[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019116704A1 - 制御弁式鉛蓄電池 - Google Patents

制御弁式鉛蓄電池 Download PDF

Info

Publication number
WO2019116704A1
WO2019116704A1 PCT/JP2018/038015 JP2018038015W WO2019116704A1 WO 2019116704 A1 WO2019116704 A1 WO 2019116704A1 JP 2018038015 W JP2018038015 W JP 2018038015W WO 2019116704 A1 WO2019116704 A1 WO 2019116704A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode plate
separator
active material
negative electrode
Prior art date
Application number
PCT/JP2018/038015
Other languages
English (en)
French (fr)
Inventor
陽隆 阿部
聡美 尾崎
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201880070779.0A priority Critical patent/CN111295791B/zh
Priority to JP2019558934A priority patent/JP7188398B2/ja
Publication of WO2019116704A1 publication Critical patent/WO2019116704A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/121Valve regulated lead acid batteries [VRLA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the technology disclosed herein relates to a valve-regulated lead-acid battery.
  • control valve type lead storage battery (sealed lead storage battery) is known.
  • the control valve type lead-acid battery has a high degree of freedom in the installation attitude since it does not have the electrolyte flowing inside, and maintenance is easy because it is not necessary to check the liquid amount and refill water. It is utilized as a power supply of a blackout power supply device, a communication base station, a two-wheeled vehicle, etc. (for example, refer to patent documents 1).
  • the control valve type lead-acid battery includes a positive electrode plate and a negative electrode plate.
  • the positive electrode plate and the negative electrode plate each have a current collector and an active material supported by the current collector.
  • the control valve type lead-acid battery is disposed between the positive electrode plate and the negative electrode plate, and includes a separator made of glass fiber.
  • the separator is impregnated with an electrolytic solution (for example, dilute sulfuric acid).
  • the positive electrode plate, the negative electrode plate, and the separator are accommodated in the cell chamber in a state of receiving a compressive force in the thickness direction.
  • the valve-regulated lead-acid battery disclosed in the present specification includes a positive electrode plate having a current collector and a positive electrode material supported by the current collector, a negative electrode plate, and the positive electrode plate and the negative electrode plate. And a separator made of glass fiber, wherein the compression ratio of the separator is 1.2 or more and 1.8 or less, and the total pore volume per unit mass of the positive electrode material is 0.150 cm 3 / g or less, the positive electrode material contains a fiber, and the average specific surface area of the fiber according to the BET method using krypton gas as an adsorption gas is 0.20 m 2 / g or more .
  • FIG. 3 is an explanatory view showing a YZ cross-sectional configuration of a lead storage battery 100 at a position of VV in FIG. 2.
  • FIG. 5 is an explanatory drawing showing an XZ cross-sectional configuration of a portion of the lead-acid battery 100 at a position VI-VI in FIG. 3.
  • FIG. 8 is an explanatory view showing a method of housing the electrode plate group 20 in the cell chamber 16; It is explanatory drawing which shows a performance evaluation result. It is explanatory drawing which shows a performance evaluation result.
  • a valve-regulated lead-acid battery disclosed in the present specification is a positive electrode plate having a current collector and a positive electrode material supported by the current collector, a negative electrode plate, the positive electrode plate and the negative electrode A separator disposed between the plate and the glass fiber, wherein a compression ratio of the separator is 1.2 or more and 1.8 or less, and total pores per unit mass of the positive electrode material
  • the volume is 0.150 cm 3 / g or less
  • the positive electrode material contains fibers
  • the average specific surface area of the fibers according to the BET method using krypton gas as an adsorption gas is 0.20 m 2 / g It is above.
  • the positive electrode plate is composed of a current collector and a positive electrode material.
  • the positive electrode material is obtained by removing the current collector from the positive electrode plate, and is generally referred to as an "active material".
  • the inventor of the present invention has intensively studied and, by adopting the above-mentioned configuration, effectively suppresses the dropout of the positive electrode material from the current collector in the positive electrode plate, and the life of the valve-regulated lead-acid battery We have newly found that the characteristics can be dramatically improved.
  • the specific surface area of the fiber to be contained in the positive electrode material has not been studied at all. Further, even if the specific surface area of the fibers contained in the positive electrode material is considered, the adsorption gas used when measuring the specific surface area of the fibers by the BET method was generally nitrogen gas. The inventors of the present application have found that, when nitrogen gas is used as an adsorption gas for various fibers, krypton gas is used as an adsorption gas even if there is no significant difference in the measurement results of the specific surface area of the fibers.
  • the specific surface area is measured, and when fibers having an average specific surface area thus measured of 0.20 m 2 / g or more are selectively used, removal of the positive electrode material from the current collector in the positive electrode plate is effectively suppressed. It has been newly found that the life characteristics of the valve-regulated lead-acid battery can be dramatically improved.
  • the total pore volume per unit mass of the positive electrode material is excessively large, the density of the positive electrode material is excessively low and the structure is easily broken, so that the separation of the positive electrode material from the current collector can be suppressed. It may disappear.
  • the compression ratio of the separator is too small, the thickness of the separator becomes thinner as the electrode plate expands and contracts due to repeated charging and discharging of the valve-regulated lead-acid battery, and the separator and electrode The area which can not be in contact with the plate increases to cause a capacity reduction, which may lower the life characteristics.
  • the compression ratio of the separator when the compression ratio of the separator is excessively large, an excessive pressure is applied to the separator, the gap inside the separator becomes excessively small, and the function of the electrolyte holding by the separator is excessively reduced, causing a capacity reduction. Thus, the life characteristics may be lowered.
  • the inventor of the present application has made intensive studies to set the compression ratio of the separator to 1.2 or more and 1.8 or less, and the total pore volume per unit mass of the positive electrode material to be 0.150 cm 3 / g or less.
  • the total pore volume per unit mass of the positive electrode material may be 0.104 cm 3 / g or more. If the total pore volume per unit mass of the positive electrode material is excessively small, it is considered that the reactivity of the positive electrode material becomes excessively low and, as a result, the capacity characteristics of the lead storage battery become low. On the other hand, in the present valve-regulated lead-acid battery, the total pore volume per unit mass of the positive electrode material is not excessively small at 0.104 cm 3 / g or more. Therefore, according to the control valve type lead storage battery, it is possible to suppress a decrease in the reactivity of the positive electrode material, and while improving the life characteristics of the control valve type lead storage battery dramatically, the capacity characteristics of the control valve type lead storage battery Can be improved.
  • the total pore volume per unit mass of the positive electrode material may be 0.132 cm 3 / g or more. According to the present control valve type lead storage battery, the decrease in the reactivity of the positive electrode material can be extremely effectively suppressed. Therefore, while the life characteristics of the control valve type lead storage battery are dramatically improved, the control valve type lead storage battery The capacitance characteristics of can be very effectively improved.
  • the fibers may be acrylic fibers. According to the present valve-regulated lead storage battery, it is possible to easily obtain a fiber having an average specific surface area of 0.20 m 2 / g or more according to the BET method using krypton gas as an adsorption gas.
  • FIG. 1 is a front view showing an appearance configuration of the lead storage battery 100 in the present embodiment
  • FIG. 2 is a top view showing an appearance configuration of the lead storage battery 100
  • FIG. 3 shows an internal configuration of the lead storage battery 100. It is a top view (figure which shows the state which removed the lid 14 mentioned later)
  • FIG. 4 is explanatory drawing which shows YZ cross-section structure of the lead storage battery 100 in the position of IV-IV of FIG.
  • FIG. 6 is an explanatory view showing a YZ cross-sectional configuration of the lead storage battery 100 at the position of VV of 2 and FIG.
  • FIG. 6 is an explanatory view showing an XZ cross-sectional configuration of a part of the lead storage battery 100 at the position of VI-VI in FIG. .
  • a part (three) of a plurality of electrode plate groups 20 (and straps 52 and 54 connected thereto) which will be described later are shown in FIG. 3 and FIG. 4 and FIG.
  • FIG. 5 a part of the configuration is omitted so that the configuration of the electrode group 20 can be easily understood.
  • mutually orthogonal XYZ axes for specifying the direction are shown.
  • the positive direction of the Z-axis is referred to as "upward” and the negative direction of the Z-axis is referred to as "downward".
  • the lead storage battery 100 is actually different from such an orientation. It may be installed in the direction.
  • the lead storage battery 100 of the present embodiment is a control valve type lead storage battery (sealed lead storage battery).
  • the control valve type lead-acid battery has a high degree of freedom in the installation attitude since it does not have the electrolyte flowing inside, and maintenance is easy because it is not necessary to check the liquid amount and refill water. It is used as a power supply of a blackout power supply device, a communication base station, a two-wheeled vehicle, etc.
  • the lead storage battery 100 includes a housing 10, a positive electrode terminal member 30, a negative electrode terminal member 40, and a plurality of electrode plate groups 20.
  • the positive electrode terminal member 30 and the negative electrode terminal member 40 are collectively referred to as “terminal members 30, 40”.
  • the housing 10 has a battery case 12 and a lid 14.
  • the battery case 12 is a substantially rectangular container having an opening on the top surface, and is formed of, for example, a synthetic resin.
  • the lid 14 is a member disposed so as to close the opening of the battery case 12 and is made of, for example, a synthetic resin.
  • a control valve (exhaust valve) 60 is disposed on the lid 14.
  • the control valve 60 is normally closed and has a function of opening when the internal pressure of the lead storage battery 100 rises and releasing the internal pressure.
  • the space in the housing 10 is divided into a plurality of (six in the present embodiment) cell chambers 16 aligned in a predetermined direction (the X-axis direction in the present embodiment) by a plurality of (five in the present embodiment) partition walls 58. It is divided.
  • the direction (X-axis direction) in which the plurality of cell chambers 16 are arranged is referred to as “cell alignment direction”.
  • One electrode plate group 20 is accommodated in each cell chamber 16 in the housing 10.
  • the lead storage battery 100 is provided with six electrode plate groups 20.
  • the electrode plate group 20 includes a plurality of positive electrode plates 210, a plurality of negative electrode plates 220, and a separator 230.
  • the plurality of positive electrode plates 210 and the plurality of negative electrode plates 220 are arranged such that the positive electrode plates 210 and the negative electrode plates 220 are alternately arranged.
  • the separator 230 is disposed between the positive electrode plate 210 and the negative electrode plate 220 adjacent to each other, and is sandwiched between the positive electrode plate 210 and the negative electrode plate 220.
  • the electrode plate group 20 may include other members (for example, a non-woven sheet disposed between the positive electrode plate 210 and the negative electrode plate 220) other than the positive electrode plate 210, the negative electrode plate 220, and the separator 230.
  • the positive electrode plate 210 and the negative electrode plate 220 will be collectively referred to as “electrode plates 210 and 220”.
  • the positive electrode plate 210 includes a positive electrode current collector 212 and a positive electrode active material 216 supported by the positive electrode current collector 212.
  • the positive electrode current collector 212 is a conductive member having bones arranged in a substantially lattice shape or a mesh shape, and is formed of, for example, lead or a lead alloy. Further, the positive electrode current collector 212 has a positive electrode ear 214 projecting upward in the vicinity of the upper end thereof.
  • the positive electrode active material 216 contains lead dioxide and a positive electrode fiber 217 described later. The positive electrode active material 216 may further contain other known additives.
  • the positive electrode current collector 212 is coated or filled with a positive electrode active material paste mainly composed of lead monoxide, water and dilute sulfuric acid, and the positive electrode active material paste is dried. It can be produced by performing known chemical conversion treatment after the treatment.
  • the positive electrode active material 216 in the present embodiment is obtained by removing the positive electrode current collector 212 from the positive electrode plate 210, and corresponds to the positive electrode material in the claims.
  • the negative electrode plate 220 has a negative electrode current collector 222 and a negative electrode active material 226 supported by the negative electrode current collector 222.
  • the negative electrode current collector 222 is a conductive member having bones arranged in a substantially lattice shape or a mesh shape, and is made of, for example, lead or a lead alloy.
  • the negative electrode current collector 222 has a negative electrode ear 224 protruding upward in the vicinity of the upper end thereof.
  • the negative electrode active material 226 contains lead (cavernous lead).
  • the negative electrode active material 226 may further contain other known additives (eg, fiber, carbon, lignin, barium sulfate, etc.).
  • known conversion treatment is performed in the negative electrode plate 220 having such a configuration, for example, after applying or filling a negative electrode active material paste containing lead to the negative electrode current collector 222 and drying the negative electrode active material paste. Can be produced by
  • the separator 230 is made of glass fiber which is an insulating material, and is a mat-like member that can be elastically deformed in the thickness direction.
  • the separator 230 is impregnated with an electrolytic solution (for example, dilute sulfuric acid).
  • an electrolytic solution for example, dilute sulfuric acid.
  • the thickness W 0 of the electrode plate group 20 in a state not accommodated in the cell chamber 16 is the width of the cell chamber 16 (ie, a pair adjacent to each other
