WO2019136577A1 - 多绕组同时/分时供电电流型单级多输入高频环节逆变器 - Google Patents
多绕组同时/分时供电电流型单级多输入高频环节逆变器 Download PDFInfo
- Publication number
- WO2019136577A1 WO2019136577A1 PCT/CN2018/000411 CN2018000411W WO2019136577A1 WO 2019136577 A1 WO2019136577 A1 WO 2019136577A1 CN 2018000411 W CN2018000411 W CN 2018000411W WO 2019136577 A1 WO2019136577 A1 WO 2019136577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input
- frequency
- output
- inverter
- full
- Prior art date
Links
- 238000004804 winding Methods 0.000 title claims abstract description 67
- 238000004146 energy storage Methods 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 230000002457 bidirectional effect Effects 0.000 claims description 66
- 238000003860 storage Methods 0.000 claims description 5
- 238000002955 isolation Methods 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 14
- 230000010363 phase shift Effects 0.000 description 10
- 238000011217 control strategy Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 7
- 238000010248 power generation Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4807—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H02J3/382—
-
- H02J3/387—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/25—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M5/257—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/25—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M5/27—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/293—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/297—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4826—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/538—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
- H02M7/53803—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/30—The power source being a fuel cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/40—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
- H02M1/009—Converters characterised by their input or output configuration having two or more independently controlled outputs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency link inverter of the invention belongs to power electronic conversion technology.
- Inverter is a static converter device that converts unstable and inferior DC power into stable, high-quality AC power using power semiconductor devices for AC load or AC networking.
- the output AC load or the inverter with low frequency electrical isolation or high frequency electrical isolation between the AC grid and the input DC power source is called a low frequency link and a high frequency link inverter.
- the electrical isolation component mainly plays the following roles in the inverter: (1) realizes electrical isolation between the output and the input of the inverter, improves the safety and reliability of the operation of the inverter and electromagnetic compatibility; (2) The matching between the output voltage of the inverter and the input voltage achieves the technical effect that the output voltage of the inverter is higher than, equal to or lower than the input voltage, and its application range is greatly expanded; (3) when the high frequency transformer Or when the operating frequency of the high-frequency energy storage transformer is above 20 kHz, the volume and weight are greatly reduced, and the audio noise is also eliminated. Therefore, in the case of secondary power conversion, such as DC generator, battery, photovoltaic cell and fuel cell, the inverter has important application value.
- secondary power conversion such as DC generator, battery, photovoltaic cell and fuel cell
- New energy sources such as solar energy, wind energy, tidal energy and geothermal energy have the advantages of being clean, pollution-free, cheap, reliable, and rich, and thus have broad application prospects.
- New energy power generation mainly includes photovoltaics, wind power, fuel cells, hydraulic power, geothermal heat, etc., all of which have defects such as unstable power supply, discontinuous, and climatic conditions. Therefore, it is necessary to use a distributed power supply system with multiple new energy sources.
- the traditional new energy distributed power supply system is shown in Figure 1 and Figure 2.
- the system usually uses a plurality of single-input DC converters to convert new energy power generation equipment such as photovoltaic cells, fuel cells, wind turbines, and the like without energy storage through a one-way DC converter for power conversion and parallel or series connection at the output end. It is then connected to the DC bus of the public inverter to ensure that all new energy sources are jointly powered and coordinated.
- the distributed generation system realizes the preferential utilization of the power supply and the energy of the plurality of input sources at the same time, and improves the stability and flexibility of the system, but has the defects of two-stage power conversion, low power density, low conversion efficiency, high cost, and the like. Its practicality is greatly limited.
- a new multi-input inverter with a single-stage circuit structure as shown in FIG. 3 is required to replace the two-stage cascade circuit structure of the DC converter and the inverter shown in FIGS.
- the traditional multi-input inverter constitutes a new single-stage new energy distributed power supply system.
- Single-stage, multi-input inverters allow for a variety of new energy inputs, and the nature, magnitude, and characteristics of the input source can be the same or vary widely.
- the new single-stage new energy distributed power supply system has the advantages of simple circuit structure, single-stage power conversion, multiple input sources in a high-frequency switching period, or simultaneous power supply to the load, and low cost.
- the object of the present invention is to provide a combination of a plurality of new energy sources, an input DC power source or a common ground, a transformer having a plurality of primary windings and a secondary winding, and an isolation and output between the high frequency inverter circuits.
- the technical solution of the invention is: a multi-winding simultaneous/time-sharing current supply type single-stage multi-input high-frequency link inverter, which is separated from each other by a multi-input single-output high-frequency transformer with input
- the high frequency inverter circuit of the filter and the energy storage inductor is connected with a common output frequency conversion filter circuit, and each input end of the multi-input single-output high-frequency transformer has a one-to-one correspondence with the output end of each high-frequency inverter circuit.
- the output of the multi-input single-output high-frequency transformer is coupled to the input of the cycloconverter of the output cyclo-wave filter circuit, and each of the high-frequency inverter circuits with the input filter and the energy storage inductor is input.
- the filter, the energy storage inductor, and the single-input single-output high-frequency inverter circuit are sequentially cascaded, and the output cycle-wave transform filter circuit is formed by sequentially cascading the cycle converter and the output filter, and each of the single
- the input single output high frequency inverter circuit is composed of two-quadrant high frequency power switch capable of withstanding bidirectional voltage stress and unidirectional current stress or both can withstand bidirectional voltage stress and bidirectional current stress.
- the four-quadrant high-frequency power switch is composed of a plurality of four-quadrant high-frequency power switches capable of withstanding bidirectional voltage stress and bidirectional current stress, and the plurality of input sources of the inverter are at a high frequency Power is supplied to the load simultaneously or in a time-sharing period during the switching cycle.
- the invention relates to a multi-input inverter circuit structure which is formed by cascading two-stage DC converters and inverters of a plurality of traditional new energy combined power supply systems, and is constructed as a single-stage multi-input of a new multi-winding simultaneous or time-division power supply.
- Inverter circuit structure a multi-winding simultaneous/time-sharing current supply type single-stage multi-input high-frequency inverter circuit structure and topology family and its energy management control strategy are proposed, that is, the circuit structure is provided by providing a multi-input
- the single-output high-frequency transformer connects a plurality of isolated high-frequency inverter circuits with input filters and energy storage inductors to a common output-cycle transform filter circuit.
- the multi-winding simultaneous/time-sharing power supply current type single-stage multi-input high-frequency link inverter of the invention can invert a plurality of unstable input DC voltages into a stable high-quality output alternating current required for a load, and has multiple inputs.
- the DC power supply does not have common ground or common ground, the transformer has multiple primary windings and one secondary winding, the high frequency inverter circuit is isolated, the output and the input high frequency isolation, and the multi-input power supply is simultaneously or time-divisionally supplied in one switching cycle.
- the multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency link inverter has superior performance compared with the conventional DC converter and inverter two-stage cascaded multi-input inverter.
- Figure 1 A two-stage new energy distributed power supply system in which a plurality of conventional one-way DC converter outputs are connected in parallel.
- Figure 2 is a two-stage new energy distributed power supply system in which a plurality of conventional one-way DC converter outputs are connected in series.
- FIG. 1 Block diagram of a new single-stage multi-input inverter.
- Figure 4 is a block diagram of a multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency link inverter.
- Figure 5 is a circuit diagram of a multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter.
- FIG. 1 Circuit diagram of a multi-winding simultaneous/time-sharing current supply single-stage multi-input high-frequency inverter with energy storage inductor bypass switch and active clamp circuit.
- FIG. 7 is a circuit diagram of a multi-winding simultaneous/time-sharing current supply single-stage multi-input high-frequency link inverter with a flyback energy feedback circuit and an active clamp circuit.
- Figure 8 Steady-state principle waveform diagram of single-cycle phase-shift control multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter with the same duty cycle.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency link inverter circuit topology example one --- push-pull full-wave unidirectional circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency link inverter circuit topology example three --- push-pull forward full-wave unidirectional circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example four - push-pull forward full-bridge unidirectional circuit schematic.
- Multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example seven----full-bridge full-wave unidirectional circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example eight - full bridge full bridge one-way circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example nine - push-pull full-wave two-way circuit schematic.
- Multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example ten----push-pull full-bridge bidirectional circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example eleven - push-pull forward full-wave two-way circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency link inverter circuit topology example twelve --- push-pull forward full-bridge bidirectional circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example thirteen - half-bridge full-wave two-way circuit schematic.
- multi-winding simultaneous / time-sharing power supply type single-stage multi-input high-frequency link inverter circuit topology example fifteen --- full-bridge full-wave two-way circuit schematic.
- FIG. 25 Multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology example 16----Full-bridge full-bridge bidirectional circuit schematic.
- Figure 26 is a block diagram of the output voltage instantaneous value feedback single-cycle phase shift control when the multi-winding simultaneous/time-sharing power supply unidirectional current type single-stage multi-input high-frequency inverter is powered by the same duty cycle.
