[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019117072A1 - ポリアミド樹脂組成物 - Google Patents

ポリアミド樹脂組成物 Download PDF

Info

Publication number
WO2019117072A1
WO2019117072A1 PCT/JP2018/045270 JP2018045270W WO2019117072A1 WO 2019117072 A1 WO2019117072 A1 WO 2019117072A1 JP 2018045270 W JP2018045270 W JP 2018045270W WO 2019117072 A1 WO2019117072 A1 WO 2019117072A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
stress
polyamide
measurement method
Prior art date
Application number
PCT/JP2018/045270
Other languages
English (en)
French (fr)
Inventor
敦史 山下
哲也 安井
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN201880080131.1A priority Critical patent/CN111448257B/zh
Priority to EP18889084.2A priority patent/EP3725848A4/en
Priority to JP2019537410A priority patent/JP7328894B2/ja
Publication of WO2019117072A1 publication Critical patent/WO2019117072A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • B29C49/0411Means for defining the wall or layer thickness
    • B29C49/04114Means for defining the wall or layer thickness for keeping constant thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials

Definitions

  • the present invention relates to a polyamide resin composition.
  • Polyamide resins are developed in various applications as engineering plastics because of their excellent mechanical properties, heat resistance and chemical resistance, and are used by various molding methods. Among them, the use as a blow molded article by blow molding is also advanced.
  • a polyamide resin composition containing a polyamide resin, a polyphenylene sulfide resin, an ethylene-based ionomer resin and an olefin-based elastomer resin has been proposed, and is considered to be excellent in blow moldability and low temperature toughness (for example, patent documents 1).
  • a polyamide resin composition containing an aromatic polyamide resin, an impact modifier and a stabilizer has been proposed, and it is supposed that a blow-molded article having a smooth surface appearance can be obtained (see, for example, Patent Document 2).
  • JP 2007-204675 A Japanese Patent Application Publication No. 2006-523763
  • An object of the present invention is to provide a polyamide resin composition which is excellent in blow moldability and excellent in impact resistance at low temperature while maintaining a good surface appearance of a molded article.
  • the present invention relates to, for example, the following.
  • a polyamide resin composition comprising 40 to 85 parts by mass of polyamide (A) and 10 to 20 parts by mass of impact resistant material (B) in 100 parts by mass of the polyamide resin composition,
  • Stress relaxation measurement method The sample was placed in a measurement cell, strain was applied and stopped while melting the sample under the following conditions, and then stress ⁇ (t) [Pa] at an elapsed time t [s] was measured.
  • Measurement cell Parallel plate ( ⁇ 25 mm) Parallel plate distance: 1.5 mm
  • Melting temperature conditions 250 ° C
  • Load strain 100% [2]
  • a polyamide resin composition comprising 40 to 85 parts by mass of polyamide (A) and 10 to 20 parts by mass of impact resistant material (B) in 100 parts by mass of the polyamide resin composition,
  • the polyamide resin composition which satisfy
  • the impact resistant material (B) is (ethylene and / or propylene) / ⁇ -olefin copolymer, and (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturation)
  • the polyamide resin composition according to any one of [1] to [6], which is at least one selected from the group consisting of carboxylic acid ester-based copolymers.
  • the polyamide resin composition which is excellent in the impact resistance in low temperature can be provided.
  • the first aspect of the polyamide resin composition of the present invention is A polyamide resin composition comprising 40 to 85 parts by mass of polyamide (A) and 10 to 20 parts by mass of impact resistant material (B) in 100 parts by mass of the polyamide resin composition,
  • the second aspect of the polyamide resin composition of the present invention is A polyamide resin composition comprising 40 to 85 parts by mass of polyamide (A) and 10 to 20 parts by mass of impact resistant material (B) in 100 parts by mass of the polyamide resin composition,
  • the polyamide resin (A) contained in the polyamide resin composition contains at least one member selected from the group consisting of aliphatic polyamide (A-1) and aromatic polyamide (A-2), and is aliphatic It is preferable to use the polyamide (A-1) and the aromatic polyamide (A-2) in combination.
  • Aliphatic Polyamides include aliphatic homopolyamides and aliphatic copolyamides.
  • (A-1-1) Aliphatic Homopolyamide Aliphatic homopolyamide (A-1-1) is a polyamide resin comprising one type of structural unit.
  • the aliphatic homopolyamide (A-1-1) may be composed of at least one of a lactam and an aminocarboxylic acid which is a hydrolyzate of the lactam, and one diamine and one dicarboxylic acid. It may consist of a combination with an acid.
  • lactams include ⁇ -caprolactam, enanthate lactams, undecane lactams, dodecane lactams, ⁇ -pyrrolidone, and ⁇ -piperidone. Among them, from the viewpoint of polymerization production, one selected from the group consisting of ⁇ -caprolactam, undecane lactam and dodecane lactam is preferable.
  • the aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid. Among them, from the viewpoint of polymerization production, one selected from the group consisting of 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid is preferable.
  • diamine ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, peptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, tetradecanediamine Pentadecanediamine, hexadecanediamine, heptadecanediamine, octadecanediamine, nonadecanediamine, eicosane diamine, 2-methyl-1,8-octanediamine, 2,2,4 / 2,4,4-trimethylhexamethylene diamine etc Aliphatic diamines; 1,3- / 1,4-cyclohexyldiamine, bis (4-aminocyclohexyl) methane, bis (4-aminocyclohexyl) propane, bis ( -Methyl-4-aminocyclohex;
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecane Aliphatic dicarboxylic acids such as dioic acid, hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid; 1,3- / 1,4-cyclohexanedicarboxylic acid, dicyclohexanemethane-4,4'-dicarboxylic acid, norbornane dicarboxylic acid Etc.
  • aliphatic dicarboxylic acids are preferable, one selected from the group consisting of adipic acid, sebacic acid and dodecanedioic acid is more preferable, and sebacic acid or dodecanedioic acid is more preferable.
  • the aliphatic homopolyamide (A-1-1) is preferably at least one selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610 and polyamide 612 from the viewpoint of polymerization productivity. , At least one selected from polyamide 6, polyamide 11, polyamide 12, polyamide 610 and polyamide 612 is more preferable, and polyamide 6 is more preferable.
  • polymerization As a production apparatus of aliphatic homopolyamide (A-1-1), batch type reaction kettle, single tank type or multi tank type continuous reaction apparatus, tubular continuous reaction apparatus, single screw type kneading extruder, twin screw type kneading extrusion
  • polymerization method polymerization can be repeated by repeating operations of normal pressure, reduced pressure and pressure, using known methods such as melt polymerization, solution polymerization and solid phase polymerization. These polymerization methods can be used alone or in combination as appropriate.
  • the relative viscosity of the aliphatic homopolyamide (A-1-1) is measured at 25 ° C. by dissolving 1 g of polyamide resin in 100 ml of 96% concentrated sulfuric acid according to JIS K-6920.
  • the relative viscosity of the aliphatic homopolyamide resin is preferably 2.7 or more, and more preferably 2.7 or more and 5.0 or less. Furthermore, from the viewpoint of improving the effect of the present invention, 2.7 or more and less than 4.5 are more preferable.
  • melt viscosity of the polyamide composition is not too low at 2.7 or more, the parison shape retention during blow molding is particularly good even in extrusion molding, and the melt of the polyamide composition is 5.0 or less The viscosity is not too high, and a uniform thickness of the molten resin can be obtained during blow molding.
  • the terminal amino group concentration of the aliphatic homopolyamide (A-1-1) is dissolved in a mixed solvent of phenol and methanol and determined by neutralization titration.
  • the terminal amino group concentration of the aliphatic homopolyamide (A-1-1) is preferably 30 ⁇ mol / g or more, and more preferably 30 ⁇ mol / g or more and 50 ⁇ mol / g or less.
  • the content of the aliphatic homopolyamide (A-1-1) in the total amount of 100 parts by mass of the aliphatic polyamide resin (A-1) is, for example, 30 parts by mass or more and 100 parts by mass or less, preferably 40 parts by mass or more and 100 parts by mass or less, and more preferably 50 parts by mass or more and 90 parts by mass or less.
  • the polyamide resin composition may contain two or more aliphatic homopolyamides (A-1-1).
  • the two or more aliphatic homopolyamides (A-1-1) may be structural units different from each other, or may be different in molecular weight (for example, number average molecular weight).
  • molecular weight for example, number average molecular weight.
  • the relative viscosity of the polyamide resin (A) is preferably measured in the above contents, When the relative viscosity and the mixing ratio of each are known, an average value calculated by adding the values obtained by multiplying the relative viscosity and the mixing ratio may be used as the relative viscosity of the polyamide resin (A).
  • the aliphatic copolymerized polyamide (A-1-2) is a polyamide resin composed of two or more structural units.
  • the aliphatic copolymerized polyamide (A-1-2) is a copolymer of two or more monomers selected from the group consisting of a combination of a diamine and a dicarboxylic acid, and a lactam or an aminocarboxylic acid.
  • the combination of diamine and dicarboxylic acid is regarded as one kind of monomer in combination of one kind of diamine and one kind of dicarboxylic acid.
  • diamine ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, peptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, tetradecanediamine Pentadecanediamine, hexadecanediamine, heptadecanediamine, octadecanediamine, nonadecanediamine, eicosane diamine, 2-methyl-1,8-octanediamine, 2,2,4 / 2,4,4-trimethylhexamethylene diamine etc Aliphatic diamines; 1,3- / 1,4-cyclohexyldiamine, bis (4-aminocyclohexyl) methane, bis (4-aminocyclohexyl) propane, bis (3 Methyl-4-aminocyclohexyl
  • the diamine is preferably at least one selected from the group consisting of these, and from the viewpoint of polymerization productivity, at least one selected from the group consisting of aliphatic diamines is preferable, and selected from the group consisting of linear aliphatic diamines At least one of the foregoing is more preferred, and hexamethylene diamine is more preferred. These diamines may be used alone or in combination of two or more.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecane Aliphatic dicarboxylic acids such as dioic acid, hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid; 1,3- / 1,4-cyclohexanedicarboxylic acid, dicyclohexanemethane-4,4'-dicarboxylic acid, norbornane dicarboxylic acid And alicyclic dicarboxylic acids.
  • the dicarboxylic acid is preferably at least one selected from the group consisting of these. These dicarboxylic
  • lactams include ⁇ -caprolactam, enanthate lactams, undecane lactams, dodecane lactams, ⁇ -pyrrolidone, and ⁇ -piperidone.
  • examples of the aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • at least one selected from the group consisting of 6-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid is preferable from the viewpoint of polymerization production.
  • polyamide 6/66 at least one selected from the group consisting of polyamide 6/66, polyamide 6/12 and polyamide 6/66/12 is preferable from the viewpoint of productivity, and polyamide 6/66 and polyamide 6/66/12 Is more preferred, and polyamide 6/66 is particularly preferred.
  • polyamide 6/66 and polyamide 6/66/12 Is more preferred, and polyamide 6/66 is particularly preferred.
  • These aliphatic copolymerized polyamides (A-1-2) can be used alone or as a mixture of two or more.
  • polymerization As a production apparatus of aliphatic copolyamide (A-1-2), batch type reaction kettle, single tank type or multi tank type continuous reaction apparatus, tubular continuous reaction apparatus, single screw type kneading extruder, twin screw type kneading Well-known polyamide manufacturing apparatuses, such as kneading reaction extruders, such as an extruder, are mentioned.
  • polymerization method polymerization can be repeated by repeating operations of normal pressure, reduced pressure and pressure, using known methods such as melt polymerization, solution polymerization and solid phase polymerization. These polymerization methods can be used alone or in combination as appropriate.
  • the relative viscosity of the aliphatic copolyamide (A-1-2) is not particularly limited, but from the viewpoint of improving the effect of the present invention, 1 g of polyamide resin is dissolved in 100 ml of 96% concentrated sulfuric acid according to JIS K-6920. And the relative viscosity measured at 25 ° C. is preferably 1.8 or more and 5.0 or less.
  • the terminal amino group concentration of the aliphatic copolymerized polyamide (A-1-2) is dissolved in a mixed solvent of phenol and methanol and determined by neutralization titration.
