[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019143047A1 - 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2019143047A1
WO2019143047A1 PCT/KR2019/000043 KR2019000043W WO2019143047A1 WO 2019143047 A1 WO2019143047 A1 WO 2019143047A1 KR 2019000043 W KR2019000043 W KR 2019000043W WO 2019143047 A1 WO2019143047 A1 WO 2019143047A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
lithium
positive electrode
transition metal
Prior art date
Application number
PCT/KR2019/000043
Other languages
English (en)
French (fr)
Inventor
박병천
김지혜
한정민
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/644,379 priority Critical patent/US11557763B2/en
Priority to ES19741246T priority patent/ES2974733T3/es
Priority to EP19741246.3A priority patent/EP3660964B1/en
Priority to CN201980004030.0A priority patent/CN111033832B/zh
Priority to PL19741246.3T priority patent/PL3660964T3/pl
Priority to JP2020513288A priority patent/JP6869425B2/ja
Publication of WO2019143047A1 publication Critical patent/WO2019143047A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a method for producing the positive electrode active material, a positive electrode for a lithium secondary battery including the positive electrode active material, and a lithium secondary battery.
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
  • the lithium secondary battery has a structure in which an organic electrolyte or a polymer electrolyte is filled between a positive electrode and a negative electrode, which are made of an active material capable of intercalating and deintercalating lithium ions, and oxidized when lithium ions are inserted / And electrical energy is produced by the reduction reaction.
  • Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4, etc.) and lithium iron phosphate compound (LiFePO 4 ) were used as the positive electrode active material of the lithium secondary battery .
  • LiNiO 2 lithium nickel oxide
  • lithium iron phosphate compound LiFePO 4
  • LiFePO 4 lithium iron phosphate compound
  • a first technical object of the present invention is to provide a method of manufacturing a semiconductor device, which comprises 60 mol% or more of nickel relative to the total number of moles of transition metal oxides except lithium, And to provide a cathode active material having improved lifetime.
  • a second technical object of the present invention is to provide a method for producing the positive electrode active material.
  • a third object of the present invention is to provide a positive electrode for a lithium secondary battery comprising the positive electrode active material.
  • a fourth aspect of the present invention is to provide a lithium secondary battery including the positive electrode for a lithium secondary battery.
  • the present invention provides a lithium secondary battery comprising: a center portion including a first lithium transition metal oxide having an average composition expressed by the following Formula 1; And a surface portion comprising a second lithium transition metal oxide having an average composition represented by the following formula (2).
  • M 1 is at least one yisangim selected from the group consisting of Mg, Ti, Zr, Nb and W.
  • M 1 is at least one selected from the group consisting of Mg, Ti, Zr, Nb and W.
  • the present invention also provides a method of manufacturing a cathode active material precursor, comprising: preparing a cathode active material precursor including nickel, cobalt, manganese, and aluminum, the cathode active material precursor having a composition different from that of the center portion and the surface portion; And forming a lithium transition metal oxide by mixing and firing the cathode active material precursor and a lithium source, wherein the lithium transition metal oxide has an average composition represented by the formula (1) And a surface portion represented by " 2 ".
  • a positive electrode for a lithium secondary battery comprising the positive electrode active material according to the present invention.
  • a lithium secondary battery comprising a positive electrode according to the present invention.
  • a positive electrode active material comprising a high-Ni content nickel content of at least 60 mol% based on the total moles of transition metal oxides excluding lithium, wherein the ratio of the central portion to the surface portion of the positive electrode active material is By preparing differently, it is possible to provide a positive electrode active material exhibiting a high capacity and excellent stability.
  • the cathode active material exhibiting high output characteristics can be provided by controlling the ratio of the transition metal contained in the cathode active material to a specific range.
  • the positive electrode active material of the present invention contains a high content of nickel-containing lithium transition metal oxide having a nickel content of 60 mol% or more with respect to the total moles of the lithium transition metal oxide, specifically nickel (Ni), cobalt (Co), manganese Mn) and aluminum (Al) as essential components.
  • a four-component positive electrode active material when included as in the present invention, it is possible to improve the stability of the positive electrode active material and improve the stability of the NCM-based compound including nickel, cobalt, and manganese or the NCA- The life characteristics can be improved without deteriorating the output characteristics and the capacity characteristics, and excellent safety can be secured.
  • the cathode active material according to the present invention comprises: a center portion comprising a first lithium transition metal oxide having an average composition represented by the following Formula 1; And a surface portion including a second lithium transition metal oxide having an average composition represented by the following formula (2).
  • M 1 is at least one selected from the group consisting of Mg, Ti, Zr, Nb and W.
  • M 1 is at least one selected from the group consisting of Mg, Ti, Zr, Nb and W.
  • the output characteristics and the capacity characteristics of the cathode active material of the present invention can be further improved by controlling the content of the transition metal oxide contained in the cathode active material to a specific range.
  • the Ni / Co ratio may be 18 or less, preferably 15 or less, and more preferably 5 to 15, over the entire cathode active material particles. Further, the Ni / Mn ratio may be 8 or more, preferably 15 or more, more preferably 20 or more, and most preferably 15 to 60 in all the positive electrode active material particles.
  • the Ni / Co ratio and / or the Ni / Mn ratio of the cathode active material may vary depending on the central portion and the surface portion of the cathode active material particle.
  • the ratio of Ni / Co in the center portion of the positive electrode active material may be 25 or less, preferably 23 or less, more preferably 20 or less, and most preferably 5 to 20, / Mn may be 20 or more, preferably 25 or more, more preferably 30 or more, and most preferably 30 to 60.
  • the ratio of Ni / Co in the surface portion of the positive electrode active material may be less than 13, preferably 12 or less, more preferably 5 or less, and the ratio of Ni / Mn in the surface portion of the positive electrode active material is 3 Preferably not less than 3.5, preferably not less than 10, preferably not less than 20, more preferably not less than 30, and most preferably from 30 to 50.
  • the formation of NiO can be suppressed even though the content of nickel is included in a high content of not less than 60 mol% , Insertion and / or desorption of lithium ions are smoothly performed, and output characteristics can be improved when the lithium ion is applied to a battery.
  • the positive electrode active material of the present invention contains nickel, cobalt, manganese, and aluminum as essential components, and also contains nickel in a high content in the central portion of the particles, and nickel in the surface portion in a relatively small amount , It is possible to exhibit a high capacity and at the same time to improve the structural stability, and it is possible to reduce the side reaction with the electrolyte solution.
  • the cathode active material has a center portion in a region corresponding to 50% by volume to 95% by volume, preferably 70% by volume to 90% by volume of the total volume of particles from the center of the particle and a surface portion located on the outer surface of the center portion .
  • the central portion and the surface portion include the above range, the cathode active material having a high capacity and improved surface stability can be produced.
  • the nickel contained in the cathode active material may decrease with a concentration gradient gradually changing from the center of the cathode active material particle to the particle surface.
  • the concentration gradient slope of the nickel may be constant from the center of the cathode active material particle to the surface.
  • the concentration of manganese contained in the cathode active material may increase with a concentration gradient gradually changing from the center of the active material particle to the particle surface, wherein the concentration gradient slope of the manganese is from the center of the cathode active material particle to the surface It can be constant.
  • concentration gradient slope of the manganese is from the center of the cathode active material particle to the surface It can be constant.
  • the concentration of cobalt contained in the cathode active material may increase with a concentration gradient gradually changing from the center of the active material particle to the surface of the particle, wherein the gradient of the concentration gradient of the cobalt is constant from the center of the cathode active material particle to the surface .
  • concentration gradient gradually changing from the center of the active material particle to the surface of the particle, wherein the gradient of the concentration gradient of the cobalt is constant from the center of the cathode active material particle to the surface .
  • the concentration of aluminum contained in the cathode active material may increase while having a concentration gradient gradually changing from the center of the active material particle to the surface of the particle, wherein the concentration gradient slope of the aluminum is constant from the center of the cathode active material particle to the surface .
  • excellent thermal stability can be obtained when the concentration of aluminum in the active material particle maintains a low concentration of aluminum at the center of grains and the concentration gradient increases with increasing concentration toward the surface portion.
  • the metal indicates a gradual gradient of concentration, which means that the concentration of the metal is present in a concentration distribution in which the concentration of the metal continuously changes stepwise in the whole or a specific region.
  • the concentration gradient of the metal gradually changes according to the position in the cathode active material particle, so that there is no abrupt phase boundary region from the center to the surface
  • the crystal structure is stabilized and the thermal stability is increased.
  • the gradient of the concentration gradient of the metal is constant, the effect of improving the structural stability can be further improved.
  • the battery performance improvement effect of the active material can be further improved.
  • the cathode active material When the cathode active material further includes a concentration gradient structure, the cathode active material exhibits high capacity, long life and thermal stability when applied to a secondary battery, and performance deterioration at the time of high voltage can be minimized.
  • the cathode active material may further include a coating layer containing at least one selected from the group consisting of boron (B), silicon (Si), tungsten (W), and niobium (Nb).
  • B boron
  • Si silicon
  • W tungsten
  • Nb niobium
  • the coating layer further includes at least one selected from the group consisting of B and W
  • the content of lithium by-products present on the surface of the cathode active material may be reduced by the coating layer.
