WO2016171172A1 - 二軸延伸ポリエステルフィルムおよびその製造方法 - Google Patents
二軸延伸ポリエステルフィルムおよびその製造方法 Download PDFInfo
- Publication number
- WO2016171172A1 WO2016171172A1 PCT/JP2016/062515 JP2016062515W WO2016171172A1 WO 2016171172 A1 WO2016171172 A1 WO 2016171172A1 JP 2016062515 W JP2016062515 W JP 2016062515W WO 2016171172 A1 WO2016171172 A1 WO 2016171172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- acid
- biaxially stretched
- resin
- pbt
- Prior art date
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229920005989 resin Polymers 0.000 claims abstract description 63
- 239000011347 resin Substances 0.000 claims abstract description 63
- 229920001707 polybutylene terephthalate Polymers 0.000 claims abstract description 57
- -1 polybutylene terephthalate Polymers 0.000 claims abstract description 23
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 13
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 13
- 229920001225 polyester resin Polymers 0.000 claims abstract description 12
- 239000004645 polyester resin Substances 0.000 claims abstract description 12
- 239000011342 resin composition Substances 0.000 claims abstract description 12
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 12
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims abstract description 8
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims abstract description 8
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 claims abstract description 8
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims abstract description 8
- HSSYVKMJJLDTKZ-UHFFFAOYSA-N 3-phenylphthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(O)=O HSSYVKMJJLDTKZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000001361 adipic acid Substances 0.000 claims abstract description 4
- 235000011037 adipic acid Nutrition 0.000 claims abstract description 4
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 claims abstract description 4
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 claims abstract description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011112 polyethylene naphthalate Substances 0.000 claims abstract description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 47
- 239000012530 fluid Substances 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 13
- 238000004806 packaging method and process Methods 0.000 abstract description 14
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 115
- 239000010410 layer Substances 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 229920000728 polyester Polymers 0.000 description 15
- 230000003068 static effect Effects 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- 239000010409 thin film Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- 229920006395 saturated elastomer Polymers 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000314 lubricant Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 239000000806 elastomer Substances 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009998 heat setting Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/006—PBT, i.e. polybutylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/26—Elastomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Definitions
- the present invention relates to a biaxially stretched polyester film that has film strength, impact resistance, transparency, and excellent tear straightness, and can be particularly suitably used for retort pouch packaging and water packaging.
- PBT resin Polybutylene terephthalate resin
- PBT resin Polybutylene terephthalate resin
- PBT resin has been used as an engineering plastic from the past because of its excellent mechanical properties and impact resistance, as well as gas barrier properties and chemical resistance. Especially, it has a high crystallization speed. In terms of productivity, it is used as a useful material.
- unstretched PBT resin films have been used also in film fields such as converting films, food packaging films, and drawing films. In recent years, those with improved mechanical properties and impact resistance have been demanded, and in order to bring out the properties of the original PBT resin, studies have been made on a film obtained by biaxially stretching the PBT resin.
- Patent Document 1 at least a PBT resin, or a packaging material including a biaxially stretched PBT film made of any one of a polyester resin composition in which a polyethylene terephthalate resin is blended in an amount of 30 wt% or less with respect to a PBT resin.
- the number of pinholes when bent 1000 times under 5 ° C. ⁇ 40% RH condition is 10 or less, so that it has flex pinhole resistance and impact resistance and has excellent incense retention. It is disclosed that a liquid filling packaging material having both properties can be obtained.
- Patent Document 2 a PBT resin in which a polyester elastomer is blended in an amount of 1 to 20% by weight or less with respect to a PBT resin as a main raw material as a method for improving straight tearability in a biaxially stretched PBT film.
- a method of simultaneously and longitudinally and biaxially stretching using a composition and under specific stretching conditions is disclosed.
- Patent Document 3 and Patent Document 4 for example, an unstretched polyester sheet having a thickness of 15 to 2500 ⁇ m cast after the same composition is multilayered into 60 layers or more is sequentially biaxially stretched to increase the degree of plane orientation.
- a biaxially stretched PBT film having excellent thickness accuracy and excellent impact resistance and puncture resistance can be obtained.
- the biaxially stretched PBT film obtained by these methods may tear straight when tearing in the longitudinal direction due to distortion in the molecular orientation main axis in the width direction during biaxial stretching. There was a problem that it could not be done. For this reason, packaging bags made of these films have poor tear straightness when opened manually, and the contents may be scattered or damaged when opened.
- the present invention has been made against the background of the problems of the prior art. That is, the object of the present invention is excellent in straight tearing while maintaining film strength, impact resistance, and transparency, and can be used particularly preferably for retort pouch packaging and water packaging, especially biaxial stretching. It is to provide a polyester film.
- the present invention relates to polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT) as polyester resins other than PBT resin by 60% by weight or more of polybutylene terephthalate.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PBN polybutylene naphthalate
- PPT polypropylene terephthalate
- thermoplastic resins containing resins selected from PBT resins copolymerized with dicarboxylic acids such as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, and sebacic acid
- dicarboxylic acids such as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, and sebacic acid
- a biaxially stretched polyester film comprising the composition,
- the biaxially stretched polyester film is characterized in that the angle formed by the molecular chain principal axis with respect to the film width direction is 30 ° or less and the following conditions (1) to (3) are satisfied simultaneously.
- Nx is a refractive index in the film longitudinal direction
- Ny is a refractive index in the film width direction.
- the haze value per thickness of the film is preferably 0.35% / ⁇ m or less.
- Step (1) A thermoplastic resin composition containing 90% by weight or more of polybutylene terephthalate resin is melted to form a molten fluid.
- Step (2) A laminated fluid having the theoretical number of layers of 60 or more made of the molten fluid is formed.
- Step (3) The laminated fluid is discharged from a die and brought into contact with a cooling roll to be solidified to form a laminated body.
- the biaxial stretching is a sequential biaxial stretching method.
- the present inventors have a biaxially stretched polyester film having film strength, impact resistance, transparency, excellent tearing straightness, and particularly suitable for retort pouch packaging and water packaging. It became possible to get.
- a component that impairs the transparency of the film such as a polyester elastomer, is not added, the obtained film has particularly excellent transparency.
- the polyester thermoplastic resin composition used in the present invention is mainly composed of PBT resin, and the content of PBT resin is preferably 60% by mass or more, more preferably 70% by mass or more, and further 90% by mass. % Or more is preferable. If it is less than 60% by mass, impact strength and pinhole resistance are lowered, and the film properties are not sufficient.
- the PBT resin used as the main constituent component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 as terephthalic acid as the dicarboxylic acid component. Mol%.
- 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably 1,4-butane during polymerization. Except for the by-product produced by the ether bond of the diol, it is not included.
- the polyester thermoplastic resin composition used in the present invention may contain a polyester resin other than the PBT resin for the purpose of adjusting the film forming property when biaxial stretching is performed and the mechanical properties of the obtained film.
- Polyester resins (B) other than PBT resins include polyethylene resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT), as well as isophthalic acid and orthophthalic acid.