  • the terminal amino group concentration of the aliphatic copolyamide (A-1-2) is preferably 30 ⁇ mol / g or more, and more preferably 30 ⁇ mol / g or more and 50 ⁇ mol / g or less.
  • the total content of the aliphatic polyamide (A-1) contained in 100 parts by mass of the polyamide resin (A) is, for example, 50 parts by mass or more 70 parts by mass or more is preferable, and 90 parts by mass or more is more preferable.
  • aromatic polyamide resin is an aromatic polyamide resin containing at least one component of an aromatic monomer component, and, for example, an aliphatic dicarboxylic acid and an aromatic diamine, or an aromatic dicarboxylic acid and a fat It is a polyamide resin obtained by polycondensation using a group diamine as a raw material.
  • the aromatic polyamide (A-2) has the effect of increasing the melt viscosity and the effect of suppressing the crystallization rate.
  • aromatic diamine examples include metaxylylene diamine and paraxylylene diamine.
  • aromatic dicarboxylic acid examples include naphthalene dicarboxylic acid, terephthalic acid, isophthalic acid and phthalic acid.
  • polyamide 9T polynonane methylene terephthalamide
  • polyamide 6T polyhexamethylene isophthalamide
  • polyamide 6I polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer
  • Polyamide 66 / 6T polyhexamethylene terephthalamide / polycaproamide copolymer
  • polyamide 6T polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer
  • polyamide 66 / 6I polyhexamethylene isophthalamide / Polycaproamide copolymer
  • polyamide 6I polydodecamide / polyhexamethylene terephthalamide copolymer
  • polyamide 12 / 6T polyhexamethylene adipa / Polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer
  • Particularly useful aromatic polyamides (A-2) used in the present invention include non-crystalline partially aromatic copolymerized polyamide resins containing at least two components of aromatic monomer components.
  • non-crystalline partially aromatic copolymerized polyamide resin non-crystalline polyamide having a glass transition temperature of 100 ° C. or higher determined by the peak temperature of loss elastic modulus at the time of drying obtained by measurement of dynamic viscoelasticity is preferable.
  • non-crystalline means that the heat of crystal fusion measured by differential scanning calorimeter (DSC) is 1 cal / g or less.
  • non-crystalline partially aromatic copolymerized polyamide resin one comprising an aromatic dicarboxylic acid consisting of 40 to 95 mol% of terephthalic acid component unit and 5 to 60 mol% of isophthalic acid component unit and an aliphatic diamine is preferable.
  • Preferred combinations include equimolar salts of hexamethylene diamine and terephthalic acid and equimolar salts of hexamethylene diamine and isophthalic acid.
  • the degree of polymerization of the (A-2) aromatic polyamide resin in the present invention is not particularly limited, but according to JIS K 6810, the concentration in 98% sulfuric acid 1%, (A-2) aromatic polyamide resin was measured at 25 ° C.
  • the relative viscosity is preferably 1.5 to 4.0, more preferably 1.8 to 3.0.
  • the total content of the aromatic polyamide (A-2) contained in 100 parts by mass of the polyamide resin (A) is, for example, less than 50 parts by mass And preferably less than 30 parts by mass, and more preferably less than 10 parts by mass.
  • the polyamide resin (A) is prepared by dissolving 1 g of polyamide resin in 100 ml of 96% concentrated sulfuric acid according to JIS K-6920, and the relative viscosity measured at 25 ° C. is 2.7 or more; It is preferable that it is 0 or less. Furthermore, from a viewpoint of improving the effect of the present invention, 2.7 or more and less than 4.5 are more preferable.
  • the viscosity is 2.7 or more, the melt viscosity of the polyamide composition is not too low, so that the parison shape retention during blow molding is particularly good even in extrusion molding.
  • uniform thickness thickness of molten resin is obtained at the time of blow molding, without too high melt viscosity of a polyamide composition.
  • the polyamide resin (A) comprises two or more polyamide resins having different relative viscosities (eg, at least one aliphatic homopolyamide (A-1-1) and at least one aliphatic copolymerized polyamide (A-1-).
  • the relative viscosity in the polyamide resin (A) is preferably measured in the above contents, but if the relative viscosity and the mixing ratio of each polyamide resin are known, the respective relative viscosity An average value calculated by totaling the value obtained by multiplying the above by the mixing ratio may be used as the relative viscosity of the polyamide resin (A).
  • the terminal amino group concentration of the polyamide resin (A) is dissolved in a mixed solvent of phenol and methanol and is 30 ⁇ mol / g or more as the terminal amino group concentration determined by neutralization titration
  • the range is preferably 30 ⁇ mol / g or more and 110 ⁇ mol / g or less, and more preferably 30 ⁇ mol / g or more and 70 ⁇ mol / g or less. If it is 30 ⁇ mol / g or more, the reactivity with the impact resistant material (B) is good, and the melt viscosity and the impact resistance can be sufficiently obtained. Further, at 110 ⁇ mol / g or less, the melt viscosity is not too high, and the moldability is good.
  • the polyamide resin (A) comprises two or more kinds of polyamide resins having different terminal amino group concentration (for example, at least one aliphatic homopolyamide (A-1-1) and at least one aliphatic copolyamide (A-) In the case of including 1-2)), the terminal amino group concentration in the polyamide resin (A) is preferably measured by the above-mentioned neutralization measurement, but the terminal amino group concentration of each polyamide resin and the mixing ratio thereof are found In this case, the terminal amino group concentration of the polyamide resin (A) may be an average value calculated by summing the values obtained by multiplying the respective terminal amino group concentrations by the mixing ratio.
  • the terminal amino group concentration in the polyamide resin (A) may be an average value calculated by summing the values obtained by multiplying the respective terminal amino group concentrations by the mixing ratio.
  • the polyamide resin (A) is 40 to 85 parts by mass, preferably 50 to 85 parts by mass, more preferably 60 to 85 parts by mass, still more preferably 65 to 84 parts by mass, particularly preferably 100 parts by mass of the polyamide resin composition. Is contained in 65 to 75 parts by mass.
  • a gas barrier property is favorable in the content rate of a polyamide resin (A) being 40 mass parts or more, and a low temperature physical property and blow moldability are favorable in it being 85 mass parts or less.
  • the polyamide resin composition comprises at least one impact resistant material (B).
  • the impact resistant material includes a rubbery polymer.
  • the impact resistant material preferably has a flexural modulus of 500 MPa or less measured in accordance with ASTM D-790.
  • the impact resistant material (B) is preferably an ethylene / ⁇ -olefin copolymer.
  • the (ethylene and / or propylene) / ⁇ -olefin copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an ⁇ -olefin having 3 or more carbon atoms or 4 or more carbon atoms.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1 1-Tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl -1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3 And -ethyl-1-hexene, 9-methyl-1-decene,
  • the copolymer may be one obtained by copolymerizing a polyene such as non-conjugated diene.
  • a polyene such as non-conjugated diene.
  • non-conjugated dienes 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, 2- Methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 4,8-dimethyl-1, 4,8-decatriene (DMDT), dicyclopentadiene, cyclohexadiene, cyclooctadiene, 5-vinyl norbornene, 5-ethylidene-2-norborn
  • the (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer comprises ethylene and / or propylene and an ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated It is a polymer obtained by copolymerizing a saturated carboxylic acid ester monomer.
  • the ⁇ , ⁇ -unsaturated carboxylic acid monomer include acrylic acid and methacrylic acid.
  • ⁇ -unsaturated carboxylic acid ester monomers methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, nonyl ester, decyl ester of these unsaturated carboxylic acids Etc. These may be used alone or in combination of two or more.
  • the carboxylic ester) copolymer is a polymer modified with a carboxylic acid and / or a derivative thereof. By modifying with such a component, a functional group having affinity to the polyamide resin (A) will be contained in the molecule.
  • Examples of functional groups having affinity to the polyamide resin (A) include carboxy group, acid anhydride group, carboxylic acid ester group, carboxylic acid metal salt, carboxylic acid imide group, carboxylic acid amide group, epoxy group and the like.
  • Examples of compounds containing these functional groups include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4-cyclohexene-1,2-dicarboxylic acid.
  • ester copolymer is a polymer modified with a carboxylic acid and / or a derivative thereof, and is preferably a polymer modified with an unsaturated carboxylic acid or an acid anhydride thereof or the like.
  • the content of the acid anhydride group in the impact resistant material (B) is more than 25 ⁇ mol / g and less than 100 ⁇ mol / g, preferably 35 ⁇ mol / g to less than 95 ⁇ mol, and more preferably 40 ⁇ mol / g to 90 ⁇ mol / g. If the content exceeds 25 ⁇ mol / g, a composition having a high melt viscosity can be obtained, and a target thickness dimension can be obtained in blow molding. Also, if the content is less than 100 ⁇ mol / g, the melt viscosity is not too high, and the load on the extruder can be suppressed to achieve good molding and processing.
  • the acid anhydride group content of the impact resistant material (B) is determined by neutralization titration with 0.1 N KOH ethanol solution using phenolphthalein as an indicator using a sample solution prepared using toluene and ethanol. It is measured by
  • the content of the acid anhydride group in the impact material (B) is toluene or ethanol. It is preferable to use phenolphthalein as an indicator and to measure by neutralization titration with 0.1 N KOH ethanol solution using the prepared sample solution, but the content of acid anhydride group of each impact resistant material and When the mixing ratio is known, an average value calculated by adding the content of each acid anhydride group and the mixing ratio is also used as the acid anhydride amount of the impact resistant material (B). Good.
  • the impact resistant material (B) preferably has a MFR of 0.1 g / 10 min or more and 10.0 g / 10 min or less measured at a temperature of 230 ° C. and a load of 2160 g in accordance with ASTM D1238.
  • MFR 0.1 g / 10 min or more
  • the melt viscosity of the polyamide resin composition does not become too high, for example, it is suppressed that the shape of the parison becomes unstable at the time of blow molding in extrusion molding, and the thickness of the molded body Tend to be more uniform.
  • the MFR is 10.0 g / 10 min or less, the drawdown of the parison is not too large, and good blow moldability tends to be obtained.
  • the impact resistant material (B) is contained in 10 to 20 parts by mass, preferably 15 to 20 parts by mass, more preferably 16 to 19 parts by mass, and still more preferably 17 to 18 parts by mass in 100 parts by mass of the polyamide resin composition. .
  • the content ratio of the impact resistant material (B) is in the above range, the gas barrier properties are good, and the low temperature physical properties and the blow moldability are good.
  • the polyamide resin composition also preferably contains a heat resistant agent (C).
  • the heat-resistant agent one capable of improving the heat resistance of the polyamide resin can be used, and an organic or inorganic heat-resistant agent can be used according to the purpose.
  • Inorganic heat resisting agent As a type of inorganic heat-resistant agent of heat-resistant agent, One is a metal compound (salt) belonging to the group I transition series element, and examples thereof include a halide, a sulfate, an acetate, a salicylate, a nicotinate or a stearate of this metal.
  • a halogenated salt of an alkali metal may be used alone or in combination with the metal compound (salt) belonging to the above-mentioned Group I transition series element. Specific examples thereof are potassium iodide, sodium iodide or potassium bromide.
  • nitrogen-containing compounds such as melamine, benganamine, dimethylol urea or cyanuric acid in combination.
  • the polyamide resin composition may contain, as a heat-resistant agent, at least one of organic-based antioxidants from the viewpoint of heat-welding characteristics and heat-resistant characteristics.
  • organic-based antioxidants from the viewpoint of heat-welding characteristics and heat-resistant characteristics.
  • the heat adhesion can be further improved while maintaining normal heat aging property, physical properties, melt viscosity and the like even when the interval time becomes long at the time of blow molding. It is considered that this is because, for example, the addition of the organic antioxidant suppresses the gelation due to the thermal deterioration of the impact resistant agent, thereby suppressing the nucleating action.
