preferably 73 parts by mass or less. When the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
サポート材用組成物に含まれ得るポリアルキレングリコール(b)としては、直鎖型、多鎖型のいずれであってもよい。また、水に溶解するものであれば、末端にアルキル基を含んでいてもよく、例えば、好ましくは炭素数6以下のアルキル鎖を含んでいてもよい。このようなポリアルキレングリコール(b)として、具体的には、例えば、オキシブチレン基を含むポリアルキレングリコールが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The polyalkylene glycol (b) that can be included in the support material composition may be either a linear type or a multi-chain type. Moreover, as long as it melt | dissolves in water, the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. Specific examples of such polyalkylene glycol (b) include polyalkylene glycols containing an oxybutylene group. These may be used alone or in combination of two or more.
サポート材用組成物に含まれ得るポリアルキレングリコール(b)としては、特にそのアルキレン部分の構造は限定されず、例えば、オキシブチレン基(オキシテトラメチレン基)のみ有するポリブチレングリコール単体であってもよく、また、オキシブチレン基と他のオキシアルキレン基とを共に有するポリブチレンポリオキシアルキレングリコール(例えば、ポリブチレンポリエチレングリコール)であってもよい。例えば、上記ポリブチレングリコールは、下記化学式(1)で示され、上記ポリブチレンポリエチレングリコールは、下記化学式(2)で示される。
The polyalkylene glycol (b) that can be contained in the support material composition is not particularly limited in the structure of the alkylene portion. For example, even if it is a polybutylene glycol alone having only an oxybutylene group (oxytetramethylene group). Alternatively, it may be a polybutylene polyoxyalkylene glycol having both an oxybutylene group and another oxyalkylene group (for example, polybutylene polyethylene glycol). For example, the polybutylene glycol is represented by the following chemical formula (1), and the polybutylene polyethylene glycol is represented by the following chemical formula (2).
上記化学式(2)において、mは5~300の整数であることが好ましく、nは2~150の整数であることが好ましい。より好ましくは、mは6~200、nは3~100である。また、化学式(1)および化学式(2)中のオキシブチレン基は、直鎖であってもよいが、分岐していてもよい。
サポート材用組成物が、ポリアルキレングリコール(b)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched.
When the composition for a support material contains the polyalkylene glycol (b), the removability by water can be further improved without reducing the support force of the support material. These may be used alone or in combination of two or more.
サポート材用組成物が、ポリアルキレングリコール(b)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched.
When the composition for a support material contains the polyalkylene glycol (b), the removability by water can be further improved without reducing the support force of the support material. These may be used alone or in combination of two or more.
ポリアルキレングリコール(b)の数平均分子量(Mn)は、100~5000であることが好ましい。ポリアルキレングリコール(b)の数平均分子量が上記範囲内であると、硬化前の組成物中では水溶性単官能エチレン性不飽和単量体(a)と相溶しやすくなる一方、光照射後の水溶性単官能エチレン性不飽和単量体の硬化物とは相溶し難くなり、サポート材の水または水溶性溶剤による除去が容易になる。
The number average molecular weight (M n ) of the polyalkylene glycol (b) is preferably 100 to 5000. When the number average molecular weight of the polyalkylene glycol (b) is within the above range, the composition becomes easily compatible with the water-soluble monofunctional ethylenically unsaturated monomer (a) in the composition before curing. It becomes difficult to be compatible with the cured product of the water-soluble monofunctional ethylenically unsaturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
サポート材用組成物におけるポリアルキレングリコール(b)の含有量は、サポート材用組成物100質量部に対して、15~75質量部であることが好ましく、より好ましくは17質量部以上であり、さらに好ましくは20質量部以上であり、より好ましくは72質量部以下であり、さらに好ましくは70質量部以下である。ポリアルキレングリコール(b)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。
The content of the polyalkylene glycol (b) in the support material composition is preferably 15 to 75 parts by mass, more preferably 17 parts by mass or more, with respect to 100 parts by mass of the support material composition. More preferably, it is 20 mass parts or more, More preferably, it is 72 mass parts or less, More preferably, it is 70 mass parts or less. When the content of the polyalkylene glycol (b) is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material.
サポート材用組成物は、水溶性有機溶剤(c)を含んでいてもよい。水溶性有機溶剤(c)は、サポート材用組成物を光硬化させて得られるサポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する機能も有する。
The support material composition may contain a water-soluble organic solvent (c). The water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
水溶性有機溶剤(c)としては、グリコール系溶剤を用いることが好ましく、具体的には、例えば、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート、エチレングリコールジアセテート、プロピレングリコールジアセテートなどのグリコールエステル系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテルなどのグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどのグリコールモノエーテルアセテート系溶剤等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
As the water-soluble organic solvent (c), it is preferable to use a glycol solvent. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate. Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, propylene glycol Nomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monobutyl ether Examples thereof include glycol monoether acetate solvents such as acetate. These may be used alone or in combination of two or more.
中でも、低粘度のサポート材組成物を調製しやすく、また、硬化して得られるサポート材が水溶解性に優れる点から、水溶性有機溶剤(c)としては、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテルおよびジプロピレングリコールモノメチルエーテルアセテートが好ましい。
Among them, the low-viscosity support material composition is easy to prepare, and the support material obtained by curing is excellent in water solubility. Therefore, as the water-soluble organic solvent (c), triethylene glycol monomethyl ether, diethylene glycol diethyl Ether and dipropylene glycol monomethyl ether acetate are preferred.
サポート材用組成物における水溶性有機溶剤(c)の含有量は、サポート材用組成物100質量部に対して、30質量部以下であることが好ましく、より好ましくは28質量部以下であり、さらに好ましくは25質量部以下である。水溶性有機溶剤(c)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。
The content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less. When the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material.
光重合開始剤としては、モデル材用組成物に含有され得る光重合開始剤として上記に述べた化合物を同様に使用することができる。サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、好ましくは1~20質量部であり、より好ましくは2~18質量部である。光重合開始剤の含有量が上記範囲内であると、未反応の重合成分を十分に低減させて、サポート材の硬化性を十分に高めやすい。
As the photopolymerization initiator, the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner. The content of the photopolymerization initiator in the support material composition is preferably 1 to 20 parts by mass and more preferably 2 to 18 parts by mass with respect to 100 parts by mass of the support material composition. When the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
本発明の好適な一実施態様において、サポート材用組成物は、サポート材用組成物100質量部に対して、
19~80質量部の水溶性単官能エチレン性不飽和単量体(a)、
15~75質量部のポリアルキレングリコール(b)、
30質量部以下の水溶性有機溶剤(c)、および、
1~20質量部の光重合開始剤
を含む。上記各成分を上記範囲の含有量で含むことにより、優れた水溶解性とサポート力とを兼ね備えたサポート材用組成物を得ることができる。特に、サポート力に優れるため造形中に空気中の水分を取り込みサポート力が低下するという懸念がなく、寸法精度が良好な光造形品が得られる。 In a preferred embodiment of the present invention, the composition for a support material is based on 100 parts by mass of the composition for a support material.
19 to 80 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a),
15 to 75 parts by weight of polyalkylene glycol (b),
30 parts by weight or less of a water-soluble organic solvent (c), and
1 to 20 parts by mass of a photopolymerization initiator is contained. By including each of the above components in a content within the above range, a composition for a support material having both excellent water solubility and support ability can be obtained. In particular, since the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy is obtained.
19~80質量部の水溶性単官能エチレン性不飽和単量体(a)、
15~75質量部のポリアルキレングリコール(b)、
30質量部以下の水溶性有機溶剤(c)、および、
1~20質量部の光重合開始剤
を含む。上記各成分を上記範囲の含有量で含むことにより、優れた水溶解性とサポート力とを兼ね備えたサポート材用組成物を得ることができる。特に、サポート力に優れるため造形中に空気中の水分を取り込みサポート力が低下するという懸念がなく、寸法精度が良好な光造形品が得られる。 In a preferred embodiment of the present invention, the composition for a support material is based on 100 parts by mass of the composition for a support material.
19 to 80 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a),
15 to 75 parts by weight of polyalkylene glycol (b),
30 parts by weight or less of a water-soluble organic solvent (c), and
1 to 20 parts by mass of a photopolymerization initiator is contained. By including each of the above components in a content within the above range, a composition for a support material having both excellent water solubility and support ability can be obtained. In particular, since the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy is obtained.
上記サポート材用組成物には、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、表面調整剤、酸化防止剤、着色剤、顔料分散剤、保存安定剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。
The support material composition may contain other additives as necessary. Examples of other additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. .
サポート材用組成物に、表面調整剤を配合することによりサポート材用組成物の表面張力を適当な範囲に制御することができ、モデル材用組成物とサポート材用組成物がその界面で混合することを抑制することができる。これにより、寸法精度の良好な光造形物を得ることができる。サポート材用組成物が含み得る表面調整剤としては、本発明のモデル材用組成物に用い得る表面調整剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.005~3質量部であることが好ましい。
By adding a surface conditioner to the support material composition, the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained. As the surface conditioner that can be contained in the support material composition, the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used. The amount is preferably 0.005 to 3 parts by mass with respect to 100 parts by mass of the product.
また、サポート材用組成物に保存安定剤を配合することにより保存安定性を向上させることができる。サポート材用組成物が含み得る保存安定剤としては、本発明のモデル材用組成物に用い得る保存安定剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.05~3質量部であることが好ましい。
Moreover, the storage stability can be improved by blending a storage stabilizer into the support material composition. As the storage stabilizer that can be contained in the support material composition, those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used. The amount is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the product.