- Naphthalene dicarboxylic acid Naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, cyclohexane dicarboxylic acid, adipic acid, azelaic acid, PBT resin copolymerized with dicarboxylic acid such as sebacic acid.
- the amount of copolymerization component in the copolymerized PBT resin is 5 wt% or more with respect to the whole PBT resin. However, those containing polyalkylene oxide are not suitable.
- the upper limit of the amount of the polyester resin other than the PBT resin is preferably 40% by mass or less, more preferably 30% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less. If the added amount of polyester resin other than PBT resin exceeds 40% by mass, the mechanical properties as PBT resin are impaired, impact strength, bag-breaking resistance, pinhole resistance become insufficient, transparency and barrier sexuality may decrease.
- the upper limit of the amount of the polyester resin other than the PBT resin is preferably 10% by mass or less, more preferably 5% by mass or less. If the amount of polyester resin other than PBT resin exceeds 10% by mass, the mechanical properties as PBT resin are impaired, impact strength, bag-breaking resistance, and pinhole resistance become insufficient, as well as transparency and barrier. Sexuality may decrease.
- the lower limit of the melting temperature of the polyester-based thermoplastic resin composition is preferably 200 ° C., and if it is lower than 200 ° C., ejection may become unstable.
- the upper limit of the resin melting temperature is preferably 300 ° C., and if it exceeds 300 ° C., the PBT resin may be deteriorated.
- the polyester-based thermoplastic resin composition may contain conventionally known additives such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber as necessary.
- lubricant type in addition to inorganic lubricants such as silica, calcium carbonate, and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica is particularly preferable in terms of reducing haze. By these, transparency and slipperiness can be expressed.
- the lower limit of the lubricant concentration in the polyester-based thermoplastic resin composition is preferably 100 ppm, and if it is less than 100 ppm, the slipping property may be lowered.
- the upper limit of the lubricant concentration is preferably 20000 ppm, and if it exceeds 20000 ppm, the transparency may be lowered.
- the upper limit of the orientation axis angle of the film of the present invention is preferably 30 °, more preferably 28 °, and further preferably 25 °.
- the orientation angle of the molecular chain principal axis with respect to the main orientation direction of the polyester film is 30 ° or less, the reason why the longitudinal linear tearability is excellent is not clear, but the polyester on the front and back sides that forms the packaging bag when it is made into a packaging bag Since the difference in the orientation direction of the molecular chain principal axes of the film can be reduced, it is estimated that the tearing is small and the linear tearability is excellent.
- the phenomenon that the orientation angle of the molecular chain principal axis exceeds 20 ° is grasped by a clip when the film is formed by stretching in the width direction using a tenter after stretching in the longitudinal direction, particularly in the sequential biaxial stretching method.
- the film is slit (cut) from a portion close to the end in the width direction.
- MD longitudinal stretching direction
- TD transverse stretching direction
- the lower limit of the refractive index in the longitudinal direction of the film of the present invention is preferably 1.610, more preferably 1.612, and still more preferably 1.613. If it is less than the above, since the orientation is weak, sufficient strength as a film cannot be obtained, and the bag-breaking resistance may be lowered.
- the upper limit of the refractive index in the longitudinal direction of the film of the present invention is preferably 1.640, more preferably 1.635, and still more preferably 1.630. If the above is exceeded, the effects on film mechanical properties and straight tearability may be saturated.
- the lower limit of the refractive index in the width direction of the film of the present invention is preferably 1.649, more preferably 1.650, and even more preferably 1.651. If it is less than the above, since the orientation is weak, sufficient strength as a film cannot be obtained, and the bag-breaking resistance may be lowered.
- the upper limit of the refractive index in the width direction of the film of the present invention is preferably 1.670, more preferably 1.669, and further preferably 1.668. If the above is exceeded, the effect on the mechanical properties and straight tearability of the film may be saturated.
- the difference (Nx ⁇ Ny) between the refractive index Nx in the longitudinal direction of the film and the refractive index Nx in the width direction of the film is preferably ⁇ 0.022 or less, more preferably ⁇ It is 0.025 or less, more preferably ⁇ 0.03 or less.
- the tear straightness in the longitudinal direction of the film may be lowered.
- the lower limit of the intrinsic viscosity of the film of the present invention is preferably 0.8, more preferably 0.85, still more preferably 0.9, particularly preferably, and most preferably. If it is less than the above, the piercing strength, impact strength, bag breaking resistance, etc. may be lowered.
- the upper limit of the intrinsic viscosity of the film is preferably 1.2. When the above is exceeded, the stress at the time of extending
- the biaxially stretched polyester film of the present invention preferably has a resin having the same composition over the entire film. Moreover, the layer of another raw material may be laminated
- the lower limit of the impact strength and J / ⁇ m of the film of the present invention is preferably 0.055, more preferably 0.060, and even more preferably 0.065. If it is less than the above, the strength may be insufficient when used as a bag.
- the upper limit of impact strength and J / ⁇ m is preferably 0.2. If the above is exceeded, the improvement effect may become saturated.
- the upper limit of the haze (% / ⁇ m) per thickness of the film of the present invention is preferably 0.35%, more preferably 0.33%, and further preferably 0.31%. If the above is exceeded, there is a possibility of degrading the quality of the printed characters and images when the film is printed.
- the lower limit of the thermal shrinkage rate (%) in the longitudinal direction of the film of the present invention and the width direction of the film is preferably 0. If it is less than the above, the improvement effect is saturated, and it may become mechanically brittle.
- the upper limit of the thermal shrinkage rate (%) in the longitudinal direction of the film of the present invention and in the width direction of the film is preferably 4.0, more preferably 3.5, and further preferably 3.0. If the above is exceeded, pitch deviation may occur due to dimensional changes during processing such as printing.
- the lower limit of the film thickness is preferably 3 ⁇ m, more preferably 5 ⁇ m, and even more preferably 8 ⁇ m. If it is less than 3 ⁇ m, the strength as a film may be insufficient.
- the upper limit of the film thickness is preferably 100 ⁇ m, more preferably 75 ⁇ m, and still more preferably 50 ⁇ m. If it exceeds 100 ⁇ m, it may become too thick and processing for the purpose of the present invention may be difficult.
- the method for producing a biaxially stretched polyester film of the present invention is specifically a molten fluid formed in the step (1) of forming a molten fluid by melting a thermoplastic resin composition containing 90% by weight or more of a polybutylene terephthalate resin.
- At least a step (4) of biaxial stretching may be inserted between step (1) and step (2), step (2) and step (3). For example, a filtration process, a temperature change process, etc.
- step (2) may be inserted between the process (1) and the process (2). Further, a temperature changing process, a charge adding process, and the like may be inserted between the process (2) and the process (3). However, there should be no step of destroying the laminated structure formed in step (2) between step (2) and step (3).
- the method of melting the thermoplastic resin in the present invention to form a molten fluid is not particularly limited, but a preferable method is a method of heating and melting using a single screw extruder or a twin screw extruder. Can be mentioned.