  • organic type antioxidant a phenol type antioxidant, phosphorus type antioxidant, sulfur type antioxidant etc. can be mentioned.
  • a hindered phenolic antioxidant is preferable, and a hindered phenol having a t-butyl group at the O-position is more preferable.
  • hindered phenols having a t-butyl group at the O-position are N, N'-hexamethylene bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide, pentaerythrityl) -Tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate ], 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetra Mention may be made of oxaspiro [
  • Preferred phosphorus-based antioxidants are phosphite compounds of hindered phenols and hypophosphite compounds of hindered phenols, and phosphite compounds of hindered phenols having a t-butyl group at the O position, O More preferred is a hypophosphorous acid ester compound of a hindered phenol having a t-butyl group at the position, and a phosphorous acid ester compound of a hindered phenol having a t-butyl group at the O position.
  • phosphite compounds of hindered phenols having a t-butyl group at the O-position are tris (2,4-di-t-butylphenyl) phosphite and bis (2,6-di-t Mention may be made of -butyl-4-methylphenyl) pentaerythritol diphosphite.
  • hypophosphorous acid ester compounds of hindered phenols having a t-butyl group at the O-position are mainly tetrakis (2,4-di-tert-butylphenoxy) -4,4-bifinyldiphosphine Mention may be made of the reaction products of bifinyl, phosphorus trichloride and 2,4-di-tert-butylphenol as constituents. At least one selected from the group consisting of these is preferred.
  • sulfur-based antioxidants mention may be made of distearyl-3,3-thiodipropionate, pentaerythrityl tetrakis (3-laurylthiopropionate), didodecyl (3,3'-thiodipropionate). Can. At least one selected from the group consisting of these is preferred.
  • the polyamide resin composition preferably contains at least one phenolic antioxidant from the viewpoint of thermal adhesion, and at least one phenolic antioxidant and at least one phosphorous antioxidant. It is more preferable to contain at least one selected from the group consisting of phosphite compounds of hindered phenols having a t-butyl group at the O-position and hindered phenols having a t-butyl group at the O-position. It is particularly preferable to include a hindered phenol having a t-butyl group at the O-position and a phosphite compound of a hindered phenol having a t-butyl group at the O-position.
  • the heat resistant agent (C) is preferably 0.01 to 1 part by mass, more preferably 0.05 to 0.9 parts by mass, and still more preferably 0.1 to 0.8 parts by mass in 100 parts by mass of the polyamide resin composition. Part is included. When the content ratio of the heat resistant agent (C) is in the above range, the heat resistance and the initial physical properties are good.
  • the polyamide resin composition preferably also contains an olefin-based ionomer (D).
  • the olefinic ionomer (D) is used as a molding improver.
  • the resin of the olefin ionomer (D) include (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer.
  • the (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer comprises ethylene and / or propylene and an ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated It is a polymer obtained by copolymerizing a saturated carboxylic acid ester monomer.
  • the ⁇ , ⁇ -unsaturated carboxylic acid monomer include acrylic acid and methacrylic acid.
  • ⁇ -unsaturated carboxylic acid ester monomers methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, nonyl ester, decyl ester of these unsaturated carboxylic acids Etc.
  • metal ions used in the ionomer include Na, K, Cu, Mg, Ca, Ba, Zn, Cd, Al, Fe, Co, Ni and the like.
  • ethylene-methacrylic acid copolymer ionomers are preferred.
  • the olefin-based ionomer (D) is preferably 1 to 25 parts by mass, more preferably 2 to 15 parts by mass, still more preferably 5 to 10 parts by mass, particularly preferably 5 to 100 parts by mass of the polyamide resin composition. 8 parts by mass are included.
  • the content ratio of the olefin ionomer (D) is in the above range, the thickness uniformity and the blow moldability become good.
  • the polyamide resin composition is a surfactant, a dye, a pigment, a fibrous reinforcing material, a particulate reinforcing material, a plasticizer, an antioxidant, a foaming agent, a weathering agent, a crystal nucleating agent, according to the purpose etc.
  • a crystallization accelerator, a mold release agent, a lubricant, an antistatic agent, a flame retardant, a flame retardant auxiliary, a functional agent such as a coloring agent, and the like may be appropriately contained.
  • the polyamide resin composition preferably contains an antioxidant.
  • the optional additive (E) preferably comprises 0.01 to 0.3 parts by mass, more preferably 0.05 to 0.2 parts by mass.
  • the polyamide resin composition has an absolute value
  • [Pa / s] of the stress change rate determined from the stress ⁇ (t) [Pa] obtained by the following stress relaxation measurement method. Formula (1) is satisfied at time t 0.1 [s].
  • the stress relaxation measurement was performed by the following method. The sample was placed in a measurement cell, strain was applied and stopped while melting the sample under the following conditions, and then stress ⁇ (t) [Pa] at an elapsed time t [s] was measured.
  • Measurement cell Parallel plate ( ⁇ 25 mm) Parallel plate distance: 1.5 mm Melting temperature conditions: 250 ° C Load strain: 100%
  • [Pa / s] is preferably less than 2.5 at an elapsed time t of 0.1 [s], and less than 2.2 It is more preferable that it is, and it is still more preferable that it is less than 2.0.
  • [Pa / s] may satisfy Formula (2) when the elapsed time is 0.05 ⁇ t ⁇ 0.1 [s], More preferably, the absolute value of the stress change rate
  • the parison retention characteristic is excellent and the blow moldability is excellent when the absolute value of the stress change rate
  • the stress ⁇ (t) [obtained by the above-mentioned stress relaxation measurement method]
  • the stress relaxation curve plotted as data of Pa] and elapsed time t [s] plotted as the elapsed time t logarithmically representing the x-axis and stress ⁇ (t) logarithmically representing the y-axis is represented by the equation (3)
  • the initial stress ⁇ 0 [Pa] in the formula (4) is preferably ⁇ 0 > 15000, more preferably ⁇ 0 > 20000, still more preferably ⁇ 0 > 25000, and ⁇ 0 > 30000. Is particularly preferred.
  • the stress ⁇ (t) obtained by the above-mentioned stress relaxation measurement method in addition to satisfying the above-mentioned formula (1) at the elapsed time t 0.1 [s].
  • the value obtained by dividing [Pa] by the parison length L [mm] obtained by the following parison length measurement method satisfies the formula (5) when the elapsed time t is 0.1 [s].
  • the parison chief was measured by the following method.
  • the stress ⁇ (t) [Pa] / the parison length L [mm] represents the stress (expansion force) which the polyamide resin composition extruded from the blow molding machine imparts in the direction perpendicular to the self-weight direction.
  • the first aspect of the polyamide resin composition further satisfy the second aspect. That is, in the first embodiment of the polyamide resin composition, the value obtained by dividing the stress ⁇ (t) [Pa] obtained by the above-mentioned stress relaxation measurement method by the parison length L [mm] obtained by the above-mentioned parison length measurement method It is preferable that the above equation (5) is satisfied when the elapsed time t is 0.1 [s].
  • the parison chief was measured by the following method. The length of the parison at the time when the entire volume of the polyamide resin composition in the accumulator head is extruded from the pressure-controlled accumulator head with the blow molding machine DA-50 (made by Plako Co., Ltd.) set to the following conditions It measured as [mm].
  • Cylinder temperature 250 ° C Die core diameter: 50 mm Die core outlet thickness: 2 mm
  • Accumulated discharge capacity 1000cc Accumulation discharge time: It is preferable to satisfy within 15 seconds.
  • the ⁇ (t) / L is preferably more than 15 and more preferably 17 or more.
  • the manufacturing method in particular of a polyamide resin composition is not restrict
  • a commonly known melt kneader such as a single- or twin-screw extruder, a Banbury mixer, a kneader, or a mixing roll is used.
  • any method may be used such as mixing the remaining raw materials using a side feeder during melt-kneading.
  • the polyamide resin composition has a melt viscosity which is excellent in moldability, and is excellent in the surface appearance of a molded product even when staying at the time of molding, so it can be suitably used for the production of a blow molded product by blow molding. Furthermore, it can be used suitably for manufacture of the extrusion molded article by extrusion molding.
  • blow molding may be performed after a parison is formed using a conventional blow molding machine.
  • the preferred resin temperature at the time of parison formation is preferably in the temperature range of 10 ° C. to 70 ° C. higher than the melting point of the polyamide resin composition.
  • the method for producing an extrusion-molded article from polyamide resin by extrusion molding is not particularly limited, and known methods can be used. It is also possible to carry out blow molding after coextrusion with a polyolefin such as polyethylene or other thermoplastic resin to obtain a multilayer structure.
  • the polyamide resin composition of the present invention can be used in either the outer layer or the inner layer.
  • the blow molded articles by blow molding and the extrusion molded articles by extrusion molding are not particularly limited, but spoilers, air intake ducts, intake manifolds, resonators, fuel tanks, gas tanks, fuel filler tubes, fuel delivery pipes, various other hoses and tubes ⁇
  • Various applications such as automobile parts such as tanks, electric tool housings, mechanical parts such as pipes, electric / electronic parts, household / office supplies, building materials related parts, furniture parts etc. are suitably listed.
  • the molded article of the polyamide resin composition of the present invention is excellent in gas barrier properties, it can be suitably used as a high pressure gas container.
  • blow moldability The blow moldability was confirmed using a blow molding machine JB105 manufactured by Japan Steel Works, Ltd. Measurement conditions are: cylinder temperature 250 ° C., screw rotation speed 30 rpm, 1 liter bottle, die core diameter 56 mm, die core outlet thickness 2 mm setting, resin is discharged from the accumulator head, then retained for 1 minute, The following criteria were evaluated.
  • Melt viscosity at a shear rate of 12.16 sec- 1 : 9000 Pa ⁇ s or more
  • Melt viscosity at a shear rate of 12.16 sec- 1 : less than 9000 Pa ⁇ s
  • ISO standard TYPE-A or TYPE-B test pieces were prepared by injection molding and used for data acquisition of mechanical properties.
  • the tensile yield stress, tensile yield strain and tensile breaking strain were measured at -60 ° C. using an Instron tensile tester model 5567 according to ISO 527-1.
  • Charpy impact strength according to ISO 179-1, Charpy impact tester No. 6 manufactured by Yasuda Seiki Co., Ltd.
  • the edgewise impact test was performed using a test piece with a thickness of 4 mm with an A-notch at 23 ° C. and ⁇ 40 ° C. using 258-PC.
  • Tm-Tc melting point
  • Tc crystallization temperature
  • Stress characteristics Use a melt visco-elasticity measuring device ARES (manufactured by TA Instruments), The sample was placed in a measurement cell, strain was applied and stopped while melting the sample under the following conditions, and then stress ⁇ (t) [Pa] at an elapsed time t [s] was measured.
  • Measurement cell Parallel plate ( ⁇ 25 mm) Parallel plate distance: 1.5 mm Melting temperature conditions: 250 ° C Load strain: 100%
  • Examples 1 to 6 and Comparative Examples 1 to 5 were measured by the following measurement methods.
  • Die core outlet thickness 2 mm
  • Examples 7 to 9 were measured by the following measurement methods.
  • Die core outlet thickness 2 mm
  • PA6 polyamide 6, product name "1030B” manufactured by Ube Industries, Ltd.
  • PA 6/66/12 polyamide 6/66/12, product name "6434B” manufactured by Ube Industries, Ltd.
  • PA 6/66 polyamide 6/66, product name " 5034B ", Ube Industries, Ltd.
  • aromatic PA6T / 6I: polyamide 6T / 6I, product name" Grivory G21 "EMS-CHEMIE (Japan) HDPE: high density polyethylene, product name" Hi-zex 8200B "prime polymer stock Made in company
  • m-EBR-1 Maleic anhydride-modified ethylene-butene copolymer, product name "MH5020” manufactured by Mitsui Chemicals, Inc.
  • m-EBR-2 Maleic anhydride-modified ethylene-butene copolymer, product name "MH5010” Mitsui Chemical Co., Ltd.
  • EBR ethylene-butene copolymer, product name "TX 610” Mitsui Chemical Co., Ltd.
  • CoEMA ethylene-methacrylic acid copolymer as resin, Zn as metal ion, ionomer, product name "HIMIRAN 1706" Mitsui-Dupont Chemical Co., Ltd.
  • Heat Resistant 1 manufactured by Maruberi Yuka Co., Ltd. 1: Phenolic antioxidant (N, N'-hexamethylene bis (3,5-di-t- Butyl-4-hydroxy-hydrocinnamamide) Heat resistant agent 2: phosphorus antioxidant (tris (2,4-di-t-butylphenyl) phosphite) Heat resistant agent 3: phenolic antioxidant (3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2 , 4,8,10-Tetraoxaspiro [5.5] undecane) Heat resistant agent 4: Sulfur-based antioxidant (pentaerythrityl tetrakis (3-laurylthiopropionate))

