[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019193870A1 - 非水電解質二次電池の巻回型電極体、及び非水電解質二次電池 - Google Patents

非水電解質二次電池の巻回型電極体、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2019193870A1
WO2019193870A1 PCT/JP2019/007178 JP2019007178W WO2019193870A1 WO 2019193870 A1 WO2019193870 A1 WO 2019193870A1 JP 2019007178 W JP2019007178 W JP 2019007178W WO 2019193870 A1 WO2019193870 A1 WO 2019193870A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
winding
positive electrode
unit amount
negative electrode
Prior art date
Application number
PCT/JP2019/007178
Other languages
English (en)
French (fr)
Inventor
西野 肇
菅谷 康博
鷹則 丸尾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19781959.2A priority Critical patent/EP3780242A4/en
Priority to CN201980022873.3A priority patent/CN112005421A/zh
Priority to US17/040,691 priority patent/US11949090B2/en
Priority to JP2020511639A priority patent/JP7418012B2/ja
Publication of WO2019193870A1 publication Critical patent/WO2019193870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a wound electrode body of a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery.
  • Patent Document 1 Conventionally, as a nonaqueous electrolyte secondary battery, there is one described in Patent Document 1.
  • a secondary battery In this non-aqueous electrolyte secondary battery (hereinafter simply referred to as a secondary battery), the amount of electrode material applied to the outer peripheral side of the electrode sheet contained in the wound electrode body is changed from the winding start side to the winding end side. Therefore, it is decreased continuously or stepwise. In this way, the amount of electrode material that decreases as the curvature decreases and the amount of electrode material that decreases as it goes toward the end of winding based on the amount of extension decreases, so that the amount of electrode material on the outer peripheral side becomes the position in the winding direction. Regardless of whether it is approaching constant.
  • the electrode material decreases continuously or stepwise as it goes to the winding end side in the winding direction on the outer peripheral side surface of the electrode sheet, the electrode material is on the winding start side with a large curvature.
  • the film thickness of the electrode material layer becomes the largest on the winding start side where the curvature is large. Therefore, on the winding start side with a large curvature, the electrode material is easily cut and easily cracked due to expansion and contraction that occurs during charging and discharging.
  • an object of the present disclosure is to provide a wound electrode body and a non-aqueous electrolyte secondary battery in which the electrode material layer is difficult to cut and the electrode mixture layer is not easily damaged on the winding start side with a large curvature. is there.
  • the wound electrode body of the nonaqueous electrolyte secondary battery according to the present disclosure has a long first electrode and a long second electrode wound with a separator interposed therebetween.
  • a wound electrode body for a non-aqueous electrolyte secondary battery wherein the first pole is a long first pole core and a first pole inner composite provided on the inner surface of the first pole core.
  • a first pole outer composite material layer provided on the outer surface of the first pole core body, while the second pole has an elongated second pole core body and an inner portion of the second pole core body.
  • Winding side in the winding direction from the part Regarding the winding start region the first electrode mixture unit amount which is the first electrode mixture amount per unit length in the winding direction of each of the first electrode inner mixture layer and the first electrode outer mixture layer is The second pole per unit length in the winding direction of each of the second pole inner composite layer and the second pole outer mix layer is substantially constant or increases as going to the winding end side in the winding direction.
  • the second electrode mixture unit amount which is the material amount, is substantially constant or increases as it goes to the winding end side in the winding direction with respect to the winding start opposing region facing the winding start region via the separator.
  • Each of the 1 pole inner side composite material layer and the 1st pole outer side composite material layer is the 1st pole composite material in the position of two or more winding directions except the range of the winding direction in which the 1st pole core exposure part exists.
  • the unit amount is different, and each of the second pole inner composite layer and the second pole outer composite layer goes to the winding end side in the winding direction. Having a variable portion which amount 2-electrode mixture units varies.
  • the electrode material layer is difficult to cut on the winding start side with a large curvature, and the electrode mixture layer is not easily damaged.
  • FIG. 3A is a schematic cross-sectional view corresponding to FIG. 3A in the nonaqueous electrolyte secondary battery of the second embodiment
  • FIG. 3B is a diagram of FIG.
  • FIG. 3 in the nonaqueous electrolyte secondary battery of the second embodiment. It is a schematic cross section corresponding to (b).
  • (A) is a schematic cross section corresponding to FIG. 3 (a) in the nonaqueous electrolyte secondary battery of 3rd Embodiment, (b) is FIG. 3 in the nonaqueous electrolyte secondary battery of 3rd Embodiment. It is a schematic cross section corresponding to (b).
  • (A) is a schematic cross section corresponding to FIG. 3 (a) in the nonaqueous electrolyte secondary battery of 4th Embodiment, (b) is FIG. 3 in the nonaqueous electrolyte secondary battery of 4th Embodiment. It is a schematic cross section corresponding to (b).
  • FIG. 6 (a) is a schematic cross section corresponding to FIG. 6 (a) in the nonaqueous electrolyte secondary battery of the modification of 4th Embodiment
  • (b) is the nonaqueous electrolyte of the modification of 4th Embodiment. It is a schematic cross section corresponding to FIG.6 (b) in a secondary battery.
  • FIG. 1 is a cross-sectional view in the axial direction of the nonaqueous electrolyte secondary battery 10 according to the first embodiment of the present disclosure
  • FIG. 2 is a perspective view of an electrode body 14 of the nonaqueous electrolyte secondary battery 10.
  • a non-aqueous electrolyte secondary battery (hereinafter simply referred to as a secondary battery) 10 includes a wound electrode body 14, a non-aqueous electrolyte (not shown), an electrode body 14 and a non-aqueous battery. And a battery case 15 containing an electrolyte.
  • a non-aqueous electrolyte secondary battery hereinafter simply referred to as a secondary battery 10 includes a wound electrode body 14, a non-aqueous electrolyte (not shown), an electrode body 14 and a non-aqueous battery.
  • a battery case 15 containing an electrolyte.
  • the electrode body 14 includes a positive electrode 11 as a first electrode, a negative electrode 12 as a second electrode, and a separator 13 interposed between the positive electrode 11 and the negative electrode 12, and the positive electrode 11 and the negative electrode 12.
  • the battery case 15 includes a bottomed cylindrical outer can 16 and a sealing body 17 that closes the opening of the outer can 16.
  • the nonaqueous electrolyte secondary battery 10 includes a resin gasket 28 disposed between the outer can 16 and the sealing body 17.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent for example, esters, ethers, nitriles, amides, and a mixed solvent of two or more thereof may be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • the electrolyte salt a lithium salt such as LiPF 6 is used.
  • the electrode body 14 has a long positive electrode 11, a long negative electrode 12, and two long separators 13.
  • the electrode body 14 includes a positive electrode lead 20 as a first electrode lead bonded to the positive electrode 11 and a negative electrode lead 21 bonded to the negative electrode 12.
  • the negative electrode 12 is formed with a size slightly larger than that of the positive electrode 11 in order to suppress lithium deposition, and is longer than the positive electrode 11 in the longitudinal direction and the short direction (vertical direction).
  • the two separators 13 are formed so as to be at least one size larger than the positive electrode 11, and are disposed so as to sandwich the positive electrode 11, for example.
  • the separator 13 for example, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • an olefin resin such as polyethylene and polypropylene is preferable.
  • the separator 13 has a thickness of 10 ⁇ m to 50 ⁇ m, for example, and a melting point of about 130 ° C. to 180 ° C.
  • the negative electrode 12 may constitute the winding start end of the electrode body 14, but in general, the separator 13 extends beyond the winding start side end of the negative electrode 12, and the winding start side end of the separator 13 is the electrode body. 14 is the winding start end.
  • the positive electrode lead 20 is electrically connected to an intermediate portion such as a central portion in the winding direction of the positive electrode core body as the first polar core body, and the negative electrode lead 21 is It is electrically connected to the winding end in the winding direction of the negative electrode core as a two-pole core.
  • the negative electrode lead may be electrically connected to the winding start end portion in the winding direction of the negative electrode core.
  • the electrode body has two negative leads, one negative lead is electrically connected to the winding start end of the negative electrode core in the winding direction, and the other negative lead is wound on the negative electrode core. You may electrically connect to the winding end end part of a rotation direction.
  • the negative electrode and the outer can may be electrically connected by bringing the winding end side end in the winding direction of the negative electrode core body into contact with the inner surface of the outer can 16.
  • the structure for electrically connecting the positive electrode lead 20 to the positive electrode core and the structure for electrically connecting the negative electrode lead 21 to the negative electrode core will be described in detail later with reference to FIG.
  • the secondary battery 10 further includes an insulating plate 18 disposed on the upper side of the electrode body 14 and an insulating plate 19 disposed on the lower side of the electrode body 14.
  • the positive electrode lead 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode lead 21 attached to the negative electrode 12 passes outside the insulating plate 19. Extending to the bottom side of the outer can 16.
  • the positive electrode lead 20 is connected to the lower surface of the filter 23 which is the bottom plate of the sealing body 17 by welding or the like, and the cap 27 which is the top plate of the sealing body 17 electrically connected to the filter 23 serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is a bottomed cylindrical metal container.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17 to seal the internal space of the battery case 15.
  • the outer can 16 has, for example, a grooving portion 22 formed by pressing a side surface portion from the outside.
  • the grooving portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and supports the sealing body 17 on its upper surface. Further, the upper end portion of the outer can 16 is bent inward and crimped to the peripheral edge portion of the sealing body 17.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member which comprises the sealing body 17 has disk shape or a ring shape, for example, and each member except the insulating member 25 is electrically connected mutually.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at the center, and an insulating member 25 is interposed between the peripheral edges.
  • FIG. 3A is a schematic cross-sectional view including the longitudinal direction and the thickness direction of the positive electrode 11 when the positive electrode 11 is expanded in a long shape
  • FIG. 3B is a schematic view of the negative electrode 12 expanded in a long shape. It is a schematic cross section containing the longitudinal direction and thickness direction in the negative electrode 12 when it did.
  • the positive electrode 11 includes a long positive electrode core 31 as a first polar core, a positive inner composite layer 32 as a first polar inner composite layer, and a first A positive electrode outer composite material layer 33 is provided as an extreme outer composite material layer.
  • the positive electrode inner composite material layer 32 is provided on the inner surface of the positive electrode core 31, and the positive electrode outer composite material layer 33 is disposed outside the positive electrode core 31. Provided on the side.
  • the positive electrode 11 has a positive electrode core exposed portion 36 as a first polar core exposed portion where the positive electrode core 31 is exposed at an intermediate portion in the winding direction (corresponding to the longitudinal direction of the positive electrode 11 shown in FIG. 3A).
  • the positive electrode core exposed portion 36 is provided at both the winding start end 37 and the winding end end 38 at a position spaced in the winding direction.