本発明において、サポート材用組成物の粘度は、マテリアルジェットノズルからの吐出性を良好にする観点から、25℃において30~200mPa・sであることが好ましく、より好ましくは35mPa・s以上、さらに好ましくは40mPa・s以上であり、より好ましくは170mPa・s以下、さらに好ましくは150mPa・s以下である。なお、上記粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。
In the present invention, the viscosity of the composition for a support material is preferably 30 to 200 mPa · s at 25 ° C., more preferably 35 mPa · s or more, from the viewpoint of improving dischargeability from a material jet nozzle. Preferably it is 40 mPa * s or more, More preferably, it is 170 mPa * s or less, More preferably, it is 150 mPa * s or less. In addition, the measurement of the said viscosity can be performed using R100 type | mold viscosity meter based on JISZ8803.
本発明において、サポート材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5~29.5mN/mであり、さらに好ましくは25~29mN/mである。表面張力が上記範囲内であると、ノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、高い造形精度を確保しやすくなる。なお、サポート材用組成物の表面張力は、モデル材用組成物における表面張力の測定方法と同様の方法に従い測定することができる。
In the present invention, the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m. When the surface tension is within the above range, it is possible to normally form droplets ejected from the nozzle, to ensure an appropriate droplet amount and landing accuracy, and to suppress the occurrence of satellites, It becomes easy to ensure high modeling accuracy. In addition, the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
本発明のサポート材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置、分散機等を用いて、サポート材用組成物を構成する成分を均一に混合することにより製造することができる。
The method for producing the composition for a support material of the present invention is not particularly limited. For example, the composition for a support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer, a disperser or the like. it can.
3.マテリアルジェット光造形用組成物セット
本発明のモデル材用組成物と本発明のサポート材用組成物とを組み合わせることにより、本発明のマテリアルジェット光造形用組成物セットが提供される。本発明のマテリアルジェット光造形用組成物セットは、マテリアルジェット光造形法により、モデル材用組成物を光硬化させて光造形物を製造する用途に使用される。本発明のマテリアルジェット光造形用組成物セットは、モデル材が造形精度に優れ、サポート材は自立性及び除去性に優れるために光造形物の寸法精度を損なわないので、精度に優れた立体造形物を提供することが出来るものである。 3. Composition set for material jet stereolithography The composition set for material jet stereolithography of this invention is provided by combining the composition for model materials of this invention, and the composition for support materials of this invention. The composition set for material jet stereolithography of this invention is used for the use which manufactures a stereolithography thing by photocuring the composition for model materials by material jet stereolithography. In the composition set for material jet stereolithography of the present invention, the modeling material is excellent in modeling accuracy, and the support material is excellent in self-sustainability and removability. Things can be provided.
本発明のモデル材用組成物と本発明のサポート材用組成物とを組み合わせることにより、本発明のマテリアルジェット光造形用組成物セットが提供される。本発明のマテリアルジェット光造形用組成物セットは、マテリアルジェット光造形法により、モデル材用組成物を光硬化させて光造形物を製造する用途に使用される。本発明のマテリアルジェット光造形用組成物セットは、モデル材が造形精度に優れ、サポート材は自立性及び除去性に優れるために光造形物の寸法精度を損なわないので、精度に優れた立体造形物を提供することが出来るものである。 3. Composition set for material jet stereolithography The composition set for material jet stereolithography of this invention is provided by combining the composition for model materials of this invention, and the composition for support materials of this invention. The composition set for material jet stereolithography of this invention is used for the use which manufactures a stereolithography thing by photocuring the composition for model materials by material jet stereolithography. In the composition set for material jet stereolithography of the present invention, the modeling material is excellent in modeling accuracy, and the support material is excellent in self-sustainability and removability. Things can be provided.
4.光造形品およびその製造方法
本実施形態の光造形物の製造方法は、前述の実施形態で説明したマテリアルジェット光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンターを用いてモデル材用組成物及びサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に接触させることにより除去する工程とを備えている。 4). Stereolithography and production method thereof The fabrication method of the stereolithography of the present embodiment is a fabrication method of stereolithography using the material jet stereolithography composition set described in the above embodiment, and is a material jet (inkjet). ) After discharging the composition for the model material and the composition for the support material using a method printer, the model material composition is photocured to obtain the model material, and the water soluble support material composition is photocured. A step of obtaining a water-soluble support material, and a step of removing the water-soluble support material by bringing the water-soluble support material into contact with water.
本実施形態の光造形物の製造方法は、前述の実施形態で説明したマテリアルジェット光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンターを用いてモデル材用組成物及びサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に接触させることにより除去する工程とを備えている。 4). Stereolithography and production method thereof The fabrication method of the stereolithography of the present embodiment is a fabrication method of stereolithography using the material jet stereolithography composition set described in the above embodiment, and is a material jet (inkjet). ) After discharging the composition for the model material and the composition for the support material using a method printer, the model material composition is photocured to obtain the model material, and the water soluble support material composition is photocured. A step of obtaining a water-soluble support material, and a step of removing the water-soluble support material by bringing the water-soluble support material into contact with water.
本実施形態の光造形物の製造方法は、上記マテリアルジェット光造形用組成物セットを用いているため、造形精度に優れた光造形物を形成することができる。
Since the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for material jet optical modeling, it can form the optical modeling thing excellent in modeling precision.
以下、本実施形態の光造形物の製造方法について図面に基づき説明する。図1は、マテリアルジェット造形法によりサポート材用組成物及びモデル材用組成物を吐出してエネルギー線を照射している状態を示す模式側面図である。図1において、三次元造形装置10は、インクジェットヘッドモジュール11と、造形テーブル12とを備えている。また、インクジェットヘッドモジュール11は、光造形用インクユニット11aと、ローラー11bと、光源11cとを備えている。更に、光造形用インクユニット11aは、モデル材用インク13が充填されたモデル材用インクジェットヘッド11aMと、サポート材用インク14が充填されたサポート材用インクジェットヘッド11aSとを備えている。
Hereinafter, a method for manufacturing an optically shaped object according to this embodiment will be described with reference to the drawings. FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays. In FIG. 1, the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12. The ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c. Further, the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
モデル材用インクジェットヘッド11aMからは、モデル材用組成物13が吐出され、サポート材用インクジェットヘッド11aSからは、サポート材用組成物14が吐出され、光源11cからエネルギー線15が照射され、吐出されたモデル材用組成物13及びサポート材用組成物14を硬化させて、モデル材13PMとサポート材14PSを形成している。図1では、一層目のモデル材13PM及びサポート材14PSを形成する状態を示している。
The model material composition 13 is ejected from the model material inkjet head 11aM, the support material composition 14 is ejected from the support material inkjet head 11aS, and the energy beam 15 is irradiated and ejected from the light source 11c. The model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS. FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
次に、本実施形態の光造形物の製造方法について図面に基づき更に詳細に説明する。本実施形態の光造形物の製造方法では、先ず、図2に示すように、インクジェットヘッドモジュール11を造形テーブル12に対してX方向(図2では右方向)に走査させる共に、モデル材用インクジェットヘッド11aMからモデル材用組成物13を吐出し、サポート材用インクジェットヘッド11aSからサポート材用組成物14を吐出する。これにより、造形テーブル12の上に、モデル材前駆体13Mからなる層とサポート材前駆体14Sからなる層とを、それぞれの界面同士が接触するように隣接して配置する。
Next, the method for manufacturing an optically shaped object according to this embodiment will be described in more detail based on the drawings. In the method for manufacturing an optically shaped object according to the present embodiment, first, as shown in FIG. 2, the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used. The model material composition 13 is discharged from the head 11aM, and the support material composition 14 is discharged from the support material inkjet head 11aS. Thereby, on the modeling table 12, the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange | positioned adjacently so that each interface may contact.
次に、図3に示すように、インクジェットヘッドモジュール11を造形テーブル12に対して逆X方向(図3では左方向)に走査させると共に、ローラー11bでモデル材前駆体13M及びサポート材前駆体14Sからなる層の表面を平滑にした後、光源11cからエネルギー線15を照射し、モデル材前駆体13M及びサポート材前駆体14Sからなる層を硬化させて、一層目のモデル材13PM及びサポート材14PSからなる層を形成す
る。 Next, as shown in FIG. 3, the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and themodel material precursor 13 </ b> M and the support material precursor 14 </ b> S are scanned by the roller 11 b. After smoothing the surface of the layer made of the material, the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS. A layer consisting of is formed.