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

成形体の良好な表面外観を維持しながら、ブロー成形性に優れるとともに、低温下における耐衝撃性に優れるポリアミド樹脂組成物を提供する。 ポリアミド樹脂組成物100質量部中に、ポリアミド(A)を40~85質量部、耐衝撃材(B)を10~20質量部含むポリアミド樹脂組成物であって、 下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たし、 かつ下記応力緩和測定方法で得られた応力σ(t)[Pa]と経過時間t[s]のデータを、x軸を対数軸表記した経過時間t、y軸を対数軸表記した応力σ(t)としてプロットした応力緩和曲線において、式(3)で表される座標A(0.02、σ(0.02))と座標B(400、σ(400))とを通る直線のt=0における値である初期応力σ0[Pa]が式(4)を満たすポリアミド樹脂組成物。 [応力緩和測定方法] 試料を測定セルに挟み、下記条件で試料を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。 測定セル:パラレルプレート(Φ25mm)、パラレルプレート間距離:1.5mm、溶融温度条件:250℃、負荷ひずみ:100%

Description

ポリアミド樹脂組成物
 本発明は、ポリアミド樹脂組成物に関する。
 ポリアミド樹脂は、優れた機械的特性、耐熱性、耐薬品性を有することから、エンジニアリングプラスチックスとして様々な用途で展開され、様々な成形方法によって使用されている。そのなかで、ブロー成形によるブロー成形品としての利用も進んでいる。
 上記に関連して、ポリアミド樹脂とポリフェニレンサルファイド樹脂とエチレン系アイオノマー樹脂とオレフィン系エラストマー樹脂とを含むポリアミド樹脂組成物が提案され、ブロー成形性と低温靭性が優れるとされている(例えば、特許文献1参照)。また芳香族ポリアミド樹脂と衝撃改質剤と安定剤とを含むポリアミド樹脂組成物が提案され、平滑な表面外観を有するブロー成形体が得られるとされている(例えば、特許文献2参照)。
特開2007-204675号公報 特表2006-523763号公報
 従来技術のポリアミド樹脂組成物では、成形体の良好な表面外観と、ブロー成形に好適な溶融粘度とを両立させることが困難な場合があった。また、ブロー成形品は、ガスタンク用途などにも用いられることから、さらにガスバリア性や低温下でも耐衝撃性に優れることが求められている。
 本発明は、成形体の良好な表面外観を維持しながら、ブロー成形性に優れるとともに、低温下における耐衝撃性に優れるポリアミド樹脂組成物を提供することを課題とする。
 本発明は、例えば以下に関する。
[1]ポリアミド樹脂組成物100質量部中に、ポリアミド(A)を40~85質量部、耐衝撃材(B)を10~20質量部含むポリアミド樹脂組成物であって、
下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たし、
かつ下記応力緩和測定方法で得られた応力σ(t)[Pa]と経過時間t[s]のデータを、x軸を対数軸表記した経過時間t、y軸を対数軸表記した応力σ(t)としてプロットした応力緩和曲線において、式(3)で表される座標A(0.02、σ(0.02))と座標B(400、σ(400))とを通る直線のt=0における値である初期応力σ[Pa]が式(4)を満たすポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-M000005

[応力緩和測定方法]
試料を測定セルに挟み、下記条件で試料を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。
測定セル:パラレルプレート(Φ25mm)
パラレルプレート間距離:1.5mm
溶融温度条件:250℃
負荷ひずみ:100%
[2]前記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たす[1]のポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-M000006

[パリソン長測定方法]
ブロー成形機JB105(株式会社日本製鋼所製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
ダイコア径:56mm
ダイコア出口肉厚:2mm
[3]前記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たす[1]のポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-M000007

[パリソン長測定方法]
ブロー成形機DA-50(株式会社プラコー製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
ダイコア径:50mm
ダイコア出口肉厚:2mm
[4]ポリアミド樹脂組成物100質量部中に、ポリアミド(A)を40~85質量部、耐衝撃材(B)を10~20質量部含むポリアミド樹脂組成物であって、
下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たし、
かつ下記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たすポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-M000008

[応力緩和測定方法]
前記ポリアミド樹脂組成物を測定セルに挟み、下記条件で前記ポリアミド樹脂組成物を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。
測定セル:パラレルプレート(Φ25mm)
パラレルプレート間距離:1.5mm
溶融温度条件:250℃
負荷ひずみ:100%
[パリソン長測定方法]
ブロー成形機JB105(株式会社日本製鋼所製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
ダイコア径:56mm
ダイコア出口肉厚:2mm
[5]前記ポリアミド樹脂(A)が脂肪族ポリアミド(A-1)及び芳香族ポリアミド(A-2)から成る群から選ばれる少なくとも1種であるポリアミド樹脂である[1]~[4]のいずれかのポリアミド樹脂組成物。
[6]さらに、耐熱剤(C)を含む[1]~[5]のいずれかのポリアミド樹脂組成物。
[7]前記耐衝撃材(B)が(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、並びに(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体からなる群から選ばれる少なくとも1種である、[1]~[6]のいずれかのポリアミド樹脂組成物。
[8]前記耐熱剤(C)がO位にt-ブチル基を有するヒンダードフェノール及びO位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物からなる群から選ばれる少なくとも1種である、[6]又は[7]のポリアミド樹脂組成物。
[9]さらに、オレフィン系アイオノマー(D)を含む[1]~[8]のいずれかのポリアミド樹脂組成物。
 本発明によれば、成形体の良好な表面外観を維持しながら、ブロー成形性に優れるとともに、低温下における耐衝撃性に優れるポリアミド樹脂組成物を提供することができる。
 本発明のポリアミド樹脂組成物の第1の態様は、
ポリアミド樹脂組成物100質量部中に、ポリアミド(A)を40~85質量部、耐衝撃材(B)を10~20質量部含むポリアミド樹脂組成物であって、
下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たし、
かつ下記応力緩和測定方法で得られた応力σ(t)[Pa]と経過時間t[s]のデータを、x軸を対数軸表記した経過時間t、y軸を対数軸表記した応力σ(t)としてプロットした応力緩和曲線において、式(3)で表される座標A(0.02、σ(0.02))と座標B(400、σ(400))とを通る直線のt=0における値である初期応力σ[Pa]が式(4)を満たすポリアミド樹脂組成物である。
Figure JPOXMLDOC01-appb-M000009
 本発明のポリアミド樹脂組成物の第2の態様は、
ポリアミド樹脂組成物100質量部中に、ポリアミド(A)を40~85質量部、耐衝撃材(B)を10~20質量部含むポリアミド樹脂組成物であって、
下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たし、
かつ下記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たすポリアミド樹脂組成物である。
Figure JPOXMLDOC01-appb-M000010

