[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019026711A1 - センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム - Google Patents

センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム Download PDF

Info

Publication number
WO2019026711A1
WO2019026711A1 PCT/JP2018/027823 JP2018027823W WO2019026711A1 WO 2019026711 A1 WO2019026711 A1 WO 2019026711A1 JP 2018027823 W JP2018027823 W JP 2018027823W WO 2019026711 A1 WO2019026711 A1 WO 2019026711A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sensing data
background noise
sensor device
unit
Prior art date
Application number
PCT/JP2018/027823
Other languages
English (en)
French (fr)
Inventor
修一 三角
哲二 大和
丈嗣 内藤
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP18841798.4A priority Critical patent/EP3664056B1/en
Priority to CN201880043991.8A priority patent/CN110832557B/zh
Priority to JP2018540071A priority patent/JP6451911B1/ja
Priority to US16/625,804 priority patent/US11758307B2/en
Publication of WO2019026711A1 publication Critical patent/WO2019026711A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/19Self-testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/065Generation of reports related to network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • H04Q9/08Calling by using continuous ac
    • H04Q9/10Calling by using continuous ac using single different frequencies
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34294Diagnostic, locate failures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture

Definitions

  • the present invention relates to technology for distributing sensing data between a provider and a user.
  • the sensor device referred to here is a sensor or a device to which a plurality of sensors are connected.
  • the sensing data is obtained by sensing the observation characteristics of the observation target with a sensor device.
  • the observation target is an abstraction of a real world phenomenon (person, thing, event, etc.).
  • the observation characteristic is the characteristic of the observation object observed by the sensor.
  • the observation target is, for example, an environment.
  • the observation characteristics of the environment are, for example, temperature, humidity, barometric pressure, sound pressure, illuminance, ultraviolet light, and acceleration.
  • the provider side registers the sensor device and sensor side metadata relating to sensing data provided by sensing by the sensor device in the network server.
  • the user side registers an application that uses sensing data and application-side metadata related to sensing data used by this application in the network server.
  • the sensor side metadata is information on a sensor and an attribute of sensing data obtained by the sensor.
  • the application-side metadata is information on the application itself and the attributes of sensing data required by the application.
  • the network server matches the sensor-side metadata with the application-side metadata to extract a sensor device capable of providing sensing data that satisfies the application request.
  • the network server transmits a data flow control command to the sensor management unit that manages the extracted sensor device.
  • the data flow control command instructs distribution of sensing data from a data provider (sensor device) to a data utilization destination (application).
  • Patent No. 5445722 gazette
  • the sensor device which senses the observation characteristic of environment was installed in a predetermined place, and transmitted sensing data unilaterally. Therefore, the user could not know the status of the sensor device. For example, even if the sensor device falls out of the installation site and senses the observation characteristics of the environment different from the installation site, the user side receives the sensing data obtained by the sensing of the sensor device. become. Therefore, the user can not know the above situation of the sensor device. Therefore, there is a possibility that sensing data with low reliability may be distributed between the provider side and the user side.
  • An object of the present invention is to provide a technique for providing data for obtaining an index of the reliability of sensing data.
  • a sensor device is a sensor device configured to transmit sensing data generated by observing an object to an external device provided outside the sensor device, and to generate sensing data.
  • An extracting unit configured to extract the background noise data from the sensing data, the sensing data including background noise data indicating noise caused by something other than the target;
  • a transmitter configured to transmit background noise data to an external device.
  • the background noise does not depend on the observation characteristic of the observation target to which the observer focuses, but changes according to the condition of the sensor device. Therefore, by analyzing the background noise, it is possible to detect a change in the condition of the sensor device, and as a result, it is possible to obtain an indicator of the reliability of the sensing data. Therefore, according to the above configuration, it is possible to provide data for obtaining an index of the reliability of sensing data.
  • the sensor device further includes a storage unit configured to store sensing data generated at each of a plurality of timings, and the transmitting unit combines the sensing data stored in the storage unit into an external device. And may be configured to transmit.