- FIG. 30 shows a multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency independent power supply system with an output terminal connected to a single-stage isolated bidirectional charge-discharge converter.
- Figure 31 Maximum power output energy management control strategy with single-stage isolated bidirectional charge-discharge converter output voltage independent control loop.
- Multi-winding simultaneous/time-sharing supply current type single-stage multi-input high-frequency link inverter is a high-frequency transformer with multiple inputs and single outputs, which is separated from each other by a high frequency with input filter and energy storage inductor.
- the inverter circuit and a common output cycle conversion filter circuit are connected, and each input end of the multi-input single-output high-frequency transformer is connected with the output end of each high-frequency inverter circuit one-to-one, the multi-input single-output high-frequency transformer
- the output end is coupled to the input of the cycloconverter of the output cyclo-wave filter circuit, and each of the high-frequency inverter circuits with the input filter and the energy storage inductor is composed of an input filter, a storage inductor, and a single input.
- the single output high frequency inverter circuit is sequentially cascaded, and the output cycle wave conversion filter circuit is composed of a cycle converter and an output filter in sequence, and each of the single input single output high frequency inverter circuits is described. It consists of a two-quadrant high-frequency power switch capable of withstanding bidirectional voltage stress and unidirectional current stress or consisting of a four-quadrant high-frequency power switch capable of withstanding bidirectional voltage stress and bidirectional current stress.
- the cycloconverter is composed of a plurality of four-quadrant high-frequency power switches capable of withstanding bidirectional voltage stress and bidirectional current stress, and the plurality of input sources of the inverter simultaneously or time-divisionally load in a high-frequency switching cycle powered by.
- U i1 , U i2 , ..., U in are n input DC voltage sources (n is a natural number greater than 1), and Z L and u o are single-phase AC Passive load and single-phase AC grid, u o , i o are single-phase output AC voltage and AC current, respectively.
- Each of the mutually isolated high-frequency inverter circuits with input filter and energy storage inductor is composed of input filter, energy storage inductor and single-input single-output high-frequency inverter circuit in sequence, wherein single input single
- the output high-frequency inverter circuit is composed of a four-quadrant high-frequency power switch capable of withstanding bidirectional voltage stress and bidirectional current stress (using power devices such as MOSFET, IGBT, GTR, etc.) for the case where the output current and the output voltage are different phases, or Two-quadrant high-frequency power switch capable of withstanding bidirectional voltage stress and unidirectional current stress (selecting MOSFET, IGBT, GTR and other power devices in series with fast recovery diode) is suitable for the case where the output current and output voltage are in phase; output cycle transform filtering
- the circuit is composed of a cycloconverter and an output filter in sequence.
- the cycloconverter is realized by a plurality of four-quadrant high-frequency power switches capable of withstanding bidirectional voltage stress and bidirectional current stress;
- the n input filter is an LC filter. (including filter inductor L i1 , L i2 , ..., L in ) with added dummy frame or capacitive filter (without filter element L i1 , L i2 , ..., L i with added dummy frame ) n ), when the LC filter is used, the n input DC current will be smoother.
- the Boost converter is a boost converter, and there is always
- >U in N 2 /N n1 (n 1, 2, ..., n) in each high frequency switching period, in order to ensure the output sinusoidal voltage
- the following effective measures are required: (1) The circuit structure shown in Figure 5.
- the energy storage inductors L 1 , L 2 , ..., L n are supplemented by a two-quadrant high-frequency power switch capable of withstanding bidirectional voltage stress and unidirectional current stress or a four-quad high frequency capable of withstanding bidirectional voltage stress and bidirectional current stress.
- the bypass switch S 01 , S 02 , ..., S 0n realized by the power switch, during this time or when the input DC side current exceeds a certain set value, the energy storage switch of the high frequency inverter circuit is suspended and activated
- the circuit switches S 01 , S 02 , ..., S 0n work to provide a freewheeling path for the energy storage inductor, and the path of the input source and the energy storage inductor to release energy remains unchanged, as shown in Figure 6 for additional energy storage inductor bypass.
- the circuit structure shown is based on a high-frequency energy storage transformer T a with a cycloconverter (implemented by a four-quadrant high-frequency power switch Sa1 ), a secondary center tap, and a rectifier (both can withstand bidirectional voltage)
- the two-quadrant high-frequency power switch S a2 and S' a2 of stress and unidirectional current stress are sequentially cascaded to form a small-capacity flyback high-frequency energy feedback circuit, during which the main power channel is suspended and the small capacity is started.
- the flyback high-frequency energy feedback circuit works, and the excess energy on the output side is fed back to the input power supply side (such as the first input source), and the multiple windings of the additional flyback energy feedback circuit shown in FIG. 7 are simultaneously/minute.
- the current supply current type single-stage multi-input high-frequency link inverter circuit structure is an active clamp circuit in which S c1 and C c1 are connected in series, S c2 and C c2 are connected in series, ..., S cn and C cn are connected in series, aiming to suppress leakage inductance of high frequency transformer and hinder energy storage inductance.
- Additional improved active clamp circuit (adding the cathodes of the parallel diodes D c1 , D c2 , . . . , D cn , D c1 , D c2 , . . . , D cn to S c1 , respectively
- the sources of S c2 , . . . , S cn are connected, and the anodes of D c1 , D c2 , . . . , D cn are respectively connected to the negative electrodes of C c1 , C c2 , . . . , C cn ) to further suppress voltage spikes.
- the n-channel high-frequency inverter circuit reverses the high-frequency ripple currents i L1 , i L2 , ..., i Ln (the amplitude is a sine half-wave envelope) of the n-channel energy storage inductors L 1 , L 2 , ..., L n
- the high-frequency pulse currents i N11 , i N21 , ..., i Nn1 which become bipolar tristates are electrically isolated, transmitted and current-matched by the high-frequency transformer T to obtain a bipolar tri-state multi-level high-frequency pulse current.
- the high-frequency ripple currents i L1 , i L2 , ..., i Ln in the inductors L 1 , L 2 , ..., L n are input filters L i1 - C i1 , L i2 - C i2 , ..., L in - C in or C i1, C i2, ..., C in the n-channel DC input U i1, U i2, ..., U in the input obtained smoothed DC current I i1, I i2, ..., I in.
- Multi-winding simultaneous/time-sharing supply current type single-stage multi-input high-frequency link inverter is a current-type (boost) inverter, and n input sources supply power to the load at the same time or in time.
- the principle of this inverter is equivalent to the superposition of current at the output of multiple current-type single-input inverters, that is, the output voltage u o and the input DC voltage (U i1 , U i2 , ..., U in ), high-frequency transformer
- the output voltage u o It can be greater than, equal to, or less than U i1 , U i2 , ..., U in .
- the high-frequency transformer in the inverter not only improves the safety and reliability of the inverter operation, but also plays an important role in matching.
- the output voltage and the input voltage function to achieve the technical effect that the output voltage of the inverter is higher than, equal to or lower than the input DC voltages U i1 , U i2 , ..., U in , and the application range thereof is greatly expanded.
- d 1 ⁇ d 2 ⁇ ... ⁇ d n means that n input sources have two modes of simultaneously and time-sharing the AC load in one high-frequency switching cycle.
- the multi-winding simultaneous/time-sharing current supply type single-stage multi-input high-frequency link inverter of the invention has a transformer and an output cycle conversion filter circuit, and is cascaded with the DC converter and the inverter.
- the circuit structure of the conventional multi-input inverter is essentially different. Therefore, the inverter of the present invention has novelty and creativity, and has high-output isolation of output and input, non-common or common ground of multiple input power sources, simultaneous or time-division power supply of multiple input power sources, simple circuit topology, and single-stage power. It is an ideal energy-saving and consumption-reducing type with the advantages of flexible conversion, high input voltage, high conversion efficiency (meaning low energy loss), small input current ripple, small output capacity, low cost and wide application prospects.
- Single-stage multi-input inverters are of great value in today's vigorous promotion of building an energy-saving and economical society.
- Multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter circuit topology family embodiment as shown in Figures 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25 are shown.
- the circuit shown in Figure 10-17 is a multi-winding simultaneous/time-sharing power supply unidirectional current type single-stage multi-input high-frequency inverter circuit topology family embodiment, belonging to the unidirectional power flow circuit topology; the circuit shown in Figure 18-25
- a multi-winding simultaneous/time-dividing bidirectional current type single-stage multi-input high-frequency inverter circuit topology family embodiment is a bidirectional power flow circuit topology.
- the push-pull circuit shown in Figures 10 and 11, the push-pull forward circuit shown in Figures 12 and 13, and the half-bridge circuit shown in Figures 14 and 15 all have 2n capable of withstanding bidirectional voltage stress and unidirectional current stress.
- the two-quadrant high-frequency power switch is realized by two or four four-quadrant high-frequency power switches respectively.
- the full-bridge circuit shown in Figure 16 and Figure 17 is composed of 4n two-way voltage stress and unidirectional current stress.