[応力緩和測定方法]
前記ポリアミド樹脂組成物を測定セルに挟み、下記条件で前記ポリアミド樹脂組成物を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。
測定セル:パラレルプレート(Φ25mm)
パラレルプレート間距離:1.5mm
溶融温度条件:250℃
負荷ひずみ:100%
[パリソン長測定方法]
ブロー成形機JB105(株式会社日本製鋼所製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
ダイコア径:56mm
ダイコア出口肉厚:2mm
(A)ポリアミド樹脂
 ポリアミド樹脂組成物に含まれるポリアミド樹脂(A)は、脂肪族ポリアミド(A-1)及び芳香族ポリアミド(A-2)からなる群から選ばれる少なくとも1種を含み、脂肪族ポリアミド(A-1)及び芳香族ポリアミド(A-2)を組み合わせて用いることが好ましい。
(A-1)脂肪族ポリアミド
 脂肪族ポリアミドとしては、脂肪族ホモポリアミド及び脂肪族共重合ポリアミドが挙げられる。
(A-1-1)脂肪族ホモポリアミド
 脂肪族ホモポリアミド(A-1-1)は、1種類の構成単位からなるポリアミド樹脂である。脂肪族ホモポリアミド(A-1-1)は、1種類のラクタム及び当該ラクタムの加水分解物であるアミノカルボン酸の少なくとも一方からなるものであってもよく、1種類のジアミンと1種類のジカルボン酸との組合せからなるものであってもよい。
 ラクタムとしては、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等が挙げられる。これらの中でも重合生産の観点から、ε-カプロラクタム、ウンデカンラクタム及びドデカンラクタムからなる群から選択される1種が好ましい。
 また、アミノカルボン酸としては6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸が挙げられる。これらの中でも重合生産の観点から、6-アミノカプロン酸、11-アミノウンデカン酸、及び12-アミノドデカン酸からなる群から選択される1種が好ましい。
 ジアミンとしては、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ペプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3-/1,4-シクロヘキシルジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、(3-メチル-4-アミノシクロヘキシル)プロパン、1,3-/1,4-ビスアミノメチルシクロヘキサン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、ノルボルナンジメチレンアミン等の脂環式ジアミン等が挙げられる。これらの中でも重合生産性の観点から、脂肪族ジアミンが好ましく、ヘキサメチレンジアミンがより好ましい。
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカンジオン酸、トリデカンジオン酸、テトラデカンジオン酸、ペンタデカンジオン酸、ヘキサデカンジオン酸、オクタデカンジオン酸、エイコサンジオン酸等の脂肪族ジカルボン酸;1,3-/1,4-シクロヘキサンジカルボン酸、ジシクロヘキサンメタン-4,4’-ジカルボン酸、ノルボルナンジカルボン酸等の脂環式ジカルボン酸;等が挙げられる。これらの中でも脂肪族ジカルボン酸が好ましく、アジピン酸、セバシン酸及びドデカンジオン酸からなる群から選択される1種がより好ましく、セバシン酸又はドデカンジオン酸が更に好ましい。
 脂肪族ホモポリアミド(A-1-1)として具体的には、ポリカプロラクタム(ポリアミド6)、ポリエナントラクタム(ポリアミド7)、ポリウンデカンラクタム(ポリアミド11)、ポリラウリルラクタム(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリアミド122等が挙げられる。脂肪族ホモポリアミド(A-1-1)は1種単独でも、2種以上を組合せて用いてもよい。
 中でも脂肪族ホモポリアミド(A-1-1)は、重合生産性の観点から、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド610及びポリアミド612からなる群から選択される少なくとも1種が好ましく、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド610及びポリアミド612ら選択される少なくとも1種がより好ましく、ポリアミド6が更に好ましい。
 脂肪族ホモポリアミド(A-1-1)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合や固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
 脂肪族ホモポリアミド(A-1-1)の相対粘度は、JIS K-6920に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定される。脂肪族ホモポリアミド樹脂の相対粘度は、2.7以上であることが好ましく、2.7以上5.0以下であることがより好ましい。更に本発明の効果を向上させる観点から、2.7以上4.5未満がさらに好ましい。2.7以上であると、ポリアミド組成物の溶融粘度が低すぎることがないため、押出成形でも特にブロー成形時のパリソン形状保持が良好であり、5.0以下であるとポリアミド組成物の溶融粘度が高すぎることがなく、ブロー成形時、溶融樹脂の均一な肉厚が得られる。
 脂肪族ホモポリアミド(A-1-1)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族ホモポリアミド(A-1-1)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上50μmol/g以下がより好ましい。
 ポリアミド樹脂(A)が脂肪族ホモポリアミド(A-1-1)を含む場合、脂肪族ホモポリアミド(A-1-1)の脂肪族ポリアミド樹脂(A-1)100質量部の総量中における含有率は、成形加工性の観点から、例えば30質量部以上100質量部以下であり、40質量部以上100質量部以下が好ましく、50質量部以上90質量部以下がより好ましい。
 ポリアミド樹脂組成物は、2種以上の脂肪族ホモポリアミド(A-1-1)を含んでも良い。2種以上の脂肪族ホモポリアミド(A-1-1)は互いに、構成単位が異なるものであってもよいし、分子量(例えば、数平均分子量)が異なるものであってもよい。ポリアミド樹脂組成物が2種以上の脂肪族ホモポリアミド(A-1-1)を含む場合、既存重合製品を使用出来、混練工程での生産性調整や成形加工性に応じた材料設計が可能となる。
 ポリアミド樹脂(A)が、相対粘度が異なる脂肪族ホモポリアミド(A-1-1)を2種類以上含む場合、ポリアミド樹脂(A)における相対粘度は、上記内容で測定されるのが好ましいが、それぞれの相対粘度とその混合比が判明している場合、それぞれの相対粘度にその混合比を乗じた値を合計して算出される平均値を、ポリアミド樹脂(A)の相対粘度としてもよい。
(A-1-2)脂肪族共重合ポリアミド
 脂肪族共重合ポリアミド(A-1-2)は、2種以上の構成単位からなるポリアミド樹脂である。脂肪族共重合ポリアミド(A-1-2)は、ジアミンとジカルボン酸の組合せ、およびラクタム又はアミノカルボン酸からなる群から選択される2種以上のモノマーの共重合体である。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。
 ジアミンとしては、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ペプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3-/1,4-シクロヘキシルジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、(3-メチル-4-アミノシクロヘキシル)プロパン、1,3-/1,4-ビスアミノメチルシクロヘキサン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、ノルボルナンジメチレンアミン等の脂環式ジアミン等が挙げられる。ジアミンはこれらからなる群から選択される少なくとも1種が好ましく、重合生産性の観点から、脂肪族ジアミンからなる群から選択される少なくとも1種が好ましく、直鎖状脂肪族ジアミンからなる群から選択される少なくとも1種がより好ましく、ヘキサメチレンジアミンが更に好ましい。
 これらのジアミンは1種類で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカンジオン酸、トリデカンジオン酸、テトラデカンジオン酸、ペンタデカンジオン酸、ヘキサデカンジオン酸、オクタデカンジオン酸、エイコサンジオン酸等の脂肪族ジカルボン酸;1,3-/1,4-シクロヘキサンジカルボン酸、ジシクロヘキサンメタン-4,4’-ジカルボン酸、ノルボルナンジカルボン酸等の脂環式ジカルボン酸等が挙げられる。ジカルボン酸はこれらからなる群から選択される少なくとも1種が好ましい。
 これらのジカルボン酸は1種類で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
 ラクタムとしては、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等が挙げられる。これらの中でも重合生産の観点から、ε-カプロラクタム、ウンデカンラクタム及びドデカンラクタムからなる群から選択される少なくとも1種が好ましい。
 また、アミノカルボン酸としては6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸が挙げられる。これらの中でも重合生産の観点から、6-アミノカプロン酸、11-アミノウンデカン酸、及び12-アミノドデカン酸からなる群から選択される少なくとも1種が好ましい。
 脂肪族共重合ポリアミド(A-1-2)として具体的には、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(ポリアミド6/66)、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(ポリアミド6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカン酸共重合体(ポリアミド6/611)、カプロラクタム/ヘキサメチレンジアミノドデカン酸共重合体(ポリアミド6/612)、カプロラクタム/アミノウンデカン酸共重合体(ポリアミド6/11)、カプロラクタム/ラウリルラクタム共重合体(ポリアミド6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム共重合体(ポリアミド6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/66/610)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/66/612)等の脂肪族共重合ポリアミドが挙げられる。
 これらの中でも、生産性の観点から、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種が好ましく、ポリアミド6/66及びポリアミド6/66/12がより好ましく、ポリアミド6/66が特に好ましい。
 これらの脂肪族共重合ポリアミド(A-1-2)は、各々単独で又は2種以上の混合物として用いることができる。
 脂肪族共重合ポリアミド(A-1-2)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合や固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
 脂肪族共重合ポリアミド(A-1-2)の相対粘度は特に制限されないが、本発明の効果を向上させる観点から、JIS K-6920に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定した相対粘度が1.8以上5.0以下であることが好ましい。
 脂肪族共重合ポリアミド(A-1-2)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族共重合ポリアミド(A-1-2)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上50μmol/g以下がより好ましい。
 脂肪族ポリアミド(A-1)がポリアミド樹脂(A)に含まれる場合、ポリアミド樹脂(A)100質量部に含まれる脂肪族ポリアミド(A-1)の総含有率は、例えば50質量部以上であり、70質量部以上が好ましく、90質量部以上がより好ましい。
(A-2)芳香族ポリアミド
 芳香族ポリアミド樹脂とは、芳香族系モノマー成分を少なくとも1 成分含む芳香族ポリアミド樹脂であり、例えば、脂肪族ジカルボン酸と芳香族ジアミン、または芳香族ジカルボン酸と脂肪族ジアミンを原料とし、これらの重縮合によって得られるポリアミド樹脂である。
 本発明においては、芳香族ポリアミド(A-2)は、溶融粘度の上昇効果と結晶化速度を抑制する効果とを有する。
 原料の脂肪族ジアミン及び脂肪族ジカルボン酸としては、前記の脂肪族ポリアミド樹脂と同様のものが挙げられる。
 芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン等が挙げられ、芳香族ジカルボン酸としては、ナフタレンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸等が挙げられる。
 具体的な例としては、ポリノナンメチレンテレフタルアミド(ポリアミド9T) 、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ポリアミド6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド6I/6)、ポリドデカミド/ポリヘキサメチレンテレフタラミドコポリマー(ポリアミド12/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリヘキサメチレンアジパミド/ポリカプロアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6/6I)、ポリヘキサメチレンテレフタルアミド/ ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレンテレフタルアミド)コポリマー(ポリアミド6T/M5T)、ポリキシリレンアジパミド(ポリアミドMXD6)、およびこれらの混合物ないし共重合樹脂などが挙げられる。これらの中でも、ポリアミド6T/6Iが好ましい。
 本発明で使用する芳香族ポリアミド(A-2)として、特に有用なものとしては、芳香族系モノマー成分を少なくとも2成分含む非晶性部分芳香族共重合ポリアミド樹脂が挙げられる。非晶性部分芳香族共重合ポリアミド樹脂としては、動的粘弾性の測定によって得られた絶乾時の損失弾性率のピーク温度によって求められたガラス転移温度が100℃ 以上の非晶性ポリアミドが好ましい。
 ここで、非晶性とは、示差走査熱量計(DSC)で測定した結晶融解熱量が1cal/g以下であることをいう。
 前記非晶性部分芳香族共重合ポリアミド樹脂としては、テレフタル酸成分単位40~95モル%およびイソフタル酸成分単位5 ~60 モル%からなる芳香族ジカルボン酸と脂肪族ジアミンとからなるものが好ましい。好ましい組み合わせとしては、ヘキサメチレンジアミンとテレフタル酸の等モル塩とヘキサメチレンジアミンとイソフタル酸の等モル塩が挙げられる。
 また、脂肪族ジアミン並びにイソフタル酸およびテレフタル酸からなる芳香族ジカルボン酸からなるポリアミド形成性成分99 ~ 60重量%と脂肪族ポリアミド成分1 ~40重量%とであるものが好ましい。
 本発明における(A-2)芳香族ポリアミド樹脂の重合度には特に制限はないが、JIS K 6810に従って98% 硫酸中濃度1 % 、(A-2) 芳香族ポリアミド樹脂温度25℃で測定した相対粘度が、1.5~4.0であることが好ましく、より好ましくは1.8 ~3.0 である。
