[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7310876B2 - ポリエステルフィルムおよびガスバリア性積層フィルム - Google Patents

ポリエステルフィルムおよびガスバリア性積層フィルム Download PDF

Info

Publication number
JP7310876B2
JP7310876B2 JP2021214639A JP2021214639A JP7310876B2 JP 7310876 B2 JP7310876 B2 JP 7310876B2 JP 2021214639 A JP2021214639 A JP 2021214639A JP 2021214639 A JP2021214639 A JP 2021214639A JP 7310876 B2 JP7310876 B2 JP 7310876B2
Authority
JP
Japan
Prior art keywords
film
resin
layer
polyester film
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021214639A
Other languages
English (en)
Other versions
JP2022036177A (ja
Inventor
考道 後藤
昇 玉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018062386A external-priority patent/JP7006445B2/ja
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2021214639A priority Critical patent/JP7310876B2/ja
Publication of JP2022036177A publication Critical patent/JP2022036177A/ja
Application granted granted Critical
Publication of JP7310876B2 publication Critical patent/JP7310876B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、食品、医薬品、工業製品等の包装分野に用いられる二軸延伸ポリエステルフィルムに関する。更に詳しくは、優れた耐ピンホール性、耐破袋性を有するとともに、基材フィルム層の上に、広幅のロールを無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生する筋状のシワを抑制し、幅方向のガスバリア性を均一にできる二軸延伸ポリエステルフィルムに関する。
食品、医薬品等に用いられる包装材料は、蛋白質、油脂の酸化抑制、味、鮮度の保持、医薬品の効能維持のために、酸素や水蒸気等のガスを遮断する性質、すなわちガスバリア性を備えることが求められている。また、太陽電池や有機EL等の電子デバイスや電子部品等に使用されるガスバリア性材料は、食品等の包装材料以上に高いガスバリア性を必要とする。
従来から、水蒸気や酸素等の各種ガスの遮断を必要とする食品用途においては、プラスチックからなる基材フィルム層の表面に、アルミニウム等からなる金属薄膜、酸化ケイ素や酸化アルミニウム等の無機酸化物からなる無機薄膜を形成したガスバリア性積層フィルムが、一般的に用いられている。
二軸延伸ナイロンフィルムを基材フィルム層とするすることにより、内容物による耐ピンホール性が良好になったり、袋の落下時の内容物の漏れが無くなることが知られていた。しかし、二軸延伸ナイロンフィルムは吸湿時の寸法変化が大きく、加工工程時に吸湿によりカールしてしまったり、レトルト殺菌のような過酷な処理が施された場合に収縮により形が変形するという問題点があった。
一方、ポリエチレンテレフタレート(以下、PETと略記する)フィルムに酸化ケイ素や酸化アルミニウム、これらの混合物等の無機酸化物の薄膜(無機薄膜層)を形成したものは、透明であり内容物の確認が可能であることから、広く使用されている(例えば特許文献1及び特許文献2)。
PETフィルムは、耐熱性や寸法安定性に優れ、レトルト殺菌のような過酷な処理が施された場合にも使用し得るが、PETフィルムは脆いため、これを使用した積層フィルムからなる袋は、落下時に袋が破れたり、穴が開いて、袋に詰められていた内容物が漏れるという課題が残されていた。
これらの問題を解決するための手段として、二軸延伸したポリブチレンテレフタレート(以下、PBTと略記する)フィルムをもちいることが検討されている。
例えば、特許文献3では、少なくともPBT樹脂、またはPBT樹脂に対してPET樹脂を30重量%以下の範囲で配合したポリエステル樹脂組成物を縦方向および横方向それぞれ2.7~4.0倍同時二軸延伸することにより得られた二軸延伸PBTフィルムを基材フィルム層に使用することが知られていた。かかる技術によれば、耐屈曲ピンホール性、および耐衝撃性を持ち、かつ優れた保香性を併せ持つ液体充填用包材が得られるというものである。
ところで、食品包装用途などで用いられるガスバリアフィルムの製造においては、フィルムロールの幅が2000mm前後の広幅のロールを用いて加工されることが一般的である。このため、フィルムの熱収縮特性がロールの幅方向で不均一だと、無機薄膜を加工する際やその後に保護層を加工する際に、フィルムが幅方向で不均一に寸法変化するため、得られるガスバリアフィルムのガスバリア性が不均一なものとなってしまうことがあった。
これに対し、先に挙げた特許文献3では、フィルムの等方性については言及されているものの、幅方向での寸法安定性を向上させるための手段については考慮されいない。そのため、二軸延伸PBTフィルムを広幅で加工する際に、幅方向で均一は物性を得るための手段について検討されていなかった。
特開平6-278240号公報 、 特開平11-10725号公報 特開2017-094746号公報
本発明は、かかる従来技術の課題を背景になされたものである。
すなわち、優れた耐ピンホール性、耐破袋性を有するとともに、広幅のロール状基材フィルム層の上に無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生するシワを抑制し、幅方向のガスバリア性を均一にできる二軸延伸ポリエステルフィルムを提供することである。
優れた耐ピンホール性、耐破袋性を有するとともに、基材フィルム層の上に、広幅のロールを無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生する筋状のシワを抑制するためには、基材フィルムの幅方向での寸法変化特性を均一にすることが肝要であると考えた。
本発明者らはかかる課題を解決するため鋭意検討した結果、二軸延伸PBTフィルムのロールにおいて、幅方向での熱収縮率差を小さくすることで、広幅のロールを加熱搬送して蒸着加工などを行う際にも、筋状のシワを抑制し、幅方向のガスバリア性を均一にできることを見出した。
本発明者らはさらに、広幅のロールの幅方向での熱収縮率の差を小さくするためには、シート状に溶融押出したポリエステル未延伸シートを長手方向(以下、縦方向ともいう)及び前記縦方向と直交する幅方向(以下、横方向ともいう)に延伸し、熱固定し熱緩和し冷却する工程において、ポリエステルフィルムの端部の表面の温度を低く保つことによって、フィルムを巻き取る際にかかる張力によって延伸後のフィルムの端部が縦方向に引っ張られ、熱収縮率が高くなってしまうのを抑制できることを見出し、本発明の完成に至った。
すなわち本発明は、以下の構成からなる。
[1]ポリブチレンテレフタレートを70重量%以上含有し、下記(1)~(5)を同時に満することを特徴とするポリエステルフィルム。
(1)JIS Z 1707に準じて測定した突刺し強度が0.6N/μm以上。
(2)フィルムの面配向度が0.144~0.165。
(3)フィルムの150℃で15分間加熱後の熱収縮率が、縦方向が0~4%、横方向が-1~3%。
(4)フィルムの最大配向角が25~50度。
(5)フィルムロールの幅方向に100mmピッチで測定した150℃で15分間加熱後の縦方向の熱収縮率の最大と最小の差をフィルムロールの幅で除した値Y(%/m)が0.5以下。
Y(%/m)={熱収縮率最大値(%)-熱収縮率最小値(%)}/ロール幅(m) ・・・(1式)
[2] 前記[1]に記載のポリエステルフィルムの少なくとも片方の面に無機薄膜層を有してなるガスバリア性積層フィルム。
