[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019039280A1 - 情報処理装置、情報処理方法、プログラム、及び、車両 - Google Patents

情報処理装置、情報処理方法、プログラム、及び、車両 Download PDF

Info

Publication number
WO2019039280A1
WO2019039280A1 PCT/JP2018/029732 JP2018029732W WO2019039280A1 WO 2019039280 A1 WO2019039280 A1 WO 2019039280A1 JP 2018029732 W JP2018029732 W JP 2018029732W WO 2019039280 A1 WO2019039280 A1 WO 2019039280A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
contact
obstacle
unit
detection
Prior art date
Application number
PCT/JP2018/029732
Other languages
English (en)
French (fr)
Inventor
隆盛 山口
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to DE112018004773.3T priority Critical patent/DE112018004773B4/de
Priority to US16/638,849 priority patent/US11135987B2/en
Priority to JP2019538058A priority patent/JP7192771B2/ja
Publication of WO2019039280A1 publication Critical patent/WO2019039280A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01302Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring vehicle body vibrations or noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Definitions

  • the present technology relates to an information processing apparatus, an information processing method, a program, and a vehicle, and in particular, an information processing apparatus, an information processing method, a program, and a vehicle suitable for use in detecting contact between a vehicle and an obstacle.
  • an information processing apparatus an information processing method, a program, and a vehicle suitable for use in detecting contact between a vehicle and an obstacle.
  • Patent Document 1 a technique has been proposed for determining the possibility of an obstacle coming into contact with a vehicle using a distance image.
  • the present technology has been made in view of such a situation, and aims to improve the detection accuracy of the contact between a vehicle and an obstacle.
  • the information processing apparatus predicts contact between the vehicle and the obstacle based on an obstacle detection unit that detects an obstacle around the vehicle, and a detection result of the obstacle.
  • a contact detection unit that detects contact between the vehicle and the obstacle.
  • the information processing apparatus detects an obstacle around the vehicle, and predicts the contact between the vehicle and the obstacle based on the detection result of the obstacle. And detecting an event that occurs due to the contact between the vehicle and the object, and while it is predicted that the obstacle may contact the vehicle, the vehicle and the vehicle are detected based on the detection result of the event. Detect contact of obstacles.
  • a program includes an obstacle detection step of detecting an obstacle around a vehicle, and a contact of predicting contact between the vehicle and the obstacle based on a detection result of the obstacle. Based on the detection result of the prediction step, the event detection step of detecting an event generated by the contact between the vehicle and the object, and while it is predicted that the vehicle and the obstacle may possibly contact with each other. And causing the computer to execute processing including the vehicle and a contact detection step of detecting contact of the obstacle.
  • the vehicle includes a data acquisition unit that acquires data used for detection of an obstacle around the vehicle and detection of an event that occurs due to contact with an object, and the acquired data.
  • the event based on an obstacle detection unit that detects the obstacle, a contact prediction unit that predicts contact with the obstacle based on the detection result of the obstacle, and the acquired data
  • an obstacle around the vehicle is detected, and based on the detection result of the obstacle, a contact between the vehicle and the obstacle is predicted, and the vehicle and the object are detected. Detection of an event that occurs due to the contact between the vehicle and the obstacle based on the detection result of the event while it is predicted that the obstacle may contact the vehicle Detection is performed.
  • data used for detection of surrounding obstacles and detection of an event generated by contact with an object is acquired, and detection of the obstacles is performed based on the acquired data.
  • the contact with the obstacle is predicted based on the detection result of the obstacle, the detection of the event is performed based on the acquired data, and the obstacle contacts While it is predicted that there is a possibility, the detection of the contact with the obstacle is performed based on the detection result of the event.
  • contact of a vehicle with an obstacle can be detected.
  • detection accuracy of contact between a vehicle and an obstacle can be improved.
  • FIG. 1 is a block diagram showing a first embodiment of a touch detection system to which the present technology is applied. It is a flow chart for explaining the 1st embodiment of contact detection processing. It is a figure showing an example of a prediction course of a self-vehicle and an obstacle. It is a figure which shows the example of the contact determination of an obstruction. It is a block diagram showing a 2nd embodiment of a touch detection system to which this art is applied. It is a flow chart for explaining the 2nd embodiment of contact detection processing. It is a figure showing an example of composition of a computer.
  • FIG. 1 is a block diagram showing a configuration example of a schematic function of a vehicle control system 100 which is an example of a mobile control system to which the present technology can be applied.
  • the vehicle control system 100 is a system that is provided in the vehicle 10 and performs various controls of the vehicle 10.
  • the vehicle 10 is distinguished from other vehicles, it is referred to as the own vehicle or the own vehicle.
  • the vehicle control system 100 includes an input unit 101, a data acquisition unit 102, a communication unit 103, an in-vehicle device 104, an output control unit 105, an output unit 106, a drive system control unit 107, a drive system 108, a body system control unit 109, and a body.
  • the system system 110, the storage unit 111, and the automatic driving control unit 112 are provided.
  • the input unit 101, the data acquisition unit 102, the communication unit 103, the output control unit 105, the drive system control unit 107, the body system control unit 109, the storage unit 111, and the automatic operation control unit 112 are connected via the communication network 121. Connected to each other.
  • the communication network 121 may be, for example, an on-vehicle communication network or bus conforming to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become. In addition, each part of the vehicle control system 100 may be directly connected without passing through the communication network 121.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • each unit of the vehicle control system 100 performs communication via the communication network 121
  • the description of the communication network 121 is omitted.
  • the input unit 101 and the automatic driving control unit 112 communicate via the communication network 121, it is described that the input unit 101 and the automatic driving control unit 112 merely communicate.
  • the input unit 101 includes an apparatus used by a passenger for inputting various data and instructions.
  • the input unit 101 includes operation devices such as a touch panel, a button, a microphone, a switch, and a lever, and an operation device and the like that can be input by a method other than manual operation by voice or gesture.
  • the input unit 101 may be a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile device or wearable device corresponding to the operation of the vehicle control system 100.
  • the input unit 101 generates an input signal based on data, an instruction, and the like input by the passenger, and supplies the input signal to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for acquiring data used for processing of the vehicle control system 100 and supplies the acquired data to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for detecting the state of the vehicle 10 and the like.
  • the data acquisition unit 102 includes a gyro sensor, an acceleration sensor, an inertia measurement device (IMU), an operation amount of an accelerator pedal, an operation amount of a brake pedal, a steering angle of a steering wheel, and an engine speed.
  • IMU inertia measurement device
  • a sensor or the like for detecting a motor rotation speed or a rotation speed of a wheel is provided.
  • the data acquisition unit 102 includes various sensors for detecting information outside the vehicle 10.
  • the data acquisition unit 102 includes an imaging device such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the data acquisition unit 102 includes an environment sensor for detecting weather, weather, etc., and an ambient information detection sensor for detecting an object around the vehicle 10.
  • the environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like.
  • the ambient information detection sensor is made of, for example, an ultrasonic sensor, a radar, LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), sonar or the like.
  • the data acquisition unit 102 includes various sensors for detecting the current position of the vehicle 10.
  • the data acquisition unit 102 includes a GNSS receiver or the like which receives a GNSS signal from a Global Navigation Satellite System (GNSS) satellite.
  • GNSS Global Navigation Satellite System
  • the data acquisition unit 102 includes various sensors for detecting information in the vehicle.
  • the data acquisition unit 102 includes an imaging device for imaging a driver, a biological sensor for detecting biological information of the driver, a microphone for collecting sound in a vehicle interior, and the like.
  • the biological sensor is provided, for example, on a seat or a steering wheel, and detects biological information of an occupant sitting on a seat or a driver holding the steering wheel.
  • the communication unit 103 communicates with the in-vehicle device 104 and various devices outside the vehicle, a server, a base station, etc., and transmits data supplied from each portion of the vehicle control system 100, and receives the received data. Supply to each part of 100.
  • the communication protocol supported by the communication unit 103 is not particularly limited, and the communication unit 103 can also support a plurality of types of communication protocols.
  • the communication unit 103 performs wireless communication with the in-vehicle device 104 by wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), WUSB (Wireless USB), or the like. Also, for example, the communication unit 103 may use a Universal Serial Bus (USB), a High-Definition Multimedia Interface (HDMI (registered trademark)), or an MHL (Universal Serial Bus) via a connection terminal (and a cable, if necessary) not shown. Wired communication is performed with the in-vehicle device 104 by Mobile High-definition Link) or the like.
  • USB Universal Serial Bus
  • HDMI High-Definition Multimedia Interface
  • MHL Universal Serial Bus
  • the communication unit 103 may communicate with an apparatus (for example, an application server or control server) existing on an external network (for example, the Internet, a cloud network, or a network unique to an operator) via a base station or an access point. Communicate. Also, for example, the communication unit 103 may use a P2P (Peer To Peer) technology to connect with a terminal (for example, a pedestrian or a shop terminal, or a MTC (Machine Type Communication) terminal) existing in the vicinity of the vehicle 10. Communicate. Further, for example, the communication unit 103 may perform vehicle to vehicle communication, vehicle to infrastructure communication, communication between the vehicle 10 and a house, and communication between the vehicle 10 and the pedestrian. ) V2X communication such as communication is performed. Also, for example, the communication unit 103 includes a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from radio stations installed on roads, and acquires information such as current position, traffic jam, traffic restriction, or required time. Do.
  • an apparatus for example, an application server or control server
  • the in-vehicle device 104 includes, for example, a mobile device or wearable device of a passenger, an information device carried in or attached to the vehicle 10, a navigation device for searching for a route to an arbitrary destination, and the like.
  • the output control unit 105 controls the output of various information to the occupant of the vehicle 10 or the outside of the vehicle.
  • the output control unit 105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data), and supplies the generated output signal to the output unit 106.
  • the output control unit 105 combines image data captured by different imaging devices of the data acquisition unit 102 to generate an overhead image or a panoramic image, and an output signal including the generated image is generated.
  • the output unit 106 is supplied.
  • the output control unit 105 generates voice data including a warning sound or a warning message for danger such as collision, contact, entering a danger zone, and the like, and outputs an output signal including the generated voice data to the output unit 106.
  • Supply for example, the output control unit 105 generates voice data including a warning sound or a warning message for danger such as collision, contact, entering a danger zone, and the like, and outputs an
  • the output unit 106 includes a device capable of outputting visual information or auditory information to an occupant of the vehicle 10 or the outside of the vehicle.
  • the output unit 106 includes a display device, an instrument panel, an audio speaker, headphones, wearable devices such as a glasses-type display worn by a passenger, a projector, a lamp, and the like.
  • the display device included in the output unit 106 has visual information in the driver's field of vision, such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to a device having a normal display. It may be an apparatus for displaying.
