WO2019142781A1 - 二軸配向ポリエステルフィルム - Google Patents
二軸配向ポリエステルフィルム Download PDFInfo
- Publication number
- WO2019142781A1 WO2019142781A1 PCT/JP2019/000918 JP2019000918W WO2019142781A1 WO 2019142781 A1 WO2019142781 A1 WO 2019142781A1 JP 2019000918 W JP2019000918 W JP 2019000918W WO 2019142781 A1 WO2019142781 A1 WO 2019142781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- layer
- gas barrier
- resin
- biaxially oriented
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
Definitions
- the present invention relates to a polyester film used in the field of packaging of food, medicine, industrial products and the like. More specifically, it is mainly composed of polybutylene terephthalate resin which is excellent in pinhole resistance, bag-proof resistance after boiling treatment and retorting treatment, and is excellent in gas-barrier property with little cracking of the gas barrier layer in the protective layer forming step.
- the present invention relates to a biaxially oriented polyester film.
- polybutylene terephthalate (hereinafter, polybutylene terephthalate is abbreviated as PBT) resin is more excellent in impact resistance, gas barrier property and chemical resistance than polyethylene terephthalate (hereinafter, polyethylene terephthalate is abbreviated as PET) resin, it is a film for food packaging Applications are also being considered in the field of films such as draw forming films.
- PBT polybutylene terephthalate
- PET polyethylene terephthalate
- a biaxially oriented PBT-based film comprising a polyester-based resin composition in which a polyester resin other than PBT resin is blended in a range of 40% by weight or less with respect to PBT resin
- the angle between the molecular chain main axes is 30 ° or less
- the thermal shrinkage at 150 ° C. is 4.0% or less in both the width direction and the longitudinal direction
- the intrinsic viscosity of the film is 0.80 dl / g or more, 1.2 dl / g It is disclosed that it can be suitably used for retort pouch packaging and water packaging by setting it to g or less.
- the thermal contraction rate in the longitudinal direction is suppressed to a low value, it is considered that the film is easily stretched in the longitudinal direction in the protective layer forming step, and the gas barrier property is lowered.
- Patent Document 2 a film mainly composed of PET resin is used as a base material layer, and in a laminated film having at least one metal oxide layer, the thermal shrinkage at 150 ° C. is 0.6 to 3.0%.
- a packaging member having sufficient impact strength even after hot water treatment such as retort treatment and boiling treatment, and having excellent gas barrier properties.
- the present invention has been made on the background of the problems of the prior art. That is, the object of the present invention relates to a polyester film used in the field of packaging of food, medicine, industrial products and the like. More specifically, it is possible to obtain a laminated polyester film which is excellent in pinhole resistance, tear resistance after boiling treatment and retort treatment, and is excellent in gas barrier properties with less cracking of the gas barrier layer in the protective layer forming step. is there.
- the present invention is pin resistant by setting the dimensional change rate and heat shrinkage rate at 120 ° C. of a biaxially oriented stretched film mainly composed of PBT resin as a specific range.
- the present inventors have found that a laminated polyester film excellent in hole property, bag-proof resistance after being subjected to boiling treatment and retort treatment, and having few cracks in the gas barrier layer in the protective layer forming step and excellent in gas barrier properties can be obtained.
- the present invention has the following configuration.
- a polyester resin composition comprising 60 to 100% by weight of polybutylene terephthalate resin (A) and 0 to 40% by weight of polyester resin (B) other than polybutylene terephthalate resin (A), (a) and (b) A biaxially oriented polyester film that simultaneously satisfies
- A) The dimensional change at 120 ° C. with respect to the film original length of the temperature dimensional change curve measured using TMA (thermal mechanical analyzer) is ⁇ 2.0% to 4.0% in the longitudinal direction of the film.
- TMA thermo mechanical analyzer
- the thermal shrinkage at 150 ° C. in the longitudinal direction of the film is 1.0% to 5.0%.
- the value of piercing strength measured by a piercing strength test according to JIS-Z1707 is 8.0 N or more.
- the thickness accuracy of the entire width of the film is 1 to 20%. Or 2.
- the inventor of the present invention is a laminated polyester excellent in pinhole resistance, bag-proof resistance after boiling treatment and retorting treatment by such a technology, and is excellent in gas barrier properties with less cracking of the gas barrier layer in the protective layer forming step. It became possible to obtain a film.
- the polyester resin composition used for the film of the present invention contains the PBT resin (A) as a main component, and the content of the PBT resin (A) is preferably 60% by weight or more, and preferably 75% by weight or more. Furthermore, 85 weight% or more is preferable. If it is less than 60% by weight, the pinhole resistance and the bag resistance will be reduced.
- the PBT resin (A) used as the main component preferably contains 90 mol% or more, more preferably 95 mol% or more, and still more preferably 98 mol% or more of terephthalic acid as a dicarboxylic acid component. Preferably it is 100 mol%.
- 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butane at the time of polymerization. It is not included except by-products generated by the ether bond of diol.
- polyester resin composition used for the film of the present invention contains a polyester resin (B) other than PBT resin (A) for the purpose of adjusting film forming property when performing biaxial stretching and mechanical properties of the obtained film.
- Polyester resins (B) other than PBT resin (A) are polyester resins such as PET, polyethylene naphthalate, polybutylene naphthalate, polypropylene terephthalate, or isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, cyclohexane dicarboxylic acid , PBT resin copolymerized with at least one dicarboxylic acid selected from the group consisting of adipic acid, azelaic acid and sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol , 1,5-pentanediol, 1,6-hexanediol
- PET resin is high in melting point and excellent in heat resistance, so dimensional change is difficult, and compatibility with PBT resin is also excellent, and transparency is excellent, and polyester resin (B) other than PBT resin (A) is copolymerized PET resins are preferred, and PET is particularly preferred.
- the lower limit of the intrinsic viscosity of the PBT resin (A) used in the film of the present invention is preferably 0.8 dl / g, more preferably 0.95 dl / g, and still more preferably 1.0 dl / g.
- the upper limit of the intrinsic viscosity of PBT resin (A) is preferably 1.3 dl / g.
- the upper limit of the addition amount of the polyester resin (B) other than the PBT resin (A) is preferably 40% by weight or less, more preferably 35% by weight or less, and particularly preferably 15% by weight or less.
- the addition amount of the polyester resin (B) other than the PBT resin (A) exceeds 40% by weight, the pinhole resistance and the bag resistance may be impaired, and the transparency and the gas barrier properties may be deteriorated.
- the polyester resin composition may contain, if necessary, conventionally known additives such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, an ultraviolet absorber and the like.
- a lubricant for adjusting the dynamic friction coefficient of the film of the present invention in addition to inorganic lubricants such as silica, calcium carbonate and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica reduces haze It is particularly preferable in that By these, transparency and slipperiness can be expressed.
- inorganic lubricants such as silica, calcium carbonate and alumina
- organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica reduces haze It is particularly preferable in that By these, transparency and slipperiness can be expressed.
- the lower limit of the content of the lubricant in the polyester resin composition is preferably 100 ppm by weight, more preferably 800 ppm by weight, and if it is less than 100 ppm by weight, slipperiness may be lowered.
- the upper limit of the content of the lubricant is preferably 20000 ppm by weight, more preferably 1000 ppm by weight, and particularly preferably 1800 ppm by weight. If it exceeds 20000 ppm by weight, the transparency may be reduced.
- a T-die system is preferable from the viewpoint of thickness accuracy in the width direction.
- the inflation method it is difficult to increase the draw ratio due to the manufacturing method, and thickness defects in the width direction may occur.
- a suitable method for obtaining the biaxially oriented polyester film of the present invention when casting a molten polyester resin composition on a cooling roll, it is possible to cite a polyester resin composition raw material of the same composition and cast. Since the PBT resin has a high crystallization rate, crystallization also proceeds during casting.
- the method for producing a biaxially oriented PBT film of the present invention comprises the molten fluid formed in the step (1) of melting a polyester resin composition containing 60% by weight or more of PBT resin to form a molten fluid
- the laminated fluid formed in the step (2) of forming a laminated fluid having a lamination number of 60 or more is discharged from a die, brought into contact with a cooling roll and solidified to form a laminated body (3); It has at least the step (4) of axial stretching.
- Other steps may be inserted between the step (1) and the step (2) and between the step (2) and the step (3).
- a filtration step, a temperature change step and the like may be inserted between the step (1) and the step (2).
- a temperature change step, a charge addition step and the like may be inserted between the step (2) and the step (3).
- the method for melting the polyester resin composition to form a molten fluid is not particularly limited, but a suitable method is to cite a method of heating and melting using a single screw extruder or a twin screw extruder. Can.
- the method for forming the laminated fluid in step (2) is not particularly limited, but a static mixer and / or a multilayer feed block is more preferable from the viewpoint of facility simplicity and maintainability. Further, from the viewpoint of uniformity in the sheet width direction, one having a rectangular melt line is more preferable. It is further preferred to use a static mixer or multilayer feed block with rectangular melt lines.
- the resin composition comprising a plurality of layers formed by combining a plurality of polyester resin compositions may be passed through one or more of a static mixer, a multilayer feed block and a multilayer manifold.
- the theoretical number of layers in step (2) needs to be 60 or more.
- the lower limit of the theoretical stacking number is preferably 200, and more preferably 500. If the theoretical number of layers is too small, the distance between layer interfaces will be long and the crystal size will be too large, resulting in breakage at the time of stretching, reduction in mechanical strength and reduction in thickness accuracy. In addition, the degree of crystallinity in the vicinity of both ends of the sheet may be increased, the film formation may be unstable, and the transparency after molding may be reduced.
- the upper limit of the theoretical number of layers in step (2) is not particularly limited, but is preferably 100,000, more preferably 10,000, and still more preferably 7,000. Even if the theoretical stacking number is extremely increased, the effect may be saturated.
- the number of theoretical laminations can be adjusted by selecting the number of elements of the static mixer.
- a static mixer is generally known as a static mixer without a drive (line mixer), and the fluid entering the mixer is sequentially stirred and mixed by the elements.
- line mixer line mixer
- the high viscosity fluid is passed through a static mixer, division and lamination of the high viscosity fluid occur to form a laminated fluid.
- a typical static mixer element has a structure in which a rectangular plate is twisted 180 degrees, and depending on the direction of twist, there are right and left elements, and the dimension of each element is 1.5 times the length of the diameter Is based on
- the static mixer that can be used in the present invention is not limited to such.
- the number of theoretical laminations can be adjusted by selecting the number of divisions / laminations of the multilayer feed block.