[3] 前記[2]に記載のガスバリア性積層フィルムにおいて、ポリエステルフィルムと無機薄膜層の間に接着層を有することを特徴とするガスバリア性積層フィルム。
[4] 前記[2]または[3]に記載のガスバリア性積層フィルムにおいて、無機薄膜層の表面に保護層を有することを特徴とするガスバリア性積層フィルム。
本発明者らは、かかる技術によって、優れた耐ピンホール性、耐破袋性を有するとともに、基材フィルム層の上に、広幅のロールを無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生するシワを抑制し、幅方向のガスバリア性を均一にできる二軸延伸ポリエステルフィルムを提供することが可能となった。
以下、本発明について詳細に説明する。
本発明のポリエステルフィルムは、PBTを主たる構成成分とするものであり、PBTの含有率70重量%以上が好ましく、さらには75重量%以上が好ましい。70重量%未満であると突刺し強度が低下してしまい、フィルム特性としては十分なものでなくなってしまう。
主たる構成成分として用いるPBTは、ジカルボン酸成分として、テレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
本発明のポリエステルフィルムには、力学特性などを調整する目的でPBT以外のポリエステル樹脂を含有することができる。
PBT以外のポリエステル樹脂としては、PET、ポリエチレンナフタレート、ポリブチレンナフタレート及びポリプロピレンテレフタレートからなる群から選ばれる少なくとも1種のポリエステル樹脂、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸及びセバシン酸からなる群から選ばれる少なくとも1種のジカルボン酸が共重合されたPBT樹脂、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール及びポリカーボネートジオールからなる群から選ばれる少なくとも1種のジオール成分が共重合されたPBT樹脂などが挙げられる。
これらPBT樹脂以外のポリエステル樹脂の添加量の上限としては、30重量%未満が好ましく、より好ましくは25重量%以下が好ましい。PBT樹脂以外のポリエステル樹脂の添加量が30重量%を超えると、PBTとしての力学特性が損なわれ、衝撃強度、耐ピンホール性、又は耐破袋性が不十分となるほか、透明性やガスバリア性が低下するなどが起こることがある。
本発明に用いるPBT樹脂の固有粘度の下限は好ましくは0.9dl/gであり、より好ましくは0.95dl/gであり、更に好ましくは1.0dl/gである。
原料であるPBT樹脂の固有粘度が0.9dl/g未満の場合、製膜して得られるフィルムの固有粘度が低下し、突刺し強度、衝撃強度、耐ピンホール性、又は耐破袋性などが低下するとなることがある。
PBT樹脂の固有粘度の上限は好ましくは1.4dl/gである。上記を越えると延伸時の応力が高くなりすぎ、製膜性が悪化するとなることがある。固有粘度の高いPBTを使用した場合、樹脂の溶融粘度が高くなるため押出し温度を高温にする必要があるが、PBT樹脂をより高温で押出しすると分解物が出やすくなることがある。
前記PBT樹脂は必要に応じ、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、静電防止剤、紫外線吸収剤等を含有していてもよい。
滑剤種としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、中でもシリカがヘイズを低減する点で特に好ましい。これらにより透明性と滑り性と発現することができる。
滑剤濃度の下限は好ましくは100ppmであり、より好ましくは500ppmであり、さらに好ましくは800ppmである。上記未満であると基材フィルム層の滑り性が低下となることがある。滑剤濃度の上限は好ましくは20000ppmであり、より好ましくは10000ppmであり、さらに好ましくは1800ppmである。上記を越えると透明性が低下となることがある。
本発明のポリエステルフィルムの厚みの下限は好ましくは3μmであり、より好ましくは5μmであり、さらに好ましくは8μmである。3μm以上であると基材フィルム層としての強度が十分となる。
本発明のポリエステルフィルムの厚みの上限は好ましくは100μmであり、より好ましくは75μmであり、さらに好ましくは50μmである。100μm以下であると本発明の目的における加工がより容易となる。
本発明のポリエステルフィルムの縦方向の150℃で15分間加熱後の熱収縮率の上限は、好ましくは4.0%であり、より好ましくは3.0%であり、さらに好ましくは2%である。上限を越えると保護膜の形成工程や、レトルト殺菌処理のような高温処理において生じる基材フィルム層の寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の寸法変化により、ピッチズレなどが起こることがある。
本発明のポリエステルフィルムの横方向の150℃で15分間加熱後の熱収縮率の上限は好ましくは3.0%であり、より好ましくは2.0%であり、さらに好ましくは1%である。上限を越えると保護膜の形成工程や、レトルト殺菌処理のような高温処理において生じる基材フィルム層の寸法変化により無機薄膜層に割れが生じ、ガスバリア性が低下する恐れがあるばかりか、印刷などの加工時の幅方向の寸法変化により、ピッチズレなどが起こるとなることがある。
本発明のポリエステルフィルムの縦方向の150℃で15分間加熱後の熱収縮率の下限は好ましくは0%である。上記未満であってもと改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまうことがある。
本発明のポリエステルフィルムの横方向の150℃で15分間加熱後の熱収縮率の下限は好ましくは1.0%である。上記未満であっても改善の効果がそれ以上得られない(飽和する)ほか、力学的に脆くなってしまう場合がある。
本発明のポリエステルフィルムのロールの幅(横)方向に100mmピッチで測定した縦方向の150℃で15分間加熱後の熱収縮率の最大と最小の差をロールの幅で除した値Y(%/m)は0.5以下であることが好ましい。
Y(%/m)={熱収縮率最大値(%)-熱収縮率最小値(%)}/ロール幅(m) ・・・(1式)
ロールの幅(横)方向に100mmピッチで測定したタテ方向熱収縮率の最大と最小の差をロールの幅で除した値Yが0.5%/mより大きいと、広幅のロールを用いてフィルムに無機薄膜層や保護層を形成してガスバリアフィルムを製造するような場合において、加熱搬送時に発生する筋状のシワを抑制することができず、幅方向でガスバリア性が不均一となってしまう。
本発明のポリエステルフィルムの配向角の絶対値の最大値は、25~50度である。これは、本発明のフィルムのスリットロールがフィルム製造装置の中央部のフィルムからなるロールではないことを示す。フィルム製造装置の中央部のフィルムからなるスリットロールであれば、前記のY(%/m)が0.5以下であるフィルムは容易に製造できる。フィルムの配向角の最大値が25度以上であるフィルム製造装置の中央部以外のフィルムからなるスリットロールであっても、本発明のポリエステルフィルムは前記Y(%/m)が0.5以下である。
なお、フィルムの配向角は、王子計測株式会社製のMOA-6004型分子配向計を用いて測定される。フィルムの幅(横)方向の軸を基準にして、分子鎖主軸の配向角を求め、フィルム幅(横)方向に対して反時計回りの傾きをプラス(+)、時計回りをマイナス(-)とする。なお、測定はフィルムロールの中央部および中央から全幅の左右20%、左右40%離れた位置を測定し、その中の絶対値の最大値を最大配向角とする。一般的な二軸延伸フィルムの場合、フィルム製造装置の中央部のフィルムの配向角はゼロに近い値であり、端部のフィルムになるほど配向角の絶対値が大きくなる傾向がある。
本発明のポリエステルフィルムの突刺し強度の下限は好ましくは0.6N/μmである。0.6N/μm以上であると袋として用いる際に袋の強度が不十分となることがある。
本発明のポリエステルフィルムの衝撃強度の下限は好ましくは0.05J/μmである。0.05J/μm以上であると袋として用いる際に強度が十分となる。
本発明における基材フィルム層の衝撃強度の上限は好ましくは0.2J/μmである。0.2J/μm以下でも改善の効果が最大となることがある。
本発明のポリエステルフィルムの面配向度(ΔP)の下限は、好ましくは0.144であり、より好ましくは0.148であり、さらに好ましくは0.15である。上記未満であると配向が弱いため、十分な強度が得られず、耐破袋性が低下することがあるばかりか、基材フィルム層上に無機薄膜層と保護層を設けて積層フィルムとした場合に、保護膜の形成時にかかる張力と温度によって伸び易くなり、無機薄膜層が割れてしまうために、ガスバリア性が低下することがある。