  • the drive system control unit 107 controls the drive system 108 by generating various control signals and supplying them to the drive system 108. In addition, the drive system control unit 107 supplies a control signal to each unit other than the drive system 108 as necessary, and notifies a control state of the drive system 108, and the like.
  • the driveline system 108 includes various devices related to the driveline of the vehicle 10.
  • the drive system 108 includes a driving force generating device for generating a driving force of an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering mechanism for adjusting a steering angle.
  • a braking system that generates a braking force an antilock brake system (ABS), an electronic stability control (ESC), an electric power steering apparatus, and the like are provided.
  • the body control unit 109 controls the body system 110 by generating various control signals and supplying the control signals to the body system 110.
  • the body system control unit 109 supplies a control signal to each unit other than the body system 110, as required, to notify the control state of the body system 110, and the like.
  • the body system 110 includes various devices of the body system mounted on the vehicle body.
  • the body system 110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, headlamps, back lamps, brake lamps, blinkers, fog lamps, etc.) Etc.
  • the storage unit 111 includes, for example, a read only memory (ROM), a random access memory (RAM), a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, and a magneto-optical storage device. .
  • the storage unit 111 stores various programs, data, and the like used by each unit of the vehicle control system 100.
  • the storage unit 111 is map data such as a three-dimensional high-accuracy map such as a dynamic map, a global map that has a lower accuracy than a high-accuracy map and covers a wide area, and information around the vehicle 10 Remember.
  • the autonomous driving control unit 112 performs control regarding autonomous driving such as autonomous traveling or driving assistance. Specifically, for example, the automatic driving control unit 112 can avoid collision or reduce the impact of the vehicle 10, follow-up traveling based on the inter-vehicle distance, vehicle speed maintenance traveling, collision warning of the vehicle 10, lane departure warning of the vehicle 10, etc. Coordinated control is carried out to realize the functions of the Advanced Driver Assistance System (ADAS), including: Further, for example, the automatic driving control unit 112 performs cooperative control for the purpose of automatic driving or the like that travels autonomously without depending on the driver's operation.
  • the automatic driving control unit 112 includes a detection unit 131, a self position estimation unit 132, a situation analysis unit 133, a planning unit 134, and an operation control unit 135.
  • the detection unit 131 detects various types of information necessary for control of automatic driving.
  • the detection unit 131 includes an out-of-vehicle information detection unit 141, an in-vehicle information detection unit 142, and a vehicle state detection unit 143.
  • the outside-of-vehicle information detection unit 141 performs detection processing of information outside the vehicle 10 based on data or signals from each unit of the vehicle control system 100. For example, the outside information detection unit 141 performs detection processing of an object around the vehicle 10, recognition processing, tracking processing, and detection processing of the distance to the object.
  • the objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings and the like. Further, for example, the outside-of-vehicle information detection unit 141 performs a process of detecting the environment around the vehicle 10.
  • the surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface condition and the like.
  • the information outside the vehicle detection unit 141 indicates data indicating the result of the detection process as the self position estimation unit 132, the map analysis unit 151 of the situation analysis unit 133, the traffic rule recognition unit 152, the situation recognition unit 153, and the operation control unit 135. Supply to the emergency situation avoidance unit 171 and the like.
  • the in-vehicle information detection unit 142 performs in-vehicle information detection processing based on data or signals from each unit of the vehicle control system 100.
  • the in-vehicle information detection unit 142 performs a driver authentication process and recognition process, a driver state detection process, a passenger detection process, an in-vehicle environment detection process, and the like.
  • the state of the driver to be detected includes, for example, physical condition, awakening degree, concentration degree, fatigue degree, gaze direction and the like.
  • the in-vehicle environment to be detected includes, for example, temperature, humidity, brightness, smell and the like.
  • the in-vehicle information detection unit 142 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
  • the vehicle state detection unit 143 detects the state of the vehicle 10 based on data or signals from each unit of the vehicle control system 100.
  • the state of the vehicle 10 to be detected includes, for example, speed, acceleration, steering angle, presence / absence of abnormality and contents, state of driving operation, position and inclination of power seat, state of door lock, and other on-vehicle devices. Status etc. are included.
  • the vehicle state detection unit 143 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
  • Self position estimation unit 132 estimates the position and orientation of vehicle 10 based on data or signals from each part of vehicle control system 100 such as external information detection unit 141 and situation recognition unit 153 of situation analysis unit 133. Do the processing. In addition, the self position estimation unit 132 generates a local map (hereinafter, referred to as a self position estimation map) used to estimate the self position, as necessary.
  • the self-location estimation map is, for example, a high-accuracy map using a technique such as SLAM (Simultaneous Localization and Mapping).
  • the self position estimation unit 132 supplies data indicating the result of the estimation process to the map analysis unit 151, the traffic rule recognition unit 152, the situation recognition unit 153, and the like of the situation analysis unit 133.
  • the self position estimation unit 132 stores the self position estimation map in the storage unit 111.
  • the situation analysis unit 133 analyzes the situation of the vehicle 10 and the surroundings.
  • the situation analysis unit 133 includes a map analysis unit 151, a traffic rule recognition unit 152, a situation recognition unit 153, and a situation prediction unit 154.
  • the map analysis unit 151 uses various data or signals stored in the storage unit 111 while using data or signals from each part of the vehicle control system 100 such as the self position estimation unit 132 and the external information detection unit 141 as necessary. Perform analysis processing and construct a map that contains information necessary for automatic driving processing.
  • the map analysis unit 151 is configured of the traffic rule recognition unit 152, the situation recognition unit 153, the situation prediction unit 154, the route planning unit 161 of the planning unit 134, the action planning unit 162, the operation planning unit 163, and the like. Supply to
  • the traffic rule recognition unit 152 uses traffic rules around the vehicle 10 based on data or signals from each unit of the vehicle control system 100 such as the self position estimation unit 132, the outside information detection unit 141, and the map analysis unit 151. Perform recognition processing. By this recognition process, for example, the position and state of signals around the vehicle 10, the contents of traffic restrictions around the vehicle 10, and the travelable lanes and the like are recognized.
  • the traffic rule recognition unit 152 supplies data indicating the result of the recognition process to the situation prediction unit 154 and the like.
  • the situation recognition unit 153 uses data or signals from each unit of the vehicle control system 100 such as the self position estimation unit 132, the outside information detection unit 141, the in-vehicle information detection unit 142, the vehicle state detection unit 143, and the map analysis unit 151. Based on the recognition processing of the situation regarding the vehicle 10 is performed. For example, the situation recognition unit 153 performs recognition processing of the situation of the vehicle 10, the situation around the vehicle 10, the situation of the driver of the vehicle 10, and the like. In addition, the situation recognition unit 153 generates a local map (hereinafter referred to as a situation recognition map) used to recognize the situation around the vehicle 10 as needed.
  • the situation recognition map is, for example, an Occupancy Grid Map.
  • the situation of the vehicle 10 to be recognized includes, for example, the position, attitude, movement (for example, speed, acceleration, moving direction, etc.) of the vehicle 10, and the presence or absence and contents of abnormality.
  • the circumstances around the vehicle 10 to be recognized include, for example, the type and position of surrounding stationary objects, the type, position and movement of surrounding animals (eg, speed, acceleration, movement direction, etc.) Configuration and road surface conditions, as well as ambient weather, temperature, humidity, brightness, etc. are included.
  • the state of the driver to be recognized includes, for example, physical condition, alertness level, concentration level, fatigue level, movement of eyes, driving operation and the like.
  • the situation recognition unit 153 supplies data (including a situation recognition map, if necessary) indicating the result of the recognition process to the self position estimation unit 132, the situation prediction unit 154, and the like. In addition, the situation recognition unit 153 stores the situation recognition map in the storage unit 111.
  • the situation prediction unit 154 performs a prediction process of the situation regarding the vehicle 10 based on data or signals from each part of the vehicle control system 100 such as the map analysis unit 151, the traffic rule recognition unit 152, and the situation recognition unit 153. For example, the situation prediction unit 154 performs prediction processing of the situation of the vehicle 10, the situation around the vehicle 10, the situation of the driver, and the like.
  • the situation of the vehicle 10 to be predicted includes, for example, the behavior of the vehicle 10, the occurrence of an abnormality, the travelable distance, and the like.
  • the situation around the vehicle 10 to be predicted includes, for example, the behavior of the moving object around the vehicle 10, the change of the signal state, and the change of the environment such as the weather.
  • the driver's condition to be predicted includes, for example, the driver's behavior and physical condition.
  • the situation prediction unit 154 together with data from the traffic rule recognition unit 152 and the situation recognition unit 153, indicates data indicating the result of the prediction process, the route planning unit 161 of the planning unit 134, the action planning unit 162, and the operation planning unit 163. Supply to etc.
  • the route planning unit 161 plans a route to a destination based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. For example, the route planning unit 161 sets a route from the current position to the specified destination based on the global map. In addition, for example, the route planning unit 161 changes the route as appropriate based on traffic jams, accidents, traffic restrictions, conditions such as construction, the physical condition of the driver, and the like. The route planning unit 161 supplies data indicating the planned route to the action planning unit 162 and the like.
  • the action planning part 162 safely makes the route planned by the route planning part 161 within the planned time. Plan the action of the vehicle 10 to travel.
  • the action planning unit 162 performs planning of start, stop, traveling direction (for example, forward, backward, left turn, right turn, change of direction, etc.), travel lane, travel speed, overtaking, and the like.
  • the action plan unit 162 supplies data indicating the planned action of the vehicle 10 to the operation plan unit 163 and the like.
  • the operation planning unit 163 is an operation of the vehicle 10 for realizing the action planned by the action planning unit 162 based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan.
  • the operation plan unit 163 plans acceleration, deceleration, a traveling track, and the like.
  • the operation planning unit 163 supplies data indicating the planned operation of the vehicle 10 to the acceleration / deceleration control unit 172, the direction control unit 173, and the like of the operation control unit 135.
  • the operation control unit 135 controls the operation of the vehicle 10.
  • the operation control unit 135 includes an emergency situation avoidance unit 171, an acceleration / deceleration control unit 172, and a direction control unit 173.
  • the emergency situation avoidance unit 171 is based on the detection results of the external information detection unit 141, the in-vehicle information detection unit 142, and the vehicle state detection unit 143, collision, contact, entry into a danger zone, driver abnormality, vehicle 10 Perform detection processing of an emergency such as When the emergency situation avoidance unit 171 detects the occurrence of an emergency situation, it plans the operation of the vehicle 10 for avoiding an emergency situation such as a sudden stop or a sharp turn.
  • the emergency situation avoidance unit 171 supplies data indicating the planned operation of the vehicle 10 to the acceleration / deceleration control unit 172, the direction control unit 173, and the like.
  • the acceleration / deceleration control unit 172 performs acceleration / deceleration control for realizing the operation of the vehicle 10 planned by the operation planning unit 163 or the emergency situation avoidance unit 171.