  • the extraction unit may extract background noise data by sorting the sensing data generated at each of the plurality of timings according to the magnitude of the value.
  • data for determining the reliability of sensing data can be provided.
  • FIG. 1 is a schematic view showing a sensing data distribution system.
  • FIG. 2 is a block diagram showing the configuration of the main part of the sensor device 2.
  • FIG. 3 is a block diagram showing the configuration of the main part of the GW terminal 1.
  • FIG. 4 is a schematic view showing the providing side data catalog 100.
  • FIG. 5 is a flowchart showing generation processing of background noise data in the sensor device 2.
  • 6 (A), 6 (B), and 6 (C) are diagrams showing an example of sensing data to be sorted by the background noise data generation function unit 212.
  • FIG. 7A, FIG. 7B, and FIG. 7C are diagrams showing examples of sorted arrays obtained by sorting sensing data in ascending order.
  • FIGS. 8A and 8B are diagrams showing examples of sensing data to be sorted by the background noise data generation function unit 212.
  • FIG. FIG. 9 is a diagram illustrating an example of a sorted array obtained by sorting sensing data in ascending order.
  • FIGS. 10A and 10B are diagrams showing examples of the distribution of the frequency of sensing data.
  • FIG. 11 is a flowchart showing the registration process of the sensor device 2 in the GW terminal 1.
  • FIG. 12 is a flowchart showing generation processing of the providing side data catalog 100 in the GW terminal 1.
  • 13 (A) and 13 (B) are diagrams showing examples of screens when the providing side data catalog 100 in the GW terminal 1 is edited.
  • FIG. 14 is a flowchart showing sensing data provision processing.
  • FIG. 15 is a flowchart showing the process of determining the reliability of sensing data in the GW terminal 1.
  • FIG. 16 is a block diagram showing the configuration of the main part of the GW terminal 6.
  • FIG. 17 is a flowchart illustrating the process of determining the reliability of sensing data in the GW terminal 6.
  • FIG. 1 is a schematic view showing a sensing data distribution system.
  • the sensing data distribution system includes a gateway terminal 1 (GW (Gateway) terminal 1), a sensor device 2, a sensor network server 3, and an application system 4.
  • GW Gateway terminal 1
  • This sensing data distribution system is a system for distributing sensing data between the provider and the user.
  • the GW terminal 1 corresponds to the external device in the present invention.
  • the sensor device 2 is a sensor or a device to which a plurality of sensors are connected. In the following, when each of the plurality of sensor devices 2 is distinguished, they may be described as the sensor devices 2a and 2b.
  • the GW terminal 1 and the sensor device 2 are configurations on the providing side that provide sensing data.
  • the application system 4 is a configuration of a user who uses sensing data.
  • the sensor network server 3 is a configuration for realizing a sensing data distribution market, that is, a sensing data trading market (SDTM), which is a market place on the Internet where trading of sensing data is performed.
  • SDTM sensing data trading market
  • the provider transmits the provider data catalog 100 (providing DC 100) according to the sensing data to be traded (sold) in the SDTM to the sensor network server 3 and is registered.
  • the provider-side data catalog 100 describes attribute information related to sensing data to be provided.
  • the use side transmits the use side data catalog 101 (use side DC 101) concerning the sensing data to be traded (purchased) by the SDTM to the sensor network server 3 and registers it.
  • the use-side data catalog 101 describes attribute information of sensing data to be used.
  • the sensor network server 3 performs a matching process of extracting a provider that can provide sensing data satisfying the user-side data catalog 101 based on the registered provider-side data catalog 100 and the user-side data catalog 101.
  • the provider transmits sensing data to the user in accordance with a data flow control command accompanying the matching process.
  • the data flow control instruction is generated in any device such as the sensor network server 3, the provider side, and the user side according to the matching result of the matching process. That is, the device that generates the data flow control command is not limited to a specific device.
  • the sensor network server 3 has a configuration in which a plurality of providers (GW terminals 1 and sensor devices 2) can be connected via the network 5. Further, the sensor network server 3 is configured such that a plurality of use sides (application systems 4) can be connected via the network 5.
  • the provider side and the user side are illustrated one by one.