本発明のポリエステルフィルムの面配向度(ΔP)の上限は、好ましくは0.165であり、より好ましくは0.160である。面配向度が大きくし過ぎた場合、強度や耐破袋性の向上効果が飽和する。また、面配向度をこれ以上大きくするには、延伸倍率を高くする必要があり、製膜時に破断が発生し生産性が低下する傾向がある。
本発明のポリエステルフィルムの厚みあたりのヘイズの上限は好ましくは0.66%/μmであり、より好ましくは0.60%/μmであり、更に好ましくは0.53%/μmである。0.66%/μm以下である基材フィルム層に印刷を施した際に、印刷された文字や画像の品位が向上する。
また本発明のポリエステルフィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電処理、火炎処理、表面粗面化処理が施されてもよく、また、公知のアンカーコート処理、印刷、装飾などが施されてもよい。
次に、本発明のポリエステルフィルムを得るため製造方法を具体的に説明する。これらに限定されるものではない。
本発明のポリエステルフィルムを得るため製造方法は、ポリエステル原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程、成形された前記未延伸シートを長手方向に延伸する縦延伸工程、前記縦延伸後に横延伸可能な温度に予熱する予熱工程、前記長手(縦)方向と直交する幅(横)方向に延伸する横延伸工程、前記縦延伸及び横延伸を行なった後のフィルムを加熱し結晶化させる熱固定工程、前記熱固定されたフィルムの残留歪みを除去する熱緩和工程、および熱緩和後のフィルムを冷却する冷却工程からなる。
[未延伸シート成形工程]
まず、フィルム原料を乾燥あるいは熱風乾燥する。次いで、原料を計量、混合して押し出し機に供給し、加熱溶融して、シート状に溶融キャスティングを行う。
さらに、溶融状態の樹脂シートを、静電印加法を用いて冷却ロール(キャスティングロール)に密着させて冷却固化し、未延伸シートを得る。静電印加法とは、溶融状態の樹脂シートが回転金属ロールに接触する付近で、樹脂シートの回転金属ロールに接触した面の反対の面の近傍に設置した電極に電圧を印加することによって、樹脂シートを帯電させ、樹脂シートと回転冷却ロールを密着させる方法である。
樹脂の加熱溶融温度の下限は好ましくは200℃であり、より好ましくは250℃であり、さらに好ましくは260℃である。上記未満であると吐出が不安定となることがある。樹脂溶融温度の上限は好ましくは280℃であり、より好ましくは270℃である。上記を越えると樹脂の分解が進行し、フィルムが脆くなってしまう。
溶融したポリエステル樹脂を押出し冷却ロール上にキャスティングする時に、幅方向の結晶化度の差を小さくすることが好ましい。このための具体的な方法としては、溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングすること、またさらに冷却ロール温度を低温とすることが挙げられる。
PBT樹脂は結晶化速度が速いため、キャスティング時にも結晶化が進行する。
このとき、多層化せずに単層でキャストした場合には、結晶の成長を抑制しうるような障壁が存在しないために、サイズの大きな球晶へと成長してしまう。その結果、得られた未延伸シートの降伏応力が高くなり、二軸延伸時に破断しやすくなるばかりでなく、得られた二軸延伸フィルムの衝撃強度、耐ピンホール性、又は耐破袋性が不十分なフィルムとなってしまう。一方、同一の樹脂を多層積層することで、未延伸シートの延伸応力を低減でき、その後の二軸延伸を安定して行うことが可能となる。
溶融したポリエステル樹脂を押出し、キャスティングする時に同一の組成の原料を多層化してキャスティングする方法は、具体的にはPBT樹脂を70重量%以上含む樹脂組成物を溶融して溶融流体を形成する工程(1)、形成された溶融流体からなる積層数60以上の積層流体を形成するする工程(2)、形成された積層流体をダイスから吐出し、冷却ロールに接触させて固化させ積層未延伸シートを形成する工程(3)、前記積層未延伸シートを二軸延伸する工程(4)を少なくとも有する。
工程(1)と工程(2)、工程(2)と工程(3)の間には、他の工程が挿入されていても差し支えない。例えば、工程(1)と工程(2)の間には濾過工程、温度変更工程等が挿入されていても良い。また、工程(2)と工程(3)の間には、温度変更工程、電荷付加工程等が挿入されていても良い。但し、工程(2)と工程(3)の間には、工程(2)で形成された積層構造を破壊する工程があってはならない。
工程(1)において、ポリエステル樹脂組成物を溶融して溶融流体を形成する方法は特に限定されないが、好適な方法としては、一軸押出機や二軸押出機を用いて加熱溶融する方法を挙げることができる。
工程(2)における積層流体を形成する方法は特に限定されないが、設備の簡便さや保守性の面から、スタティックミキサーおよび/または多層フィードブロックがより好ましい。また、シート幅方向の均一性の面から、矩形のメルトラインを有するものがより好ましい。矩形のメルトラインを有するスタティックミキサーまたは多層フィードブロックを用いることがさらに好ましい。なお、複数の樹脂組成物を合流させることによって形成された複数層からなる樹脂組成物を、スタティックミキサー、多層フィードブロックおよび多層マニホールドのいずれか1種または2種以上に通過させてもよい。
工程(2)における理論積層数は60以上であることが好ましい。理論積層数の下限は、より好ましくは500である。理論積層数が少なすぎると、あるいは、層界面間距離が長くなって結晶サイズが大きくなりすぎ、本発明の効果が得られない傾向にある。また、シート両端近傍での結晶化度が増大し、製膜が不安定となるほか、成型後の透明性が低下することがある。工程(2)における理論積層数の上限は特に限定されないが、好ましくは100000であり、より好ましくは10000であり、さらに好ましくは7000である。理論積層数を極端に大きくしてもその効果が飽和する場合がある。
工程(2)における積層をスタティックミキサーで行う場合、スタティックミキサーのエレメント数を選択することにより、理論積層数を調整することができる。スタティックミキサーは、一般的には駆動部のない静止型混合器(ラインミキサー)として知られており、ミキサー内に入った流体は、エレメントにより順次撹拌混合される。ところが、高粘度流体をスタティックミキサーに通過させると、高粘度流体の分割と積層が生じ、積層流体が形成される。スタティックミキサーの1エレメントを通過するごとに、高粘度流体は2分割され次いで合流し積層される。このため、高粘度流体をエレメント数nのスタティックミキサーに通過させると、理論積層数N=2nの積層流体が形成される。
典型的なスタティックミキサーエレメントは、長方形の板を180度ねじる構造を有し、ねじれの方向により、右エレメントと左エレメントがあり、各エレメントの寸法は直径に対して1.5倍の長さを基本としている。本発明に用いることのできるスタティックミキサーはこの様なものに限定されない。
工程(2)における積層を多層フィードブロックで行う場合、多層フィードブロックの分割・積層回数を選択することによって、理論積層数を調整することができる。多層フィードブロックは複数直列に設置することが可能である。また、多層フィードブロックに供給する高粘度流体自体を積層流体とすることも可能である。例えば、多層フィードブロックに供給する高粘度流体の積層数がp、多層フィードブロックの分割・積層数がq、多層フィードブロックの設置数がrの場合、積層流体の積層数Nは、N=p×qrとなる。
工程(3)において、積層流体をダイスから吐出し、冷却ロールに接触させて固化させる。
冷却ロール温度の下限は好ましくは-10℃である。上記未満であると結晶化抑制の効果が飽和することがある。冷却ロール温度の上限は好ましくは40℃である。上記を越えると結晶化度が高くなりすぎて延伸が困難となることがある。冷却ロール温度の上限は好ましくは25℃である。また冷却ロールの温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。冷却ロール表面の幅方向の温度差は少なくすることが好ましい。このとき、未延伸シートの厚みは15~2500μmの範囲が好適である。
上述における多層構造の未延伸シートは、少なくとも60層以上、好ましくは250層以上、更に好ましくは1000層以上である。層数が少ないと、延伸性の改善効果が失われる。
[縦延伸および横延伸工程]