  • the acceleration / deceleration control unit 172 calculates a control target value of a driving force generator or a braking device for achieving planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. It is supplied to the system control unit 107.
  • the direction control unit 173 performs direction control for realizing the operation of the vehicle 10 planned by the operation planning unit 163 or the emergency situation avoidance unit 171. For example, the direction control unit 173 calculates the control target value of the steering mechanism for realizing the traveling track or the sharp turn planned by the operation plan unit 163 or the emergency situation avoidance unit 171, and performs control indicating the calculated control target value. The command is supplied to the drive system control unit 107.
  • this first embodiment mainly relates to the processing of the detection unit 131 and the situation analysis unit 133 in the vehicle control system 100 of FIG. 1.
  • FIG. 2 is a block diagram showing a configuration example of a touch detection system 200 according to a first embodiment of the touch detection system to which the present technology is applied.
  • the contact detection system 200 is a system that performs a process of detecting a contact between an obstacle and a vehicle 10 in which the contact detection system 200 is provided. For example, the contact detection system 200 detects the contact between the vehicle 10 and the obstacle regardless of the degree from the extent that the vehicle 10 and the obstacle are lightly touched to the severe collision of the vehicle 10 and the obstacle. Note that, for example, the range of the degree of contact detected by the contact detection system 200 may be limited.
  • the contact detection system 200 includes a sensor unit 201, an imaging unit 202, a sound collection unit 203, and an information processing unit 204.
  • the sensor unit 201 includes, for example, various sensors for detecting the state of the vehicle 10.
  • the sensor unit 201 may be a gyro sensor, an acceleration sensor, an inertia measurement device (IMU), an operation amount of an accelerator pedal, an operation amount of a brake pedal, a steering angle of a steering wheel, an engine rotation number, a motor rotation number, or A sensor or the like for detecting a rotational speed or the like of a wheel is provided.
  • the sensor unit 201 also includes, for example, an ambient information detection sensor for detecting an object around the vehicle 10.
  • the ambient information detection sensor is, for example, an ultrasonic sensor, a radar, a LiDAR, a sonar or the like.
  • the sensor unit 201 supplies sensor data output from each sensor to the vehicle state detection unit 211, the obstacle detection unit 212, and the recording control unit 214 of the information processing unit 204.
  • the imaging unit 202 includes an imaging device for imaging the surroundings of the vehicle 10, and the image data obtained by imaging can be used as a vehicle state detection unit 211, an obstacle detection unit 212, and a recording control unit 214 of the information processing unit 204. Supply.
  • the number of installation and the installation position of an imaging device can be set arbitrarily.
  • the sound collection unit 203 includes a microphone that collects sounds around the vehicle 10, and supplies sound data indicating the collected sound to the recording control unit 214 and the contact sound detection unit 215 of the information processing unit 204.
  • the installation number and installation position of a microphone can be set arbitrarily. However, it is desirable to install a microphone so that contact noise generated when an obstacle contacts the body of the vehicle 10 can be detected regardless of the contact position.
  • the microphone is installed in the room of the vehicle 10. This makes it possible to detect the contact sound under the same conditions as the driver and other passengers.
  • the microphone is placed in contact with the body of the vehicle 10. Thereby, the detection accuracy of the contact sound with respect to the body of the vehicle 10 is improved.
  • the sensor unit 201, the imaging unit 202, and the voice collection unit 203 correspond to, for example, a part of the data acquisition unit 102 in FIG.
  • the information processing unit 204 detects the contact between the vehicle 10 and an obstacle.
  • the information processing unit 204 includes a vehicle state detection unit 211, an obstacle detection unit 212, a contact prediction unit 213, a recording control unit 214, a contact sound detection unit 215, and a contact detection unit 216.
  • the vehicle state detection unit 211 detects the state of the vehicle 10, in particular, the movement of the vehicle 10 based on the sensor data from the sensor unit 201, and supplies the detection result to the contact prediction unit 213.
  • the obstacle detection unit 212 detects an obstacle around the vehicle 10 based on the sensor data from the sensor unit 201 and the image data from the imaging unit 202, and supplies the detection result to the contact prediction unit 213. .
  • the contact prediction unit 213 predicts the movement of the vehicle 10 and the obstacle based on the detection result of the state of the vehicle 10 and the detection result of the obstacle around the vehicle 10. Further, the contact prediction unit 213 predicts the contact between the vehicle 10 and the obstacle based on the prediction result of the movement of the vehicle 10 and the obstacle, and supplies the prediction result to the recording control unit 214 and the contact detection unit 216. .
  • the recording control unit 214 controls recording of sensor data, image data, and audio data based on the prediction result of the contact between the vehicle 10 and an obstacle.
  • the contact sound detection unit 215 detects, based on the voice data from the sound collection unit 203, the contact sound generated when the vehicle 10 contacts an obstacle. In addition, the contact sound detection unit 215 estimates the type of an object that may have touched the vehicle 10 based on the contact sound. The contact sound detection unit 215 supplies the contact detection unit 216 with the detection result of the contact sound and the estimation result of the type of the object.
  • the contact detection unit 216 detects the contact between the vehicle 10 and the obstacle by the contact prediction unit 213 and the detection result of the contact sound by the contact sound detection unit 215 and the estimation result of the type of the object. Detect contact of obstacles.
  • the contact detection unit 216 supplies, for example, the detection result to the action plan unit 162 and the operation plan unit 163 in FIG.
  • step S1 the vehicle state detection unit 211 starts the detection of the movement of the vehicle 10. Specifically, the vehicle state detection unit 211 starts detection of the movement of the vehicle 10 based on the sensor data from the sensor unit 201. For example, detection of the velocity, acceleration, moving direction, and the like of the vehicle 10 is started. In addition, the vehicle state detection unit 211 starts the process of supplying the detection result to the contact prediction unit 213.
  • step S ⁇ b> 2 the obstacle detection unit 212 starts detection of an obstacle around the vehicle 10. Specifically, the obstacle detection unit 212 starts detection of an obstacle around the vehicle 10 based on sensor data from the sensor unit 201 and image data from the imaging unit 202. For example, detection of the presence or absence of an obstacle, position, size, movement (for example, speed, acceleration, movement direction, etc.), type (for example, children, adults, elderly people, cars, trucks, buses, bicycles, etc.) is started. Ru. In addition, the obstacle detection unit 212 starts the process of supplying the detection result to the contact prediction unit 213.
  • arbitrary methods can be used for the detection method of an obstruction.
  • the type of obstacle to be detected and the classification method of the obstacle can be arbitrarily set. For example, all objects detected around the vehicle 10 may be detected as obstacles, or only objects that may be an obstacle to the traveling of the vehicle 10 may be detected as obstacles. It is also good.
  • the contact sound detection unit 215 starts detection of the contact sound. Specifically, the touch sound detection unit 215 starts detection of the touch sound based on the sound data from the sound collection unit 203. For example, detection of the presence or absence of the contact sound, the size, the generation position, etc. is started.
  • the contact sound detection unit 215 detects a contact sound
  • the contact sound detection unit 215 starts to estimate the type of an object that may have come into contact with the vehicle 10 based on the waveform or the like of the detected contact sound. Furthermore, the contact sound detection unit 215 starts supply of the detection result of the contact sound and the estimation result of the type of the object to the contact detection unit 216.
  • step S4 the contact prediction unit 213 predicts the movement of the vehicle 10 and the obstacle. Specifically, the contact prediction unit 213 predicts the future movement of the vehicle 10 based on the movement of the vehicle 10 detected so far by the vehicle state detection unit 211. In addition, the contact prediction unit 213 predicts future movement of the obstacle based on the movement of the obstacle detected so far by the obstacle detection unit 212. When a plurality of obstacles are detected, the future movement of each obstacle is predicted.
  • the route of the vehicle 10 and obstacle from time t3 to time t4 is predicted based on the movement of the vehicle 10 and obstacle from time t0 to time t3. .
  • step S5 the contact prediction unit 213 determines whether there is a possibility of touching an obstacle. For example, when there is no obstacle predicted that the distance between the vehicle 10 and the vehicle 10 is less than a predetermined threshold during the period from the current time until the predetermined time has elapsed, the contact prediction unit 213 can contact the obstacle It determines that there is no sex. Then, the touch prediction unit 213 notifies the touch detection unit 216 that there is no possibility of touching an obstacle, and the process proceeds to step S6.
  • the shortest distance Dmin between the vehicle 10 and the obstacle in the period from time t3 to time t4 in FIG. 4 is equal to or greater than a predetermined threshold value, it is determined that there is no possibility of touching the obstacle.
  • the period made into the object of determination of whether or not there is a possibility of touching an obstacle is set, for example, to a period until the prediction processing by the contact prediction unit 213 is performed next.
  • step S6 the contact detection unit 216 determines, based on the detection result of the contact sound detection unit 215, whether the contact sound has been detected. If it is determined that the contact sound is not detected, the process returns to step S4.
  • steps S4 to S6 is repeatedly performed until it is determined in step S5 that there is a possibility of touching an obstacle or it is determined that a contact sound is detected in step S6.
  • step S6 determines whether the contact sound is detected.
  • step S7 the contact detection unit 216 notifies that the contact of the obstacle has not occurred.
  • the contact detection unit 216 supplies data indicating that contact with an obstacle has not occurred to the action plan unit 162, the operation plan unit 163, and the like in FIG.
  • step S4 the process returns to step S4, and the processes of steps S4 to S7 are repeatedly performed until it is determined in step S5 that there is a possibility of touching an obstacle.
  • step S5 for example, when the contact prediction unit 213 determines that the distance between the vehicle 10 and the vehicle 10 is less than the predetermined threshold during the period from the present time until the predetermined time has elapsed, Determine that there is a possibility of touching an obstacle. Then, the contact prediction unit 213 notifies the recording control unit 214 and the contact detection unit 216 that there is a possibility of touching an obstacle, and the process proceeds to step S8.
  • step S8 the recording control unit 214 starts recording of data. Specifically, the recording control unit 214 extracts necessary data from sensor data from the sensor unit 201, image data from the imaging unit 202, and voice data from the voice collection unit 203, as shown in FIG. A process of recording in the storage unit 111 is started.
  • the data to be recorded is, for example, data used for movement of a vehicle, detection of an obstacle, detection of contact sound, etc., and verification or proof of contact or non-contact with an obstacle later, obstacle It is considered as data necessary for investigating the cause of contact with objects.
  • step S9 as in the process of step S6, it is determined whether a contact sound is detected. If it is determined that the contact sound is detected, the process proceeds to step S10.
  • step S10 the touch detection unit 216 determines whether the type of the obstacle matches the type of the object estimated from the touch sound. Specifically, the touch detection unit 216 compares the type of the obstacle detected by the obstacle detection unit 212 with the type of the object estimated by the touch sound detection unit 215 based on the touch sound. If the two do not match, the contact detection unit 216 determines that the type of the obstacle and the type of the object estimated from the contact sound do not match, and the process proceeds to step S11.
  • step S11 as in the process of step S7, notification of the non-occurrence of contact with an obstacle is made.
  • step S9 when it is determined in step S9 that the contact sound is not detected, the processes of steps S10 and S11 are skipped, and the process proceeds to step S12.
  • step S12 movement of the vehicle 10 and the obstacle is predicted as in the process of step S4.
  • step S13 as in the process of step S5, it is determined whether there is a possibility of touching an obstacle. If it is determined that there is a possibility of touching an obstacle, the process returns to step S9.