- the method for forming the laminated fluid in the step (2) is not particularly limited, but a static mixer and / or a multilayer feed block is more preferable from the viewpoints of facility simplicity and maintainability. Further, in view of uniformity in the sheet width direction, those having a rectangular melt line are more preferable. It is further preferred to use a static mixer or multilayer feed block with a rectangular melt line. In addition, you may let the resin composition which consists of several layers formed by making a several resin composition merge pass in any 1 type, or 2 or more types of a static mixer, a multilayer feed block, and a multilayer manifold.
- the theoretical number of layers in step (2) needs to be 60 or more.
- the lower limit of the theoretical number of layers is preferably 200, more preferably 500. If the number of theoretical layers is too small, the effect of accelerating crystallization is insufficient, or the distance between layer interfaces becomes long and the crystal size becomes too large, and the effects of the present invention tend not to be obtained. Moreover, the transparency after molding may be reduced in the vicinity of both ends of the sheet.
- the upper limit of the theoretical number of layers in step (2) is not particularly limited, but is preferably 100,000, more preferably 10,000, and still more preferably 7,000. Even if the theoretical number of layers is extremely increased, the effect is saturated and a problem may occur in terms of production efficiency.
- the number of theoretical laminations can be adjusted by selecting the number of elements of the static mixer.
- the static mixer is generally known as a static mixer (line mixer) having no drive unit, and the fluid entering the mixer is sequentially stirred and mixed by the elements.
- a typical static mixer element has a structure in which a rectangular plate is twisted 180 degrees, and depending on the direction of twisting, there are a right element and a left element, and the dimensions of each element are 1.5 times the diameter. Based on.
- the static mixer that can be used in the present invention is not limited to this.
- the theoretical number of laminations can be adjusted by selecting the number of divisions / laminates of the multilayer feed block.
- Multiple multilayer feed blocks can be installed in series.
- step (3) the laminated fluid is discharged from a die and brought into contact with a cooling roll to be solidified.
- the lower limit of the die temperature is preferably 200 ° C. If it is less than the above, the discharge may not be stable and the thickness may be non-uniform.
- the upper limit of the die temperature is preferably 320 ° C., and if it exceeds the above, the thickness becomes non-uniform, the resin deteriorates, and the appearance may be poor due to die lip contamination.
- the lower limit of the cooling roll temperature is preferably 0 ° C. If it is less than the above, the effect of suppressing crystallization may be saturated.
- the upper limit of the cooling roll temperature is preferably 25 ° C., and if it exceeds the above, the crystallinity becomes too high and stretching may be difficult. Further, when the temperature of the cooling roll is in the above range, it is preferable to reduce the humidity of the environment near the cooling roll in order to prevent condensation.
- the thickness of the unstretched sheet is preferably in the range of 15 to 2500 ⁇ m.
- the casting in the multilayer structure described above is performed with at least 60 layers, preferably 250 layers or more, more preferably 1000 layers or more.
- the number of layers is small, the spherulite size of the unstretched sheet is increased, and the effect of reducing the yield stress of the obtained biaxially stretched film is lost as well as the effect of improving the stretchability is small.
- the stretching method can be simultaneous biaxial stretching or sequential biaxial stretching, but in order to increase the piercing strength, it is necessary to increase the plane orientation coefficient, and in that respect, sequential biaxial stretching is preferable.
- the lower limit of the longitudinal stretching direction (hereinafter referred to as MD) stretching temperature is preferably 55 ° C, more preferably 60 ° C.
- the upper limit of the MD stretching temperature is preferably 100 ° C, more preferably 95 ° C. If the temperature exceeds 100 ° C., the orientation is not applied and the mechanical properties may be deteriorated.
- a PET resin is used as a resin other than the PBT resin, it is preferably higher than that of the PBT resin alone.
- the lower limit of the MD draw ratio is preferably 2.6 times, particularly preferably 2.8 times. If it is less than the above, the orientation is not applied, so the mechanical properties and thickness unevenness may be deteriorated.
- the upper limit of the MD draw ratio is preferably 4.3 times, more preferably 4.0 times, and particularly preferably 3.8 times. If the above is exceeded, the effect of improving the mechanical strength and thickness unevenness may be saturated, and the vertical orientation will become stronger. The distortion may increase, and as a result, the straight tearing property in the longitudinal direction may decrease.
- the lower limit of the transverse stretching direction (hereinafter referred to as TD) stretching temperature is preferably 60 ° C., and if it is less than the above, breakage may easily occur.
- the upper limit of the TD stretching temperature is preferably 100 ° C., and if it exceeds the above, since the orientation is not applied, the mechanical properties may be deteriorated.
- a PET resin is used as a resin other than the PBT resin, it is preferably higher than that of the PBT resin alone.
- the lower limit of the TD stretch ratio is preferably 3.5 times, more preferably 3.6 times, and particularly preferably 3.7 times. If it is less than the above, the orientation is not applied, so the mechanical properties and thickness unevenness may be deteriorated.
- the upper limit of the TD stretch ratio is preferably 5 times, more preferably 4.5 times, and particularly preferably 4.0 times. If the above is exceeded, the effect of improving mechanical strength and thickness unevenness may be saturated.
- the lower limit of the TD heat setting temperature is preferably 200 ° C, and more preferably 205 ° C. If it is less than the above, the thermal shrinkage rate increases, and displacement or shrinkage during processing may occur.
- the upper limit of the TD heat setting temperature is preferably 250 ° C. If the temperature exceeds the above, the film will melt, and even if it does not melt, it may become brittle.
- the lower limit of the TD relaxation rate is preferably 0.5%, and if it is less than the above, breakage may easily occur during heat setting.
- the upper limit of the TD relaxation rate is preferably 5%. If the upper limit is exceeded, sagging or the like may occur and thickness unevenness may occur, and the shrinkage in the longitudinal direction during heat setting increases. The strain of molecular orientation becomes large, and the straight tearing property may be lowered.
- the biaxially stretched polybutylene terephthalate film of the present invention can impart excellent gas barrier properties by forming a laminated film in which a gas barrier layer is provided on at least one side of the film.
- a gas barrier layer laminated on the biaxially stretched polybutylene terephthalate film of the present invention a thin film made of a metal or an inorganic oxide or a coating layer made of a barrier resin such as polyvinylidene chloride is preferably used.
- the inorganic thin film layer is preferably a thin film made of a metal or an inorganic oxide.
- the material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), a mixture of silicon oxide and aluminum oxide, etc. A thing is mentioned preferably.
- a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint that both flexibility and denseness of the thin film layer can be achieved.
- the mixing ratio of silicon oxide and aluminum oxide is preferably such that Al is in the range of 20 to 70% by mass ratio of metal. If the Al concentration is less than 20%, the water vapor barrier property may be lowered.