  • the distance between the partition walls 58 (or the distance between the partition walls 58 and the side wall of the battery case 12) is set to a value slightly larger than W1.
  • a compressive force is applied to the electrode plate group 20 in a natural state in the thickness direction by a pressing device (not shown).
  • the thickness of the electrode plate group 20 becomes equal to or less than the width W 1 of the cell chamber 16 by the elastic contraction of the separator 230 in the thickness direction.
  • the electrode plate group 20 is inserted into the cell chamber 16.
  • the electrode group 20 receives a compressive force in the thickness direction (in the present embodiment, in the X-axis direction). Therefore, the respective electrode plates 210 and 220 constituting the electrode group 20 are in a state of being in good contact with the separator 230 holding the electrolytic solution.
  • the positive electrode ear portions 214 of the plurality of positive electrode plates 210 constituting the electrode plate group 20 are connected to a positive electrode side strap 52 formed of, for example, lead or a lead alloy. That is, the plurality of positive electrode plates 210 are electrically connected in parallel via the positive electrode side strap 52.
  • the negative electrode ear portions 224 of the plurality of negative electrode plates 220 constituting the electrode plate group 20 are connected to the negative electrode side strap 54 formed of, for example, lead or a lead alloy. That is, the plurality of negative electrode plates 220 are electrically connected in parallel via the negative electrode side strap 54.
  • the positive side strap 52 and the negative side strap 54 are collectively referred to as "straps 52, 54".
  • the negative electrode side strap 54 accommodated in one cell chamber 16 is connected to one side (for example, the X axis positive side) of the one cell chamber 16 via a connecting member 56 formed of, for example, lead or lead alloy. It connects to the positive electrode side strap 52 accommodated in the other cell chamber 16 adjacent to direction direction). Further, the positive side strap 52 accommodated in the one cell chamber 16 is connected to the other cell chamber 16 adjacent to the other side (for example, the X-axis negative direction side) of the one cell chamber 16 via the connection member 56.
  • the connection member 56 are connected to the negative side strap 54 housed in FIG. That is, the plurality of electrode plate groups 20 included in the lead storage battery 100 are electrically connected in series via the straps 52 and 54 and the connection member 56.
  • the positive side strap 52 accommodated in the cell chamber 16 positioned at one end (the positive side in the X-axis direction) in the cell alignment direction is not the connection member 56 but a positive pole post described later. Connected to 34.
  • the negative side strap 54 accommodated in the cell chamber 16 positioned at the other end (the negative side of the X axis) in the cell alignment direction is not the connection member 56 but a negative pole post described later. Connected to the 44.
  • the positive electrode terminal member 30 is disposed in the vicinity of the end of one side (the positive side in the X-axis direction) of the housing 10 in the cell alignment direction, and the negative electrode terminal member 40 is It is arranged near the end of the other side (X-axis negative direction side) in the cell alignment direction in the housing 10.
  • the positive electrode terminal member 30 includes a positive electrode bushing 32, a positive electrode post 34, and a positive electrode terminal portion 36.
  • the positive electrode side bushing 32 is a substantially cylindrical conductive member in which a hole penetrating in the vertical direction is formed, and is formed of, for example, a lead alloy.
  • the positive electrode side bushing 32 is embedded in the lid 14 by insert molding.
  • the positive electrode post 34 is a substantially cylindrical conductive member, and is formed of, for example, a lead alloy.
  • the positive electrode column 34 is inserted into the hole of the positive electrode side bushing 32 and is joined to the positive electrode side bushing 32 by welding, for example.
  • the lower end portion of the positive electrode column 34 protrudes downward from the lower end portion of the positive electrode bushing 32, and further protrudes downward from the lower surface of the lid 14, and as described above, one side in the cell alignment direction (X-axis positive direction side It is connected to the positive side strap 52 accommodated in the cell chamber 16 located at the end of.
  • the positive electrode side terminal portion 36 is, for example, a substantially L-shaped conductive member, and is formed of, for example, a lead alloy.
  • the upper end portion of the positive electrode terminal portion 36 protrudes upward from the upper surface of the lid 14, and the lower end portion of the positive electrode terminal portion 36 is electrically connected to the upper end portion of the positive electrode post 34.
  • the periphery of a portion of the top surface of the lid 14 through which the positive electrode terminal portion 36 penetrates is sealed by, for example, a resin member 70.
  • the positive electrode side terminal portion 36 and the positive electrode post 34 may be an integral member.
  • the negative electrode terminal member 40 includes a negative electrode bushing 42, a negative electrode post 44, and a negative electrode terminal portion 46.
  • the negative electrode side bushing 42 is a substantially cylindrical conductive member in which a hole penetrating in the vertical direction is formed, and is formed of, for example, a lead alloy.
  • the negative electrode side bushing 42 is embedded in the lid 14 by insert molding.
  • the negative electrode post 44 is a substantially cylindrical conductive member, and is formed of, for example, a lead alloy. The negative electrode post 44 is inserted into the hole of the negative electrode side bushing 42 and is joined to the negative electrode side bushing 42 by welding, for example.
  • the lower end portion of the negative electrode post 44 protrudes downward from the lower end portion of the negative electrode side bushing 42, and further protrudes downward from the lower surface of the lid 14, and as described above, the other side in the cell alignment direction Is connected to the negative side strap 54 housed in the cell chamber 16 located at the end of.
  • the negative electrode side terminal portion 46 is, for example, a substantially L-shaped conductive member, and is formed of, for example, a lead alloy.
  • the upper end portion of the negative electrode terminal portion 46 protrudes upward from the upper surface of the lid 14, and the lower end portion of the negative electrode terminal portion 46 is electrically connected to the upper end portion of the negative electrode post 44.
  • the periphery of a portion of the upper surface of the lid 14 through which the negative electrode terminal portion 46 penetrates is sealed by, for example, a resin member 70.
  • the negative electrode side terminal portion 46 and the negative electrode post 44 may be an integral member.
  • a load (not shown) is connected to the positive electrode terminal portion 36 of the positive electrode terminal member 30 and the negative electrode terminal portion 46 of the negative electrode terminal member 40. Electric power generated by the reaction at the positive electrode plate 210 (the reaction of lead dioxide to lead sulfate) and the reaction at the negative electrode plate 220 (the reaction of lead sulfate to lead sulfate) is supplied to the load. Further, when the lead storage battery 100 is charged, a power supply (not shown) is connected to the positive electrode terminal portion 36 of the positive electrode terminal member 30 and the negative electrode terminal portion 46 of the negative electrode terminal member 40 and supplied from the power supply.
  • the generated electric power causes a reaction (a reaction of lead sulfate to lead dioxide) at each positive electrode plate 210 of each electrode plate group 20 and a reaction at a negative electrode plate 220 (a reaction of lead sulfate to lead (cavernous lead)).
  • the lead storage battery 100 is charged.
  • the compression ratio of each separator 230 constituting the electrode plate group 20 accommodated in each cell chamber 16 is 1.2 or more and 1.8 or less.
  • the compression ratio of the separator 230 refers to the thickness D1 of the separator 230 in a state in which the electrode plate group 20 is accommodated in the cell chamber 16 (hereinafter referred to as “accommodated state”), as shown in FIGS.
  • the ratio ( D0 / D1) of the thickness D0 of the separator 230 when the electrode group 20 is not accommodated in the cell chamber 16 (natural state).
  • the compression ratio of the separator 230 is an index value indicating how much the separator 230 in the storage state is elastically shrunk from the natural state.
  • the condition that the compression ratio of the separator 230 is 1.2 or more and 1.8 or less is referred to as "a specific condition regarding the separator".
  • the compression ratio of the separator 230 which comprises the lead storage battery 100 shall be specified as follows. (1) Disassemble the fully charged lead-acid battery 100 according to the Battery Industry Association (SBA), and take out the electrode plate group 20 from the cell chamber 16. When the electrode plate group 20 is taken out of the cell chamber 16, the separator 230 constituting the electrode plate group 20 restores and expands in the thickness direction. (2) The electrode plates 210 and 220 and the separators 230 constituting the electrode plate group 20 taken out are washed with water for 3 hours or more, and then dried. (3) After drying, the thickness of each positive electrode plate 210 and each negative electrode plate 220 is measured with a caliper. The average value of the measured thickness is calculated for each of the electrode plates 210 and 220.
  • SBA Battery Industry Association
  • each separator 230 is measured with a caliper. Since the thickness of the separator 230 is easily changed, the thickness is measured on the basis of 200 N / dm 2 . For each separator 230, the average value of the measured thickness is calculated. (4) Measure the width W1 of the cell chamber 16 with a caliper. When the width W1 is different between the upper portion and the lower portion in the cell chamber 16, an average value of the widths W1 of the upper and lower portions is calculated. (5) The compression ratio of the separator 230 is calculated based on the following equation.
  • the compression ratio of the separator 230 the thickness D0 of the separator 230 in the natural state / the thickness D1 of the separator 230 in the storage state
  • the thickness D0 of the separator 230 in the natural state is a measurement value in the above (3)
  • the thickness D1 of the separator 230 in the storage state is calculated based on the following equation.
  • Thickness D1 of the separator 230 in the storage state (Width W1 of cell chamber 16-(thickness of positive electrode plate 210 ⁇ number of positive electrode plates 210 constituting electrode plate group 20)-(thickness of negative electrode plate 220 ⁇ negative electrode plate 220 constituting electrode group 20) Number of sheets) / (Number of positive electrodes 210 constituting electrode group 20 + number of negative electrodes 220 constituting electrode group 20) -1)
  • the electrode plate group 20 includes other members (for example, non-woven sheets) other than the positive electrode plate 210, the negative electrode plate 220, and the separator 230
  • the thickness D1 of the separator 230 in the storage state is obtained by the above equation The value is obtained by subtracting the thickness of the other member from the value.
  • the positive electrode active material 216 contains a fiber (hereinafter, referred to as “fiber for positive electrode”) 217 in addition to lead dioxide.
  • fiber for positive electrode a fiber
  • the average specific surface area of the fibers 217 for positive electrode according to the BET method using krypton gas as adsorption gas (hereinafter, also simply referred to as “average specific surface area of the fibers 217 for positive electrode”) is 0.20 m 2 / g or more It is.
  • krypton gas has a lower saturated vapor pressure than, for example, nitrogen gas
  • a relatively low specific surface area can be accurately measured. it can.
  • the surface area of the fine wrinkles on the surface of the positive electrode fiber 217 which is difficult to measure when nitrogen gas is used, can be accurately measured. Therefore, when nitrogen gas is used as the adsorption gas for various fibers, the specific surface area of the fibers can be obtained using krypton gas as the adsorption gas, even if there is no significant difference in the measurement results of the specific surface area of the fibers. Significant differences may be identified in the measurement results of
  • the fibers 217 for the positive electrode are, for example, acrylic fibers, polypropylene fibers, polyester fibers, polyethylene fibers, PET fibers, and rayon fibers.
  • Acrylic fibers are produced by wet spinning in which a polymer is dissolved in a solvent and the fibers are spun in a liquid called a coagulant. At this time, the fiber part and the solvent part are separated (segregated), and the part from which the solvent part is removed appears as wrinkles. Therefore, in general, many fine wrinkles are formed on the surface of acrylic fiber. Therefore, it is preferable to use an acrylic fiber as the positive electrode fiber 217 because the positive electrode fiber 217 having an average specific surface area according to the BET method using krypton gas as the adsorption gas can be easily obtained. .
  • the average specific surface area of the fiber 217 for positive electrodes by BET method which used krypton gas as adsorption gas can be enlarged to about 0.40 m ⁇ 2 > / g. .
  • the total pore volume per unit mass of the positive electrode active material 216 is 0.150 cm 3 / g or less.
  • the total pore volume per unit mass of the positive electrode active material 216 0.104cm 3 / g or more, 0.150cm 3 / g and more preferably at most, 0.132cm 3 / g or more, 0.150Cm It is more preferable that it is 3 / g or less.
  • the total pore volume per unit mass of the positive electrode active material 216 can be adjusted by changing the formulation (blending ratio of lead powder, water, and dilute sulfuric acid) at the time of manufacturing the positive electrode active material 216. For example, when the mixing ratio of dilute sulfuric acid and water is increased, the total pore volume per unit mass of the positive electrode active material 216 is increased.
  • the total pore volume per unit mass of the positive electrode active material 216 is 0.150 cm 3 / g or less, the positive electrode active material 216 contains the fiber 217 for the positive electrode, and the krypton gas is adsorbed.
  • the condition that the average specific surface area of the fibers 217 for the positive electrode according to the BET method used as a gas is 0.20 m 2 / g or more is referred to as “the specific condition regarding the positive electrode active material”.
  • the average specific surface area according to the BET method using krypton gas as an adsorption gas for the positive electrode fibers 217 contained in the positive electrode active material 216 constituting the positive electrode plate 210 of the lead storage battery 100 is specified as follows: Do. (1) Disassemble the lead storage battery 100 and collect the positive electrode plate 210. (2) In order to remove the sulfuric acid, the collected positive electrode plate 210 is washed with water. (3) The positive electrode active material 216 is collected from the positive electrode plate 210. (4) The collected positive electrode active material 216 is dissolved in a mixed solution of nitric acid and hydrogen peroxide. (5) Filter the solution of (4). (6) Sample about 0.4 g of sample (fiber) from the residue on filter paper.