  • the sensing data may be transmitted from the provider to the user via the sensor network server 3 or from the provider without using the sensor network server 3. It may be configured to be sent directly to the user.
  • FIG. 2 is a block diagram showing the configuration of the main part of the sensor device 2.
  • the sensor device 2 includes a control unit 21, a sensor unit 22, a gateway connection unit 23 (GW connection unit 23), a sensing data storage unit 24, and a device information storage unit 25.
  • the sensor device 2 may be an environment sensor that senses temperature, humidity, air pressure, sound pressure, illuminance, ultraviolet light, acceleration and the like at the installation location, and may be other types of sensors.
  • the sensor device 2 may be configured to have one observation characteristic capable of sensing or may be configured to have a plurality of observation characteristics.
  • the sensor unit 22 has a sensor for sensing the observation characteristic of the observation target.
  • the sensor unit 22 may have one or more sensors.
  • the GW connection unit 23 is configured to connect the GW terminal 1 by wire or wirelessly.
  • the GW connection unit 23 functions as an interface that controls input and output of data with the GW terminal 1.
  • the sensing data storage unit 24 stores sensing data output from the sensor unit 22.
  • the sensing data storage unit 24 stores sensing data at a plurality of time points (timings).
  • the device information storage unit 25 stores device information.
  • the device information is information on the sensor device (device type, device identifier, setting value in the device, etc.).
  • the device type indicates the type of device.
  • the device identifier is a code uniquely set for each device at the time of factory shipment, and is an identification code for identifying the device.
  • the setting values in the device are parameters that define the operation of the device, the signals to be input / output, and the like.
  • the control unit 21 controls the operation of each part of the sensor device 2 main body. Further, as shown in FIG. 2, the control unit 21 includes a sensing data management unit 211 and a background noise data generation function unit 212.
  • the sensing data management unit 211 corresponds to a transmitting unit (transmitting sensing data to an external device) according to the present invention.
  • the background noise data generation function unit 212 corresponds to an extraction unit and a transmission unit (to transmit background noise data to an external device) in the present invention.
  • the sensing data management unit 211 acquires sensing data from the sensor unit 22 every predetermined time, and stores the sensing data in the sensing data storage unit 24.
  • the sensing data management unit 211 transmits data including the untransmitted sensing data stored in the sensing data storage unit 24 and the device identifier obtained from the device information storage unit 25 to the GW terminal 1 every predetermined time. That is, the sensing data management unit 211 collectively transmits the sensing data stored in the sensing data storage unit 24 to the GW terminal 1.
  • the sensing data management unit 211 erases, from the sensing data storage unit 24, sensing data other than the sensing data from the present to a certain period before the present every predetermined time.
  • the background noise data generation function unit 212 extracts background noise data in which the background noise is reflected, from the sensing data obtained from the sensing of the sensor unit 22 every predetermined time.
  • Background noise is information other than the information that the observer focuses on in the information obtained by sensing. That is, background noise data is data indicating noise caused by something other than the observation target.
  • the background noise data includes, for example, noise data generated in the sensor device 2 during power-on of the sensor device 2 and noise data generated in the ambient environment of the sensor device 2.
  • the background noise data generation function unit 212 transmits data including the generated background noise data and the device identifier obtained from the device information storage unit 25 to the GW terminal 1.
  • the sensing data management unit 211 acquires the sensing data from the GW terminal 1 each time it acquires the sensing data from the sensor unit 22. It may be sent to The background noise data generation function unit 212 may generate background noise data in response to a request from the GW terminal 1. Transmission of sensing data and transmission of background noise data may be performed at the same timing or may be performed at different timings.
  • the control unit 21 of the sensor device 2 is configured of a hardware CPU, a memory, and other electronic circuits.
  • the hardware CPU functions as the sensing data management unit 211 and the background noise data generation function unit 212 described above.
  • the memory has an area for expanding the sensing data providing program according to the present invention, and an area for temporarily storing data generated at the time of execution of the sensing data providing program.
  • the control unit 21 may be an LSI in which a hardware CPU, a memory, and the like are integrated.