  • contact between the positive electrode active material and the electrolyte contained in the lithium secondary battery is cut off, and occurrence of side reactions is suppressed, so that an effect of improving lifetime characteristics when applied to a battery can be achieved.
  • the coating layer may be formed on the entire surface of the cathode active material, or may be partially formed. Specifically, when the coating layer is partially formed on the surface of the cathode active material, the cathode active material may have an area of 20% or more and less than 100% of the total surface area of the cathode active material.
  • the content of lithium by-products present on the surface of the cathode active material may be 0.2 to 0.8 parts by weight, preferably less than 0.5 parts by weight based on 100 parts by weight of the cathode active material.
  • the lithium by-product may include, for example, LiOH or Li 2 CO 3.
  • the present invention also provides a method of manufacturing a cathode active material precursor, comprising: preparing a cathode active material precursor including nickel, cobalt, manganese, and aluminum, the cathode active material precursor having a composition different from that of the center portion and the surface portion; And forming a lithium transition metal oxide by mixing and firing the cathode active material precursor and a lithium source, wherein the lithium transition metal oxide has an average composition represented by the formula (1) And a surface portion represented by " 2 ".
  • a cathode active material precursor which contains nickel, cobalt, manganese, and aluminum and has a different composition of the center portion and the surface portion (Step 1).
  • the cathode active material precursor may be prepared, for example, by mixing nickel, cobalt, manganese and aluminum with a first transition metal containing solution and nickel, cobalt, manganese and aluminum at different concentrations from the first transition metal containing solution.
  • a second transition metal containing solution is prepared. Then, the mixing ratio of the first transition metal-containing solution and the second transition metal-containing solution is gradually changed from 100 vol%: 0 vol% to 0 vol%: 100 vol%
  • at least one of nickel, cobalt, manganese, and aluminum elements gradually changes in concentration from the center of the particle to the surface by mixing the transition metal-containing solution and the ammonium cation-containing solution and the basic aqueous solution.
  • the first transition metal solution, the ammonium cation-containing solution and the basic aqueous solution are added to form a central portion, and then the second transition metal solution and the ammonium cation-containing solution and the basic aqueous solution are added to form the surface portion, And a surface portion composed of the second transition metal solution can be produced.
  • the ammonium ion-containing solution may comprise at least one or more selected from the group consisting of NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , and NH 4 CO 3 have.
  • a mixture of water and an organic solvent specifically, alcohol or the like which can be mixed with water uniformly and water can be used as the solvent.
  • the basic aqueous solution may contain at least one or more selected from the group consisting of NaOH, KOH and Ca (OH) 2.
  • the solvent include water or an organic solvent (specifically, alcohol or the like) A mixture of water may be used.
  • the content of the transition metal oxide contained in the cathode active material can be controlled to a specific range.
  • a cathode active material precursor having an average composition represented by the following Formula 3 and a surface portion represented by the following Formula 4 can be prepared.
  • M 1 is Mg, Ti, Zr, Nb and W At least one selected from the group.
  • M 1 is Mg, Ti, Zr, Nb and W At least one selected from the group.
  • Step 2 the cathode active material precursor and the lithium source are mixed and fired to form a lithium transition metal oxide.
  • the lithium source a compound containing a lithium source is not particularly restricted but, preferably, a lithium carbonate (Li 2 CO 3), lithium hydroxide (LiOH), LiNO 3, CH 3 COOLi , and Li 2 (COO) 2 At least one selected from the group consisting of
  • the amount of the lithium source to be used may be determined depending on the content of lithium and metal in the finally produced cathode active material. Specifically, the molar ratio of lithium contained in the lithium source to the transition metal element contained in the precursor for the positive electrode active material (Molar ratio of lithium / metal element) is 0.9 or more, preferably 1.0 to 1.20.
  • the firing may be carried out at a temperature of 700 ° C to 950 ° C, preferably 700 ° C to 900 ° C, more preferably 750 ° C to 900 ° C.
  • the lithium transition metal oxide is washed with water at a temperature of -10 ° C to 15 ° C in a solution having a pH of 9 to pH 11, and an inert atmosphere, specifically an N 2 atmosphere in which O 2 and / or Co 2 are removed, An Ar atmosphere, a vacuum atmosphere, or the like. Lithium dissolution in the crystal structure of the cathode active material can be prevented by the washing and drying steps, and lithium by-products present on the surface of the cathode active material can be effectively removed.
  • the heat treatment may be further performed in an oxygen atmosphere at 500 ° C to 750 ° C.
  • the heat treatment is further performed under the above conditions, it is possible to induce the surface recrystallization and to suppress the regeneration of the lithium byproduct on the surface of the cathode active material.
  • the method may further include forming a coating layer on the cathode active material, the coating layer including at least one selected from the group consisting of B, Si, W, and Nb.
  • the method for forming the coating layer on the cathode active material is not particularly limited as long as the coating layer is formed on the surface of the active material.
  • the composition prepared by dispersing the coating element in a solvent is applied
  • the surface of the cathode active material may be surface-treated with a conventional slurry coating method such as spraying, dipping or spraying, and then heat-treated to form the coating layer on the surface of the cathode active material.
  • Examples of the solvent capable of dispersing the metal to form the coating layer include water, at least one selected from the group consisting of alcohols having 1 to 8 carbon atoms, dimethyl sulfoxide (DMSO), N-methyl pyrrolidone, acetone, One or more mixtures may be used.
  • DMSO dimethyl sulfoxide
  • N-methyl pyrrolidone N-methyl pyrrolidone
  • acetone One or more mixtures may be used.
  • the solvent for forming the coating layer may exhibit an appropriate coating property and may be contained in an amount that can be easily removed in the subsequent heat treatment.
  • the heat treatment for forming the coating layer may be performed at a temperature range in which the solvent contained in the composition can be removed, specifically, at 150 ° C to 500 ° C, preferably at 250 ° C to 450 ° C Lt; / RTI > If the heat treatment temperature is less than 150 ° C, there is a risk of occurrence of a side reaction by residual solvent and deterioration of the battery characteristics. If the heat treatment temperature exceeds 500 ° C, there is a fear of occurrence of a side reaction due to high temperature heat.
  • the cathode for a secondary battery includes a cathode current collector, a cathode active material layer formed on the cathode current collector, and the cathode active material layer includes the cathode active material according to the present invention.
  • cathode active material is the same as that described above, a detailed description thereof will be omitted and only the remaining constitution will be specifically described below.
  • the positive electrode current collector may include a metal having high conductivity and is not particularly limited as long as the positive electrode active material layer is easily bonded and is not reactive in the voltage range of the battery.
  • the cathode current collector may be made of, for example, stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel surface-treated with carbon, nickel, titanium or silver.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the positive electrode active material layer may include a conductive material, a binder, and a dispersant optionally in combination with the positive electrode active material.
  • the cathode active material may be contained in an amount of 80 to 99% by weight, more specifically 85 to 98.5% by weight based on the total weight of the cathode active material layer. When included in the above content range, excellent capacity characteristics can be exhibited.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbonaceous materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive tubes such as carbon nanotubes; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be included in an amount of 0.1 to 15% by weight based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylalcohol, polyacrylonitrile, Polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid, and polymers in which hydrogen is substituted with Li, Na, or Ca, or various copolymers thereof .
  • One of these may be used alone, or a mixture of two or more thereof may be used.
  • the dispersing agent may include an aqueous dispersing agent or an organic dispersing agent such as N-methyl-2-pyrrolidone.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method, except that the positive electrode active material described above is used. Specifically, a composition for forming a positive electrode active material layer prepared by dissolving or dispersing the above-mentioned positive electrode active material and optionally a binder, a conductive material, and a dispersant in a solvent is applied on a positive electrode current collector, followed by drying and rolling can do.
  • the solvent examples include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), dimethylformamide (dimethylformamide), and the like. formamide, DMF), acetone, or water, and either one of them or a mixture of two or more of them may be used.
  • the amount of the solvent used is determined by dissolving or dispersing the cathode active material, the conductive material, the binder, and the dispersing agent in consideration of the coating thickness of the slurry and the production yield, and then the viscosity is such that the coating can exhibit excellent thickness uniformity It is enough.
  • the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling from the support onto the positive electrode collector.
  • the present invention can produce an electrochemical device including the positive electrode.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, it may be a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode positioned opposite to the positive electrode, and a separator interposed between the positive electrode and the negative electrode and an electrolyte.
  • the lithium secondary battery was charged with 0.1 C-0.005 C CC-CV charging mode at 25 ° C. and 4.25 V at 25 ° C. by containing the above-prepared cathode active material, and when the battery was discharged at 0.1 C up to 2.5 V, the charging / discharging efficiency was 90% , Preferably 90% to 96%, and charged at 0.1C-0.005C CC-CV charging mode at 25 DEG C at 4.25V. After discharging at 0.1C up to 2.5V and discharging at CV for 5 hours, And a secondary battery having an efficiency of 95% or more, preferably 95% to 100% and improved charging / discharging efficiency.
  • the lithium secondary battery may further include a battery container for housing the electrode assembly of the anode, the cathode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; SiO ⁇ (0 ⁇ ⁇ 2 ), SnO 2, vanadium oxide, which can dope and de-dope a lithium metal oxide such as lithium vanadium oxide;
  • a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material both low crystalline carbon and highly crystalline carbon may be used. Examples of the low-crystalline carbon include soft carbon and hard carbon. Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • the negative electrode active material may include 80% by weight to 99% by weight based on the total weight of the negative electrode active material layer.