次に延伸方法について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能であるが、突刺し強度を高めるためには、面配向度を高めておく必要があるほか、製膜速度が速く生産性が高いという点においては逐次二軸延伸が最も好ましい。
縦延伸方向の延伸温度の下限は好ましくは55℃であり、より好ましくは60℃である。55℃以上であると破断が起こりにくい。また、フィルムの縦配向度が強くなり過ぎないため、熱固定処理の際の収縮応力を抑えられ、幅(横)方向の分子配向の歪みの少ないフィルムが得られる。縦延伸方向の延伸温度の上限は、好ましくは100℃であり、より好ましくは95℃である。100℃以下であるとフィルムの配向が弱くなり過ぎないためフィルムの力学特性が低下しない。
縦延伸方向の延伸倍率の下限は好ましくは2.8倍であり、特に好ましくは3.0倍である。2.8倍以上であると面配向度が大きくなり、フィルムの突刺し強度が向上する。
縦延伸方向の延伸倍率の上限は好ましくは4.3倍であり、より好ましくは4.0倍であり、特に好ましくは3.8倍である。4.3倍以下であると、フィルムの横方向の配向度が強くなり過ぎず、熱固定処理の際の収縮応力が大きくなり過ぎず、フィルムの横方向の分子配向の歪みが小さくなり、結果として縦方向の直進引裂き性が向上する。また、力学強度や厚みムラの改善の効果はこの範囲では飽和する。
横延伸方向の延伸温度の下限は好ましくは60℃であり、60℃以上であると破断が起こりにくくなることがある。横延伸方向の延伸温度の上限は好ましくは100℃であり、100℃以下であると横方向の配向度が大きくなるため力学特性が向上する。
横延伸方向の延伸倍率の下限は好ましくは3.5倍であり、より好ましくは3.6倍であり、特に好ましくは3.7倍である。3.5倍以上であると横方向の配向度が弱くなり過ぎず、力学特性や厚みムラが向上する。横延伸方向の延伸倍率の上限は好ましくは5倍であり、より好ましくは4.5倍であり、特に好ましくは4.0倍である。5.0倍以下であると力学強度や厚みムラ改善の効果はこの範囲でも最大となる(飽和する)。
[熱固定工程]
熱固定工程での熱固定温度の下限は好ましくは195℃であり、より好ましくは200℃である。195℃以上であるとフィルムの熱収縮率を小さくなり、レトルト処理後においても、無機薄膜層がダメージを受けにくいため、ガスバリア性が向上する。熱固定温度の上限は好ましくは220℃であり、220度以下であると基材フィルム層が融けることがなく、脆くなり難い。
[熱緩和部工程]
熱緩和部工程でのリラックス率の下限は好ましくは0.5%である。0.5%以上であると熱固定時に破断が起こりにくくなることがある。リラックス率の上限は好ましくは10%である。10%以下であると熱固定時の長手(縦)方向への収縮が小さくなる結果、フィルム端部の分子配向の歪みが小さくなり、直進引裂き性が向上する。また、フィルムのたるみなどが生じにくく、厚みムラが発生しにくい。
[冷却工程]
熱緩和部工程でのリラックスを行った後の冷却工程において、ポリエステルフィルムの端部の表面の温度を80℃以下とすることが好ましい。
冷却工程通過後のフィルム端部の温度が80℃を超えていると、フィルムを巻き取る際にかかる張力により端部が引き伸ばされ、結果的に端部の縦方向の熱収縮率が高くなってしまうため、ロールの幅方向の熱収縮率分布が不均一となり、このようなロールを加熱搬送して蒸着加工などを行う際に、筋状のシワが発生してしまい、最終的に得られるガスバリアフィルムの物性が幅(横)方向で不均一となってしまうことがある。
前記冷却工程において、フィルム端部の表面温度を80℃以下とする方法としては、冷却工程の温度や風量を調整するほか、冷却ゾーンの幅方向における中央側に遮蔽板を設けて端部を選択的に冷却する方法や、フィルムの端部に対し局所的に冷風を吹き付けるといった方法を用いることが出来る。
[無機薄膜層]
本発明の二軸延伸ポリエステルフィルムの表面に無機薄膜層を設けることで、ガスバリア性を付与することが出来る。
無機薄膜層は金属または無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の重量比でAlが20~70重量%の範囲であることが好ましい。Al濃度が20重量%未満であると、水蒸気バリア性が低くなる場合がある。一方、70重量%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下する虞がある。なお、ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl2O3等の各種アルミニウム酸化物又はそれらの混合物である。
無機薄膜層の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。
無機薄膜層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiO2とAl2O3の混合物、あるいはSiO2とAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。
[接着層]
本発明のガスバイア性積層フィルムは、レトルト処理後のガスバリア性やラミネート強度を確保することを目的として、基材フィルム層と前記無機薄膜層との間に接着層を設けることができる。
基材フィルム層と前記無機薄膜層との間に設ける接着層に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。これらの接着層に用いる樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有することが好ましい。前記有機官能基としては、アルコキシ基、アミノ基、エポキシ基、イソシアネート基等が挙げられる。前記シランカップリング剤の添加によって、レトルト処理後のラミネート強度がより向上する。
前記接着層に用いる樹脂組成物の中でも、オキサゾリン基を含有する樹脂とアクリル系樹脂及びウレタン系樹脂の混合物を用いることが好ましい。オキサゾリン基は無機薄膜との親和性が高く、また無機薄膜層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物とが反応することができ、無機薄膜層と強固な密着性を示す。また接着層中に存在する未反応のオキサゾリン基は、基材フィルム層および接着層の加水分解により発生したカルボン酸末端と反応し、架橋を形成することができる。
前記接着層を形成するための方法としては、特に限定されるものではなく、例えばコート法など従来公知の方法を採用することができる。コート法の中でも好適な方法としては、オフラインコート法、インラインコート法を挙げることができる。例えば基材フィルム層を製造する工程で行うインラインコート法の場合、コート時の乾燥や熱処理の条件は、コート厚みや装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましく、そのような場合には通常50~250℃程度の温度とすることが好ましい。
コート法を用いる場合に使用する溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。
[保護層]
本発明においては、前記無機薄膜層の上に保護層を有する。金属酸化物層は完全に密な膜ではなく、微小な欠損部分が点在している。金属酸化物層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、金属酸化物層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。
本発明の積層フィルムの無機薄膜層の表面に形成する保護層に用いる樹脂組成物としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。
前記ウレタン樹脂は、ウレタン結合の極性基が無機薄膜層と相互作用するとともに、非晶部分の存在により柔軟性をも有するため、屈曲負荷がかかった際にも無機薄膜層へのダメージを抑えることができるため好ましい。
前記ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の無機薄膜上に均一に堆積することができるため、コート外観が良好となる。
前記ウレタン樹脂は、ガラス転移温度(Tg)が80℃以上であることが好ましく、より好ましくは90℃以上である。Tgを80℃以上にすることで、湿熱処理過程(昇温~保温~降温)における分子運動による保護層の膨潤を低減できる。
前記ウレタン樹脂は、ガスバリア性向上の面から、芳香族または芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。