  • step S10 it is determined that the type of the obstacle and the type of the object estimated from the contact sound match or it is determined in step S13 that there is no possibility of contact with the obstacle.
  • step S13 is repeatedly performed.
  • step S13 determines whether there is no possibility of touching the obstacle. If it is determined in step S13 that there is no possibility of touching the obstacle, that is, if there is a transition from the state of possibility of touching the obstacle to the state of no possibility of contacting the obstacle, processing The process proceeds to step S14.
  • step S14 the recording control unit 214 stops the recording of data. That is, the recording control unit 214 stops the recording of the data started in the process of step S8.
  • step S4 the process returns to step S4, and the processes after step S4 are executed.
  • step S10 determines whether the type of obstacle and the type of object estimated from the contact sound match. If it is determined in step S10 that the type of obstacle and the type of object estimated from the contact sound match, the process proceeds to step S15.
  • step S15 the touch detection unit 216 notifies the occurrence of touch of an obstacle.
  • the contact detection unit 216 supplies data indicating that contact with an obstacle has occurred, the type of the contacted obstacle, and the like to the action plan unit 162, the operation plan unit 163, and the like in FIG.
  • processing corresponding to contact with an obstacle such as parking of the vehicle 10 to a safe position, stopping, handling of an accident, etc. is automatically performed.
  • the detection accuracy of the contact between the vehicle 10 and the obstacle can be improved.
  • a period before time t1 when the shortest distance is equal to or greater than the threshold TH and a period after time t2 It is determined that there is no possibility of touching an obstacle. Then, even if the contact noise is detected within that period, it is determined that the contact with the obstacle has not occurred.
  • the detection accuracy of the contact with the obstacle is improved, thereby reducing the need for the passenger in the vehicle to pay attention to the surrounding environment during automatic driving.
  • FIG. 6 is a block diagram showing a configuration example of a touch detection system 300 according to a second embodiment of the touch detection system to which the present technology is applied.
  • symbol is attached
  • the touch detection system 300 is different from the touch detection system 200 of FIG. 2 in that an information processing unit 301 is provided instead of the information processing unit 204.
  • the information processing unit 301 is different from the information processing unit 204 in that a touch sound detection direction control unit 311 is added.
  • the contact sound detection direction control unit 311 acquires the prediction result of the movement of the obstacle from the contact prediction unit 213. Then, the contact sound detection direction control unit 311 controls the sound collection unit 203 and the contact sound detection unit 215 based on the predicted position (movement) of the obstacle to control the direction in which the sound is detected.
  • steps S101 to S107 the same processes as steps S1 to S7 in FIG. 3 are performed.
  • step S105 when the contact prediction unit 213 determines that there is a possibility that the obstacle contacts, the contact prediction unit 213 notifies the recording control unit 214 and the contact detection unit 216 that there is a possibility of touching the obstacle. Further, the contact prediction unit 213 supplies the prediction result of the movement of the obstacle to the contact sound detection direction control unit 311. Thereafter, the process proceeds to step S108.
  • step S108 recording of data is started as in the process of step S8 of FIG.
  • step S109 the touch sound detection direction control unit 311 starts control of the touch sound detection direction. That is, based on the predicted position of the obstacle, the contact sound detection direction control unit 311 is more likely to detect voice closer to the obstacle direction, and more difficult to detect voice farther from the obstacle direction.
  • the voice collection unit 203 and the contact sound detection unit 215 are controlled.
  • the touch sound detection direction control unit 311 controls the physical orientation or directivity direction of the microphone included in the sound collection unit 203 to be directed to the predicted obstacle.
  • the contact sound detection direction control unit 311 increases sensitivity as the microphone having directivity closer to the predicted obstacle direction increases, and the predicted obstacle direction Microphones with directivity farthest from the lower sensitivity.
  • the contact sound detection unit 215 emphasizes the voice closer to the predicted obstacle direction (for example, adds a larger weight), Perform detection processing of
  • steps S110 to S115 processing similar to that of steps S9 to S14 in FIG. 3 is performed.
  • step S116 the touch sound detection direction control unit 311 stops control of the touch sound detection direction.
  • step S104 Thereafter, the process returns to step S104, and the processes after step S104 are performed.
  • step S111 when it is determined in step S111 that the type of the obstacle and the type of the object estimated from the contact sound match, the process proceeds to step S117.
  • step S117 as in the process of step S15 of FIG. 3, the occurrence of the touch of the obstacle is notified, and the touch detection process ends.
  • the detection accuracy of the contact sound is improved, and as a result, the detection accuracy of the contact between the vehicle 10 and the obstacle is improved.
  • the detection result of the contact sound is used to detect the contact between the vehicle 10 and the obstacle, but the detection result of an event generated by the contact of the vehicle 10 with the obstacle other than the contact sound is used. You may do so.
  • it is determined that the vehicle 10 is in contact with an obstacle when vibration of the body of the vehicle 10 or contact of an object with the body is detected while it is predicted that there is a possibility of contact with the obstacle. You may do so.
  • the detection results of a plurality of events among events such as contact noise, body vibration, and object contact with the body may be combined to detect contact between the vehicle 10 and an obstacle.
  • the contact detection unit 216 may stop the process of detecting the contact with the obstacle.
  • the contact sound detection unit 215 removes possible noise from the audio data supplied from the audio collection unit 203 before detecting the contact sound. You may
  • the contact noise detection unit 215 predicts engine noise or motor noise based on the number of revolutions of the engine or motor of the vehicle 10, and selectively removes the predicted engine noise or motor noise from the voice data. Good. Also, for example, the contact sound detection unit 215 may predict road noise based on the speed of the vehicle 10, and selectively remove the predicted road noise from the voice data. Furthermore, for example, the touch sound detection unit 215 may selectively remove wind noise from audio data. Further, for example, when the microphone is provided in the vehicle compartment, the contact sound detection unit 215 may selectively remove the sound of car stereo, radio, conversation, etc. in the vehicle from the sound data. According to this configuration, since the installation place of the sound collection unit 203 can be set regardless of the noise generation source, the contact sound can be detected more effectively.
  • FIG. 8 is a block diagram showing an example of a hardware configuration of a computer that executes the series of processes described above according to a program.
  • a central processing unit (CPU) 501 a read only memory (ROM) 502, and a random access memory (RAM) 503 are mutually connected by a bus 504.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • an input / output interface 505 is connected to the bus 504.
  • An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
  • the input unit 506 includes an input switch, a button, a microphone, an imaging device, and the like.
  • the output unit 507 includes a display, a speaker, and the like.
  • the recording unit 508 includes a hard disk, a non-volatile memory, and the like.
  • the communication unit 509 is formed of a network interface or the like.
  • the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 501 loads the program recorded in the recording unit 508, for example, to the RAM 503 via the input / output interface 505 and the bus 504, and executes the program. A series of processing is performed.
  • the program executed by the computer 500 can be provided by being recorded on, for example, a removable recording medium 511 as a package medium or the like. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 508 via the input / output interface 505 by attaching the removable recording medium 511 to the drive 510. Also, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the recording unit 508. In addition, the program can be installed in advance in the ROM 502 or the recording unit 508.
  • the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
  • a system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same case. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
  • each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
  • the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
  • the present technology can also be configured as follows.
  • An obstacle detection unit for detecting an obstacle around the vehicle; A contact prediction unit that predicts contact between the vehicle and the obstacle based on the detection result of the obstacle; An event detection unit that detects an event that occurs due to contact between the vehicle and an object; An information processing apparatus, comprising: a contact detection unit configured to detect contact between the vehicle and the obstacle based on a detection result of the event while it is predicted that the vehicle may come into contact with the obstacle. .
  • the event includes at least one of a contact sound, a vibration of a body of the vehicle, and a touch of an object on the body.
  • the contact detection unit determines whether or not the vehicle contacts the obstacle based on whether or not the type of the obstacle matches the type of the object estimated from the contact sound.
  • the information processing apparatus 2).
  • a touch sound detection direction control unit that controls the direction in which the touch sound is detected based on the position of the obstacle is further provided.
  • the information processing apparatus determines that the vehicle and the obstacle are in contact if the event is detected while it is predicted that the vehicle and the obstacle may be in contact with each other (1)
  • the information processing apparatus does not generate contact between the vehicle and the obstacle when the event is detected except during a time when it is predicted that the vehicle may come into contact with the obstacle.
  • the information processing apparatus according to (5).
  • the recording control unit further controls to record at least a part of data used for detection of the obstacle and the event while it is predicted that the vehicle may come into contact with the obstacle.
  • An information processing apparatus according to any one of 1) to (6).
  • the vehicle further includes a vehicle state detection unit that detects the movement of the vehicle.
  • the obstacle detection unit detects the movement of the obstacle,
  • the information processing apparatus according to any one of (1) to (7), wherein the contact prediction unit predicts the contact between the vehicle and the obstacle based on the detected movement of the vehicle and the obstacle. .
  • the information processing apparatus Detect obstacles around the vehicle, The contact between the vehicle and the obstacle is predicted based on the detection result of the obstacle; Detect events that occur due to contact between the vehicle and an object, An information processing method, which detects contact between the vehicle and the obstacle based on a detection result of the event while it is predicted that the vehicle and the obstacle may come into contact with each other.
  • An obstacle detection step for detecting an obstacle around the vehicle; A contact prediction step for predicting contact between the vehicle and the obstacle based on the detection result of the obstacle; An event detection step of detecting an event generated by contact between the vehicle and an object; A process of detecting a contact between the vehicle and the obstacle based on a detection result of the event while it is predicted that the vehicle may come into contact with the obstacle; A program to make it run.
  • a data acquisition unit for acquiring data used for detection of an obstacle around the object and detection of an event generated by contact with an object;
  • An obstacle detection unit for detecting the obstacle based on the acquired data;
  • a contact prediction unit for predicting contact with the obstacle based on the detection result of the obstacle;
  • An event detection unit that detects the event based on the acquired data;
  • a vehicle comprising: a contact detection unit that detects contact with the obstacle based on a detection result of the event while it is predicted that the obstacle may come into contact.
  • Reference Signs List 10 vehicle, 100 vehicle control system, 131 detection unit, 133 situation analysis unit, 200 contact detection system, 201 sensor unit, 202 imaging unit, 203 voice collection unit, 204 information processing unit, 211 vehicle state detection unit, 212 obstacle detection Unit, 213 contact prediction unit, 214 recording control unit, 215 contact sound detection unit, 216 contact detection unit, 300 contact detection system, 301 information processing unit, 311 contact sound detection direction control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本技術は、車両と障害物の接触の検出精度を向上させることができるようにする情報処理装置、情報処理方法、プログラム、及び、車両に関する。 情報処理装置は、車両の周囲の障害物の検出を行う障害物検出部と、前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行う接触予測部と、前記車両と物体の接触により発生する事象の検出を行う事象検出部と、前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う接触検出部とを備える。本技術は、例えば、車両に適用できる。