 芳香族ポリアミド(A-2)がポリアミド樹脂(A)に含まれる場合、ポリアミド樹脂(A)100質量部に含まれる芳香族ポリアミド(A-2)の総含有率は、例えば50質量部未満であり、30質量部未満であることが好ましく、10質量部未満であることがより好ましい。
 ポリアミド樹脂(A)は、JIS K-6920に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定される相対粘度が2.7以上であり、2.7以上5.0以下であることが好ましい。更に本発明の効果を向上させる観点から、2.7以上4.5未満がより好ましい。2.7以上では、ポリアミド組成物の溶融粘度が低すぎることがないため、押出成形でも特にブロー成形時のパリソン形状保持が良好である。また5.0以下では、ポリアミド組成物の溶融粘度が高すぎることなく、ブロー成形時、溶融樹脂の均一な肉厚が得られる。
 ポリアミド樹脂(A)が、相対粘度が異なる2種以上のポリアミド樹脂(例えば、少なくとも1種の脂肪族ホモポリアミド(A-1-1)と少なくとも1種の脂肪族共重合ポリアミド(A-1-2))を含む場合、ポリアミド樹脂(A)における相対粘度は、上記内容で測定されるのが好ましいが、それぞれのポリアミド樹脂の相対粘度とその混合比が判明している場合、それぞれの相対粘度にその混合比を乗じた値を合計して算出される平均値を、ポリアミド樹脂(A)の相対粘度としてもよい。
 耐衝撃材(B)との反応性から、ポリアミド樹脂(A)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ中和滴定で求められる末端アミノ基濃度として、30μmol/g以上であり、30μmol/g以上110μmol/g以下の範囲が好ましく、30μmol/g以上70μmol/g以下の範囲がより好ましい。30μmol/g以上であれば、耐衝撃材(B)との反応性が良く、溶融粘度や耐衝撃性を十分に得ることができる。また110μmol/g以下では、溶融粘度が高すぎず、成形加工性が良好である。
 ポリアミド樹脂(A)が、末端アミノ基濃度の異なる2種以上のポリアミド樹脂(例えば、少なくとも1種の脂肪族ホモポリアミド(A-1-1)と少なくとも1種の脂肪族共重合ポリアミド(A-1-2))を含む場合、ポリアミド樹脂(A)における末端アミノ基濃度は、上記中和摘定で測定されるのが好ましいが、それぞれのポリアミド樹脂の末端アミノ基濃度とその混合比が判明している場合、それぞれの末端アミノ基濃度にその混合比を乗じた値を合計して算出される平均値を、ポリアミド樹脂(A)の末端アミノ基濃度としてもよい。
 ポリアミド樹脂(A)は、ポリアミド樹脂組成物100質量部中、40~85質量部、好ましくは50~85質量部、より好ましくは60~85質量部、さらに好ましくは65~84質量部、特に好ましくは65~75質量部含まれる。ポリアミド樹脂(A)の含有割合が40質量部以上であるとガスバリア性が良好であり、85質量部以下であると低温物性及びブロー成形性が良好である。
(B)耐衝撃材
 ポリアミド樹脂組成物は、少なくとも1種の耐衝撃材(B)を含む。耐衝撃材としてはゴム状重合体が挙げられる。耐衝撃材は、ASTM D-790に準拠して測定した曲げ弾性率が500MPa以下であることが好ましい。
 耐衝撃材(B)として具体的には、(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体等を挙げることができる。これらは1種単独で又は2種以上を組合せて用いることができる。耐衝撃材(B)として好ましくは、エチレン/α-オレフィン系共重合体である。
 (エチレン及び/又はプロピレン)/α-オレフィン系共重合体は、エチレン及び/又はプロピレンと炭素数3以上又は4以上のα-オレフィンとを共重合した重合体である。
 炭素数3以上のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、 4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン等が挙げられる。これらは1種単独でも又は2種以上を組合せて用いてもよい。
 また共重合体は、非共役ジエン等のポリエンを共重合したものであってもよい。非共役ジエンとしては、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン等が挙げられる。これらは1種単独でも又は2種以上を組合せて用いてもよい。
 (エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体は、エチレン及び/又はプロピレンとα,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル単量体を共重合した重合体である。α,β-不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸が挙げられる。α,β-不飽和カルボン酸エステル単量体としては、これら不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等が挙げられる。これらは1種単独でも又は2種以上を組合せて用いてもよい。
 また、耐衝撃材(B)として用いられる(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、並びに(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体は、カルボン酸及び/又はその誘導体で変性された重合体である。このような成分により変性することにより、ポリアミド樹脂(A)に対して親和性を有する官能基をその分子中に含むこととなる。
 ポリアミド樹脂(A)に対して親和性を有する官能基としては、カルボキシ基、酸無水物基、カルボン酸エステル基、カルボン酸金属塩、カルボン酸イミド基、カルボン酸アミド基、エポキシ基等が挙げられる。
 これらの官能基を含む化合物の例として、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸及びこれらカルボン酸の金属塩、マレイン酸モノメチル、イタコン酸モノメチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸メチル、メタクリル酸2-エチルヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチル、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物、マレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、アクリルアミド、メタクリルアミド、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等が挙げられる。これらは1種単独でも又は2種以上を組合せて用いることができる。これらの中では無水マレイン酸が好ましい。
 耐衝撃材(B)として用いられる(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、並びに(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体は、カルボン酸及び/又はその誘導体で変性された重合体であり、不飽和カルボン酸又はその酸無水物等により酸変性された重合体であることが好ましい。
 耐衝撃材(B)における酸無水物基の含有量は、25μmol/g超過100μmol/g未満であり、35μmol/g以上95μmol未満が好ましく、40μmol/g以上90μmol/g以下がより好ましい。含有量が25μmol/g超過では高い溶融粘度の組成物を得ることができ、ブロー成形において目標の肉厚寸法を得ることができる。また含有量が100μmol/g未満であると溶融粘度が高すぎず、押出機に負荷を抑えて良好に成形加工できる。耐衝撃材(B)が有する酸無水物基の含有量は、トルエン、エタノールを用いて調製した試料溶液を用いて、フェノールフタレインを指示薬とし、0.1規定のKOHエタノール溶液による中和滴定で測定される。
 耐衝撃材(B)として、酸無水物基の含有量が異なる2種以上の耐衝撃材を用いる場合、耐衝撃材(B)における酸無水物基の含有量は、トルエン、エタノールを用いて調製した試料溶液を用いて、フェノールフタレインを指示薬とし、0.1規定のKOHエタノール溶液による中和滴定で測定されるのが好ましいが、それぞれの耐衝撃材の酸無水物基の含有量とその混合比が判明している場合、それぞれの酸無水物基の含有量にその混合比を乗じた値を合計して算出される平均値を、耐衝撃材(B)の酸無水物量としてもよい。
 耐衝撃材(B)は、ASTM D1238に準拠して、温度230℃、荷重2160gで測定したMFRが0.1g/10分以上10.0g/10分以下であることが好ましい。MFRが0.1g/10分以上であると、ポリアミド樹脂組成物の溶融粘度が高くなりすぎず、例えば押出成形におけるブロー成形時にパリソンの形状が不安定になることが抑制され、成形体の厚みがより均一になる傾向がある。また、MFRが10.0g/10分以下であると、パリソンのドローダウンが大きくなりすぎず、良好なブロー成形性が得られる傾向がある。
 耐衝撃材(B)は、ポリアミド樹脂組成物100質量部中、10~20質量部、好ましくは15~20質量部、より好ましくは16~19質量部、さらに好ましくは17~18質量部含まれる。耐衝撃材(B)の含有割合が上記範囲にあるとガスバリア性が良好かつ、低温物性及びブロー成形性が良好である。
(C)耐熱剤
 ポリアミド樹脂組成物は、耐熱剤(C)を含むことも好ましい。耐熱剤は、ポリアミド樹脂の耐熱性を向上できるものが使用でき、有機系、無機系の耐熱剤をその目的に応じて使用できる。
(無機系耐熱剤)
 耐熱剤の無機系耐熱剤の種類としては、
 一つとして、第I族遷移系列元素に属する金属化合物(塩)であり、例えば、 この金属のハロゲン化物、硫酸塩、酢酸塩、サリチル酸塩、ニコチン酸塩又はステアリン酸塩が挙げられる。
 また、アルカリ金属のハロゲン化塩を単独又は上記第I族遷移系列元素に属する金属化合物(塩)と併用してもよい。
 その具体例としては、ヨウ化カリウム、ヨウ化ナトリウム又は臭化カリウムである。
 更に、メラミン、ベングアナミン、ジメチロール尿素又はシアヌール酸などの含窒素化合物を併用するとより効果的である。
(有機系耐熱剤)
 ポリアミド樹脂組成物は、熱溶着特性と耐熱特性の観点から、耐熱剤として有機系酸化防止剤の少なくとも1種を含んでいてもよい。有機系酸化防止剤を含むことで、ブロー成形時においてインターバルタイムが長くなった場合でも通常の熱老化性、物性、溶融粘度等を維持しながら、熱溶着性をより向上させることができる。これは例えば、有機系酸化防止剤の添加によって、耐衝撃剤の熱劣化によるゲル化が抑制され、それにより造核作用が抑制されるためと考えられる。
 有機系酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等を挙げることができる。
 フェノール系酸化防止剤としてはヒンダードフェノール系酸化防止剤が好ましく、O位にt-ブチル基を有するヒンダードフェノールがより好ましい。O位にt-ブチル基を有するヒンダードフェノールは、具体的には、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。
 リン系酸化防止剤としてはヒンダードフェノールの亜リン酸エステル化合物、ヒンダードフェノールの次亜リン酸エステル化合物が好ましく、O位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物、O位にt-ブチル基を有するヒンダードフェノールの次亜リン酸エステル化合物がより好ましく、O位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物がさらに好ましい。O位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物は、具体的には、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエルスリトールジフォスファイト、を挙げることができる。O位にt-ブチル基を有するヒンダードフェノールの次亜リン酸エステル化合物は、具体的には、テトラキス(2,4-ジ-tert-ブチルフェノキシ)-4,4-ビフィニルジホスフィンを主成分とするビフィニル、三塩化リン及び2,4-ジ-tert-ブチルフェノールの反応生成物、を挙げることができる。これらからなる群から選択される少なくとも1種が好ましい。
 イオウ系酸化防止剤としては、ジステアリル-3,3-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジドデシル(3,3’-チオジプロピオネート)、を挙げることができる。これらからなる群から選択される少なくとも1種が好ましい。
 これら有機系酸化防止剤は1種単独でも、2種以上を組合せて用いてもよい。
 ポリアミド樹脂組成物は、熱溶着性の観点から、少なくとも1種のフェノール系酸化防止剤を含有することが好ましく、少なくとも1種のフェノール系酸化防止剤と少なくとも1種のリン系酸化防止剤とを含有することがより好ましく、O位にt-ブチル基を有するヒンダードフェノール及びO位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物からなる群から選ばれる少なくとも1種を含むことがさらに好ましく、O位にt-ブチル基を有するヒンダードフェノール及びO位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物を含むことが特に好ましい。
 耐熱剤(C)は、ポリアミド樹脂組成物100質量部中、好ましくは0.01~1質量部、より好ましくは0.05~0.9質量部、さらに好ましくは0.1~0.8質量部含まれる。耐熱剤(C)の含有割合が上記範囲にあると、耐熱性及び初期物性が良好である。
(D)オレフィン系アイオノマー
 ポリアミド樹脂組成物は、オレフィン系アイオノマー(D)を含むことも好ましい。オレフィン系アイオノマー(D)は、成形改良材として用いられる。オレフィン系アイオノマー(D)の樹脂としては、(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体が挙げられる。(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体は、エチレン及び/又はプロピレンとα,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル単量体を共重合した重合体である。α,β-不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸が挙げられる。α,β-不飽和カルボン酸エステル単量体としては、これら不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等が挙げられる。これらは1種単独でも又は2種以上を組合せて用いてもよい。アイオノマーに用いられる金属イオンとしてはNa 、K 、Cu 、Mg 、Ca 、Ba、Zn 、Cd 、Al 、Fe 、Co 、Ni などが挙げられる。これらの中でも、エチレン-メタクリル酸共重合体のアイオノマーが好ましい
 オレフィン系アイオノマー(D)は、ポリアミド樹脂組成物100質量部中、好ましくは1~25質量部、より好ましくは2質量部以上15質量部未満、さらに好ましくは5~10質量部、特に好ましくは5~8質量部含まれる。オレフィン系アイオノマー(D)の含有割合が上記範囲にあると、肉厚均一性及びブロー成形性が良好になる。
(E)添加剤
 ポリアミド樹脂組成物は目的等に応じて界面活性剤、染料、顔料、繊維状補強物、粒子状補強物、可塑剤、酸化防止剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤、着色剤等の機能性付与剤等を適宜含有していてもよい。本発明の効果向上の為、ポリアミド樹脂組成物は、酸化防止剤を含有するのが好ましい。
 任意の添加剤(E)は、好ましくは0.01~0.3質量部、より好ましくは0.05~0.2質量部含む。
[ポリアミド樹脂組成物]
 ポリアミド樹脂組成物は、下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たす。
Figure JPOXMLDOC01-appb-M000011