- the half-bridge circuit shown is realized by 2(n+1), 2(n+2) four-quadrant high-frequency power switches capable of withstanding bidirectional voltage stress and bidirectional current stress, and the full bridge shown in Fig. 24 and Fig. 25
- the circuit is realized by 4(n+1/2), 4(n+1) four-quadrant high-frequency power switches capable of withstanding bidirectional voltage stress and bidirectional current stress; the circuit shown in Figure 10-25 contains n energy A two-quad high frequency clamp switch that withstands unidirectional voltage stress and bidirectional current stress.
- the circuit shown in Figure 10-25 shows the case where the input filter is an LC filter (the input filter capacitors of the half-bridge circuit shown in Figures 14, 15, 22, and 23 are two bridge arm capacitors C). I11 and C i12 , C i21 and C i22 , ..., C in1 and C in2 ), limited to the case where the input filter is not in the case of a capacitive filter; the circuit shown in Figure 10-25 is only drawn for The circuit diagram of the CL output filter of the AC grid load, and the circuit diagram of the output capacitor filter suitable for the passive AC load is not shown; the circuit shown in Figure 10-25 only shows the topology corresponding to the circuit structure shown in Figure 5, and respectively The topology of the additional energy storage inductor bypass switch and the small capacity flyback high frequency energy feedback circuit corresponding to the circuit structure shown in Figs.
- Multi-winding simultaneous/time-sharing power supply unidirectional and bidirectional current type single-stage multi-input high-frequency inverters The power switching voltage stress of the 16 topological embodiments is shown in Table 1.
- U o is the output voltage rms value.
- the full-bridge, full-bridge circuit is suitable for high-voltage and small-current output conversion applications.
- the circuit topology family is suitable for converting a plurality of unsteady or common ground, unstable input DC voltage into a required voltage, stable and high-quality output AC, and can be used to realize a novel single stage with excellent performance and wide application prospects.
- a variety of new energy distributed power supply systems such as photovoltaic cells 40-60VDC/220V50HzAC or 115V400HzAC, 10kw proton exchange membrane fuel cell 85-120V/220V50HzAC or 115V400HzAC, small and medium-sized household wind power generation 24-36-48VDC/220V50HzAC or 115V400HzAC, Large-scale wind power 510VDC/220V50HzAC or 115V400HzAC and other multi-input sources supply power to AC loads or AC grids.
- Table 1 Multi-winding simultaneous / time-sharing power supply unidirectional and bidirectional current type single-stage multi-input high-frequency link inverter 16 kinds of topological examples of power switching voltage stress
- Energy management control strategies are critical to a variety of new energy combined power systems. Since there are multiple input sources and corresponding power switching units, it is necessary to control multiple duty cycles, that is, there are multiple degrees of control freedom, which provides possibilities for energy management of various new energy sources.
- the energy management control strategy of multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter requires energy management of input source, MPPT and output voltage of new energy power generation equipment such as photovoltaic cells and wind turbines. (Current) control three major functions, sometimes need to consider the battery charge and discharge control and smooth seamless switching of the system in different power supply modes.
- Multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency link inverter adopts two different energy management modes: (1) energy management mode I--master-slave power distribution mode, known load required power It may be provided by the first, second, ..., n-1 input sources of the main power supply equipment, and the input currents of the first, second, ..., n-1 input sources are given, which is equivalent to the first, second, ..., The input power of the n-1 input source, the insufficient power required by the load is provided by the nth input source of the power supply equipment, and the battery energy storage equipment can be omitted; (2) Energy management mode II--maximum power output mode, The first, second, ..., and n input sources are output to the load with maximum power, eliminating the battery energy storage equipment, realizing the requirement of full utilization of energy by the grid-connected power generation system, if a battery is connected and charged at the output end.
- energy management mode I--master-slave power distribution mode known load required power It may
- the appliance can also stabilize the output voltage (current) of the independent power supply system.
- the input voltage of the n-channel new energy is given, by controlling the input currents of the first, second, ..., and n input sources, it is equivalent to controlling the input power of the first, second, ..., and n input sources.
- 18-23 shows push-pull, push-pull forward, half-bridge multi-winding simultaneous/time-sharing power supply unidirectional and bidirectional current type single-stage multi-input high-frequency link inverters, which can only work In the same duty cycle power supply mode; and the full-bridge multi-winding simultaneous/time-sharing power supply one-way and two-way current type single-stage multi-input high-frequency link inverters shown in Figures 16, 17, 24, and 25 can work in The same duty cycle power supply mode can also work in different duty cycle power supply modes.
- Multi-winding with energy storage inductor additional bypass switch Simultaneous/time-sharing power supply unidirectional current type single-stage multi-input high-frequency link inverter works in the same duty-cycle power supply mode as an example, using n-channel duty-cycle output
- the voltage instantaneous value feedback single-cycle phase shift control strategy is shown in Figures 26 and 28.
- the inverter adjusts the duty ratio of the inverter to detect the quality of the output waveform by detecting and feeding back the modulation current i mf between the cycloconverter and the output filter capacitor.
- the output voltage feedback signal u of and the reference voltage signal u r are obtained by the voltage error amplifier u e
- the modulation current feedback signal i mf is obtained by the absolute value circuit and the integration circuit including the high frequency reset function to obtain the current average value signal i avg , i avg
- the high-frequency PWM signals u hf , u hf and the constant-frequency clock signal i c are respectively used as the reset terminal and the set terminal of the RS flip-flop, and the output terminal of the RS flip-flop.
- the constant frequency clock signal i c is obtained by the falling edge binary frequency circuit to obtain the signal u sy , u r through the zero comparison circuit to obtain the polarity strobe signal u K0 , u hf , u sy , u k0 are used to control the power switches S 11 , S 21 , . . . , S n1 , S 12 , S 22 , . . . , S n2 , S 13 , S 23 , via suitable combinational logic circuits.
- Bidirectional current type single-stage multi-input high-frequency link inverter works in different duty cycle power supply modes, taking the first, second,...
- the n-1 output power is fixed and the output voltage of the insufficient power required for the nth supplementary load, and the input current instantaneous value feedback phase shift master-slave power distribution energy management control strategy is shown in FIGS. 27 and 29.
- the first, second, ..., n-1 input sources are calculated by the maximum power point to obtain the reference current signals I * i1r , I * i2r , ..., I * i(n-1)r , and the inverters 1 and 2
- I i(n-1)r is amplified by a proportional-integral regulator, and the amplified error signals I 1e , I 2e , ..., I (n-1)e are respectively multiplied by the synchronization signal u e to obtain i 1e , i 2e , ..., i (n-1)e , the inverter output voltage feedback signal u of and the reference sinusoidal voltage u r are obtained by the absolute value circuit and the proportional integral regulator to obtain u e , i 1e , i 2e , ...
- i (n-1)e , u e are respectively interleaved with the sawtooth carrier u c and considering the output voltage strobe signal u k0 via the appropriate combinational logic circuit to obtain the power switches S 11 , S 21 , ..., S n1 , S 12 , S 22 , ..., S n2 , S 13 , S 23 , ..., S n3 , S 14 , S 24 , ..., S n4 , S c1 , S c2 , ..., S cn , S 5 (S' 5 ), S 6 (S' 6 ), S 7 (S' 7 ), S 8 (S' 8 ) control signals.
- the zero-crossing comparator outputs a low-level signal, and the main power channel power switch is blocked.
- the control signal activates the control signals of the flyback high frequency link energy feedback circuit power switches S a1 , S a2 , S′ a2 .
- the error voltage signal u e and the error current signals i 1e , i 2e , . . . , i (n-1)e are changed by adjusting the reference voltage u r or the feedback voltage u of , thereby changing the phase shift Since the angles ⁇ 1 and ⁇ 2 ... ⁇ n , the inverter output voltage and the input current (output power) can be adjusted and stabilized.
- the single-stage isolated bidirectional charge and discharge converter is composed of an input filter (L i , C i or C i ), a high frequency inverter, a high frequency transformer, a cycloconverter, and an output filter (L f ', C f '
- the cycloconverter is composed of a four-quadrant high-frequency power switch capable of withstanding bidirectional voltage stress and bidirectional current stress.
- the single-stage isolated bidirectional charge-discharge converter is equivalent to a single-stage high-frequency link DC-AC converter and is respectively used for energy forward transfer (storage device discharge) and reverse transfer (storage device charging).
- a single stage high frequency link AC-DC converter is equivalent to a single-stage high-frequency link DC-AC converter and is respectively used for energy forward transfer (storage device discharge) and reverse transfer (storage device charging).
- the independent power supply system adopts a maximum power output energy management control strategy with a single-stage isolated bidirectional charge and discharge converter output voltage independent control loop, as shown in FIG.
- the multi-winding simultaneous/time-sharing current supply type single-stage multi-input high-frequency link inverter and the output of the single-stage isolated bidirectional charge-discharge converter are connected in parallel It is equivalent to the parallel superposition of two current sources. It can be seen from the energy management control strategy shown in FIG. 31 that the fundamental component of the output current i Lf of the multi-winding simultaneous/time-sharing power supply type single-stage multi-input high-frequency inverter has the same frequency and the output voltage u o in the same phase, and the output is active.