- a plurality of multilayer feed blocks can be installed in series. Further, it is also possible to use the high viscosity fluid itself supplied to the multilayer feed block as a laminated fluid.
- the above-mentioned multilayering apparatus can also be introduce
- step (3) the laminated fluid is discharged from the die and brought into contact with the cooling roll to solidify.
- the lower limit of the die temperature is preferably 255 ° C., more preferably 260 ° C., particularly preferably 265 ° C. If the temperature is lower than the above range, the discharge may not be stable and the thickness may be uneven. In addition, the PET resin retained in the melt extrusion process of the resin may become unmelted and be mixed in the film, which may deteriorate the quality of the film.
- the upper limit of the resin melting temperature is preferably 285 ° C, more preferably 280 ° C, and most preferably 275 ° C. If the above is exceeded, decomposition of the resin proceeds and the film becomes brittle.
- the upper limit of the die temperature is preferably 320 ° C., more preferably 300 ° C. or less, still more preferably 280 ° C. or less. If the thickness exceeds the above range, the thickness may not be uniform, and the resin may be deteriorated to cause appearance defects due to die lip stains and the like.
- the upper limit of the cooling roll temperature is preferably 40 ° C, more preferably 20 ° C or less. When it exceeds the above, the degree of crystallization at the time of cooling and solidification of the molten polyester resin composition may become too high, which may make stretching difficult.
- the lower limit of the temperature of the cooling roll is preferably 0 ° C., and if it is less than the above, the effect of suppressing crystallization when the molten polyester resin composition is solidified by cooling may be saturated. When the temperature of the cooling roll is in the above range, it is preferable to lower the humidity of the environment near the cooling roll to prevent condensation.
- the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m. More preferably, it is 500 micrometers or less, More preferably, it is 300 micrometers or less.
- the casting in the multilayer structure described above is performed with at least 60 layers, preferably 250 layers or more, and more preferably 1000 layers or more.
- the number of layers is small, the spherulite size of the unstretched sheet becomes large, and the effect of improving the stretchability is small, and in addition, the mechanical strength and the thickness accuracy of the obtained biaxially stretched film decrease.
- the stretching method can be either simultaneous biaxial stretching or sequential biaxial stretching, but it is easy to increase the plane orientation coefficient from the viewpoint of pinhole resistance and tear resistance, and it is easy to improve the uniformity of the film thickness in the width direction Sequential biaxial stretching is most preferable from the viewpoint of high film formation speed and high productivity.
- the lower limit of the stretching temperature in the longitudinal direction is preferably 55 ° C., more preferably 60 ° C. If the temperature is less than 55 ° C., breakage may easily occur, and stretching at a low temperature strengthens the longitudinal orientation, so that the shrinkage stress in the heat setting process becomes large, so molecular orientation in the width direction Distortion may increase, resulting in a decrease in straight straight tearability in the longitudinal direction.
- the upper limit of the MD stretching temperature is preferably 100 ° C., more preferably 95 ° C. If the temperature exceeds 100 ° C., the mechanical properties may be deteriorated since the orientation is not applied.
- the lower limit of the MD stretching ratio is preferably 2.5 times, particularly preferably 2.7 times. If it is less than the above, the mechanical properties may be reduced because orientation is unlikely to take place.
- the upper limit of the MD stretching ratio is preferably 3.8 times, more preferably 3.4 times, and particularly preferably 3.0 times. If the above is exceeded, the effect of mechanical strength and thickness unevenness improvement may be saturated.
- the lower limit of the stretching temperature in the width direction (hereinafter referred to as TD) is preferably 60 ° C. When the stretching temperature is less than the above, breakage may easily occur.
- the upper limit of the TD stretching temperature is preferably 100 ° C. If the temperature exceeds the above range, the mechanical properties may be deteriorated since no orientation is applied.
- the lower limit of the TD stretch ratio is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is less than the above, the degree of orientation in the width direction is reduced, so that the mechanical strength and the thickness unevenness may be deteriorated.
- the upper limit of the TD stretching ratio is preferably 5 times, more preferably 4.6 times, and particularly preferably 4.2 times. If the above is exceeded, the effect of mechanical strength and thickness unevenness improvement may be saturated.
- the lower limit of the TD heat setting temperature is preferably 185 ° C, more preferably 190 ° C. If it is less than the above, the thermal contraction rate becomes large, the film shrinks in the protective layer forming step, and the laminated gas barrier layer may be cracked, which may result in the deterioration of the gas barrier property.
- the upper limit of the TD heat setting temperature is preferably 210 ° C. When the temperature exceeds the above range, the film melts, and may not be extremely brittle even if it does not melt, and the thermal shrinkage in the MD direction decreases and the protective layer In the forming step, the film may be stretched, and the laminated gas barrier layer may be cracked, which may lead to a decrease in the gas barrier property.
- the lower limit of the TD relaxation rate is preferably 0.5%, and if it is less than the above, breakage may easily occur during heat setting.
- the upper limit of the TD relaxation rate is preferably 10%, and if it exceeds the above, not only sag may occur to cause thickness unevenness, but also shrinkage in the longitudinal direction at the time of heat setting may be increased.
- the distortion of molecular orientation may be large, and dimensional stability may be uneven in the width direction.
- the lower limit of the film thickness is preferably 3 ⁇ m, more preferably 5 ⁇ m, and still more preferably 8 ⁇ m. If it is less than 3 ⁇ m, the strength as a film may be insufficient.
- the upper limit of the film thickness is preferably 100 ⁇ m, more preferably 75 ⁇ m, and still more preferably 50 ⁇ m. If it exceeds 100 ⁇ m, it becomes too thick and processing for the purpose of the present invention may become difficult.
- the lower limit of the intrinsic viscosity of the biaxially oriented PBT film of the present invention is preferably 0.80 dl / g, more preferably 0.85 dl / g, still more preferably 0.90 dl / g, particularly preferably 0 It is .95 dl / g. Impact strength, puncture resistance, etc. will be improved as it is more than the above.
- the upper limit of the intrinsic viscosity of the biaxially oriented PBT film is preferably 1.2 dl / g, more preferably 1.1 dl / g. When it exceeds the above, the stress at the time of stretching becomes too high, and the film forming property is deteriorated.
- the biaxially oriented PBT film of the present invention preferably has a resin of the same composition throughout the entire film.
- the lower limit of the degree of plane orientation ( ⁇ P) of the biaxially oriented polyester film of the present invention is preferably 0.145, more preferably 0.148, still more preferably 0.151. If it is less than the above range, the plane orientation may be weak, the puncture strength may be reduced, and the resistance to breakage may be reduced.
- the upper limit of ⁇ P of the biaxially oriented polyester film of the present invention is preferably 0.200. If the above is exceeded, the improvement effect may be saturated.
- the upper limit of the thermal shrinkage after heating at 150 ° C. for 15 minutes in the MD direction of the biaxially oriented polyester film of the present invention is 5.0%, preferably 4.0%, more preferably 3.3%. is there.
- the expansion and contraction of the film can be suppressed in the protective layer forming step where tension is applied, and the deterioration of the gas barrier properties due to the cracking of the gas barrier layer can be suppressed.
- the film may be shrunk in the protective layer forming step to cause cracking of the gas barrier layer and as a result, the gas barrier properties may be lowered.
- the expansion and contraction of the film can be suppressed in the protective layer forming step where tension is applied, and the deterioration of the gas barrier properties due to the cracking of the gas barrier layer can be suppressed. If it is less than the above, the film may be stretched in the protective layer forming step to cause cracking of the gas barrier layer and as a result, the gas barrier properties may be reduced.
- the upper limit of the dimensional change rate at 120 ° C. in the MD direction assuming a protective layer forming step measured using TMA of the biaxially oriented polyester film of the present invention is 4.0%, preferably 3.0%. .
- elongation of the film can be suppressed in the protective layer forming step where tension is applied, and deterioration in gas barrier properties due to cracking of the gas barrier layer can be suppressed.
- the film may be stretched in the protective layer forming step to cause cracking of the gas barrier layer and as a result, the gas barrier properties may be lowered.
- contraction of a film is suppressed in the protective layer formation process to which tension
- the lower limit of the puncture strength of the biaxially oriented polyester film of the present invention is preferably 8N. When it is less than the above, the strength may be insufficient when used as a bag.
- the upper limit of the piercing strength is preferably 20N. If the above is exceeded, the improvement effect may be saturated.
- the upper limit of the dynamic friction coefficient of at least one surface of the film is preferably 0.4 or less, preferably 0.39 or less, and most preferably 0.38 or less.
- the upper limit of the haze per thickness of the biaxially oriented polyester film of the present invention is preferably 0.66% / ⁇ m, more preferably 0.60% / ⁇ m, still more preferably 0.53% / ⁇ m. . If the above is exceeded, the quality of printed characters and images may be impaired when the film is printed.
- a printing layer may be laminated on the biaxially oriented polyester film of the present invention.
- water-based and solvent type can use it preferably.
- the resin used for the printing ink include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins and mixtures thereof.
- a printing method for providing a printing layer it does not specifically limit as a printing method for providing a printing layer.
- Well-known printing methods such as an offset printing method, a gravure printing method, the screen-printing method, can be used.
- known drying methods such as hot air drying, hot roll drying, infrared drying and the like can be used.
- the biaxially oriented polyester film of the present invention may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, surface roughening treatment, as long as the object of the present invention is not impaired.
- Anchor coating treatment, printing, decoration, etc. may be given.
- An inorganic thin film layer or a gas barrier layer such as a metal foil such as aluminum foil can be provided on at least one side of the biaxially oriented polyester film of the present invention.
- the inorganic thin film layer is a thin film made of metal or inorganic oxide.
- the material for forming the inorganic thin film layer is not particularly limited as long as it can be made into a thin film, but from the viewpoint of gas barrier properties, inorganic oxide such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide Are preferably mentioned.
- inorganic oxide such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide are preferably mentioned.
- a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both the flexibility and the compactness of the thin film layer.
- the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% of Al by weight ratio of metal components.
- the Al concentration is less than 20%, the water vapor gas barrier properties may be lowered.
- the inorganic thin film layer tends to be hard, and the film may be broken during secondary processing such as printing or laminating, and the gas barrier properties may be lowered.
- silicon oxide refers to various silicon oxides such as SiO and SiO 2 or a mixture thereof
- aluminum oxide refers to various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
- the thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, satisfactory gas barrier properties may not be obtained in some cases. On the other hand, even if it exceeds 100 nm and is excessively thick, the corresponding improvement effect of gas barrier properties is obtained It is rather disadvantageous in terms of bending resistance and manufacturing cost.