その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。
本発明においては、ウレタン樹脂中の芳香族または芳香脂肪族ジイソシアネートの割合を、ポリイソシアネート成分(F)100モル%中、50モル%以上(50~100モル%)の範囲とすることが好ましい。芳香族または芳香脂肪族ジイソシアネートの合計量の割合は、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。このような樹脂として、三井化学株式会社から市販されている「タケラック(登録商標)WPB」シリーズは好適に用いることが出来る。芳香族または芳香脂肪族ジイソシアネートの合計量の割合が50モル%未満であると、良好なガスバリア性が得られない可能性がある。
前記ウレタン樹脂は、無機薄膜層との親和性向上の観点から、カルボン酸基(カルボキシル基)を有することが好ましい。ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入すればよい。また、カルボン酸基含有ウレタン樹脂を合成後、塩形成剤により中和すれば、水分散体のウレタン樹脂を得ることができる。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等のトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリン等のN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミン等のN-ジアルキルアルカノールアミン類等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。
以上より、本発明のポリエステルフィルムは、耐破袋性、耐屈曲性に優れ、かつ、基材フィルム層の上に、広幅のロールを無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生する筋状のシワを抑制し、幅方向のガスバリア性を均一にすることができる。
[包装材料]
本発明の積層フィルムを包装材料として用いる場合には、シーラントと呼ばれるヒートシール性樹脂層を形成することが好ましい。ヒートシール性樹脂層は通常、無機薄膜層上に設けられるが、基材フィルム層の外側(接着層形成面の反対側の面)に設けることもある。ヒートシール性樹脂層の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が充分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。
さらに、本発明の積層フィルムには、無機薄膜層または基材フィルム層とヒートシール性樹脂層との間またはその外側に、印刷層や他のプラスチック基材および/または紙基材を少なくとも1層以上積層してもよい。
印刷層を形成する印刷インクとしては、水性および溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等公知の乾燥方法が使用できる。
次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。
[フィルムの厚み]
JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
[フィルムの面配向度ΔP]
サンプルについてJIS K 7142-1996 A法により、ナトリウムD線を光源としてアッベ屈折計によりフィルム長手(縦)方向の屈折率(Nx)、幅(横)方向の屈折率(Ny)および厚み方向の屈折率(Nz)を測定し、(2式)の計算式により面配向度ΔPを算出した。
面配向度(ΔP)=(Nx+Ny)/2-Nz (2式)
[フィルムの配向角]
フィルムを100mm×100mmに切り取り、王子計測株式会社製のMOA-6004型分子配向計を用いて、フィルムの幅(横)方向の軸を基準にして、分子鎖主軸の配向角を求めた。このとき、フィルム幅(横)方向に対して反時計回りの傾きをプラス(+)、時計回りをマイナス(-)とした。なお、測定はフィルムロールの中央部および中央から全幅の左右20%、左右40%離れた位置を測定し、その中の絶対値の最大値を最大配向角とした。
[フィルムの熱収縮率]
ポリエステルフィルムの熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2151-2006.21に記載の寸法変化試験法で測定した。試験片は21.1(a)に記載に従い使用した。
[熱収縮率の幅方向均一性]
得られたフィルムロールについて、ロールの幅(横)方向に100mmピッチでサンプリングし、縦方向の熱収縮率を前述の方法に従って測定した。得られた熱収縮率の最大値と最小値、フィルムロールの幅から、下記式(1式)を用いてY(%/m)を求めた。
Y(%/m)={熱収縮率最大値(%)-熱収縮率最小値(%)}/ロール幅(m) ・・・(1式)
[フィルムの突刺し強度]
得られたポリエステルフィルムを5cm角にサンプリングし、株式会社イマダ製デジタルフォースゲージ「ZTS-500N」、電動計測スタンド「MX2-500N」及び突き刺し治具「TKS-250N」を用いて、JIS Z1707に準じてフィルムの突刺し強度を測定した。単位はN/μmで示した。
[フィルムのインパクト強度]
株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下におけるフィルムの衝撃打ち抜きに対する強度を測定した。衝撃球面は、直径1/2インチのものを用いた。単位はJ/μmで示した。
以下に本実施例及び比較例で使用する原料樹脂及び塗工液の詳細を記す。なお、実施例1-1~1-8、及び比較例1~5で使用し、表1及び表2に示した。
1)PBT樹脂:後述する二軸延伸ポリエステルフィルムの作製において使用するポリブチレンテレフタレート樹脂は1100-211XG(CHANG CHUN PLASTICS CO.,LTD.、固有粘度1.28dl/g)を用いた。
2)PET樹脂:後述する二軸延伸ポリエステルフィルムの作製において使用するPET樹脂はテレフタル酸//エチレングリコール=100//100(モル%)(東洋紡社製、固有粘度0.62dl/g)を用いた。
3)オキサゾリン基を有する樹脂(B):オキサゾリン基を有する樹脂として、市販の水溶性オキサゾリン基含有アクリレート(株式会社日本触媒製「エポクロス(登録商標)WS-300」;固形分10%)を用意した。この樹脂のオキサゾリン基量は7.7mmol/gであった。
4)アクリル樹脂(C)]:アクリル樹脂として、市販のアクリル酸エステル共重合体の25重量%エマルジョン(ニチゴー・モビニール株式会社製「モビニール(登録商標)7980」を用意した。このアクリル樹脂(B)の酸価(理論値)は4mgKOH/gであった。
5)ウレタン樹脂(D):ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学株式会社製「タケラック(登録商標)W605」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は100℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、55モル%であった。
6)ウレタン樹脂(E);:ウレタン樹脂として、市販のメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学株式会社製「タケラック(登録商標)WPB341」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は130℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、85モル%であった。
7)接着層に用いる塗工液1
下記の配合比率で各材料を混合し、塗布液(接着層用樹脂組成物)を作成した。
水 54.40重量%
イソプロパノール 25.00重量%
オキサゾリン基含有樹脂 (A) 15.00重量%
アクリル樹脂 (B) 3.60重量%
ウレタン樹脂 (C) 2.00重量%
8)保護層のコートに用いる塗工液2
下記の塗剤を混合し、塗工液2を作成した。ここでウレタン樹脂(E)の固形分換算の重量比は表1に示す通りである。
水 60.00重量%
イソプロパノール 30.00重量%
ウレタン樹脂(E) 10.00重量%
[ラミネート積層体の作製]