- silicon oxide is various silicon oxides such as SiO and SiO 2 or a mixture thereof
- aluminum oxide is various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
- the film thickness of the inorganic thin film layer is usually 1 to 800 nm, preferably 5 to 500 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, satisfactory gas barrier properties may be difficult to obtain. On the other hand, even if the thickness exceeds 800 nm, the corresponding gas barrier property improvement effect is obtained. However, it is disadvantageous in terms of bending resistance and manufacturing cost.
- the method for forming the inorganic thin film layer is not particularly limited.
- a known vapor deposition method such as a vacuum vapor deposition method, a sputtering method, a physical vapor deposition method such as an ion plating method (PVD method), or a chemical vapor deposition method (CVD method).
- PVD method physical vapor deposition method
- CVD method chemical vapor deposition method
- a typical method for forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide thin film as an example.
- a vacuum deposition method a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as a deposition material.
- particles are used as these vapor deposition materials.
- the size of each particle is desirably such that the pressure during vapor deposition does not change, and the preferred particle diameter is 1 mm to 5 mm.
- heating methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be employed.
- reactive vapor deposition using oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as a reactive gas, or using means such as ozone addition or ion assist.
- the film forming conditions can be arbitrarily changed, for example, by applying a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
- a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
- Such a vapor deposition material, reaction gas, bias of the deposition target, heating / cooling, and the like can be similarly changed when a sputtering method or a CVD method is employed.
- Example preparation A polyester film piece having a width of 300 mm from the end of the mill roll of the obtained film having a total width of 4200 mm and having an end portion and a central portion of 210 mm in the tearing direction (longitudinal direction) and 50 mm width in the orthogonal direction is cut out.
- a double-sided adhesive tape with a width of 10 mm is attached to one short side of the film piece, and the test piece is obtained by folding the short side partly on the center line and attaching both short sides.
- a 30 mm incision is made in the tearing direction in the central portion (25 mm position from both ends) on the short side where the test pieces are overlapped.
- the distance between chucks of a tensile tester (Orientec Tensilon RTC-1225A) is set to 50 mm, and the two short sides divided by the incision of the sample are attached to the upper and lower chucks, respectively.
- the chuck is displaced by 130 mm at a speed of 1000 mm / min and is torn.
- the amount of deviation at a position of 50 mm from the tear start point of the tear line of the front surface film of the torn test piece and the tear line of the back surface film is defined as the distance.
- Each sample was measured 5 times to obtain the average value.
- Test shrinkage Five films each having a width of 10 mm and a length of 150 mm were cut from the vertical direction and the horizontal direction to obtain test pieces. Each test piece was marked with a standard line with a distance of 100 mm ⁇ 2 mm centered on the center of the test piece. The interval between the marked lines of the test pieces before heating was measured with an accuracy of 0.1 mm. The test piece was suspended in a hot air dryer (manufactured by Espec Corp., PHH-202) under no load, and heat-treated at 150 ° C. for 15 minutes. After the test piece was taken out of the thermostat and cooled to room temperature, the length and width were measured for the same part as the first measurement. The dimensional change rate of each specimen was calculated as a percentage of the initial value of the dimensional change in the vertical and horizontal directions. The dimensional change rate in each direction was the average of the measured values in that direction.
- a film according to the present invention which is dry-laminated with an LLDPE sealant (L4102 manufactured by Toyobo, thickness 40 ⁇ m), is cut into a size of 20.3 cm (8 inches) ⁇ 27.9 cm (11 inches), and a rectangle after the cutting
- the test film was conditioned under standing at a temperature of 23 ° C. and a relative humidity of 50% for at least 24 hours. Thereafter, the rectangular test film is wound to form a cylindrical shape having a length of 20.32 cm (8 inches).
- One end of the cylindrical film is fixed to the outer periphery of a disk-shaped fixed head of a gelbo flex tester (manufactured by Rigaku Corporation, NO.901 type) (conforming to MIL-B-131C standard).
- the end was fixed to the outer periphery of a tester disk-shaped movable head opposed to the fixed head by 17.8 cm (7 inches) apart.
- the movable head is rotated 440 ° while approaching the fixed head in the direction of 7.6 cm (3.0 inches) along the axis of both heads facing in parallel, followed by 6.4 cm (2.
- a film according to the present invention LLDPE sealant (L4102 made by Toyobo Co., Ltd., thickness 40 ⁇ m) and dry laminated, cut into a 15 cm square size, and the two sheets are stacked so that the sealant is on the inside.
- a three-side sealed bag with an inner size of 13 cm was obtained by heat sealing at a sealing temperature of 1.0 cm and a seal width of 1.0 cm.
- the obtained three-side sealed bag was filled with 250 mL of water, and then the mouth was closed by heat sealing to produce a four-side sealed bag filled with water.
- the resulting four-side sealed bag was placed at room temperature 5 ° C. and humidity 35% R.D. H. In this environment, the sample was dropped onto a concrete plate from a position with a height of 100 cm, and the number of drops until a tear or pinhole was generated was counted.
- PET resin Examples 9 to 11 and Comparative Example 5
- Example 1 Using a single screw extruder, a masterbatch containing PBT resin and silica particles having an average particle size of 2.4 ⁇ m as inert particles was added, and after blending the mixture so that the lubricant concentration was 1600 ppm, it was melted at 295 ° C. The melt line was introduced into a 12-element static mixer. Thereby, the PBT resin melt was divided and laminated to obtain a multilayer melt made of the same raw material. The sheet was cast from a T-die at 265 ° C. and adhered to a cooling roll at 15 ° C. by an electrostatic adhesion method to obtain an unstretched sheet.
- the film was stretched 2.8 times in the machine direction at 65 ° C., then passed through a tenter and stretched 4.0 times in the transverse direction at 90 ° C., subjected to tension heat treatment at 210 ° C. for 3 seconds and 1% relaxation for 1 second. After carrying out the treatment, the gripping portions at both ends were cut and removed by 10% to obtain a mill roll of a PBT resin film having a thickness of 12 ⁇ m.
- Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
- Example 1 it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 1.
- Example 1 it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 2.
- Example 4 In Example 1, it carried out like Example 1 except having changed the raw material composition and the film forming conditions into the biaxially stretched film described in Table 3.
- the biaxially stretched polyester films (Examples 1 to 10) obtained by the present invention have an angle formed by the molecular chain principal axis with respect to the TD direction of the film after biaxial stretching and Nx ⁇
- the obtained biaxially stretched polyester film had excellent straight tearing properties in the longitudinal direction at both the end portion and the central portion, and was also excellent in bag breaking resistance.
- it did not contain a component incompatible with the PBT resin such as a polyester elastomer, it was excellent in transparency.