る。 Next, as shown in FIG. 3, the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the
続いて、造形テーブル12をZ方向に一層分だけ下降させて、上記と同様の工程を行い、二層目のモデル材及びサポート材からなる層を形成する。その後、上記の工程を繰り返すことにより、図4に示すように、モデル材13PMとサポート材14PSからなる光造形品前駆体16が形成される。
Subsequently, the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
最後に、図4に示した光造形品前駆体16を水に接触させる、例えば、水に浸漬することによりサポート材14PSを溶解して除去し、図7に示すような光造形品17が形成される。
Finally, the optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
本実施形態の光造形物の製造方法において、光源として、例えば、高圧水銀灯、メタルハライドランプ、UV-LED等を使用できる。三次元造形装置10の小型化が可能であり、消費電力が小さいという観点から、UV-LEDが好ましい。光量は、造形品の硬度および寸法精度の観点から、200~500mJ/cm2が好ましい。光源としてUV-LEDを用いる場合、光が深層まで届きやすくなり、光造形品の硬度および寸法精度を向上させることができることから、中心波長が385~415nmのものを用いることが好ましい。また、光源11cから照射するエネルギー線15についは、紫外線、近紫外線、可視光線、赤外線、遠赤外線、電子線、α線、γ線およびエックス線等を使用することができるが、硬化作業の容易性及び効率性の観点から、紫外線又は近紫外線が好ましい。
In the method for producing an optically shaped object of the present embodiment, for example, a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source. From the viewpoint that the three-dimensional modeling apparatus 10 can be miniaturized and the power consumption is small, UV-LED is preferable. The amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product. When a UV-LED is used as the light source, it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved. As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, α rays, γ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
本発明の製造方法において、例えば、作製する物体の3次元CADデータをもとに、マテリアルジェット方式で積層して立体造形物を構成するモデル材用組成物のデータ、および、作製途上の立体造形物を支持するサポート材用組成物のデータを作製し、さらにマテリアルジェット方式の3Dプリンタで各組成物を吐出するスライスデータを作製し、作製したスライスデータに基づきモデル材用およびサポート材用の各組成物を吐出後、光硬化処理を層ごとに繰り返し、モデル材用組成物の硬化物(モデル材)およびサポート材用組成物の硬化物(サポート材)からなる光造形物を作製することができる。
In the manufacturing method of the present invention, for example, based on the three-dimensional CAD data of the object to be manufactured, the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data. After discharging the composition, the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
立体造形物を構成する各層の厚みは、造形精度の観点からは薄いほうが好ましいが、造形速度とのバランスからは5~30μmが好ましい。
The thickness of each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 μm from the balance with the modeling speed.
得られた光造形物は、モデル材とサポート材とが組み合わされたものである。かかる光造形物からサポート材を除去してモデル材である光造形品を得る。サポート材の除去は、例えば、サポート材を溶解させる除去溶剤に得られた光造形物を浸漬し、サポート材を柔軟にした後、ブラシなどでモデル材表面からサポート材を除去して行うことが好ましい。サポート材の除去溶剤には水、水溶性溶剤、例えばグリコール系溶剤、アルコール系溶剤などを用いてもよい。これらは、単独で、あるいは複数用いてもよい。
The obtained stereolithography is a combination of a model material and a support material. The support material is removed from the stereolithography product to obtain a stereolithography product as a model material. The support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like. preferable. Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
上記光造形品は、水に接触した場合の吸水及び膨潤が抑制されており、微細構造部分の破損及び変形を起こしにくいものである。また、上記光造形品は撥水撥油性に優れ、汚染されにくいものである。
The above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
以上の工程により得られた光造形品は、ある実施形態においては、比較的高い表面硬度を有する。例えば、上記光造形品は、ショア-D硬度で50以上、好ましくは60以上、より好ましくは70以上の表面硬度を有する。上記光造形品は、サポート材を除去する際に水に接触する時間が短時間で済むために吸水及び膨潤が抑制されており、寸法精度が高いものである。
The stereolithographic product obtained by the above steps has a relatively high surface hardness in an embodiment. For example, the stereolithographic product has a surface hardness of Shore-D hardness of 50 or more, preferably 60 or more, more preferably 70 or more. The optically shaped article has a high dimensional accuracy because water absorption and swelling are suppressed because it takes a short time to contact water when removing the support material.
以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
<モデル材用組成物>
(モデル材用組成物の製造)
表1~5に示した成分を、混合攪拌装置を用いて所定量均一に混合し、必要に応じてジルコニアビーズを用いたビーズミル等で顔料を分散することにより、実施例1~31および比較例1~9のモデル材用組成物を製造した。以下、表において実施例は「実」と表示し、比較例は「比」と表示することがある。使用した成分の詳細は次の通りである。 <Model material composition>
(Manufacture of compositions for model materials)
The components shown in Tables 1 to 5 were uniformly mixed in a predetermined amount using a mixing and stirring device, and the pigment was dispersed by a bead mill or the like using zirconia beads as necessary, thereby allowing Examples 1 to 31 and Comparative Examples. 1 to 9 model material compositions were produced. Hereinafter, in the table, the example may be displayed as “actual”, and the comparative example may be displayed as “ratio”. Details of the components used are as follows.
(モデル材用組成物の製造)
表1~5に示した成分を、混合攪拌装置を用いて所定量均一に混合し、必要に応じてジルコニアビーズを用いたビーズミル等で顔料を分散することにより、実施例1~31および比較例1~9のモデル材用組成物を製造した。以下、表において実施例は「実」と表示し、比較例は「比」と表示することがある。使用した成分の詳細は次の通りである。 <Model material composition>
(Manufacture of compositions for model materials)
The components shown in Tables 1 to 5 were uniformly mixed in a predetermined amount using a mixing and stirring device, and the pigment was dispersed by a bead mill or the like using zirconia beads as necessary, thereby allowing Examples 1 to 31 and Comparative Examples. 1 to 9 model material compositions were produced. Hereinafter, in the table, the example may be displayed as “actual”, and the comparative example may be displayed as “ratio”. Details of the components used are as follows.
MA-8:酸性カーボンブラック顔料[MA-8(商品名)、三菱化学社製]
Yellow 4G01:縮合アゾ顔料[NOVOPERM YELLOW 4G01(商品名)、クラリアント社製]
RT355D:キナクリドン顔料[CINQUASIA Magenda RT-355-D(商品名)、チバ社製]
P-BFS:銅フタロシアニン顔料[HOSTAPERM BLUE P-BFS(商品名)、クラリアント社製]
JR-806:酸化チタン(ルチル型、アルミナ-シリカ表面変性)[JR806(商品名)、テイカ株式会社製]
Sol.32000:分散剤(塩基性官能基を有する櫛型コポリマー)[ソルスパーズ32000(商品名)、アビシア社製]
IBOA:イソボルニルアクリレート(エチレン性二重結合/1分子:1個)[SR506D(商品名)、アルケマ社製]
TMCHA:トリメチルシクロヘキサノールアクリレート(エチレン性二重結合/1分子:1個)[SR420NS(商品名)、アルケマ社製]
TMPFA:トリメチロールプロパンフォルマルアクリレート(エチレン性二重結合/1分子:1個)[SR531NS(商品名)、アルケマ社製]
PEA:フェノキシエチルアクリレート(エチレン性二重結合/1分子:1個)[SR339NS(商品名)、アルケマ社製]
HEAA:ヒドロキシエチルアクリルアミド(エチレン性二重結合/1分子:1個)[HEAA(商品名)、KJケミカルズ社製]
ACMO:アクリロイルモルホリン(エチレン性二重結合/1分子:1個)[ACMO(商品名)、KJケミカルズ社製]
DMAA:ジメチルアクリルアミド(エチレン性二重結合/1分子:1個)[DMAA(商品名)、KJケミカルズ社製]
NVC:N-ビニルカプロラクタム
HDDA:ヘキサンジオールジアクリレート(エチレン性二重結合/1分子:2個)[SR238NS(商品名)、アルケマ社製]
TPGDA:トリプロピレングリコールジアクリレート(エチレン性二重結合/1分子:2個)[SR306(商品名)、アルケマ社製]
TEGDA:トリエリレングリコールジアクリレート(エチレン性二重結合/1分子:2個)[SR272(商品名)、アルケマ社製]
PE-3A:ペンタエリスリトールトリアクリレート(エチレン性二重結合/1分子:3個)[ライトアクリレートPE-3A(商品名)、共栄社化学社製]
EBECRYL7100:3級アミノ基を有するモノマー[EBECRYL7100(商品名)、ダイセルオルネクス社製]
CN371:3級アミノ基を有するモノマー(エチレン性二重結合/1分子:2個)[CN371(商品名)、アルケマ社製]
Laromer PO9103:3級アミノ基を有するモノマー(エチレン性二重結合/1分子:2個)[Laromer PO9103(商品名)、BASF社製]
GC1100Z:3級アミノ基を有するモノマー(エチレン性二重結合/1分子:2個)[GC1100Z(商品名)、Qualipoly Chem社製]
EBECRYL8402:ウレタンアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[EBECRYL8402(商品名)、ダイセルオルネクス社製]
CN991:ウレタンアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[CN991(商品名)、アルケマ社製]
EBECRYL600:エポキシアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[EBECRYL600(商品名)、ダイセルオルネクス社]
CN2203:ポリエステルアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[CN2203(商品名)、アルケマ社製]
DAROCURE TPO:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド[DAROCURE TPO(商品名)、BASF社製]
IRGACURE 819:[IRGACURE 819(商品名)、BASF社製]
DAROCURE 1173:[DAROCURE 1173(商品名)、BASF社製]
TEGO-Rad2100:ポリジメチルシロキサン構造を有するシリコンアクリレート[TEGO-Rad2100(商品名)、エボニック デグサ ジャパン社製]
H-TEMPO:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル[HYDROXY-TEMPO(商品名)、エボニック デグサ ジャパン社製] MA-8: Acidic carbon black pigment [MA-8 (trade name), manufactured by Mitsubishi Chemical Corporation]
Yellow 4G01: Condensed azo pigment [NOVOPERM YELLOW 4G01 (trade name), manufactured by Clariant Corporation]
RT355D: Quinacridone pigment [CINQUASIA Magenda RT-355-D (trade name), manufactured by Ciba]
P-BFS: Copper phthalocyanine pigment [HOSTAPER BLUE P-BFS (trade name), manufactured by Clariant Corporation]
JR-806: Titanium oxide (rutile type, alumina-silica surface modification) [JR806 (trade name), manufactured by Teika Co., Ltd.]