- vapor deposition such as a physical vapor deposition method (PVD method), such as a vacuum evaporation method, sputtering method, ion plating method, or a chemical vapor deposition method (CVD method)
- PVD method physical vapor deposition method
- CVD method chemical vapor deposition method
- a typical method of forming an inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide based thin film as an example.
- a vacuum evaporation method a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as an evaporation raw material.
- the size of each particle is preferably such that the pressure at the time of vapor deposition does not change, and the preferred particle diameter is 1 mm to 5 mm.
- a method such as resistance heating, high frequency induction heating, electron beam heating, or laser heating can be adopted.
- reactive vapor deposition using means such as introduction of oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as a reaction gas, or addition of ozone or ion assist may be employed.
- film forming conditions can be arbitrarily changed, such as applying a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
- Such vapor deposition material, reaction gas, bias of the vapor-deposited body, heating / cooling, etc. can be similarly changed also in the case of employing the sputtering method or the CVD method.
- the printing layer may be laminated on the above-mentioned inorganic thin film layer.
- the gas barrier layer made of a metal oxide is not a completely dense film, but minute defects are scattered.
- the resin in the resin composition for the protective layer penetrates into the defect portion of the metal oxide layer, As a result, the effect of stabilizing the gas barrier properties can be obtained.
- the gas barrier performance of the laminated film is also greatly improved by using a material having gas barrier properties for the protective layer itself.
- Examples of the protective layer include those obtained by adding an epoxy-based, isocyanate-based or melamine-based curing agent to a urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, or polybutadiene-based resin.
- Examples of the solvent (solvent) used when forming the protective layer include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and acetic acid Ester solvents such as butyl; polyhydric alcohol derivatives such as ethylene glycol monomethyl ether; and the like.
- the polar group of the urethane bond interacts with the inorganic thin film layer and also has flexibility due to the presence of the noncrystalline portion, so that the damage to the inorganic thin film layer is suppressed even when a bending load is applied. It is preferable because it can be
- the acid value of the urethane resin is preferably in the range of 10 to 60 mg KOH / g. More preferably, it is in the range of 15 to 55 mg KOH / g, further preferably in the range of 20 to 50 mg KOH / g.
- the liquid stability is improved when the aqueous dispersion is prepared, and the protective layer can be uniformly deposited on the high polarity inorganic thin film, so the coat appearance is good. It becomes.
- the urethane resin preferably has a glass transition temperature (Tg) of 80 ° C. or more, more preferably 90 ° C. or more.
- Tg glass transition temperature
- a urethane resin containing an aromatic or aromatic aliphatic diisocyanate component as a main component.
- the proportion of the aromatic or araliphatic diisocyanate in the urethane resin is preferably in the range of 50 mol% or more (50 to 100 mol%) in 100 mol% of the polyisocyanate component (F).
- the proportion of the total amount of aromatic or araliphatic diisocyanates is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, and still more preferably 80 to 100 mol%.
- "Takelac (registered trademark) WPB" series commercially available from Mitsui Chemicals, Inc. can be suitably used. If the proportion of the total amount of aromatic or araliphatic diisocyanates is less than 50 mol%, good gas barrier properties may not be obtained.
- the said urethane resin has a carboxylic acid group (carboxyl group) from a viewpoint of affinity improvement with an inorganic thin film layer.
- a carboxylic acid (salt) group for example, a polyol compound having a carboxylic acid group such as dimethylol propionic acid or dimethylol butanoic acid may be introduced as a copolymerization component as a polyol component.
- the urethane resin of a water dispersion can be obtained.
- the salt forming agent include ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, trialkylamines such as tri-n-butylamine, N-methylmorpholine, N-ethylmorpholine, etc.
- N-dialkylalkanolamines such as -alkyl morpholines, N-dimethyl ethanolamine, N-diethyl ethanolamine and the like. These may be used alone or in combination of two or more.
- Layers of other materials may be laminated on the biaxially oriented polyester film of the present invention, and as the method, the biaxially oriented polyester film can be laminated after preparation or laminated during film formation.
- the biaxially oriented polyester film of the present invention can be used as a packaging material, for example, by providing an inorganic deposition layer on the biaxially oriented polyester film of the present invention, and further forming a heat sealable resin layer called a sealant.
- the formation of the heat sealable resin layer is usually carried out by an extrusion laminating method or a dry laminating method.
- a thermoplastic polymer which forms a heat sealable resin layer polyethylene resins, such as HDPE, LDPE, LLDPE, and polypropylene resin should just be sufficient to express sealant adhesiveness.
- Ethylene-vinyl acetate copolymer, ethylene- ⁇ -olefin random copolymer, ionomer resin and the like can be used.
- the sealant layer may be a single layer film or a multilayer film, and may be selected according to the required function. For example, in terms of imparting moisture resistance, a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed can be used. Further, the sealant layer may be blended with various additives such as a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer, and a tackifier. The thickness of the sealant layer is preferably 10 to 100 ⁇ m, and more preferably 20 to 60 ⁇ m.
- the biaxially oriented polyester film of the present invention can be used as a base film of a laminate for a packaging material.
- the layer configuration of the laminate includes, for example, a base layer / gas barrier layer / protective layer, a base layer / gas barrier layer / protective layer / sealant layer, a base layer / gas barrier layer / BR> ⁇ protective layer / resin layer / sealant Layer, substrate layer / resin layer / gas barrier layer / protective layer / sealant layer, substrate layer / gas barrier layer / protective layer / printed layer / sealant layer, substrate layer / printed layer / gas barrier layer / protective layer / sealant layer, Base material layer / gas barrier layer / protective layer / resin layer / printing layer / sealing layer, base material layer / resin layer / printing layer / gas barrier layer / protective layer / sealant layer, base material layer / printing layer / gas barrier layer / protective layer / Resin layer / sealant layer, base material layer / printing layer /
- the laminate using the biaxially oriented polyester film of the present invention can be suitably used for applications such as packaged products, various label materials, lid materials, sheet molded articles, laminate tubes and the like.
- it is used for packaging bags (for example, pouches, such as a pillow bag, a standing pouch, and a 4-way pouch).
- the thickness of the laminate can be appropriately determined depending on the application. For example, it is used in the form of a film or sheet having a thickness of about 5 to 500 ⁇ m, preferably about 10 to 300 ⁇ m.
- Thermal contraction rate The thermal shrinkage of the polyester film was measured by the dimensional change test method described in JIS-C-2151-2006.21 except that the test temperature was 150 ° C. and the heating time was 15 minutes. The test pieces were used as described in 21.1 (a).
- Aluminum oxide was vapor-deposited on the substrate layers shown in Examples and Comparative Examples described later.
- the film is set on the unwinding side of a continuous vacuum deposition machine and is run through a cooling metal drum to wind up the film.
- the pressure in the continuous vacuum deposition machine is reduced to 10 -4 Torr or less, metal aluminum of 99.99% purity is loaded into the alumina crucible from the lower part of the cooling drum, metal aluminum is heated and vapor-deposited,
- the film was deposited and deposited on the film while supplying oxygen for oxidation reaction to form an aluminum oxide film having a thickness of 30 nm.
- urethane resin A solution of 60% by weight water, 30% by weight isopropanol and 10% by weight urethane resin is applied onto the inorganic vapor deposited thin film layer of the gas barrier layer deposited and formed as described above by a wire bar coating method, for 30 seconds at 150 ° C. It dried and obtained the protective layer. The applied amount after drying was 0.190 g / m 2 (as solid content).
- Urethane resin A dispersion of a commercially available metaxylylene group-containing urethane resin ("Takelac (registered trademark) WPB 341"; solid content: 30%, manufactured by Mitsui Chemicals, Inc.) was prepared as the urethane resin.
- the oxidation of this urethane resin was 25 mg KOH / g, and the glass transition temperature measured by DSC was 130 ° C. Further, the ratio of aromatic or araliphatic diisocyanate to the entire polyisocyanate component measured by 1 H-NMR was 85 mol%.
- a urethane-based two-component curable adhesive (Takelac (registered trademark) A525S manufactured by Mitsui Chemicals, Inc.) and Takenate (registered trademark) on the protective layer of the laminated film provided with the gas barrier layer / protective layer on the aforementioned base film A)
- A50 "is blended at a ratio of 13.5: 1 (weight ratio) by a dry laminating method to obtain a 70 ⁇ m thick non-stretched polypropylene film (" P1147 “manufactured by Toyobo Co., Ltd.) as a heat sealable resin layer
- a laminate gas barrier laminate for evaluation was obtained.
- the thickness after drying of the adhesive bond layer formed with urethane type 2 liquid curing adhesive agent was about 4 micrometers in all.
- a melt of 0.22 dl / g of PET resin, silica particles with an average particle diameter of 2.4 ⁇ m as inert particles blended at 0.16% by weight as silica concentration is melted at 290 ° C and then the melt line is 12
- the melt was divided and laminated to obtain a multilayer melt made of the same raw material, cast from a T-die at 270 ° C., and electrostatically applied to a 15 ° C.
- Example 1 was carried out in the same manner as Example 1 except that the raw material composition and the film forming conditions were changed to the biaxially stretched film described in Table 1.
- Example 1 It implemented by the method similar to Example 1 except having changed the heat setting temperature into the value of Table 2. Although the pinhole resistance of the obtained film was good, the puncture strength was 6.5 N and the tear resistance was poor at 60%. Moreover, since the dimensional change rate was as large as 4.10%, the gas barrier properties were poor. The results are shown in Table 2.
- Example 3 It implemented by the method similar to Example 1 except having changed the polyester resin composition into the value of Table 2.
- the gas barrier properties of the obtained film were good, but because the content of PBT was small, the puncture strength of the obtained film was 7.2 N, and the resistance to puncture and the resistance to puncture were poor. .
- Example 1 (Reference Example 1) In Example 1, others were similarly film-formed, without introduce
- the thickness accuracy was measured for a biaxially oriented film (total thickness 15 ⁇ m, width 840 mm) mainly composed of PBT produced by a commercially available inflation method. The thickness accuracy was 28%, which was inferior to the film of the present invention.