- a biaxially stretched polyester film that has excellent tear straightness while maintaining film strength, impact resistance, and transparency, and can be used particularly preferably for retort pouch packaging and water packaging. It is expected to contribute greatly to the industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
近年では力学特性や耐衝撃性をより向上したものが求められ、本来のPBT樹脂の特性を引き出すために、PBT樹脂を二軸延伸したフィルムの検討が行われている。
しかしながら、これらの方法で得られた二軸延伸PBTフィルムは、二軸延伸時に幅方向で分子の配向主軸に歪みが生じることに起因して、長手方向に引裂く際に真っ直ぐに引裂くことが出来ないといった問題があった。このためこれらのフィルムで作製された包装袋は、手で開封した際の引裂直進性が悪く、開封した際に内容物の飛散や破損が発生してしまう可能性があった。
本発明は、ポリブチレンテレフタレートを60重量%以上、PBT樹脂以外のポリエステル樹脂として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂から選ばれる樹脂を含む熱可塑性樹脂組成物からからなる二軸延伸ポリエステルフィルムであって、
フィルム幅方向に対して分子鎖主軸のなす角度が30°以下であり、かつ以下の(1)~(3)の条件を同時に満足することを特徴とする二軸延伸ポリエステルフィルムである。(1)1.610≦Nx≦1.640
(2)1.649≦Ny≦1.670
(3)Nx-Ny≦-0.022
但し、Nxはフィルム長手方向の屈折率であり、Nyはフィルム幅方向の屈折率である。
工程(1);ポリブチレンテレフタレート樹脂を90重量%以上含む熱可塑性樹脂組成物を溶融し、溶融流体を形成する。
工程(2);前記溶融流体からなる理論積層数60以上の積層流体を形成する。
工程(3);前記積層流体を、ダイスから吐出し、冷却ロールに接触させて固化させ積層体を形成する。
工程(4);前記積層体を二軸延伸する。
また本発明においては、ポリエステルエラストマーのような、フィルムの透明性を損なう成分を添加していないので、得られたフィルムは特に優れた透明性を有している。
本発明に用いられるポリエステル熱可塑性樹脂組成物は、PBT樹脂を主たる構成成分とするものであり、PBT樹脂の含有率が60質量%以上が好ましく、さらには70質量%以上が好ましく、さらに90質量%以上が好ましい。60質量%未満であるとインパクト強度および耐ピンホール性が低下してしまい、フィルム特性としては十分なものでなくなってしまう。
主たる構成成分として用いるPBT樹脂は、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
PBT樹脂以外のポリエステル樹脂(B)としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂が挙げられる。共重合されたPBT樹脂における共重合成分量はPBT樹脂全体に対して5wt%以上である。しかし、ポリアルキレンオキサイドを含むものは適さない。
ポリエステルフィルムの主配向方向に対する分子鎖主軸の配向角が30°以下であれば、長手方向の直線引裂き性が優れる理由は定かではないが、包装袋にしたときに包装袋を形成する表裏のポリエステルフィルムの分子鎖主軸の配向方向の差を小さくできるので、泣き別れが小さく直線引裂き性に優れると推定している。
従来、分子鎖主軸の配向角が20°を超える現象は、特に逐次二軸延伸方式において、長手方向に延伸した後に、テンターを用いて幅方向に延伸して製膜された場合のクリップに把持された幅方向の端部に近い部分からスリット(切断)されたフィルムに見られることがある。
分子鎖主軸の配向角を小さくするには、フィルム製造工程における縦延伸方向(以下MD)延伸温度を高くする、MD延伸倍率を小さくする、横延伸方向(以下、TD)リラックス率を小さくすることが挙げられる。
また、本発明の二軸延伸ポリエステルフィルムに他素材の層を積層して良く、その方法として、本発明の二軸延伸ポリエステルフィルムを作成後に貼り合わせるか、製膜中に貼り合わせることできる。
上記を超えるとフィルムに印刷を施した際に、印刷された文字や画像の品位を損ねる可能性がある。
フィルム厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μmを越えると厚くなりすぎて本発明の目的における加工が困難となることがある。
本発明にかかるフィルムを得るための好適な方法のとして、キャスト時に同一の組成の原料を多層化してキャストすることが挙げられる。
PBT樹脂は結晶化速度が速いため、キャスト時にも結晶化が進行する。このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、これらの結晶はサイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、二軸延伸時に破断しやすくなるばかりでなく、得られた二軸延伸フィルムの柔軟性が損なわれ、耐ピンホール性や耐破袋性が不十分なフィルムとなってしまう。
一方で本発明者らは同一の樹脂を多層積層することで、未延伸シートの延伸応力を低減でき、安定した二軸延伸が可能となることを見出した。
工程(1)と工程(2)、工程(2)と工程(3)の間には、他の工程が挿入されていても差し支えない。例えば、工程(1)と工程(2)の間には濾過工程、温度変更工程等が挿入されていても良い。また、工程(2)と工程(3)の間には、温度変更工程、電荷付加工程等が挿入されていても良い。但し、工程(2)と工程(3)の間には、工程(2)で形成された積層構造を破壊する工程があってはならない。
このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。
PBT樹脂以外の樹脂としてPET樹脂を使用するときは、PBT樹脂単独の場合よりも高くすることが好ましい。
PBT樹脂以外の樹脂としてPET樹脂を使用するときは、PBT樹脂単独の場合よりも高くすることが好ましい。
本発明の二軸延伸ポリブチレンテレフタレートフィルムに積層するガスバリア層としては、無機薄膜層は金属または無機酸化物からなる薄膜又はポリ塩化ビニリデン等のバリア樹脂からなるコーティング層が好ましく用いられる。
ガスバリア層の中でも無機薄膜層は金属または無機酸化物からなる薄膜であることが好ましい。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70%の範囲であることが好ましい。
Al濃度が20%未満であると、水蒸気バリア性が低くなる場合がある。一方、70%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl2O3等の各種アルミニウム酸化物又はそれらの混合物である。
これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。
加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。
さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却などは、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。
JIS-Z-1702準拠の方法で測定した。
得られた全幅4200mmのフィルムのミルロールの端から300mmの位置を端部とし、端部及び中央部から100mm四方の正方形のフィルムサンプルを切り出し、そのフィルムサンプルについて、王子計測器株式会社製、MOA-6004型分子配向計を用いて、フィルム幅方向に対する分子鎖主軸の配向角を測定した。
ロールサンプルから幅方向で10点サンプルを採取した。そのサンプルについてJIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手方向の屈折率(Nx)、幅方向の屈折率(Ny)を測定した。
JIS-K-7105に準ずる方法で、試料をヘイズメーター(日本電色製、NDH2000)を用いて異なる箇所3ヶ所について測定し、その平均値をフィルムの厚みで割った数値を厚みあたりのヘイズ値とした。
直線引裂き性の指標として、以下の方法によりなきわかれ距離を測定した。
(サンプル調製)
得られた全幅4200mmのフィルムのミルロールの端から300mmの位置を端部とし、端部および中央部を引裂き方向(長手方向)に210mm、その直交方向に50mm幅のポリエステルフィルム片を切り出す。このフィルム片の一方の短辺に10mm幅の両面粘着テープを貼り付け、中央線で半折して両短辺を重ね合わせて貼り付け、試験片を得る。次いで、試験片の重ね合わせた短辺側の中央部分(両端から25mm位置)に引裂き方向に30mmの切り込みを入れる。
(測定)