  • the total pore volume per unit mass of the positive electrode active material 216 which comprises the positive electrode plate 210 of the lead storage battery 100 shall be specified as follows. (1) Disassemble the lead storage battery 100 and collect the positive electrode plate 210. (2) In order to remove the sulfuric acid, the collected positive electrode plate 210 is washed with water. (3) About 1 g of a sample (positive electrode active material 216) is collected from the positive electrode plate 210. (4) The total pore volume is measured by mercury porosimetry using a mercury porosimeter (Autopore IV 9500 series manufactured by Shimadzu Corporation) with the collected positive electrode active material 216 as a target. (5) The average value of the measured values of the total pore volume of each positive electrode active material 216 is taken as the total pore volume per unit mass of the positive electrode active material 216.
  • each sample has a compression ratio of the separator, a total pore volume of the positive electrode active material, and an average specific surface area of the positive electrode fibers different from each other. More specifically, in the samples S1 to S13 shown in FIG. 8, the compression ratio of the separators is the same value (1.5), but the total pore volume of the positive electrode active material and the average of the fibers for the positive electrode The specific surface areas are different from one another.
  • the samples S1 to S13 are arranged in the ascending order of the total pore volume of the positive electrode active material, and each sample having the same total pore volume of the positive electrode active material is the average of fibers for the positive electrode. They are arranged in ascending order of specific surface area.
  • the compression ratio of the separator and the positive electrode fibers are different from one another.
  • the samples S14 to S21 are arranged in the ascending order of the compression ratio of the separators, and the samples having the same compression ratio of the separators are arranged in the ascending order of the average specific surface area of the positive electrode fibers. There is.
  • the samples S4, S5, S13 to S15, S20, and S21 do not satisfy one or both of the above-described specific conditions for the separator and the specific conditions for the positive electrode active material.
  • the samples S14 and S15 do not satisfy the specific condition on the separator because the compression ratio of the separator is relatively small at 1.1.
  • the samples S20 and S21 do not satisfy the specific condition on the separator because the compression ratio of the separator is relatively large at 1.9.
  • the samples S4 and S5 do not satisfy the specific conditions for the positive electrode active material, because the average specific surface area of the positive electrode fibers is relatively small at 0.16 m 2 / g or 0.18 m 2 / g.
  • the sample S13 does not satisfy the specific condition regarding the positive electrode active material.
  • acrylic fibers are used as fibers for the positive electrode, and the average diameter of the acrylic fibers is 16.7 ⁇ m, and the aspect ratio of the acrylic fibers (the average length with respect to the average diameter of the fibers) Ratio) is 30 to 400.
  • the content ratio of the positive electrode fibers in the positive electrode active material is 0.05% by mass (wt%) to 0.40% by mass.
  • the negative electrode active material constituting the negative electrode plate contains, as fibers for the negative electrode, PET-based fibers having an average specific surface area of 0.20 m 2 / g according to the BET method using krypton gas as an adsorption gas. doing.
  • the preparation method of each sample is as follows. (1) Production of positive electrode plate Raw material lead powder (a mixture of lead oxide mainly composed of lead and lead monoxide), water, diluted sulfuric acid (density 1.40 g / cm 3 ), and predetermined lengths
  • the paste for the positive electrode active material was obtained by mixing with the cut synthetic resin fiber (hereinafter, referred to as “fiber for positive electrode”). It is known that the positive electrode active material can change its density by changing the mixing ratio of dilute sulfuric acid and water, and the positive electrode active material used in this performance evaluation is also the above dilute sulfuric acid and water.
  • a lead sheet made of a ternary alloy of lead, calcium and tin (hereinafter referred to as "Pb-Ca-Sn alloy") was expanded, and then a positive electrode grid (positive electrode current collector) was produced.
  • the expanded network of the positive electrode current collector is filled with the paste for the positive electrode active material, and it is aged and dried by a conventional method to form an unformed positive electrode plate (height: 115 mm, width: 137.5 mm, thickness: 1.5 mm) I got
  • the expanded network of the negative electrode current collector is filled with the paste for negative electrode active material, and the negative electrode plate (height: 115 mm, width: 137.5 mm, thickness 1) is formed by aging and drying in the usual manner as in the positive electrode plate. .3 mm).
  • the evaluation of capacity characteristics was performed as follows. That is, for each sample of the lead-acid battery, the 3-hour rate capacity is measured by the method shown in a) to d) below, and the 3-hour rate capacity in sample S5 is assumed to be 100 (shown by bold lines in FIGS. ), 3 hour rate capacity in each sample was expressed as a relative value.
  • the sample is discharged at a constant reference current I 3 (A) until the discharge termination voltage (1.65 ⁇ cell number (V)) is reached.
  • the reference current I 3 (A) is a value obtained by the following equation.
  • I 3 C 3/3 (However, C 3 is 3-hour-rate rated capacity (Ah))
  • d) Measure the discharge duration time in the above c) and calculate the 3-hour rate capacity.
  • the evaluation of the lifespan was performed as follows. That is, for each sample of the lead storage battery, a life test was conducted by the method shown in the following a) to d) to determine the number of times of life.
  • the number of lifespans of the sample S5 is set to 100 (indicated by bold lines in FIGS. 8 and 9), and the number of lifespans of each sample is represented by a relative value.
  • a) Place the sample in a 25 ⁇ 2 ° C. air bath throughout the entire test period.
  • b) Connect the sample to the life test device, discharge for 2.4 hours with the reference current I 3 (A) described above, and then charge with the 5-stage constant current charge described above. One cycle of this discharge and charge is taken as one life.
  • the specific condition (the condition that the compression ratio of the separator is 1.2 or more and 1.8 or less) related to the above-mentioned separator and the specific condition (the unit of the positive electrode active material)
  • the total pore volume per mass is 0.150 cm 3 / g or less
  • the positive electrode active material contains a positive electrode fiber
  • the average ratio of positive electrode fibers by BET method using krypton gas as an adsorption gas In the samples S1 to S3, S6 to S12, and S16 to S19 which satisfy both the condition that the surface area is 0.20 m 2 / g or more, the result of evaluation of the life characteristics is “113” or more, and the samples As compared with the evaluation result "100" of the life characteristics of S5, the life characteristics were dramatically improved.
  • sample S13 which does not satisfy the specific conditions for the positive electrode active material because the total pore volume per unit mass of the positive electrode active material exceeds 0.150 cm 3 / g, the evaluation of the life characteristics is as good as “83” There was no result.
  • the total pore volume per unit mass of the positive electrode active material is excessively large. That is, in the sample S13, the density of the positive electrode active material is excessively low, and is easily broken.
  • the average specific surface area of the positive electrode fiber is 0.20 m 2 / g or more and the positive electrode fiber is in close contact with other components in the positive electrode active material, lead It is considered that the positive electrode active material collapses and falls off from the current collector as the charge and discharge of the storage battery are repeated, and the life characteristics become low.
  • the evaluation of the life characteristics resulted in an extremely low value of 19 or less.
  • the compression ratio of the separator is excessively small. Therefore, in the samples S14 and S15, the thickness of the separator becomes thinner (that is, the thickness does not return to the initial thickness) as the electrode plate expands and contracts due to repeated charging and discharging. It is considered that the number of parts which can not be in contact with the electrode plate is increased to cause a capacity reduction, and the life characteristic is lowered.
  • the lead storage battery has the above-described specific condition (the condition that the compression ratio of the separator is 1.2 or more and 1.8 or less) related to the separator and the specific condition (the positive electrode active material)
  • the total pore volume per unit mass of the substance is 0.150 cm 3 / g or less
  • the positive electrode active material contains a positive electrode fiber
  • the positive electrode fiber by BET method using krypton gas as an adsorption gas on average specific surface area of satisfies both the conditions) that is 0.20 m 2 / g or more, effectively suppresses the dropping of the positive electrode active material from the positive electrode current collector (positive electrode material) in the positive electrode plate It has been confirmed that the life characteristics of lead acid batteries can be dramatically improved.
  • a negative electrode fiber in which an acrylic fiber having an average specific surface area of 0.20 m 2 / g or more according to the BET method using krypton gas as adsorption gas is contained only in the negative electrode active material constituting the negative electrode plate The samples used as were not good for either the life or capacity characteristics.
  • a negative electrode plate is also used as a positive electrode fiber in which an acrylic fiber having an average specific surface area of 0.20 m 2 / g or more according to BET method using krypton gas as an adsorption gas is contained in a positive electrode active material constituting the positive electrode plate.
  • the life characteristics and the capacity characteristics were equivalent to those of the samples S1 to S3, S6 to S12, and S16 to S19. According to this result, the life characteristics of the lead storage battery can be greatly improved by using a fiber having an average specific surface area of 0.20 m 2 / g or more according to the BET method using krypton gas as adsorption gas as at least a fiber for a positive electrode. It can be said that it can be improved.
  • the total pore volume per unit mass of the positive electrode active material Is 0.104 cm 3 / g or more and 0.150 cm 3 / g or less.
  • a good result of “113” or more was obtained in the evaluation of the life characteristics
  • a good result of “96” or more was obtained in the evaluation of the capacitance characteristics.
  • the total pore volume per unit mass of the positive electrode active material is 0.104 cm 3 / g If the above is 0.150 cm 3 / g or less, the total pore volume per unit mass of the positive electrode active material becomes excessively small, whereby the reactivity of the positive electrode active material becomes excessively low, and the capacity characteristic is lowered. While being hard to be influenced, it is possible to suppress that the density of the positive electrode active material becomes excessively low and the life characteristics deteriorate by the fact that the total pore volume per unit mass of the positive electrode active material becomes excessively large. I can say that.
  • both the specific conditions for the separator and the specific conditions for the positive electrode active material are satisfied, and the total pore volume per unit mass of the positive electrode active material is 0.104 cm 3 / g or more, 0.150 cm 3 It can be said that it is more preferable that it is / g or less.
  • the samples S6 to S12 and S16 to S19 the same life characteristics were obtained as compared with the samples S1 to S3 which are advantageous for the life characteristics because the total pore volume of the positive electrode active material is relatively small.
  • samples S6 to S12 and S16 can be obtained by adopting fibers having an average specific surface area of 0.20 m 2 / g or more according to the BET method using krypton gas as adsorption gas as fibers for a positive electrode. Even in the numerical range of the total pore volume of the positive electrode active material as in S19 to S19, it is possible to obtain the life characteristics equal to or more than the configuration in which the total pore volume of the positive electrode active material is smaller. It is.
  • the total pore volume per unit mass of the positive electrode active material is 0.132 cm 3 / g or more and 0.150 cm 3 / g or less is there.
  • the results were more favorable than "135" or more, and in the evaluation of the capacitance characteristics, the results were extremely good as "112" or more.
  • the total pore volume per unit mass of the positive electrode active material is 0.132 cm 3 / g If it is not less than 0.150 cm 3 / g, the decrease in reactivity of the positive electrode active material can be extremely effectively suppressed, so that the positive electrode active material (positive electrode material) from the positive electrode current collector in the positive electrode plate It can be said that the capacity characteristic of the lead storage battery can be extremely effectively improved while effectively suppressing the dropout.
  • both the specific conditions for the separator and the specific conditions for the positive electrode active material are satisfied, and the total pore volume per unit mass of the positive electrode active material is 0.132 cm 3 / g or more, 0.150 cm 3 It is more preferable that the ratio is / g or less.
  • acrylic fibers were used as the positive electrode fibers. If an acrylic fiber is used as the positive electrode fiber, a fiber having an average specific surface area of 0.20 m 2 / g or more according to the BET method using krypton gas as an adsorption gas can be easily obtained.
  • the configuration of the lead storage battery 100 in the above embodiment is merely an example, and various modifications are possible.
  • acrylic fibers, polypropylene fibers, polyester fibers, polyethylene fibers, PET fibers, and rayon fibers are illustrated as the fibers 217 for the positive electrode in the above embodiment, the fibers 217 for the positive electrode are krypton
  • Other types of fibers may be used as long as the average specific surface area according to the BET method using a gas as an adsorption gas is 0.20 m 2 / g or more.
  • the negative electrode active material 226 constituting the negative electrode plate 220 may satisfy the same conditions as the specific conditions for the positive electrode active material described above.
  • the manufacturing method of the lead storage battery 100 in the said embodiment is an example to the last, and can be variously deformed.
  • Reference Signs List 10 housing 12: battery case 14: lid 16: cell chamber 20: electrode plate group 30: positive electrode side terminal member 32: positive electrode side bushing 34: positive electrode column 36: positive electrode side terminal portion 40: negative electrode side terminal member 42: negative electrode Side bushing 44: Negative electrode post 46: Negative electrode side terminal portion 52: Positive electrode side strap 54: Negative electrode side strap 56: Connection member 58: Partition member 60: Control valve 70: Resin member 100: Lead storage battery 210: Positive electrode plate 212: Positive electrode current collector Body 214: positive electrode ear portion 216: positive electrode active material 217: fiber for positive electrode 220: negative electrode plate 222: negative electrode current collector 224: negative electrode ear portion 226: negative electrode active material 230: separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