  • the positive electrode lead 20 as the first electrode lead is electrically connected to the positive electrode core exposed portion 36.
  • the positive electrode lead 20 is joined to the positive electrode core exposed portion 36 by spot welding or the like, and is electrically connected to the positive electrode core exposed portion 36.
  • the positive electrode lead 20 is bonded to the outer surface of the positive electrode core 31, but the positive electrode lead may be bonded to the inner surface of the positive electrode core.
  • the positive electrode winding start composite unit amount which is the positive electrode composite material amount per unit length in the winding direction in the winding start region on the winding start side in the winding direction with respect to the positive electrode core exposed portion 36. Is substantially constant regardless of the position in the winding direction.
  • the positive electrode winding end composite unit amount that is the positive electrode composite unit amount in the winding end region on the winding end side in the winding direction with respect to the positive electrode core exposed portion 36 is at the position in the winding direction. Regardless, it is substantially constant and is larger than the unit amount of the composite material at the beginning of the positive electrode winding.
  • the positive electrode mixture unit amount which is the positive electrode mixture amount per unit length in the winding direction, is an example of the first electrode mixture unit amount
  • the positive electrode winding start compound material amount is the first electrode winding start compound material. It is an example of the unit amount
  • the positive electrode winding end composite material unit amount is an example of the first pole winding end composite material unit amount (the same applies to the second to fourth embodiments).
  • the positive electrode winding start composite material unit amount which is the positive electrode composite material unit amount in the winding start region is substantially constant regardless of the position in the winding direction.
  • the positive electrode winding end composite unit amount which is the positive electrode composite unit amount in the winding end region, is substantially constant regardless of the position in the winding direction, and the positive electrode winding start composite It is larger than the material unit amount.
  • the positive electrode inner composite layer 32 and the positive electrode outer composite layer 33 include a positive electrode active material, a conductive material, a binder, and the like.
  • a lithium metal composite oxide is used as the positive electrode active material. Examples of metal elements contained in the lithium metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, Sn, Ta, W, etc. are mentioned.
  • a suitable lithium metal composite oxide is a lithium metal composite oxide containing at least one of Ni, Co, and Mn. Specific examples include lithium metal composite oxides containing Ni, Co, and Mn, and lithium metal composite oxides containing Ni, Co, and Al. Note that inorganic particles such as tungsten oxide, aluminum oxide, and lanthanoid-containing compounds may be fixed to the surface of the lithium metal composite oxide particles.
  • the positive electrode 11 is manufactured as follows, for example. A conductive agent, a binder, or the like is mixed with the positive electrode active material, and the mixture is kneaded in a dispersion medium to prepare a paste-like positive electrode active material slurry. Thereafter, the positive electrode active material slurry is applied on the inner surface of the hoop-shaped positive electrode core 31 formed of a metal foil such as aluminum, and also applied on the outer surface of the positive electrode core 31. Subsequently, the positive electrode active material slurry applied to the inner and outer surfaces of the positive electrode core 31 is dried and compressed, thereby forming the positive electrode inner mixture layer 32 on the inner surface of the positive electrode core 31 and the positive electrode. A positive electrode outer mixture layer 32 is formed on the outer surface of the core body 31. Finally, the positive electrode 11 on which the positive electrode mixture layer is formed is cut into a predetermined size, whereby the positive electrode 11 is produced.
  • coating of the positive electrode active material slurry to the positive electrode core 31 is performed as follows, for example. Specifically, the positive electrode core 31 is relatively moved at a constant speed in the extending direction with respect to the discharge nozzle that discharges the positive electrode active material slurry. And while discharging a certain amount of the positive electrode active material slurry from the discharge nozzle to the positive electrode core 31 from the winding start end to the winding start end of the positive electrode core exposed portion, a certain positive electrode active material slurry larger than the above certain amount, From the winding end to the winding end of the positive electrode core exposed portion, the discharge nozzle discharges the positive electrode core to the positive electrode core 31. Application of the positive electrode active material slurry to the positive electrode core 31 is performed by executing this discharge on the inner and outer surfaces of the positive electrode core 31.
  • the negative electrode 12 includes a long negative electrode core body 41 as a second polar core body, a negative electrode inner composite layer 42 as a second polar inner composite layer, and a second A negative electrode outer composite material layer 43 is provided as an extreme outer composite material layer.
  • the negative electrode inner composite material layer 42 is provided on the inner surface of the negative electrode core body 41, and the negative electrode outer composite material layer 43 is disposed outside the negative electrode core body 41. Provided on the side.
  • the negative electrode 12 has a negative electrode core exposed portion 46 where the negative electrode core 41 is exposed at the end of the winding end in the winding direction.
  • the negative electrode lead 21 is joined and electrically connected to the negative electrode core exposed portion 46 by spot welding or the like.
  • the negative electrode lead 21 is bonded to the inner side surface of the negative electrode core body 41, but the negative electrode lead may be bonded to the outer side surface of the negative electrode core body.
  • the negative electrode inner composite layer 42 is the negative electrode winding that is the amount of negative electrode composite per unit length in the winding direction in the winding start opposing region that faces the winding start region of the positive electrode 11 via the separator 13 (see FIG. 2).
  • the unit amount of the composite material is substantially constant.
  • the negative electrode inner composite layer 42 has a negative electrode winding end composite unit amount that is a negative electrode composite unit amount in a winding end opposing region facing the winding end region of the positive electrode 11 via the separator 13 in the winding direction. It is substantially constant regardless of the position, and is larger than the unit amount of the composite material at the beginning of the negative electrode winding.
  • the negative electrode mixture unit amount which is the negative electrode mixture amount per unit length in the winding direction, is an example of the second electrode mixture unit amount
  • the negative electrode winding start compound material amount is the second electrode winding start compound material.
  • the negative electrode winding end composite material unit amount is an example of the second pole winding end composite material unit amount (the same applies to the second to fourth embodiments).
  • the negative electrode winding start composite material unit amount which is the negative electrode composite material unit amount in the above-mentioned winding start facing region is substantially constant regardless of the position in the winding direction.
  • the negative electrode winding end composite unit amount that is the negative electrode composite unit amount in the winding end facing region is substantially constant regardless of the position in the winding direction, and the negative electrode winding start It is larger than the unit amount of compound material.
  • the negative electrode inner composite layer 42 and the negative electrode outer composite layer 43 include a negative electrode active material, a conductive material, and a binder such as styrene butadiene rubber (SBR).
  • SBR styrene butadiene rubber
  • the negative electrode active material it is preferable to include graphite such as natural graphite such as flaky graphite, massive graphite and earthy graphite, artificial graphite such as massive artificial graphite and graphitized mesophase carbon microbeads.
  • a negative electrode active material other than graphite may be mixed in the negative electrode inner composite layer 42 and the negative electrode outer composite layer 43.
  • the negative electrode active material other than graphite include metals such as Si and Sn that are alloyed with lithium, alloys containing the metal, and compounds containing the metal. Among these, a silicon compound containing Si is preferable.
  • the content of the silicon compound in the negative electrode inner composite layer 42 and the negative electrode outer composite layer 43 is, for example, 1 to 15% by mass, preferably 5 to 10% by mass, with respect to the total mass of the negative electrode active material.
  • Examples of the silicon compound include silicon oxide represented by SiO x (0.5 ⁇ x ⁇ 1.6).
  • the silicon oxide represented by SiO x has a structure in which, for example, Si fine particles are dispersed in a SiO 2 matrix.
  • a silicon compound represented by Li 2y SiO (2 + y) (0 ⁇ y ⁇ 2) having a structure in which Si fine particles are dispersed in a lithium silicate phase may be used.
  • a conductive coating is formed on the surface of the silicon compound particles.
  • the constituent material of the conductive film include at least one selected from a carbon material, a metal, and a metal compound. Among these, a carbon material such as amorphous carbon is preferable.
  • the carbon coating can be formed by, for example, a CVD method using acetylene, methane or the like, a method in which coal pitch, petroleum pitch, phenol resin, or the like is mixed with silicon compound particles and heat treatment is performed.
  • the conductive coating may be formed by fixing a conductive filler such as carbon black to the surface of the silicon compound particles using a binder.
  • the negative electrode 12 is manufactured as follows, for example. A conductive agent and a binder are mixed with the negative electrode active material, and the mixture is kneaded in a dispersion medium to prepare a paste-like negative electrode active material slurry. Thereafter, the negative electrode active material slurry is applied on the inner side surface of the hoop-like negative electrode core body 41 formed of a metal foil such as copper, and also applied on the outer surface of the negative electrode core body 41.
  • the negative electrode active material slurry applied to the inner and outer surfaces of the negative electrode core body 41 is dried and compressed to form the negative electrode inner mixture layer 42 on the inner surface of the negative electrode core body 41, and the negative electrode core
  • the negative electrode outer composite material layer 43 is formed on the outer surface of the body 41.
  • coating of the negative electrode active material slurry to the negative electrode core 41 is performed as follows, for example. Specifically, the negative electrode core 41 is relatively moved at a constant speed in the extending direction with respect to the discharge nozzle that discharges the negative electrode active material slurry. Then, a certain amount of the negative electrode active material slurry is discharged from the discharge nozzle to the negative electrode core 41 to the positive electrode exposure facing position that opposes any winding position of the positive electrode core exposed portion 36 from the winding start end. The discharge amount of the negative electrode active material slurry from the discharge nozzle to the negative electrode core 41 is changed at the position where the positive electrode is exposed, and a certain amount of negative electrode active material slurry larger than the predetermined amount is exposed from the position where the positive electrode is exposed. Discharge from the discharge nozzle to the negative electrode core 41 up to the portion 46. By performing this discharge on the inner and outer surfaces of the negative electrode core 41, the negative electrode active material slurry is applied to the negative electrode core 41.
  • the electrode body 14 of the secondary battery 10 is formed by winding the positive electrode 11 and the negative electrode 12 thus formed via two separators 13.
  • the positive electrode 11 has an insulating tape 39 having an insulating property.
  • the insulating tape 39 is affixed to the surface of the positive electrode lead 20 opposite to the positive electrode core 31 side, and to the portion of the positive electrode outer composite layer 33 located on both sides in the winding direction of the positive electrode core exposed portion 36. 20, the end of the extending direction on the positive electrode core 31 side is covered.
  • the insulating tape 39 is provided mainly to prevent a conductive foreign matter from adhering to the positive electrode lead 20 and causing a short circuit in the electrode body 14. In the example shown in FIG.
  • the positive electrode lead 20 is bonded to the outer surface of the positive electrode core 31, and the insulating tape 39 is attached to the positive electrode lead 20, and the positive electrode outer composite layer 33 has a positive electrode. It was affixed to the part located in the winding direction both sides of the core exposure part 36.