- the present invention it is possible to obtain a laminated polyester film which is excellent in pinhole resistance, bag-proof resistance after boiling treatment and retorting treatment, and which is excellent in gas barrier properties with less cracking of the gas barrier layer in the protective layer forming step. It can be expected to greatly contribute to the industry because it can be widely applied as food packaging and pharmaceutical packaging materials.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
【課題】 耐ピンホール性、ボイル処理やレトルト処理された後での耐破袋性に優れ、かつ保護層形成工程でのガスバリア層の割れが少ないガスバリア性に優れるポリエステルフィルムを得ること。
【解決手段】 ポリブチレンテレフタレート樹脂(A)を60~100重量%、ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)を0~40重量%含有するポリエステル樹脂組成物からなり、(a)及び(b)を同時に満足する二軸配向ポリエステルフィルム。(a)TMAを用いて測定した温度寸法変化曲線のフィルム原長に対する120℃での寸法変化率がフィルムの長手方向において-2.0%~4.0%である。(b)フィルムの長手方向の150℃における熱収縮率が1.0%~5.0%である。
Description
本発明は、食品、医薬品、工業製品等の包装分野に用いられるポリエステルフィルムに関する。更に詳しくは、耐ピンホール性、ボイル処理やレトルト処理された後での耐破袋性に優れ、かつ保護層形成工程でのガスバリア層の割れが少なくガスバリア性に優れるポリブチレンテレフタレート樹脂を主成分とする二軸配向ポリエステルフィルムに関する。
ポリブチレンテレフタレート(以下、ポリブチレンテレフタレートをPBTと略す)樹脂は、ポリエチレンテレフタレート(以下、ポリエチレンテレフタレートをPETと略す)樹脂より耐衝撃性、ガスバリア性、耐薬品性に優れることから、食品包装用フィルム、絞り成形用フィルムなどのフィルム分野においても応用が検討されている。
例えば、特許文献1では、PBT樹脂に対してPBT樹脂以外のポリエステル樹脂を40重量%以下の範囲で配合したポリエステル系樹脂組成物からなる二軸配向PBT系フィルムにおいて、フィルムの幅方向に対して分子鎖主軸のなす角度が30°以下であり、150℃における熱収縮率が幅方向・長手方向ともに4.0%以下であり、フィルムの固有粘度が0.80dl/g以上、1.2dl/g以下とすることで、レトルトパウチ包装や水物包装に対して好適に用いることが出来ることが開示されている。
しかしながら、長手方向の熱収縮率を低い値で抑えているため、保護層形成工程では長手方向にフィルムが伸びやすく、ガスバリア性の低下が起こることが考えられる。
一方、特許文献2には、PET樹脂を主とするフィルムを基材層とし、少なくとも一層以上の金属酸化物層を有する積層フィルムにおいて、150℃における熱収縮率を0.6~3.0%にすることでレトルト処理、ボイル処理等の熱水処理後にも十分な衝撃強度を持ち、ガスバリア性にも優れる包装部材が開示されている。
しかしながら、上記特性を満たすための具体的な基材層の条件についての開示はない。
本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、食品、医薬品、工業製品等の包装分野に用いられるポリエステルフィルムに関する。更に詳しくは、耐ピンホール性、ボイル処理やレトルト処理された後での耐破袋性に優れ、かつ保護層形成工程でのガスバリア層の割れが少なくガスバリア性に優れる積層ポリエステルフィルムを得ることにある。
本発明は、かかる目的を達成するために鋭意検討した結果、PBT樹脂を主体樹脂とする二軸配向延伸フィルムの120℃における寸法変化率及び熱収縮率を特定の範囲とすることにより、耐ピンホール性、ボイル処理やレトルト処理された後での耐破袋性に優れ、かつ保護層形成工程でのガスバリア層の割れが少なくガスバリア性に優れる積層ポリエステルフィルムが得られることを見出した。
すなわち本発明は、以下の構成からなる。
1. ポリブチレンテレフタレート樹脂(A)を60~100重量%、ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)を0~40重量%含有するポリエステル樹脂組成物からなり、(a)及び(b)を同時に満足する二軸配向ポリエステルフィルム。
(a)TMA(サーマルメカニカルアナライザー)を用いて測定した温度寸法変化曲線のフィルム原長に対する120℃での寸法変化率がフィルムの長手方向において-2.0%~4.0%である。
(b)フィルムの長手方向の150℃における熱収縮率が1.0%~5.0%である。
2. JIS-Z1707に準じた突き刺し強さ試験で測定した突き刺し強度の値が8.0N以上である1.に記載の二軸配向ポリエステルフィルム。
3. フィルムの全幅での厚み精度が1~20%である1.又は2.に記載の二軸配向ポリエステルフィルム。
1. ポリブチレンテレフタレート樹脂(A)を60~100重量%、ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)を0~40重量%含有するポリエステル樹脂組成物からなり、(a)及び(b)を同時に満足する二軸配向ポリエステルフィルム。
(a)TMA(サーマルメカニカルアナライザー)を用いて測定した温度寸法変化曲線のフィルム原長に対する120℃での寸法変化率がフィルムの長手方向において-2.0%~4.0%である。
(b)フィルムの長手方向の150℃における熱収縮率が1.0%~5.0%である。
2. JIS-Z1707に準じた突き刺し強さ試験で測定した突き刺し強度の値が8.0N以上である1.に記載の二軸配向ポリエステルフィルム。
3. フィルムの全幅での厚み精度が1~20%である1.又は2.に記載の二軸配向ポリエステルフィルム。
本発明者は、かかる技術によって、耐ピンホール性、ボイル処理やレトルト処理された後での耐破袋性に優れ、かつ保護層形成工程でのガスバリア層の割れが少なくガスバリア性に優れる積層ポリエステルフィルムを得ることが可能となった。
以下、本発明について詳細に説明する。
[ポリエステル樹脂組成物]
本発明のフィルムに用いられるポリエステル樹脂組成物は、PBT樹脂(A)を主たる構成成分とするものであり、PBT樹脂(A)の含有率は60重量%以上が好ましく、75重量%以上が好ましく、さらには85重量%以上が好ましい。60重量%未満であると耐ピンホール性や耐破袋性が低下してしまう。
主たる構成成分として用いるPBT樹脂(A)は、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
[ポリエステル樹脂組成物]
本発明のフィルムに用いられるポリエステル樹脂組成物は、PBT樹脂(A)を主たる構成成分とするものであり、PBT樹脂(A)の含有率は60重量%以上が好ましく、75重量%以上が好ましく、さらには85重量%以上が好ましい。60重量%未満であると耐ピンホール性や耐破袋性が低下してしまう。
主たる構成成分として用いるPBT樹脂(A)は、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
本発明のフィルムに用いられるポリエステル樹脂組成物は二軸延伸を行う時の製膜性や得られたフィルムの力学特性を調整する目的でPBT樹脂(A)以外のポリエステル樹脂(B)を含有することができる。
PBT樹脂(A)以外のポリエステル樹脂(B)が、PET、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレートなどのポリエステル樹脂、又はイソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる郡から選択される少なくとも1種のジカルボン酸が共重合されたPBT樹脂、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる郡から選択される少なくとも1種のジオール成分が共重合されたPBT樹脂、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる郡から選択される少なくとも1種のジカルボン酸が共重合されたPBT樹脂、若しくは1,3-ブタンジオール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる郡から選択される少なくとも1種のジオール成分が共重合されたPET樹脂から選ばれる少なくとも1種の樹脂が挙げられる。
PBT樹脂(A)以外のポリエステル樹脂(B)が、PET、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレートなどのポリエステル樹脂、又はイソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる郡から選択される少なくとも1種のジカルボン酸が共重合されたPBT樹脂、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる郡から選択される少なくとも1種のジオール成分が共重合されたPBT樹脂、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる郡から選択される少なくとも1種のジカルボン酸が共重合されたPBT樹脂、若しくは1,3-ブタンジオール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートからなる郡から選択される少なくとも1種のジオール成分が共重合されたPET樹脂から選ばれる少なくとも1種の樹脂が挙げられる。
中でもPET樹脂は融点が高く耐熱性に優れるため寸法変化がしにくく、PBT樹脂との相溶性も優れるため透明性に優れることからPBT樹脂(A)以外のポリエステル樹脂(B)としては共重合されたPET樹脂が好ましく、特にPETが好ましい。
本発明のフィルムに用いるPBT樹脂(A)の固有粘度の下限は好ましくは0.8dl/gであり、より好ましくは0.95dl/gであり、更に好ましくは1.0dl/gである。
PBT樹脂(A)の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、破袋強度や突き刺し強度などが低下することがある。
PBT樹脂(A)の固有粘度の上限は好ましくは1.3dl/gである。上記を越えるとフィルムの延伸時の応力が高くなりすぎ、製膜性が悪化するとなることがある。さらには、固有粘度の高いPBT樹脂を使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、PBT樹脂をより高温で押出しすると分解物が出やすくなることがある。
PBT樹脂(A)の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、破袋強度や突き刺し強度などが低下することがある。
PBT樹脂(A)の固有粘度の上限は好ましくは1.3dl/gである。上記を越えるとフィルムの延伸時の応力が高くなりすぎ、製膜性が悪化するとなることがある。さらには、固有粘度の高いPBT樹脂を使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、PBT樹脂をより高温で押出しすると分解物が出やすくなることがある。
これらPBT樹脂(A)以外のポリエステル樹脂(B)の添加量の上限としては、40重量%以下が好ましく、より好ましくは35重量%以下が好ましく、15重量%以下が特に好ましい。PBT樹脂(A)以外のポリエステル樹脂(B)の添加量が40重量%を超えると、耐ピンホール性、耐破袋性が損なわれるほか、透明性やガスバリア性が低下することがある。
前記ポリエステル樹脂組成物は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、酸化防止剤、静電防止剤、紫外線吸収剤等を含有していてもよい。
本発明のフィルムの動摩擦係数を調整するための滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、中でもシリカがヘイズを低減する点で特に好ましい。これらにより透明性と滑り性と発現することができる。
ポリエステル樹脂組成物における滑剤の含有量の下限は好ましくは100重量ppmであり、より好ましくは800重量ppmであり、100重量ppm未満であると滑り性が低下となることがある。滑剤の含有量の上限は好ましくは20000重量ppmであり、より好ましくは1000重量ppmであり、特に好ましくは1800重量ppmであり、20000重量ppmを越えると透明性が低下することがある。
[二軸配向ポリエステルフィルムの製造方法]
本発明の二軸配向ポリエステルフィルムを得るための好適な方法として、幅方向の厚み精度の観点からTダイ方式が好ましい。インフレーション方式ではその製造方法に起因して延伸倍率が上がりにくく、幅方向の厚み不良が生じることがある。