Description

情報処理装置、情報処理方法、プログラム、及び、車両
 本技術は、情報処理装置、情報処理方法、プログラム、及び、車両に関し、特に、車両と障害物の接触の検出を行う場合に用いて好適な情報処理装置、情報処理方法、プログラム、及び、車両に関する。
 従来、距離画像を用いて、車両への障害物の接触可能性を判断する技術が提案されている(例えば、特許文献1参照)。
特開平10-283462号公報
 しかしながら、特許文献1に記載の発明では、車両と障害物が実際に接触したか否かを検出する精度を向上させることは検討されていない。
 本技術は、このような状況に鑑みてなされたものであり、車両と障害物の接触の検出精度を向上させるようにするものである。
 本技術の第1の側面の情報処理装置は、車両の周囲の障害物の検出を行う障害物検出部と、前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行う接触予測部と、前記車両と物体の接触により発生する事象の検出を行う事象検出部と、前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う接触検出部とを備える。
 本技術の第1の側面の情報処理方法は、情報処理装置が、車両の周囲の障害物の検出を行い、前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行い、前記車両と物体の接触により発生する事象の検出を行い、前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う。
 本技術の第1の側面のプログラムは、車両の周囲の障害物の検出を行う障害物検出ステップと、前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行う接触予測ステップと、前記車両と物体の接触により発生する事象の検出を行う事象検出ステップと、前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う接触検出ステップとを含む処理をコンピュータに実行させる。
 本技術の第2の側面の車両は、周囲の障害物の検出、及び、物体との接触により発生する事象の検出に用いるデータを取得するデータ取得部と、取得された前記データに基づいて、前記障害物の検出を行う障害物検出部と、前記障害物の検出結果に基づいて、前記障害物との接触の予測を行う接触予測部と、取得された前記データに基づいて、前記事象の検出を行う事象検出部と、前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記障害物との接触の検出を行う接触検出部とを備える。
 本技術の第1の側面においては、車両の周囲の障害物の検出が行われ、前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測が行われ、前記車両と物体の接触により発生する事象の検出が行われ、前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出が行われる。
 本技術の第2の側面においては、周囲の障害物の検出、及び、物体との接触により発生する事象の検出に用いるデータが取得され、取得された前記データに基づいて、前記障害物の検出が行われ、前記障害物の検出結果に基づいて、前記障害物との接触の予測が行われ、取得された前記データに基づいて、前記事象の検出が行われ、前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記障害物との接触の検出が行われる。
 本技術の第1又は第2の側面によれば、車両と障害物の接触を検出することができる。特に、本技術の第1又は第2の側面によれば、車両と障害物の接触の検出精度を向上させることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。
本技術が適用され得る車両制御システムの概略的な機能の構成例を示すブロック図である。 本技術を適用した接触検出システムの第1の実施の形態を示すブロック図である。 接触検出処理の第1の実施の形態を説明するためのフローチャートである。 自車と障害物の予測経路の例を示す図である。 障害物の接触判定の例を示す図である。 本技術を適用した接触検出システムの第2の実施の形態を示すブロック図である。 接触検出処理の第2の実施の形態を説明するためのフローチャートである。 コンピュータの構成例を示す図である。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.車両制御システムの構成例
 2.第1の実施の形態
 3.第2の実施の形態
 4.変形例
 5.その他
 <<1.車両制御システムの構成例>
 図1は、本技術が適用され得る移動体制御システムの一例である車両制御システム100の概略的な機能の構成例を示すブロック図である。
 車両制御システム100は、車両10に設けられ、車両10の各種の制御を行うシステムである。なお、以下、車両10を他の車両と区別する場合、自車又は自車両と称する。
 車両制御システム100は、入力部101、データ取得部102、通信部103、車内機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、ボディ系制御部109、ボディ系システム110、記憶部111、及び、自動運転制御部112を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、ボディ系制御部109、記憶部111、及び、自動運転制御部112は、通信ネットワーク121を介して、相互に接続されている。通信ネットワーク121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム100の各部は、通信ネットワーク121を介さずに、直接接続される場合もある。
 なお、以下、車両制御システム100の各部が、通信ネットワーク121を介して通信を行う場合、通信ネットワーク121の記載を省略するものとする。例えば、入力部101と自動運転制御部112が、通信ネットワーク121を介して通信を行う場合、単に入力部101と自動運転制御部112が通信を行うと記載する。
 入力部101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、車両制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、搭乗者により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム100の各部に供給する。
 データ取得部102は、車両制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム100の各部に供給する。
 例えば、データ取得部102は、車両10の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。
 また、例えば、データ取得部102は、車両10の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、車両10の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。
 さらに、例えば、データ取得部102は、車両10の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。
 また、例えば、データ取得部102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、及び、車室内の音声を集音するマイクロフォン等を備える。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座っている搭乗者又はステアリングホイールを握っている運転者の生体情報を検出する。
 通信部103は、車内機器104、並びに、車外の様々な機器、サーバ、基地局等と通信を行い、車両制御システム100の各部から供給されるデータを送信したり、受信したデータを車両制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である
 例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、車内機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又は、MHL(Mobile High-definition Link)等により、車内機器104と有線通信を行う。
 さらに、例えば、通信部103は、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、車両10の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、通信部103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両10と家との間(Vehicle to Home)の通信、及び、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。
 車内機器104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、車両10に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。
 出力制御部105は、車両10の搭乗者又は車外に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。
 出力部106は、車両10の搭乗者又は車外に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。
 駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。
 駆動系システム108は、車両10の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。
 ボディ系制御部109は、各種の制御信号を生成し、ボディ系システム110に供給することにより、ボディ系システム110の制御を行う。また、ボディ系制御部109は、必要に応じて、ボディ系システム110以外の各部に制御信号を供給し、ボディ系システム110の制御状態の通知等を行う。
 ボディ系システム110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、及び、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ等)等を備える。
 記憶部111は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部111は、車両制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、車両10の周囲の情報を含むローカルマップ等の地図データを記憶する。
 自動運転制御部112は、自律走行又は運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部112は、車両10の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両10の衝突警告、又は、車両10のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。自動運転制御部112は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。
 検出部131は、自動運転の制御に必要な各種の情報の検出を行う。検出部131は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143を備える。
 車外情報検出部141は、車両制御システム100の各部からのデータ又は信号に基づいて、車両10の外部の情報の検出処理を行う。例えば、車外情報検出部141は、車両10の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部141は、車両10の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。車外情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153、並びに、動作制御部135の緊急事態回避部171等に供給する。
 車内情報検出部142は、車両制御システム100の各部からのデータ又は信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 車両状態検出部143は、車両制御システム100の各部からのデータ又は信号に基づいて、車両10の状態の検出処理を行う。検出対象となる車両10の状態には、例えば、速度、加速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 自己位置推定部132は、車外情報検出部141、及び、状況分析部133の状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部111に記憶させる。
 状況分析部133は、車両10及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、交通ルール認識部152、状況認識部153、及び、状況予測部154を備える。
 マップ解析部151は、自己位置推定部132及び車外情報検出部141等の車両制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、交通ルール認識部152、状況認識部153、状況予測部154、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 交通ルール認識部152は、自己位置推定部132、車外情報検出部141、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、車両10の周囲の信号の位置及び状態、車両10の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部152は、認識処理の結果を示すデータを状況予測部154等に供給する。
 状況認識部153は、自己位置推定部132、車外情報検出部141、車内情報検出部142、車両状態検出部143、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10に関する状況の認識処理を行う。例えば、状況認識部153は、車両10の状況、車両10の周囲の状況、及び、車両10の運転者の状況等の認識処理を行う。また、状況認識部153は、必要に応じて、車両10の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。
 認識対象となる車両10の状況には、例えば、車両10の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる車両10の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。