  • FIG. 3 is a block diagram showing the configuration of the main part of the GW terminal 1.
  • the GW terminal 1 includes a control unit 11, a sensor device connection unit 12, an operation unit 13, a communication unit 14, a model storage database 15 (model storage database 15), a data catalog storage database 16 (data catalog storage database 16), and a sensing data storage database. 17 (sensing data storage DB 17) is provided.
  • the GW terminal 1 may be a personal computer (PC), a portable terminal such as a smartphone or a tablet, or another information processing apparatus.
  • GW terminal 1 is explained as a smart phone.
  • the control unit 11 controls the operation of each unit of the GW terminal 1 main body. Further, as shown in FIG. 3, the control unit 11 includes a sensor device registration function unit 111, a sensing data acquisition function unit 112, a data catalog generation function unit 113, a sensing data output restriction function unit 114, and a background noise data acquisition function unit 115. , A reliability determination unit 116, and a determination result output unit 117.
  • the sensor device registration function unit 111, the sensing data acquisition function unit 112, the data catalog generation function unit 113, the sensing data output restriction function unit 114, the background noise data acquisition function unit 115, the reliability determination unit 116, and the control unit 11 have. Details of the determination result output unit 117 will be described later.
  • the sensor device connection unit 12 is configured to connect the sensor device 2 in a wired or wireless manner.
  • the sensor device connection unit 12 functions as an interface for controlling input and output of data with the sensor device 2.
  • the operation unit 13 receives an input operation by the operator on the GW terminal 1 main body.
  • the operation unit 13 has a display and a touch panel attached on the screen of the display.
  • the operation unit 13 also controls display of a screen (a screen or the like according to a user interface) displayed on the display.
  • the communication unit 14 controls data communication with an external device via the network 5.
  • the sensor network server 3 and the application system 4 shown in FIG. 1 correspond to the external devices referred to here. Also, the external device is not limited to the sensor network server 3 and the application system 4.
  • the template storage DB 15 stores a template of the provider data catalog 100.
  • the provider-side data catalog 100 will be described.
  • FIG. 4 is a schematic view showing the providing side data catalog 100. As shown in FIG.
  • the provider data catalog 100 can be roughly divided into data catalog number, sensing data provider, sensing data provision period, sensing data measurement location, sensing data object, sensing data reliability, event data specification, and data sales contract conditions.
  • the data catalog number is a number that identifies the provider data catalog 100.
  • the sensing data provider is attribute information of an organization (individual or business person) providing the sensing data.
  • a sensing data provision period is attribute information concerning a period which provides sensing data.
  • the sensing data measurement location is attribute information pertaining to a location where an observation target is sensed.
  • the sensing data targets are observation targets and attribute information related to observation characteristics.
  • the sensing data reliability is attribute information concerning the reliability of the sensing data.
  • the event data specification is attribute information on an event condition.
  • the data sales contract condition is attribute information concerning trading of sensing data.
  • the provider data catalog 100 may be configured of a static data catalog including static attribute information which does not change for each sensing, and a dynamic data catalog including dynamic attribute information which may change for each sensing.
  • Static attribute information is, for example, a sensing data provider.
  • Dynamic attribute information is, for example, sensing data reliability.
  • the data catalog storage DB 16 is a storage unit for storing the provider data catalog 100.
  • the data catalog storage DB 16 stores at least the provider data catalog 100 registered in the sensor network server 3. That is, the provider data catalog 100 registered in the sensor network server 3 is stored in the data catalog storage DB 16.
  • the provider data catalog 100 stored in the data catalog storage DB 16 may include the provider data catalog 100 not registered in the sensor network server 3.
  • the sensing data storage DB 17 stores sensing data of the observation characteristic of the observation target sensed by the sensor device 2.
  • the template storage DB 15, the data catalog storage DB 16, and the sensing data storage DB 17 described above may be combined and integrated with any two or more databases.
  • the template storage DB 15 and the data catalog storage DB 16 may be configured as one database, or the template storage DB 15, the data catalog storage DB 16 and the sensing data storage DB 17 may be configured as one database.