  • the positive electrode lead is bonded to the inner surface of the positive electrode core, and the insulating tape is applied to the positive electrode lead, and is also applied to the positive electrode inner composite layer on the portions located on both sides of the positive electrode core exposed portion in the winding direction. May be.
  • the negative electrode 12 has an insulating tape 49 having an insulating property.
  • the insulating tape 49 is affixed to the surface of the negative electrode lead 21 opposite to the negative electrode core 41 side, the negative electrode inner composite layer 42, and the winding end side end of the negative electrode core exposed portion 46. The end of the current direction on the negative electrode core 41 side is covered.
  • the insulating tape 49 is mainly provided to prevent a foreign substance having conductivity from adhering to the negative electrode lead 21 and causing a short circuit in the electrode body 14. In the example shown in FIG.
  • the negative electrode lead 21 is bonded to the inner surface of the negative electrode core body 41, and the insulating tape 49 is attached to the negative electrode lead 21, and the negative electrode inner mixture layer 42 and the negative electrode core. Affixed to the body exposed portion 46.
  • the negative electrode lead may be bonded to the outer surface of the negative electrode core, and the insulating tape may be applied to the negative electrode lead, and may be applied to the negative electrode outer composite layer and the negative electrode core exposed portion.
  • the positive electrode winding start composite unit amount in the winding start region of the positive electrode composite unit amount is the winding direction. It is substantially constant regardless of the position of the positive electrode and is smaller than the positive electrode winding end composite unit amount in the winding end region of the positive electrode composite unit amount. Further, in each of the negative electrode inner composite layer 42 and the negative electrode outer composite layer 43, the negative electrode winding start composite unit amount in the opposing region of the negative electrode composite unit amount winding is substantially constant regardless of the position in the winding direction. It is smaller than the negative electrode winding end composite unit amount in the opposite end region of the negative electrode composite unit amount.
  • the positive electrode composite unit amount in the winding start region having a particularly large curvature can be made smaller than the positive electrode composite unit amount in the winding end region.
  • the negative electrode composite unit amount in the winding start opposing region having a particularly large curvature can be made smaller than the negative electrode composite unit amount in the winding end opposing region. Therefore, damage to the positive electrode mixture layers 32 and 33 in the winding start region can be suppressed, and damage to the negative electrode mixture layers 42 and 43 in the winding start opposed region can also be suppressed.
  • the positive electrode composite material unit amount in the winding end region is larger than the positive electrode composite material unit amount in the winding start region.
  • the negative electrode composite material unit amount of the winding end opposing region is larger than the negative electrode composite material unit amount of the winding start opposing region.
  • the positive electrode mixture unit amount in the winding end region and the negative electrode mixture unit amount in the winding end opposing region are large, the positive electrode mixture unit amount in the winding start region and the negative electrode mixture unit in the winding start opposing region Even if the amount is reduced, it is possible to prevent the amount of the positive electrode mixture and the amount of the negative electrode mixture as the total of the secondary battery 10 from being reduced. Therefore, it can prevent that the capacity
  • each of the positive electrode inner and outer composite layers 32 and 33 can be formed by varying the discharge amount of the positive electrode composite unit amount with the positive electrode core exposed portion 36 as a boundary.
  • Each of the layers 42 and 43 can be formed by changing the discharge amount of the negative electrode mixture unit amount with the positive electrode exposure facing position as a boundary. Therefore, in particular, each of the positive electrode inner side and the outer composite material layers 32 and 33 can be formed only by changing the discharge amount during the time lag generated when the positive electrode core exposed portion 36 passes through the discharge nozzle.
  • the outer composite material layers 32 and 33 can be easily formed.
  • the secondary battery of the second embodiment will be described.
  • the case where the first electrode is a positive electrode and the second electrode is a negative electrode will be described as in the first embodiment.
  • the secondary battery of the second embodiment has the same structure as the secondary battery 10 of the first embodiment except for the positive electrode 111 and the negative electrode 112.
  • the positive electrode and negative electrode 111,112 in the secondary battery of 2nd Embodiment is demonstrated, and description other than that is abbreviate
  • FIG. 4A is a schematic cross-sectional view of the positive electrode 111 corresponding to FIG. 3A in the secondary battery of the second embodiment
  • FIG. 4B is a diagram of the secondary battery of the second embodiment. It is a schematic cross section of the negative electrode 112 corresponding to 3 (b).
  • the structure of the inner and outer composite layers 132 and 133 in the winding start region on the winding start side of the positive electrode core exposed portion 36 in the winding direction is the first embodiment. And different. Specifically, regarding each of the positive electrode inner side and the outer side composite material layers 132 and 133, the positive electrode composite material unit amount in the winding start region gradually increases toward the winding end side in the winding direction. Further, with respect to each of the positive electrode inner side and outer side composite material layers 132 and 133, the positive electrode composite material unit amount in the winding end region on the winding end side with respect to the positive electrode core exposed portion 36 is substantially constant regardless of the position in the winding direction. It is substantially the same as the maximum positive electrode mixture unit amount in the winding start region.
  • the negative electrode composite unit amount in the winding start opposing region facing the winding start region via the separator 13 is It gradually increases as it goes to the winding end in the turning direction. Further, regarding each of the negative electrode inner and outer composite layers 142 and 143, the unit amount of the negative electrode mixture in the winding end facing region facing the winding end region via the separator 13 is substantially constant regardless of the position in the winding direction. And is larger than the maximum negative electrode mixture unit amount in the opposing region at the beginning of winding.
  • the negative electrode composite material unit amount of the positive electrode exposed opposing region facing the positive electrode core exposed portion 36 via the separator 13 is the winding end position of the opposing start region. The value smoothly varies from the value of the negative electrode composite unit amount to the value of the negative electrode composite unit amount at the winding start position in the opposite end region of the winding.
  • Each of the positive electrode inner side and the outer side composite material layers 132 and 133 can be formed as follows, for example. First, the positive electrode core 31 is relatively moved from the winding start side to the winding end side with respect to the discharge nozzle from the winding start side to the positive electrode core exposed portion 36, and further, at the time of this relative movement, from the discharge nozzle to the positive electrode core. The amount of the positive electrode active material slurry discharged to the body 31 is gradually increased. Further, the positive electrode active material slurry discharged from the discharge nozzle to the positive electrode core 31 when the positive electrode core 31 is moved relative to the discharge nozzle in the winding end region for each of the positive electrode inner side and the outer side mixture layers 132 and 133. The amount is constant, and the amount is the same as the maximum discharge amount in the winding start area. Thereby, the positive electrode inner side and the outer side composite material layers 132 and 133 can be formed.
  • each of the negative electrode inner side and the outer side composite material layers 142 and 143 can be formed as follows, for example. First, the negative electrode core 41 is relatively moved from the winding start side to the winding end side with respect to the discharge nozzle from the winding start side to the positive electrode exposure facing position opposed to one place in the positive electrode core exposed portion 36. During the relative movement, the amount of the negative electrode active material slurry discharged from the discharge nozzle to the negative electrode core 41 is gradually increased.
  • the amount of the negative electrode active material slurry discharged from the discharge nozzle is made the same and constant as the amount of the negative electrode active material slurry at the position where the positive electrode is exposed, and the negative electrode core 41 is discharged from the position where the positive electrode is exposed to the negative electrode core exposed portion 46. Move relative to the nozzle. Thereby, the negative electrode inner side and outer side composite material layers 142 and 143 can be formed.
  • the positive electrode composite material unit amount gradually increases from the winding start end to the positive electrode core exposed portion 36 toward the winding end side. Become. Therefore, the positive electrode composite unit amount at the portion where the curvature on the winding start side is large can be reduced as the curvature increases.
  • the negative electrode composite unit amount gradually increases from the winding start end to the positive electrode exposure facing position toward the winding end side. Therefore, the negative electrode composite unit amount on the winding start side having a large curvature can be reduced as the curvature increases. Therefore, the generation
  • FIG. 5A is a schematic cross-sectional view of the positive electrode 211 corresponding to FIG. 3A in the secondary battery of the third embodiment
  • FIG. 5B is a diagram of the secondary battery of the third embodiment. It is a schematic cross section of the negative electrode 212 corresponding to 3 (b).
  • the positive electrode 211 is the positive electrode described in the second embodiment only in that the positive electrode mixture unit amount in the winding end region is gradually increased toward the winding end side in each of the positive electrode inner side and outer side mixture layers 232 and 233. 111 and different.
  • the negative electrode 212 is that the negative electrode composite unit amount is gradually increased from the winding start end to the negative electrode core exposed portion 46 in each of the negative electrode inner side and the outer side composite material layers 242 and 243. And different.
  • a method of gradually increasing the positive electrode mixture unit amount toward the winding end side in the winding end region and a method of gradually increasing the negative electrode mixture unit amount toward the winding end side are described in, for example, the second embodiment. It can be realized by a method similar to the method described in.
  • the third embodiment it is possible to reduce the gradient of the unit material amount of each of the composite material layers 232, 233, 242, and 243 when the total composite material amount is the same as that of the second embodiment. Therefore, the difference in film thickness in the winding direction of the composite layers 232, 233, 242, and 243 formed by drying and compressing the active material slurry can be reduced, so that the positive electrode 211 and the negative electrode 212 can be smoothly wound in a more closely contacted state. Can turn.
  • FIG. 6A is a schematic cross-sectional view of the positive electrode 311 corresponding to FIG. 3A in the secondary battery of the fourth embodiment
  • FIG. 6B is a diagram of the secondary battery of the fourth embodiment. It is a schematic cross section of the negative electrode 312 corresponding to 3 (b).
  • the positive electrode mixture unit amount of each of the positive electrode inner and outer mixture layers 332 and 333 in the winding start region on the winding start side of the positive electrode core exposed portion 36 is in the winding direction.
  • the positive electrode mixture unit amount of the positive electrode inner mixture layer 332 is larger than the positive electrode mixture unit amount of the positive electrode outer mixture layer 333 at each position in the winding direction.
  • each positive electrode mixture unit amount of the positive electrode inner and outer mixture layers 332 and 333 is independent of the position in the winding direction.
  • the positive electrode mixture unit amount of the positive electrode inner mixture layer 332 is smaller than the positive electrode mixture unit amount of the positive electrode outer mixture layer 333 at each position in the winding direction.
  • the total positive electrode mixture unit amount obtained by adding the positive electrode mixture unit amount of the positive electrode inner mixture layer 332 and the positive electrode mixture unit amount of the positive electrode outer mixture layer 333 at the same winding direction position in the winding start region is: At the same winding direction position in the winding end region, the total positive electrode mixture unit amount obtained by adding the positive electrode mixture unit amount of the positive electrode inner mixture layer 332 and the positive electrode mixture unit amount of the positive electrode outer mixture layer 333 is substantially the same. ing.
  • each of the negative electrode inner and outer composite layers 342 and 343 extends from the winding start end to the positive electrode exposure facing position facing the one portion of the positive electrode core exposed portion via the separator 13.