Sol. 32000: Dispersant (comb copolymer having a basic functional group) [Solspers 32000 (trade name), manufactured by Avicia Co., Ltd.]
IBOA: isobornyl acrylate (ethylenic double bond / one molecule: 1) [SR506D (trade name), manufactured by Arkema Co., Ltd.]
TMCHA: Trimethylcyclohexanol acrylate (ethylenic double bond / one molecule: 1) [SR420NS (trade name), manufactured by Arkema Corporation]
TMPFA: trimethylolpropane formal acrylate (ethylenic double bond / one molecule: 1) [SR531NS (trade name), manufactured by Arkema Co., Ltd.]
PEA: Phenoxyethyl acrylate (ethylenic double bond / one molecule: 1) [SR339NS (trade name), manufactured by Arkema Corporation]
HEAA: hydroxyethylacrylamide (ethylenic double bond / one molecule: 1) [HEAA (trade name), manufactured by KJ Chemicals Co., Ltd.]
ACMO: acryloylmorpholine (ethylenic double bond / one molecule: 1) [ACMO (trade name), manufactured by KJ Chemicals Co., Ltd.]
DMAA: dimethylacrylamide (ethylenic double bond / one molecule: 1) [DMAA (trade name), manufactured by KJ Chemicals]
NVC: N-vinylcaprolactam HDDA: Hexanediol diacrylate (ethylenic double bond / one molecule: 2) [SR238NS (trade name), manufactured by Arkema, Inc.]
TPGDA: Tripropylene glycol diacrylate (ethylenic double bond / one molecule: 2) [SR306 (trade name), manufactured by Arkema Corporation]
TEGDA: Trierylene glycol diacrylate (ethylenic double bond / one molecule: 2) [SR272 (trade name), manufactured by Arkema Corporation]
PE-3A: Pentaerythritol triacrylate (ethylenic double bond / one molecule: 3) [Light acrylate PE-3A (trade name), manufactured by Kyoeisha Chemical Co., Ltd.]
EBECRYL7100: Monomer having a tertiary amino group [EBECRYL7100 (trade name), manufactured by Daicel Ornex Co., Ltd.]
CN371: Monomer having tertiary amino group (ethylenic double bond / one molecule: 2) [CN371 (trade name), manufactured by Arkema Co., Ltd.]
Laromer PO9103: Monomer having a tertiary amino group (ethylenic double bond / one molecule: 2) [Laromer PO9103 (trade name), manufactured by BASF Corp.]
GC1100Z: Monomer having a tertiary amino group (ethylenic double bond / one molecule: 2) [GC1100Z (trade name), manufactured by Qualipoly Chem]
EBECRYL8402: Urethane acrylate oligomer (ethylenic double bond / one molecule: 2) [EBECRYL8402 (trade name), manufactured by Daicel Ornex Co., Ltd.]
CN991: Urethane acrylate oligomer (ethylenic double bond / one molecule: 2) [CN991 (trade name), manufactured by Arkema Corporation]
EBECRYL600: Epoxy acrylate oligomer (ethylenic double bond / one molecule: 2) [EBECRYL600 (trade name), Daicel Ornex Co., Ltd.]
CN2203: Polyester acrylate oligomer (ethylenic double bond / one molecule: 2) [CN2203 (trade name), manufactured by Arkema Corporation]
DAROCURE TPO: 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide [DAROCURE TPO (trade name), manufactured by BASF Corporation]
IRGACURE 819: [IRGACURE 819 (trade name), manufactured by BASF Corporation]
DAROCURE 1173: [DAROCURE 1173 (trade name), manufactured by BASF Corporation]
TEGO-Rad2100: Silicon acrylate having a polydimethylsiloxane structure [TEGO-Rad2100 (trade name), manufactured by Evonik Degussa Japan Co., Ltd.]
H-TEMPO: 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl [HYDROXY-TEMPO (trade name), manufactured by Evonik Degussa Japan Ltd.]
Yellow 4G01:縮合アゾ顔料[NOVOPERM YELLOW 4G01(商品名)、クラリアント社製]
RT355D:キナクリドン顔料[CINQUASIA Magenda RT-355-D(商品名)、チバ社製]
P-BFS:銅フタロシアニン顔料[HOSTAPERM BLUE P-BFS(商品名)、クラリアント社製]
JR-806:酸化チタン(ルチル型、アルミナ-シリカ表面変性)[JR806(商品名)、テイカ株式会社製]
Sol.32000:分散剤(塩基性官能基を有する櫛型コポリマー)[ソルスパーズ32000(商品名)、アビシア社製]
IBOA:イソボルニルアクリレート(エチレン性二重結合/1分子:1個)[SR506D(商品名)、アルケマ社製]
TMCHA:トリメチルシクロヘキサノールアクリレート(エチレン性二重結合/1分子:1個)[SR420NS(商品名)、アルケマ社製]
TMPFA:トリメチロールプロパンフォルマルアクリレート(エチレン性二重結合/1分子:1個)[SR531NS(商品名)、アルケマ社製]
PEA:フェノキシエチルアクリレート(エチレン性二重結合/1分子:1個)[SR339NS(商品名)、アルケマ社製]
HEAA:ヒドロキシエチルアクリルアミド(エチレン性二重結合/1分子:1個)[HEAA(商品名)、KJケミカルズ社製]
ACMO:アクリロイルモルホリン(エチレン性二重結合/1分子:1個)[ACMO(商品名)、KJケミカルズ社製]
DMAA:ジメチルアクリルアミド(エチレン性二重結合/1分子:1個)[DMAA(商品名)、KJケミカルズ社製]
NVC:N-ビニルカプロラクタム
HDDA:ヘキサンジオールジアクリレート(エチレン性二重結合/1分子:2個)[SR238NS(商品名)、アルケマ社製]
TPGDA:トリプロピレングリコールジアクリレート(エチレン性二重結合/1分子:2個)[SR306(商品名)、アルケマ社製]
TEGDA:トリエリレングリコールジアクリレート(エチレン性二重結合/1分子:2個)[SR272(商品名)、アルケマ社製]
PE-3A:ペンタエリスリトールトリアクリレート(エチレン性二重結合/1分子:3個)[ライトアクリレートPE-3A(商品名)、共栄社化学社製]
EBECRYL7100:3級アミノ基を有するモノマー[EBECRYL7100(商品名)、ダイセルオルネクス社製]
CN371:3級アミノ基を有するモノマー(エチレン性二重結合/1分子:2個)[CN371(商品名)、アルケマ社製]
Laromer PO9103:3級アミノ基を有するモノマー(エチレン性二重結合/1分子:2個)[Laromer PO9103(商品名)、BASF社製]
GC1100Z:3級アミノ基を有するモノマー(エチレン性二重結合/1分子:2個)[GC1100Z(商品名)、Qualipoly Chem社製]
EBECRYL8402:ウレタンアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[EBECRYL8402(商品名)、ダイセルオルネクス社製]
CN991:ウレタンアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[CN991(商品名)、アルケマ社製]
EBECRYL600:エポキシアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[EBECRYL600(商品名)、ダイセルオルネクス社]
CN2203:ポリエステルアクリレートオリゴマー(エチレン性二重結合/1分子:2個)[CN2203(商品名)、アルケマ社製]
DAROCURE TPO:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド[DAROCURE TPO(商品名)、BASF社製]
IRGACURE 819:[IRGACURE 819(商品名)、BASF社製]
DAROCURE 1173:[DAROCURE 1173(商品名)、BASF社製]
TEGO-Rad2100:ポリジメチルシロキサン構造を有するシリコンアクリレート[TEGO-Rad2100(商品名)、エボニック デグサ ジャパン社製]
H-TEMPO:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル[HYDROXY-TEMPO(商品名)、エボニック デグサ ジャパン社製] MA-8: Acidic carbon black pigment [MA-8 (trade name), manufactured by Mitsubishi Chemical Corporation]
Yellow 4G01: Condensed azo pigment [NOVOPERM YELLOW 4G01 (trade name), manufactured by Clariant Corporation]
RT355D: Quinacridone pigment [CINQUASIA Magenda RT-355-D (trade name), manufactured by Ciba]
P-BFS: Copper phthalocyanine pigment [HOSTAPER BLUE P-BFS (trade name), manufactured by Clariant Corporation]
JR-806: Titanium oxide (rutile type, alumina-silica surface modification) [JR806 (trade name), manufactured by Teika Co., Ltd.]
Sol. 32000: Dispersant (comb copolymer having a basic functional group) [Solspers 32000 (trade name), manufactured by Avicia Co., Ltd.]
IBOA: isobornyl acrylate (ethylenic double bond / one molecule: 1) [SR506D (trade name), manufactured by Arkema Co., Ltd.]
TMCHA: Trimethylcyclohexanol acrylate (ethylenic double bond / one molecule: 1) [SR420NS (trade name), manufactured by Arkema Corporation]
TMPFA: trimethylolpropane formal acrylate (ethylenic double bond / one molecule: 1) [SR531NS (trade name), manufactured by Arkema Co., Ltd.]
PEA: Phenoxyethyl acrylate (ethylenic double bond / one molecule: 1) [SR339NS (trade name), manufactured by Arkema Corporation]
HEAA: hydroxyethylacrylamide (ethylenic double bond / one molecule: 1) [HEAA (trade name), manufactured by KJ Chemicals Co., Ltd.]