  • the sensor device registration function unit 111 the sensing data acquisition function unit 112, the data catalog generation function unit 113, the sensing data output restriction function unit 114, the background noise data acquisition function unit 115, and the reliability determination unit included in the control unit 11 116 and the determination result output unit 117 will be described.
  • the sensor device registration function unit 111 performs processing of registering the device identifier of the sensor device 2 in the GW terminal 1 main body.
  • the GW terminal 1 is configured to be able to register a plurality of sensor devices 2.
  • the GW terminal 1 can not trade the sensing data sensed by the sensor device 2 not registered in the main body by the SDTM. In other words, sensing data that can be traded in the SDTM is limited to sensing data sensed by the sensor device 2 registered in the GW terminal 1 main body.
  • the provider can also select not to trade in the SDTM even if it is sensing data sensed by the sensor device 2 registered in the GW terminal 1 main body.
  • the sensing data acquisition function unit 112 acquires sensing data sensed by the sensor device 2 from the sensor device 2 connected in the sensor device connection unit 12.
  • the sensing data acquisition function unit 112 stores the acquired sensing data in the sensing data storage DB 17.
  • the data catalog generation function unit 113 generates the provider data catalog 100 registered in the sensor network server 3.
  • the data catalog generation function unit 113 generates the provider data catalog 100 using the template of the provider data catalog 100 stored in the template storage DB 15.
  • the data catalog generation function unit 113 receives the editing operation of the operator (provider), and generates the provider data catalog 100.
  • the operator performs editing operation of the provider data catalog 100 in the operation unit 13.
  • the sensing data output restriction function unit 114 performs filtering processing to classify the sensing data sensed by the sensor device 2 and acquired by the sensing data acquisition function unit 112.
  • This filtering process is a process of classifying sensing data of an item permitted to be transmitted to an external device (user side) in the communication unit 14 and sensing data of an item not permitted to be transmitted to an external device. It is.
  • the background noise data acquisition function unit 115 acquires (receives) background noise data from the sensor device 2 connected to the sensor device connection unit 12. That is, the background noise data acquisition function unit 115 acquires background noise data in which the background noise included in the sensing data obtained by the sensing of the sensor device 2 is reflected. The background noise data acquisition function unit 115 sends the acquired background noise data to the reliability determination unit 116.
  • the reliability determination unit 116 uses the background noise data acquired by the background noise data acquisition function unit 115 to determine the reliability of the sensing data.
  • the reliability determination unit 116 determines the reliability of the sensing data by comparing the magnitude of the background noise included in the background noise data with a threshold.
  • the GW terminal 1 determines the reliability of the sensing data, but the sensor device 2 may determine the reliability of the sensing data.
  • the determination result output unit 117 outputs the determination result of the reliability of the sensing data by the reliability determination unit 116.
  • the determination result output unit 117 updates the sensing data reliability of the provider data catalog 100 stored in the data catalog storage DB 16.
  • the determination result output unit 117 transmits the determination result of the reliability of the sensing data to the sensor network server 3, and updates the sensing data reliability of the provider data catalog 100 registered in the sensor network server 3.
  • the determination result output unit 117 determines the determination result of the reliability of the sensing data via the sensor network server 3 or not via the sensor network server 3 , The user of the sensing data may be notified.
  • the determination result output unit 117 may transmit the updated provider data catalog 100 to the sensor network server 3 and update the provider data catalog 100 registered in the sensor network server 3.
  • the determination result output unit 117 may delete the determination result of the reliability of the sensing data, or in order to use it for generating the provider data catalog 100. You may save it to
  • the determination result output unit 117 may update only the dynamic data catalog.
  • the control unit 11 of the GW terminal 1 is configured of a hardware CPU, a memory, and other electronic circuits.
  • the hardware CPU corresponds to the sensor device registration function unit 111, the sensing data acquisition function unit 112, the data catalog generation function unit 113, the sensing data output restriction function unit 114, the background noise data acquisition function unit 115, and the reliability determination unit 116 described above. , And function as the determination result output unit 117.