  • the negative electrode mixture unit amount is substantially constant regardless of the position in the winding direction, and the negative electrode mixture unit amount of the negative electrode inner mixture layer 342 is more than the negative electrode mixture unit amount of the negative electrode outer mixture layer 343. It is getting smaller.
  • the negative electrode mixture unit amount of each of the negative electrode inner and outer composite material layers 342 and 343 is substantially constant from the position where the positive electrode is exposed to the negative electrode core exposed portion regardless of the position in the winding direction.
  • the negative electrode mixture unit amount of the negative electrode inner mixture layer 342 is larger than the negative electrode mixture unit amount of the negative electrode outer mixture layer 343. Further, the sum of the negative electrode mixture unit amount of the negative electrode inner composite layer 342 and the negative electrode mixture unit amount of the negative electrode outer composite layer 343 at the same winding direction position in the region from the start of winding to the positive electrode exposure facing position.
  • the negative electrode mixture unit amount is the same position in the winding direction in the region from the positive electrode exposure facing position to the negative electrode core exposed portion, and the negative electrode mixture unit amount of the negative electrode inner composite layer 342 and the negative electrode mixture unit of the negative electrode outer composite layer 343. It is substantially the same as the total negative electrode mixture unit amount added with the material unit amount.
  • the negative electrode inner composite layer 342 provided on the inner peripheral side having a large curvature in the negative electrode 312 wound from the inner side than the positive electrode 311, the negative electrode mixture from the start of winding to the positive electrode exposure facing position.
  • the unit amount is smaller than the negative electrode composite material unit amount from the positive electrode exposure facing position to the negative electrode core exposed portion. Therefore, it is possible to effectively suppress damage to the negative electrode inner composite layer 342 that is most easily damaged at the winding start end, and as a result, it is also possible to effectively suppress damage to the electrode body.
  • the positive electrode 311 can be formed only by reducing or increasing the positive electrode mixture unit amount of each of the positive electrode inner and outer mixture layers 332 and 333 in one step with the positive electrode core exposed portion 36 interposed therebetween.
  • the negative electrode 312 can be formed simply by increasing or decreasing the negative electrode composite unit amount of each of the outer composite layers 342 and 343 in one step at the position where the positive electrode is exposed. Therefore, discharge control of the positive electrode active material slurry and the negative electrode active material slurry becomes easy, and the positive electrode 311 and the negative electrode 312 can be easily formed.
  • the total positive electrode mixture unit amount at each location in the winding direction of the winding start region substantially matches the total positive electrode mixture unit amount at each location in the winding direction of the winding end region, and the winding direction of the negative electrode mixture
  • the total negative electrode mixture unit amount in each of the above is substantially constant from the winding start end to the negative electrode core exposed portion 46. Therefore, the sum of the thicknesses of the positive electrode inner composite layer 332 and the positive electrode outer composite layer 333 can be made substantially constant regardless of the position in the winding direction, and the thicknesses of the negative electrode inner composite layer 342 and the negative electrode outer composite layer 343 can be made. Can be made substantially constant regardless of the position in the winding direction.
  • the sum of the thicknesses of the positive electrode inner composite layer 332 and the positive electrode outer composite layer 333 and the sum of the thicknesses of the negative electrode inner composite layer 342 and the negative electrode outer composite layer 343 may be excessively different depending on the winding position. Therefore, ions and electrons can be moved smoothly.
  • the sum of the thicknesses of the positive electrode inner composite layer 332 and the positive electrode outer composite layer 333 can be made substantially constant regardless of the position in the winding direction, and the thickness of the negative electrode inner composite layer 342 and the negative electrode outer composite layer 343 can be made constant.
  • the sum can be made substantially constant regardless of the position in the winding direction. Therefore, the sum of the thicknesses of the positive electrode inner composite layer 332 and the positive electrode outer composite layer 333 hardly varies between the winding start side and the winding end side with respect to the positive electrode core exposed portion 36. Therefore, the insulating tape 39 that is attached to the positive electrode inner composite layer 332 and the positive electrode outer composite layer 333 and covers the positive electrode lead 20 is hardly distorted, and the insulating tape 39 is not easily peeled off.
  • the relationship of the positive electrode mixture unit amount of 433 may be reversed to the relationship of the positive electrode mixture unit amounts of the positive electrode inner side and the outer mixture layer 332 and 333 of the positive electrode 311 of the fourth embodiment.
  • 7B that is, as shown in the schematic cross-sectional view of the negative electrode 412 corresponding to FIG. 6B in the secondary battery of the modification of the fourth embodiment
  • the relationship between the negative electrode mixture unit amounts of 443 may be reversed to the negative electrode mixture unit amount relationships between the negative electrode inner side and the outer composite layer 342 and 343 of the negative electrode 312 of the fourth embodiment.