後述する実施例1-1~1-8、実施例2-1~2-8、比較例1-1~1-5および比較例2-1~2-5に示したガスバリア性フィルムの保護層側に、ウレタン系2液硬化型接着剤(三井化学株式会社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(重量比)の割合で配合)を用いてドライラミネート法により、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1147」)を貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネート積層を得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。
[ラミネート積層体の水蒸気透過度]
前述のラミネート積層体に対して、JIS-K7129-1992 B法に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W1A」)を用い、温度40℃、相対湿度90RH%の雰囲気下で、常態での水蒸気透過度を測定した。なお、水蒸気透過度の測定は、基材フィルム層側からシーラント側に水蒸気が透過する方向で行った。
[ラミネート積層体のレトルト後の水蒸気透過度]
前述のラミネート積層体に対して、130℃の熱水中に30分間保持する湿熱処理を行い、40℃で1日間(24時間)乾燥し、得られた湿熱処理後のラミネート積層体について上記と同様にして水蒸気透過度を測定した。
以下に各実施例及び比較例で使用する二軸延伸ポリエステルフィルムの作製方法を記す。また、下記二軸延伸ポリエステルフィルムの物性を表1に示した。
<実施例1-1>
一軸押出機を用い、PBT樹脂を80重量%とPET樹脂を20重量%混合したものに、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として混合樹脂に対して900ppmとなるように配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、ポリエステル樹脂溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。265℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
次いで、60℃で縦方向に2.9倍ロール延伸し、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行いフィルムを冷却した。この時のフィルム端部の表面温度は75℃であった。
次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmのポリエステルフィルムの全幅のロール(以下、ミルロールという)を得た。得られたミルロールをスリットして、ロール幅2080mm幅のスリットロール2本を採取した。
得られたフィルムの製膜条件、物性および評価結果を表1に示した。
<実施例1-2~実施例1-8、比較例1-1~比較例1-5>
二軸延伸ポリエステルフィルムの製膜工程において、PBT樹脂の比率、縦横延伸倍率、リラックス率及びテンター冷却工程ゾーン温度を表1及び表2に示した以外は、実施例1-1と同様に行った。但し、比較例1-2では、押出温度を270℃で実施した。
<実施例2-1>
一軸押出機を用い、PBT樹脂を80重量%とPET樹脂を20重量%混合したものに、不活性粒子として平均粒径2.4μmのシリカ粒子をシリカ濃度として混合樹脂に対して900ppmとなるように配合したものを290℃で溶融させた後、メルトラインを12エレメントのスタティックミキサーに導入した。これにより、ポリエステル樹脂溶融体の分割・積層を行い、同一の原料からなる多層溶融体を得た。265℃のT-ダイスからキャストし、15℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。
次いで、60℃で縦方向に2.9倍ロール延伸し、縦延伸後に接着層用樹脂組成物(塗布液1)をファウンテンバーコート法により塗布した。その後、乾燥しながらテンターに導き、次いで、テンターに通して90℃で横方向に4.0倍延伸し、200℃で3秒間の緊張熱処理と1秒間9%の緩和処理を実施した後、50℃で2秒間の冷却を行いフィルムを冷却した。この時のフィルム端部の表面温度は75℃であった。
次いで、両端の把持部を10%ずつ切断除去して厚みが15μm、全幅4200mmのポリエステルフィルムのミルロールを得た。得られたミルロールをスリットして、幅が2080mmのスリットロール2本を採取した。
得られたフィルムの製膜条件、物性および評価結果を表3に示した。
<実施例2-2~実施例2-8、比較例2-1~比較例2-5>
二軸延伸ポリエステルフィルムの製膜工程において、PBTの比率、縦横延伸倍率、リラックス率及びテンター冷却工程ゾーン温度を表3及び表4に示した以外は、実施例2-1と同様に行った。但し、比較例2-2では、押出温度を270℃で実施した。
以下に各実施例及び比較例での無機薄膜層の形成方法を記す。
<無機薄膜層M-1の形成>
無機薄膜層M-1として、二酸化ケイ素と酸化アルミニウムの複合酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO2(純度99.9%)とA12O3(純度99.9%)とを用いた。このようにして得られたフィルム(無機薄膜層/接着層含有フィルム)における無機薄膜層(SiO2/A12O3複合酸化物層)の膜厚は13nmであった。またこの複合酸化物層の組成は、SiO2/A12O3(重量比)=60/40であった。
<蒸着フィルムへの保護層1の形成>
塗工液2をワイヤーバーコート法によって、上記で蒸着され形成された無機薄膜層の無機薄膜層上に塗布し、200℃で15秒乾燥させ、保護層を得た。乾燥後の塗布量は0.190g/m2(Dry固形分として)であった。
以上のようにして、基材フィルム層の上に接着層/金属酸化物層/保護層を備えたガスバリア性積層フィルムを作製した。
表1、表3に示すように、実施例1-1~実施例1-8および実施例2-1~実施例2-8では、テンター出口でのフィルム端部の表面温度を80℃以下とすることによって、ロール幅方向での熱収縮率差を小さくすることができ、幅方向の物性差の小さいフィルムロールを得ることができた。
また、実施例1-1~実施例1-8では、テンター出口でのフィルム端部の温度を80℃以下に冷却することによって、得られたミルロールの端部の熱収縮率を抑えることができ、スリットしたロールの縦方向の熱収縮率差が小さくすることが可能となった。その結果、無機薄膜層及び保護層形成時に筋状のシワの発生が抑制され、幅方向でのガスバリア性を均一化した。また、実施例2-1~実施例2-8にでは、基材フィルム層と無機薄膜層の間に接着層を有することにより、さらに、レトルト殺菌処理のような、過酷な湿熱処理後においても、高いガスバリア性を保持することが出来た。
比較例1-1及び比較例2-1は、縦方向の熱収縮率を抑制するのに熱固定温度を高くしているので、フィルムの幅方向での歪みが大きく、端部の熱収縮率が高くなった結果、端部のガスバリア性が劣る。
比較例1-2及び比較例2-2は、上記同様、ミルロールの中央部と端部での熱収縮率の差が大きく、端部のガスバリア性が劣るばかりか、PBTの比率が少ないため十分な突刺し強度が得られていない。
比較例1-3及び比較例2-3、比較例1-4及び比較例2-4は、延伸倍率を上げて面配向度を上げていることにより突刺し強度は向上するが、比較例1-1及び比較例2-1同様、端部の熱収縮率が高く、幅方向でのガスバリア性の均一性が不十分となる。
比較例1-5及び比較例2-5では、縦方向の熱収縮率を抑えるために熱固定温度を高くした結果、中央部での熱収縮率は小さくなるものの、端部との差が大きく、幅方向でガスバリア性が不均一であった。また、フィルムの機械強度が低下していた。
本発明によれば、優れた耐ピンホール性、耐破袋性を有するとともに、基材フィルム層の上に、広幅のロールを無機薄膜層及び保護層を形成してガスバリアフィルムを製造するような場合においても、加熱搬送時に発生するシワを抑制し、幅方向のガスバリア性を均一にできる二軸延伸ポリエステルフィルムを提供することが可能となった。食品包装材料として広く適用でき得ることから、産業界に大きく寄与することが期待される。
本発明により得られる二軸延伸ポリエステルフィルムは広幅のロールを加工する場合においても、幅方向で均一な物性が得られることから、経済性や生産安定性に優れ、均質な特性が得られやすいという利点を有している、従って、かかるガスバリア性フィルムは、食品包装に止まらず、医薬品、工業製品等の包装用途の他、太陽電池、電子ペーパー、有機EL素子、半導体素子等の工業用途にも広く用いることができる。