- the charge and discharge converter is controlled by the output voltage u o and the error amplification signal u oe of the reference voltage u oref and the high frequency carrier interception to generate the SPWM signal, and the output filter inductor current i Lf ' and u o have a phase
- the difference ⁇ , the different phase difference ⁇ means that the active power of different magnitudes and directions is output.
- the energy management control strategy can control the power flow size and direction of the single-stage isolated bidirectional charge and discharge converter in real time according to the relative magnitudes of P o and P 1max + P 2max +...+P nmax , and realize the system in three different power supplies. Smooth seamless switching in mode.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Ac-Ac Conversion (AREA)
Abstract
本发明涉及一种多绕组同时/分时供电电流型单级多输入高频环节逆变器,其电路结构是由一个多输入单输出高频变压器将多个相互隔离、带有输入滤波器和储能电感的高频逆变电路和一个共用的输出周波变换滤波电路联接构成,多输入单输出高频变压器的每个输入端与每个高频逆变电路的输出端一一对应联接,多输入单输出高频变压器的输出端与输出周波变换滤波电路的输入端相联接。这种逆变器具有多输入源共地或不共地、多输入源同时或分时供电、输出与输入高频隔离、共用输出周波变换滤波电路、电路简洁、单级功率交换、电压匹配能力强、功率密度高、变换效率高、应用前景广泛等特点,为实现多种新能源联合供电的中小容量分布式供电系统奠定了关键技术。
Description
本发明所涉及的多绕组同时/分时供电电流型单级多输入高频环节逆变器,属于电力电子变换技术。
逆变器是应用功率半导体器件将一种不稳定、劣质的直流电能变换成稳定、优质的交流电能的静止变流装置,供交流负载使用或实现交流并网。输出交流负载或交流电网与输入直流电源间有低频电气隔离或高频电气隔离的逆变器,分别称为低频环节、高频环节逆变器。电气隔离元件在逆变器中主要起到了如下作用:(1)实现了逆变器输出与输入之间的电气隔离,提高了逆变器运行的安全可靠性和电磁兼容性;(2)实现了逆变器输出电压与输入电压之间的匹配,即实现了逆变器输出电压高于、等于或低于输入电压的技术效果,其应用范围得到了大大拓宽;(3)当高频变压器或高频储能式变压器的工作频率在20kHz以上时,其体积、重量大大降低了,音频噪音也消除了。因此,在以直流发电机、蓄电池、光伏电池和燃料电池等为主直流电源的二次电能变换场合,逆变器具有重要的应用价值。
太阳能、风能、潮汐能和地热能等新能源(也称为绿色能源),具有清洁无污染、廉价、可靠、丰富等优点,因而具有广泛的应用前景。由于石油、煤和天然气等传统化石能源(不可再生的能源)日益紧张、环境污染严重、导致全球变暖以及核能的生产又会产生核废料和污染环境等原因,新能源的开发和利用越来越受到人们的重视。新能源发电主要有光伏、风力、燃料电池、水力、地热等类型,均存在电力供应不稳定、不连续、随气候条件变化等缺陷,因此需要采用多种新能源联合供电的分布式供电系统。
传统的新能源分布式供电系统,如图1、2所示。该系统通常是采用多个单输入直流变换器将光伏电池、燃料电池、风力发电机等不需能量存储的新能源发电设备分别通过一个单向直流变换器进行电能变换且在输出端并联或串联后连接到公共的逆变器的直流母线上,旨在确保各种新能源联合供电并且能够协调工作。该分布式发电系统实现了多个输入源同时向负载供电和能源的优先利用,提高了系统的稳定性和灵活性,但存在两级功率变换、功率密度低、变换效率低、成本高等缺陷,其实用性受到了很大程度的限制。
为了简化电路结构和减少功率变换级数,需要用图3所示具有单级电路结构的新型多输入逆变器取代图1、2所示具有直流变换器与逆变器两级级联电路结构的传统多输入逆变器构成新型的单级新能源分布式供电系统。单级多输入逆变器允许多种新能源输入,输入源的性 质、幅值和特性可以相同,也可以差别很大。新型的单级新能源分布式供电系统具有电路结构简洁、单级功率变换、一个高频开关周期内多个输入源同时或分时向负载供电、成本低等优点。
因此,积极寻求一类允许多种新能源联合供电的单级多输入逆变器及其新能源分布式供电系统已迫在眉睫,对于提高系统的稳定性和灵活性,实现新能源的优先利用或充分利用将具有十分重要的意义。
发明内容
本发明目的是要提供一种具有多种新能源联合供电、输入直流电源共地或不共地、变压器有多个原边绕组和一个副边绕组、高频逆变电路之间隔离、输出与输入之间高频隔离、多个输入电源一个开关周期内同时或分时供电、电路拓扑简洁、共用输出周波变换滤波电路、单级功率变换、电压匹配能力强、功率密度高、变换效率高、输入电流纹波小、输出中小容量、应用前景广泛等特点的多绕组同时/分时供电电流型单级多输入高频环节逆变器。
本发明的技术方案在于:一种多绕组同时/分时供电电流型单级多输入高频环节逆变器,是由一个多输入单输出的高频变压器将多个相互隔离的、带有输入滤波器和储能电感的高频逆变电路和一个共用的输出周波变换滤波电路联接构成,多输入单输出高频变压器的每个输入端与每个高频逆变电路的输出端一一对应联接,多输入单输出高频变压器的输出端与输出周波变换滤波电路的周波变换器输入端相联接,所述的每个带有输入滤波器和储能电感的高频逆变电路均由输入滤波器、储能电感、单输入单输出高频逆变电路依序级联构成,所述的输出周波变换滤波电路由周波变换器、输出滤波器依序级联构成,所述的每个单输入单输出高频逆变电路均由能承受双向电压应力、单向电流应力的二象限高频功率开关构成或均由能承受双向电压应力、双向电流应力的四象限高频功率开关构成,所述的周波变换器由多个能承受双向电压应力、双向电流应力的四象限高频功率开关构成,所述逆变器的多个输入源在一个高频开关周期内同时或分时对负载供电。
本发明是将传统多种新能源联合供电系统的直流变换器与逆变器两级级联而成的多输入逆变器电路结构,构建为新型多绕组同时或分时供电的单级多输入逆变器电路结构,提出了多绕组同时/分时供电电流型单级多输入高频环节逆变器电路结构与拓扑族及其能量管理控制策略,即该电路结构是通过提供一种多输入单输出的高频变压器将多个相互隔离的、带有输入滤波器和储能电感的高频逆变电路与一个共用的输出周波变换滤波电路 联接而成。
本发明的多绕组同时/分时供电电流型单级多输入高频环节逆变器,能够将多个不稳定的输入直流电压逆变成一个负载所需的稳定优质的输出交流电,具有多输入直流电源不共地或共地、变压器有多个原边绕组和一个副边绕组、高频逆变电路之间隔离、输出与输入高频隔离、多输入电源一个开关周期内同时或分时供电、电路拓扑简洁、共用输出周波变换滤波电路、单级功率变换、电压匹配能力强、功率密度高、变换效率高、输入电流纹波小、输出中小容量、应用前景广泛等特点。多绕组同时/分时供电电流型单级多输入高频环节逆变器的综合性能,将比传统的直流变换器与逆变器两级级联而成的多输入逆变器优越。
图1,传统的多个单向直流变换器输出端并联的两级式新能源分布式供电系统。
图2,传统的多个单向直流变换器输出端串联的两级式新能源分布式供电系统。
图3,新型的单级多输入逆变器原理框图。
图4,多绕组同时/分时供电电流型单级多输入高频环节逆变器原理框图。
图5,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路结构图。
图6,具有储能电感旁路开关和有源箝位电路的多绕组同时/分时供电电流型单级多输入高频环节逆变器电路结构图。
图7,具有反激式能量回馈电路和有源箝位电路的多绕组同时/分时供电电流型单级多输入高频环节逆变器电路结构图。
图8,单周期移相控制多绕组同时/分时供电电流型单级多输入高频环节逆变器同一占空比供电时的稳态原理波形图。
图9,移相控制多绕组同时/分时供电电流型单级多输入高频环节逆变器不同占空比供电时的稳态原理波形图。
图10,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例一----推挽全波单向式电路原理图。
图11,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例二----推挽全桥单向式电路原理图。
图12,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例三----推挽正激全波单向式电路原理图。
图13,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例四----推挽正激全桥单向式电路原理图。
图14,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例五----半桥全波单向式电路原理图。
图15,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例六----半桥全桥单向式电路原理图。
图16,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例七----全桥全波单向式电路原理图。
图17,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例八----全桥全桥单向式电路原理图。
图18,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例九----推挽全波双向式电路原理图。