  • the binder is a component for assisting the bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 0.1% by weight to 10% by weight based on the total weight of the negative electrode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer, as a component for further improving the conductivity of the negative electrode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the negative electrode active material layer is prepared by applying and drying a composition for forming a negative electrode active material layer, which is prepared by dissolving or dispersing a negative electrode active material on a negative electrode current collector, and optionally a binder and a conductive material in a solvent, Casting a composition for forming an active material layer on a separate support, and then laminating a film obtained by peeling from the support onto a negative electrode current collector.
  • a composition for forming a negative electrode active material layer which is prepared by dissolving or dispersing a negative electrode active material on a negative electrode current collector, and optionally a binder and a conductive material in a solvent, Casting a composition for forming an active material layer on a separate support, and then laminating a film obtained by peeling from the support onto a negative electrode current collector.
  • the negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode active material layer prepared by dissolving or dispersing a negative electrode active material on a negative electrode collector and optionally a binder and a conductive material in a solvent, Casting the composition on a separate support, and then peeling the support from the support to laminate a film on the negative electrode current collector.
  • the separation membrane separates the cathode and the anode and provides a passage for lithium ion.
  • the separation membrane can be used without any particular limitation as long as it is used as a separation membrane in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte.
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and the separator may be selectively used as a single layer or a multilayer structure.
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohex
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
  • ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically anion is the lithium salt, F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - the lithium salt, LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and life characteristics, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • HEV hybrid electric vehicles hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
  • Examples of the medium and large-sized devices include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • the first transition metal-containing solution was prepared by mixing nickel, cobalt sulfate, manganese sulfate and aluminum nitrate in distilled water in such an amount that the molar ratio of nickel: cobalt: manganese: aluminum was 92: 5: 2: 1 .
  • the second transition metal-containing solution was mixed with distilled water in an amount such that the molar ratio of nickel: cobalt: manganese: aluminum was 70: 23: 2: 5 so that nickel sulfate, cobalt sulfate, manganese sulfate, Prepared.
  • the vessel containing the first transition metal-containing solution and the vessel containing the second transition metal-containing solution were connected to a 4 L batch reactor set at 60 ° C, respectively.
  • a further 4 M NaOH solution and a 12% aqueous NH 4 OH solution were prepared and connected to the batch reactor, respectively.
  • To the reactor was added 2.5 L of deionized water, and nitrogen gas was purged into the reactor at a rate of 1 L / min to remove dissolved oxygen in the water, and the inside of the reactor was set to a non-oxidizing atmosphere.
  • the first transition metal-containing solution and the second transition metal-containing solution were mixed at a rate of 100 vol%: 0 vol% to 0 vol%: 100 vol% at a rate of 180 mL / Respectively. Further, the aqueous solution of NaOH was charged at 180 mL / min, and the aqueous solution of NH 4 OH was added at a rate of 40 mL / min, respectively, for 24 hours to precipitate the transition metal hydroxide particles. The precipitated transition metal hydroxide particles were separated and washed with water and dried in an oven at 115 ° C for 12 hours to have a concentration gradient gradually changing from the center of the particles to the surface and having an average composition of Ni 0 . 92 Co 0 .
  • the cathode active material precursor prepared above and LiOH were mixed so as to have a molar ratio of Li: Me of 1.07: 1 and then fired at 820 ° C for 10 hours in an oxygen atmosphere.
  • a cathode active material having a total average particle size of LiNi 0.86 Co 0.10 Mn 0.02 Al 0.02 O 2 was prepared.
  • the cathode active material carbon black conductive material: polyvinylidene fluoride binder was mixed at a weight ratio of 95: 2.5: 2.5 in N-methylpyrrolidone (NMP) solvent to prepare a composition for forming a positive electrode. This was coated on an aluminum foil having a thickness of 20 ⁇ , dried at 115 ⁇ for 2 hours, and subjected to roll pressing to produce a positive electrode.
  • NMP N-methylpyrrolidone
  • a coin-type battery was prepared by laminating the above-prepared positive electrode and a lithium thin film as a negative electrode together with a polyethylene separator, and then mixed with a mixture of ethylene carbonate: diethyl carbonate at a ratio of 30:70. An electrolyte solution in which LiPF 6 was dissolved was injected to prepare a lithium secondary battery.
  • the first transition metal-containing solution and the second transition metal-containing solution prepared in Example 1 were used. Specifically, the vessel containing the first transition metal-containing solution and the vessel containing the second transition metal-containing solution were connected to the batch reactor. A further 4M NaOH solution and a 12% aqueous NH 4 OH solution were prepared and connected to the batch reactor, respectively. After 2.5 L of deionized water was added to the reactor, nitrogen gas was purged into the reactor at a rate of 1 L / min to remove dissolved oxygen in the water and form a non-oxidizing atmosphere in the reactor.
  • the first transition metal-containing solution, the NaOH solution and the NH 4 OH aqueous solution were charged into the reactor at 180 mL / min, 180 mL / min, and 20 mL / min, respectively, and reacted for 18 hours to form the center portion of the cathode active material.
  • the second transition metal-containing solution, NaOH solution and NH 4 OH aqueous solution were charged into the reactor at 180 mL / min, 180 mL / min, and 20 mL / min, respectively, ,
  • the volume of the surface portion was 25%, and the total average composition was LiNi 0.86 Co 0.1 Mn 0.02 Al 0.02 O 2 .
  • a positive electrode active material, a positive electrode and a lithium secondary battery comprising the same were prepared in the same manner as in Example 1, except that the precursor thus prepared was used.
  • the cathode active material prepared in Example 1 was rinsed in an aqueous solution at 10 ° C for 30 minutes and then boric acid was added in an amount of 0.25% by weight based on 100 parts by weight of the cathode active material and heat treatment was performed at 350 ° C to further coat the surface
  • the positive electrode and the lithium secondary battery including the negative electrode were prepared in the same manner as in Example 1, except that the positive electrode active material thus formed was used.
  • a transition metal-containing solution of 2M concentration was prepared by mixing sulfuric nickel, cobalt sulfate, manganese sulfate, and aluminum nitrate in distilled water in such an amount that the molar ratio of nickel: cobalt: manganese: aluminum was 86: 10: 2: 2.
  • As a transition metal-containing solution Li 1 . 07 Ni 0 . 86 Co 0 . 10 Mn 0 . 02 A1 0 . 02 < SEP > 02 < SEP > 2 &lt ; SEP > O2 < SEP >
  • the first transition metal-containing solution was prepared by mixing nickel sulfate, cobalt sulfate, manganese sulfate and aluminum nitrate in distilled water in an amount such that the molar ratio of nickel: cobalt: manganese: aluminum was 90: 2: 5: 3, Prepared.
  • nickel sulfate, cobalt sulfate, manganese sulfate and aluminum nitrate were mixed in distilled water in such an amount that the molar ratio of nickel: cobalt: manganese: aluminum was 65: 5: 25: 5 as the second transition metal- Solution.
  • the average composition of the center portion of the particles is Ni 0 . 90 Co 0 . 02 Mn 0 . 05 Al 0 .03 (OH) 2
  • the average composition of the surface portion is Ni 0.65 Co 0.05 Mn 0.25 Al 0.05 (OH) 2
  • the total average composition of the cathode active material particles is LiNi 0.84 Co 0.03 Mn 0.10 Al 0.03 O 2
  • PH titration was performed using pH metrohm Titrino as a pH meter in order to measure the content of lithium by-products present on the surface of the cathode active material prepared in Examples 1-3 and Comparative Examples 1 and 2. Specifically, after 10 g of the cathode active material powder and 100 mL of distilled water were stirred, pH was titrated while 0.1 N HCl solution was added to the solution. The total lithium by-product of the cathode active material was calculated from the titrated HCl content and is shown in Table 1 below.
  • the content of lithium by-products present on the surface of the cathode active material prepared in Examples 1 to 3 was less than 0.5% by weight.
  • the content of lithium by-products prepared in Comparative Examples 1 and 2 was more than 0.5% by weight, and in particular, the molar ratio of Ni / Co in the central portion and the surface portion of the positive electrode active material and / When the molar ratio of Mn deviates from the scope of the present invention, it was confirmed that the content of lithium byproduct was increased in particular.
  • the coin-type battery prepared in each of Examples 1 to 3 and Comparative Examples 1 and 2 was charged in a 0.1 C-0.005 C CC-CV charging mode at 25 ° C. at 4.25 V and discharged at 0.1 C up to 2.5 V, The efficiency was measured and the secondary efficiency was measured by charging the batteries in a charging mode of 0.1 C-0.005 C at 4.25 V at 25 ° C. and discharging the batteries at 0.1 C up to 2.5 V for 5 hours after CV discharging. Respectively.
  • the coin type batteries manufactured in Examples 1 to 3 exhibited a primary efficiency of 92% or more, while the primary efficiencies of the coin type batteries prepared in Comparative Examples 1 and 2 were 90% Respectively. Further, it was confirmed that the secondary efficiencies of the coin-type batteries prepared in Examples 1 to 3 were 98% or more, while the secondary efficiencies of the coin-type batteries prepared in Comparative Examples 1 and 2 were respectively less than 95% there was.
  • the coin-type battery prepared in each of Examples 1 to 3 and Comparative Examples 1 and 2 was charged to 4.25 V at a rate of 0.5 C in a 45 ° C thermostatic chamber and discharged to 3.0 V at a rate of 0.5C. After repeating this 50 times, the capacity after 50 charge / discharge cycles compared to the initial capacity was taken as lifetime characteristics, and it is shown in Table 3 below.
  • the coin type batteries manufactured in Examples 1 to 3 had lifespan characteristics of 93% or more after 50 cycles of charging / discharging at a high temperature after manufacture.
  • the coin type batteries prepared in Comparative Examples 1 and 2 had life characteristics after charging and discharging under the same conditions of about 92.1% and 88.8%, respectively, compared with the coin type batteries prepared in Examples 1 to 3 I can confirm that it is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 평균 조성이 하기 화학식 1로 표시되는 제1 리튬 전이금속 산화물을 포함하는 중심부; 및 평균 조성이 하기 화학식 2로 표시되는 제2 리튬 전이금속 산화물을 포함하는 표면부;를 포함하는 양극 활물질, 이의 제조 방법 및 이를 포함하는 양극 및 이를 포함함으로써 충방전 효율이 향상된 리튬 이차전지를 제공한다. [화학식 1] Li1+a1(Nib1Coc1Mnd1Ale1M1 f1)O2 상기 화학식 1에서, -0.1≤a1≤0.2, 0.8≤b1<1.0, 0<c1≤0.2, 0<d1≤0.1, 0<e1≤0.05, 0≤f1≤0.05이고, b1/c1≤25, b1/d1≥20이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임. [화학식 2] Li1+a2(Nib2Coc2Mnd2Ale2M1 f2)O2 상기 화학식 2에서, -0.1≤a2≤0.2, 0.6≤b2≤0.95, 0<c2≤0.2, 0<d2≤0.1, 0<e2≤0.05, 0≤f2≤0.05이고, b2/c2<13, b2/d2≥3이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.