Claims (6)

  1. ポリエステル原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程、成形された前記未延伸シートを長手方向に延伸する縦延伸工程、前記長手(縦)方向と直交する幅(横)方向に延伸する横延伸工程、前記縦延伸及び横延伸を行なった後のフィルムの熱固定工程、前記熱固定されたフィルムの熱緩和工程、および熱緩和後のフィルムを冷却する冷却工程を含み、前記冷却工程において、冷却ゾーンの幅方向における中央側に遮蔽版を設けてフィルムの端部を選択的に冷却し、フィルムの端部の表面の温度を80℃以下にすることを特徴とする、ポリエステルフィルムの製造方法。
  2. 前記冷却工程において、フィルムの端部に局所的に冷風を吹き付ける工程を含む、請求項1に記載のポリエステルフィルムの製造方法。
  3. 前記熱固定工程における熱固定温度が、195℃以上、220℃以下である、請求項1又は2に記載のポリエステルフィルムの製造方法。
  4. 前記熱緩和工程におけるリラックス率が、0.5%以上、10%以下である、請求項1~のいずれか一項に記載のポリエステルフィルムの製造方法。
  5. 前記ポリエステルフィルムが、ポリブチレンテレフタレートを含有する、請求項1~のいずれか一項に記載のポリエステルフィルムの製造方法。
  6. 前記ポリエステルフィルムが、ポリブチレンテレフタレートおよびポリエチレンテレフタレートを含有する、請求項に記載のポリエステルフィルムの製造方法。
JP2021214639A 2018-03-28 2021-12-28 ポリエステルフィルムおよびガスバリア性積層フィルム Active JP7310876B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021214639A JP7310876B2 (ja) 2018-03-28 2021-12-28 ポリエステルフィルムおよびガスバリア性積層フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062386A JP7006445B2 (ja) 2018-03-28 2018-03-28 ポリエステルフィルムおよびガスバリア性積層フィルム
JP2021214639A JP7310876B2 (ja) 2018-03-28 2021-12-28 ポリエステルフィルムおよびガスバリア性積層フィルム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018062386A Division JP7006445B2 (ja) 2018-03-28 2018-03-28 ポリエステルフィルムおよびガスバリア性積層フィルム