 状況認識部153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部154等に供給する。また、状況認識部153は、状況認識用マップを記憶部111に記憶させる。
 状況予測部154は、マップ解析部151、交通ルール認識部152及び状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10に関する状況の予測処理を行う。例えば、状況予測部154は、車両10の状況、車両10の周囲の状況、及び、運転者の状況等の予測処理を行う。
 予測対象となる車両10の状況には、例えば、車両10の挙動、異常の発生、及び、走行可能距離等が含まれる。予測対象となる車両10の周囲の状況には、例えば、車両10の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。
 状況予測部154は、予測処理の結果を示すデータを、交通ルール認識部152及び状況認識部153からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 ルート計画部161は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。
 行動計画部162は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に走行するための車両10の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部162は、計画した車両10の行動を示すデータを動作計画部163等に供給する。
 動作計画部163は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための車両10の動作を計画する。例えば、動作計画部163は、加速、減速、及び、走行軌道等の計画を行う。動作計画部163は、計画した車両10の動作を示すデータを、動作制御部135の加減速制御部172及び方向制御部173等に供給する。
 動作制御部135は、車両10の動作の制御を行う。動作制御部135は、緊急事態回避部171、加減速制御部172、及び、方向制御部173を備える。
 緊急事態回避部171は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両10の異常等の緊急事態の検出処理を行う。緊急事態回避部171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための車両10の動作を計画する。緊急事態回避部171は、計画した車両10の動作を示すデータを加減速制御部172及び方向制御部173等に供給する。
 加減速制御部172は、動作計画部163又は緊急事態回避部171により計画された車両10の動作を実現するための加減速制御を行う。例えば、加減速制御部172は、計画された加速、減速、又は、急停車を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
 方向制御部173は、動作計画部163又は緊急事態回避部171により計画された車両10の動作を実現するための方向制御を行う。例えば、方向制御部173は、動作計画部163又は緊急事態回避部171により計画された走行軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
 <<2.第1の実施の形態>>
 次に、図2乃至図5を参照して、本技術の第1の実施の形態について説明する。
 なお、この第1の実施の形態は、図1の車両制御システム100のうち、主に検出部131及び状況分析部133の処理に関連するものである。
 <接触検出システムの構成例>
 図2は、本技術を適用した接触検出システムの第1の実施の形態である接触検出システム200の構成例を示すブロック図である。
 接触検出システム200は、接触検出システム200が設けられている車両10と障害物との接触の検出処理を行うシステムである。例えば、接触検出システム200は、車両10と障害物が軽く触れる程度から車両10と障害物の激しい衝突まで、その程度に関わらず車両10と障害物の接触を検出する。なお、例えば、接触検出システム200が検出する接触の程度の範囲を限定するようにしてもよい。
 接触検出システム200は、センサ部201、撮像部202、音声収集部203、及び、情報処理部204を備える。
 センサ部201は、例えば、車両10の状態を検出するための各種のセンサを備える。例えば、センサ部201は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。また、センサ部201は、例えば、車両10の周囲の物体を検出するための周囲情報検出センサを備える。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR、ソナー等からなる。センサ部201は、各センサから出力されるセンサデータを、情報処理部204の車両状態検出部211、障害物検出部212、及び、記録制御部214に供給する。
 撮像部202は、車両10の周囲を撮影する撮像装置を備え、撮影により得られた画像データを、情報処理部204の車両状態検出部211、障害物検出部212、及び、記録制御部214に供給する。
 なお、撮像装置の設置数及び設置位置は、任意に設定することができる。ただし、障害物の接触を確実に検出するために、車両10の周囲の全方向をくまなく撮影できるように撮像装置を設置することが望ましい。特に、運転者の死角となる方向を撮影できるように撮像装置を設置することが望ましい。
 音声収集部203は、車両10の周囲の音声を収集するマイクロフォンを備え、収集した音声を示す音声データを、情報処理部204の記録制御部214及び接触音検出部215に供給する。
 なお、マイクロフォンの設置数及び設置位置は、任意に設定することができる。ただし、障害物が車両10のボディに接触したときに発生する接触音を接触位置に関わらず確実に検出できるようにマイクロフォンを設置することが望ましい。
 例えば、マイクロフォンは車両10の室内に設置される。これにより、運転者等の搭乗者と同様の条件で接触音を検出することが可能になる。
 例えば、マイクロフォンは車両10のボディに接触するように設置される。これにより、車両10のボディに対する接触音の検出精度が向上する。
 なお、車両10のエンジン音又はモータ音によるノイズの影響を防止するために、エンジン又はモータから離れた位置にマイクロフォンを設置することが望ましい。
 なお、センサ部201、撮像部202、及び、音声収集部203は、例えば、図1のデータ取得部102の一部に対応する。
 情報処理部204は、車両10と障害物の接触の検出処理を行う。情報処理部204は、車両状態検出部211、障害物検出部212、接触予測部213、記録制御部214、接触音検出部215、及び、接触検出部216を備える。
 車両状態検出部211は、センサ部201からのセンサデータに基づいて、車両10の状態、特に車両10の動きの検出を行い、検出結果を接触予測部213に供給する。
 障害物検出部212は、センサ部201からのセンサデータ、及び、撮像部202からの画像データに基づいて、車両10の周囲の障害物の検出を行い、検出結果を接触予測部213に供給する。
 接触予測部213は、車両10の状態の検出結果、及び、車両10の周囲の障害物の検出結果に基づいて、車両10及び障害物の動きを予測する。また、接触予測部213は、車両10及び障害物の動きの予測結果に基づいて、車両10と障害物との接触の予測を行い、予測結果を記録制御部214及び接触検出部216に供給する。
 記録制御部214は、車両10と障害物との接触の予測結果に基づいて、センサデータ、画像データ、及び、音声データの記録を制御する。
 接触音検出部215は、音声収集部203からの音声データに基づいて、車両10と障害物が接触したときに発生する接触音の検出を行う。また、接触音検出部215は、接触音に基づいて、車両10に接触した可能性のある物体の種類の推定を行う。接触音検出部215は、接触音の検出結果、及び、物体の種類の推定結果を接触検出部216に供給する。
 接触検出部216は、接触予測部213による車両10と障害物との接触の予測結果、並びに、接触音検出部215による接触音の検出結果及び物体の種類の推定結果に基づいて、車両10と障害物の接触の検出を行う。接触検出部216は、例えば、図1の行動計画部162及び動作計画部163等に検出結果を供給する。
 <接触検出処理>
 次に、図3のフローチャートを参照して、接触検出システム200により実行される接触検出処理について説明する。なお、この処理は、車両10を起動し、運転を開始するための操作が行われたとき、例えば、車両10のイグニッションスイッチ、パワースイッチ、又は、スタートスイッチ等がオンされたとき開始される。また、この処理は、例えば、運転を終了するための操作が行われたとき、例えば、車両10のイグニッションスイッチ、パワースイッチ、又は、スタートスイッチ等がオフされたとき終了する。
 ステップS1において、車両状態検出部211は、車両10の動きの検出を開始する。具体的には、車両状態検出部211は、センサ部201からのセンサデータに基づいて、車両10の動きの検出を開始する。例えば、車両10の速度、加速度、及び、移動方向等の検出が開始される。また、車両状態検出部211は、検出結果を接触予測部213に供給する処理を開始する。
 ステップS2において、障害物検出部212は、車両10の周囲の障害物の検出を開始する。具体的には、障害物検出部212は、センサ部201からのセンサデータ、及び、撮像部202からの画像データに基づいて、車両10の周囲の障害物の検出を開始する。例えば、障害物の有無、位置、大きさ、動き(例えば、速度、加速度、移動方向等)、種類(例えば、子供、大人、老人、自動車、トラック、バス、自転車等)等の検出が開始される。また、障害物検出部212は、検出結果を接触予測部213に供給する処理を開始する。
 なお、障害物の検出方法には、任意の手法を用いることができる。また、検出対象とする障害物の種類や、障害物の分類方法も任意に設定することが可能である。例えば、車両10の周囲において検出された物体を全て障害物として検出するようにしてもよいし、或いは、車両10の走行の障害になる可能性のある物体のみを障害物として検出するようにしてもよい。
 ステップS3において、接触音検出部215は、接触音の検出を開始する。具体的には、接触音検出部215は、音声収集部203からの音声データに基づいて、接触音の検出を開始する。例えば、接触音の有無、大きさ、発生位置等の検出が開始される。また、接触音検出部215は、接触音を検出した場合、検出した接触音の波形等に基づいて、車両10に接触した可能性のある物体の種類の推定を開始する。さらに、接触音検出部215は、接触音の検出結果、及び、物体の種類の推定結果の接触検出部216への供給を開始する。
 なお、接触音の検出方法及び物体の種類の推定方法には、任意の手法を用いることができる。
 ステップS4において、接触予測部213は、車両10及び障害物の動きを予測する。具体的には、接触予測部213は、車両状態検出部211により検出されたこれまでの車両10の動きに基づいて、今後の車両10の動きを予測する。また、接触予測部213は、障害物検出部212により検出されたこれまでの障害物の動きに基づいて、今後の障害物の動きを予測する。なお、複数の障害物が検出されている場合、各障害物の今後の動きが予測される。
 この処理により、例えば、図4に示されるように、時刻t0乃至時刻t3までの車両10及び障害物の動きに基づいて、時刻t3から時刻t4までの車両10及び障害物の経路が予測される。
 なお、車両10及び障害物の動きの予測方法には、任意の手法を用いることができる。
 ステップS5において、接触予測部213は、障害物に接触する可能性があるか否かを判定する。例えば、接触予測部213は、現時点から所定の時間が経過するまでの期間に車両10との間の距離が所定の閾値未満となると予測される障害物が存在しない場合、障害物に接触する可能性がないと判定する。そして、接触予測部213は、障害物に接触する可能性がないことを接触検出部216に通知し、処理はステップS6に進む。
 例えば、図4の時刻t3から時刻t4までの期間における車両10と障害物との間の最短距離Dminが所定の閾値以上である場合、障害物に接触する可能性がないと判定される。
 なお、障害物に接触する可能性があるか否かの判定の対象とする期間は、例えば、次に接触予測部213による予測処理が行われるまでの期間に設定される。
 ステップS6において、接触検出部216は、接触音検出部215による検出結果に基づいて、接触音が検出されたか否かを判定する。接触音が検出されていないと判定された場合、処理はステップS4に戻る。
 その後、ステップS5において、障害物に接触する可能性があると判定されるか、ステップS6において、接触音が検出されたと判定されるまで、ステップS4乃至ステップS6の処理が繰り返し実行される。
 一方、ステップS6において、接触音が検出されたと判定された場合、処理はステップS7に進む。
 ステップS7において、接触検出部216は、障害物の接触の未発生を通知する。例えば、接触検出部216は、障害物との接触が発生していないことを示すデータを、図1の行動計画部162及び動作計画部163等に供給する。
 これにより、例えば、障害物との接触が誤検出され、車両10の動作が不適切に制御されることが防止される。また、例えば、発生した音声が、障害物との接触により発生した接触音でないことを運転者等の搭乗者に通知することができる。
 その後、処理はステップS4に戻り、ステップS5において、障害物に接触する可能性があると判定されるまで、ステップS4乃至ステップS7の処理が繰り返し実行される。
 一方、ステップS5において、例えば、接触予測部213は、現時点から所定の時間が経過するまでの期間に車両10との間の距離が所定の閾値未満となると予測される障害物が存在する場合、障害物に接触する可能性があると判定する。そして、接触予測部213は、障害物に接触する可能性があることを記録制御部214及び接触検出部216に通知し、処理はステップS8に進む。
 ステップS8において、記録制御部214は、データの記録を開始する。具体的には、記録制御部214は、センサ部201からのセンサデータ、撮像部202からの画像データ、及び、音声収集部203からの音声データのうち必要なデータを抽出して、図1の記憶部111に記録する処理を開始する。なお、記録対象となるデータは、例えば、車両の動き、障害物の検出、及び、接触音の検出等に用いるデータであって、後で障害物との接触又は非接触の検証や証明、障害物との接触の原因の究明等に必要なデータとされる。
 ステップS9において、ステップS6の処理と同様に、接触音が検出されたか否かが判定される。接触音が検出されたと判定された場合、処理はステップS10に進む。
 ステップS10において、接触検出部216は、障害物の種類と接触音から推定される物体の種類が一致するか否かを判定する。具体的には、接触検出部216は、障害物検出部212により検出された障害物の種類と、接触音検出部215により接触音に基づいて推定された物体の種類とを比較する。接触検出部216は、両者が一致しない場合、障害物の種類と接触音から推定される物体の種類が一致しないと判定し、処理はステップS11に進む。