Description

리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
관련출원과의 상호 인용
본 출원은 2018년 1월 19일자 한국특허출원 제2018-0007302호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, 리튬 니켈 산화물(LiNiO2)의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다. 그러나, 종래의 개발된 NCM계/NCA계 리튬 복합 전이금속 산화물은 용량 특성이 충분하지 않아 적용에 한계가 있었다.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계/NCA계 리튬 산화물에서 니켈(Ni)의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 고함량 니켈(High-Ni) NCM계/NCA계 리튬 산화물의 경우, 니켈(Ni)이 산화수 2+로 유지되려는 경향 때문에 초기 산화수 3+의 니켈(Ni)을 갖도록 형성하기 위해서는 소성 온도 및 소성 분위기 등의 소성 조건을 까다롭게 제어해야 하는 어려움이 있었다. 또한, 니켈(Ni)의 함량이 증가할수록 소성 시 결정이 급격히 크게 성장하여 결정 사이즈의 제어가 어려우며, 양극 활물질의 구조적 안정성 및 화학적 안정성이 떨어져 전지 용량 및 수명 특성 개선에 한계가 있다는 문제점이 있었다.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 리튬을 제외한 전이금속 산화물 전체 몰수에 대하여 니켈을 60몰% 이상 포함하되, Ni과 다른 전이금속과의 비율을 제어함으로써, 효율 및 수명이 개선된 양극 활물질을 제공하는 것이다.
본 발명의 제2 기술적 과제는 상기 양극 활물질의 제조 방법을 제공하는 것이다.
본 발명의 제3 기술적 과제는 상기 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공하는 것이다.
본 발명의 제4 기술적 과제는 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
본 발명은 평균 조성이 하기 화학식 1로 표시되는 제1 리튬 전이금속 산화물을 포함하는 중심부; 및 평균 조성이 하기 화학식 2로 표시되는 제2 리튬 전이금속 산화물을 포함하는 표면부;를 포함하는 양극 활물질을 제공한다.
[화학식 1]
Li1+a1(Nib1Coc1Mnd1Ale1M1 f1)O2
상기 화학식 1에서, -0.1≤a1≤0.2, 0.8≤b1<1.0, 0<c1≤0.2, 0<d1≤0.1, 0<e1≤0.05, 0≤f1≤0.05이고, b1/c1≤25, b1/d1≥20이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
[화학식 2]
Li1+a2(Nib2Coc2Mnd2Ale2M1 f2)O2
상기 화학식 2에서, -0.1≤a2≤0.2, 0.6≤b2≤0.95, 0<c2≤0.2, 0<d2≤0.1, 0<e2≤0.05, 0≤f2≤0.05이고, b2/c2<13, b2/d2≥3이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
또한, 본 발명은 니켈, 코발트, 망간, 및 알루미늄을 포함하되, 중심부와 표면부의 조성이 상이한 양극 활물질 전구체를 준비하는 단계; 및, 상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 전이금속 산화물을 형성하는 단계;를 포함하며, 상기 리튬 전이금속 산화물은 평균 조성이 상기 화학식 1로 표시되는 중심부 및 평균 조성이 상기 화학식 2로 표시되는 표면부를 포함하는 것인, 양극활물질의 제조 방법을 제공한다.
또한, 본 발명에 따른 양극 활물질을 포함하는, 리튬 이차전지용 양극을 제공한다.
또한, 본 발명에 따른 양극을 포함하는, 리튬 이차전지를 제공한다.
본 발명에 따르면, 리튬을 제외한 전이금속 산화물의 총 몰수에 대하여 니켈의 함량이 60몰% 이상인 고함량 니켈(high-Ni)을 포함하는 양극활물질을 제조하되, 양극활물질의 중심부와 표면부의 비율을 상이하게 제조함으로써, 고용량 및 우수한 안정성을 나타내는 양극활물질을 제공할 수 있다.
더불어, 양극활물질에 포함되는 전이금속의 비율을 특정 범위로 제어함으로써 고출력 특성을 나타내는 양극활물질을 제공할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 양극활물질은 리튬 전이금속 산화물 전체 몰수에 대하여 니켈의 함량이 60몰% 이상인 고함량의 니켈-함유 리튬 전이금속 산화물을 포함하며, 구체적으로 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 양극 활물질을 제공한다.
특히, 본 발명과 같이 4성분계 양극 활물질을 포함할 경우, 양극 활물질의 안정성을 향상시킬 수 있으며, 니켈, 코발트, 및 망간을 포함하는 NCM계 화합물 또는 니켈, 코발트, 및 알루미늄을 포함하는 NCA계 화합물을 포함하는 양극 활물질보다 출력 특성 및 용량 특성을 열화시키지 않으면서도 수명 특성을 향상시킬 수 있으며, 우수한 안전성을 확보할 수 있다.
보다 구체적으로, 본 발명에 따른 양극활물질은 평균 조성이 하기 화학식 1로 표시되는 제1 리튬 전이금속 산화물을 포함하는 중심부; 및, 평균 조성이 하기 화학식 2로 표시되는 제2 리튬 전이금속 산화물을 포함하는 표면부;를 포함한다.
[화학식 1]
Li1+a1(Nib1Coc1Mnd1Ale1M1 f1)O2
상기 화학식 1에서, -0.1≤a1≤0.2, 0.8≤b1<1.0, 0<c1≤0.2, 0<d1≤0.1, 0<e1≤0.05, 0≤f1≤0.05이고, b1/c1≤25, b1/d1≥20이고, 바람직하게는 0.85≤b1<1.0, 0<c1≤0.15, 0<d1≤0.05, 0<e1≤0.03, 0≤f1≤0.02이고, b1/c1≤23, b1/d1≥25이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
[화학식 2]
Li1+a2(Nib2Coc2Mnd2Ale2M1 f2)O2
상기 화학식 2에서, -0.1≤a2≤0.2, 0.6≤b2≤0.95, 0<c2≤0.3, 0<d2≤0.1, 0<e2≤0.05, 0≤f2≤0.05이고, b2/c2<13, b2/d2≥3이고, 바람직하게는 0.65≤b2≤0.8, 0.1≤c2≤0.3, 0<d2≤0.05, 0.01≤e2≤0.05, 0≤f2≤0.02이고, b2/c2≤12, b2/d2≥3이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
특히, 상기와 같이 본 발명의 양극 활물질은, 양극활물질 내 포함되는 전이금속 산화물의 함량을 특정 범위로 제어함으로써, 출력 특성 및 용량 특성을 더욱 향상시킬 수 있다.
구체적으로는 상기 양극 활물질 입자 전체에 걸쳐 Ni/Co 비율은 18 이하, 바람직하게는 15 이하, 더욱 바람직하게는 5 내지 15로 포함할 수 있다. 또한 양극 활물질 입자 전체에 걸쳐 Ni/Mn 비율은 8 이상, 바람직하게는 15 이상, 더욱 바람직하게는 20 이상, 가장 바람직하게는 15 내지 60으로 포함할 수 있다. 상기 범위로 양극 활물질 입자 내 포함되는 전이금속 산화물의 함량을 제어함으로써, 입자 전체에 걸쳐 니켈의 함량을 60몰% 이상의 고함량으로 포함함에도 불구하고, NiO의 형성을 억제할 수 있고, 리튬 이온의 삽입 및/또는 탈리를 원활하게 하여, 이를 전지에 적용 시 출력 특성이 향상할 수 있다.
또한, 바람직하게는 상기 양극 활물질의 Ni/Co 비율 및/또는 Ni/Mn 비율은 양극 활물질 입자의 중심부 및 표면부에 따라 그 함량이 변하는 것일 수 있다.
예를 들면, 상기 양극 활물질의 중심부의 Ni/Co의 비율은 25 이하, 바람직하게는 23 이하, 더욱 바람직하게는 20 이하, 가장 바람직하게는 5 내지 20일 수 있으며, 상기 양극 활물질의 중심부의 Ni/Mn의 비율은 20 이상, 바람직하게는 25 이상, 더욱 바람직하게는 30 이상, 가장 바람직하게는 30 내지 60으로 포함할 수 있다.
예를 들면, 상기 양극 활물질의 표면부의 Ni/Co의 비율은 13 미만, 바람직하게는 12 이하, 더욱 바람직하게는 5 이하로 포함할 수 있으며, 상기 양극 활물질의 표면부의 Ni/Mn의 비율은 3 이상, 바람직하게는 3.5 이상, 바람직하게는 10 이상, 바람직하게는 20 이상, 더욱 바람직하게는 30 이상, 가장 바람직하게는 30 내지 50으로 포함할 수 있다.
상기 범위로 양극 활물질 입자의 중심부 및 표면부에 포함되는 전이금속 산화물의 함량을 제어함으로써 입자 전체에 걸쳐 니켈의 함량을 60몰% 이상의 고함량으로 포함함에도 불구하고, NiO의 형성을 억제할 수 있고, 리튬 이온의 삽입 및/또는 탈리를 원활하게 하여, 이를 전지에 적용 시 출력 특성이 향상할 수 있다.
또한, 본 발명의 양극 활물질은, 니켈, 코발트, 망간 및 알루미늄의 4성분을 필수로 포함할 뿐만 아니라, 입자의 중심부에는 니켈을 고함량으로 포함하고, 표면부에는 니켈을 중심부보다 상대적으로 적은 함량으로 포함함으로써, 고용량을 나타내는 동시에 구조 안정성을 향상할 수 있어, 전해액과의 부반응을 감소시킬 수 있다.
상기 양극활물질은 입자의 중심에서부터 입자 전체 부피의 50부피% 내지 95부피%, 바람직하게는 70부피% 내지 90부피%에 해당하는 영역의 중심부 및 상기 중심부의 외표면 상에 위치하는 표면부를 가지는 것이다. 상기 중심부 및 표면부가 상기 범위를 포함할 경우, 고용량을 가지면서도 표면 안정성이 향상된 양극활물질을 제조할 수 있다.
상기 양극활물질은 입자의 중심부 및 표면부의 조성이 상이한 코어-쉘 구조를 포함할 수 있고, 또는 입자의 중심부와 표면부의 조성이 상이할 뿐만 아니라, 입자의 중심에서 표면까지 양극활물질 내 포함되는 금속 원소 중 적어도 하나가 점진적으로 변화하는 농도구배 구조를 포함할 수 있다.
예를 들면, 상기 양극 활물질이 농도구배 구조를 가질 경우, 상기 양극 활물질 내 포함된 니켈은 양극 활물질 입자의 중심에서부터 입자 표면까지 점진적으로 변화하는 농도구배를 가지면서 감소할 수 있다. 이때, 상기 니켈의 농도구배 기울기는 양극 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 상기와 같이 입자의 중심부에서 니켈의 농도가 고농도를 유지하고, 입자의 표면부로 갈수록 농도가 감소하는 농도 구배를 포함할 경우, 고용량 특성을 나타내면서도 구조 안정성이 향상되어 열 안정성의 열화를 방지할 수 있다.
또한, 상기 양극 활물질 내 포함된 망간의 농도는 활물질 입자의 중심에서부터 입자 표면까지 점진적으로 변화하는 농도구배를 가지면서 증가할 수 있고, 이때 상기 망간의 농도구배 기울기는 양극 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이, 활물질 입자 내에 입자 중심부에서 망간의 농도가 저농도를 유지하고, 표면부로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 용량 감소 없이 우수한 열안정성을 얻을 수 있다.
상기 양극 활물질 내 포함된 코발트의 농도는 활물질 입자의 중심에서부터 입자 표면까지 점진적으로 변화하는 농도구배를 가지면서 증가할 수 있고, 이때 상기 코발트의 농도구배 기울기는 양극 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이, 활물질 입자 내에 입자 중심부에서 코발트의 농도가 저농도를 유지하고, 표면부로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 용량 감소 없이 우수한 출력 특성 및 표면에 존재하는 리튬 부산물의 함량이 적을 수 있다.