图19,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例十----推挽全桥双向式电路原理图。
图20,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例十一----推挽正激全波双向式电路原理图。
图21,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例十二----推挽正激全桥双向式电路原理图。
图22,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例十三----半桥全波双向式电路原理图。
图23,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例十四----半桥全桥双向式电路原理图。
图24,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例十五----全桥全波双向式电路原理图。
图25,多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑实例十六----全桥全桥双向式电路原理图。
图26,多绕组同时/分时供电单向电流型单级多输入高频环节逆变器同一占空比供电时的输出电压瞬时值反馈单周期移相控制框图。
图27,多绕组同时/分时供电双向电流型单级多输入高频环节逆变器不同占空比供电时的输出电压、输入电流瞬时值反馈移相主从功率分配能量管理控制框图。
图28,多绕组同时/分时供电单向电流型单级多输入高频环节逆变器同一占空比供电时的输出电压瞬时值反馈单周期移相控制原理波形图。
图29,多绕组同时/分时供电双向电流型单级多输入高频环节逆变器不同占空比供电时 的输出电压、输入电流瞬时值反馈移相主从功率分配能量管理控制原理波形图。
图30,具有输出端并接单级隔离双向充放电变换器的多绕组同时/分时供电电流型单级多输入高频环节独立供电系统。
图31,具有单级隔离双向充放电变换器输出电压独立控制环路的最大功率输出能量管理控制策略。
图32,独立供电系统的输出电压u
o、输出电流i
Lf和输出滤波电感电流i
Lf′波形。
下面结合说明书附图及实施例对本发明的技术方案做进一步描述。
多绕组同时/分时供电电流型单级多输入高频环节逆变器,是由一个多输入单输出的高频变压器将多个相互隔离的、带有输入滤波器和储能电感的高频逆变电路和一个共用的输出周波变换滤波电路联接构成,多输入单输出高频变压器的每个输入端与每个高频逆变电路的输出端一一对应联接,多输入单输出高频变压器的输出端与输出周波变换滤波电路的周波变换器输入端相联接,所述的每个带有输入滤波器和储能电感的高频逆变电路均由输入滤波器、储能电感、单输入单输出高频逆变电路依序级联构成,所述的输出周波变换滤波电路由周波变换器、输出滤波器依序级联构成,所述的每个单输入单输出高频逆变电路均由能承受双向电压应力、单向电流应力的二象限高频功率开关构成或均由能承受双向电压应力、双向电流应力的四象限高频功率开关构成,所述的周波变换器由多个能承受双向电压应力、双向电流应力的四象限高频功率开关构成,所述逆变器的多个输入源在一个高频开关周期内同时或分时对负载供电。
多绕组同时/分时供电单向和双向电流型单级多输入高频环节逆变器的原理框图、电路结构、同一占空比供电输出电压瞬时值反馈单周期移相控制(以单向功率流为例)和不同占空比供电输出电压输入电流瞬时值反馈移相控制(以双向功率流为例)时的稳态原理波形,分别如图4、5、6、7、8、9所示。图4、5、6、7、8、9中,U
i1、U
i2、…、U
in为n路输入直流电压源(n为大于1的自然数),Z
L、u
o分别为单相交流无源负载和单相交流电网,u
o、i
o分别为单相输出交流电压和交流电流。每个相互隔离的、带有输入滤波器和储能电感的高频逆变电路均由输入滤波器、储能电感、单输入单输出高频逆变电路依序级联构成,其中单输入单输出高频逆变电路由能承受双向电压应力、双向电流应力的四象限高频功率开关构成时(选用MOSFET、IGBT、GTR等功率器件)适用于输出电流与输出电压不同相时情形,或由能承受双向电压应力、单向电流应力的二象限高频功率开关构成时(选用MOSFET、IGBT、GTR等功率器件与快恢复二极管串联)适用于输出电 流与输出电压同相时情形;输出周波变换滤波电路由周波变换器、输出滤波器依序级联构成,其中周波变换器是由多个能承受双向电压应力、双向电流应力的四象限高频功率开关实现;n路输入滤波器为LC滤波器(含添加虚框的滤波电感L
i1、L
i2、…、L
in)或电容滤波器(不含添加虚框的滤波电感L
i1、L
i2、…、L
in),采用LC滤波器时n路输入直流电流会更平滑。Boost型变换器是升压型变换器,在每个高频开关周期内总存在|u
0|>U
inN
2/N
n1(n=1、2、…、n),为了确保输出正弦电压下降且|u
0|≤U
inN
2/N
n1(n=1、2、…、n)期间输出电压波形质量,需要采用如下的一种有效措施:(1)在图5所示电路结构基础上,储能电感L
1、L
2、…、L
n附加由能承受双向电压应力和单向电流应力的两象限高频功率开关或能承受双向电压应力和双向电流应力的四象限高频功率开关来实现的旁路开关S
01、S
02、…、S
0n,在此期间或当输入直流侧电流超过某一设定值时,中止高频逆变电路的储能开关工作且启动旁路开关S
01、S
02、…、S
0n工作,为储能电感提供一个续流路径,输入源和储能电感释放能量的路径保持不变,如图6所示的附加储能电感旁路开关的多绕组同时/分时供电电流型单级多输入高频环节逆变器电路结构;(2)在图5所示电路结构的基础上附加一个由周波变换器(由一个四象限高频功率开关S
a1实现)、具有副边中心抽头的高频储能式变压器T
a、整流器(两个能承受双向电压应力和单向电流应力的二象限高频功率开关S
a2和S′
a2)依序级联构成的小容量反激式高频环节能量回馈电路,在此期间中止主功率通道工作、启动小容量反激式高频环节能量回馈电路工作,将输出侧多余的能量回馈到输入电源侧(如第1路输入源),如图7所示的附加反激式能量回馈电路的多绕组同时/分时供电电流型单级多输入高频环节逆变器电路结构。图6、7所示电路结构附加S
c1和C
c1串联、S
c2和C
c2串联、…、S
cn和C
cn串联的有源箝位电路,旨在抑制高频变压器漏感阻碍储能电感能量释放时引起的电压尖峰;附加改进型有源箝位电路(增添并接的二极管D
c1、D
c2、…、D
cn,D
c1、D
c2、…、D
cn的阴极分别与S
c1、S
c2、…、S
cn的源极相连,D
c1、D
c2、…、D
cn的阳极分别与C
c1、C
c2、…、C
cn的负极相连)能进一步抑制电压尖峰。n路高频逆变电路将n路储能电感L
1、L
2、…、L
n的高频脉动电流i
L1、i
L2、…、i
Ln(幅值为正弦半波包络线)逆变成双极性三态的高频脉冲电流i
N11、i
N21、…、i
Nn1,经高频变压器T电气隔离、传输和电流匹配后得到双极性三态的多电平高频脉冲电流i
N2,经周波变换器和输出滤波电容C
f、C
f-L
f后在单相交流无源负载或单相交流电网上获得高质量的正弦交流电压u
o或正弦交流电流i
o,储能电感L
1、L
2、…、L
n中的高频脉动电流i
L1、i
L2、…、i
Ln经输入滤波器L
i1-C
i1、L
i2-C
i2、…、L
in-C
in或C
i1、C
i2、…、C
in后在n路输入直流电源U
i1、U
i2、…、U
in中获得平滑的输入直流电流I
i1、I
i2、…、I
in。
多绕组同时/分时供电电流型单级多输入高频环节逆变器属于电流型(升压型)逆变器,n个输入源对负载同时或分时供电。这种逆变器的原理相当于多个电流型单输入逆变器在输出 端电流的叠加,即输出电压u
o与输入直流电压(U
i1、U
i2、…、U
in)、高频变压器匝比(N
2/N
11、N
2/N
21、…、N
2/N
n1)、占空比(d
1、d
2、…、d
j、…、d
n)之间的关系为u
o=U
i1N
2/[N
11(1-d
1)]=U
i2N
2/[N
12(1-d
2)]=…=U
inN
2/[N
1n(1-d
n)]。对于适当的占空比(d
1、d
2、…、d
n)和高频变压器匝比(N
2/N
11、N
2/N
12、…、N
2/N
1n),输出电压u
o可以大于、等于或小于U
i1、U
i2、…、U
in,该逆变器中的高频变压器不但起到了提高逆变器运行的安全可靠性和电磁兼容性,更重要的是起到了匹配输出电压与输入电压的作用,即实现了逆变器的输出电压高于、等于或低于输入直流电压U
i1、U
i2、…、U
in的技术效果,其应用范围得到了大大拓宽。由于0<d
1、d
2、…、d
n<1,所以u
o>U
i1N
2/N
11、u
o>U
i2N
2/N
12、…、u
o>U
inN
2/N
1n,即输出直流电压u
o总是高于输入直流电压U
i1、U
i2、…、U
in分别与高频变压器匝比N
2/N
11、N
2/N
12、…、N
2/N
1n的乘积(U
i1N
2/N
11、U
i2N
2/N
12、…、U
inN
2/N
1n);由于所述逆变器属于单级电路结构,变压器有多个原绕组和一个副绕组且工作频率为高频,故将这类逆变器称为多绕组同时/分时供电电流型(升压型)单级多输入高频环节逆变器。该逆变器工作在同一占空比时,d
1=d
2=…=d
n,意味着n个输入源在一个高频开关周期内只存在同时对交流负载供电的单一模式;工作在不同占空比时,d
1≠d
2≠…≠d
n,意味着n个输入源在一个高频开关周期内存在同时和分时对交流负载供电的两种模式。
本发明所述的多绕组同时/分时供电电流型单级多输入高频环节逆变器,由于共用一个变压器和一个输出周波变换滤波电路,与直流变换器和逆变器两级级联构成的传统多输入逆变器的电路结构存在着本质上的区别。因此,本发明所述逆变器具有新颖性和创造性,并且具有输出与输入高频隔离、多输入电源不共地或共地、多输入电源同时或分时供电、电路拓扑简洁、单级功率变换、输入电压配制灵活、功率密度高、变换效率高(意味着能量损耗小)、输入电流纹波小、输出中小容量、成本低、应用前景广泛等优点,是一种理想的节能降耗型单级多输入逆变器,在大力倡导建设节能型、节约型社会的今天,更具有重要价值。