Publications (2)

Publication Number Publication Date
JP2022036177A JP2022036177A (ja) 2022-03-04
JP7310876B2 true JP7310876B2 (ja) 2023-07-19

Family

ID=87201311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021214639A Active JP7310876B2 (ja) 2018-03-28 2021-12-28 ポリエステルフィルムおよびガスバリア性積層フィルム

Country Status (1)

Country Link
JP (1) JP7310876B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189003A (ja) 2013-03-28 2014-10-06 Fujifilm Corp ポリエステルフィルム及びその製造方法
JP2014189002A (ja) 2013-03-28 2014-10-06 Fujifilm Corp ポリエステルフィルム及びその製造方法
JP2016203630A (ja) 2015-04-24 2016-12-08 東洋紡株式会社 二軸延伸ポリエステルフィルムおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189003A (ja) 2013-03-28 2014-10-06 Fujifilm Corp ポリエステルフィルム及びその製造方法
JP2014189002A (ja) 2013-03-28 2014-10-06 Fujifilm Corp ポリエステルフィルム及びその製造方法
JP2016203630A (ja) 2015-04-24 2016-12-08 東洋紡株式会社 二軸延伸ポリエステルフィルムおよびその製造方法

Also Published As

Publication number Publication date
JP2022036177A (ja) 2022-03-04

Similar Documents

Publication Publication Date Title
JP6962364B2 (ja) 積層フィルム
JP6819816B2 (ja) ポリエステルフィルムロール
TW201736453A (zh) 雙軸延伸聚酯膜、積層膜、積層體以及包裝用袋
JPWO2018225559A1 (ja) 二軸配向ポリエステルフィルム
CN113498376B (zh) 双轴取向聚酯薄膜和双轴取向聚酯薄膜的制造方法
WO2020203106A1 (ja) ポリエステルフィルム及びその製造方法
JP6927336B2 (ja) ガスバリア性積層フィルムおよびその製造方法
JP7006445B2 (ja) ポリエステルフィルムおよびガスバリア性積層フィルム
WO2020080131A1 (ja) 積層フィルム
JP7060842B2 (ja) ラミネート積層体
WO2018179726A1 (ja) 二軸配向ポリエステルフィルム及びその製造方法
JP6879473B2 (ja) 二軸配向ポリエステルフィルム
JP7574646B2 (ja) 積層フィルム
JP7310876B2 (ja) ポリエステルフィルムおよびガスバリア性積層フィルム
WO2019142781A1 (ja) 二軸配向ポリエステルフィルム
WO2020203105A1 (ja) ポリエステルフィルム及びその製造方法
JP6826784B2 (ja) 二軸配向ポリエステルフィルム、及び、二軸配向ポリエステルフィルムの製造方法
JP2019171587A (ja) ポリエステルフィルムおよびガスバリア性積層フィルム
CN113631368A (zh) 阻气性聚酰胺膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R151 Written notification of patent or utility model registration

Ref document number: 7310876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151