상기 양극 활물질 내 포함된 알루미늄의 농도는 활물질 입자의 중심에서부터 입자 표면까지 점진적으로 변화하는 농도구배를 가지면서 증가할 수 있고, 이때 상기 알루미늄의 농도구배 기울기는 양극 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이, 활물질 입자 내에 입자 중심부에서 알루미늄의 농도가 저농도를 유지하고, 표면부로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 우수한 열 안정성을 얻을 수 있다.
본 발명에 있어서 금속이 '점진적으로 변화하는 농도 구배를 나타낸다'란, 금속의 농도가 입자 전체 또는 특정 영역에서 연속하여 단계적으로 변화하는 농도 분포로 존재한다는 것을 의미한다.
상기와 같이 양극활물질이 농도구배 구조를 더 포함할 경우, 양극 활물질 입자 내에서 위치에 따라 금속의 농도가 점진적으로 변화하는 농도구배를 가짐으로써, 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또한, 금속의 농도구배 기울기가 일정할 경우, 구조 안정성 개선효과가 더욱 향상될 수 있으며, 농도구배를 통해 활물질 입자 내에서의 각 금속의 농도를 달리함으로써, 해당 금속의 특성을 용이하게 활용하여 양극 활물질의 전지성능 개선효과를 더욱 향상시킬 수 있다.
이와 같이, 상기 양극 활물질이 농도구배 구조를 더 포함할 경우, 이를 이차전지에 적용 시 고용량, 고수명 및 열안정성을 나타내는 동시에 고전압 시 성능 열화가 최소화될 수 있다.
상기 양극 활물질은 붕소(B), 실리콘(Si), 텅스텐(W) 및 니오븀(Nb)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 코팅층을 더 포함할 수 있다. 예를 들면, 상기 코팅층이 B 및 W로 이루어진 군에서 선택된 적어도 하나를 더 포함할 경우, 상기 코팅층에 의해 상기 양극 활물질의 표면에 존재하는 리튬 부산물의 함량이 감소될 수 있다. 이에 따라, 상기 양극 활물질과 리튬 이차전지에 포함되는 전해액과의 접촉이 차단되어 부반응 발생이 억제되므로, 전지에 적용시 수명 특성을 향상시키는 효과를 달성할 수 있다.
상기 코팅층은 상기 양극 활물질의 표면 전체에 형성될 수도 있고, 부분적으로 형성될 수도 있다. 구체적으로, 상기 양극 활물질의 표면에 상기 코팅층이 부분적으로 형성될 경우, 상기 양극 활물질의 전체 표면적 중 20% 이상 내지 100% 미만의 면적으로 형성될 수 있다.
상기 양극활물질의 표면에 존재하는 리튬 부산물의 함량은 양극 활물질 100 중량부에 대하여 0.2중량부 내지 0.8중량부, 바람직하게는 0.5중량부 미만일 수 있다. 상기 리튬 부산물은 예를 들면, LiOH 또는 Li2CO3를 포함하는 것일 수 있으며, 상기 양극활물질의 표면에 존재하는 리튬 부산물의 함량이 상기 범위를 만족할 경우, 이를 전지에 적용 시 전해액과의 부반응이 저하되어, 수명 특성 등의 열화를 방지할 수 있다.
또한, 본 발명은 니켈, 코발트, 망간, 및 알루미늄을 포함하되, 중심부와 표면부의 조성이 상이한 양극 활물질 전구체를 준비하는 단계; 및, 상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 전이금속 산화물을 형성하는 단계;를 포함하며, 상기 리튬 전이금속 산화물은 평균 조성이 상기 화학식 1로 표시되는 중심부 및 평균 조성이 상기 화학식 2로 표시되는 표면부를 포함하는 것인, 양극활물질의 제조 방법을 제공한다.
이하, 본 발명의 양극활물질의 제조 방법을 보다 구체적으로 설명한다.
먼저, 니켈, 코발트, 망간, 및 알루미늄을 포함하되, 중심부와 표면부의 조성이 상이한 양극 활물질 전구체를 준비한다(단계 1).
상기 양극활물질 전구체를 제조하는 것은, 예를 들면, 상기 니켈, 코발트, 망간 및 알루미늄을 포함하는 제1 전이금속 함유 용액 및 상기 제1 전이금속 함유 용액과는 상이한 농도로 니켈, 코발트, 망간 및 알루미늄을 포함하는 제2 전이금속 함유 용액을 준비한다. 이어서, 상기 제1 전이금속 함유 용액 및 제2 전이금속 함유 용액의 혼합 비율을 100부피%:0부피%에서 0부피%:100 부피%까지 점진적으로 변화되도록 상기 제1 전이금속 함유 용액과 제2 전이금속 함유 용액을 혼합하는 동시에, 암모늄 양이온 함유 용액 및 염기성 수용액을 첨가함으로써, 니켈, 코발트, 망간, 및 알루미늄 원소 중 적어도 하나 이상이 입자의 중심에서부터 표면까지 점진적으로 변화하는 농도구배를 가지는 양극활물질 전구체를 제조할 수 있다.
또는, 제1 전이금속 용액과 암모늄 양이온 함유 용액 및 염기성 수용액을 첨가하여 중심부를 형성하고, 이어서 제2 전이금속 용액과 암모늄 양이온 함유 용액 및 염기성 수용액을 첨가하여 표면부를 형성함으로써, 제1 전이금속 용액으로 이루어진 중심부 및 제2 전이금속 용액으로 이루어진 표면부를 가지는 코어-쉘 구조의 양극활물질 전구체를 제조할 수 있다.
상기 암모늄 이온 함유 용액은 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 및 NH4CO3로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다. 이때, 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 수용액은 NaOH, KOH, Ca(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있으며, 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
이때, 상기 제1 전이금속 용액 및/또는 제2 전이금속 용액에 포함되는 전이금속들의 몰비를 제어함으로써, 양극활물질 내 포함되는 전이금속 산화물의 함량을 특정 범위로 제어할 수 있다.
상기 방법에 의해 평균 조성이 하기 화학식 3으로 표시되는 중심부 및 평균 조성이 하기 화학식 4로 표시되는 표면부를 포함하는 양극 활물질 전구체를 제조할 수 있다.
[화학식 3]
Nib3Coc3Mnd3Ale3M1 f3(OH)2
상기 화학식 3에서, 0.8≤b3<1.0, 0≤c3≤0.2, 0≤d3≤0.1, 0≤e3≤0.05, 0≤f3≤0.05이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
[화학식 4]
Nib4Coc4Mnd4Ale4M1 f4(OH)2
상기 화학식 4에서, 0.6≤b4≤0.95, 0≤c4≤0.2, 0≤d4≤0.1, 0≤e4≤0.05, 0≤f4≤0.05이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
이어서, 상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 전이금속 산화물을 형성한다(단계 2).
상기 리튬 소스는, 리튬 소스를 포함하는 화합물이라면 특별히 한정되지 않으나, 바람직하게는, 탄산리튬(Li2CO3), 수산화리튬(LiOH), LiNO3, CH3COOLi 및 Li2(COO)2로 이루어진 군에서 선택되는 적어도 하나를 사용할 수 있다.
상기 리튬 소스의 사용량은, 최종 제조되는 양극 활물질에서의 리튬과 금속의 함량에 따라 결정되는 것일 수 있으며, 구체적으로는 리튬 소스 내 포함되는 리튬과 양극 활물질용 전구체 내 포함되는 전이금속 원소와의 몰비(리튬/금속 원소의 몰비)가 0.9 이상, 바람직하게는 1.0 내지 1.20이 되는 양으로 사용될 수 있다.
상기 소성은 700℃ 내지 950℃, 바람직하게는 700℃ 내지 900℃, 보다 바람직하게는 750℃ 내지 900℃에서 소성하는 것일 수 있다. 상기 온도 범위에서 소성을 수행함으로써, 니켈의 농도 구배를 유지하면서도 높은 결정성을 가지도록 하여 구조적 안정성이 향상된 양극 활물질을 제조할 수 있다.
또한, 상기 리튬 전이금속 산화물을 pH 9 내지 pH 11을 가지는 용액의 온도가 -10℃ 내지 15℃인 조건으로 수세하고, 불활성 분위기, 구체적으로 O2 및/또는 Co2가 제거된 N2 분위기, Ar 분위기 또는 진공 분위기 등에서 건조하는 단계를 더 포함할 수 있다. 상기 수세 및 건조 공정에 의해 양극 활물질 결정 구조 내의 리튬 용해를 방지할 수 있고, 양극 활물질의 표면에 존재하는 리튬 부산물을 효과적으로 제거할 수 있다.
상기 수세 후, 500℃ 내지 750℃의 산소 분위기에서 열처리를 하는 것을 더 포함할 수 있다. 상기 조건에서 열처리를 더 수행할 경우, 표면 재결정화를 유도하여 양극 활물질의 표면에 리튬 부산물의 재생성을 억제하는 효과를 달성할 수 있다.
또한, 상기 양극 활물질 상에 B, Si, W 및 Nb로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 코팅층을 형성하는 단계를 더 포함할 수 있다.
구체적으로, 상기 양극활물질 상에 코팅층을 형성하기 위한 방법은, 활물질의 표면에 코팅층을 형성하는 방법이라면 특별히 제한되지 않고 사용할 수 있으며, 예를 들면 상기 코팅 원소를 용매 중에 분산시켜 제조한 조성물을 도포, 침지, 분무 등의 통상의 슬러리 코팅법을 이용하여 상기 양극활물질을 표면처리한 후, 열처리함으로써 상기 양극활물질의 표면에 상기 코팅층을 형성할 수 있다.
상기 코팅층을 형성하기 위해 금속을 분산시킬 수 있는 용매로는 물, 탄소수 1 내지 8의 알코올, 디메틸설폭사이드(DMSO), N-메틸피롤리돈, 아세톤 및 이들의 조합들로 이루어진 군에서 선택된 적어도 하나 이상의 혼합물이 사용될 수 있다.
상기 코팅층을 형성하기 위한 용매는 적절한 도포성을 나타낼 수 있고, 이후 열처리시 용이하게 제거될 수 있는 양으로 포함되는 것일 수 있다.
또한, 코팅층을 형성하기 위한 상기 열처리는 상기 조성물 중에 포함된 상기 용매를 제거할 수 있는 온도 범위에서 수행될 수 있으며, 구체적으로는 150℃ 내지 500℃, 바람직하게는 250℃ 내지 450℃에서 수행되는 것일 수 있다. 상기 열처리 온도가 150℃ 미만일 경우, 잔류 용매에 의한 부반응 발생 및 이로 인한 전지 특성 저하의 우려가 있고, 상기 열처리 온도가 500℃를 초과할 경우, 고온의 열에 의한 부반응 발생의 우려가 있다.
또한, 본 발명에 따른 양극 활물질을 포함하는, 리튬 이차전지용 양극을 제공한다. 구체적으로, 상기 이차전지용 양극은, 양극 집전체, 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은 본 발명에 따른 양극 활물질을 포함하는, 리튬 이차전지용 양극을 제공한다.
이때, 상기 양극 활물질은 상술한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
상기 양극 집전체는 전도성이 높은 금속을 포함할 수 있으며, 양극 활물질층이 용이하게 접착하되, 전지의 전압 범위에서 반응성이 없는 것이라면 특별히 제한되는 것은 아니다. 상기 양극 집전체는 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 활물질과 함께, 필요에 따라 선택적으로 도전재, 바인더, 및 분산제를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98.5중량%의 함량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 탄소나노튜브 등의 도전성 튜브; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플루오라이드(PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올(polyvinylalcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethymethaxrylate), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리아크릴산(poly acrylic acid), 및 이들의 수소를 Li, Na, 또는 Ca로 치환된 고분자, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 포함할 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 필요에 따라 선택적으로 바인더, 도전재, 및 분산제를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 디메틸포름아미드(dimethyl formamide, DMF), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재, 바인더, 및 분산제를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함한다.