多绕组同时/分时供电电流型单级多输入高频环节逆变器电路拓扑族实施例,如图10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25所示。图10-17所示电路为多绕组同时/分时供电单向电流型单级多输入高频环节逆变器电路拓扑族实施例,属于单向功率流电路拓扑;图18-25所示电路为多绕组同时/分时供电双向电流型单级多输入高频环节逆变器电路拓扑族实施例,属于双向功率流电路拓扑。图10和图11所示推挽式电路、图12和图13所示推挽正激式电路、图14和15所示半桥式电路均由2n个能承受双向电压应力、单向电流应力的二象限高频功率开关和均分别由2、4个四象限高频功率开关实现,图16和图17所示全桥式电路均由4n个能承受双向电压应力、单向电流应力的二象限高频功率开关和分别由2、4个四象限高频功率开关实现;图 18和图19所示推挽式电路、图20和图21所示推挽正激式电路、图22和23所示半桥式电路均分别由2(n+1)、2(n+2)个能承受双向电压应力、双向电流应力的四象限高频功率开关实现,图24和图25所示全桥式电路分别由4(n+1/2)、4(n+1)个能承受双向电压应力、双向电流应力的四象限高频功率开关实现;图10-25所示电路均含n个能承受单向电压应力和双向电流应力的二象限高频箝位开关。需要补充说明的是,图10-25所示电路给出了输入滤波器为LC滤波器情形(图14、15、22、23所示半桥式电路的输入滤波电容为两个桥臂电容C
i11和C
i12、C
i21和C
i22、…、C
in1和C
in2),限于篇幅未给出输入滤波器为电容滤波器情形时的电路;图10-25所示电路仅画出了适用于交流电网负载的CL输出滤波器电路图,而未画出适用于无源交流负载的输出电容滤波器电路图;图10-25所示电路仅画出了对应图5所示电路结构的拓扑,而分别对应图6、7所示电路结构的附加储能电感旁路开关和小容量反激式高频环节能量回馈电路的拓扑却未画出。多绕组同时/分时供电单向与双向电流型单级多输入高频环节逆变器16种拓扑实施例的功率开关电压应力,如表1所示。表1中,U
o为输出电压有效值。推挽全波式、推挽正激全波式、半桥全波式、全桥全波式电路适用于低压大电流输出变换场合,推挽桥式、推挽正激桥式、半桥桥式、全桥桥式电路适用于高压小电流输出变换场合。该电路拓扑族适用于将多个不共地或共地、不稳定的输入直流电压变换成一个所需电压大小、稳定优质的输出交流电,可用来实现具有优良性能和广泛应用前景的新型单级多种新能源分布式供电系统,如光伏电池40-60VDC/220V50HzAC or 115V400HzAC、10kw质子交换膜燃料电池85-120V/220V50HzAC or 115V400HzAC、中小型户用风力发电24-36-48VDC/220V50HzAC or 115V400HzAC、大型风力发电510VDC/220V50HzAC or 115V400HzAC等多输入源对交流负载或交流电网供电。
表1 多绕组同时/分时供电单向与双向电流型单级多输入高频环节逆变器16种拓扑实施例的功率开关电压应力
能量管理控制策略对于多种新能源联合供电系统来说是至关重要的。由于存在多个输入源及相应的功率开关单元,因此需要对多个占空比进行控制,也就是存在多个控制自由度,这就为多种新能源的能量管理提供了可能性。多绕组同时/分时供电电流型单级多输入高频环节逆变器的能量管理控制策略,需同时具备输入源的能量管理、光伏电池和风力发电机等新能源发电设备的MPPT、输出电压(电流)控制三大功能,有时还需考虑蓄电池的充放电控制和系统在不同供电模式下的平滑无缝切换。多绕组同时/分时供电电流型单级多输入高频环节逆变器采用两种不同的能量管理模式:(1)能量管理模式I--主从功率分配方式,已知负载所需功率尽可能由主供电设备第1、2、…、n-1路输入源提供,给定第1、2、…、n-1路输入源的输入电流,相当于给定第1、2、…、n-1路输入源的输入功率,负载所需的不足功率由从供电设备第n路输入源提供,可以不需添加蓄电池储能设备;(2)能量管理模式II--最大功率输出方式,第1、2、…、n路输入源均以最大功率输出到负载,省去了蓄电池储能设备,实现了并网发电系统对能源充分利用的要求,若在输出端并接一个蓄电池充放电器还可实现独立供电系统输出电压(电流)的稳定。当n路新能源的输入电压均给定时,通过控制第1、2、…、n路输入源的输入电流,就相当于控制了第1、2、…、n路输入源的输入功率。
图10-15、18-23所示推挽式、推挽正激式、半桥式多绕组同时/分时供电单向和双向电流型单级多输入高频环节逆变器,只能工作在同一占空比供电方式;而图16、17、24、25所示全桥式多绕组同时/分时供电单向和双向电流型单级多输入高频环节逆变器,既可工作在同一占空比供电方式,也可工作在不同占空比供电方式。
以储能电感附加旁路开关的多绕组同时/分时供电单向电流型单级多输入高频环节逆变器工作在同一占空比供电方式为例,采用n路占空比相同的输出电压瞬时值反馈单周期移相控制策略,如图26、28所示。该逆变器是通过检测并反馈周波变换器与输出滤波电容之间的调制电流i
mf适时地调整逆变器的占空比以改善输出波形质量。输出电压反馈信号u
of与基准电压信号u
r经电压误差放大器得到u
e,调制电流反馈信号i
mf经绝对值电路和含高频复位功能的积分电路后得到电流平均值信号i
avg,i
avg与|u
e|比较得到高频PWM信号u
hf,u
hf和恒频时钟信号i
c分别作为RS触发器的复位端和置位端,RS触发器的输出端
作为积分电路的高频积分复位信号(即复位开关的控制信号),恒频时钟信号i
c经下降沿二分频率电路得到信号u
sy,u
r经过零比较电路后得到的极性选通信号u
k0,u
hf、u
sy、u
k0经合适的组合逻辑电路后用来控制功率开关S
11、S
21、…、S
n1、S
12、S
22、…、S
n2、S
13、S
23、…、S
n3、S
14、S
24、…、S
n4、S
c1、S
c2、…、S
cn、S
5(S′
5)、S
6(S′
6)、S
7(S′
7)、S
8(S′
8)。当第1路储能电感电流i
L1增大到电流限定值时,储能开关信号中止,旁路开关S
10、S
20、…、S
n0导通为储能电感提供 续流回路。
以附加反激式高频环节能量回馈电路的多绕组同时/分时供电双向电流型单级多输入高频环节逆变器工作在不同占空比供电方式为例,采用第1、2、…、n-1路输出功率固定和第n路补充负载所需的不足功率的输出电压、输入电流瞬时值反馈移相主从功率分配能量管理控制策略,如图27、29所示。第1、2、…、n-1路输入源经最大功率点计算后得到基准电流信号I
*
i1r、I
*
i2r、…、I
*
i(n-1)r,逆变器第1、2、…、n-1路的输入电流反馈信号I
i1f、I
i2f、…、I
i(n-1)f分别与第1、2、…、n-1路基准电流信号I
i1r、I
i2r、…、I
i(n-1)r经比例积分调节器比较放大,放大了的误差信号I
1e、I
2e、…、I
(n-1)e分别与同步信号u
e相乘后得i
1e、i
2e、…、i
(n-1)e,逆变器输出电压反馈信号u
of与基准正弦电压u
r经绝对值电路和比例积分调节器后得到u
e,i
1e、i
2e、…、i
(n-1)e、u
e分别与锯齿形载波u
c交截并考虑输出电压选通信号u
k0经适当的组合逻辑电路后得到功率开关S
11、S
21、…、S
n1、S
12、S
22、…、S
n2、S
13、S
23、…、S
n3、S
14、S
24、…、S
n4、S
c1、S
c2、…、S
cn、S
5(S′
5)、S
6(S′
6)、S
7(S′
7)、S
8(S′
8)的控制信号。需要补充说明的是,当输出正弦电压下降且|u
0|≤U
i1N
2/N
11期间,误差电压u
e小于零,过零比较器输出低电平信号,封锁了主功率通道功率开关的控制信号,启动了反激式高频环节能量回馈电路功率开关S
a1、S
a2、S′
a2的控制信号。当负载功率P
o大于第1、2、…、n-1路输入源的最大功率之和时,输出电压u
o减小,电压调节器输出电压u
e的有效值大于门槛比较电平U
t并且I
1e、I
2e、…、I
(n-1)e均大于零,二极管D
1、D
2、…、D
n-1阻断,第1、2、…、n-1路电流调节器与第n路电压调节器分别独立工作,即I
i1r=I
*
i1r、I
i2r=I
*
i2r、…、I
i(n-1)r=I
*
i(n-1)r,第1、2、…、n-1路电流调节器用于实现第1、2、…、n-1路输入源的最大功率输出,第n路电压调节器用于实现逆变器输出电压的稳定,n路输入源分时向负载供电;当负载功率P
o小于第1、2、…、n-1路输入源的最大功率之和时,输出电压u
o增大,当电压调节器输出电压u
e的有效值降低到门槛比较电平U
t以下时,二极管D
n-1导通,D
1、D
2、…、D
n-2仍阻断,滞环比较电路n+1输出低电平,第n路输入源中止供电,电压调节器与电流调节器构成双闭环控制系统,第1、2、…、n-1路输入源在一个开关周期内分时向负载供电,电流调节器的基准电流I
i(n-1)r减小,即I
i(n-1)r<I
*
i(n-1)r,第n-1路输入源输出功率降低(工作在非最大工作点),第n路输入源输出功率降为零,逆变器输出电压u
o趋于稳定。当输入电压或负载变化时,通过调节基准电压u
r或反馈电压u
of来改变误差电压信号u
e和误差电流信号i
1e、i
2e、…、i
(n-1)e,从而改变移相角θ
1、θ
2…θ
n,故可实现所述逆变器输出电压、输入电流(输出功率)的调节与稳定。
为了构成能充分利用多输入源能量的独立供电系统,多个输入源应工作在最大功率输出 方式且需要配置储能设备,以实现输出电压的稳定,即在逆变器的输出端并接一个单级隔离双向充放电变换器,如图30所示。所述单级隔离双向充放电变换器由输入滤波器(L
i、C
i或C
i)、高频逆变器、高频变压器、周波变换器、输出滤波器(L
f′、C
f′)依序级联构成,所述的周波变换器由能承受双向电压应力和双向电流应力的四象限高频功率开关构成。所述的单级隔离双向充放电变换器在能量正向传递(储能设备放电)、反向传递(储能设备充电)时,分别等效于一个单级高频环节DC-AC变换器和一个单级高频环节AC-DC变换器。
该独立供电系统采用具有单级隔离双向充放电变换器输出电压独立控制环路的最大功率输出能量管理控制策略,如图31所示。当负载功率P
o=U
oI
o大于多个输入源的最大功率之和P
1max+P
2max+…+P
nmax时,蓄电池、超级电容等储能设备通过单级隔离双向充放电变换器向负载提供所需的不足功率-供电模式II,储能设备单独向负载供电--供电模式III,属于供电模式II的极端情形;当负载功率P