ACMO: acryloylmorpholine (ethylenic double bond / one molecule: 1) [ACMO (trade name), manufactured by KJ Chemicals Co., Ltd.]
DMAA: dimethylacrylamide (ethylenic double bond / one molecule: 1) [DMAA (trade name), manufactured by KJ Chemicals]
NVC: N-vinylcaprolactam HDDA: Hexanediol diacrylate (ethylenic double bond / one molecule: 2) [SR238NS (trade name), manufactured by Arkema, Inc.]
TPGDA: Tripropylene glycol diacrylate (ethylenic double bond / one molecule: 2) [SR306 (trade name), manufactured by Arkema Corporation]
TEGDA: Trierylene glycol diacrylate (ethylenic double bond / one molecule: 2) [SR272 (trade name), manufactured by Arkema Corporation]
PE-3A: Pentaerythritol triacrylate (ethylenic double bond / one molecule: 3) [Light acrylate PE-3A (trade name), manufactured by Kyoeisha Chemical Co., Ltd.]
EBECRYL7100: Monomer having a tertiary amino group [EBECRYL7100 (trade name), manufactured by Daicel Ornex Co., Ltd.]
CN371: Monomer having tertiary amino group (ethylenic double bond / one molecule: 2) [CN371 (trade name), manufactured by Arkema Co., Ltd.]
Laromer PO9103: Monomer having a tertiary amino group (ethylenic double bond / one molecule: 2) [Laromer PO9103 (trade name), manufactured by BASF Corp.]
GC1100Z: Monomer having a tertiary amino group (ethylenic double bond / one molecule: 2) [GC1100Z (trade name), manufactured by Qualipoly Chem]
EBECRYL8402: Urethane acrylate oligomer (ethylenic double bond / one molecule: 2) [EBECRYL8402 (trade name), manufactured by Daicel Ornex Co., Ltd.]
CN991: Urethane acrylate oligomer (ethylenic double bond / one molecule: 2) [CN991 (trade name), manufactured by Arkema Corporation]
EBECRYL600: Epoxy acrylate oligomer (ethylenic double bond / one molecule: 2) [EBECRYL600 (trade name), Daicel Ornex Co., Ltd.]
CN2203: Polyester acrylate oligomer (ethylenic double bond / one molecule: 2) [CN2203 (trade name), manufactured by Arkema Corporation]
DAROCURE TPO: 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide [DAROCURE TPO (trade name), manufactured by BASF Corporation]
IRGACURE 819: [IRGACURE 819 (trade name), manufactured by BASF Corporation]
DAROCURE 1173: [DAROCURE 1173 (trade name), manufactured by BASF Corporation]
TEGO-Rad2100: Silicon acrylate having a polydimethylsiloxane structure [TEGO-Rad2100 (trade name), manufactured by Evonik Degussa Japan Co., Ltd.]
H-TEMPO: 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl [HYDROXY-TEMPO (trade name), manufactured by Evonik Degussa Japan Ltd.]
そして、これらのモデル材用組成物を用いて、以下の評価を行った。評価結果を表1~5に示す。
And the following evaluation was performed using these compositions for model materials. The evaluation results are shown in Tables 1-5.
(粘度の測定)
各モデル材用組成物の粘度は、R100型粘度計(東機産業社製)を用いて、25℃、コーン回転数5rpmの条件下で測定し、下記の基準において評価した。 (Measurement of viscosity)
The viscosity of each model material composition was measured using an R100 viscometer (manufactured by Toki Sangyo Co., Ltd.) under the conditions of 25 ° C. and cone rotation speed of 5 rpm, and evaluated according to the following criteria.
各モデル材用組成物の粘度は、R100型粘度計(東機産業社製)を用いて、25℃、コーン回転数5rpmの条件下で測定し、下記の基準において評価した。 (Measurement of viscosity)
The viscosity of each model material composition was measured using an R100 viscometer (manufactured by Toki Sangyo Co., Ltd.) under the conditions of 25 ° C. and cone rotation speed of 5 rpm, and evaluated according to the following criteria.
○:粘度 ≦ 100mPa・s
×:粘度 > 100mPa・s ○: Viscosity ≦ 100 mPa · s
×: Viscosity> 100 mPa · s
×:粘度 > 100mPa・s ○: Viscosity ≦ 100 mPa · s
×: Viscosity> 100 mPa · s
(硬化性の評価)
まず、ポリエチレンテレフタレートからなるフィルム(A4300、東洋紡社製、100mm×150mm×厚さ188μm)上に、各モデル材用組成物を、それぞれバーコーター(#4)により印刷して、厚さ3μmの印字膜を形成した。この印字膜に、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させた。このようにして硬化させた印字膜を指で触り、指へのインクの付着の有無を目視で調べ、下記の基準において硬化性を評価した。なお、評価は、画像部分から非印刷部分に向かって指で画像を擦って行った。 (Evaluation of curability)
First, each model material composition was printed on a film made of polyethylene terephthalate (A4300, manufactured by Toyobo Co., Ltd., 100 mm × 150 mm × thickness 188 μm) with a bar coater (# 4), and printed with a thickness of 3 μm. A film was formed. The printed film was cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 using an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) as the irradiation means. The printed film thus cured was touched with a finger, the presence or absence of ink adhering to the finger was visually examined, and the curability was evaluated according to the following criteria. The evaluation was performed by rubbing the image with a finger from the image portion toward the non-print portion.
まず、ポリエチレンテレフタレートからなるフィルム(A4300、東洋紡社製、100mm×150mm×厚さ188μm)上に、各モデル材用組成物を、それぞれバーコーター(#4)により印刷して、厚さ3μmの印字膜を形成した。この印字膜に、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させた。このようにして硬化させた印字膜を指で触り、指へのインクの付着の有無を目視で調べ、下記の基準において硬化性を評価した。なお、評価は、画像部分から非印刷部分に向かって指で画像を擦って行った。 (Evaluation of curability)
First, each model material composition was printed on a film made of polyethylene terephthalate (A4300, manufactured by Toyobo Co., Ltd., 100 mm × 150 mm × thickness 188 μm) with a bar coater (# 4), and printed with a thickness of 3 μm. A film was formed. The printed film was cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 using an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) as the irradiation means. The printed film thus cured was touched with a finger, the presence or absence of ink adhering to the finger was visually examined, and the curability was evaluated according to the following criteria. The evaluation was performed by rubbing the image with a finger from the image portion toward the non-print portion.
○:表面はさらさらしており、指への付着感は無かった。
△:表面はややしっとりとしており、指への付着感はペタペタ感が有った。
×:表面はべたべたしており、指に未硬化インクの一部が付着した。 ○: The surface was smooth and there was no adhesion to the finger.
(Triangle | delta): The surface was a little moist and there was a feeling of stickiness to the finger.
X: The surface was sticky and a part of uncured ink adhered to the finger.
△:表面はややしっとりとしており、指への付着感はペタペタ感が有った。
×:表面はべたべたしており、指に未硬化インクの一部が付着した。 ○: The surface was smooth and there was no adhesion to the finger.
(Triangle | delta): The surface was a little moist and there was a feeling of stickiness to the finger.
X: The surface was sticky and a part of uncured ink adhered to the finger.
(試験片の作成)
ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内に各モデル材用組成物を注型した後、別の上記ガラス板を重ねて載せた。そして、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させた。その後、硬化物をガラス板から離型し、カッターで幅5mm、長さ50mmの形状に切り出して、試験片を得た。該試験片について、下記の方法で性能評価を行った。なお、評価結果は、試験片5枚について評価して得られた結果の平均結果を示す。 (Creation of specimen)
A spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into 10 cm × 10 cm squares. After casting the composition for each model material in the square, another glass plate was placed on top of the other. Then, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) was used as the irradiating means, and cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 . Thereafter, the cured product was released from the glass plate and cut into a shape having a width of 5 mm and a length of 50 mm with a cutter to obtain a test piece. About this test piece, the following method evaluated the performance. In addition, an evaluation result shows the average result of the result obtained by evaluating about 5 test pieces.
ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内に各モデル材用組成物を注型した後、別の上記ガラス板を重ねて載せた。そして、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させた。その後、硬化物をガラス板から離型し、カッターで幅5mm、長さ50mmの形状に切り出して、試験片を得た。該試験片について、下記の方法で性能評価を行った。なお、評価結果は、試験片5枚について評価して得られた結果の平均結果を示す。 (Creation of specimen)
A spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into 10 cm × 10 cm squares. After casting the composition for each model material in the square, another glass plate was placed on top of the other. Then, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) was used as the irradiating means, and cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 . Thereafter, the cured product was released from the glass plate and cut into a shape having a width of 5 mm and a length of 50 mm with a cutter to obtain a test piece. About this test piece, the following method evaluated the performance. In addition, an evaluation result shows the average result of the result obtained by evaluating about 5 test pieces.
(硬化収縮の評価)
まず、調整した28%ヨウ化カリウム水溶液中に、各モデル材用組成物から得られた試験片を浸した。その際、上記試験片は、水溶液中に浮かんでいた。次に、上記試験片が水浴内中層部に浮遊する状態になるまで、上記水溶液に純水を加えた。この際のヨウ化カリウム水溶液の比重を計算し、試験片の比重とした。また、各モデル材用組成物の比重は、密度比重計DA-130(京都電子工業社製)で測定した。硬化収縮は、下記(i)式により求め、下記の基準において評価した。 (Evaluation of curing shrinkage)
First, the test piece obtained from each composition for model materials was immersed in the adjusted 28% potassium iodide aqueous solution. At that time, the test piece floated in the aqueous solution. Next, pure water was added to the aqueous solution until the test piece floated in the middle layer in the water bath. The specific gravity of the aqueous potassium iodide solution at this time was calculated and used as the specific gravity of the test piece. The specific gravity of each composition for model materials was measured with a density specific gravity meter DA-130 (manufactured by Kyoto Electronics Industry Co., Ltd.). Curing shrinkage was determined by the following formula (i) and evaluated according to the following criteria.