制御弁式鉛蓄電池は、集電体と集電体に支持された正極材料とを有する正極板と、負極板と、正極板と負極板との間に配置され、ガラス繊維により構成されたセパレータとを備える。セパレータの圧縮比は、1.2以上、1.8以下である。正極材料の単位質量あたりの全細孔容積は、0.150cm/g以下である。正極材料は、繊維を含有しており、クリプトンガスを吸着ガスとして用いたBET法による繊維の平均比表面積は、0.20m/g以上である。

Description

制御弁式鉛蓄電池
 本明細書に開示される技術は、制御弁式鉛蓄電池に関する。
 鉛蓄電池の1つとして、制御弁式鉛蓄電池(密閉式鉛蓄電池)が知られている。制御弁式鉛蓄電池は、内部に流動する電解液を有さないことから設置姿勢の自由度が高く、また、液量の点検や補水が不要であることからメンテナンスが容易であり、例えば、無停電電源装置、通信基地局、二輪自動車等の電源として利用される(例えば、特許文献1参照)。
 制御弁式鉛蓄電池は、正極板と負極板とを備える。正極板および負極板は、それぞれ、集電体と、集電体に支持された活物質とを有する。また、制御弁式鉛蓄電池は、正極板と負極板との間に配置され、ガラス繊維により構成されたセパレータを備える。セパレータには、電解液(例えば、希硫酸)が含浸されている。制御弁式鉛蓄電池では、正極板と負極板とセパレータとは、厚さ方向に圧縮力を受けた状態で、セル室に収容されている。
特開2015-69965号公報
 制御弁式鉛蓄電池では、正極板が厚さ方向に圧縮力を受けた状態でセル室に収容されていることから、正極板における集電体からの正極材料の脱落は比較的発生しにくいものの、正極材料の脱落の発生のおそれは依然としてある。本願発明者は、鋭意検討を重ねることにより、制御弁式鉛蓄電池の構成として特定の構成を採用すると、集電体からの正極材料の脱落を効果的に抑制することができ、制御弁式鉛蓄電池の寿命特性を飛躍的に向上させることができることを新たに見出した。
 本明細書では、制御弁式鉛蓄電池の正極板における集電体からの正極材料の脱落を効果的に抑制して、制御弁式鉛蓄電池の寿命特性を飛躍的に向上させることが可能な技術を開示する。
 本明細書に開示される制御弁式鉛蓄電池は、集電体と、前記集電体に支持された正極材料と、を有する正極板と、負極板と、前記正極板と前記負極板との間に配置され、ガラス繊維により構成されたセパレータと、を備え、前記セパレータの圧縮比は、1.2以上、1.8以下であり、前記正極材料の単位質量あたりの全細孔容積は、0.150cm/g以下であり、前記正極材料は、繊維を含有しており、クリプトンガスを吸着ガスとして用いたBET法による前記繊維の平均比表面積は、0.20m/g以上である。
本実施形態における鉛蓄電池100の外観構成を示す正面図である。 本実施形態における鉛蓄電池100の外観構成を示す上面図である。 本実施形態における鉛蓄電池100の内部構成を示す上面図である。 図2のIV-IVの位置における鉛蓄電池100のYZ断面構成を示す説明図である。 図2のV-Vの位置における鉛蓄電池100のYZ断面構成を示す説明図である。 図3のVI-VIの位置における鉛蓄電池100の一部分のXZ断面構成を示す説明図である。 セル室16への極板群20の収容方法を示す説明図である。 性能評価結果を示す説明図である。 性能評価結果を示す説明図である。
 本明細書に開示される技術は、以下の形態として実現することが可能である。
(1)本明細書に開示される制御弁式鉛蓄電池は、集電体と、前記集電体に支持された正極材料と、を有する正極板と、負極板と、前記正極板と前記負極板との間に配置され、ガラス繊維により構成されたセパレータと、を備え、前記セパレータの圧縮比は、1.2以上、1.8以下であり、前記正極材料の単位質量あたりの全細孔容積は、0.150cm/g以下であり、前記正極材料は、繊維を含有しており、クリプトンガスを吸着ガスとして用いたBET法による前記繊維の平均比表面積は、0.20m/g以上である。なお、正極板は、集電体と正極材料とから構成される。すなわち、正極材料は、正極板から集電体を取り除いたものであり、一般に「活物質」ともいわれるものである。本願発明者は、鋭意検討を重ねることにより、上記のような構成を採用することにより、正極板における集電体からの正極材料の脱落を効果的に抑制して、制御弁式鉛蓄電池の寿命特性を飛躍的に向上させることができることを新たに見出した。
 すなわち、従来、正極材料に含有させる繊維の比表面積については、何ら検討されていなかった。また、仮に、正極材料に含有させる繊維の比表面積について検討するとしても、繊維の比表面積をBET法で測定する場合に用いられる吸着ガスは、一般に窒素ガスであった。本願発明者は、種々の繊維について、窒素ガスを吸着ガスとして用いた場合には繊維の比表面積の測定結果に有意な差が無い場合であっても、クリプトンガスを吸着ガスとして用いて繊維の比表面積を測定し、そのように測定された平均比表面積が0.20m/g以上である繊維を選択的に用いると、正極板における集電体からの正極材料の脱落を効果的に抑制して、制御弁式鉛蓄電池の寿命特性を飛躍的に向上させることができることを新たに見出した。
 ただし、正極材料の単位質量あたりの全細孔容積が過度に大きいと、正極材料の密度が過度に低く、崩れやすい構成となるため、正極材料の集電体からの脱落を抑制することができなくなる場合がある。また、セパレータの圧縮比が過度に小さいと、制御弁式鉛蓄電池の充放電の繰り返しによって発生する極板の膨張・収縮に伴いセパレータの厚さが薄くなり、極板の収縮時に次第にセパレータと極板とが接触できない部位が増加して容量低下が発生し、寿命特性が低くなる場合がある。また、セパレータの圧縮比が過度に大きいと、セパレータに過大な圧力が加わることによってセパレータ内部の隙間が過小となり、セパレータによる電解液を保持する機能が過度に低下した状態となり、容量低下が発生して寿命特性が低くなる場合がある。本願発明者は、鋭意検討を重ねることにより、セパレータの圧縮比を1.2以上、1.8以下とし、かつ、正極材料の単位質量あたりの全細孔容積を0.150cm/g以下とすれば、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上である繊維を正極用繊維として採用することにより、正極板における集電体からの正極材料の脱落を効果的に抑制して、鉛蓄電池の寿命特性を飛躍的に向上させることができることを見出した。
(2)上記制御弁式鉛蓄電池において、前記正極材料の単位質量あたりの全細孔容積は、0.104cm/g以上である構成としてもよい。正極材料の単位質量あたりの全細孔容積が過度に小さいと、正極材料の反応性が過度に低くなり、その結果、鉛蓄電池の容量特性が低くなるものと考えられる。これに対し、本制御弁式鉛蓄電池では、正極材料の単位質量あたりの全細孔容積が0.104cm/g以上と過度に小さくない。そのため、本制御弁式鉛蓄電池によれば、正極材料の反応性の低下を抑制することができ、制御弁式鉛蓄電池の寿命特性を飛躍的に向上させつつ、制御弁式鉛蓄電池の容量特性を向上させることができる。
(3)上記制御弁式鉛蓄電池において、前記正極材料の単位質量あたりの全細孔容積は、0.132cm/g以上である構成としてもよい。本制御弁式鉛蓄電池によれば、正極材料の反応性の低下を極めて効果的に抑制することができるため、制御弁式鉛蓄電池の寿命特性を飛躍的に向上させつつ、制御弁式鉛蓄電池の容量特性を極めて効果的に向上させることができる。
(4)上記制御弁式鉛蓄電池において、前記繊維は、アクリル系繊維である構成としてもよい。本制御弁式鉛蓄電池によれば、容易に、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上である繊維を得ることができる。
A.実施形態:
A-1.基本構成:
(鉛蓄電池100の構成)
 図1は、本実施形態における鉛蓄電池100の外観構成を示す正面図であり、図2は、鉛蓄電池100の外観構成を示す上面図であり、図3は、鉛蓄電池100の内部構成を示す上面図(後述する蓋14を外した状態を示す図)であり、図4は、図2のIV-IVの位置における鉛蓄電池100のYZ断面構成を示す説明図であり、図5は、図2のV-Vの位置における鉛蓄電池100のYZ断面構成を示す説明図であり、図6は、図3のVI-VIの位置における鉛蓄電池100の一部分のXZ断面構成を示す説明図である。なお、図示の便宜上、図3では、後述する複数の極板群20(およびそれに接続されるストラップ52,54)の内の一部(3つ)のみが示されており、また、図4および図5では、極板群20の構成が分かりやすく示されるように、該構成の一部の図示が省略されている。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を「上方向」といい、Z軸負方向を「下方向」というものとするが、鉛蓄電池100は実際にはそのような向きとは異なる向きで設置されてもよい。
 本実施形態の鉛蓄電池100は、制御弁式鉛蓄電池(密閉式鉛蓄電池)である。制御弁式鉛蓄電池は、内部に流動する電解液を有さないことから設置姿勢の自由度が高く、また、液量の点検や補水が不要であることからメンテナンスが容易であり、例えば、無停電電源装置、通信基地局、二輪自動車等の電源として利用される。鉛蓄電池100は、筐体10と、正極側端子部材30と、負極側端子部材40と、複数の極板群20とを備える。以下では、正極側端子部材30と負極側端子部材40とを、まとめて「端子部材30,40」ともいう。
(筐体10の構成)
 筐体10は、電槽12と、蓋14とを有する。電槽12は、上面に開口部を有する略直方体の容器であり、例えば合成樹脂により形成されている。蓋14は、電槽12の開口部を塞ぐように配置された部材であり、例えば合成樹脂により形成されている。蓋14の下面の周縁部分と電槽12の開口部の周縁部分とが例えば熱溶着によって接合されることにより、筐体10内に外部との気密が保たれた空間が形成されている。
 蓋14には、制御弁(排気弁)60が配置されている。制御弁60は、通常時は閉状態とされており、鉛蓄電池100の内圧が上昇した時に開状態となって内圧を逃す機能を有する。
 筐体10内の空間は、複数の(本実施形態では5枚の)隔壁58によって、所定方向(本実施形態ではX軸方向)に並ぶ複数の(本実施形態では6つの)セル室16に区画されている。以下では、複数のセル室16が並ぶ方向(X軸方向)を、「セル並び方向」という。筐体10内の各セル室16には、1つの極板群20が収容されている。本実施形態では、筐体10内の空間が6つのセル室16に区画されているため、鉛蓄電池100は6つの極板群20を備える。
(極板群20の構成)
 図4から図6に示すように、極板群20は、複数の正極板210と、複数の負極板220と、セパレータ230とを備える。複数の正極板210および複数の負極板220は、正極板210と負極板220とが交互に並ぶように配置されている。また、セパレータ230は、互いに隣り合う正極板210と負極板220との間に配置され、正極板210と負極板220とに挟持されている。なお、極板群20が、正極板210、負極板220、セパレータ230以外の他の部材(例えば、正極板210と負極板220との間に配置された不織布シート)を備えるとしてもよい。以下では、正極板210と負極板220とを、まとめて「極板210,220」ともいう。