o=U
oI
o小于多个输入源的最大功率之和P
1max+P
2max+…+P
nmax时,多个输入源输出的剩余能量通过单级隔离双向充放电变换器对储能设备充电-供电模式I。以带阻性负载为例,论述单级隔离双向充放电变换器的功率流向控制,如图32所示。对于输出滤波电容C
f、C
f′和负载Z
L来说,多绕组同时/分时供电电流型单级多输入高频环节逆变器和单级隔离双向充放电变换器的输出端并接相当于两个电流源的并联叠加。由图31所示能量管理控制策略可知,多绕组同时/分时供电电流型单级多输入高频环节逆变器的输出电流i
Lf的基波分量与输出电压u
o同频同相,输出有功功率;充放电变换器是通过输出电压u
o与基准电压u
oref的误差放大信号u
oe与高频载波交截生成SPWM信号进行控制,其输出滤波电感电流i
Lf′与u
o之间存在相位差θ,不同的相位差θ意味着输出不同大小和方向的有功功率。当P
o=P
1max+P
2max+…+P
nmax时,θ=90°,充放电变换器输出的有功功率为零,处于空载状态;当P
o>P
1max+P
2max+…+P
nmax时,u
o减小,θ<90°,充放电变换器输出有功功率,储能设备对负载放电,即储能设备提供负载所需的不足功率;当P
o<P
1max+P
2max+…+P
nmax时,u
o增大,θ>90°,充放电变换器输出负有功功率,负载向储能设备回馈能量,即多个输入源输出的剩余功率对储能设备充电,当θ=180°时负载向储能设备回馈的能量最大。因此,该能量管理控制策略能根据P
o与P
1max+P
2max+…+P
nmax的相对大小实时控制单级隔离双向充放电变换器的功率流大小和方向,实现了系统在三种不同供电模式下的平滑无缝切换。
Claims (3)
- 一种多绕组同时/分时供电电流型单级多输入高频环节逆变器,其特征在于:这种逆变器是由一个多输入单输出的高频变压器将多个相互隔离的、带有输入滤波器和储能电感的高频逆变电路和一个共用的输出周波变换滤波电路联接构成,多输入单输出高频变压器的每个输入端与每个高频逆变电路的输出端一一对应联接,多输入单输出高频变压器的输出端与输出周波变换滤波电路的周波变换器输入端相联接,所述的每个带有输入滤波器和储能电感的高频逆变电路均由输入滤波器、储能电感、单输入单输出高频逆变电路依序级联构成,所述的输出周波变换滤波电路由周波变换器、输出滤波器依序级联构成,所述的每个单输入单输出高频逆变电路均由能承受双向电压应力、单向电流应力的二象限高频功率开关构成或均由能承受双向电压应力、双向电流应力的四象限高频功率开关构成,所述的周波变换器由多个能承受双向电压应力、双向电流应力的四象限高频功率开关构成,所述逆变器的多个输入源在一个高频开关周期内同时或分时对负载供电。
- 根据权利要求1所述的多绕组同时/分时供电电流型单级多输入高频环节逆变器,其特征在于:所述多绕组同时/分时供电电流型单级多输入高频环节逆变器的电路拓扑为推挽全波单向式、推挽全桥单向式、推挽正激全波单向式、推挽正激全桥单向式、半桥全波单向式、半桥全桥单向式、全桥全波单向式、全桥全桥单向式、推挽全波双向式、推挽全桥双向式、推挽正激全波双向式、推挽正激全桥双向式、半桥全波双向式、半桥全桥双向式、全桥全波双向式、全桥全桥双向式电路。
- 根据权利要求1所述的多绕组同时/分时供电电流型单级多输入高频环节逆变器,其特征在于:所述多绕组同时/分时供电电流型单级多输入高频环节逆变器的输出端并接一个储能设备的单级隔离双向充放电变换器,以构成一个输出电压稳定的独立供电系统;所述的单级隔离双向充放电变换器由输入滤波器、高频逆变器、高频变压器、周波变换器、输出滤波器依序级联构成,所述的周波变换器由能承受双向电压应力和双向电流应力的四象限高频功率开关构成;多个输入源均工作在最大功率输出方式,根据负载功率与多个输入源最大功率之和的相对大小实时控制单级隔离双向充放电变换器的功率流大小和方向,实现系统输出电压稳定和储能设备充放电的平滑无缝切换。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/622,280 US11128236B2 (en) | 2018-01-09 | 2018-12-06 | Multi-winding single-stage multi-input boost type high-frequency link's inverter with simultaneous/time-sharing power supplies |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810019752.0A CN107994799A (zh) | 2018-01-09 | 2018-01-09 | 多绕组同时/分时供电电流型单级多输入高频环节逆变器 |
CN201810019752.0 | 2018-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019136577A1 true WO2019136577A1 (zh) | 2019-07-18 |
Family
ID=62040762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/000411 WO2019136577A1 (zh) | 2018-01-09 | 2018-12-06 | 多绕组同时/分时供电电流型单级多输入高频环节逆变器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11128236B2 (zh) |
CN (1) | CN107994799A (zh) |
WO (1) | WO2019136577A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115882733A (zh) * | 2023-02-21 | 2023-03-31 | 成都必控科技有限责任公司 | 一种全桥开关电源和推免式开关电源复合的拓扑电路 |
CN116565980A (zh) * | 2023-07-11 | 2023-08-08 | 麦田能源股份有限公司 | 具有无功支撑的逆变系统及其控制方法 |
CN116683528A (zh) * | 2023-08-03 | 2023-09-01 | 合肥工业大学 | 基于电压源和电流源分时的并网逆变器融合控制方法 |
CN118100317A (zh) * | 2024-04-23 | 2024-05-28 | 南方电网调峰调频发电有限公司储能科研院 | 双馈可变速抽水蓄能机组协同控制系统及其控制方法 |
CN118214309A (zh) * | 2024-04-02 | 2024-06-18 | 湖南大学 | 一种单级式隔离型可升降压单相逆变器及其控制方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108199597A (zh) * | 2018-01-09 | 2018-06-22 | 青岛大学 | 具有级联磁集成开关感容网络的单级三相电压型逆变器 |
CN107994799A (zh) | 2018-01-09 | 2018-05-04 | 青岛大学 | 多绕组同时/分时供电电流型单级多输入高频环节逆变器 |
CN109546889B (zh) * | 2018-11-28 | 2020-04-24 | 厦门大学 | 一种分时复用的压电式能量收集装置 |
AT523238B1 (de) * | 2019-11-29 | 2024-07-15 | B & R Ind Automation Gmbh | Validierung von Phasenströmen eines Mehrphasensystems |
MX2022008009A (es) * | 2019-12-24 | 2022-10-10 | Sudip K Mazumder | Sistema de conversion de potencia de estado solido. |
CN110995035B (zh) * | 2019-12-25 | 2021-10-15 | 中国科学院电工研究所 | 基于非隔离逆变模块的高频逆变或整流拓扑及切换方法 |
CN112170148A (zh) * | 2020-08-18 | 2021-01-05 | 华南农业大学 | 一种超声功率直流偏置脉冲激励电源 |
CN112421951B (zh) * | 2020-11-09 | 2022-02-25 | 湖南大学 | 单相非隔离型逆变器及其控制方法 |
CN112448461A (zh) * | 2020-11-13 | 2021-03-05 | 成都天进仪器有限公司 | 一种大信号电源与小信号电源分时供电的波形发生器设备 |
CN112615417A (zh) * | 2020-12-18 | 2021-04-06 | 合肥赛光电源科技有限公司 | 一种风力发电机低风速时最大功率输出装置及其输出方法 |
KR102619173B1 (ko) * | 2020-12-21 | 2024-01-03 | 현대모비스 주식회사 | 양방향 절연형 대용량 dc-dc 컨버터 및 그 제어방법 |
WO2023066485A1 (en) * | 2021-10-21 | 2023-04-27 | Huawei Digital Power Technologies Co., Ltd. | Power conversion system for connecting photovoltaic plant to electric grid |
CN115241966B (zh) * | 2022-06-20 | 2024-01-12 | 北京百度网讯科技有限公司 | 变频控制方法、装置及系统 |
CN115441768B (zh) * | 2022-09-26 | 2024-09-03 | 国网福建省电力有限公司 | 一种变拓扑的宽输入电压逆变系统 |
CN115588990A (zh) * | 2022-12-08 | 2023-01-10 | 锦浪科技股份有限公司 | 一种风光柴储一体机的辅助电源磁集成变压器 |