また本発明の二軸配向ポリエステルフィルムを得るための好適な方法として、溶融ポリエステル樹脂組成物を冷却ロールにキャストする時に同一の組成のポリエステル樹脂組成物原料を多層化してキャストすることが挙げられる。
PBT樹脂は結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、これらの結晶はサイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、長手方向の延伸時に破断しやすくなる。
そればかりか、長手方向の延伸の間にも結晶化が進むため、幅方向の延伸時にも破断しやすくなるうえ、得られた二軸配向ポリエステルフィルムの破袋強度や突き刺し強度も不十分なフィルムとなってしまう。
さらに、幅方向でのフィルムの厚みに準じて結晶の成長に大きなバラつきが生じ、密度差が生じてしまう。その結果、続く長手方向および幅方向の延伸時に延伸応力のムラが生じ、得られた二軸配向ポリエステルフィルムの厚み精度が低下する場合がある。
本発明の二軸配向ポリエステルフィルムを得るための好適な方法として、幅方向の厚み精度の観点からTダイ方式が好ましい。インフレーション方式ではその製造方法に起因して延伸倍率が上がりにくく、幅方向の厚み不良が生じることがある。
また本発明の二軸配向ポリエステルフィルムを得るための好適な方法として、溶融ポリエステル樹脂組成物を冷却ロールにキャストする時に同一の組成のポリエステル樹脂組成物原料を多層化してキャストすることが挙げられる。
PBT樹脂は結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、これらの結晶はサイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、長手方向の延伸時に破断しやすくなる。
そればかりか、長手方向の延伸の間にも結晶化が進むため、幅方向の延伸時にも破断しやすくなるうえ、得られた二軸配向ポリエステルフィルムの破袋強度や突き刺し強度も不十分なフィルムとなってしまう。
さらに、幅方向でのフィルムの厚みに準じて結晶の成長に大きなバラつきが生じ、密度差が生じてしまう。その結果、続く長手方向および幅方向の延伸時に延伸応力のムラが生じ、得られた二軸配向ポリエステルフィルムの厚み精度が低下する場合がある。
本発明の二軸配向PBTフィルムの製造方法は、具体的にはPBT樹脂を60重量%以上含むポリエステル樹脂組成物を溶融して溶融流体を形成する工程(1)で形成された溶融流体からなる積層数60以上の積層流体を形成するする工程(2)で形成された積層流体をダイスから吐出し、冷却ロールに接触させて固化させ積層体を形成する工程(3)、前記積層体を二軸延伸する工程(4)を少なくとも有する。
工程(1)と工程(2)、工程(2)と工程(3)の間には、他の工程が挿入されていても差し支えない。例えば、工程(1)と工程(2)の間には濾過工程、温度変更工程等が挿入されていても良い。また、工程(2)と工程(3)の間には、温度変更工程、電荷付加工程等が挿入されていても良い。但し、工程(2)と工程(3)の間には、工程(2)で形成された積層構造を破壊する工程があってはならない。
工程(1)と工程(2)、工程(2)と工程(3)の間には、他の工程が挿入されていても差し支えない。例えば、工程(1)と工程(2)の間には濾過工程、温度変更工程等が挿入されていても良い。また、工程(2)と工程(3)の間には、温度変更工程、電荷付加工程等が挿入されていても良い。但し、工程(2)と工程(3)の間には、工程(2)で形成された積層構造を破壊する工程があってはならない。
工程(1)において、ポリエステル樹脂組成物を溶融して溶融流体を形成する方法は特に限定されないが、好適な方法としては、一軸押出機や二軸押出機を用いて加熱溶融する方法を挙げることができる。
工程(2)における積層流体を形成する方法は特に限定されないが、設備の簡便さや保守性の面から、スタティックミキサーおよび/または多層フィードブロックがより好ましい。また、シート幅方向の均一性の面から、矩形のメルトラインを有するものがより好ましい。矩形のメルトラインを有するスタティックミキサーまたは多層フィードブロックを用いることがさらに好ましい。なお、複数のポリエステル樹脂組成物を合流させることによって形成された複数層からなる樹脂組成物を、スタティックミキサー、多層フィードブロックおよび多層マニホールドのいずれか1種または2種以上に通過させてもよい。
工程(2)における理論積層数は60以上である必要がある。理論積層数の下限は、好ましくは200であり、より好ましくは500である。理論積層数が少なすぎると、層界面間距離が長くなって結晶サイズが大きくなりすぎ、前述の延伸時の破断や力学強度の低下、厚み精度の低下が生じてしまう。また、シート両端近傍での結晶化度が増大し、製膜が不安定となるほか、成型後の透明性が低下することがある。工程(2)における理論積層数の上限は特に限定されないが、好ましくは100000であり、より好ましくは10000であり、さらに好ましくは7000である。理論積層数を極端に大きくしてもその効果が飽和する場合がある。
工程(2)における積層をスタティックミキサーで行う場合、スタティックミキサーのエレメント数を選択することにより、理論積層数を調整することができる。スタティックミキサーは、一般的には駆動部のない静止型混合器(ラインミキサー)として知られており、ミキサー内に入った流体は、エレメントにより順次撹拌混合される。ところが、高粘度流体をスタティックミキサーに通過させると、高粘度流体の分割と積層が生じ、積層流体が形成される。スタティックミキサーの1エレメントを通過するごとに、高粘度流体は2分割され次いで合流し積層される。このため、高粘度流体をエレメント数nのスタティックミキサーに通過させると、理論積層数N=2のn乗の積層流体が形成される。
典型的なスタティックミキサーエレメントは、長方形の板を180度ねじった構造を有し、ねじれの方向により、右エレメントと左エレメントがあり、各エレメントの寸法は直径に対して1.5倍の長さを基本としている。本発明に用いることのできるスタティックミキサーはこの様なものに限定されない。
工程(2)における積層を多層フィードブロックで行う場合、多層フィードブロックの分割・積層回数を選択することによって、理論積層数を調整することができる。多層フィードブロックは複数直列に設置することが可能である。また、多層フィードブロックに供給する高粘度流体自体を積層流体とすることも可能である。例えば、多層フィードブロックに供給する高粘度流体の積層数がp、多層フィードブロックの分割・積層数がq、多層フィードブロックの設置数がrの場合、積層流体の積層数Nは、N=p×(qのr乗)となる。
なお、本願発明のように同一組成のポリエステル樹脂組成物で多層化する場合は、一台の押し出し機のみを用いて、押し出しからダイまでのメルトラインに上述の多層化装置を導入することもできる。
なお、本願発明のように同一組成のポリエステル樹脂組成物で多層化する場合は、一台の押し出し機のみを用いて、押し出しからダイまでのメルトラインに上述の多層化装置を導入することもできる。
工程(3)において、積層流体をダイスから吐出し、冷却ロールに接触させて固化させる。
ダイス温度の下限は好ましくは255℃であり、より好ましくは260℃であり、特に好ましくは265℃であり、上記未満であると吐出が安定せず、厚みが不均一となることがある。
また、樹脂の溶融押出し工程内で滞留したPET樹脂が未溶融物となってフィルム中に混入し、フィルムの品位を損ねてしまうことがある。樹脂溶融温度の上限は好ましくは285℃であり、より好ましくは280℃であり、最も好ましくは275℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。
ダイ温度の上限は好ましくは320℃であり、より好ましくは300℃以下であり、さらに好ましくは280℃以下である。上記を越えると厚みが不均一となるほか、樹脂の劣化が起こり、ダイリップ汚れなどで外観不良となることがある。
また、樹脂の溶融押出し工程内で滞留したPET樹脂が未溶融物となってフィルム中に混入し、フィルムの品位を損ねてしまうことがある。樹脂溶融温度の上限は好ましくは285℃であり、より好ましくは280℃であり、最も好ましくは275℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。
ダイ温度の上限は好ましくは320℃であり、より好ましくは300℃以下であり、さらに好ましくは280℃以下である。上記を越えると厚みが不均一となるほか、樹脂の劣化が起こり、ダイリップ汚れなどで外観不良となることがある。
冷却ロール温度の上限は好ましくは40℃であり、より好ましくは20℃以下である。上記を越えると溶融したポリエステル樹脂組成物が冷却固化する際の結晶化度が高くなりすぎて延伸が困難となることがある。冷却ロール温度の下限は好ましくは0℃であり、上記未満であると溶融したポリエステル樹脂組成物が冷却固化する際の結晶化抑制の効果が飽和することがある。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。
冷却ロール表面に溶融ポリエステル樹脂組成物をキャストした時、表面に高温の樹脂が接触するため冷却ロール表面の温度が上昇する。通常、チルロールは内部に配管を通して冷却水を流して冷却するが、充分な冷却水量を確保する、配管の配置を工夫する、配管にスラッジが付着しないようメンテナンスを行う、などして、チルロール表面の幅方向の温度差を少なくする必要がある。特に、多層化などの方法を用いずに低温で冷却する場合には注意が必要である。
このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。より好ましくは500μm以下であり、さらに好ましくは300μm以下である。
このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。より好ましくは500μm以下であり、さらに好ましくは300μm以下である。
上述における多層構造でのキャストは、少なくとも60層以上、好ましくは250層以上、更に好ましくは1000層以上で行う。層数が少ないと、未延伸シートの球晶サイズが大きくなり、延伸性の改善効果が小さいのみならず得られた二軸延伸フィルムの力学強度の低下や厚み精度の低下が生じる。
次に工程(4)の延伸方法について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、耐ピンホール性と耐破袋性の観点から面配向係数を高めやすいこと、フィルム厚みの幅方向の均一性を高めやすい点、製膜速度が速く生産性が高いという点から、は逐次二軸延伸が最も好ましい。
長手方向(以下、MD)の延伸温度の下限は好ましくは55℃であり、より好ましくは60℃である。55℃未満であると破断が起こりやすくなることがあるばかりか、低温での延伸により縦方向の配向が強くなるため、熱固定処理の際の収縮応力が大きくなることによって、幅方向の分子配向の歪みが大きくなり、結果として長手方向の直進引裂き性が低下することがある。MD延伸温度の上限は好ましくは100℃であり、より好ましくは95℃である。100℃を越えると配向がかからないため力学特性が低下することがある。
MD延伸倍率の下限は好ましくは2.5倍であり、特に好ましくは2.7倍である。上記未満であると、配向がかかりにくいため力学特性が低下することがある。
MD延伸倍率の上限は好ましくは3.8倍であり、より好ましくは3.4倍であり、特に好ましくは3.0倍である。上記を越えると力学強度や厚みムラ改善の効果が飽和することがある。
MD延伸倍率の上限は好ましくは3.8倍であり、より好ましくは3.4倍であり、特に好ましくは3.0倍である。上記を越えると力学強度や厚みムラ改善の効果が飽和することがある。
幅方向(以下、TD)の延伸温度の下限は好ましくは60℃であり、上記未満であると破断が起こりやすくなることがある。TD延伸温度の上限は好ましくは100℃であり、上記を越えると配向がかからないため力学特性が低下することがある。
TD延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.6倍であり、特に好ましくは3.7倍である。上記未満であると幅方向の配向度が小さくなるため力学強度や厚みムラが悪くなることがある。TD延伸倍率の上限は好ましくは5倍であり、より好ましくは4.6倍であり、特に好ましくは4.2倍である。上記を越えると力学強度や厚みムラ改善の効果が飽和することがある。
TD熱固定温度の下限は好ましくは185℃であり、より好ましくは190℃である。上記未満であると熱収縮率が大きくなり、保護層形成工程でフィルムが収縮してしまい、積層したガスバリア層が割れ、結果的にガスバリア性低下につながることがある。TD熱固定温度の上限は好ましくは210℃であり、上記を越えるとフィルムが融けてしまうほか、融けない場合でも著しく脆くなることがあるばかりか、MD方向の熱収縮率が小さくなり、保護層形成工程でフィルムが伸びてしまい、積層したガスバリア層が割れ、結果的にガスバリア性低下につながることがある。
TDリラックス率の下限は好ましくは0.5%であり、上記未満であると熱固定時に破断が起こりやすくなることがある。TDリラックス率の上限は好ましくは10%であり、上記を越えるとたるみなどが生じて厚みムラが発生することがあるばかりか、熱固定時の長手方向への収縮が大きくなる結果、端部の分子配向の歪みが大きくなり、幅方向で寸法安定性などが不均一となることがある。