  • At least one of the positive electrode inner composite layer and the positive electrode outer composite layer has a substantially constant positive electrode mixture unit amount toward the winding end end. You may have an area
  • the wound electrode body of the present disclosure is a wound electrode of a non-aqueous electrolyte secondary battery in which a long first electrode and a long second electrode are wound with a separator interposed therebetween. Any body is acceptable.
  • a 1st pole is provided in the outer side surface of the 1st pole inner side material mixture layer provided in the elongate 1st pole core body, the inner surface of the 1st pole core body, and the 1st pole core body.
  • the second pole has an elongated second pole core, a second pole inner mix layer provided on the inner surface of the second pole core, and a second pole. What is necessary is just to have the 2nd pole outer side mixture layer provided in the outer surface of a 2 pole core.
  • the first pole may have a first pole core exposed portion where the first pole core body is exposed at an interval in the winding direction at both the winding start end and the winding end end.
  • the first pole lead may be electrically connected to the one pole core exposed portion.
  • the first per unit in the winding direction of each of the first pole inner composite layer and the first pole outer composite layer may be substantially constant or increase as it goes to the winding end side in the winding direction.
  • the second electrode mixture unit amount which is the second electrode mixture amount per unit in the winding direction of each of the second electrode inner mixture layer and the second electrode outer mixture layer, is a separator in the winding start region. With respect to the winding start facing region that is opposed to each other, it may be substantially constant or increase as it goes to the winding end side in the winding direction.
  • Each of the first pole inner composite layer and the first pole outer composite layer is first in two or more positions in the winding direction excluding the range in the winding direction where the first pole core exposed portion is present. Fluctuation in which the amount of the second electrode mixture unit amount varies as the second pole inner material layer and the second electrode outer mixture layer move toward the end of winding in the winding direction. It is sufficient to have a part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正極芯体露出部よりも巻回方向の巻き始め側の巻き始め領域に関し、正極内側合材層及び正極外側合材層の夫々の正極合材単位量が、巻回方向の巻き終わり側に行くにしたがって略一定であるか又は増大する。負極内側合材層及び負極外側合材層の夫々の負極合材単位量が、巻き始め領域にセパレータを介して対向する巻き始め対向領域に関し、巻回方向巻き終わり側に行くにしたがって略一定であるか又は増大する。正極内側合材層及び正極外側合材層の夫々は、正極芯体露出部を除いた2以上の巻回方向の位置で正極合材単位量が異なる。負極内側合材層及び負極外側合材層の夫々は、巻回方向巻き終わり側に行くにしたがって負極合材単位量が変動する変動部を有する。

Description

非水電解質二次電池の巻回型電極体、及び非水電解質二次電池
 本開示は、非水電解質二次電池の巻回型電極体、及び非水電解質二次電池に関する。
 従来、非水電解質二次電池としては、特許文献1に記載されているものがある。この非水電解質二次電池(以下、単に二次電池という)では、巻回型電極体に含まれる電極シートに関し、外周側に塗布する電極材量を、巻き始め側から巻き終わり側に行くにしたがって連続的または段階的に減少させている。このようにして、曲率が小さくなるにしたがって延伸量が小さくなる電極材量を延伸量に基づいて巻き終わり側に行くにしたがって小さくなるようにして、外周側の電極材量が巻回方向の位置によらず一定に近づくようにしている。
特開平9‐180704号公報
 特許文献1の二次電池では、電極シートの外周側面において電極材料が巻回方向の巻き終わり側に行くにしたがって連続的又は段階的に減少するので、電極材料が、曲率が大きい巻き始め側で最も多くなり、電極材層の膜厚が、曲率が大きい巻き始め側で最も厚くなる。したがって、曲率が大きい巻き始め側において、電極材が、切れ易く、充放電時に生じる伸縮により割れ易い。
 そこで、本開示の目的は、曲率が大きい巻き始め側において、電極材層が、切れ難く、電極の合材層が損傷しにくい巻回型電極体及び非水電解質二次電池を提供することにある。
 上記課題を解決するため、本開示の非水電解質二次電池の巻回型電極体は、長尺状の第1極と、長尺状の第2極とがセパレータを挟んで巻回された非水電解質二次電池の巻回型電極体であって、第1極が、長尺状の第1極芯体と、その第1極芯体の内側面に設けられる第1極内側合材層と、第1極芯体の外側面に設けられる第1極外側合材層とを有する一方、第2極は、長尺状の第2極芯体と、その第2極芯体の内側面に設けられる第2極内側合材層と、第2極芯体の外側面に設けられる第2極外側合材層とを有し、第1極は、巻き始め端及び巻き終わり端の両方に巻回方向に間隔をおいて位置すると共に、第1極芯体が露出して第1極リードが電気的に接続される第1極芯体露出部を有し、第1極芯体露出部よりも巻回方向の巻き始め側の巻き始め領域に関し、第1極内側合材層及び第1極外側合材層の夫々の巻回方向の単位長さあたりの第1極合材量である第1極合材単位量は、巻回方向の巻き終わり側に行くにしたがって略一定であるか又は増大し、第2極内側合材層及び第2極外側合材層の夫々の巻回方向の単位長さあたりの第2極合材量である第2極合材単位量は、巻き始め領域にセパレータを介して対向する巻き始め対向領域に関し、巻回方向の巻き終わり側に行くにしたがって略一定であるか又は増大し、第1極内側合材層、及び第1極外側合材層の夫々は、第1極芯体露出部が存在する巻回方向の範囲を除く2以上の巻回方向の位置で第1極合材単位量が異なり、第2極内側合材層、及び第2極外側合材層の夫々は、巻回方向の巻き終わり側に行くにしたがって第2極合材単位量が変動する変動部を有する。
 本開示に係る巻回型電極体によれば、曲率が大きい巻き始め側において、電極材層が、切れ難く、電極の合材層が損傷しにくい。
本開示の第1実施形態に係る非水電解質二次電池の軸方向の断面図である。 上記非水電解質二次電池の電極体の斜視図である。 (a)は、長尺状に展開した状態の上記電極体の正極における長手方向及び厚さ方向を含む模式断面図であり、(b)は、長尺状に展開した状態の上記電極体の負極における長手方向及び厚さ方向を含む模式断面図である。 (a)は、第2実施形態の非水電解質二次電池における図3(a)に対応する模式断面図であり、(b)は、第2実施形態の非水電解質二次電池における図3(b)に対応する模式断面図である。 (a)は、第3実施形態の非水電解質二次電池における図3(a)に対応する模式断面図であり、(b)は、第3実施形態の非水電解質二次電池における図3(b)に対応する模式断面図である。 (a)は、第4実施形態の非水電解質二次電池における図3(a)に対応する模式断面図であり、(b)は、第4実施形態の非水電解質二次電池における図3(b)に対応する模式断面図である。 (a)は、第4実施形態の変形例の非水電解質二次電池における図6(a)に対応する模式断面図であり、(b)は、第4実施形態の変形例の非水電解質二次電池における図6(b)に対応する模式断面図である。
 以下に、本開示に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。また、以下の実施例では、図面において同一構成に同一符号を付し、重複する説明を省略する。また、複数の図面には、模式図が含まれ、異なる図間において、各部材における寸法比は、必ずしも一致しない。
 (第1実施形態)
 図1は、本開示の第1実施形態に係る非水電解質二次電池10の軸方向の断面図であり、図2は、非水電解質二次電池10の電極体14の斜視図である。図1に示すように、非水電解質二次電池(以下、単に二次電池という)10は、巻回型の電極体14と、非水電解質(図示せず)と、電極体14及び非水電解質を収容する電池ケース15とを備える。図2に示すように、電極体14は、第1極としての正極11と、第2極としての負極12と、正極11及び負極12の間に介在するセパレータ13を含み、正極11と負極12がセパレータ13を介して巻回された巻回構造を有する。再度、図1を参照して、電池ケース15は、有底筒状の外装缶16と、外装缶16の開口部を塞ぐ封口体17で構成される。また、非水電解質二次電池10は、外装缶16と封口体17との間に配置される樹脂製のガスケット28を備える。
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等を用いてもよい。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有してもよい。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩には、LiPF等のリチウム塩が使用される。
 電極体14は、長尺状の正極11と、長尺状の負極12と、長尺状の2枚のセパレータ13とを有する。また、電極体14は、正極11に接合された第1極リードとしての正極リード20と、負極12に接合された負極リード21を有する。負極12は、リチウムの析出を抑制するために、正極11よりも一回り大きな寸法で形成され、正極11より長手方向及び短手方向(上下方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。
 セパレータ13としては、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布などが挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂が好ましい。セパレータ13は、例えば10μm~50μmの厚さを有し、130℃~180℃程度の融点を有する。なお、負極12は電極体14の巻き始め端を構成してもよいが、一般的にはセパレータ13が負極12の巻き始め側端を超えて延出し、セパレータ13の巻き始め側端が電極体14の巻き始め端となる。
 図1、及び図2に示す例では、正極リード20は、第1極芯体としての正極芯体における巻回方向の中央部等の中間部に電気的に接続され、負極リード21は、第2極芯体としての負極芯体における巻回方向の巻き終わり端部に電気的に接続される。しかし、負極リードは、負極芯体における巻回方向の巻き始め端部に電気的に接続されてもよい。又は、電極体が2つの負極リードを有して、一方の負極リードが、負極芯体における巻回方向の巻き始め端部に電気的に接続され、他方の負極リードが、負極芯体における巻回方向の巻き終わり端部に電気的に接続されてもよい。又は、負極芯体における巻回方向の巻き終わり側端部を外装缶16の内面に当接させることで、負極と外装缶を電気的に接続してもよい。正極リード20を正極芯体に電気的に接続する構造、及び負極リード21を負極芯体に電気的に接続する構造については、後で図3を用いて詳細に説明する。