상기 리튬 이차전지는 상기에서 제조한 양극 활물질을 포함함으로써 25℃에서 4.25V로 0.1C-0.005C CC-CV 충전 모드로 충전하고, 2.5V까지 0.1C로 방전하였을 때 충방전 효율이 90% 이상, 바람직하게는 90% 내지 96%이고, 25℃에서 4.25V로 0.1C-0.005C CC-CV 충전 모드로 충전하고, 2.5V까지 0.1C로 CC 방전 후, 5 시간 동안 CV 방전하였을 때 충방전 효율이 95% 이상, 바람직하게는 95% 내지 100%인 충방전 효율이 향상된 이차전지일 수 있다.
상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시 흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들면, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2 . LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있으나, 이들로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
황산 니켈, 황산 코발트, 황산 망간 및 질산 알루미늄을 니켈:코발트:망간:알루미늄의 몰비가 92:5:2:1이 되도록 하는 양으로 증류수 중에서 혼합하여 2M 농도의 제1 전이금속 함유 용액을 준비하였다.
또한, 황산 니켈, 황산 코발트, 황산 망간 및 질산 알루미늄을 니켈:코발트:망간:알루미늄의 몰비가 70:23:2:5이 되도록 하는 양으로 증류수 중에서 혼합하여 2M 농도의 제2 전이금속 함유 용액을 준비하였다.
상기 제1 전이금속 함유 용액이 담겨있는 용기와 제2 전이금속 함유 용액이 담겨있는 용기를 60℃로 설정된 4L의 배치(batch)식 반응기에 각각 연결하였다. 추가로 4 M NaOH 용액과 12% 농도의 NH4OH 수용액을 준비하여 각각 상기 배치식 반응기에 연결하였다. 상기 반응기에에 탈이온수 2.5L를 넣은 뒤 질소가스를 반응기에 1L/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다.
이후, 상기 제1 전이금속 함유 용액과 제2 전이금속 함유용액을 100부피%:0부피%에서 0부피%:100부피%의 비율로 변화시키며 180mL/분 의 속도로 상기 반응기 내로 연속 투입하면서 혼합하였다. 또한, NaOH 수용액을 180mL/분, NH4OH 수용액을 40mL/분의 속도로 각각 투입하여 24 시간 동안 공침 반응시켜 전이금속 수산화물의 입자를 침전시켰다. 침전된 전이금속 수산화물의 입자를 분리하여 수세 후 115℃의 오븐에서 12시간 동안 건조하여 입자의 중심에서부터 표면까지 점진적으로 변하는 농도구배를 가지고, 중심부의 평균 조성이 Ni0 . 92Co0 . 05Mn0 . 02Al0 .01(OH)2이고, 표면부의 평균 조성이 Ni0 . 70Co0 . 23Mn0 . 02Al0 .05(OH)2인, 양극 활물질용 전구체를 제조하였다.
상기에서 제조한 양극 활물질 전구체와 LiOH를 Li:Me가 1.07:1의 몰비가 되도록 혼합하고, 산소 분위기에서 820℃로 10 시간 소성하였다. 이어서 10℃의 수용액에서 30분 동안 수세하였다. 이때, 입자의 전체 평균 조성이 LiNi0.86Co0.10Mn0.02Al0.02O2인 양극활물질을 제조하였다.
[양극 제조]
상기에서 제조한 양극 활물질: 카본블랙 도전재: 폴리비닐리덴 플루오라이드 바인더를 95:2.5:2.5의 중량비로 N-메틸피롤리돈(NMP) 용매 중에서 혼합하여 양극 형성용 조성물을 제조하였다. 이를 두께 20㎛의 알루미늄 호일에 도포한 후, 115℃에서 2시간 동안 건조하고, 롤 프레스를 실시하여 양극을 제조하였다.
[이차전지 제조]
상기에서 제조한 양극과, 음극으로서 리튬 박막을 폴리에틸렌 분리막과 함께 적층하여 통상적인 방법으로 코인형 전지를 제조한 다음, 에틸렌카보네이트:디에틸카보네이트를 30:70의 비율로 혼합한 혼합 용매에 1M의 LiPF6를 용해시킨 전해액을 주입하여, 리튬 이차전지를 제조하였다.
실시예 2
상기 실시예 1에서 준비한 제1 전이금속 함유 용액 및 제2 전이금속 함유 용액을 사용하였다. 구체적으로, 상기 제1 전이금속 함유 용액이 담겨있는 용기와 제2 전이금속 함유 용액이 담겨있는 용기를 상기 배치식 반응기에 연결하였다. 추가로 4M NaOH 용액과 12% 농도의 NH4OH 수용액을 준비하여 각각 상기 배치식 반응기에 연결하였다. 상기 반응기에 탈이온수 2.5L를 넣은 뒤 질소가스를 반응기에 1L/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다.
이후, 상기 반응기에 제1 전이금속 함유 용액, NaOH 용액 및 NH4OH 수용액을 각각 180mL/min, 180mL/min, 및 20mL/min으로 투입하고, 18시간 동안 반응시켜 양극활물질의 중심부를 형성하였다.
이어서, 상기 반응기에 제2 전이금속 함유 용액, NaOH 용액 및 NH4OH 수용액을 각각 180mL/min, 180mL/min, 및 20mL/min으로 투입하며, 6시간 동안 반응시킴으로써, 중심부의 부피가 75%이고, 표면부의 부피가 25%이며, 전체 평균 조성이 LiNi0.86Co0.1Mn0.02Al0.02O2인 양극활물질을 제조하였다.
상기에서 제조한 전구체를 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 양극활물질, 양극 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 3
상기 실시예 1에서 제조한 양극 활물질을 10℃의 수용액에서 30분 동안 수세한 후, 붕산을 양극 활물질 100 중량부에 대하여 0.25 중량% 추가하고, 350℃에서 열처리를 수행하여, 표면에 코팅층을 더 형성한 양극 활물질을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 양극 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 1
황상 니켈, 황산 코발트, 황산 망간 및 질산 알루미늄을 니켈:코발트:망간:알루미늄의 몰비가 86:10:2:2이 되도록 하는 양으로 증류수 중에서 혼합하여 2M 농도의 전이금속 함유 용액을 준비하였다. 전이금속 함유 용액으로서 상기에서 제조한 용액을 이용하여 Li1 . 07Ni0 . 86Co0 . 10Mn0 . 02Al0 . 02O2로 표시되는 양극활물질을 제조하는 것을 제외하고는, 상기 실시예 1과 동일하게 양극 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 2
제1 전이금속 함유 용액으로서 황산 니켈, 황산 코발트, 황산 망간 및 질산 알루미늄을 니켈:코발트:망간:알루미늄의 몰비가 90:2:5:3이 되도록 하는 양으로 증류수 중에서 혼합하여 2M 농도의 용액을 준비하였다.
한편, 제2 전이금속 함유 용액으로서 황산 니켈, 황산 코발트, 황산 망간 및 질산 알루미늄 을 니켈:코발트:망간:알루미늄의 몰비가 65:5:25:5이 되도록 하는 양으로 증류수 중에서 혼합하여 2M 농도의 용액을 준비하였다.
상기 제1 전이금속 함유 용액 및 제2 전이금속 함유 용액을 이용하여, 입자의 중심부의 평균 조성이 Ni0 . 90Co0 . 02Mn0 . 05Al0 .03(OH)2이고, 표면부의 평균 조성이 Ni0.65Co0.05Mn0.25Al0.05(OH)2이고, 이때 양극 활물질 입자의 전체 평균 조성은 LiNi0.84Co0.03Mn0.10Al0.03O2인 양극활물질을 제조하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극활물질, 이를 포함하는 양극 및 리튬 이차전지를 제조하였다.
실험예 1: 양극활물질 표면의 리튬 부산물 함량 측정
실시예 1-3 및 비교예 1~2에서 제조한 양극 활물질의 표면에 존재하는 리튬 부산물의 함량을 측정하기 위해, pH meter로서 pH metrohm Titrino를 이용하여 pH 적정(pH titration)을 수행하였다. 구체적으로 양극활물질 분말 10g과, 증류수 100 mL를 교반한 후, 상기 용액에 0.1N의 HCl 용액을 가하면서, pH 적정을 수행하였다. 적정된 HCl 함량을 통해 양극활물질의 총 리튬 부산물을 계산하여 하기 표 1에 나타내었다.
총 리튬 부산물 함량(wt%)
실시예 1 0.49
실시예 2 0.43
실시예 3 0.38
비교예 1 0.51
비교예 2 0.94
상기 표 1을 참조하면, 실시예 1~3에서 제조한 양극 활물질의 표면에 존재하는 리튬 부산물의 함량은 0.5 중량% 미만인 것을 확인할 수 있었다. 반면, 비교예 1~2에서 제조한 리튬 부산물의 함량은 0.5 중량%를 초과하는 함량을 나타내었으며, 특히 비교예 2와 같이 양극 활물질의 중심부 및 표면부의 Ni/Co의 몰비율 및/또는 Ni/Mn의 몰비율이 본원발명 범위를 벗어날 경우, 특히 리튬 부산물의 함량이 증가하는 것을 확인할 수 있었다.
실험예 2: 충방전 효율
상기 실시예 1~3 및 비교예 1~2에서 각각 제조한 코인형 전지를 25℃에서 4.25V로 0.1C-0.005C CC-CV 충전 모드로 충전하고, 2.5V까지 0.1C로 방전하여 1차 효율을 측정하였고, 25℃에서 4.25V로 0.1C-0.005C CC-CV 충전 모드로 충전하고, 2.5V까지 0.1C로 CC 방전 후 5 시간 동안 CV 방전하여 2차 효율을 측정하였으며, 이를 하기 표 2에 나타내었다.
1차 효율(%) 2차 효율(%)
실시예 1 93.8 98.7
실시예 2 92.4 98.1
실시예 3 94.6 99.2
비교예 1 89.1 94.7
비교예 2 82.1 90.6
상기 표 2에 나타난 바와 같이, 실시예 1~3에서 제조한 코인형 전지는 1차 효율은 92% 이상을 나타낸 반면, 비교예 1 및 2에서 제조한 코인형 전지의 1차 효율은 각각 90% 미만을 나타내었다. 또한, 실시예 1~3에서 제조한 코인형 전지의 2차 효율은 98% 이상을 나타낸 반면, 비교예 1 및 2에서 제조한 코인형 전지의 2차 효율은 각각 95% 미만을 나타내는 것을 확인할 수 있었다.
따라서, 상기 실시예 1~3에서 제조한 코인형 전지가 비교예 1~2에서 제조한 코인형 전지에 비해 각 방전 조건에 따른 효율 모두가 우수한 것임을 확인할 수 있었다.
실험예 3: 수명 특성
상기 실시예 1~3 및 비교예 1~2에서 각각 제조한 코인형 전지를 45℃ 항온조에서 0.5C의 율속으로 4.25V까지 충전한 후, 0.5C의 율속으로 3.0V까지 방전하였다. 이를 50회 반복한 후, 초기 용량 대비 50회 충방전 이후의 용량을 수명특성으로 하여, 이를 하기 표 3에 나타내었다.
45℃ 50회 충방전 후 수명 특성(%)
실시예 1 94.5
실시예 2 93.4
실시예 3 95.7
비교예 1 92.1
비교예 2 88.8
상기 표 3에 나타난 바와 같이, 실시예 1~3에서 제조한 코인형 전지는 제조 후 고온에서 충방전을 50회 수행한 후의 수명특성이 각각 93% 이상을 나타내는 것을 확인할 수 있었다. 반면, 비교예 1 및 2에서 제조한 코인형 전지는 동일 조건에서 충방전을 수행한 후의 수명 특성이 각각 92.1% 및 88.8% 정도로 상기 실시예 1~3에서 제조한 코인형 전지에 비해 수명 특성이 낮은 것을 확인할 수 있었다.