[二軸配向ポリエステルフィルムの特性]
本発明の二軸配向ポリエステルフィルムでは、フィルム厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、さらに好ましくは8μmである。3μm未満であるとフィルムとしての強度が不足することがある。
フィルム厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μmを越えると厚くなりすぎて本発明の目的における加工が困難となることがある。
本発明の二軸配向ポリエステルフィルムでは、フィルム厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、さらに好ましくは8μmである。3μm未満であるとフィルムとしての強度が不足することがある。
フィルム厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μmを越えると厚くなりすぎて本発明の目的における加工が困難となることがある。
本発明の二軸配向PBTフィルムの固有粘度の下限は好ましくは0.80dl/gであり、より好ましくは0.85dl/gであり、さら好ましくは0.90dl/gであり、特に好ましくは0.95dl/gである。上記以上であるとインパクト強度や耐突き刺し性などが改善される。
二軸配向PBTフィルムの固有粘度の上限は好ましくは1.2dl/gであり、さらに好ましくは1.1dl/gである。上記を超えると延伸時の応力が高くなりすぎ、製膜性が悪化する。
二軸配向PBTフィルムの固有粘度の上限は好ましくは1.2dl/gであり、さらに好ましくは1.1dl/gである。上記を超えると延伸時の応力が高くなりすぎ、製膜性が悪化する。
本発明の二軸配向PBTフィルムは、フィルム全域に亘って同一組成の樹脂があることが好ましい。
本発明の二軸配向ポリエステルフィルムの面配向度(ΔP)の下限は好ましくは0.145であり、より好ましくは0.148であり、さらに好ましくは0.151である。上記未満であると面配向が弱く、突き刺し強度が低下し、耐破袋性が低下することがある。
本発明の二軸配向ポリエステルフィルムのΔPの上限は好ましくは0.200である。上記を超えると改善の効果が飽和することがある。
本発明の二軸配向ポリエステルフィルムのΔPの上限は好ましくは0.200である。上記を超えると改善の効果が飽和することがある。
本発明の二軸配向ポリエステルフィルムのMD方向における150℃で15分間加熱後の熱収縮率の上限は5.0%であり、好ましくは4.0%であり、さらに好ましくは3.3%である。上記範囲内であると、張力のかかる保護層形成工程においてフィルムの伸縮が抑えられ、ガスバリア層の割れによるガスバリア性の低下を抑制することができる。上記を超えると、保護層形成工程でフィルムが収縮し、ガスバリア層の割れを引き起こし結果ガスバリア性が低下してしまうことがある。
本発明の二軸配向ポリエステルフィルムのMD方向における150℃で15分間加熱後の熱収縮率の下限は1.0%であり、2.0%が特に好ましい。上記範囲内であると、張力のかかる保護層形成工程においてフィルムの伸縮が抑えられ、ガスバリア層の割れによるガスバリア性の低下を抑制することができる。上記未満であると保護層形成工程でフィルムが伸び、ガスバリア層の割れを引き起こし結果ガスバリア性が低下してしまうことがある。
本発明の二軸配向ポリエステルフィルムのMD方向における150℃で15分間加熱後の熱収縮率の下限は1.0%であり、2.0%が特に好ましい。上記範囲内であると、張力のかかる保護層形成工程においてフィルムの伸縮が抑えられ、ガスバリア層の割れによるガスバリア性の低下を抑制することができる。上記未満であると保護層形成工程でフィルムが伸び、ガスバリア層の割れを引き起こし結果ガスバリア性が低下してしまうことがある。
本発明の二軸配向ポリエステルフィルムのTMAを用いて測定した保護層形成工程を想定したMD方向における120℃での寸法変化率の上限は4.0%であり、好ましくは3.0%である。上記範囲内であると、張力のかかる保護層形成工程においてフィルムの伸びが抑えられ、ガスバリア層の割れによるガスバリア性の低下を抑制することができる。上記を超えると、保護層形成工程でフィルムが伸び、ガスバリア層の割れを引き起こし結果ガスバリア性が低下してしまうことがある。本発明の二軸配向ポリエステルフィルムのMD方向における120℃での寸法変化率の下限は-2.0%であり、好ましくは0%である。上記範囲内であると、張力のかかる保護層形成工程においてフィルムの収縮が抑えられ、ガスバリア層の割れによるガスバリア性の低下を抑制することができる。上記未満であると保護層形成工程でフィルムが収縮し、ガスバリア層の割れを引き起こし結果ガスバリア性が低下してしまうことがある。
本発明の二軸配向ポリエステルフィルムの突き刺し強度の下限は好ましくは、8Nである。上記未満であると袋として用いる際に強度が不足することがある。突き刺し強度の上限は好ましくは20Nである。上記を越えると改善の効果が飽和することがある。
本発明の二軸配向ポリエステルフィルムの加工性を向上させるための手段として、フィルムの少なくとも片面の滑り性を調整することが有効である。フィルムの少なくとも片面の動摩擦係数の上限としては、0.4以下が好ましく、0.39以下が好ましく、0.38以下が最も好ましい。
本発明の二軸配向ポリエステルフィルムの厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。 上記を超えるとフィルムに印刷を施した際に、印刷された文字や画像の品位を損ねる可能性がある。
本発明の二軸配向ポリエステルフィルムには、印刷層を積層していてもよい。
印刷層を形成する印刷インクとしては、水性および溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。
印刷層を形成する印刷インクとしては、水性および溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。
印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等公知の乾燥方法が使用できる。
また、本発明の二軸配向ポリエステルフィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。
本発明の二軸配向ポリエステルフィルムの少なくとも片面に無機薄膜層やアルミ箔のような金属箔などのガスバリア層を設けることができる。
ガスバリア層として無機薄膜層を用いる場合の無機薄膜層としては、金属または無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。
この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の重量比でAlが20~70%の範囲であることが好ましい。Al濃度が20%未満であると、水蒸気ガスバリア性が低くなる場合がある。一方、70%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl2O3等の各種アルミニウム酸化物又はそれらの混合物である。
無機薄膜層の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。
無機薄膜層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiO2とAl2O3の混合物、あるいはSiO2とAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。さらに、上記無機薄膜層上に印刷層を積層していてもよい。
本発明においては、前記ガスバリア層の上に保護層を設けることが好ましい。金属酸化物からなるガスバリア層は完全に密な膜ではなく、微小な欠損部分が点在している。金属酸化物層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、金属酸化物層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。
前記保護層としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。保護層を形成させる際に使用する溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。
前記のウレタン樹脂は、ウレタン結合の極性基が無機薄膜層と相互作用するとともに、非晶部分の存在により柔軟性をも有するため、屈曲負荷がかかった際にも無機薄膜層へのダメージを抑えることができるため好ましい。
ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の無機薄膜上に均一に堆積することができるため、コート外観が良好となる。
ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の無機薄膜上に均一に堆積することができるため、コート外観が良好となる。
前記のウレタン樹脂は、ガラス転移温度(Tg)が80℃以上であることが好ましく、より好ましくは90℃以上である。Tgを80℃以上にすることで、湿熱処理過程(昇温~保温~降温)における分子運動による保護層の膨潤を低減できる。
前記のウレタン樹脂は、ガスバリア性向上の面から、芳香族または芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。
その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。
その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。
本発明においては、ウレタン樹脂中の芳香族または芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分(F)100モル%中、50モル%以上(50~100モル%)の範囲とすることが好ましい。芳香族または芳香脂肪族ジイソシアネートの合計量の割合は、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。このような樹脂として、三井化学社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることが出来る。芳香族または芳香脂肪族ジイソシアネートの合計量の割合が50モル%未満であると、良好なガスバリア性が得られない可能性がある。
前記ウレタン樹脂は、無機薄膜層との親和性向上の観点から、カルボン酸基(カルボキシル基)を有することが好ましい。ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入すればよい。また、カルボン酸基含有ウレタン樹脂を合成後、塩形成剤により中和すれば、水分散体のウレタン樹脂を得ることができる。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等のトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリン等のN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミン等のN-ジアルキルアルカノールアミン類等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
本発明の二軸配向ポリエステルフィルムには他素材の層を積層しても良く、その方法として、二軸配向ポリエステルフィルムを作製後に貼り合わせるか、製膜中に貼り合わせることができる。
本発明の二軸配向ポリエステルフィルムは、例えば、本発明の二軸配向ポリエステルフィルムに無機蒸着層を設け、更にシーラントと呼ばれるヒートシール性樹脂層を形成し、包装材料として使用することができる。ヒートシール性樹脂層の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が充分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂。エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。
シーラント層は、単層フィルムであってもよく、多層フィルムであってもよく、必要とされる機能に応じて選択すればよい。例えば、防湿性を付与する点では、エチレン-環状オレフィン共重合体やポリメチルペンテン等の樹脂を介在させた多層フィルムが使用できる。 また、シーラント層は、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加剤が配合されてもよい。
シーラント層の厚さは、10~100μmが好ましく、20~60μmがより好ましい。
シーラント層の厚さは、10~100μmが好ましく、20~60μmがより好ましい。
本発明の二軸配向ポリエステルフィルムは、包装材料用の積層体の基材フィルムとして使用することができる。積層体の層構成としては、例えば、基材層/ガスバリア層/保護層、基材層/ガスバリア層/保護層/シーラント層、基材層/ガスバリア層・BR>^保護層/樹脂層/シーラント層、基材層/樹脂層/ガスバリア層/保護層/シーラント層、基材層/ガスバリア層/保護層/印刷層/シーラント層、基材層/印刷層/ガスバリア層/保護層/シーラント層、基材層/ガスバリア層/保護層/樹脂層/印刷層/シーラント層、基材層/樹脂層/印刷層/ガスバリア層/保護層/シーラント層、基材層/印刷層/ガスバリア層/保護層/樹脂層/シーラント層、基材層/印刷層/樹脂層/ガスバリア層/保護層/シーラント層、基材層/樹脂層/ガスバリア層/保護層/印刷層/シーラント層、等が挙げられる。