 正極板210は、正極集電体212と、正極集電体212に支持された正極活物質216とを有する。正極集電体212は、略格子状または網目状に配置された骨を有する導電性部材であり、例えば鉛または鉛合金により形成されている。また、正極集電体212は、その上端付近に、上方に突出する正極耳部214を有している。正極活物質216は、二酸化鉛と、後述する正極用繊維217とを含んでいる。正極活物質216は、さらに、公知の他の添加剤を含んでいてもよい。このような構成の正極板210は、例えば、一酸化鉛と水と希硫酸とを主成分とする正極活物質用ペーストを正極集電体212に塗布または充填し、正極活物質用ペーストを乾燥させた後、公知の化成処理を行うことにより作製することができる。なお、本実施形態における正極活物質216は、正極板210から正極集電体212を取り除いたものであり、特許請求の範囲における正極材料に相当する。
 負極板220は、負極集電体222と、負極集電体222に支持された負極活物質226とを有する。負極集電体222は、略格子状または網目状に配置された骨を有する導電性部材であり、例えば鉛または鉛合金により形成されている。また、負極集電体222は、その上端付近に、上方に突出する負極耳部224を有している。負極活物質226は、鉛(海綿状鉛)を含んでいる。負極活物質226は、さらに、公知の他の添加剤(例えば、繊維、カーボン、リグニン、硫酸バリウム等)を含んでいてもよい。このような構成の負極板220は、例えば、鉛を含む負極活物質用ペーストを負極集電体222に塗布または充填し、該負極活物質用ペーストを乾燥させた後、公知の化成処理を行うことにより作製することができる。
 セパレータ230は、絶縁性材料であるガラス繊維により構成され、厚さ方向に弾性変形可能なマット状の部材である。セパレータ230には、電解液(例えば、希硫酸)が含浸されている。このように、セパレータ230は、両極板210,220の間の短絡を防止すると共に、電解液を保持する機能を有する。
 なお、図7に示すように、セル室16に収容されていない状態(以下、「自然状態」という)における極板群20の厚さW0は、セル室16の幅(すなわち、互いに隣り合う一対の隔壁58間の距離(または隔壁58と電槽12の側壁との間の距離))W1よりもわずかに大きい値に設定されている。鉛蓄電池100を製造する際には、自然状態の極板群20に対し、押圧装置(図示せず)によって厚さ方向に圧縮力が加えられる。その結果、セパレータ230が厚さ方向に弾性収縮することにより、極板群20の厚さがセル室16の幅W1以下となる。この状態で、極板群20がセル室16に挿入される。極板群20がセル室16に収容された状態では、極板群20は、厚さ方向(本実施形態ではX軸方向)に圧縮力を受けている。そのため、極板群20を構成する各極板210,220は、電解液を保持したセパレータ230と良好に接触した状態となる。
 図3から図5に示すように、極板群20を構成する複数の正極板210の正極耳部214は、例えば鉛または鉛合金により形成された正極側ストラップ52に接続されている。すなわち、複数の正極板210は、正極側ストラップ52を介して電気的に並列に接続されている。同様に、極板群20を構成する複数の負極板220の負極耳部224は、例えば鉛または鉛合金により形成された負極側ストラップ54に接続されている。すなわち、複数の負極板220は、負極側ストラップ54を介して電気的に並列に接続されている。以下では、正極側ストラップ52と負極側ストラップ54とを、まとめて「ストラップ52,54」ともいう。
 鉛蓄電池100において、一のセル室16に収容された負極側ストラップ54は、例えば鉛または鉛合金により形成された接続部材56を介して、該一のセル室16の一方側(例えばX軸正方向側)に隣り合う他のセル室16に収容された正極側ストラップ52に接続されている。また、該一のセル室16に収容された正極側ストラップ52は、接続部材56を介して、該一のセル室16の他方側(例えばX軸負方向側)に隣り合う他のセル室16に収容された負極側ストラップ54に接続されている。すなわち、鉛蓄電池100が備える複数の極板群20は、ストラップ52,54および接続部材56を介して電気的に直列に接続されている。なお、図4に示すように、セル並び方向の一方側(X軸正方向側)の端に位置するセル室16に収容された正極側ストラップ52は、接続部材56ではなく、後述する正極柱34に接続されている。また、図5に示すように、セル並び方向の他方側(X軸負方向側)の端に位置するセル室16に収容された負極側ストラップ54は、接続部材56ではなく、後述する負極柱44に接続されている。
(端子部材30,40の構成)
 図1および図2に示すように、正極側端子部材30は、筐体10におけるセル並び方向の一方側(X軸正方向側)の端部付近に配置されており、負極側端子部材40は、筐体10におけるセル並び方向の他方側(X軸負方向側)の端部付近に配置されている。
 図4に示すように、正極側端子部材30は、正極側ブッシング32と、正極柱34と、正極側端子部36とを含む。正極側ブッシング32は、上下方向に貫通する孔が形成された略円筒状の導電性部材であり、例えば鉛合金により形成されている。正極側ブッシング32は、インサート成形により蓋14に埋設されている。正極柱34は、略円柱形の導電性部材であり、例えば鉛合金により形成されている。正極柱34は、正極側ブッシング32の孔に挿入されており、例えば溶接により正極側ブッシング32に接合されている。正極柱34の下端部は、正極側ブッシング32の下端部より下方に突出し、さらに、蓋14の下面より下方に突出しており、上述したように、セル並び方向の一方側(X軸正方向側)の端に位置するセル室16に収容された正極側ストラップ52に接続されている。正極側端子部36は、例えば略L形の導電性部材であり、例えば鉛合金により形成されている。正極側端子部36の上端部は、蓋14の上面より上方に突出しており、正極側端子部36の下端部は、正極柱34の上端部と電気的に接続されている。蓋14の上面における正極側端子部36が貫通した部分の周りは、例えば樹脂部材70により封止されている。なお、正極側端子部36と正極柱34とが一体部材であるとしてもよい。
 図5に示すように、負極側端子部材40は、負極側ブッシング42と、負極柱44と、負極側端子部46とを含む。負極側ブッシング42は、上下方向に貫通する孔が形成された略円筒状の導電性部材であり、例えば鉛合金により形成されている。負極側ブッシング42は、インサート成形により蓋14に埋設されている。負極柱44は、略円柱形の導電性部材であり、例えば鉛合金により形成されている。負極柱44は、負極側ブッシング42の孔に挿入されており、例えば溶接により負極側ブッシング42に接合されている。負極柱44の下端部は、負極側ブッシング42の下端部より下方に突出し、さらに、蓋14の下面より下方に突出しており、上述したように、セル並び方向の他方側(X軸負方向側)の端に位置するセル室16に収容された負極側ストラップ54に接続されている。負極側端子部46は、例えば略L形の導電性部材であり、例えば鉛合金により形成されている。負極側端子部46の上端部は、蓋14の上面より上方に突出しており、負極側端子部46の下端部は、負極柱44の上端部と電気的に接続されている。蓋14の上面における負極側端子部46が貫通した部分の周りは、例えば樹脂部材70により封止されている。なお、負極側端子部46と負極柱44とが一体部材であるとしてもよい。
 鉛蓄電池100の放電の際には、正極側端子部材30の正極側端子部36および負極側端子部材40の負極側端子部46に負荷(図示せず)が接続され、各極板群20の正極板210での反応(二酸化鉛から硫酸鉛が生ずる反応)および負極板220での反応(鉛(海綿状鉛)から硫酸鉛が生ずる反応)により生じた電力が該負荷に供給される。また、鉛蓄電池100の充電の際には、正極側端子部材30の正極側端子部36および負極側端子部材40の負極側端子部46に電源(図示せず)が接続され、該電源から供給される電力によって各極板群20の正極板210での反応(硫酸鉛から二酸化鉛が生ずる反応)および負極板220での反応(硫酸鉛から鉛(海綿状鉛)が生ずる反応)が起こり、鉛蓄電池100が充電される。
A-2.鉛蓄電池100の詳細構成:
A-2-1.セパレータ230の詳細構成:
 本実施形態の鉛蓄電池100では、各セル室16に収容される極板群20を構成する各セパレータ230の圧縮比は、1.2以上、1.8以下である。ここで、セパレータ230の圧縮比とは、図6および図7に示すように、極板群20がセル室16に収容された状態(以下、「収容状態」という)におけるセパレータ230の厚さD1に対する、極板群20がセル室16に収容されていない状態(自然状態)におけるセパレータ230の厚さD0の比(=D0/D1)である。すなわち、セパレータ230の圧縮比は、収容状態におけるセパレータ230が、自然状態からどの程度弾性収縮しているかを示す指標値である。以下の説明では、セパレータ230の圧縮比が1.2以上、1.8以下であるという条件を、「セパレータに関する特定条件」という。
 なお、鉛蓄電池100を構成するセパレータ230の圧縮比は、以下のようにして特定するものとする。
(1)電池工業会規格(SBA)に則って満充電状態の鉛蓄電池100を解体し、セル室16から極板群20を取り出す。なお、極板群20をセル室16から取り出すと、極板群20を構成するセパレータ230は厚さ方向に復元膨張する。
(2)取り出された極板群20を構成する各極板210,220および各セパレータ230を3時間以上水洗した後、乾燥させる。
(3)乾燥後、各正極板210および各負極板220の厚さをノギスで測定する。各極板210,220について、測定された厚さの平均値を算出する。同様に、乾燥後、各セパレータ230の厚さ(自然状態における厚さD0)をノギスで測定する。なお、セパレータ230は厚さが変化しやすいため、200N/dmの基準で厚さを測定する。各セパレータ230について、測定された厚さの平均値を算出する。
(4)セル室16の幅W1をノギスで測定する。セル室16における上部と下部で幅W1が異なる場合には、上部と下部の幅W1の平均値を算出する。
(5)以下の式に基づき、セパレータ230の圧縮比を算出する。
 セパレータ230の圧縮比
  =自然状態におけるセパレータ230の厚さD0/収容状態におけるセパレータ230の厚さD1
 ここで、自然状態におけるセパレータ230の厚さD0は、上記(3)における測定値である。
 また、収容状態におけるセパレータ230の厚さD1は、以下の式に基づき算出する。
 収容状態におけるセパレータ230の厚さD1
  =(セル室16の幅W1-(正極板210の厚さ×極板群20を構成する正極板210の枚数)-(負極板220の厚さ×極板群20を構成する負極板220の枚数))/(極板群20を構成する正極板210の枚数+極板群20を構成する負極板220の枚数-1)
 ただし、極板群20が、正極板210、負極板220、セパレータ230以外の他の部材(例えば不織布シート)を備える場合には、収容状態におけるセパレータ230の厚さD1は、上記式で求めた値から上記他の部材の厚さを減じた値とする。
A-2-2.正極活物質216の詳細構成:
 図4に示すように、本実施形態の鉛蓄電池100では、正極活物質216は、二酸化鉛に加えて、繊維(以下、「正極用繊維」という)217を含有している。本実施形態では、クリプトンガスを吸着ガスとして用いたBET法による正極用繊維217の平均比表面積(以下、単に「正極用繊維217の平均比表面積」ともいう)は、0.20m/g以上である。なお、クリプトンガスは、例えば窒素ガスと比べて飽和蒸気圧が低いため、BET法による比表面積の測定のための吸着ガスとしてクリプトンガスを用いれば、比較的低い比表面積を精度良く測定することができる。例えば、クリプトンガスを吸着ガスとして用いれば、窒素ガスを用いる場合には測定の難しい、正極用繊維217の表面の微細な皺の部分の表面積も精度良く測定することができる。そのため、種々の繊維について、窒素ガスを吸着ガスとして用いた場合には繊維の比表面積の測定結果に有意な差が無い場合であっても、クリプトンガスを吸着ガスとして用いると、繊維の比表面積の測定結果に有意な差が把握されることがある。
 正極用繊維217は、例えば、アクリル系繊維、ポリプロピレン系繊維、ポリエステル系繊維、ポリエチレン系繊維、PET系繊維、レーヨン系繊維である。なお、アクリル系繊維は、ポリマーを溶剤に溶かして凝固剤と呼ばれる液体の中で繊維を紡出する湿式紡糸により製造される。このとき、繊維部と溶剤部に分離(偏析)し、溶剤部が除去された部分が皺となって発現する。そのため、一般に、アクリル系繊維の表面には、微細な皺が多く形成されている。従って、正極用繊維217としてアクリル系繊維を用いると、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が上述した数値範囲内である正極用繊維217を容易に得ることができるため、好ましい。なお、正極用繊維217としてアクリル系繊維を用いる場合には、クリプトンガスを吸着ガスとして用いたBET法による正極用繊維217の平均比表面積を0.40m/g程度までは大きくすることができる。
 また、本実施形態の鉛蓄電池100では、正極活物質216の単位質量あたりの全細孔容積は、0.150cm/g以下である。なお、正極活物質216の単位質量あたりの全細孔容積は、0.104cm/g以上、0.150cm/g以下であることがより好ましく、0.132cm/g以上、0.150cm/g以下であることがさらに好ましい。正極活物質216の単位質量あたりの全細孔容積は、正極活物質216を作製する際の処方(鉛粉、水、希硫酸の配合比率)を変化させることにより調整することができる。例えば、希硫酸と水の配合比率を高くすると、正極活物質216の単位質量あたりの全細孔容積は大きくなる。
 以下の説明では、正極活物質216の単位質量あたりの全細孔容積が0.150cm/g以下であり、正極活物質216が正極用繊維217を含有しており、かつ、クリプトンガスを吸着ガスとして用いたBET法による正極用繊維217の平均比表面積が0.20m/g以上であるという条件を、「正極活物質に関する特定条件」という。
 なお、鉛蓄電池100の正極板210を構成する正極活物質216に含まれる正極用繊維217についての、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積は、以下のように特定するものとする。
(1)鉛蓄電池100を解体し、正極板210を採取する。
(2)硫酸を除去するため、採取した正極板210を水洗する。
(3)正極板210から正極活物質216を採取する。
(4)採取した正極活物質216を硝酸と過酸化水素との混合液に溶解させる。
(5)(4)の溶液をろ過する。
(6)ろ紙上の残物から約0.4gの試料(繊維)をサンプリングする。
(7)比表面積測定装置(島津製作所製のトライスターII 3020シリーズ)を用いて、クリプトンガスを吸着ガスとして用いたBET法により、各繊維の比表面積を測定する。
(8)各繊維の比表面積の平均値を算出する。
 また、鉛蓄電池100の正極板210を構成する正極活物質216の単位質量あたりの全細孔容積は、以下のように特定するものとする。
(1)鉛蓄電池100を解体し、正極板210を採取する。
(2)硫酸を除去するため、採取した正極板210を水洗する。
(3)正極板210から約1gの試料(正極活物質216)を採取する。
(4)採取した正極活物質216を対象として、水銀ポロシメータ(島津製作所製のオートポアIV9500シリーズ)を用いて水銀圧入法により全細孔容積を測定する。
(5)各正極活物質216の全細孔容積の測定値の平均値を、正極活物質216の単位質量あたりの全細孔容積とする。
A-3.性能評価:
 鉛蓄電池の複数のサンプル(S1~S21)を作製し、該サンプルを対象とした性能評価を行った。図8および図9は、性能評価結果を示す説明図である。なお、複数のサンプルの内の基準となるサンプルS5については、図8および図9に共通して記載されている(各図において太枠で囲んで示す)。
A-3-1.各サンプルについて:
 図8および図9に示すように、各サンプルは、セパレータの圧縮比と、正極活物質の全細孔容積と、正極用繊維の平均比表面積とが互いに異なる。より具体的には、図8に示されたサンプルS1~S13は、セパレータの圧縮比はすべて同じ値(1.5)であるが、正極活物質の全細孔容積と、正極用繊維の平均比表面積とが互いに異なっている。なお、図8では、サンプルS1~S13が、正極活物質の全細孔容積の昇順に並べられ、さらに、正極活物質の全細孔容積が同一値である各サンプルが、正極用繊維の平均比表面積の昇順に並べられている。
 また、図9に示されたサンプルS5,S14~S21は、正極活物質の全細孔容積はすべて同じ値(0.104cm/g)であるが、セパレータの圧縮比と、正極用繊維の平均比表面積とが互いに異なっている。なお、図9では、サンプルS14~S21が、セパレータの圧縮比の昇順に並べられ、さらに、セパレータの圧縮比が同一値である各サンプルが、正極用繊維の平均比表面積の昇順に並べられている。
 サンプルS1~S3,S6~S12,S16~S19は、上述した実施形態の鉛蓄電池100が満たしているセパレータに関する特定条件(セパレータの圧縮比が1.2以上、1.8以下であるという条件)と、正極活物質に関する特定条件(正極活物質の単位質量あたりの全細孔容積が0.150cm/g以下であり、正極活物質が正極用繊維を含有しており、かつ、クリプトンガスを吸着ガスとして用いたBET法による正極用繊維の平均比表面積が0.20m/g以上であるという条件)との両方を満たしている。
 一方、サンプルS4,S5,S13~S15,S20,S21は、上述したセパレータに関する特定条件と正極活物質に関する特定条件との一方または両方を満たしていない。具体的には、サンプルS14,S15は、セパレータの圧縮比が1.1と比較的小さいため、セパレータに関する特定条件を満たしていない。また、サンプルS20,S21は、セパレータの圧縮比が1.9と比較的大きいため、セパレータに関する特定条件を満たしていない。また、サンプルS4,S5は、正極用繊維の平均比表面積が0.16m/gまたは0.18m/gと比較的小さいため、正極活物質に関する特定条件を満たしていない。また、サンプルS13は、正極活物質の単位質量あたりの全細孔容積が0.159cm/gと比較的大きいため、正極活物質に関する特定条件を満たしていない。
 なお、すべてのサンプルにおいて、正極用繊維としてアクリル系繊維が用いられており、該アクリル系繊維の平均径は16.7μmであり、該アクリル系繊維のアスペクト比(繊維の平均径に対する平均長さの比)は30~400である。また、すべてのサンプルにおいて、正極活物質における正極用繊維の含有割合は、0.05質量%(wt%)~0.40質量%である。また、すべてのサンプルにおいて、負極板を構成する負極活物質は、負極用繊維として、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/gであるPET系繊維を含有している。
 各サンプルの作製方法は、以下の通りである。
(1)正極板の作製
 原料鉛粉(鉛と一酸化鉛とを主成分とする酸化鉛の混合物)と、水と、希硫酸(密度1.40g/cm)と、所定の長さに切断した合成樹脂繊維(以下、「正極用繊維」という)とを混合することにより、正極活物質用ペーストを得た。正極活物質は、希硫酸と水との配合比を変化させることによって密度を変化させることが可能であることが知られており、今回の性能評価で使用した正極活物質も上記希硫酸と水との配合比を変化させることで実現した。また、鉛とカルシウムとスズとの3元合金(以下、「Pb-Ca-Sn合金」という)からなる鉛シートを、エキスパンド加工を行った後、正極格子(正極集電体)を作製した。正極集電体のエキスパンド網目に正極活物質用ペーストを充填し、常法により熟成乾燥させることにより、未化成の正極板(高さ:115mm、幅:137.5mm、厚さ:1.5mm)を得た。
(2)負極板の作製
 原料鉛粉(鉛と一酸化鉛とを主成分とする酸化鉛の混合物)と、水と、希硫酸(密度1.40g/cm)と、所定の長さに切断した合成樹脂繊維(以下、「負極用繊維」という)と、所定の比率の負極添加剤(リグニン、カーボン、硫酸バリウム)とを混合することにより、負極活物質用ペーストを得た。正極格子(正極集電体)と同様の方法で、Pb-Ca-Sn合金からなる板鉛シートを、エキスパンド加工を行なった後、負極格子(負極集電体)を作製した。負極集電体のエキスパンド網目に負極活物質用ペーストを充填し、正極板と同様、常法により熟成乾燥させることにより、未化成の負極板(高さ:115mm、幅:137.5mm、厚み1.3mm)を得た。
(3)サンプル電池の作製
 上記(1)及び(2)で作製した正極板および負極板と、別途用意したガラス繊維製のマット状セパレータとを用い、正極板と負極板とをセパレータを間に挟んで交互に積層した後、複数の正極板同士、複数の負極板同士を鉛部品で溶接し、極板群を製造した。上記極板群を6セルが直列接続になるように樹脂製(ポリプロピレン製)電槽に挿入し、各極板群同士(5箇所)をセル間溶接した後、樹脂製(ポリプロピレン製)蓋と電槽を接合し、その後、両端子部(正極負極端子部)を溶接してサンプル電池を作製した。なお、電槽におけるセル室の幅をスペーサーを用いて調整することにより、セパレータの圧縮比を調整した。その後、常法により初充電した後、電解液密度が1.33のサンプル電池を得た。
A-3-2.評価項目および評価方法:
 鉛蓄電池の各サンプルを用いて、寿命特性と、初期の容量特性との2つの項目についての評価を行った。
 容量特性の評価は、以下のように行った。すなわち、鉛蓄電池の各サンプルについて、以下のa)~d)に示す方法で3時間率容量を測定し、サンプルS5における3時間率容量を100として(図8および図9において太線で囲んで示す)、各サンプルにおける3時間率容量を相対値で表した。
a)サンプルについて、(1)14.7Vを上限とする定電圧充電方式で最大0.4CAの充電電流で8時間充電、または、(2)5段定電流充電方式:14.4Vを切替電圧(次の充電段階に移行する)とする定電流充電方式でそれぞれ4段0.2CA→0.1CA→0.05CA→0.025CAに加えて+5段目押込み定電流充電0.025CA×2.5h(固定)という条件で満充電する。
b)充電完了後、サンプルを25±2℃の条件下に静置し、水槽中では5時間以上、24時間以内、気槽中では10時間以上、24間以内に下記c)の放電を開始する。
c)サンプルについて、一定の基準電流I(A)で、放電終止電圧(1.65×セル数(V))になるまで放電を行う。なお、基準電流I(A)は、以下の式で求められる値とする。
  I=C/3
(ただし、Cは3時間率定格容量(Ah))
d)上記c)における放電持続時間を測定して、3時間率容量を算出する。
 また、寿命持性の評価は、以下のように行った。すなわち、鉛蓄電池の各サンプルについて、以下のa)~d)に示す方法で寿命試験を行い、寿命回数を求めた。サンプルS5における寿命回数を100として(図8および図9において太線で囲んで示す)、各サンプルにおける寿命回数を相対値で表した。