まず、調整した28%ヨウ化カリウム水溶液中に、各モデル材用組成物から得られた試験片を浸した。その際、上記試験片は、水溶液中に浮かんでいた。次に、上記試験片が水浴内中層部に浮遊する状態になるまで、上記水溶液に純水を加えた。この際のヨウ化カリウム水溶液の比重を計算し、試験片の比重とした。また、各モデル材用組成物の比重は、密度比重計DA-130(京都電子工業社製)で測定した。硬化収縮は、下記(i)式により求め、下記の基準において評価した。 (Evaluation of curing shrinkage)
First, the test piece obtained from each composition for model materials was immersed in the adjusted 28% potassium iodide aqueous solution. At that time, the test piece floated in the aqueous solution. Next, pure water was added to the aqueous solution until the test piece floated in the middle layer in the water bath. The specific gravity of the aqueous potassium iodide solution at this time was calculated and used as the specific gravity of the test piece. The specific gravity of each composition for model materials was measured with a density specific gravity meter DA-130 (manufactured by Kyoto Electronics Industry Co., Ltd.). Curing shrinkage was determined by the following formula (i) and evaluated according to the following criteria.
○:硬化収縮 ≦ 10%
△:10% < 硬化収縮 < 13%
×:硬化収縮 ≧ 13% ○: Curing shrinkage ≦ 10%
Δ: 10% <cure shrinkage <13%
×: Curing shrinkage ≧ 13%
△:10% < 硬化収縮 < 13%
×:硬化収縮 ≧ 13% ○: Curing shrinkage ≦ 10%
Δ: 10% <cure shrinkage <13%
×: Curing shrinkage ≧ 13%
硬化収縮率(%)=(試験片の比重-モデル材用組成物の比重)/試験片の比重
…(i) Curing shrinkage (%) = (specific gravity of test piece−specific gravity of composition for model material) / specific gravity of test piece (i)
…(i) Curing shrinkage (%) = (specific gravity of test piece−specific gravity of composition for model material) / specific gravity of test piece (i)
(ガラス転移点Tgの測定)
各モデル材用組成物から得られた試験片のガラス転移点Tgは、熱重量測定装置(TG-DTA2000S Thermo Plus EvoII DSC8230、株式会社リガク製)を用いて測定した。測定は、昇温温度:10℃/min、測定温度範囲:-60℃~200℃で行った。 (Measurement of glass transition point Tg)
The glass transition point Tg of the test piece obtained from each model material composition was measured using a thermogravimetric apparatus (TG-DTA2000S Thermo Plus EvoII DSC8230, manufactured by Rigaku Corporation). The measurement was performed at a temperature elevation temperature of 10 ° C./min and a measurement temperature range of −60 ° C. to 200 ° C.
各モデル材用組成物から得られた試験片のガラス転移点Tgは、熱重量測定装置(TG-DTA2000S Thermo Plus EvoII DSC8230、株式会社リガク製)を用いて測定した。測定は、昇温温度:10℃/min、測定温度範囲:-60℃~200℃で行った。 (Measurement of glass transition point Tg)
The glass transition point Tg of the test piece obtained from each model material composition was measured using a thermogravimetric apparatus (TG-DTA2000S Thermo Plus EvoII DSC8230, manufactured by Rigaku Corporation). The measurement was performed at a temperature elevation temperature of 10 ° C./min and a measurement temperature range of −60 ° C. to 200 ° C.
(破断強度の評価)
オートグラフ(株式会社島津製作所製)を用いて、各モデル材用組成物から得られた試験片を試験速度50mm/minで引張り、JIS K7113に準じて引張破断強度を測定し、破断強度とした。破断強度は、下記の基準において評価した。 (Evaluation of breaking strength)
Using an autograph (manufactured by Shimadzu Corporation), a test piece obtained from each model material composition was pulled at a test speed of 50 mm / min, and the tensile breaking strength was measured according to JIS K7113 to obtain the breaking strength. . The breaking strength was evaluated according to the following criteria.
オートグラフ(株式会社島津製作所製)を用いて、各モデル材用組成物から得られた試験片を試験速度50mm/minで引張り、JIS K7113に準じて引張破断強度を測定し、破断強度とした。破断強度は、下記の基準において評価した。 (Evaluation of breaking strength)
Using an autograph (manufactured by Shimadzu Corporation), a test piece obtained from each model material composition was pulled at a test speed of 50 mm / min, and the tensile breaking strength was measured according to JIS K7113 to obtain the breaking strength. . The breaking strength was evaluated according to the following criteria.
○:破断強度 ≧ 30MPa
×:破断強度 < 30MPa ○: Breaking strength ≧ 30 MPa
X: Breaking strength <30 MPa
×:破断強度 < 30MPa ○: Breaking strength ≧ 30 MPa
X: Breaking strength <30 MPa
表1~5の結果から分かるように、本発明の要件を全て満たす実施例1~31のモデル材用組成物は、硬化性、硬化収縮、破断強度及び粘度がいずれも良好であった。一方、比較例1~9のモデル材用組成物は、硬化性、硬化収縮、破断強度又は粘度のいずれかが劣るものであった。
As can be seen from the results of Tables 1 to 5, the compositions for model materials of Examples 1 to 31 that satisfy all the requirements of the present invention were all good in curability, curing shrinkage, breaking strength, and viscosity. On the other hand, the compositions for model materials of Comparative Examples 1 to 9 were inferior in curability, curing shrinkage, breaking strength or viscosity.
<サポート材用組成物>
表6に、下記の実施例及び比較例において、サポート材組成物に使用した成分をまとめた。 <Composition for support material>
Table 6 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
表6に、下記の実施例及び比較例において、サポート材組成物に使用した成分をまとめた。 <Composition for support material>
Table 6 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
(実施例1~10及び比較例1~8)
先ず、実施例1~10のサポート材組成物を次のようにして調製した。即ち、プラスチック製ビンに、表7に示す成分(A)~(G)を表7に示す配合量(単位:質量部)で計り取り、これらを混合することにより各サポート材組成物を調製した。 (Examples 1 to 10 and Comparative Examples 1 to 8)
First, the support material compositions of Examples 1 to 10 were prepared as follows. That is, each support material composition was prepared by measuring the components (A) to (G) shown in Table 7 in a plastic bottle in the blending amounts (unit: parts by mass) shown in Table 7 and mixing them. .
先ず、実施例1~10のサポート材組成物を次のようにして調製した。即ち、プラスチック製ビンに、表7に示す成分(A)~(G)を表7に示す配合量(単位:質量部)で計り取り、これらを混合することにより各サポート材組成物を調製した。 (Examples 1 to 10 and Comparative Examples 1 to 8)
First, the support material compositions of Examples 1 to 10 were prepared as follows. That is, each support material composition was prepared by measuring the components (A) to (G) shown in Table 7 in a plastic bottle in the blending amounts (unit: parts by mass) shown in Table 7 and mixing them. .
次に、上記実施例1~10のサポート材組成物について、下記に示す方法によって、サポート材組成物の低温安定性、サポート材組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)及び水除去性を評価した。
Next, with respect to the support material compositions of Examples 1 to 10, the support material composition was cooled at low temperatures and the support material cured product obtained by curing the support material composition under high temperature and high humidity condition stability ( Support power) and water removability were evaluated.
<サポート材組成物の低温安定性>
低温でのサポート材組成物の安定性について評価した。各サポート材組成物をガラス瓶に入れ、そのサポート材組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材組成物の状態を目視で確認して、下記基準でサポート材組成物の低温安定性を評価した。 <Low temperature stability of support material composition>
The stability of the support material composition at low temperature was evaluated. Each support material composition was put into a glass bottle, and the glass bottle with the support material composition was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Thereafter, the state of the support material composition after storage was visually confirmed, and the low temperature stability of the support material composition was evaluated according to the following criteria.
低温でのサポート材組成物の安定性について評価した。各サポート材組成物をガラス瓶に入れ、そのサポート材組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材組成物の状態を目視で確認して、下記基準でサポート材組成物の低温安定性を評価した。 <Low temperature stability of support material composition>
The stability of the support material composition at low temperature was evaluated. Each support material composition was put into a glass bottle, and the glass bottle with the support material composition was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Thereafter, the state of the support material composition after storage was visually confirmed, and the low temperature stability of the support material composition was evaluated according to the following criteria.