引張試験機(オリエンテック社製テンシロンRTC-1225A)のチャック間距離を50mmにして、サンプルの切り込みで分けられた二つの短辺を各々上および下のチャックに装着する。次いで、1000mm/分の速度でチャックを130mm変位させて引裂く。引裂かれた試験片の紙面表側フィルムの引裂き線と紙面裏側フィルムの引裂き線の引裂き開始点から50mm位置のズレ量をなきわかれ距離とする。各サンプル5回測定して、その平均値を得た。
株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下におけるフィルムの衝撃打ち抜きに対する強度を測定した。衝撃球面は、直径1/2インチのものを用いた。単位J/μm。
幅10mm×長さ150mmの寸法のフィルム各5個を縦方向及び横方向から切り出し、試験片とした。
各試験片には,試験片の中央部を中心にして間隔100mm±2mmの標線を付けた。加熱前の試験片の標線の間隔を0.1mmの精度で測定した。
試験片を熱風乾燥機(エスペック社製、PHH-202)内に無荷重の状態で吊り下げ、150℃、15分の加熱条件で熱処理を施した。
試験片を恒温槽から取り出して室温まで冷却した後,初めに測定したときと同じ部分について長さ及び幅を測定した。
各試験片の寸法変化率は,縦方向及び横方向について寸法変化の初期値に対する百分率として計算した。各方向の寸法変化率は,その方向での測定値の平均とした。
本願発明にかかるフィルムを、LLDPEシーラント(東洋紡製L4102、厚み40μm)とドライラミネートしたものを20.3cm(8インチ)×27.9cm(11インチ)の大きさに切断し、その切断後の長方形テストフィルムを、温度23℃の相対湿度50%の条件下に、24時間以上放置してコンディショニングした。しかる後、その長方形テストフィルムを巻架して長さ20.32cm(8インチ)の円筒状にする。
その円筒状フィルムの一端を、ゲルボフレックステスター(理学工業社製、NO.901型)(MIL-B-131Cの規格に準拠)の円盤状固定ヘッドの外周に固定し、円筒状フィルムの他端を、固定ヘッドと17.8cm(7インチ)隔てて対向したテスターの円盤状可動ヘッドの外周に固定した。
可動ヘッドを固定ヘッドの方向に、平行に対向した両ヘッドの軸に沿って7.6cm(3.0インチ)接近させる間に440゜回転させ、続いて回転させることなく6.4cm(2.5インチ)直進させた後、それらの動作を逆向きに実行させて可動ヘッドを最初の位置に戻すという1サイクルの屈曲テストを、1分間あたり40サイクルの速度で、連続して2000サイクル繰り返した。実施は5℃で行った。
しかる後に、テストしたフィルムの固定ヘッドおよび可動ヘッドの外周に固定した部分を除く17.8cm(7インチ)×27.9cm(11インチ)内の部分に生じたピンホール数を計測した(すなわち、497cm2(77平方インチ)当たりのピンホール数を計測した)。
本願発明にかかるフィルムを、LLDPEシーラント(東洋紡製L4102、厚み40μm)とドライラミネートしたものを15cm四方の大きさにカットし、シーラントが内側になるように2枚を重ね合わせ、3方を160℃のシール温度、シール幅1.0cmにてヒートシールすることで内寸13cmの3方シール袋を得た。
得られた3方シール袋に水250mLを充填した後、ヒートシールにて口を閉じ、水の充填された4方シール袋を作製した。
得られた4方シール袋を室温5℃、湿度35%R.H.の環境下、高さ100cmの位置からコンクリート板の上に落下させ、破れやピンホールが発生するまでの落下回数を数えた。
二軸延伸フィルムの製膜性を次の基準で評価した。○および△であれば、生産性が良いと判断した。
○:破断無く製膜でき、連続生産が可能であった
△:製膜性が多少不安定で、稀に破断が発生するが、連続生産可能なレベル。
×:頻繁に破断が発生し、連続生産が困難であった。
(PBT樹脂)
後述する実施例1~5のフィルム作製において、主原料であるPBT樹脂は1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)を用いた。
後述する実施例9~11、比較例5のフィルム作製において、テレフタル酸//エチレングリコール=100//100(モル%)からなる固有粘度0.62dl/gのポリエチレンテレフタレート樹脂を用いた。
一軸押出機を用い、PBT樹脂と不活性粒子として平均粒径2.4μmのシリカ粒子を含むマスターバッチを添加し、滑剤濃度として1600ppmとなるように配合したものを295℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、PBT樹脂溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。265℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。次いで、65℃で縦方向に2.8倍ロール延伸し、次いで、テンターに通して90℃で横方向に4.0倍延伸し、210℃で3秒間の緊張熱処理と1秒間1%の緩和処理を実施した後、両端の把持部を10%ずつ切断除去して厚みが12μmのPBT樹脂フィルムのミルロールを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
実施例1において、原料組成、製膜条件を表1に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。
実施例1において、原料組成、製膜条件を表2に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。
一軸押出機を用い、表3記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表2に示した。
実施例1~7に記載のPBT樹脂に対して、直線引裂き性を付与するためのポリエステルエラストマー成分として、ポリエステル-ポリエステルブロック共重合体「ペルプレンS1001」(東洋紡社製)を15重量%添加し、表3に記載の条件により製膜を行った。
実施例1において、原料組成、製膜条件を表3に記載した二軸延伸フィルムに変えた以外は実施例1と同様に行った。
Claims (4)
- ポリブチレンテレフタレートを60重量%以上、PBT樹脂以外のポリエステル樹脂として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたPBT樹脂から選ばれる樹脂を含む熱可塑性樹脂組成物からからなる二軸延伸ポリエステルフィルムであって、
フィルム幅方向に対して分子鎖主軸のなす角度が30°以下であり、かつ以下の(1)~(3)の条件を同時に満足することを特徴とする二軸延伸ポリエステルフィルム。
(1)1.610≦Nx≦1.640
(2)1.649≦Ny≦1.670
(3)Nx-Ny≦-0.022
但し、Nxはフィルム長手方向の屈折率であり、Nyはフィルム幅方向の屈折率である。 - フィルムの長手方向およびフィルム幅方向の150℃における熱収縮率が、ともに4.0%以下である請求項1に記載の二軸延伸ポリエステルフィルム。
- 下記工程(1)、工程(2)、工程(3)、工程(4)を少なくとも有する、請求項1あるいは2のいずれかに記載の二軸延伸ポリエステルフィルムの製造方法。
工程(1);ポリブチレンテレフタレート樹脂を90重量%以上含む熱可塑性樹脂組成物を溶融し、溶融流体を形成する。
工程(2);前記溶融流体からなる理論積層数60以上の積層流体を形成する。
工程(3);前記積層流体を、ダイスから吐出し、冷却ロールに接触させて固化させ積層体を形成する。
工程(4);前記積層体を二軸延伸する。 - 前記二軸延伸が、逐次二軸延伸法である請求項3に記載の二軸延伸ポリエステルフィルムの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2017703766A MY195397A (en) | 2015-04-24 | 2016-04-20 | Biaxially Stretched Polyester Film, and Production Method Therefor |
EP16783193.2A EP3287258A4 (en) | 2015-04-24 | 2016-04-20 | Biaxially stretched polyester film, and production method therefor |
KR1020177033612A KR102276626B1 (ko) | 2015-04-24 | 2016-04-20 | 2축 연신 폴리에스테르 필름 및 그 제조 방법 |
US15/568,331 US20180099494A1 (en) | 2015-04-24 | 2016-04-20 | Biaxially stretched polyester film, and production method therefor |
CN201680023839.4A CN107530952B (zh) | 2015-04-24 | 2016-04-20 | 双轴拉伸聚酯薄膜和其制造方法 |
JP2017514162A JP6784256B2 (ja) | 2015-04-24 | 2016-04-20 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015089098 | 2015-04-24 | ||