a)全試験期間を通じて、サンプルを25±2℃の気槽中に置く。
b)サンプルを寿命試験装置に接続し、上述した基準電流I(A)で2.4時間放電を行い、次に上述した5段定電流充電で充電を行う。この放電および充電の1サイクルを寿命1回とする。
c)充放電サイクル50回毎に、上述した方法で3時間率容量を算出する。ただし、上記b)における放電終了時の端子電圧が1.65V/セルに達した場合にも、同様に3時間率容量の算出を行う。
d)上記c)において算出された3時間率容量が3時間率定格容量の80%以下に低下した場合、再度、3時間率容量の算出を行い、3時間率容量が3時間率定格容量の80%を超えないことを確認したとき、試験を終了し、その時点でのサイクル回数と容量との関係直線により寿命回数を求める。なお、上記c)における容量試験の回数も寿命回数に加算する。
A-3-3.評価結果:
 図8および図9に示すように、上述したセパレータに関する特定条件(セパレータの圧縮比が1.2以上、1.8以下であるという条件)と、正極活物質に関する特定条件(正極活物質の単位質量あたりの全細孔容積が0.150cm/g以下であり、正極活物質が正極用繊維を含有しており、かつ、クリプトンガスを吸着ガスとして用いたBET法による正極用繊維の平均比表面積が0.20m/g以上であるという条件)との両方を満たすサンプルS1~S3,S6~S12,S16~S19では、いずれも、寿命特性の評価において「113」以上という結果となり、サンプルS5の寿命特性の評価結果「100」と比較して、寿命特性が飛躍的に向上した。
 これに対し、正極用繊維の平均比表面積が0.20m/g未満であるために正極活物質に関する特定条件を満たしていないサンプルS4,S5では、寿命特性の評価において「100」以下という良好ではない結果となった。サンプルS4,S5では、正極用繊維の平均比表面積が過度に小さいため、正極用繊維が正極活物質中の他の成分と良好に密着せず、正極用繊維による正極活物質の拘束力が小さくなり、その結果、正極活物質の集電体からの脱落を効果的に抑制することができずに寿命特性が低くなったものと考えられる。
 また、正極活物質の単位質量あたりの全細孔容積が0.150cm/gを超えるために正極活物質に関する特定条件を満たしていないサンプルS13では、寿命特性の評価において「83」という良好ではない結果となった。サンプルS13では、正極活物質の単位質量あたりの全細孔容積が過度に大きい。すなわち、サンプルS13では、正極活物質の密度が過度に低く、崩れやすい構成となっている。そのため、サンプルS13では、正極用繊維の平均比表面積が0.20m/g以上であって、正極用繊維が正極活物質中の他の成分と良好に密着しているにもかかわらず、鉛蓄電池の充放電の繰り返しに伴い正極活物質が崩れて集電体から脱落し、寿命特性が低くなったものと考えられる。
 また、セパレータの圧縮比が1.2未満であるためにセパレータに関する特定条件を満たしていないサンプルS14,S15では、寿命特性の評価において「19」以下という極めて低い結果となった。サンプルS14,S15では、セパレータの圧縮比が過度に小さい。そのため、サンプルS14,S15では、充放電の繰り返しによって発生する極板の膨張・収縮に伴いセパレータの厚さが薄くなり(すなわち、初期の厚さに戻らなくなり)、極板の収縮時に次第にセパレータと極板とが接触できない部位が増加して容量低下が発生し、寿命特性が低くなったものと考えられる。
 また、セパレータの圧縮比が1.8を超えるためにセパレータに関する特定条件を満たしていないサンプルS20,S21では、寿命特性の評価において「29」以下という極めて低い結果となった。サンプルS20,S21では、セパレータの圧縮比が過度に大きい。そのため、サンプルS20,S21では、充放電の際に行われる化学反応、硫酸イオンの移動が遮断される。すなわち、セパレータの役割の1つは繊維の隙間に硫酸を保持することであるが、セパレータに過大な圧力が加わることによってセパレータ内部の隙間が過小となり、硫酸を保持する機能が過度に低下した状態となる。その結果、サンプルS20,S21では、容量低下が発生し、寿命特性が低くなったものと考えられる。
 このように、本性能評価により、鉛蓄電池が、上述したセパレータに関する特定条件(セパレータの圧縮比が1.2以上、1.8以下であるという条件)と、正極活物質に関する特定条件(正極活物質の単位質量あたりの全細孔容積が0.150cm/g以下であり、正極活物質が正極用繊維を含有しており、かつ、クリプトンガスを吸着ガスとして用いたBET法による正極用繊維の平均比表面積が0.20m/g以上であるという条件)との両方を満たしていれば、正極板における正極集電体からの正極活物質(正極材料)の脱落を効果的に抑制して、鉛蓄電池の寿命特性を飛躍的に向上させることができることが確認された。
 なお、図示しないが、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上であるアクリル系繊維が、負極板を構成する負極活物質のみに含まれる負極用繊維として使用されたサンプルでは、寿命特性も容量特性も良好ではなかった。一方、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上であるアクリル系繊維が、正極板を構成する正極活物質に含まれる正極用繊維としても、負極板を構成する負極活物質に含まれる負極用繊維としても使用されたサンプルでは、寿命特性も容量特性もサンプルS1~S3,S6~S12,S16~S19と同等であった。この結果によれば、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上である繊維を、少なくとも正極用繊維として使用することにより、鉛蓄電池の寿命特性を飛躍的に向上させることができるものと言える。
 なお、本性能評価において、良好な結果を得たサンプルS1~S3,S6~S12,S16~S19の内、サンプルS6~S12,S16~S19では、正極活物質の単位質量あたりの全細孔容積が0.104cm/g以上、0.150cm/g以下である。これらのサンプルでは、いずれも、寿命特性の評価において「113」以上という良好な結果を得つつ、容量特性の評価においても「96」以上という良好な結果となった。この結果によれば、鉛蓄電池において、上述したセパレータに関する特定条件と正極活物質に関する特定条件との両方を満たし、かつ、正極活物質の単位質量あたりの全細孔容積が0.104cm/g以上、0.150cm/g以下であれば、正極活物質の単位質量あたりの全細孔容積が過度に小さくなることによって正極活物質の反応性が過度に低くなり、容量特性が低下するという影響を受けにくくなると共に、正極活物質の単位質量あたりの全細孔容積が過度に大きくなることによって正極活物質の密度が過度に低くなり、寿命特性が低下することを抑制することができると言える。従って、鉛蓄電池において、セパレータに関する特定条件と正極活物質に関する特定条件との両方を満たし、かつ、正極活物質の単位質量あたりの全細孔容積が0.104cm/g以上、0.150cm/g以下であることが、より好ましいと言える。なお、サンプルS6~S12,S16~S19では、正極活物質の全細孔容積が比較的小さいために寿命特性に有利であるサンプルS1~S3と比べても、同等の寿命特性が得られた。その理由は必ずしも明らかではないが、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上である繊維を正極用繊維として採用することにより、サンプルS6~S12,S16~S19のような正極活物質の全細孔容積の数値範囲であっても、正極活物質の全細孔容積がより小さい構成と同等以上の寿命特性が得られることは、本願の新たな知見である。
 また、これらのサンプルS6~S12,S16~S19の内、サンプルS10~S12では、正極活物質の単位質量あたりの全細孔容積が0.132cm/g以上、0.150cm/g以下である。これらのサンプルでは、いずれも、寿命特性の評価において「135」以上というさらに良好な結果となり、かつ、容量特性の評価において「112」以上という極めて良好な結果となった。この結果によれば、鉛蓄電池において、上述したセパレータに関する特定条件と正極活物質に関する特定条件との両方を満たし、かつ、正極活物質の単位質量あたりの全細孔容積が0.132cm/g以上、0.150cm/g以下であれば、正極活物質の反応性の低下を極めて効果的に抑制することができるため、正極板における正極集電体からの正極活物質(正極材料)の脱落を効果的に抑制しつつ、鉛蓄電池の容量特性を極めて効果的に向上させることができると言える。従って、鉛蓄電池において、セパレータに関する特定条件と正極活物質に関する特定条件との両方を満たし、かつ、正極活物質の単位質量あたりの全細孔容積が0.132cm/g以上、0.150cm/g以下であることが、さらに好ましいと言える。
 また、すべての評価項目で良好な結果を得たサンプルS1~S3,S6~S12,S16~S19では、正極用繊維としてアクリル系繊維を用いた。正極用繊維としてアクリル系繊維を用いれば、容易に、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上である繊維を得ることができる。
 なお、すべての評価項目で良好な結果を得たサンプルS1~S3,S6~S12,S16~S19では、正極用繊維としてアクリル系繊維を用いたが、正極用繊維として、他の繊維(ポリプロピレン系繊維、ポリエステル系繊維、ポリエチレン系繊維、PET系繊維、レーヨン系繊維)を用いても、正極用繊維を含む正極活物質が上述した正極活物質に関する特定条件を満たしていれば、同様に、正極板における正極集電体からの正極活物質(正極材料)の脱落を効果的に抑制して、鉛蓄電池の寿命特性を飛躍的に向上させることができることが強く推測される。
B.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
 上記実施形態における鉛蓄電池100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、正極用繊維217として、アクリル系繊維、ポリプロピレン系繊維、ポリエステル系繊維、ポリエチレン系繊維、PET系繊維、レーヨン系繊維を例示しているが、正極用繊維217は、クリプトンガスを吸着ガスとして用いたBET法による平均比表面積が0.20m/g以上である限りにおいて他の種類の繊維であってもよい。
 また、上記実施形態における鉛蓄電池100において、負極板220を構成する負極活物質226が、上述した正極活物質に関する特定条件と同様の条件を満たすとしてもよい。
 また、上記実施形態における鉛蓄電池100の製造方法は、あくまで一例であり、種々変形可能である。
10:筐体 12:電槽 14:蓋 16:セル室 20:極板群 30:正極側端子部材 32:正極側ブッシング 34:正極柱 36:正極側端子部 40:負極側端子部材 42:負極側ブッシング 44:負極柱 46:負極側端子部 52:正極側ストラップ 54:負極側ストラップ 56:接続部材 58:隔壁 60:制御弁 70:樹脂部材 100:鉛蓄電池 210:正極板 212:正極集電体 214:正極耳部 216:正極活物質 217:正極用繊維 220:負極板 222:負極集電体 224:負極耳部 226:負極活物質 230:セパレータ