サポート材組成物が液体状を維持している場合:低温安定性A(優良)
サポート材組成物が一部凝固(固化)している場合:低温安定性B(良)
サポート材組成物が凝固(固化)している場合:低温安定性C(不良) When the support material composition is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): low temperature stability B (good)
When the support material composition is solidified (solidified): low temperature stability C (poor)
サポート材組成物が一部凝固(固化)している場合:低温安定性B(良)
サポート材組成物が凝固(固化)している場合:低温安定性C(不良) When the support material composition is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): low temperature stability B (good)
When the support material composition is solidified (solidified): low temperature stability C (poor)
<サポート材硬化物のサポート力>
ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。 <Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。 <Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
硬化物の表面に液体状物質の発生がなく、硬化物の軟化も確認されない場合:サポート力A(優良)
硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良) When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良) When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
<サポート材硬化物の水除去性>
上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。 <Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。 <Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
硬化物が完全に溶解するまでに30分を要した場合:水除去性A(優良)
硬化物が完全に溶解するまでに1時間を要した場合:水除去性B(良)
硬化物が完全に溶解するまでに2時間を要した場合:水除去性C(不良) When it takes 30 minutes for the cured product to completely dissolve: Water removability A (excellent)
When it takes 1 hour for the cured product to completely dissolve: Water removability B (good)
When it takes 2 hours for the cured product to completely dissolve: water removability C (poor)
硬化物が完全に溶解するまでに1時間を要した場合:水除去性B(良)
硬化物が完全に溶解するまでに2時間を要した場合:水除去性C(不良) When it takes 30 minutes for the cured product to completely dissolve: Water removability A (excellent)
When it takes 1 hour for the cured product to completely dissolve: Water removability B (good)
When it takes 2 hours for the cured product to completely dissolve: water removability C (poor)
以上の結果を表8に示す。
The results are shown in Table 8.
実施例1~10のサポート材組成物は、全ての評価項目で満足できる結果を得たことが分かる。
It can be seen that the support material compositions of Examples 1 to 10 obtained satisfactory results in all evaluation items.
<マテリアルジェット光造形用組成物セット>
表9に示す通りに上記モデル材用組成物及びサポート材用組成物を組み合わせることにより、実施例1~8を調製した。 <Composition set for material jet stereolithography>
Examples 1 to 8 were prepared by combining the composition for model material and the composition for support material as shown in Table 9.
表9に示す通りに上記モデル材用組成物及びサポート材用組成物を組み合わせることにより、実施例1~8を調製した。 <Composition set for material jet stereolithography>
Examples 1 to 8 were prepared by combining the composition for model material and the composition for support material as shown in Table 9.
ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にサポート材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させ、サポート材を得た。
A spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into 10 cm × 10 cm squares. After casting the composition for the support material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
次に、上記サポート材の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にモデル材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させ、モデル材を得た。
Next, spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm × 10 cm. After casting the composition for the model material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a model material.
(密着性の評価)
この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表9に示す。
○:モデル材とサポート材とは密着していた。
△:モデル材とサポート材とは密着していたが、モデル材とサポート材との界面を爪でひっかくと剥がれが生じた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。 (Evaluation of adhesion)
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 9.
○: The model material and the support material were in close contact.
Δ: The model material and the support material were in close contact with each other, but peeling occurred when the interface between the model material and the support material was scratched with a nail.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表9に示す。
○:モデル材とサポート材とは密着していた。
△:モデル材とサポート材とは密着していたが、モデル材とサポート材との界面を爪でひっかくと剥がれが生じた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。 (Evaluation of adhesion)
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 9.
○: The model material and the support material were in close contact.
Δ: The model material and the support material were in close contact with each other, but peeling occurred when the interface between the model material and the support material was scratched with a nail.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
表9の結果から分かるように、モデル材用組成物およびサポート材用組成物の両方が本発明の要件を満たす実施例1~8は、モデル材とサポート材との界面に剥がれが生じず、モデル材とサポート材とがより密着していた。このように、モデル材とサポート材とが密着していれば、寸法精度が良好な光造形品が得られる。
用 As can be seen from the results in Table 9, in Examples 1 to 8 in which both the composition for the model material and the composition for the support material satisfy the requirements of the present invention, no peeling occurs at the interface between the model material and the support material. Model material and support material were more closely attached. Thus, if the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
for
用 As can be seen from the results in Table 9, in Examples 1 to 8 in which both the composition for the model material and the composition for the support material satisfy the requirements of the present invention, no peeling occurs at the interface between the model material and the support material. Model material and support material were more closely attached. Thus, if the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
for
本発明のモデル材用組成物およびマテリアルジェット光造形用組成物セットは、光硬化させることにより、寸法精度、表面硬度及び耐摩擦性に優れた立体造形物を提供することができる。よって、これらの樹脂組成物は、マテリアルジェット光造形法による立体造形物の製造に好適に用いることができる。
The composition for a model material and the composition set for material jet stereolithography of the present invention can provide a three-dimensional molded article excellent in dimensional accuracy, surface hardness, and friction resistance by photocuring. Therefore, these resin compositions can be suitably used for the production of a three-dimensional structure by the material jet stereolithography.
10 三次元造形装置
11 インクジェットヘッドモジュール
11a 光造形用インクユニット
11aM モデル材用インクジェットヘッド
11aS サポート材用インクジェットヘッド
11b ローラー
11c 光源
12 造形テーブル
13 モデル材用インク
13M モデル材前駆体
13PM モデル材
14 サポート材用インク
14S サポート材前駆体
14PS サポート材
15 エネルギー線
16 光造形品前駆体(光造形物)
17 光造形品 DESCRIPTION OFSYMBOLS 10 3D modeling apparatus 11 Inkjet head module 11a Optical modeling ink unit 11aM Model material inkjet head 11aS Support material inkjet head 11b Roller 11c Light source 12 Modeling table 13 Model material ink 13M Model material precursor 13PM Model material 14 Support material Ink 14S support material precursor 14PS support material 15 energy beam 16 stereolithography product precursor (stereolithography)
17 Stereolithography
11 インクジェットヘッドモジュール
11a 光造形用インクユニット
11aM モデル材用インクジェットヘッド
11aS サポート材用インクジェットヘッド
11b ローラー
11c 光源
12 造形テーブル
13 モデル材用インク
13M モデル材前駆体
13PM モデル材
14 サポート材用インク
14S サポート材前駆体
14PS サポート材
15 エネルギー線
16 光造形品前駆体(光造形物)
17 光造形品 DESCRIPTION OF
17 Stereolithography
Claims (14)
- マテリアルジェット光造形法により光造形物を造形するために使用されるモデル材用組成物であって、
樹脂組成物全体100重量部に対して、
単官能エチレン性不飽和単量体(A)と、
15~50重量部の二官能以上の多官能エチレン性不飽和単量体(B)と、
2~40重量部の(メタ)アクリル化アミン化合物(C)と、
5~40重量部のオリゴマー(D)と、
1~15重量部の光重合開始剤(E)と、
0.005~3.0重量部の表面調整剤(F)とを、
含有する、モデル材用組成物。 A composition for a model material used for modeling an optical modeling object by a material jet optical modeling method,
For 100 parts by weight of the entire resin composition,
A monofunctional ethylenically unsaturated monomer (A);
15 to 50 parts by weight of a bifunctional or higher polyfunctional ethylenically unsaturated monomer (B);
2 to 40 parts by weight of (meth) acrylated amine compound (C),
5 to 40 parts by weight of oligomer (D);
1 to 15 parts by weight of a photopolymerization initiator (E),
0.005 to 3.0 parts by weight of a surface conditioner (F)
The composition for model materials to contain. - 前記(A)成分は、樹脂組成物全体100重量部に対して、19~49重量部の単官能エチレン性不飽和単量体(A-2)を含有する請求項1に記載のモデル材用組成物。 The model material according to claim 1, wherein the component (A) contains 19 to 49 parts by weight of a monofunctional ethylenically unsaturated monomer (A-2) with respect to 100 parts by weight of the entire resin composition. Composition.
- 前記(C)成分は、分子内に3級アミノ基を有するものである請求項1又は2に記載のモデル材用組成物。 The composition for a model material according to claim 1 or 2, wherein the component (C) has a tertiary amino group in the molecule.
- 前記(C)成分は、分子内に3級アミノ基と同数の水酸基を有するものである請求項1~3のいずれか一項に記載のモデル材用組成物。 The composition for a model material according to any one of claims 1 to 3, wherein the component (C) has the same number of hydroxyl groups as tertiary amino groups in the molecule.
- 前記(B)成分の含有量は、樹脂組成物全体100重量部に対して、20~45重量部である、請求項1~4のいずれか一項に記載のモデル材用組成物。 The composition for a model material according to any one of claims 1 to 4, wherein the content of the component (B) is 20 to 45 parts by weight with respect to 100 parts by weight of the entire resin composition.
- 前記(C)成分の含有量は、樹脂組成物全体100重量部に対して、5~30重量部である、請求項1~5のいずれか一項に記載のモデル材用組成物。 The composition for a model material according to any one of claims 1 to 5, wherein the content of the component (C) is 5 to 30 parts by weight with respect to 100 parts by weight of the entire resin composition.
- 前記(E)成分の含有量は、樹脂組成物全体100重量部に対して、2~13重量部である、請求項1~6のいずれか一項に記載のモデル材用組成物。 The composition for a model material according to any one of claims 1 to 6, wherein the content of the component (E) is 2 to 13 parts by weight with respect to 100 parts by weight of the entire resin composition.
- 請求項1~7のいずれか一項に記載のモデル材用組成物と水溶性サポート材用組成物とを有するマテリアルジェット光造形法に使用されるマテリアルジェット光造形用組成物セットであって、
該水溶性サポート材用組成物が、ポリアルキレングリコールと、水溶性単官能エチレン性不飽和単量体と、光重合開始剤とを含有する、マテリアルジェット光造形用組成物セット。 A composition set for material jet stereolithography used in a material jet stereolithography method comprising the composition for a model material according to any one of claims 1 to 7 and the composition for a water-soluble support material,
The composition set for material jet optical modeling in which this composition for water-soluble support materials contains polyalkylene glycol, a water-soluble monofunctional ethylenically unsaturated monomer, and a photoinitiator. - 前記ポリアルキレングリコールがオキシブチレン基を有するポリアルキレングリコールである請求項8に記載のマテリアルジェット光造形用組成物セット。 The composition set for material jet stereolithography according to claim 8, wherein the polyalkylene glycol is a polyalkylene glycol having an oxybutylene group.