 ステップS11において、ステップS7の処理と同様に、障害物の接触の未発生が通知される。
 その後、処理はステップS12に進む。
 一方、ステップS9において、接触音が検出されていないと判定された場合、ステップS10及びステップS11の処理はスキップされ、処理はステップS12に進む。
 ステップS12において、ステップS4の処理と同様に、車両10及び障害物の動きが予測される。
 ステップS13において、ステップS5の処理と同様に、障害物に接触する可能性があるか否かが判定される。障害物に接触する可能性があると判定された場合、処理はステップS9に戻る。
 その後、ステップS10において、障害物の種類と接触音から推定される物体の種類が一致すると判定されるか、ステップS13において、障害物と接触する可能性がないと判定されるまで、ステップS9乃至ステップS13の処理が繰り返し実行される。
 一方、ステップS13において、障害物に接触する可能性がないと判定された場合、すなわち、障害物に接触する可能性がある状態から障害物に接触する可能性がない状態に遷移した場合、処理はステップS14に進む。
 ステップS14において、記録制御部214は、データの記録を停止する。すなわち、記録制御部214は、ステップS8の処理において開始したデータの記録を停止する。
 その後、処理はステップS4に戻り、ステップS4以降の処理が実行される。
 一方、ステップS10において、障害物の種類と接触音から推定される物体の種類が一致すると判定された場合、処理はステップS15に進む。
 ステップS15において、接触検出部216は、障害物の接触の発生を通知する。例えば、接触検出部216は、障害物との接触が発生したこと、及び、接触した障害物の種類等を示すデータを、図1の行動計画部162及び動作計画部163等に供給する。
 その後、例えば、車両10の安全な位置への待避、停車、事故処理等の障害物との接触に対応した処理が自動的に行われる。
 そして、接触検出処理は終了する。
 以上のようにして、車両10と障害物の接触の検出精度を向上させることができる。
 例えば、図5の上のグラフに示されるように、車両10と障害物の間の最短距離が遷移した場合、最短距離が閾値TH以上となる時刻t1以前の期間と、時刻t2以降の期間において、障害物に接触する可能性がないと判定される。そして、その期間内に接触音が検出されても、障害物との接触が発生していないと判定される。
 一方、最短距離が閾値TH未満となる時刻t1から時刻t2までの期間において、障害物に接触する可能性があると判定される。そして、その期間内に接触音が検出された場合、障害物との接触が発生していると判定される。
 これにより、障害物との接触の可能性がない場合に接触音が誤検出されることにより、障害物との接触が誤検出されることが防止される。また、例えば、障害物がセンサ部201や撮像部202の死角に入り、障害物の位置の検出が困難な場合でも、障害物との接触の可能性があるときに、接触音に基づいて確実に障害物との接触が検出される。
 また、障害物との接触の可能性があると予測される間、センサデータ、画像データ、及び、音声データのうち必要なデータが抽出されて記録されるため、障害物との接触又は非接触の検証や証明、障害物との接触の原因の究明等が容易になる。さらに、障害物との接触の可能性があると予測される間だけデータの記録が行われるため、記録するデータの容量が削減される。
 また、障害物との接触の検出精度が向上するため、車内の搭乗者が自動運転中に周囲の環境に注意を払う必要性が低減する。
 <<3.第2の実施の形態>>
 次に、図6及び図7を参照して、本技術の第2の実施の形態について説明する。
 <接触検出システムの構成例>
 図6は、本技術を適用した接触検出システムの第2の実施の形態である接触検出システム300の構成例を示すブロック図である。なお、図中、図2と対応する部分には同じ符号を付してあり、その説明は適宜省略する。
 接触検出システム300は、図2の接触検出システム200と比較して、情報処理部204の代わりに情報処理部301が設けられている点が異なる。情報処理部301は、情報処理部204と比較して、接触音検出方向制御部311が追加されている点が異なる。
 接触音検出方向制御部311は、障害物の動きの予測結果を接触予測部213から取得する。そして、接触音検出方向制御部311は、予測される障害物の位置(動き)に基づいて、音声収集部203及び接触音検出部215を制御して、音声を検出する方向の制御を行う。
 <接触検出処理>
 次に、図7のフローチャートを参照して、接触検出システム300により実行される接触検出処理について説明する。なお、この処理は、図3の接触検出処理と同様の条件で開始及び終了する。
 ステップS101乃至ステップS107において、図3のステップS1乃至ステップS7と同様の処理が行われる。
 そして、ステップS105において、接触予測部213は、障害物が接触する可能性があると判定した場合、障害物に接触する可能性があることを記録制御部214及び接触検出部216に通知する。また、接触予測部213は、障害物の動きの予測結果を接触音検出方向制御部311に供給する。その後、処理はステップS108に進む。
 ステップS108において、図3のステップS8の処理と同様に、データの記録が開始される。
 ステップS109において、接触音検出方向制御部311は、接触音の検出方向の制御を開始する。すなわち、接触音検出方向制御部311は、予測される障害物の位置に基づいて、障害物の方向に近い音声ほど検出されやすくなり、障害物の方向から遠い音声ほど検出されにくくなるように、音声収集部203及び接触音検出部215を制御する。
 例えば、接触音検出方向制御部311は、音声収集部203が備えるマイクロフォンの物理的な向き又は指向性の向きを、予測される障害物の方向に向けるように制御する。
 例えば、音声収集部203が複数のマイクロフォンを備える場合、接触音検出方向制御部311は、予測される障害物の方向に近い指向性を有するマイクロフォンほど感度を高くし、予測される障害物の方向から遠い指向性を有するマイクロフォンほど感度を低くする。
 例えば、接触音検出部215は、接触音検出方向制御部311の制御の下に、予測される障害物の方向に近い音声ほど重視して(例えば、より大きな重みを付加して)、接触音の検出処理を行う。
 これにより、接触音の検出精度が向上する。すなわち、車両10と障害物との接触により発生する接触音がより確実に検出され、それ以外の音声が接触音として誤検出されることが抑制される。
 ステップS110乃至ステップS115において、図3のステップS9乃至ステップS14と同様の処理が行われる。
 ステップS116において、接触音検出方向制御部311は、接触音の検出方向の制御を停止する。
 その後、処理はステップS104に戻り、ステップS104以降の処理が実行される。
 一方、ステップS111において、障害物の種類と接触音から推定される物体の種類が一致すると判定された場合、処理はステップS117に進む。
 ステップS117において、図3のステップS15の処理と同様に、障害物の接触の発生が通知され、接触検出処理が終了する。
 以上のようにして、接触音の検出精度が向上し、その結果、車両10と障害物との接触の検出精度が向上する。
 <<4.変形例>>
 以下、上述した本開示に係る技術の実施の形態の変形例について説明する。
 なお、以上の説明では、車両10と障害物の接触の検出に接触音の検出結果を用いる例を示したが、接触音以外の車両10と障害物の接触により発生する事象の検出結果を用いるようにしてもよい。具体的には、例えば、振動センサ等により検出される車両10のボディの振動や、接触センサ等により検出される車両10のボディへの物体の接触の検出結果を用いることが可能である。例えば、障害物に接触する可能性があると予測される間に、車両10のボディの振動、又は、ボディへの物体の接触が検出された場合、車両10と障害物が接触したと判定するようにしてもよい。
 また、例えば、接触音、ボディの振動、ボディへの物体の接触等の事象のうち複数の事象の検出結果を組み合わせて、車両10と障害物の接触を検出するようにしてもよい。
 さらに、例えば、接触予測部213により障害物と接触する可能性がないと予測される間、接触検出部216が、障害物との接触の検出処理を停止するようにしてもよい。
 また、以上の説明では、接触する可能性のある障害物の種類と、接触音から推定される物体の種類とが一致するか否かを判定するようにしたが、この判定処理を省略することも可能である。すなわち、障害物に接触する可能性があると予測される間に接触音が検出された場合、上記の判定処理を行わずに、車両10と障害物が接触したと判定するようにしてもよい。
 さらに、例えば、接触音検出部215は、接触音の検出精度を向上させるために、接触音の検出を行う前に、想定されるノイズを音声収集部203から供給される音声データから除去するようにしてもよい。
 例えば、接触音検出部215は、車両10のエンジン又はモータの回転数に基づいてエンジン音又はモータ音を予測し、予測したエンジン音又はモータ音を音声データから選択的に除去するようにしてもよい。また、例えば、接触音検出部215は、車両10の速度に基づいてロードノイズを予測し、予測したロードノイズを音声データから選択的に除去するようにしてもよい。さらに、例えば、接触音検出部215は、風切り音を音声データから選択的に除去するようにしてもよい。また、例えば、接触音検出部215は、マイクロフォンが車室内に設けられている場合、車内のカーステレオ、ラジオ、会話等の音声を音声データから選択的に除去するようにしてもよい。この構成によれば、ノイズ発生源によらず音声収集部203の設置場所を設定できるので、接触音がより効果的に検出できるようになる。
 <<5.その他>>
 <コンピュータの構成例>
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図8は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータ500において、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
 バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。
 入力部506は、入力スイッチ、ボタン、マイクロフォン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。
 以上のように構成されるコンピュータ500では、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ500(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータ500では、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 さらに、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 <構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 車両の周囲の障害物の検出を行う障害物検出部と、
 前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行う接触予測部と、
 前記車両と物体の接触により発生する事象の検出を行う事象検出部と、
 前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う接触検出部と
 を備える情報処理装置。
(2)
 前記事象は、接触音、前記車両のボディの振動、及び、前記ボディへの物体の接触のうち少なくとも1つを含む
 前記(1)に記載の情報処理装置。
(3)
 前記接触検出部は、前記障害物の種類と前記接触音から推定される物体の種類とが一致するか否かに基づいて、前記車両と前記障害物が接触したか否かを判定する
 前記(2)に記載の情報処理装置。
(4)
 前記車両と前記障害物が接触する可能性があると予測される間、前記障害物の位置に基づいて、前記接触音を検出する方向を制御する接触音検出方向制御部を
 さらに備える前記(2)又は(3)に記載の情報処理装置。
(5)
 前記接触検出部は、前記車両と前記障害物が接触する可能性があると予測される間に前記事象が検出された場合、前記車両と前記障害物が接触したと判定する
 前記(1)乃至(4)のいずれかに記載の情報処理装置。
(6)
 前記接触検出部は、前記車両と前記障害物が接触する可能性があると予測される間以外のときに前記事象が検出された場合、前記車両と前記障害物の接触が発生していないと判定する
 前記(5)に記載の情報処理装置。
(7)
 前記車両と前記障害物が接触する可能性があると予測される間、前記障害物及び前記事象の検出に用いるデータの少なくとも一部を記録するように制御する記録制御部を
 さらに備える前記(1)乃至(6)のいずれかに記載の情報処理装置。
(8)
 前記車両の動きの検出を行う車両状態検出部を
 さらに備え、
 前記障害物検出部は、前記障害物の動きの検出を行い、
 前記接触予測部は、検出された前記車両及び前記障害物の動きに基づいて、前記車両と前記障害物の接触の予測を行う
 前記(1)乃至(7)のいずれかに記載の情報処理装置。
(9)
 情報処理装置が、
 車両の周囲の障害物の検出を行い、
 前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行い、
 前記車両と物体の接触により発生する事象の検出を行い、
 前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う
 情報処理方法。
(10)
 車両の周囲の障害物の検出を行う障害物検出ステップと、
 前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行う接触予測ステップと、
 前記車両と物体の接触により発生する事象の検出を行う事象検出ステップと、
 前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う接触検出ステップと
 を含む処理をコンピュータに実行させるためのプログラム。
(11)
 周囲の障害物の検出、及び、物体との接触により発生する事象の検出に用いるデータを取得するデータ取得部と、
 取得された前記データに基づいて、前記障害物の検出を行う障害物検出部と、
 前記障害物の検出結果に基づいて、前記障害物との接触の予測を行う接触予測部と、
 取得された前記データに基づいて、前記事象の検出を行う事象検出部と、
 前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記障害物との接触の検出を行う接触検出部と
 を備える車両。
 10 車両, 100 車両制御システム, 131 検出部, 133 状況分析部, 200 接触検出システム, 201 センサ部, 202 撮像部, 203 音声収集部, 204 情報処理部, 211 車両状態検出部, 212 障害物検出部, 213 接触予測部, 214 記録制御部, 215 接触音検出部, 216 接触検出部, 300 接触検出システム, 301 情報処理部, 311 接触音検出方向制御部