Claims (10)

  1. 평균 조성이 하기 화학식 1로 표시되는 제1 리튬 전이금속 산화물을 포함하는 중심부; 및
    평균 조성이 하기 화학식 2로 표시되는 제2 리튬 전이금속 산화물을 포함하는 표면부;를 포함하는 양극 활물질.
    [화학식 1]
    Li1+a1(Nib1Coc1Mnd1Ale1M1 f1)O2
    상기 화학식 1에서,
    -0.1≤a1≤0.2, 0.8≤b1<1.0, 0<c1≤0.2, 0<d1≤0.1, 0<e1≤0.05, 0≤f1≤0.05이고, b1/c1≤25, b1/d1≥20이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
    [화학식 2]
    Li1+a2(Nib2Coc2Mnd2Ale2M1 f2)O2
    상기 화학식 2에서,
    -0.1≤a2≤0.2, 0.6≤b2≤0.95, 0<c2≤0.2, 0<d2≤0.1, 0<e2≤0.05, 0≤f2≤0.05이고, b2/c2<13, b2/d2≥3이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
  2. 제1항에 있어서,
    상기 화학식 1에서, b1/c1≤20, b1/d1≥30이고, 상기 화학식 2에서 b2/c2≤5, b2/d2≥30을 만족하는, 양극 활물질.
  3. 제1항에 있어서,
    상기 양극 활물질은 입자의 중심에서부터 입자 전체 부피의 50부피% 내지 95부피%에 해당하는 영역의 중심부 및 상기 중심부의 외표면 상에 위치하는 표면부를 가지는 것인, 양극활물질.
  4. 제1항에 있어서,
    상기 양극활물질은 입자의 중심에서 표면까지 양극활물질 내 포함되는 금속 원소 중 적어도 하나가 점진적으로 변화하는 농도구배 구조를 더 포함하는, 양극활물질.
  5. 제1항에 있어서,
    상기 양극활물질의 표면에 형성되고, 붕소, 실리콘, 텅스텐 및 니오븀으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 코팅층을 더 포함하는, 양극활물질.
  6. 제1항에 있어서,
    상기 양극활물질의 표면에 존재하는 리튬 부산물의 함량은 양극 활물질 100 중량부에 대하여 0.2 중량부 내지 0.8 중량부인 양극활물질.
  7. 니켈, 코발트, 망간, 및 알루미늄을 포함하되, 중심부와 표면부의 조성이 상이한 양극 활물질 전구체를 준비하는 단계; 및
    상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 전이금속 산화물을 형성하는 단계;를 포함하며,
    상기 리튬 전이금속 산화물은 평균 조성이 하기 화학식 1로 표시되는 중심부 및 평균 조성이 하기 화학식 2로 표시되는 표면부를 포함하는 것인, 양극활물질의 제조 방법.
    [화학식 1]
    Li1+a1(Nib1Coc1Mnd1Ale1M1 f1)O2
    상기 화학식 1에서, -0.1≤a1≤0.2, 0.8≤b1<1.0, 0<c1≤0.2, 0<d1≤0.1, 0<e1≤0.05, 0≤f1≤0.05이고, b1/c1≤25, b1/d1≥20이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
    [화학식 2]
    Li1+a2(Nib2Coc2Mnd2Ale2M1 f2)O2
    상기 화학식 2에서, -0.1≤a2≤0.2, 0.6≤b2≤0.95, 0<c2≤0.2, 0<d2≤0.1, 0<e2≤0.05, 0≤f2≤0.05이고, b2/c2<13, b2/d2≥3이고, M1은 Mg, Ti, Zr, Nb 및 W로 이루어진 군에서 선택되는 적어도 하나 이상임.
  8. 제7항에 있어서.
    상기 리튬 전이금속 산화물을 pH 9 내지 pH 11을 가지는 용액의 온도가 -10℃ 내지 15℃인 조건으로 수세한 후, 불활성 분위기에서 건조하고, 500℃ 내지 750℃의 산소 분위기에서 열처리하는 단계;를 더 포함하는, 양극활물질의 제조 방법.
  9. 양극 집전체;
    상기 양극 집전체 상에 형성된 양극 활물질층;을 포함하며,
    상기 양극 활물질층은 제1항 내지 제6항 중 어느 한 항에 따른 양극 활물질을 포함하는, 이차전지용 양극.
  10. 제9항에 따른 양극; 음극; 및 상기 양극 및 음극 사이에 개재된 분리막; 및 전해질;을 포함하는 리튬 이차전지에 있어서,
    25℃에서 4.25V로 0.1C-0.005C CC-CV 충전 모드로 충전하고, 2.5V까지 0.1C로 방전하였을 때 충방전 효율이 90% 이상이고,
    25℃에서 4.25V로 0.1C-0.005C CC-CV 충전 모드로 충전하고, 2.5V까지 0.1C로 CC 방전 후, 5 시간 동안 CV 방전하였을 때 충방전 효율이 95% 이상인 리튬 이차전지.
PCT/KR2019/000043 2018-01-19 2019-01-02 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 WO2019143047A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/644,379 US11557763B2 (en) 2018-01-19 2019-01-02 Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
ES19741246T ES2974733T3 (es) 2018-01-19 2019-01-02 Material activo de electrodo positivo para batería secundaria de litio, método de preparación del mismo y electrodo positivo para batería secundaria de litio y batería secundaria de litio que incluyen el material activo de electrodo positivo
EP19741246.3A EP3660964B1 (en) 2018-01-19 2019-01-02 Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
CN201980004030.0A CN111033832B (zh) 2018-01-19 2019-01-02 锂二次电池用正极活性材料、其制备方法、包含其的锂二次电池用正极和锂二次电池
PL19741246.3T PL3660964T3 (pl) 2018-01-19 2019-01-02 Aktywny materiał elektrody dodatniej dla litowego akumulatora wielokrotnego ładowania, sposób przygotowania aktywnego materiału elektrody dodatniej, elektroda dodatnia dla litowego akumulatora wielokrotnego ładowania oraz litowy akumulator wielokrotnego ładowania, który zawiera aktywny materiał elektrody dodatniej
JP2020513288A JP6869425B2 (ja) 2018-01-19 2019-01-02 リチウム二次電池用正極活物質、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0007302 2018-01-19
KR1020180007302A KR102313091B1 (ko) 2018-01-19 2018-01-19 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2019143047A1 true WO2019143047A1 (ko) 2019-07-25