- 前記水溶性サポート材用組成物が、
前記サポート材用組成物全体100重量部に対して、15重量部以上75重量部以下の量で前記オキシブチレン基を含むポリアルキレングリコールを含有する請求項8又は9に記載のマテリアルジェット光造形用組成物セット。 The water-soluble support material composition comprises:
The material jet stereolithography according to claim 8 or 9, comprising polyalkylene glycol containing the oxybutylene group in an amount of 15 to 75 parts by weight with respect to 100 parts by weight of the entire support material composition. Composition set. - 前記水溶性サポート材用組成物全体100重量部に対して、前記水溶性単官能エチレン性不飽和単量体の含有量が19重量部以上80重量部以下であり、前記光重合開始剤の含有量が、1重量部以上20重量部以下である請求項8~10のいずれか一項に記載のマテリアルジェット光造形用組成物セット。 The content of the water-soluble monofunctional ethylenically unsaturated monomer is 19 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the entire composition for a water-soluble support material, and the photopolymerization initiator is contained. The composition set for material jet stereolithography according to any one of claims 8 to 10, wherein the amount is from 1 part by weight to 20 parts by weight.
- 前記水溶性サポート材用組成物が、
水溶性有機溶剤を更に含有し、
前記水溶性有機溶剤の含有量が、前記水溶性サポート材用組成物全体100重量部に対して、30重量部以下である請求項8~11のいずれか一項に記載のマテリアルジェット光造形用組成物セット。 The water-soluble support material composition comprises:
Further containing a water-soluble organic solvent,
The material jet stereolithography according to any one of claims 8 to 11, wherein the content of the water-soluble organic solvent is 30 parts by weight or less with respect to 100 parts by weight of the entire composition for water-soluble support materials. Composition set. - マテリアルジェット光造形法により、請求項1~7のいずれか一つに記載のモデル材用組成物を光硬化させて得られるモデル材を含む、光造形物。 An optically modeled object including a model material obtained by photocuring the model material composition according to any one of claims 1 to 7 by a material jet stereolithography method.
- マテリアルジェット光造形法により請求項13に記載の光造形物を製造する方法であって、
請求項1~7のいずれか一項に記載のモデル材用組成物を光硬化させてモデル材を得るとともに、請求項8~12のいずれか一つに記載のマテリアルジェット光造形用組成物セットの水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程(I)と、
前記水溶性サポート材を水に接触させることにより除去する工程(II)と、
を有する、光造形物の製造方法。 A method for producing an optically shaped article according to claim 13 by a material jet stereolithography method,
A composition set for material jet stereolithography according to any one of claims 8 to 12, while obtaining a model material by photocuring the composition for model material according to any one of claims 1 to 7. A step (I) of obtaining a water-soluble support material by photocuring the water-soluble support material composition of
Removing the water-soluble support material by bringing it into contact with water (II);
A method for producing an optically shaped object.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880059419.0A CN111093950A (en) | 2018-03-15 | 2018-09-06 | Composition for mold material and composition set for stereolithography |
JP2020506115A JPWO2019176139A1 (en) | 2018-03-15 | 2018-09-06 | Composition for model material and composition for stereolithography |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048111 | 2018-03-15 | ||
JP2018-048111 | 2018-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176139A1 true WO2019176139A1 (en) | 2019-09-19 |
Family
ID=67907032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/033072 WO2019176139A1 (en) | 2018-03-15 | 2018-09-06 | Model material composition and photo fabrication composition set |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2019176139A1 (en) |
CN (1) | CN111093950A (en) |
TW (1) | TW201938711A (en) |
WO (1) | WO2019176139A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138241A1 (en) * | 2018-12-27 | 2020-07-02 | 東洋インキScホールディングス株式会社 | Multilayer body, active energy ray-curable composition and method for producing multilayer body |
JP2021155648A (en) * | 2020-03-30 | 2021-10-07 | マクセルホールディングス株式会社 | Energy ray-curable inkjet ink composition |
WO2022102716A1 (en) * | 2020-11-11 | 2022-05-19 | パナソニックIpマネジメント株式会社 | Ultraviolet curable resin composition, light emitting device and method for manufacturing light emitting device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005254521A (en) * | 2004-03-10 | 2005-09-22 | Fuji Photo Film Co Ltd | Three-dimensional shaped article and its manufacturing method |
JP2016020474A (en) * | 2014-06-20 | 2016-02-04 | 株式会社キーエンス | Model material for forming photo molded article in inkjet photo molding method and manufacturing method of photo molded article |
JP2017001226A (en) * | 2015-06-08 | 2017-01-05 | 富士フイルム株式会社 | Method for forming three dimensional molded article |
JP2017031249A (en) * | 2015-07-29 | 2017-02-09 | 日立マクセル株式会社 | Resin composition for model material, resin composition for support material, optically shaped article and method for manufacturing optically shaped article |
WO2017159358A1 (en) * | 2016-03-14 | 2017-09-21 | 日立マクセル株式会社 | Composition for model materials, optically shaped article, and method for producing optically shaped articles |
-
2018
- 2018-09-06 WO PCT/JP2018/033072 patent/WO2019176139A1/en active Application Filing
- 2018-09-06 JP JP2020506115A patent/JPWO2019176139A1/en active Pending
- 2018-09-06 CN CN201880059419.0A patent/CN111093950A/en active Pending
-
2019
- 2019-01-22 TW TW108102347A patent/TW201938711A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005254521A (en) * | 2004-03-10 | 2005-09-22 | Fuji Photo Film Co Ltd | Three-dimensional shaped article and its manufacturing method |
JP2016020474A (en) * | 2014-06-20 | 2016-02-04 | 株式会社キーエンス | Model material for forming photo molded article in inkjet photo molding method and manufacturing method of photo molded article |
JP2017001226A (en) * | 2015-06-08 | 2017-01-05 | 富士フイルム株式会社 | Method for forming three dimensional molded article |
JP2017031249A (en) * | 2015-07-29 | 2017-02-09 | 日立マクセル株式会社 | Resin composition for model material, resin composition for support material, optically shaped article and method for manufacturing optically shaped article |
WO2017159358A1 (en) * | 2016-03-14 | 2017-09-21 | 日立マクセル株式会社 | Composition for model materials, optically shaped article, and method for producing optically shaped articles |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138241A1 (en) * | 2018-12-27 | 2020-07-02 | 東洋インキScホールディングス株式会社 | Multilayer body, active energy ray-curable composition and method for producing multilayer body |
JP2021155648A (en) * | 2020-03-30 | 2021-10-07 | マクセルホールディングス株式会社 | Energy ray-curable inkjet ink composition |
JP7453033B2 (en) | 2020-03-30 | 2024-03-19 | マクセル株式会社 | Energy ray curable inkjet ink composition |
WO2022102716A1 (en) * | 2020-11-11 | 2022-05-19 | パナソニックIpマネジメント株式会社 | Ultraviolet curable resin composition, light emitting device and method for manufacturing light emitting device |
Also Published As
Publication number | Publication date |
---|---|
CN111093950A (en) | 2020-05-01 |
JPWO2019176139A1 (en) | 2021-02-25 |
TW201938711A (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6679234B2 (en) | Model material resin composition, support material resin composition, stereolithography product, and method for producing stereolithography product | |
JP6751096B2 (en) | Model material resin composition, stereolithography ink set, and method for producing stereolithography product | |
CN108025492B (en) | Ink set for photo-molding and method for producing photo-molded article | |
JP6571297B2 (en) | Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product | |
US10557032B2 (en) | Composition for support material and ink set for stereolithography | |
WO2018142485A1 (en) | Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article | |
WO2019102695A1 (en) | Composition for model material | |
JP6937300B2 (en) | Manufacturing method of resin composition for model material and stereolithography | |
WO2019176139A1 (en) | Model material composition and photo fabrication composition set | |
CN108713033B (en) | Composition for mold material, optical molded article, and method for producing optical molded article | |
JP2011213931A (en) | Photocuring ink composition for inkjet recording | |
JP2019155801A (en) | Composition for model material, and composition set for material jetting optical shaping | |
JP2017171702A (en) | Active energy ray-curable composition, active energy ray-curable ink, ink storage container, and image formation apparatus and image forming method using the active energy ray-curable composition | |
WO2019230134A1 (en) | Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article | |
JP7086654B2 (en) | Composition for model material and composition set for stereolithography containing it | |
JP6941654B2 (en) | Composition for model material | |
JP6941655B2 (en) | Composition for model material | |
WO2019230132A1 (en) | Photo-fabrication composition set | |
WO2018143299A1 (en) | Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article | |
JP2020121431A (en) | Model material clear composition | |
WO2019230135A1 (en) | Photo-fabrication ink set, and production method for photo-fabricated article | |
WO2019230136A1 (en) | Photo-fabrication ink set | |
JP2019206112A (en) | Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article | |
JP2019131640A (en) | Composition for support material, and ink set for optical molding containing the same | |
JP2021130201A (en) | Stereolithography composition set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18909588 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020506115 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18909588 Country of ref document: EP Kind code of ref document: A1 |