JP2015-089098 | 2015-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016171172A1 true WO2016171172A1 (ja) | 2016-10-27 |
Family
ID=57143116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062515 WO2016171172A1 (ja) | 2015-04-24 | 2016-04-20 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20180099494A1 (ja) |
EP (1) | EP3287258A4 (ja) |
JP (1) | JP6784256B2 (ja) |
KR (1) | KR102276626B1 (ja) |
CN (1) | CN107530952B (ja) |
MY (1) | MY195397A (ja) |
TW (1) | TWI686433B (ja) |
WO (1) | WO2016171172A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225558A1 (ja) * | 2017-06-06 | 2018-12-13 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
WO2018225559A1 (ja) * | 2017-06-06 | 2018-12-13 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
JP2018203922A (ja) * | 2017-06-07 | 2018-12-27 | 興人フィルム&ケミカルズ株式会社 | 易引裂性及び耐屈曲性を有する二軸延伸ポリブチレンテレフタレートフィルム |
WO2019021759A1 (ja) * | 2017-07-26 | 2019-01-31 | 東洋紡株式会社 | ポリブチレンテレフタレートフィルムを用いた包装袋 |
JP2019081825A (ja) * | 2017-10-30 | 2019-05-30 | 東レ株式会社 | フィルム用ポリブチレンテレフタレート樹脂マスターバッチ及びフィルム用ポリブチレンテレフタレート樹脂組成物 |
WO2019142781A1 (ja) * | 2018-01-22 | 2019-07-25 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
WO2019187694A1 (ja) * | 2018-03-30 | 2019-10-03 | 東洋紡株式会社 | ポリエステルフィルムロール |
CN112088080A (zh) * | 2018-12-27 | 2020-12-15 | 株式会社Huvis | 聚对苯二甲酸乙二醇酯发泡片制造装置及制造方法 |
EP3604401A4 (en) * | 2017-03-28 | 2020-12-16 | Toyobo Co., Ltd. | BIAXIAL ORIENTED POLYESTER FILM AND METHOD FOR MANUFACTURING IT |
JP2021511977A (ja) * | 2018-12-27 | 2021-05-13 | ヒューヴィス コーポレーションHuvis Corporation | Pet発泡シートの製造装置および製造方法 |
JP2022137055A (ja) * | 2017-02-20 | 2022-09-21 | 東洋紡株式会社 | ポリエステルフィルムとその用途 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107531015A (zh) * | 2015-04-24 | 2018-01-02 | 东洋纺株式会社 | 双轴拉伸聚酯薄膜和其制造方法 |
CN109456579B (zh) * | 2018-10-18 | 2021-02-09 | 长园长通新材料股份有限公司 | 一种耐刺破pet热缩套管材料及其制备方法 |
KR20210113219A (ko) * | 2019-01-10 | 2021-09-15 | 도요보 가부시키가이샤 | 적층 필름 |
KR102612318B1 (ko) * | 2019-02-26 | 2023-12-12 | 도요보 가부시키가이샤 | 2축 배향 폴리에스테르 필름, 및 2축 배향 폴리에스테르 필름의 제조 방법 |
US11738542B2 (en) | 2020-06-19 | 2023-08-29 | Proampac Holdings Inc. | Recycle-ready retortable laminated polyester-based gusseted pouches |
CN112497792A (zh) * | 2020-10-30 | 2021-03-16 | 王蕊 | 一种光学聚酯薄膜的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001129948A (ja) * | 1999-11-01 | 2001-05-15 | Toyobo Co Ltd | 光学用易接着フィルム |
JP2006341424A (ja) * | 2005-06-08 | 2006-12-21 | Toyobo Co Ltd | 接着性に優れた二軸延伸ポリエステル系フィルム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5493072A (en) * | 1977-12-29 | 1979-07-23 | Teijin Ltd | Outdoor spreading material |
JP2000186161A (ja) * | 1998-10-13 | 2000-07-04 | Toray Ind Inc | ラミネ―ト用ポリエステルフィルム |
KR100579633B1 (ko) * | 1999-01-21 | 2006-05-12 | 도요 보세키 가부시키가이샤 | 광학용 이접착필름 및 그 롤 |
WO2003059996A1 (fr) * | 2002-01-11 | 2003-07-24 | Toyo Boseki Kabushiki Kaisha | Films polyesters |
CN100523061C (zh) * | 2004-03-03 | 2009-08-05 | 株式会社钟化 | 分子取向得以控制的有机绝缘薄膜及使用它的粘结薄膜、挠性金属包层层合板、多层挠性金属包层层合板、保护模、tab用带、cof用硬纸板 |
JPWO2005105440A1 (ja) * | 2004-04-30 | 2008-03-13 | 東洋紡績株式会社 | 易引裂き性2軸延伸ポリエステル系フィルム |
JP5512759B2 (ja) * | 2011-09-16 | 2014-06-04 | 富士フイルム株式会社 | 2軸延伸熱可塑性樹脂フィルムの製造方法 |
JP5888933B2 (ja) | 2011-10-25 | 2016-03-22 | 興人フィルム&ケミカルズ株式会社 | 易引裂性二軸延伸ポリブチレンテレフタレートフィルム |
CN104321372B (zh) | 2012-05-14 | 2018-07-06 | 东洋纺株式会社 | 聚酯薄膜及其制造方法 |
JP2014015233A (ja) | 2012-07-09 | 2014-01-30 | Kohjin Holdings Co Ltd | 二軸延伸ポリブチレンテレフタレート系フィルムを含む液体充填用包材 |
WO2014077197A1 (ja) | 2012-11-16 | 2014-05-22 | 東洋紡株式会社 | 二軸延伸ポリエステルフィルムおよびその製造方法 |
-
2016
- 2016-04-20 JP JP2017514162A patent/JP6784256B2/ja active Active
- 2016-04-20 CN CN201680023839.4A patent/CN107530952B/zh active Active
- 2016-04-20 WO PCT/JP2016/062515 patent/WO2016171172A1/ja active Application Filing
- 2016-04-20 EP EP16783193.2A patent/EP3287258A4/en not_active Withdrawn
- 2016-04-20 US US15/568,331 patent/US20180099494A1/en not_active Abandoned
- 2016-04-20 KR KR1020177033612A patent/KR102276626B1/ko active IP Right Grant
- 2016-04-20 MY MYPI2017703766A patent/MY195397A/en unknown
- 2016-04-22 TW TW105112568A patent/TWI686433B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001129948A (ja) * | 1999-11-01 | 2001-05-15 | Toyobo Co Ltd | 光学用易接着フィルム |