Claims (4)

  1.  制御弁式鉛蓄電池であって、
     集電体と、前記集電体に支持された正極材料と、を有する正極板と、
     負極板と、
     前記正極板と前記負極板との間に配置され、ガラス繊維により構成されたセパレータと、
    を備え、
     前記セパレータの圧縮比は、1.2以上、1.8以下であり、
     前記正極材料の単位質量あたりの全細孔容積は、0.150cm/g以下であり、
     前記正極材料は、繊維を含有しており、
     クリプトンガスを吸着ガスとして用いたBET法による前記繊維の平均比表面積は、0.20m/g以上である、制御弁式鉛蓄電池。
  2.  請求項1に記載の制御弁式鉛蓄電池であって、
     前記正極材料の単位質量あたりの全細孔容積は、0.104cm/g以上である、制御弁式鉛蓄電池。
  3.  請求項2に記載の制御弁式鉛蓄電池であって、
     前記正極材料の単位質量あたりの全細孔容積は、0.132cm/g以上である、制御弁式鉛蓄電池。
  4.  請求項1から請求項3までのいずれか一項に記載の制御弁式鉛蓄電池であって、
     前記繊維は、アクリル系繊維である、制御弁式鉛蓄電池。
PCT/JP2018/038015 2017-12-14 2018-10-12 制御弁式鉛蓄電池 WO2019116704A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880070779.0A CN111295791B (zh) 2017-12-14 2018-10-12 阀控式铅蓄电池
JP2019558934A JP7188398B2 (ja) 2017-12-14 2018-10-12 制御弁式鉛蓄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017239228 2017-12-14
JP2017-239228 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019116704A1 true WO2019116704A1 (ja) 2019-06-20

Family

ID=66820154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038015 WO2019116704A1 (ja) 2017-12-14 2018-10-12 制御弁式鉛蓄電池

Country Status (3)

Country Link
JP (1) JP7188398B2 (ja)
CN (1) CN111295791B (ja)
WO (1) WO2019116704A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084877A1 (ja) * 2019-10-28 2021-05-06 株式会社Gsユアサ 鉛蓄電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202666A (en) * 1981-06-08 1982-12-11 Sanyo Electric Co Ltd Enclosed lead-acid storage battery
JPH08236143A (ja) * 1995-02-23 1996-09-13 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JPH08236142A (ja) * 1995-02-24 1996-09-13 Matsushita Electric Ind Co Ltd シール形鉛蓄電池
JPH10188999A (ja) * 1996-12-20 1998-07-21 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JP2006004688A (ja) * 2004-06-16 2006-01-05 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2010225408A (ja) * 2009-03-24 2010-10-07 Panasonic Corp 鉛蓄電池
JP2014197546A (ja) * 2012-12-21 2014-10-16 パナソニック株式会社 鉛蓄電池
JP2017174791A (ja) * 2016-03-22 2017-09-28 古河電池株式会社 鉛蓄電池
JP2017183283A (ja) * 2016-03-29 2017-10-05 古河電池株式会社 鉛蓄電池用正極板及び該正極板を用いた鉛蓄電池及び該鉛蓄電池用正極板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124096A (ja) * 2010-12-10 2012-06-28 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
CN103035957B (zh) * 2011-09-30 2014-10-29 松下蓄电池(沈阳)有限公司 储能用铅蓄电池
JP7040056B2 (ja) * 2017-09-28 2022-03-23 株式会社Gsユアサ 鉛蓄電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202666A (en) * 1981-06-08 1982-12-11 Sanyo Electric Co Ltd Enclosed lead-acid storage battery
JPH08236143A (ja) * 1995-02-23 1996-09-13 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JPH08236142A (ja) * 1995-02-24 1996-09-13 Matsushita Electric Ind Co Ltd シール形鉛蓄電池
JPH10188999A (ja) * 1996-12-20 1998-07-21 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JP2006004688A (ja) * 2004-06-16 2006-01-05 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2010225408A (ja) * 2009-03-24 2010-10-07 Panasonic Corp 鉛蓄電池
JP2014197546A (ja) * 2012-12-21 2014-10-16 パナソニック株式会社 鉛蓄電池
JP2017174791A (ja) * 2016-03-22 2017-09-28 古河電池株式会社 鉛蓄電池
JP2017183283A (ja) * 2016-03-29 2017-10-05 古河電池株式会社 鉛蓄電池用正極板及び該正極板を用いた鉛蓄電池及び該鉛蓄電池用正極板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084877A1 (ja) * 2019-10-28 2021-05-06 株式会社Gsユアサ 鉛蓄電池

Also Published As

Publication number Publication date
CN111295791A (zh) 2020-06-16
CN111295791B (zh) 2023-07-25
JPWO2019116704A1 (ja) 2020-12-03
JP7188398B2 (ja) 2022-12-13

Similar Documents

Publication Publication Date Title
JP5190562B1 (ja) エネルギー貯蔵用鉛蓄電池
EP2544292A1 (en) Lead storage battery
JPWO2019087686A1 (ja) 鉛蓄電池
CN111149240B (zh) 铅蓄电池
JP2018018803A (ja) 鉛蓄電池
WO2019116704A1 (ja) 制御弁式鉛蓄電池
JPWO2019087684A1 (ja) アイドリングストップ用鉛蓄電池
WO2019225389A1 (ja) 鉛蓄電池
JP2021086731A (ja) 鉛蓄電池用正極板、鉛蓄電池
CN110603671B (zh) 铅蓄电池
JP5578123B2 (ja) 液式鉛蓄電池
CN117413427A (zh) 铅蓄电池用隔离件和包含其的铅蓄电池
CN111279541A (zh) 铅蓄电池
JP4417232B2 (ja) 鉛蓄電池
WO2019064792A1 (ja) 鉛蓄電池
WO2019064854A1 (ja) 鉛蓄電池
US20220407083A1 (en) Active material having oxidized fiber additive & electrode and battery having same
WO2019181759A1 (ja) 鉛蓄電池
CN114600276A (zh) 铅蓄电池
CN114008850A (zh) 液式铅蓄电池用隔离件及液式铅蓄电池
JP6205811B2 (ja) 鉛蓄電池
JP2014078325A (ja) 鉛蓄電池
JP6730406B2 (ja) 鉛蓄電池
JP2018190570A (ja) 鉛蓄電池
CN114600309A (zh) 铅蓄电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889073

Country of ref document: EP

Kind code of ref document: A1