 図1に示すように、二次電池10は、電極体14の上側に配置される絶縁板18と、電極体14の下側に配置される絶縁板19を更に有する。図1に示す例では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通って、外装缶16の底部側に延びる。正極リード20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、有底円筒形状の金属製容器である。外装缶16と封口体17との間にはガスケット28が設けられ、電池ケース15の内部空間が密閉される。外装缶16は、例えば側面部を外側からプレスして形成された溝入れ部22を有する。溝入れ部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。また、外装缶16の上端部は、内側に折り曲げられ封口体17の周縁部に加締められている。
 封口体17は、電極体14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続される。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在する。電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 図3(a)は、正極11を長尺状に展開したときの正極11における長手方向及び厚さ方向を含む模式断面図であり、図3(b)は、負極12を長尺状に展開したときの負極12における長手方向及び厚さ方向を含む模式断面図である。次に、二次電池10の正極11と負極12の構造及び材料等について、図3を参照して詳細に説明する。なお、図3、及び以下の図4~図7においては、本開示の二次電池の電極構造を分かり易く説明するため、合材層の厚さの差が誇張して描かれている。
 [正極]
 (正極の構造)
 図3(a)に示すように、正極11は、第1極芯体としての長尺状の正極芯体31と、第1極内側合材層としての正極内側合材層32と、第1極外側合材層としての正極外側合材層33を有し、正極内側合材層32は、正極芯体31の内側面に設けられ、正極外側合材層33は、正極芯体31の外側面に設けられる。
 正極11は、正極芯体31が露出する第1極芯体露出部としての正極芯体露出部36を巻回方向(図3(a)に示す正極11の長手方向に一致)の中間部に有する。正極芯体露出部36は、巻き始め端37及び巻き終わり端38の両方に巻回方向に間隔をおいた位置に設けられる。正極芯体露出部36には、第1極リードとしての正極リード20が電気的に接続される。正極リード20は、正極芯体露出部36にスポット溶接等により接合され、正極芯体露出部36に電気的に接続される。なお、図3に示す例では、正極リード20が正極芯体31の外側面に接合されているが、正極リードは、正極芯体の内側面に接合されてもよい。
 正極内側合材層32に関し、正極芯体露出部36よりも巻回方向の巻き始め側の巻き始め領域における巻回方向の単位長さあたりの正極合材量である正極巻き始め合材単位量は、巻回方向の位置によらず略一定になっている。正極内側合材層32に関し、正極芯体露出部36よりも巻回方向の巻き終わり側の巻き終わり領域における正極合材単位量である正極巻き終わり合材単位量は、巻回方向の位置によらず略一定になっていると共に、正極巻き始め合材単位量よりも大きくなっている。巻回方向の単位長さあたりの正極合材量である正極合材単位量は、第1極合材単位量の一例であり、正極巻き始め合材単位量は、第1極巻き始め合材単位量の一例であり、正極巻き終わり合材単位量は、第1極巻き終わり合材単位量の一例である(第2~第4実施形態でも同様)。また、正極外側合材層33に関し、巻き始め領域における正極合材単位量である正極巻き始め合材単位量は、巻回方向の位置によらず略一定になっている。また、正極外側合材層32に関し、巻き終わり領域における正極合材単位量である正極巻き終わり合材単位量は、巻回方向の位置によらず略一定になっていると共に、正極巻き始め合材単位量よりも大きくなっている。
 (正極の材質)
 正極芯体31には、アルミニウム、アルミニウム合金など正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。また、正極内側合材層32及び正極外側合材層33は、正極活物質、導電材、及び結着材等を含む。正極活物質には、例えばリチウム金属複合酸化物が用いられる。リチウム金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好適なリチウム金属複合酸化物の一例は、Ni、Co、Mnの少なくとも1種を含有するリチウム金属複合酸化物である。具体例としては、Ni、Co、Mnを含有するリチウム金属複合酸化物、Ni、Co、Alを含有するリチウム金属複合酸化物が挙げられる。なお、リチウム金属複合酸化物の粒子表面には、酸化タングステン、酸化アルミニウム、ランタノイド含有化合物等の無機物粒子などが固着してもよい。
 (正極の製造方法)
 正極11は、例えば、次のように製造される。正極活物質に導電剤や結着剤等を混合し、その混合物を分散媒中で混練することによってペースト状の正極活物質スラリーを作製する。その後、正極活物質スラリーをアルミニウム等の金属箔で形成したフープ状の正極芯体31の内側面上に塗布すると共に、正極芯体31の外側面上に塗布する。続いて、正極芯体31の内側及び外側面に塗布された正極活物質スラリーを、乾燥、及び圧縮することによって、正極芯体31の内側面に正極内側合材層32を形成すると共に、正極芯体31の外側面に正極外側合材層32を形成する。最後に正極合材層が形成された正極板を所定寸法に切断することによって正極11が作製される。
 正極芯体31への正極活物質スラリーの塗布は、例えば、次のように実行される。詳しくは、正極活物質スラリーを吐出する吐出ノズルに対して正極芯体31をその延在方向に一定の速度で相対移動させる。そして、吐出ノズルから正極芯体31へ一定量の正極活物質スラリーを巻き始め端から正極芯体露出部の巻き始め端まで吐出すると共に、上記一定量よりも多い一定の正極活物質スラリーを、正極芯体露出部の巻き終わり端から巻き終わり端まで、吐出ノズルから正極芯体31へ吐出する。この吐出を、正極芯体31の内側及び外側面で実行することで正極活物質スラリーの正極芯体31への塗布を実行する。
 [負極]
 (負極の構造)
 図3(b)に示すように、負極12は、第2極芯体としての長尺状の負極芯体41と、第2極内側合材層としての負極内側合材層42と、第2極外側合材層としての負極外側合材層43を有し、負極内側合材層42は、負極芯体41の内側面に設けられ、負極外側合材層43は、負極芯体41の外側面に設けられる。
 負極12は、負極芯体41が露出する負極芯体露出部46を巻回方向の巻き終わり側の端部に有する。この負極芯体露出部46には、スポット溶接等により負極リード21が接合されて電気的に接続される。なお、図3に示す例では、負極リード21が負極芯体41の内側面に接合されているが、負極リードは、負極芯体の外側面に接合されてもよい。
 負極内側合材層42は、正極11の上記巻き始め領域にセパレータ13(図2参照)を介して対向する巻き始め対向領域における巻回方向の単位長さあたりの負極合材量である負極巻き始め合材単位量が、略一定になっている。また、負極内側合材層42は、正極11の上記巻き終わり領域にセパレータ13を介して対向する巻き終わり対向領域における負極合材単位量である負極巻き終わり合材単位量が、巻回方向の位置によらず略一定であると共に、上記負極巻き始め合材単位量よりも大きくなっている。巻回方向の単位長さあたりの負極合材量である負極合材単位量は、第2極合材単位量の一例であり、負極巻き始め合材単位量は、第2極巻き始め合材単位量の一例であり、負極巻き終わり合材単位量は、第2極巻き終わり合材単位量の一例である(第2~第4実施形態でも同様)。また、負極外側合材層43は、上記巻き始め対向領域における負極合材単位量である負極巻き始め合材単位量が、巻回方向の位置によらず略一定になっている。また、負極内側合材層42は、上記巻き終わり対向領域における負極合材単位量である負極巻き終わり合材単位量が、巻回方向の位置によらず略一定であると共に、上記負極巻き始め合材単位量よりも大きくなっている。
 (負極の材質)
 負極芯体41には、銅、銅合金など負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。また、負極内側合材層42及び負極外側合材層43は、負極活物質、導電材、及びスチレンブタジエンゴム(SBR)等の結着材を含む。負極活物質としては、天鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛などの黒鉛を含むことが好ましい。負極内側合材層42及び負極外側合材層43には、黒鉛以外の負極活物質が混在してもよい。黒鉛以外の負極活物質としては、Si、Sn等のリチウムと合金化する金属、当該金属を含有する合金、当該金属を含有する化合物等が挙げられる。中でも、Siを含有するケイ素化合物が好ましい。負極内側合材層42及び負極外側合材層43におけるケイ素化合物の含有量は、負極活物質の総質量に対して、例えば1~15質量%であり、好ましくは5~10質量%である。
 上記ケイ素化合物としては、SiO(0.5≦x≦1.6)で表される酸化ケイ素が例示される。SiOで表される酸化ケイ素は、例えばSiOマトリックス中にSiの微粒子が分散した構造を有する。また、リチウムシリケート相中にSiの微粒子が分散した構造を有するLi2ySiO(2+y)(0<y<2)で表されるケイ素化合物を用いてもよい。
 ケイ素化合物の粒子表面には、導電被膜が形成されていることが好ましい。導電被膜の構成材料としては、炭素材料、金属、及び金属化合物から選択される少なくとも1種が例示できる。中でも、非晶質炭素等の炭素材料が好ましい。炭素被膜は、例えばアセチレン、メタン等を用いたCVD法、石炭ピッチ、石油ピッチ、フェノール樹脂等をケイ素化合物粒子と混合し、熱処理を行う方法などで形成できる。また、カーボンブラック等の導電フィラーを結着剤を用いてケイ素化合物の粒子表面に固着させることで導電被膜を形成してもよい。
 (負極の製造方法)
 負極12は、例えば、次のように製造される。負極活物質に導電剤や結着材を混合し、その混合物を分散媒中で混練することによってペースト状の負極活物質スラリーを作製する。その後、負極活物質スラリーを銅等の金属箔で形成したフープ状の負極芯体41の内側面上に塗布すると共に、負極芯体41の外側面上に塗布する。その後、負極芯体41の内側及び外側面に塗布された負極活物質スラリーを、乾燥、及び圧縮することによって、負極芯体41の内側面に負極内側合材層42を形成すると共に、負極芯体41の外側面に負極外側合材層43を形成する。
 負極芯体41への負極活物質スラリーの塗布は、例えば、次のように実行される。詳しくは、負極活物質スラリーを吐出する吐出ノズルに対して負極芯体41をその延在方向に一定の速度で相対移動させる。そして、吐出ノズルから負極芯体41へ一定量の負極活物質スラリーを巻き始め端から正極芯体露出部36のいずれかの巻回位置に対向する正極露出対向位置まで吐出する。吐出ノズルから負極芯体41への負極活物質スラリーの吐出量は、正極露出対向位置で変えられ、上記一定量よりも多い一定量の負極活物質スラリーを、正極露出対向位置から負極芯体露出部46まで吐出ノズルから負極芯体41へ吐出する。この吐出を、負極芯体41の内側及び外側面で実行することで負極活物質スラリーの負極芯体41への塗布を実行する。
 二次電池10の電極体14は、このように形成された正極11及び負極12を、2つのセパレータ13を介して巻回することで形成される。なお、詳述しないが、図3(a)に示すように、正極11は、絶縁性を有する絶縁テープ39を有する。絶縁テープ39は、正極リード20の正極芯体31側とは反対側の面、及び正極外側合材層33において正極芯体露出部36の巻回方向両側に位置する部分に貼付され、正極リード20における延在方向の正極芯体31側の端部を被覆する。絶縁テープ39は、主に、正極リード20に導電性を有する異物が付着して電極体14内で短絡が生じることを防止するために設けられる。なお、図3(a)に示す例では、正極リード20が、正極芯体31の外側面に接合され、絶縁テープ39が、正極リード20に貼付されると共に、正極外側合材層33において正極芯体露出部36の巻回方向両側に位置する部分に貼付された。しかし、正極リードは、正極芯体の内側面に接合され、絶縁テープは、正極リードに貼付されると共に、正極内側合材層において正極芯体露出部の巻回方向両側に位置する部分に貼付されてもよい。
 また、図3(b)に示すように、負極12は、絶縁性を有する絶縁テープ49を有する。絶縁テープ49は、負極リード21の負極芯体41側とは反対側の面、負極内側合材層42、及び負極芯体露出部46の巻き終わり側端部に貼付され、負極リード21の延在方向の負極芯体41側の端部を被覆する。絶縁テープ49は、主に、負極リード21に導電性を有する異物が付着して電極体14内で短絡が生じることを防止するために設けられる。なお、図3(b)に示す例では、負極リード21が負極芯体41の内側面に接合され、絶縁テープ49が、負極リード21に貼付されると共に、負極内側合材層42及び負極芯体露出部46に貼付された。しかし、負極リードが負極芯体の外側面に接合され、絶縁テープが、負極リードに貼付されると共に、負極外側合材層及び負極芯体露出部に貼付されてもよい。
 以上、第1実施形態によれば、正極内側合材層32、及び正極外側合材層33の夫々において、正極合材単位量の巻き始め領域における正極巻き始め合材単位量が、巻回方向の位置によらず略一定であり、正極合材単位量の巻き終わり領域における正極巻き終わり合材単位量よりも小さくなっている。また、負極内側合材層42、及び負極外側合材層43の夫々において、負極合材単位量の巻き始め対向領域における負極巻き始め合材単位量が、巻回方向の位置によらず略一定であり、負極合材単位量の巻き終わり対向領域における負極巻き終わり合材単位量よりも小さくなっている。したがって、正極内側及び外側合材層32,33の両方において、曲率が特に大きい巻き始め領域における正極合材単位量を、巻き終わり領域における正極合材単位量よりも小さくでき、負極内側及び外側合材層42,43の両方において、曲率が特に大きい巻き始め対向領域における負極合材単位量を、巻き終わり対向領域における負極合材単位量よりも小さくできる。よって、巻き始め領域における正極合材層32,33の損傷を抑制でき、巻き始め対向領域における負極合材層42,43の損傷も抑制できる。
 また、正極内側及び外側合材層32,33の両方において、巻き終わり領域の正極合材単位量が、巻き始め領域の正極合材単位量よりも大きくなっている。また、負極内側及び外側合材層42,43の両方において、巻き終わり対向領域の負極合材単位量が、巻き始め対向領域の負極合材単位量よりも大きくなっている。したがって、巻き終わり領域の正極合材単位量、及び巻き終わり対向領域の負極合材単位量が大きくなっているので、巻き始め領域の正極合材単位量、及び巻き始め対向領域の負極合材単位量を小さくしても、二次電池10トータルとしての正極合材量と負極合材量が小さくなることを防止できる。よって、二次電池10の容量が小さくなることを防止でき、二次電池10の性能が低下することも防止できる。