JP2006341424A (ja) * | 2005-06-08 | 2006-12-21 | Toyobo Co Ltd | 接着性に優れた二軸延伸ポリエステル系フィルム |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7380758B2 (ja) | 2017-02-20 | 2023-11-15 | 東洋紡株式会社 | ポリエステルフィルムとその用途 |
JP2022137055A (ja) * | 2017-02-20 | 2022-09-21 | 東洋紡株式会社 | ポリエステルフィルムとその用途 |
EP3604401A4 (en) * | 2017-03-28 | 2020-12-16 | Toyobo Co., Ltd. | BIAXIAL ORIENTED POLYESTER FILM AND METHOD FOR MANUFACTURING IT |
JPWO2018225558A1 (ja) * | 2017-06-06 | 2020-04-09 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
WO2018225559A1 (ja) * | 2017-06-06 | 2018-12-13 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
EP3636695A4 (en) * | 2017-06-06 | 2020-06-24 | Toyobo Co., Ltd. | BIAXIALLY ORIENTED POLYESTER FILM |
CN110691808A (zh) * | 2017-06-06 | 2020-01-14 | 东洋纺株式会社 | 双轴取向聚酯薄膜 |
CN110691809A (zh) * | 2017-06-06 | 2020-01-14 | 东洋纺株式会社 | 双轴取向聚酯薄膜 |
WO2018225558A1 (ja) * | 2017-06-06 | 2018-12-13 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
JPWO2018225559A1 (ja) * | 2017-06-06 | 2020-04-09 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
JP2018203922A (ja) * | 2017-06-07 | 2018-12-27 | 興人フィルム&ケミカルズ株式会社 | 易引裂性及び耐屈曲性を有する二軸延伸ポリブチレンテレフタレートフィルム |
JPWO2019021759A1 (ja) * | 2017-07-26 | 2020-05-28 | 東洋紡株式会社 | ポリブチレンテレフタレートフィルムを用いた包装袋 |
CN110944918B (zh) * | 2017-07-26 | 2022-04-29 | 东洋纺株式会社 | 使用了聚对苯二甲酸丁二醇酯薄膜的包装袋 |
WO2019021759A1 (ja) * | 2017-07-26 | 2019-01-31 | 東洋紡株式会社 | ポリブチレンテレフタレートフィルムを用いた包装袋 |
EP3659939A4 (en) * | 2017-07-26 | 2020-07-15 | Toyobo Co., Ltd. | PACKAGING BAG USING A POLYBUTYLENE TEREPHTHALATE FILM |
US11433653B2 (en) | 2017-07-26 | 2022-09-06 | Toyobo Co., Ltd. | Packaging bag using polybutylene terephthalate film |
CN110944918A (zh) * | 2017-07-26 | 2020-03-31 | 东洋纺株式会社 | 使用了聚对苯二甲酸丁二醇酯薄膜的包装袋 |
JP2019081825A (ja) * | 2017-10-30 | 2019-05-30 | 東レ株式会社 | フィルム用ポリブチレンテレフタレート樹脂マスターバッチ及びフィルム用ポリブチレンテレフタレート樹脂組成物 |
JP7130939B2 (ja) | 2017-10-30 | 2022-09-06 | 東レ株式会社 | フィルム用ポリブチレンテレフタレート樹脂マスターバッチ及びフィルム用ポリブチレンテレフタレート樹脂組成物 |
WO2019142781A1 (ja) * | 2018-01-22 | 2019-07-25 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
JPWO2019142781A1 (ja) * | 2018-01-22 | 2020-07-27 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム |
JPWO2019187694A1 (ja) * | 2018-03-30 | 2020-10-22 | 東洋紡株式会社 | ポリエステルフィルムロール |
WO2019187694A1 (ja) * | 2018-03-30 | 2019-10-03 | 東洋紡株式会社 | ポリエステルフィルムロール |
JP2021511977A (ja) * | 2018-12-27 | 2021-05-13 | ヒューヴィス コーポレーションHuvis Corporation | Pet発泡シートの製造装置および製造方法 |
CN112088080B (zh) * | 2018-12-27 | 2022-08-23 | 株式会社Huvis | 聚对苯二甲酸乙二醇酯发泡片制造装置及制造方法 |
CN112088080A (zh) * | 2018-12-27 | 2020-12-15 | 株式会社Huvis | 聚对苯二甲酸乙二醇酯发泡片制造装置及制造方法 |
JP7271527B2 (ja) | 2018-12-27 | 2023-05-11 | ヒューヴィス コーポレーション | Pet発泡シートの製造装置および製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201704304A (zh) | 2017-02-01 |
KR20170140293A (ko) | 2017-12-20 |
JP6784256B2 (ja) | 2020-11-11 |
MY195397A (en) | 2023-01-18 |
CN107530952A (zh) | 2018-01-02 |
EP3287258A1 (en) | 2018-02-28 |
CN107530952B (zh) | 2020-10-30 |
KR102276626B1 (ko) | 2021-07-13 |
US20180099494A1 (en) | 2018-04-12 |
TWI686433B (zh) | 2020-03-01 |
EP3287258A4 (en) | 2018-12-19 |
JPWO2016171172A1 (ja) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6784256B2 (ja) | 二軸延伸ポリエステルフィルムおよびその製造方法 | |
JP6756330B2 (ja) | 二軸延伸ポリエステルフィルムおよびその製造方法 | |
JP6874277B2 (ja) | 二軸延伸ポリエステルフィルムおよびその製造方法 | |
JP6202146B2 (ja) | ポリエステルフィルムの製造方法 | |
JP6455437B2 (ja) | 二軸延伸ポリブチレンテレフタレートフィルム | |
WO2018225559A1 (ja) | 二軸配向ポリエステルフィルム | |
WO2014141870A1 (ja) | 二軸配向ポリアミド系樹脂フィルム | |
JP5247110B2 (ja) | 蒸着ポリアミド系樹脂フィルムおよびそれを用いたフィルムロール | |
JP6036702B2 (ja) | 二軸配向ポリアミド系樹脂フィルム、およびその製造方法 | |
WO2018159157A1 (ja) | 積層フィルム | |
JP6879473B2 (ja) | 二軸配向ポリエステルフィルム | |
WO2017170332A1 (ja) | 真空断熱材用積層体 | |
TWI842934B (zh) | 阻氣性聚醯胺膜、積層膜、以及包裝袋 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16783193 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017514162 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15568331 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177033612 Country of ref document: KR Kind code of ref document: A |