本発明の二軸配向ポリエステルフィルムを用いた積層体は、包装製品、各種ラベル材料、蓋材、シート成型品、ラミネートチューブ等の用途に好適に使用することができる。特に、包装用袋(例えば、ピロー袋、スタンディングパウチや4方パウチ等のパウチ)に用いられる。積層体の厚さは、その用途に応じて、適宜決定することができる。例えば、5~500μm、好ましくは10~300μm程度の厚みのフィルムないしシート状の形態で用いられる。
次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。
[120℃での寸法変化率]
島津製作所社製のTMA(サーマルメカニカルアナライザー)を用いて室温から200℃まで昇温して測定した。ただし、昇温速度は10℃/分、測定サンプルの幅は4mm、測定サンプルの長さは10mm、初期張力は400mNとした。
得られた温度変化曲線の120℃における寸法変化率(%)を読み取った。
[120℃での寸法変化率]
島津製作所社製のTMA(サーマルメカニカルアナライザー)を用いて室温から200℃まで昇温して測定した。ただし、昇温速度は10℃/分、測定サンプルの幅は4mm、測定サンプルの長さは10mm、初期張力は400mNとした。
得られた温度変化曲線の120℃における寸法変化率(%)を読み取った。
[フィルムの厚み]
JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
[厚み精度]
得られたフィルムロールの幅方向にフィルム片を切り出し、5cmピッチでダイアルゲージを用いて測定したときの最大厚みをTmax、最少厚みをTmin、平均厚みをTaveとし、下記の式(1)より厚み精度を求めた。
厚み精度(%)={(Tmax-Tmin)/Tave}×100% (1)
得られたフィルムロールの幅方向にフィルム片を切り出し、5cmピッチでダイアルゲージを用いて測定したときの最大厚みをTmax、最少厚みをTmin、平均厚みをTaveとし、下記の式(1)より厚み精度を求めた。
厚み精度(%)={(Tmax-Tmin)/Tave}×100% (1)
[フィルムの面配向度ΔP]
サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(Nx)、幅方向の屈折率(Ny)、厚み方向の屈折率(Nz)を測定し、式(2)の計算式によりΔPを算出した。
配向係数(ΔP)=(Nx+Ny)/2 -Nz (2)
サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(Nx)、幅方向の屈折率(Ny)、厚み方向の屈折率(Nz)を測定し、式(2)の計算式によりΔPを算出した。
配向係数(ΔP)=(Nx+Ny)/2 -Nz (2)
[熱収縮率]
ポリエステルフィルムの熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2151-2006.21に記載の寸法変化試験法で測定した。試験片は21.1(a)に記載に従い使用した。
ポリエステルフィルムの熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2151-2006.21に記載の寸法変化試験法で測定した。試験片は21.1(a)に記載に従い使用した。
[突き刺し強度]
ポリエステルフィルムの突き刺し強度はJIS-Z1707に記載の試験法で測定した。
ポリエステルフィルムの突き刺し強度はJIS-Z1707に記載の試験法で測定した。
[ガスバリア層の作製]
後述する実施例および比較例に示した基材層に酸化アルミニウムの蒸着を行った。フィルムを連続式真空蒸着機の巻出し側にセットし、冷却金属ドラムを介して走行させフィルムを巻き取る。この時、連続式真空蒸着機を10-4Torr以下に減圧し、冷却ドラムの下部よりアルミナ製るつぼに純度99.99%の金属アルミニウムを装填し、金属アルミニウムを加熱蒸着させ、その蒸気中に酸素を供給し酸化反応させながらフィルム上に付着堆積させ、厚さ30nmの酸化アルミニウム膜を形成した。
後述する実施例および比較例に示した基材層に酸化アルミニウムの蒸着を行った。フィルムを連続式真空蒸着機の巻出し側にセットし、冷却金属ドラムを介して走行させフィルムを巻き取る。この時、連続式真空蒸着機を10-4Torr以下に減圧し、冷却ドラムの下部よりアルミナ製るつぼに純度99.99%の金属アルミニウムを装填し、金属アルミニウムを加熱蒸着させ、その蒸気中に酸素を供給し酸化反応させながらフィルム上に付着堆積させ、厚さ30nmの酸化アルミニウム膜を形成した。
[保護層の作製]
ワイヤーバーコート法によって、前述で蒸着され形成されたガスバリア層の無機蒸着薄膜層上に水60重量%、イソプロパノール30重量%、ウレタン樹脂10重量%を混合した溶液を塗布し、150℃で30秒乾燥させ、保護層を得た。乾燥後の塗布量は0.190g/m2(固形分として)であった。
ウレタン樹脂:ウレタン樹脂として、市販のメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WPB341」;固形分30%)を用意した。このウレタン樹脂の酸化25mgKOH/gであり、DSCで測定したガラス転移温度は130℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、85モル%であった。
ワイヤーバーコート法によって、前述で蒸着され形成されたガスバリア層の無機蒸着薄膜層上に水60重量%、イソプロパノール30重量%、ウレタン樹脂10重量%を混合した溶液を塗布し、150℃で30秒乾燥させ、保護層を得た。乾燥後の塗布量は0.190g/m2(固形分として)であった。
ウレタン樹脂:ウレタン樹脂として、市販のメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WPB341」;固形分30%)を用意した。このウレタン樹脂の酸化25mgKOH/gであり、DSCで測定したガラス転移温度は130℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、85モル%であった。
[評価用ラミネート積層体の作製]
前述の基材フィルム上にガスバリア層/保護層を備えた積層フィルムの保護層上に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(重量比)の割合で配合)を用いてドライラミネート法により、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネートガスバリア性積層体を得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。
前述の基材フィルム上にガスバリア層/保護層を備えた積層フィルムの保護層上に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(重量比)の割合で配合)を用いてドライラミネート法により、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネートガスバリア性積層体を得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。
[レトルト処理後の耐破袋性]
前述のラミネート積層体を15cm四方の大きさにカットし、シーラントが内側になるように2枚を重ね合わせ、3方を160℃のシール温度、シール幅1.0cmにてヒートシールすることで内寸13cmの3方シール袋を得た。
得られた3方シール袋に水250mLを充填した後、ヒートシールにて4方目の口を閉じ、水の充填された4方シール袋を作製した。
得られた4方シール袋に対して、130℃の熱水中に30分間保持する湿熱処理を行った後、室温5℃、湿度35%R.H.の環境下、高さ100cmの位置からコンクリート板の上に落下させ、破れやピンホールが発生するまでの落下回数を数えた。
前述のラミネート積層体を15cm四方の大きさにカットし、シーラントが内側になるように2枚を重ね合わせ、3方を160℃のシール温度、シール幅1.0cmにてヒートシールすることで内寸13cmの3方シール袋を得た。
得られた3方シール袋に水250mLを充填した後、ヒートシールにて4方目の口を閉じ、水の充填された4方シール袋を作製した。
得られた4方シール袋に対して、130℃の熱水中に30分間保持する湿熱処理を行った後、室温5℃、湿度35%R.H.の環境下、高さ100cmの位置からコンクリート板の上に落下させ、破れやピンホールが発生するまでの落下回数を数えた。
[積層体のガスバリア性:酸素透過度(OTR)]
前述のラミネート積層体に対して、JIS-K7126-2の電解センサー法(付属書A)に準じて、酸素透過度測定装置(MOCON社製「OX-TRAN 2/20」)を用い、温度23℃、相対湿度65%の雰囲気下で、常態での酸素透過度を測定した。なお、酸素透過度の測定は、基材フィルム側からシーラント側に酸素が透過する方向で行った。
前述のラミネート積層体に対して、JIS-K7126-2の電解センサー法(付属書A)に準じて、酸素透過度測定装置(MOCON社製「OX-TRAN 2/20」)を用い、温度23℃、相対湿度65%の雰囲気下で、常態での酸素透過度を測定した。なお、酸素透過度の測定は、基材フィルム側からシーラント側に酸素が透過する方向で行った。
[積層体のガスバリア性:水蒸気透過度(WVTR)]
前述のラミネート積層体に対して、JIS-K7129-1992 B法に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-WIA」)を用い、温度40度、相対湿度90%の雰囲気下で、常態での水蒸気透過度を測定した。なお、水蒸気透過度の測定は、基材層フィルム側からシーラント側に水蒸気が透過する方向で行った。
前述のラミネート積層体に対して、JIS-K7129-1992 B法に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-WIA」)を用い、温度40度、相対湿度90%の雰囲気下で、常態での水蒸気透過度を測定した。なお、水蒸気透過度の測定は、基材層フィルム側からシーラント側に水蒸気が透過する方向で行った。
[実施例1]
一軸押出機を用い、PBT樹脂(1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)とテレフタル酸//エチレングリコール=100//100(モル%)からなる固有粘度0.62dl/gのPET樹脂、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として0.16重量%なるように配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。270℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
次いで、60℃で長手方向(MD)に2.9倍ロール延伸し、次いで、テンターに通して85℃で幅方向(TD)に4.3倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、両端の把持部を10%ずつ切断除去して厚みが15μmのフィルムのミルロールを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
一軸押出機を用い、PBT樹脂(1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)とテレフタル酸//エチレングリコール=100//100(モル%)からなる固有粘度0.62dl/gのPET樹脂、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として0.16重量%なるように配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。270℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
次いで、60℃で長手方向(MD)に2.9倍ロール延伸し、次いで、テンターに通して85℃で幅方向(TD)に4.3倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、両端の把持部を10%ずつ切断除去して厚みが15μmのフィルムのミルロールを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
[実施例2~6]
実施例1において、原料組成、製膜条件を表1に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。
実施例1において、原料組成、製膜条件を表1に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。
[比較例1~8]
一軸押出機を用い、表2記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表2に示した。
一軸押出機を用い、表2記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表2に示した。