Claims (11)

  1.  車両の周囲の障害物の検出を行う障害物検出部と、
     前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行う接触予測部と、
     前記車両と物体の接触により発生する事象の検出を行う事象検出部と、
     前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う接触検出部と
     を備える情報処理装置。
  2.  前記事象は、接触音、前記車両のボディの振動、及び、前記ボディへの物体の接触のうち少なくとも1つを含む
     請求項1に記載の情報処理装置。
  3.  前記接触検出部は、前記障害物の種類と前記接触音から推定される物体の種類とが一致するか否かに基づいて、前記車両と前記障害物が接触したか否かを判定する
     請求項2に記載の情報処理装置。
  4.  前記車両と前記障害物が接触する可能性があると予測される間、前記障害物の位置に基づいて、前記接触音を検出する方向を制御する接触音検出方向制御部を
     さらに備える請求項2に記載の情報処理装置。
  5.  前記接触検出部は、前記車両と前記障害物が接触する可能性があると予測される間に前記事象が検出された場合、前記車両と前記障害物が接触したと判定する
     請求項1に記載の情報処理装置。
  6.  前記接触検出部は、前記車両と前記障害物が接触する可能性があると予測される間以外のときに前記事象が検出された場合、前記車両と前記障害物の接触が発生していないと判定する
     請求項5に記載の情報処理装置。
  7.  前記車両と前記障害物が接触する可能性があると予測される間、前記障害物及び前記事象の検出に用いるデータの少なくとも一部を記録するように制御する記録制御部を
     さらに備える請求項1に記載の情報処理装置。
  8.  前記車両の動きの検出を行う車両状態検出部を
     さらに備え、
     前記障害物検出部は、前記障害物の動きの検出を行い、
     前記接触予測部は、検出された前記車両及び前記障害物の動きに基づいて、前記車両と前記障害物の接触の予測を行う
     請求項1に記載の情報処理装置。
  9.  情報処理装置が、
     車両の周囲の障害物の検出を行い、
     前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行い、
     前記車両と物体の接触により発生する事象の検出を行い、
     前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う
     情報処理方法。
  10.  車両の周囲の障害物の検出を行う障害物検出ステップと、
     前記障害物の検出結果に基づいて、前記車両と前記障害物の接触の予測を行う接触予測ステップと、
     前記車両と物体の接触により発生する事象の検出を行う事象検出ステップと、
     前記車両と前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記車両と前記障害物の接触の検出を行う接触検出ステップと
     を含む処理をコンピュータに実行させるためのプログラム。
  11.  周囲の障害物の検出、及び、物体との接触により発生する事象の検出に用いるデータを取得するデータ取得部と、
     取得された前記データに基づいて、前記障害物の検出を行う障害物検出部と、
     前記障害物の検出結果に基づいて、前記障害物との接触の予測を行う接触予測部と、
     取得された前記データに基づいて、前記事象の検出を行う事象検出部と、
     前記障害物が接触する可能性があると予測される間、前記事象の検出結果に基づいて、前記障害物との接触の検出を行う接触検出部と
     を備える車両。
PCT/JP2018/029732 2017-08-22 2018-08-08 情報処理装置、情報処理方法、プログラム、及び、車両 WO2019039280A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018004773.3T DE112018004773B4 (de) 2017-08-22 2018-08-08 Informationsverarbeitungseinrichtung, informationsverarbeitungsverfahren, programm und fahrzeug
US16/638,849 US11135987B2 (en) 2017-08-22 2018-08-08 Information processing device, information processing method, and vehicle
JP2019538058A JP7192771B2 (ja) 2017-08-22 2018-08-08 情報処理装置、情報処理方法、プログラム、及び、車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017159456 2017-08-22
JP2017-159456 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039280A1 true WO2019039280A1 (ja) 2019-02-28

Family

ID=65438749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029732 WO2019039280A1 (ja) 2017-08-22 2018-08-08 情報処理装置、情報処理方法、プログラム、及び、車両

Country Status (4)

Country Link
US (1) US11135987B2 (ja)
JP (1) JP7192771B2 (ja)
DE (1) DE112018004773B4 (ja)
WO (1) WO2019039280A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210097236A (ko) * 2020-01-28 2021-08-09 한양대학교 에리카산학협력단 자율주행 차량의 가상 공간 합체 시스템
JP7439127B2 (ja) 2019-04-08 2024-02-27 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 自動運転車両のための低衝撃検出

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034782A (ja) * 2020-08-19 2022-03-04 トヨタ自動車株式会社 情報処理装置、車両、及び、情報処理方法
CN113548003A (zh) * 2021-08-27 2021-10-26 温桂体 一种新型车辆行驶安全仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757199A (ja) * 1993-06-30 1995-03-03 Mitsubishi Motors Corp 物体認識装置
JPH09136673A (ja) * 1995-11-15 1997-05-27 Nippon Soken Inc 車両用事故状況記録装置
JP2005170073A (ja) * 2003-12-05 2005-06-30 Fujitsu Ten Ltd 車両乗員保護装置
JP2010287190A (ja) * 2009-06-15 2010-12-24 Fujitsu Ten Ltd 運転情報記録装置および運転情報処理プログラム
JP2015143068A (ja) * 2014-01-31 2015-08-06 株式会社デンソー 重大事故検知装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901112B2 (ja) * 1991-09-19 1999-06-07 矢崎総業株式会社 車両周辺監視装置
JP4082471B2 (ja) 1997-04-04 2008-04-30 富士重工業株式会社 車外監視装置
JP2003182509A (ja) 2001-12-19 2003-07-03 Toyota Motor Corp 乗員保護システム
DE10334699A1 (de) 2003-07-30 2005-02-17 Robert Bosch Gmbh Vorrichtung zur Betätigung einer Aktuatorik zum Schutz eines Fußgängers
DE10348386A1 (de) 2003-10-17 2005-05-19 Robert Bosch Gmbh Vorrichtung zur Ansteuerung von Personenschutzmitteln
JP2006008108A (ja) 2004-05-27 2006-01-12 Honda Motor Co Ltd 車体強度制御装置
JP2016134090A (ja) * 2015-01-21 2016-07-25 株式会社東芝 画像処理装置及びそれを用いた運転支援システム
JP6514624B2 (ja) * 2015-11-02 2019-05-15 クラリオン株式会社 障害物検知装置
JP6304272B2 (ja) * 2016-02-04 2018-04-04 トヨタ自動車株式会社 車両用注意喚起装置
DE102017206293A1 (de) 2017-04-12 2018-10-18 Robert Bosch Gmbh Personenschutzsystem für ein Fahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757199A (ja) * 1993-06-30 1995-03-03 Mitsubishi Motors Corp 物体認識装置
JPH09136673A (ja) * 1995-11-15 1997-05-27 Nippon Soken Inc 車両用事故状況記録装置
JP2005170073A (ja) * 2003-12-05 2005-06-30 Fujitsu Ten Ltd 車両乗員保護装置
JP2010287190A (ja) * 2009-06-15 2010-12-24 Fujitsu Ten Ltd 運転情報記録装置および運転情報処理プログラム
JP2015143068A (ja) * 2014-01-31 2015-08-06 株式会社デンソー 重大事故検知装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439127B2 (ja) 2019-04-08 2024-02-27 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 自動運転車両のための低衝撃検出
KR20210097236A (ko) * 2020-01-28 2021-08-09 한양대학교 에리카산학협력단 자율주행 차량의 가상 공간 합체 시스템
KR102382112B1 (ko) * 2020-01-28 2022-04-05 한양대학교 에리카산학협력단 자율주행 차량의 가상 공간 합체 시스템

Also Published As

Publication number Publication date
US11135987B2 (en) 2021-10-05
DE112018004773B4 (de) 2023-05-17
DE112018004773T5 (de) 2020-06-10
JP7192771B2 (ja) 2022-12-20
US20200189506A1 (en) 2020-06-18
JPWO2019039280A1 (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2019077999A1 (ja) 撮像装置、画像処理装置、及び、画像処理方法
US11873007B2 (en) Information processing apparatus, information processing method, and program
US11590985B2 (en) Information processing device, moving body, information processing method, and program
US11377101B2 (en) Information processing apparatus, information processing method, and vehicle
US11200795B2 (en) Information processing apparatus, information processing method, moving object, and vehicle
US20220017093A1 (en) Vehicle control device, vehicle control method, program, and vehicle
WO2020009060A1 (ja) 情報処理装置及び情報処理方法、コンピュータプログラム、並びに移動体装置
WO2021241189A1 (ja) 情報処理装置、情報処理方法、およびプログラム
WO2019039281A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
JP7192771B2 (ja) 情報処理装置、情報処理方法、プログラム、及び、車両
WO2021060018A1 (ja) 信号処理装置、信号処理方法、プログラム、及び、移動装置
WO2020129688A1 (ja) 車両制御装置、車両制御方法、車両、情報処理装置、情報処理方法、及び、プログラム
JP2019045364A (ja) 情報処理装置、自己位置推定方法、及び、プログラム
US20240069564A1 (en) Information processing device, information processing method, program, and mobile apparatus
WO2019117104A1 (ja) 情報処理装置および情報処理方法
WO2022145286A1 (ja) 情報処理装置、情報処理方法、プログラム、移動装置、及び、情報処理システム
WO2020129656A1 (ja) 情報処理装置、および情報処理方法、並びにプログラム
WO2020129689A1 (ja) 移動体制御装置、移動体制御方法、移動体、情報処理装置、情報処理方法、及び、プログラム
WO2023145460A1 (ja) 振動検出システムおよび振動検出方法
WO2022075075A1 (ja) 情報処理装置および方法、並びに情報処理システム
WO2024048180A1 (ja) 情報処理装置、情報処理方法および車両制御システム
WO2022024569A1 (ja) 情報処理装置と情報処理方法およびプログラム
WO2024024471A1 (ja) 情報処理装置、情報処理方法、及び、情報処理システム
WO2022107532A1 (ja) 情報処理装置、情報処理方法、及びプログラム
CN117999587A (zh) 识别处理设备、识别处理方法和识别处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538058

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18848465

Country of ref document: EP

Kind code of ref document: A1