Family

ID=67301178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000043 WO2019143047A1 (ko) 2018-01-19 2019-01-02 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Country Status (9)

Country Link
US (1) US11557763B2 (ko)
EP (1) EP3660964B1 (ko)
JP (1) JP6869425B2 (ko)
KR (1) KR102313091B1 (ko)
CN (1) CN111033832B (ko)
ES (1) ES2974733T3 (ko)
HU (1) HUE066015T2 (ko)
PL (1) PL3660964T3 (ko)
WO (1) WO2019143047A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022529760A (ja) * 2020-03-27 2022-06-24 深▲セン▼市貝特瑞納米科技有限公司 正極材料、その製造方法及びリチウム二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210030044A (ko) * 2019-09-09 2021-03-17 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질 및 이의 제조방법
KR20210079128A (ko) * 2019-12-19 2021-06-29 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN112054183A (zh) * 2020-09-03 2020-12-08 深圳澳睿新能源科技有限公司 制取具有成分梯度特性的材料的方法及在电池中的应用
CN116848659A (zh) * 2021-03-23 2023-10-03 株式会社Lg化学 锂二次电池用正极活性材料、其制备方法以及包含所述正极活性材料的锂二次电池用正极和锂二次电池
CN113582253B (zh) * 2021-07-30 2023-04-28 蜂巢能源科技有限公司 一种四元正极材料及其制备方法和应用
CN114497452A (zh) * 2021-12-28 2022-05-13 高点(深圳)科技有限公司 一种硅系电池用正极材料及其制备方法、应用
WO2023158219A1 (ko) 2022-02-15 2023-08-24 주식회사 엘지에너지솔루션 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2023162993A1 (ja) * 2022-02-25 2023-08-31 パナソニックエナジ-株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759751B1 (ko) * 2006-05-08 2007-10-04 주식회사 에코프로 하이드로 싸이클론을 이용한 리튬 이차전지 양극 활물질의제조방법 및 그 제조장치
KR20120079801A (ko) * 2011-01-05 2012-07-13 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101644684B1 (ko) * 2014-02-28 2016-08-01 주식회사 엘지화학 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170046066A (ko) * 2015-10-20 2017-04-28 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
KR20170046921A (ko) * 2015-10-22 2017-05-04 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838944B1 (ko) 2006-01-24 2008-06-16 주식회사 엘지화학 이차 전지
JP5515211B2 (ja) 2007-12-14 2014-06-11 ソニー株式会社 正極活物質の製造方法
US8945770B2 (en) 2008-11-10 2015-02-03 Lg Chem, Ltd. Cathode active material exhibiting improved property in high voltage
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
KR102157479B1 (ko) 2013-04-29 2020-10-23 한양대학교 산학협력단 리튬 이차 전지용 양극활물질
PL2693534T3 (pl) 2011-03-31 2022-10-31 Toda Kogyo Corp. Proszek kompozytu tlenku manganu i niklu, jego sposób wytwarzania, proszek cząstek materiału aktywnego elektrody dodatniej do akumulatorów z elektrolitem niewodnym, sposób jego wytwarzania i akumulator z elektrolitem niewodnym
ES2661935T3 (es) 2011-04-14 2018-04-04 Toda Kogyo Corp. Polvo de partículas de óxido de un compuesto de li-ni y proceso para la producción del mismo y batería secundaria de electrolito no acuoso
KR101255249B1 (ko) 2011-07-15 2013-04-16 삼성에스디아이 주식회사 양극 활물질 조성물, 이를 이용하여 제조된 양극 및 이를 포함하는 리튬 전지
KR101555594B1 (ko) 2014-10-02 2015-10-06 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
JP6588542B2 (ja) * 2014-10-31 2019-10-09 エルジー・ケム・リミテッド 遷移金属酸化物の前駆体、その製造方法、リチウム複合遷移金属酸化物、それを含む正極及び二次電池
KR102311460B1 (ko) * 2014-11-21 2021-10-08 에스케이이노베이션 주식회사 리튬 이차 전지
US10833321B2 (en) * 2015-03-06 2020-11-10 Uchicago Argonne, Llc Cathode materials for lithium ion batteries
KR101983099B1 (ko) 2015-11-30 2019-05-29 주식회사 엘지화학 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
KR102004457B1 (ko) 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101860625B1 (ko) 2016-01-04 2018-05-24 한국교통대학교산학협력단 안정성이 향상된 코어­쉘 구조를 갖는 리튬이차전지용 전구체, 양극활물질의 제조방법 및 그 양극활물질을 갖는 리튬이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759751B1 (ko) * 2006-05-08 2007-10-04 주식회사 에코프로 하이드로 싸이클론을 이용한 리튬 이차전지 양극 활물질의제조방법 및 그 제조장치
KR20120079801A (ko) * 2011-01-05 2012-07-13 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101644684B1 (ko) * 2014-02-28 2016-08-01 주식회사 엘지화학 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170046066A (ko) * 2015-10-20 2017-04-28 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
KR20170046921A (ko) * 2015-10-22 2017-05-04 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660964A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022529760A (ja) * 2020-03-27 2022-06-24 深▲セン▼市貝特瑞納米科技有限公司 正極材料、その製造方法及びリチウム二次電池
JP7419381B2 (ja) 2020-03-27 2024-01-22 深▲セン▼市貝特瑞納米科技有限公司 正極材料、その製造方法及びリチウム二次電池

Also Published As

Publication number Publication date
ES2974733T3 (es) 2024-07-01
EP3660964A4 (en) 2020-11-04
KR102313091B1 (ko) 2021-10-18
KR20190088786A (ko) 2019-07-29
JP2020532839A (ja) 2020-11-12
EP3660964A1 (en) 2020-06-03
US20200381719A1 (en) 2020-12-03
PL3660964T3 (pl) 2024-09-23
CN111033832A (zh) 2020-04-17
JP6869425B2 (ja) 2021-05-12
CN111033832B (zh) 2023-05-30
EP3660964B1 (en) 2024-03-06
US11557763B2 (en) 2023-01-17
HUE066015T2 (hu) 2024-07-28

Similar Documents

Publication Publication Date Title
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019143047A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2019083221A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021066576A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2022092477A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513288

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019741246

Country of ref document: EP

Effective date: 20200227

NENP Non-entry into the national phase

Ref country code: DE