 更には、正極内側及び外側合材層32,33の夫々は、正極合材単位量の吐出量を、正極芯体露出部36を境にして変動させることで形成でき、負極内側及び外側合材層42,43の夫々は、負極合材単位量の吐出量を、上記正極露出対向位置を境にして変動させることで形成できる。よって、特に、正極内側及び外側合材層32,33の夫々を、正極芯体露出部36が吐出ノズルを通過する際に生じるタイムラグの間に吐出量を変更するだけで形成でき、正極内側及び外側合材層32,33を容易に形成できる。
 (第2実施形態)
 次に第2実施形態の二次電池について説明する。なお、第2実施形態を含む以下の実施形態でも、第1実施形態と同様に、第1極が正極で、第2極が負極である場合について説明する。第2実施形態の二次電池は、正極111、及び負極112以外の構造が第1実施形態の二次電池10と同一である。以下では、第2実施形態の二次電池における正極及び負極111,112の構造のみを説明し、それ以外の説明は省略する。
 図4(a)は、第2実施形態の二次電池において図3(a)に対応する正極111の模式断面図であり、図4(b)は、第2実施形態の二次電池において図3(b)に対応する負極112の模式断面図である。
 図4(a)に示すように、正極111は巻回方向の正極芯体露出部36よりも巻き始め側の巻き始め領域における内側及び外側合材層132,133の構造が、第1実施形態と異なる。詳しくは、正極内側及び外側合材層132,133の夫々に関し、巻き始め領域の正極合材単位量が、巻回方向の巻き終わり側に行くにしたがって徐々に大きくなっている。また、正極内側及び外側合材層132,133の夫々に関し、正極芯体露出部36よりも巻き終わり側の巻き終わり領域における正極合材単位量は、巻回方向の位置によらず略一定になっており、巻き始め領域における最大の正極合材単位量と略同一になっている。
 また、図4(b)に示すように、負極内側及び外側合材層142,143の夫々に関し、巻き始め領域にセパレータ13を介して対向する巻き始め対向領域の負極合材単位量は、巻回方向の巻き終わり側に行くにしたがって徐々に大きくなっている。また、負極内側及び外側合材層142,143の夫々に関し、巻き終わり領域にセパレータ13を介して対向する巻き終わり対向領域の負極合材単位量は、巻回方向の位置によらず略一定になっていると共に、巻き始め対向領域の最大の負極合材単位量よりも大きくなっている。また、負極内側及び外側合材層142,143の夫々に関し、正極芯体露出部36にセパレータ13を介して対向する正極露出対向領域の負極合材単位量は、巻き始め対向領域の巻き終わり位置の負極合材単位量の値から巻き終わり対向領域の巻き始め位置の負極合材単位量の値まで滑らかに変動している。
 正極内側及び外側合材層132,133の夫々は、例えば、次のように形成できる。先ず、巻き始め側から正極芯体露出部36まで、正極芯体31を吐出ノズルに対して巻き始め側から巻き終わり側に相対移動させ、更に、この相対移動の際に、吐出ノズルから正極芯体31に吐出する正極活物質スラリーの量を徐々に増大させる。また、正極内側及び外側合材層132,133の夫々について、巻き終わり領域において正極芯体31を吐出ノズルに対して相対移動させる際に吐出ノズルから正極芯体31に吐出する正極活物質スラリーの量を一定とし、その量を、巻き始め領域の最大の吐出量と同一とする。これにより、正極内側及び外側合材層132,133を形成できる。
 また、負極内側及び外側合材層142,143の夫々は、例えば、次のように形成できる。先ず、巻き始め側から正極芯体露出部36内の1か所に対向する正極露出対向位置まで負極芯体41を吐出ノズルに対して巻き始め側から巻き終わり側に相対移動させ、更に、この相対移動の際に、吐出ノズルから負極芯体41に吐出する負極活物質スラリーの量を徐々に増大させる。また、吐出ノズルから吐出する負極活物質スラリーの量を、正極露出対向位置の負極活物質スラリーの量と同一かつ一定とし、正極露出対向位置から負極芯体露出部46まで負極芯体41を吐出ノズルに対して相対移動させる。これにより、負極内側及び外側合材層142,143を形成できる。
 第2実施形態によれば、正極内側及び外側合材層132,133の夫々において、正極合材単位量が、巻き始め端から正極芯体露出部36まで巻き終わり側に行くにしたがって徐々に大きくなる。したがって、巻き始め側の曲率が大きい箇所の正極合材単位量を曲率が大きくなるにしたがって小さくできる。また、負極内側及び外側合材層142,143の夫々において、負極合材単位量が、巻き始め端から正極露出対向位置まで巻き終わり側に行くにしたがって徐々に大きくなる。したがって、曲率が大きい巻き始め側の負極合材単位量を曲率が大きくなるにしたがって小さくできる。よって、合材層132,133,142,143の切れや割れの発生を更に効果的に抑制できる。
 (第3実施形態)
 次に第3実施形態の二次電池について説明する。図5(a)は、第3実施形態の二次電池において図3(a)に対応する正極211の模式断面図であり、図5(b)は、第3実施形態の二次電池において図3(b)に対応する負極212の模式断面図である。
 正極211は、正極内側及び外側合材層232,233の夫々において、巻き終わり領域の正極合材単位量を巻き終わり側に行くにしたがって徐々に大きくした点のみが第2実施形態で説明した正極111と異なる。また、負極212は、負極内側及び外側合材層242,243の夫々において、負極合材単位量を巻き始め端から負極芯体露出部46まで徐々に大きくした点が第2実施形態の負極112と異なる。巻き終わり領域において正極合材単位量を巻き終わり側に行くにしたがって徐々に大きくする方法や、負極合材単位量を巻き終わり側に行くにしたがって徐々に大きくする方法は、例えば、第2実施形態で説明した手法と同様の手法で実現できる。
 第3実施形態によれば、トータルの合材量を第2実施形態と同一とした場合における、各合材層232,233,242,243の合材単位量の勾配を小さくできる。よって、活物質スラリーを乾燥及び圧縮して形成する合材層232,233,242,243の巻回方向の膜厚差を小さくできるので、正極211及び負極212をより密着した状態で円滑に巻回することができる。
 (第4実施形態)
 次に第4実施形態の二次電池について説明する。図6(a)は、第4実施形態の二次電池において図3(a)に対応する正極311の模式断面図であり、図6(b)は、第4実施形態の二次電池において図3(b)に対応する負極312の模式断面図である。
 第4実施形態の正極311は、正極芯体露出部36よりも巻き始め側の巻き始め領域において、正極内側及び外側合材層332,333の夫々の正極合材単位量が、巻回方向の位置によらず略一定であり、更に、巻回方向の各位置において、正極内側合材層332の正極合材単位量が、正極外側合材層333の正極合材単位量よりも大きくなっている。他方、正極311は、正極芯体露出部よりも巻き終わり側の巻き終わり領域において、正極内側及び外側合材層332,333の夫々の正極合材単位量が、巻回方向の位置によらず略一定であり、更に、巻回方向の各位置において、正極内側合材層332の正極合材単位量が、正極外側合材層333の正極合材単位量よりも小さくなっている。また、巻き始め領域において同じ巻回方向の位置で、正極内側合材層332の正極合材単位量と正極外側合材層333の正極合材単位量を足した合計正極合材単位量は、巻き終わり領域において同じ巻回方向位置で、正極内側合材層332の正極合材単位量と正極外側合材層333の正極合材単位量を足した合計正極合材単位量と略同一になっている。
 他方、第4実施形態の負極312は、巻き始め端から正極芯体露出部の一箇所にセパレータ13を介して対向する正極露出対向位置まで、負極内側及び外側合材層342,343の夫々の負極合材単位量が、巻回方向の位置によらず略一定であり、更に、負極内側合材層342の負極合材単位量が、負極外側合材層343の負極合材単位量よりも小さくなっている。また、負極312は、正極露出対向位置から負極芯体露出部まで、負極内側及び外側合材層342,343の夫々の負極合材単位量が、巻回方向の位置によらず略一定であり、更に、負極内側合材層342の負極合材単位量が、負極外側合材層343の負極合材単位量よりも大きくなっている。また、巻き始めから正極露出対向位置までの領域における同じ巻回方向の位置で、負極内側合材層342の負極合材単位量と負極外側合材層343の負極合材単位量を足した合計負極合材単位量は、正極露出対向位置から負極芯体露出部までの領域における同じ巻回方向位置で、負極内側合材層342の負極合材単位量と負極外側合材層343の負極合材単位量を足した合計負極合材単位量と略同一になっている。
 第4実施形態によれば、正極311よりも内側から巻回される負極312において曲率が大きい内周側に設けられる負極内側合材層342に関し、巻き始めから正極露出対向位置までの負極合材単位量が、正極露出対向位置から負極芯体露出部までの負極合材単位量よりも小さい。よって、巻き始め端部で最も損傷し易い負極内側合材層342の損傷を効果的に抑制でき、その結果、電極体の損傷も効果的に抑制できる。
 また、正極内側及び外側合材層332,333の夫々の正極合材単位量を、正極芯体露出部36を挟んで一段階に減少又は増大させるだけで、正極311を形成でき、負極内側及び外側合材層342,343の夫々の負極合材単位量を、正極露出対向位置で一段階に増大又は減少させるだけで、負極312を形成できる。よって、正極活物質スラリーや負極活物質スラリーの吐出制御が容易になって、正極311及び負極312を容易に形成できる。
 また、巻き始め領域の巻回方向の各箇所における合計正極合材単位量が、巻き終わり領域の巻回方向の各箇所における合計正極合材単位量と略一致し、負極合材の巻回方向の各箇所における合計負極合材単位量が、巻き始め端から負極芯体露出部46まで略一定になっている。したがって、正極内側合材層332と正極外側合材層333の厚さの和を巻回方向の位置によらず略一定にでき、負極内側合材層342と負極外側合材層343の厚さの和を巻回方向の位置によらず略一定にできる。よって、正極内側合材層332と正極外側合材層333の厚さの和や、負極内側合材層342と負極外側合材層343の厚さの和が巻回位置によって過度に異なることがないので、イオンや電子を円滑に移動させることができる。
 更には、正極内側合材層332と正極外側合材層333の厚さの和を巻回方向の位置によらず略一定にでき、負極内側合材層342と負極外側合材層343の厚さの和を巻回方向の位置によらず略一定にできる。したがって、正極芯体露出部36よりも巻き始め側と巻き終わり側で、正極内側合材層332と正極外側合材層333の厚さの和が殆ど変動することがない。よって、正極内側合材層332と正極外側合材層333に貼り付けられ、正極リード20を被覆する絶縁テープ39に歪みが生じにくく、絶縁テープ39が剥がれにくい。
 なお、本開示は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。
 例えば、図7(a)、すなわち、第4実施形態の変形例の二次電池における図6(a)に対応する正極411の模式断面図に示すように、正極内側及び外側合材層432,433の正極合材単位量の関係を、第4実施形態の正極311の正極内側及び外側合材層332,333の正極合材単位量の関係と逆にしてもよい。また、図7(b)、すなわち、第4実施形態の変形例の二次電池における図6(b)に対応する負極412の模式断面図に示すように、負極内側及び外側合材層442,443の負極合材単位量の関係を、第4実施形態の負極312の負極内側及び外側合材層342,343の負極合材単位量の関係と逆にしてもよい。
 また、巻き始め領域、及び巻き終わり領域の少なくとも一方において、正極内側合材層及び正極外側合材層のうちの少なくとも一方は、巻き終わり端に行くにしたがって正極合材単位量が略一定となる領域と、巻き終わり端に行くにしたがって正極合材単位量が増加する領域とを有してもよい。また、巻き始め対向領域、及び巻き終わり対向領域の少なくとも一方において、負極内側合材層及び負極外側合材層のうちの少なくとも一方は、巻き終わり端に行くにしたがって負極合材単位量が略一定となる領域と、巻き終わり端に行くにしたがって負極合材単位量が増加する領域とを有してもよい。また、上述の全ての実施形態及び変形例では、第1極が正極であり、第2極が負極である場合について説明した。しかし、第1極は負極であり、第2極は正極でもよい。
 要は、本開示の巻回型電極体は、長尺状の第1極と、長尺状の第2極とがセパレータを挟んで巻回された非水電解質二次電池の巻回型電極体であればよい。また、第1極が、長尺状の第1極芯体と、その第1極芯体の内側面に設けられる第1極内側合材層と、第1極芯体の外側面に設けられる第1極外側合材層とを有する一方、第2極は、長尺状の第2極芯体と、その第2極芯体の内側面に設けられる第2極内側合材層と、第2極芯体の外側面に設けられる第2極外側合材層とを有すればよい。また、第1極は、巻き始め端及び巻き終わり端の両方に巻回方向に間隔をおいて位置して第1極芯体が露出する第1極芯体露出部を有すればよく、第1極芯体露出部には、第1極リードが電気的に接続されればよい。また、第1芯体露出部よりも巻回方向の巻き始め側の巻き始め領域に関し、第1極内側合材層及び第1極外側合材層の夫々の巻回方向の単位あたりの第1極合材量である第1極合材単位量は、巻回方向の巻き終わり側に行くにしたがって略一定であるか又は増大すればよい。また、第2極内側合材層及び第2極外側合材層の夫々の巻回方向の単位あたりの第2極合材量である第2極合材単位量は、巻き始め領域にセパレータを介して対向する巻き始め対向領域に関し、巻回方向の巻き終わり側に行くにしたがって略一定であるか又は増大すればよい。そして、第1極内側合材層、及び第1極外側合材層の夫々は、第1極芯体露出部が存在する巻回方向の範囲を除く2以上の巻回方向の位置で第1極合材単位量が異なり、第2極内側合材層、及び第2極外側合材層の夫々は、巻回方向の巻き終わり側に行くにしたがって第2極合材単位量が変動する変動部を有すればよい。
 10 二次電池
 11,111,211,311,411 正極
 12,112,212,312,412 負極
 13 セパレータ
 15 電池ケース
 20 正極リード
 31 正極芯体
 32,132,232,332,432 正極内側合材層
 33,133,233,333,433 正極外側合材層
 36 正極芯体露出部
 39 絶縁テープ
 41 負極芯体