 前記応力緩和測定は、以下の方法で行なった。
 試料を測定セルに挟み、下記条件で試料を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。
測定セル:パラレルプレート(Φ25mm)
パラレルプレート間距離:1.5mm
溶融温度条件:250℃
負荷ひずみ:100%
 応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]は、経過時間t=0.1[s]の時に2.5未満であることが好ましく、2.2未満であることがより好ましく、2.0未満であることが更に好ましい。
 応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]は、経過時間0.05≦t≦0.1[s]の時に式(2)を満たしても良く、更に好ましくは応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]は、経過時間0.09≦t≦0.1[s]の時に式(2)を満たしても良い。
Figure JPOXMLDOC01-appb-M000012

 応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が前記式(1)又は式(2)を満たすことで、パリソン保持特性が良好であり、ブロー成形性が良好である。
 さらにポリアミド樹脂組成物の第1の態様では、経過時間t=0.1[s]の時に上記式(1)を満たすことに加え、上記応力緩和測定方法で得られた応力σ(t)[Pa]と経過時間t[s]のデータを、x軸を対数軸表記した経過時間t、y軸を対数軸表記した応力σ(t)としてプロットした応力緩和曲線において、式(3)で表される座標A(0.02、σ(0.02))と座標B(400、σ(400))とを通る直線のt=0における値である初期応力σ[Pa]が式(4)を満たす。
Figure JPOXMLDOC01-appb-M000013

Figure JPOXMLDOC01-appb-M000014

 式(4)における初期応力σ[Pa]は、σ0>15000であることが好ましく、σ0>20000であることがより好ましく、σ0>25000であることが更に好ましく、σ0>30000であることが特に好ましい。
初期応力σ[Pa]は応力緩和測定の経過時間t=0[s]における理想の応力値を表す。式(3)から導かれる初期応力σ[Pa]が前記式を満たすことで、パリソン保持特性が良好であり、ブロー成形性が良好となる。
 あるいは、ポリアミド樹脂組成物の第2の態様では、経過時間t=0.1[s]の時に上記式(1)を満たすことに加え、上記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たす。
Figure JPOXMLDOC01-appb-M000015

 パリソン長は以下の方法で測定した。
 ブロー成形機JB105(株式会社日本製鋼所製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
ダイコア径:56mm
ダイコア出口肉厚:2mm
なお、上記測定方法は、
アキューム排出容量:1000cc
アキューム排出時間:15秒以内
を満たすことが好ましい。
前記σ(t)/Lは、15超過が好ましく、17超過がより好ましい。
応力σ(t)[Pa]/パリソン長L[mm]は、ブロー成形機より押し出されたポリアミド樹脂組成物が自重方向と垂直な方向に与える応力(膨張力)を表す。
応力σ(t)[Pa]/パリソン長L[mm]が前記式を満たすことで、パリソン保持特性が良好であり、ブロー成形性が良好である。
 ポリアミド樹脂組成物の第1の態様は、さらに第2の態様を満たすことも好ましい。すなわちポリアミド樹脂組成物の第1の態様は、さらに上記応力緩和測定方法で得られた応力σ(t)[Pa]を前記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に前記式(5)を満たすことが好ましい。
 また、ポリアミド樹脂組成物の第1の態様は、さらに上記応力緩和測定方法で得られた応力σ(t)[Pa]を以下のパリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に前記式(5)を満たすことが好ましい。
 パリソン長は以下の方法で測定した。
 ブロー成形機DA-50(株式会社プラコー製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
ダイコア径:50mm
ダイコア出口肉厚:2mm
なお、上記測定方法は、
アキューム排出容量:1000cc
アキューム排出時間:15秒以内
を満たすことが好ましい。
 この方法でパリソン長を測定した場合であっても、前記σ(t)/Lは、15超過が好ましく、17超過がより好ましい。
 ポリアミド樹脂組成物の製造方法は特に制限されるものではなく、例えば次の方法を適用することができる。
 ポリアミド樹脂(A)と、耐衝撃材(B)と、その他任意成分との混合には、単軸、2軸の押出機、バンバリーミキサー、ニーダー、及びミキシングロールなど通常公知の溶融混練機が用いられる。例えば、2軸押出機を使用して、全ての原材料を配合後、溶融混練する方法、一部の原材料を配合後、溶融混練し、更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後、溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。
 ポリアミド樹脂組成物は、成形性に優れる溶融粘度を有し、成形時に滞留した場合でも成形体の表面外観に優れることから、ブロー成形によるブロー成形品の製造に好適に用いることができる。さらには、押出成形による押出成形品の製造に好適に用いることができる。
 ポリアミド樹脂からブロー成形によりブロー成形品を製造する方法については特に制限されず、公知の方法を利用することができる。一般的には、通常のブロー成形機を用いパリソンを形成した後、ブロー成形を実施すればよい。パリソン形成時の好ましい樹脂温度は、ポリアミド樹脂組成物の融点より10℃から70℃高い温度範囲で行うことが好ましい。
 ポリアミド樹脂から押出成形により押出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。
 また、ポリエチレンなどのポリオレフィンや他の熱可塑性樹脂と共押出した後、ブロー成形を行い、多層構造体を得ることも可能である。その場合ポリアミド樹脂組成物層とポリオレフィンなどの他の熱可塑性樹脂層の間に接着層を設けることも可能である。多層構造体の場合、本発明のポリアミド樹脂組成物は外層、内層のいずれにも使用し得る。
 ブロー成形によるブロー成形品及び押出成形による押出成形品としては、特に限定されないが、スポイラー、エアインテークダクト、インテークマニホールド、レゾネーター、燃料タンク、ガスタンク、燃料フィラーチューブ、燃料デリバリーパイプ、その他各種ホース・チューブ・タンク類などの自動車部品、電動工具ハウジング、パイプ類などの機械部品を始め、電気・電子部品、家庭・事務用品、建材関係部品、家具用部品など各種用途が好適に挙げられ、これらの中でも、本発明のポリアミド樹脂組成物の成形品はガスバリア性に優れることから、高圧ガス容器により好適に用いることができる。
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例および比較例において使用した樹脂及び成形品の物性評価方法を以下に示す。
(ブロー成形性)
 株式会社日本製鋼所製のブロー成形機JB105を用いてブロー成形性を確認した。測定条件は、シリンダー温度250℃、スクリュー回転数30rpm、1リットルボトル、ダイコア径56mm、ダイコア出口肉厚2mm設定にてアキュームヘッドより樹脂を排出させた後、1分間滞留させ、以下の特性につき、以下の基準で評価した。
(1)パリソン保持特性
○:800mmのパリソン押出後から5秒経過時点の垂下がり量が50mm未満
×:800mmのパリソン押出後から5秒経過時点の垂下がり量が50mm以上
(2)5秒後の垂下り量
 パリソン押出後から5秒経過時点のアキュームヘッドからの樹脂の垂下りの長さを巻尺で計った。
(3)肉厚均一性
目視で判定し、以下の基準で評価した。
○:内表面に凹凸がなく均一である。
×:内表面に凹凸がある。
(4)内表面黄変
○:内外表面の色調に差異がない。
×:内外表面の色調に差異がある。
(溶融粘度)
 東洋精機製キャピログラフ1D 式P-Cを用いて、溶融粘度を測定した。測定温度は250℃でオリフィスは穴径2.095mm、長さ8mm(L/D=10)を使用して、せん断速度12.16sec-1、121.6sec-1、1216sec-1の時の溶融粘度を測定した。
○:せん断速度12.16sec-1の時の溶融粘度:9000Pa・s以上
×:せん断速度12.16sec-1の時の溶融粘度:9000Pa・s未満
(低温特性)
 ISO規格TYPE-A又はTYPE-B試験片を射出成形にて作成して機械物性のデータ取得に使用した。
 引張降伏応力及び引張降伏ひずみ及び引張破断ひずみについては、ISO527-1,2に準じて、インストロン製引張試験機型式5567を使用して-60℃で測定した。
 シャルピー衝撃強さについては、ISO179-1に準じて、安田精機製シャルピー衝撃試験機No.258-PCを用いて、23℃および-40℃において、Aノッチ入り厚み4mmの試験片を用いてエッジワイズ衝撃試験を行った。(n=10)
○:-60℃における引張破断ひずみが20%以上かつ-40℃におけるシャルピー衝撃強さが20kJ/m超過
×:-60℃における引張破断ひずみが20%未満又は-40℃におけるシャルピー衝撃強さ:20kJ/m以下
(ガスバリアー性)
ISO15105-1に準じて、15℃で厚さ1mmの水素透過性を測定した。
○:水素透過係数が3×10-16mol・m/(m・s・Pa)以下
△:水素透過係数が3×10-16mol・m/(m・s・Pa)超過 かつ 1×10-15mol・m/(m・s・Pa)以下 
×:水素透過係数が1×10-15mol・m/(m・s・Pa)超過
(融点Tm及び結晶化温度Tcの測定)
Perkin Elmer社製PYRIS  Diamond  DSC用いて窒素雰囲気下で、20℃/分で昇温して測定した。
○:Tm-Tcが40℃超過
×:Tm-Tcが40℃以下
Tmは融点、Tcは結晶化温度を各々表し、Tm-Tcが40℃を超過すると成形加工が容易となる。
(応力特性)
溶融粘弾性測定装置ARES(TA Instruments社製)を使用し、
試料を測定セルに挟み、下記条件で試料を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。
測定セル:パラレルプレート(Φ25mm)
パラレルプレート間距離:1.5mm
溶融温度条件:250℃
負荷ひずみ:100%
(パリソン長)
 実施例1~6、比較例1~5は、以下の測定方法で測定した。
 ブロー成形機JB105(株式会社日本製鋼所製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
アキューム排出容量:1000cc
アキューム排出時間:15秒以内
ダイコア径:56mm
ダイコア出口肉厚:2mm
 実施例7~9は、以下の測定方法で測定した。
ブロー成形機DA-50(株式会社プラコー製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
シリンダー温度:250℃
アキューム排出容量:1000cc
アキューム排出時間:15秒以内
ダイコア径:50mm
ダイコア出口肉厚:2mm
 実施例1~6、比較例1~5のパリソン長の測定方法及び実施例7~9のパリソン長の測定方法について、成形機及びダイコア口径が異なるものの、比較評価可能な違いであり、ブロー成形性評価に適応できる。
[実施例1~9、比較例1~5]
 表1に記載した各成分をシリンダー径44mm L/D35であるTEX44HCT二軸混練機でスクリュー回転170rpm、吐出量50kg/hrsにて溶融混練し、目的とするポリアミド樹脂組成物ペレットを作製した。比較例5は、市販の樹脂ペレットをそのまま用いた。なお、表中の組成の数値は質量部であり、樹脂組成物全体を100質量部とする。
 得られたペレットを上記物性評価に使用した。得られた結果を表1に示す。
表中の略号は、以下の通りである。
PA6:ポリアミド6、製品名「1030B」宇部興産株式会社製
PA6/66/12:ポリアミド6/66/12、製品名「6434B」宇部興産株式会社製
PA6/66:ポリアミド6/66、製品名「5034B」、宇部興産株式会社製
芳香族PA6T/6I:ポリアミド6T/6I、製品名「Grivory G21」EMS-CHEMIE(Japan)株式会社製
HDPE:高密度ポリエチレン、製品名「Hi-zex8200B」プライムポリマー株式会社製
m-EBR-1:無水マレイン酸変性エチレン-ブテン共重合体、製品名「MH5020」三井化学株式会社製
m-EBR-2:無水マレイン酸変性エチレン-ブテン共重合体、製品名「MH5010」三井化学株式会社製
EBR:エチレン-ブテン共重合体、製品名「TX610」三井化学株式会社製
CoEMA:エチレン-メタクリル酸共重合体を樹脂とし、Znを金属イオンとするアイオノマー、製品名「ハイミラン1706」三井・デュポンケミカル株式会社製
添着油:非イオン界面活性剤、製品名「バル-7220」丸菱油化株式会社製
耐熱剤1:フェノール系酸化防止剤(N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)
耐熱剤2:リン系酸化防止剤(トリス(2,4-ジ-t-ブチルフェニル)ホスファイト)
耐熱剤3:フェノール系酸化防止剤(3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)
耐熱剤4:イオウ系酸化防止剤(ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート))
Figure JPOXMLDOC01-appb-T000016