CN115864874A (zh) * | 2022-12-13 | 2023-03-28 | 阳光电源股份有限公司 | 微型逆变器及其调制方法 |
CN116470602B (zh) * | 2023-03-14 | 2023-11-28 | 中子高新技术产业发展(重庆)有限公司 | 一种耦合二次电容的平稳功率同位素电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101534061A (zh) * | 2009-04-09 | 2009-09-16 | 福州大学 | 双隔离升压型多输入直流变换器 |
CN101267167B (zh) * | 2008-01-09 | 2010-07-21 | 福州大学 | 升压型高频链逆变器 |
US8189351B2 (en) * | 2007-02-23 | 2012-05-29 | Astec International Limited | Multi-input DC/DC converters with zero-current switching |
CN107493027A (zh) * | 2017-09-13 | 2017-12-19 | 燕山大学 | 一种单相推挽正激式高频链矩阵逆变器拓扑的调制方法 |
CN107994799A (zh) * | 2018-01-09 | 2018-05-04 | 青岛大学 | 多绕组同时/分时供电电流型单级多输入高频环节逆变器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101534057B (zh) * | 2009-04-09 | 2012-06-06 | 福州大学 | 双隔离升降压型多输入直流变换器 |
-
2018
- 2018-01-09 CN CN201810019752.0A patent/CN107994799A/zh not_active Withdrawn
- 2018-12-06 US US16/622,280 patent/US11128236B2/en active Active
- 2018-12-06 WO PCT/CN2018/000411 patent/WO2019136577A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8189351B2 (en) * | 2007-02-23 | 2012-05-29 | Astec International Limited | Multi-input DC/DC converters with zero-current switching |
CN101267167B (zh) * | 2008-01-09 | 2010-07-21 | 福州大学 | 升压型高频链逆变器 |
CN101534061A (zh) * | 2009-04-09 | 2009-09-16 | 福州大学 | 双隔离升压型多输入直流变换器 |
CN107493027A (zh) * | 2017-09-13 | 2017-12-19 | 燕山大学 | 一种单相推挽正激式高频链矩阵逆变器拓扑的调制方法 |
CN107994799A (zh) * | 2018-01-09 | 2018-05-04 | 青岛大学 | 多绕组同时/分时供电电流型单级多输入高频环节逆变器 |
Non-Patent Citations (1)
Title |
---|
QUI YANHUI ET AL.: "Multi-Winding Simultaneaously-Supplying DC-DC Converter Mode Multi-Input inverter", TRANSACTIONS OF CHINA ELECTRICAL SOCIETY, vol. 32, no. 6, 31 March 2017 (2017-03-31), pages 182 - 190 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115882733A (zh) * | 2023-02-21 | 2023-03-31 | 成都必控科技有限责任公司 | 一种全桥开关电源和推免式开关电源复合的拓扑电路 |
CN116565980A (zh) * | 2023-07-11 | 2023-08-08 | 麦田能源股份有限公司 | 具有无功支撑的逆变系统及其控制方法 |
CN116565980B (zh) * | 2023-07-11 | 2023-09-19 | 麦田能源股份有限公司 | 具有无功支撑的逆变系统及其控制方法 |
CN116683528A (zh) * | 2023-08-03 | 2023-09-01 | 合肥工业大学 | 基于电压源和电流源分时的并网逆变器融合控制方法 |
CN116683528B (zh) * | 2023-08-03 | 2023-10-27 | 合肥工业大学 | 基于电压源和电流源分时的并网逆变器融合控制方法 |
CN118214309A (zh) * | 2024-04-02 | 2024-06-18 | 湖南大学 | 一种单级式隔离型可升降压单相逆变器及其控制方法 |
CN118100317A (zh) * | 2024-04-23 | 2024-05-28 | 南方电网调峰调频发电有限公司储能科研院 | 双馈可变速抽水蓄能机组协同控制系统及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US11128236B2 (en) | 2021-09-21 |
US20200136524A1 (en) | 2020-04-30 |
CN107994799A (zh) | 2018-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019136577A1 (zh) | 多绕组同时/分时供电电流型单级多输入高频环节逆变器 | |
WO2019136576A1 (zh) | 串联同时供电正激直流斩波型单级多输入高频环节逆变器 | |
WO2019136574A1 (zh) | 外置并联分时选择开关电压型单级多输入低频环节逆变器 | |
Liu et al. | Cascade dual-boost/buck active-front-end converter for intelligent universal transformer | |
CN101534059B (zh) | 单隔离降压型多输入直流变换器 | |
Ngo et al. | A single-phase bidirectional dual active half-bridge converter | |
Hu et al. | Ultrahigh step-up DC–DC converter for distributed generation by three degrees of freedom (3DoF) approach | |
EP3637611B1 (en) | Voltage-type single-stage multi-input high frequency link inverter having built-in parallel time-sharing selection switches | |
WO2013000185A1 (zh) | 并网逆变装置 | |
CN108199603B (zh) | 多绕组分时供电隔离反激直流斩波型单级多输入逆变器 | |
CN108092538A (zh) | 并联分时供电隔离反激直流斩波型单级多输入逆变器 | |
Yang et al. | Single-phase high-gain bidirectional dc/ac converter based on high step-up/step-down dc/dc converter and dual-input dc/ac converter | |
CN108111044B (zh) | 外置并联分时选择开关隔离反激周波型单级多输入逆变器 | |
TWM408678U (en) | Photovoltaic powered system | |
CN108023497B (zh) | 串联同时供电正激周波变换型单级多输入高频环节逆变器 | |
CN108199602B (zh) | 多绕组分时供电正激直流斩波型单级多输入高频链逆变器 | |
CN108023496B (zh) | 串联同时选择开关电压型单级多输入低频环节逆变器 | |
CN108054946B (zh) | 内置并联分时选择开关电压型单级多输入低频环节逆变器 | |
Zhang et al. | An optimized single-stage isolated phase-shifted full-bridge based Swiss-rectifier | |
CN116388599A (zh) | 同时供电型单级工频环节新能源多端口集成供电系统 | |
CN116470783A (zh) | 分时供电型单级低频链新能源多端口集成供电系统 | |
Lu et al. | A dual-active-bridge converter-based high step-up converter with voltage-multiplier for high-efficiency PV application | |
CN108092540B (zh) | 串联同时供电隔离反激直流斩波型单级多输入逆变器 | |
Barbosa et al. | Single-stage single-phase AC/DC converter with high frequency isolation feasible to microgeneration | |
CN108199599B (zh) | 外置并联分时选择开关电压型单级多输入高频环节逆变器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18900221 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18900221 Country of ref document: EP Kind code of ref document: A1 |