 42,142,242,342,442 負極内側合材層
 43,143,243,343,443 負極外側合材層

Claims (6)

  1.  長尺状の第1極と、長尺状の第2極とがセパレータを挟んで巻回された非水電解質二次電池の巻回型電極体であって、
     前記第1極が、長尺状の第1極芯体と、その第1極芯体の内側面に設けられる第1極内側合材層と、前記第1極芯体の外側面に設けられる第1極外側合材層とを有する一方、前記第2極は、長尺状の第2極芯体と、その第2極芯体の内側面に設けられる第2極内側合材層と、前記第2極芯体の外側面に設けられる第2極外側合材層とを有し、
     前記第1極は、巻き始め端及び巻き終わり端の両方に巻回方向に間隔をおいて位置すると共に、前記第1極芯体が露出して第1極リードが電気的に接続される第1極芯体露出部を有し、
     前記第1極芯体露出部よりも前記巻回方向の巻き始め側の巻き始め領域に関し、前記第1極内側合材層及び前記第1極外側合材層の夫々の前記巻回方向の単位長さあたりの第1極合材量である第1極合材単位量は、前記巻回方向の巻き終わり側に行くにしたがって略一定であるか又は増大し、
     前記第2極内側合材層及び前記第2極外側合材層の夫々の前記巻回方向の単位長さあたりの第2極合材量である第2極合材単位量は、前記巻き始め領域に前記セパレータを介して対向する巻き始め対向領域に関し、前記巻回方向の巻き終わり側に行くにしたがって略一定であるか又は増大し、
     前記第1極内側合材層、及び前記第1極外側合材層の夫々は、前記第1極芯体露出部が存在する前記巻回方向の範囲を除く2以上の前記巻回方向の位置で前記第1極合材単位量が異なり、
     前記第2極内側合材層、及び前記第2極外側合材層の夫々は、前記巻回方向の巻き終わり側に行くにしたがって前記第2極合材単位量が変動する変動部を有する、巻回型電極体。
  2.  前記第1極内側合材層、及び前記第1極外側合材層の夫々は、前記巻き始め領域における前記第1極合材単位量である第1極巻き始め合材単位量が前記巻回方向の位置によらず略一定である一方、前記第1極芯体露出部よりも前記巻き終わり側の巻き終わり領域における前記第1極合材単位量である第1極巻き終わり合材単位量が、前記巻回方向の位置によらず略一定であると共に、前記第1極巻き始め合材単位量よりも大きくなっており、
     前記第2極内側合材層、及び前記第2極外側合材層の夫々は、前記巻き始め対向領域における前記第2極合材単位量である第2極巻き始め合材単位量が前記巻回方向の位置によらず略一定である一方、前記巻き終わり領域に前記セパレータを介して対向する巻き終わり対向領域における前記第2極合材単位量である第2極巻き終わり合材単位量が前記巻回方向の位置によらず略一定であると共に前記第2極巻き始め合材単位量よりも大きくなっている、請求項1に記載の巻回型電極体。
  3.  前記第1極内側合材層、及び前記第1極外側合材層の夫々は、前記巻き始め領域における前記第1極合材単位量である第1極巻き始め合材単位量が前記巻回方向の巻き終わり側に行くにしたがって徐々に大きくなっており、
     前記第2極内側合材層、及び前記第2極外側合材層の夫々は、前記巻き始め対向領域における前記第2極合材単位量である第2極巻き始め合材単位量が前記巻回方向の巻き終わり側に行くにしたがって徐々に大きくなっている、請求項1に記載の巻回型電極体。
  4.  前記芯体露出部よりも前記巻き終わり側の巻き終わり領域における前記第1極合材単位量である第1極巻き終わり合材単位量が、前記巻回方向の位置によらず略一定であると共に、前記第1極巻き始め合材単位量の最大値以上であり、
     前記巻き終わり領域に前記セパレータを介して対向する巻き終わり対向領域における前記第2極合材単位量である第2極巻き終わり合材単位量が、前記巻回方向の位置によらず略一定であると共に、前記第2極巻き始め合材単位量の最大値以上である、請求項3に記載の巻回型電極体。
  5.  前記第1極リードの前記巻回方向の両側に前記第1極内側合材層が位置する場合、前記第1極リード、及び前記第1極内側合材層において前記第1極芯体露出部の前記巻回方向の両側に位置する部分に貼着されて、前記第1極リードの一部分を被覆する一方、前記第1極リードの前記巻回方向の両側に前記第1極外側合材層が位置する場合、前記第1極リード、及び前記第1極外側合材層において前記第1極芯体露出部の前記巻回方向の両側に位置する部分に貼着されて、前記第1極リードの一部分を被覆する絶縁性を有する絶縁テープを備える、請求項1乃至4のいずれか1つに記載の巻回型電極体。
  6.  内部に室を有する電池ケースと、
     前記室に収容された請求項1乃至5のいずれか1つに記載の巻回型電極体と、
     前記室に収容された非水電解質と、
    を備える、非水電解質二次電池。
PCT/JP2019/007178 2018-04-06 2019-02-26 非水電解質二次電池の巻回型電極体、及び非水電解質二次電池 WO2019193870A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19781959.2A EP3780242A4 (en) 2018-04-06 2019-02-26 WRAPPED ELECTRODE BODY OF A SECONDARY BATTERY WITH AN ANHYDROUS ELECTROLYTE AND SECONDARY BATTERY WITH AN ANHYDROUS ELECTROLYTE
CN201980022873.3A CN112005421A (zh) 2018-04-06 2019-02-26 非水电解质二次电池的卷绕型电极体及非水电解质二次电池
US17/040,691 US11949090B2 (en) 2018-04-06 2019-02-26 Winding-type electrode body of non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2020511639A JP7418012B2 (ja) 2018-04-06 2019-02-26 非水電解質二次電池の巻回型電極体、及び非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018074103 2018-04-06
JP2018-074103 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019193870A1 true WO2019193870A1 (ja) 2019-10-10

Family

ID=68100319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007178 WO2019193870A1 (ja) 2018-04-06 2019-02-26 非水電解質二次電池の巻回型電極体、及び非水電解質二次電池

Country Status (5)

Country Link
US (1) US11949090B2 (ja)
EP (1) EP3780242A4 (ja)
JP (1) JP7418012B2 (ja)
CN (1) CN112005421A (ja)
WO (1) WO2019193870A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085365A1 (ja) 2021-11-12 2023-05-19 三洋電機株式会社 円筒形二次電池
WO2023127371A1 (ja) 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 円筒形二次電池
WO2023127334A1 (ja) 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 円筒形二次電池
JP7530449B2 (ja) 2020-12-30 2024-08-07 チューハイ コスミクス バッテリー カンパニー,リミテッド 電極シート及び電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632280A (zh) * 2019-03-29 2021-11-09 株式会社村田制作所 二次电池及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180704A (ja) 1995-12-27 1997-07-11 Toray Ind Inc 電池、及びその製造方法
JP2004311282A (ja) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2011138729A (ja) * 2010-01-04 2011-07-14 Hitachi Ltd 非水系二次電池
JP2013048027A (ja) * 2011-08-29 2013-03-07 Panasonic Corp 二次電池用電極群およびこれを用いた二次電池
WO2016116971A1 (ja) * 2015-01-20 2016-07-28 パナソニック株式会社 非水電解質二次電池用正極板及び非水電解質二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273698A (ja) * 1995-03-30 1996-10-18 Fuji Elelctrochem Co Ltd リチウム二次電池
JP4205209B2 (ja) * 1998-07-02 2009-01-07 日機装株式会社 非水電解質二次電池
CN100539289C (zh) * 2006-05-23 2009-09-09 索尼株式会社 电池
CN103582973B (zh) * 2011-08-31 2016-08-17 松下知识产权经营株式会社 非水电解质二次电池
JP2015035250A (ja) * 2011-11-30 2015-02-19 三洋電機株式会社 非水電解質二次電池
US10256508B2 (en) * 2013-07-01 2019-04-09 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180704A (ja) 1995-12-27 1997-07-11 Toray Ind Inc 電池、及びその製造方法
JP2004311282A (ja) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2011138729A (ja) * 2010-01-04 2011-07-14 Hitachi Ltd 非水系二次電池
JP2013048027A (ja) * 2011-08-29 2013-03-07 Panasonic Corp 二次電池用電極群およびこれを用いた二次電池
WO2016116971A1 (ja) * 2015-01-20 2016-07-28 パナソニック株式会社 非水電解質二次電池用正極板及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780242A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7530449B2 (ja) 2020-12-30 2024-08-07 チューハイ コスミクス バッテリー カンパニー,リミテッド 電極シート及び電池
WO2023085365A1 (ja) 2021-11-12 2023-05-19 三洋電機株式会社 円筒形二次電池
WO2023127371A1 (ja) 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 円筒形二次電池
WO2023127334A1 (ja) 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 円筒形二次電池

Also Published As

Publication number Publication date
US20210050586A1 (en) 2021-02-18
EP3780242A4 (en) 2021-08-04
US11949090B2 (en) 2024-04-02
EP3780242A1 (en) 2021-02-17
CN112005421A (zh) 2020-11-27
JP7418012B2 (ja) 2024-01-19
JPWO2019193870A1 (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2019193870A1 (ja) 非水電解質二次電池の巻回型電極体、及び非水電解質二次電池
CN112204768B (zh) 非水电解质二次电池
WO2018168628A1 (ja) 非水電解質二次電池
CN112166521B (zh) 非水电解质二次电池
CN114830370A (zh) 二次电池用电极及二次电池
JP7461878B2 (ja) 非水電解質二次電池
JP7317526B2 (ja) 非水電解質二次電池
WO2021166925A1 (ja) 非水電解質二次電池および非水電解質二次電池用負極
CN118676302A (zh) 卷绕型非水电解质二次电池
WO2022176650A1 (ja) 非水電解質二次電池用負極、及び非水電解質二次電池
CN112204767B (zh) 非水电解质二次电池
JP7531402B2 (ja) 円筒形電池
CN111492528B (zh) 非水电解质二次电池
WO2024048145A1 (ja) 円筒形電池
WO2022196445A1 (ja) 非水電解質二次電池
WO2023032558A1 (ja) 二次電池用負極および二次電池
WO2024181197A1 (ja) 二次電池
WO2023054005A1 (ja) 円筒形電池
WO2024111410A1 (ja) 円筒形の非水電解質二次電池
WO2024185394A1 (ja) ガスケット、円筒形電池、及び円筒形電池の製造方法
WO2023210640A1 (ja) 二次電池
EP4459755A1 (en) Cylindrical secondary battery
WO2024181039A1 (ja) 円筒形電池
EP4459754A1 (en) Cylindrical secondary battery
WO2024195411A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019781959

Country of ref document: EP