 上記の結果から、本発明のポリアミド樹脂組成物は、比較例2~4から、耐衝撃材(B)の量が、本願発明の範囲より多いと、成形加工性、ガスバリア性が悪く、比較例1から、式(1)を満たさない、式(3)から導かれる初期応力σが式(4)を満たさない、かつ式(5)を満たさないと成形加工性、溶融粘度及び低温物性が悪いことがわかる。高密度ポリエチレンを用いた比較例5では、低温物性及びガスバリア性が悪いことがわかる。

Claims (9)

  1. ポリアミド樹脂組成物100質量部中に、ポリアミド(A)を40~85質量部、耐衝撃材(B)を10~20質量部含むポリアミド樹脂組成物であって、
    下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たし、
    かつ下記応力緩和測定方法で得られた応力σ(t)[Pa]と経過時間t[s]のデータを、x軸を対数軸表記した経過時間t、y軸を対数軸表記した応力σ(t)としてプロットした応力緩和曲線において、式(3)で表される座標A(0.02、σ(0.02))と座標B(400、σ(400))とを通る直線のt=0における値である初期応力σ[Pa]が式(4)を満たすポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-M000001

    [応力緩和測定方法]
    試料を測定セルに挟み、下記条件で試料を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。
    測定セル:パラレルプレート(Φ25mm)
    パラレルプレート間距離:1.5mm
    溶融温度条件:250℃
    負荷ひずみ:100%
  2. 前記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たす請求項1に記載のポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-M000002

    [パリソン長測定方法]
    ブロー成形機JB105(株式会社日本製鋼所製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
    シリンダー温度:250℃
    ダイコア径:56mm
    ダイコア出口肉厚:2mm
  3. 前記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たす請求項1に記載のポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-M000003

    [パリソン長測定方法]
    ブロー成形機DA-50(株式会社プラコー製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
    シリンダー温度:250℃
    ダイコア径:50mm
    ダイコア出口肉厚:2mm
  4. ポリアミド樹脂組成物100質量部中に、ポリアミド(A)を40~85質量部、耐衝撃材(B)を10~20質量部含むポリアミド樹脂組成物であって、
    下記応力緩和測定方法で得られた応力σ(t)[Pa]から求められる応力変化率の絶対値|Δlog(σ(t))/Δt|[Pa/s]が経過時間t=0.1[s]の時に式(1)を満たし、
    かつ下記応力緩和測定方法で得られた応力σ(t)[Pa]を下記パリソン長測定方法で得られたパリソン長L[mm]で除した値が経過時間t=0.1[s]の時に式(5)を満たすポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-M000004

    [応力緩和測定方法]
    前記ポリアミド樹脂組成物を測定セルに挟み、下記条件で前記ポリアミド樹脂組成物を溶融させながらひずみを負荷し停止させた後、経過時間t[s]の応力σ(t)[Pa]を測定した。
    測定セル:パラレルプレート(Φ25mm)
    パラレルプレート間距離:1.5mm
    溶融温度条件:250℃
    負荷ひずみ:100%
    [パリソン長測定方法]
    ブロー成形機JB105(株式会社日本製鋼所製)を下記条件に設定し、圧力制御したアキュームヘッドよりアキュームヘッド内の前記ポリアミド樹脂組成物を全量体積押出した時点でのパリソンの長さをパリソン長L[mm]とし測定した。
    シリンダー温度:250℃
    ダイコア径:56mm
    ダイコア出口肉厚:2mm
  5. 前記ポリアミド樹脂(A)が脂肪族ポリアミド(A-1)及び芳香族ポリアミド(A-2)から成る群から選ばれる少なくとも1種であるポリアミド樹脂である請求項1~4のいずれか1項に記載のポリアミド樹脂組成物。
  6. さらに、耐熱剤(C)を含む請求項1~5のいずれか1項に記載のポリアミド樹脂組成物。
  7. 前記耐衝撃材(B)が(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、並びに(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体からなる群から選ばれる少なくとも1種である、請求項1~6のいずれか1項に記載のポリアミド樹脂組成物。
  8. 前記耐熱剤(C)がO位にt-ブチル基を有するヒンダードフェノール及びO位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物からなる群から選ばれる少なくとも1種である、請求項6又は7に記載のポリアミド樹脂組成物。
  9. さらに、オレフィン系アイオノマー(D)を含む請求項1~8のいずれか1項に記載のポリアミド樹脂組成物。
PCT/JP2018/045270 2017-12-11 2018-12-10 ポリアミド樹脂組成物 WO2019117072A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880080131.1A CN111448257B (zh) 2017-12-11 2018-12-10 聚酰胺树脂组合物
EP18889084.2A EP3725848A4 (en) 2017-12-11 2018-12-10 COMPOSITION OF POLYAMIDE RESIN
JP2019537410A JP7328894B2 (ja) 2017-12-11 2018-12-10 ポリアミド樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-236848 2017-12-11
JP2017236848 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019117072A1 true WO2019117072A1 (ja) 2019-06-20

Family

ID=66819255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045270 WO2019117072A1 (ja) 2017-12-11 2018-12-10 ポリアミド樹脂組成物

Country Status (4)

Country Link
EP (1) EP3725848A4 (ja)
JP (1) JP7328894B2 (ja)
CN (1) CN111448257B (ja)
WO (1) WO2019117072A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085472A1 (ja) * 2019-10-30 2021-05-06 宇部興産株式会社 ポリアミド樹脂組成物
JP2021070712A (ja) * 2019-10-29 2021-05-06 宇部興産株式会社 ポリアミド樹脂組成物
JP2021095943A (ja) * 2019-12-16 2021-06-24 宇部興産株式会社 熱可塑成形水素タンクライナー用ポリアミド樹脂成形材料、熱可塑成形水素タンクライナー及び水素タンクの製造方法
JP2021109906A (ja) * 2020-01-09 2021-08-02 宇部興産株式会社 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
JP2021109905A (ja) * 2020-01-09 2021-08-02 宇部興産株式会社 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
WO2022039170A1 (ja) * 2020-08-17 2022-02-24 宇部興産株式会社 ポリアミド樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523763A (ja) 2003-04-14 2006-10-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ブロー成形物品用のポリアミド組成物
JP2007204675A (ja) 2006-02-03 2007-08-16 Toray Ind Inc ブロー中空成形用ポリアミド樹脂組成物
JP2007204674A (ja) * 2006-02-03 2007-08-16 Toray Ind Inc ブロー成形用組成物
WO2016136025A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
WO2017135215A1 (ja) * 2016-02-04 2017-08-10 宇部興産株式会社 ポリアミド樹脂組成物
JP2017206639A (ja) * 2016-05-20 2017-11-24 宇部興産株式会社 ポリアミド樹脂組成物
JP2018199762A (ja) * 2017-05-26 2018-12-20 東レ株式会社 嵌合部品またはチューブ用ポリアミド樹脂組成物および嵌合部品またはチューブ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1155072B1 (en) * 1999-01-05 2005-08-17 E.I. Dupont De Nemours And Company Blow molding composition
ES2533868T3 (es) * 2006-12-22 2015-04-15 Ems-Chemie Ag Conducto hidráulico, en particular conducto de embrague y procedimiento para su fabricación
JP5598052B2 (ja) * 2010-03-29 2014-10-01 三菱化学株式会社 低温衝撃性に優れたポリアミド樹脂組成物及びその成形品
KR102189978B1 (ko) * 2013-06-13 2020-12-11 주식회사 쿠라레 폴리아미드 수지 조성물 및 그것으로 이루어지는 성형품
JP6769305B2 (ja) * 2014-12-26 2020-10-14 三菱瓦斯化学株式会社 熱可塑性樹脂組成物及びそれを含む成形体
JP2017088661A (ja) * 2015-11-04 2017-05-25 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなるブロー成形品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523763A (ja) 2003-04-14 2006-10-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ブロー成形物品用のポリアミド組成物
JP2007204675A (ja) 2006-02-03 2007-08-16 Toray Ind Inc ブロー中空成形用ポリアミド樹脂組成物
JP2007204674A (ja) * 2006-02-03 2007-08-16 Toray Ind Inc ブロー成形用組成物
WO2016136025A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
WO2017135215A1 (ja) * 2016-02-04 2017-08-10 宇部興産株式会社 ポリアミド樹脂組成物
JP2017206639A (ja) * 2016-05-20 2017-11-24 宇部興産株式会社 ポリアミド樹脂組成物
JP2018199762A (ja) * 2017-05-26 2018-12-20 東レ株式会社 嵌合部品またはチューブ用ポリアミド樹脂組成物および嵌合部品またはチューブ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070712A (ja) * 2019-10-29 2021-05-06 宇部興産株式会社 ポリアミド樹脂組成物
JP7404774B2 (ja) 2019-10-29 2023-12-26 Ube株式会社 ポリアミド樹脂組成物
WO2021085472A1 (ja) * 2019-10-30 2021-05-06 宇部興産株式会社 ポリアミド樹脂組成物
CN114729152A (zh) * 2019-10-30 2022-07-08 宇部兴产株式会社 聚酰胺树脂组合物
CN114729152B (zh) * 2019-10-30 2024-08-27 Ube株式会社 聚酰胺树脂组合物
JP2021095943A (ja) * 2019-12-16 2021-06-24 宇部興産株式会社 熱可塑成形水素タンクライナー用ポリアミド樹脂成形材料、熱可塑成形水素タンクライナー及び水素タンクの製造方法
JP7059243B2 (ja) 2019-12-16 2022-04-25 Ube株式会社 熱可塑成形水素タンクライナー用ポリアミド樹脂成形材料、熱可塑成形水素タンクライナー及び水素タンクの製造方法
JP2021109906A (ja) * 2020-01-09 2021-08-02 宇部興産株式会社 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
JP2021109905A (ja) * 2020-01-09 2021-08-02 宇部興産株式会社 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
JP7409875B2 (ja) 2020-01-09 2024-01-09 Ube株式会社 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
JP7409876B2 (ja) 2020-01-09 2024-01-09 Ube株式会社 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
WO2022039170A1 (ja) * 2020-08-17 2022-02-24 宇部興産株式会社 ポリアミド樹脂組成物

Also Published As

Publication number Publication date
JP7328894B2 (ja) 2023-08-17
CN111448257A (zh) 2020-07-24
EP3725848A1 (en) 2020-10-21
EP3725848A4 (en) 2021-09-22
JPWO2019117072A1 (ja) 2020-10-22
CN111448257B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
JP7379003B2 (ja) ポリアミド樹脂組成物
CN111448257B (zh) 聚酰胺树脂组合物
EP3034301B1 (en) Multilayer structure
EP3412731B1 (en) Polyamide resin composition
CN114729152B (zh) 聚酰胺树脂组合物
JP7380116B2 (ja) ポリアミド樹脂組成物
JP6759706B2 (ja) ポリアミド樹脂組成物
JP7310942B2 (ja) ポリアミド樹脂組成物
JP7409876B2 (ja) 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
JP7409875B2 (ja) 水素タンクの継ぎ目レス長尺ライナーのブロー成形用ポリアミド樹脂組成物及び水素タンク用継ぎ目レス長尺ライナー
CN115066467A (zh) 聚酰胺树脂组合物
JP7468189B2 (ja) ポリアミド樹脂組成物
JP2016222903A (ja) ブロー成形用樹脂組成物及び多層構造体
JP2023145813A (ja) ポリアミド樹脂組成物
JP7404774B2 (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537410

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018889084

Country of ref document: EP

Effective date: 20200713