(比較例1)
熱固定温度を表2に記載の値に変更した以外は実施例1と同様の方法で実施した。得られたフィルムの耐ピンホール性は良好であったが、突き刺し強度が6.5Nであり、耐破袋性が60%と不良であった。また、寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。結果を表2に示す。
熱固定温度を表2に記載の値に変更した以外は実施例1と同様の方法で実施した。得られたフィルムの耐ピンホール性は良好であったが、突き刺し強度が6.5Nであり、耐破袋性が60%と不良であった。また、寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。結果を表2に示す。
(比較例2)
熱固定温度を表2に記載の値に変更した以外は実施例1と同様の方法で実施した。得られたフィルムの耐ピンホール性および耐破袋性は良好であったが、熱収縮率が5.5%と大きく寸法変化率が-2.20%であるため、ガスバリア性が不良であった。
熱固定温度を表2に記載の値に変更した以外は実施例1と同様の方法で実施した。得られたフィルムの耐ピンホール性および耐破袋性は良好であったが、熱収縮率が5.5%と大きく寸法変化率が-2.20%であるため、ガスバリア性が不良であった。
(比較例3)
ポリエステル樹脂組成を表2に記載の値に変更した以外は実施例1と同様の方法で実施した。得られたフィルムのガスバリア性は良好であったが、PBTの含有量が少ないため、得られたフィルムの突き刺し強度は7.2Nであり、耐破袋性および耐ピンホール性が不良であった。
ポリエステル樹脂組成を表2に記載の値に変更した以外は実施例1と同様の方法で実施した。得られたフィルムのガスバリア性は良好であったが、PBTの含有量が少ないため、得られたフィルムの突き刺し強度は7.2Nであり、耐破袋性および耐ピンホール性が不良であった。
(比較例4)
表2に記載の方法で実施した。得られたフィルムの突き刺し強度が8.9Nであり、耐ピンホール性および耐破袋性は良好であったが、寸法変化率が4.30%と大きいため、ガスバリア性が不良であった。
表2に記載の方法で実施した。得られたフィルムの突き刺し強度が8.9Nであり、耐ピンホール性および耐破袋性は良好であったが、寸法変化率が4.30%と大きいため、ガスバリア性が不良であった。
(比較例5)
表2に記載の方法で実施した。得られたフィルムの耐ピンホール性および耐破袋性は良好であったが、寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。
表2に記載の方法で実施した。得られたフィルムの耐ピンホール性および耐破袋性は良好であったが、寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。
(比較例6)
表2に記載の方法で実施した。得られたフィルムの突き刺し強度が7.3Nであり耐破袋性および耐ピンホール性が不良であった。また、寸法変化率が4.40%と大きいため、ガスバリア性が不良であった。
表2に記載の方法で実施した。得られたフィルムの突き刺し強度が7.3Nであり耐破袋性および耐ピンホール性が不良であった。また、寸法変化率が4.40%と大きいため、ガスバリア性が不良であった。
(比較例7)
表2に記載の方法で実施した。得られたフィルムの突き刺し強度が7.5Nであり耐破袋性および耐ピンホール性が不良であった。また、寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。
表2に記載の方法で実施した。得られたフィルムの突き刺し強度が7.5Nであり耐破袋性および耐ピンホール性が不良であった。また、寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。
(比較例8)
表2に記載の方法で実施した。得られたフィルムの突き刺し強度は7.3Nであり耐破袋性および耐ピンホール性が不良であった。また、熱収縮率が0.8%で小さく寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。
表2に記載の方法で実施した。得られたフィルムの突き刺し強度は7.3Nであり耐破袋性および耐ピンホール性が不良であった。また、熱収縮率が0.8%で小さく寸法変化率が4.10%と大きいため、ガスバリア性が不良であった。
(参考例1)
実施例1において、メルトラインにスタティックミキサーに導入せずに、他は同様に製膜した。製膜中、フィルムの破断が頻発し50m以上の長さでフィルムが得られなかった。得られたフィルムの厚み精度は、30%以上であった。
実施例1において、メルトラインにスタティックミキサーに導入せずに、他は同様に製膜した。製膜中、フィルムの破断が頻発し50m以上の長さでフィルムが得られなかった。得られたフィルムの厚み精度は、30%以上であった。
(参考例2)
市販のインフレーション方式で製膜されたPBTを主成分とする二軸配向フィルム(全厚み15μm、幅840mm)について、厚み精度を測定した。厚み精度は、28%であり、本発明のフィルムより劣っていた。
市販のインフレーション方式で製膜されたPBTを主成分とする二軸配向フィルム(全厚み15μm、幅840mm)について、厚み精度を測定した。厚み精度は、28%であり、本発明のフィルムより劣っていた。
本発明によれば、耐ピンホール性、ボイル処理やレトルト処理された後での耐破袋性に優れ、かつ保護層形成工程でのガスバリア層の割れが少なくガスバリア性に優れる積層ポリエステルフィルムを得ることができ、食品包装や医薬品包装材料として広く適用でき得ることから、産業界に大きく寄与することが期待される。
Claims (3)
- ポリブチレンテレフタレート樹脂(A)を60~100重量%、ポリブチレンテレフタレート樹脂(A)以外のポリエステル樹脂(B)を0~40重量%含有するポリエステル樹脂組成物からなり、(a)及び(b)を同時に満足する二軸配向ポリエステルフィルム。
(a)TMA(サーマルメカニカルアナライザー)を用いて測定した温度寸法変化曲線のフィルム原長に対する120℃での寸法変化率がフィルムの長手方向において-2.0%~4.0%である。
(b)フィルムの長手方向の150℃における熱収縮率が1.0%~5.0%である。 - JIS-Z1707に準じた突き刺し強さ試験で測定した突き刺し強度の値が8.0N以上である請求項1に記載の二軸配向ポリエステルフィルム。
- フィルムの全幅での厚み精度が1~20%である請求項1又は2に記載の二軸配向ポリエステルフィルム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019566466A JPWO2019142781A1 (ja) | 2018-01-22 | 2019-01-15 | 二軸配向ポリエステルフィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018008055 | 2018-01-22 | ||
JP2018-008055 | 2018-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019142781A1 true WO2019142781A1 (ja) | 2019-07-25 |
Family
ID=67302389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000918 WO2019142781A1 (ja) | 2018-01-22 | 2019-01-15 | 二軸配向ポリエステルフィルム |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2019142781A1 (ja) |
TW (1) | TW201936734A (ja) |
WO (1) | WO2019142781A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031712A1 (ja) * | 2018-08-08 | 2020-02-13 | 東洋紡株式会社 | ガスバリア性積層フィルムおよびその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250624A (ja) * | 2003-02-21 | 2004-09-09 | Teijin Dupont Films Japan Ltd | 透明ポリエステルフィルム |
WO2005017007A1 (ja) * | 2003-08-19 | 2005-02-24 | Toyo Boseki Kabushiki Kaisya | ポリエステルフィルム |
WO2016171172A1 (ja) * | 2015-04-24 | 2016-10-27 | 東洋紡株式会社 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
WO2018159157A1 (ja) * | 2017-02-28 | 2018-09-07 | 東洋紡株式会社 | 積層フィルム |
-
2019
- 2019-01-15 WO PCT/JP2019/000918 patent/WO2019142781A1/ja active Application Filing
- 2019-01-15 JP JP2019566466A patent/JPWO2019142781A1/ja active Pending
- 2019-01-18 TW TW108102011A patent/TW201936734A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250624A (ja) * | 2003-02-21 | 2004-09-09 | Teijin Dupont Films Japan Ltd | 透明ポリエステルフィルム |
WO2005017007A1 (ja) * | 2003-08-19 | 2005-02-24 | Toyo Boseki Kabushiki Kaisya | ポリエステルフィルム |
WO2016171172A1 (ja) * | 2015-04-24 | 2016-10-27 | 東洋紡株式会社 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
WO2018159157A1 (ja) * | 2017-02-28 | 2018-09-07 | 東洋紡株式会社 | 積層フィルム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031712A1 (ja) * | 2018-08-08 | 2020-02-13 | 東洋紡株式会社 | ガスバリア性積層フィルムおよびその製造方法 |
JPWO2020031712A1 (ja) * | 2018-08-08 | 2020-08-20 | 東洋紡株式会社 | ガスバリア性積層フィルムおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019142781A1 (ja) | 2020-07-27 |
TW201936734A (zh) | 2019-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6962364B2 (ja) | 積層フィルム | |
JP6819816B2 (ja) | ポリエステルフィルムロール | |
JPWO2018225559A1 (ja) | 二軸配向ポリエステルフィルム | |
JP6927336B2 (ja) | ガスバリア性積層フィルムおよびその製造方法 | |
JPWO2020175067A1 (ja) | 二軸配向ポリエステルフィルム、及び、二軸配向ポリエステルフィルムの製造方法 | |
WO2020080131A1 (ja) | 積層フィルム | |
JP7006445B2 (ja) | ポリエステルフィルムおよびガスバリア性積層フィルム | |
JP7060842B2 (ja) | ラミネート積層体 | |
JP6879473B2 (ja) | 二軸配向ポリエステルフィルム | |
WO2018179726A1 (ja) | 二軸配向ポリエステルフィルム及びその製造方法 | |
WO2019142781A1 (ja) | 二軸配向ポリエステルフィルム | |
JP7574646B2 (ja) | 積層フィルム | |
JP7024645B2 (ja) | ポリエステル系フィルムロール | |
JP7310876B2 (ja) | ポリエステルフィルムおよびガスバリア性積層フィルム | |
JP6826784B2 (ja) | 二軸配向ポリエステルフィルム、及び、二軸配向ポリエステルフィルムの製造方法 | |
JP2019171587A (ja) | ポリエステルフィルムおよびガスバリア性積層フィルム | |
TW202102367A (zh) | 氣體阻隔性聚醯胺膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19740822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019566466 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19740822 Country of ref document: EP Kind code of ref document: A1 |