  • the memory has an area for expanding the sensing data providing program according to the present invention, and an area for temporarily storing data generated at the time of execution of the sensing data providing program.
  • the control unit 11 may be an LSI in which a hardware CPU, a memory, and the like are integrated.
  • FIG. 5 is a flowchart showing generation processing of background noise data in the sensor device 2 according to this example.
  • the background noise data generation function unit 212 reads, from the sensing data storage unit 24, N pieces of sensing data acquired from the sensor unit 22 by the sensing data management unit 211 during a predetermined time before the present (s1). In other words, the background noise data generation function unit 212 reads time series data obtained from the sensing of the sensor unit 22 from the sensing data storage unit 24. The number N of sensing data data handled by the background noise data generation function unit 212 at one time is appropriately determined.
  • the background noise data generation function unit 212 generates a sorted array by sorting the N pieces of sensing data in ascending order according to the magnitude of the value of the sensing data (s2). That is, the sensing data management unit 211 sorts the sensing data obtained by sensing according to the passage of time according to the value of the sensing data. For example, quick sort may be used as a sort algorithm. As a result, it is possible to perform sorting at high speed even with a CPU that is not so fast in processing speed as used for the sensor device.
  • the background noise data generation function unit 212 may sort the N pieces of sensing data in descending order according to the value of the sensing data.
  • 6 (A), 6 (B), and 6 (C) show examples of sensing data to be sorted by the background noise data generation function unit 212.
  • 6 (A), 6 (B), and 6 (C) show examples of sensing data obtained from sensing of sound pressure.
  • 6A, 6B, and 6C the vertical axis is the sound pressure level, and the horizontal axis is the time when the sound pressure level was measured.
  • FIG. 6A shows an example of the sound pressure level when the background noise is usually larger.
  • FIG. 6B is an example of the sound pressure level when the background noise is smaller than normal.
  • FIG. 6C is an example of the sound pressure level when the microphone hole is closed.
  • FIGS. 7A, 7B, and 7C show examples of sorted arrays obtained by sorting sensing data in ascending order.
  • FIGS. 7B and 7C show a portion corresponding to background noise in the sorted array shown in FIG. 7A.
  • the horizontal axis is a logarithmic scale.
  • the vertical axis is the sound pressure level (value of the element of the sorted array)
  • the horizontal axis is the order of the elements of the sorted array .
  • the element of p% is the p ⁇ N / 100th element of the sorted array.
  • the sorted arrays SA1, SA2, and SA3 are shown in FIGS. 6A, 6B, and 6C, respectively. It is obtained from the sort of sensing data shown in FIG.
  • the values of the elements of 0% to 10% of the sorted arrays SA1, SA2 and SA3 have the characteristics of the background noise applied to the sound pressure levels shown in FIGS. 6 (A), 6 (B) and 6 (C). As reflected, they become smaller in the order of the sorted arrays SA1, SA2, SA3.
  • FIGS. 8A and 8B show examples of sensing data to be sorted by the background noise data generation function unit 212.
  • FIG. FIGS. 8A and 8B show examples of sensing data obtained from sound pressure sensing.
  • the vertical axis is the sound pressure level
  • the horizontal axis is the time when the sound pressure level was measured.
  • FIG. 9 shows an example of a sorted array obtained by sorting sensing data in ascending order.
  • the vertical axis is the sound pressure level (value of the element of the sorted array)
  • the horizontal axis is the order of the elements of the sorted array.
  • the horizontal axis is a logarithmic scale.
  • sorted arrays SA4 and SA5 are obtained from the sorting of the sensing data shown in FIGS. 8A and 8B, respectively. When the sorted array SA4 is compared with the sorted array SA5, portions corresponding to background noise in the sorted array substantially match each other.
  • the background noise data generation unit 212 generates background noise data by extracting an element from a portion corresponding to the background noise in the sorted array (s3).
  • the background noise data is a set of the value of the first element (the minimum value among the N sensing data), the value of the 1% element, and the value of the 10% element in the sorted array.
  • the values of the first element obtained from the sorted arrays SA1, SA2, SA3 shown in FIG. 7C are 28.9 dB, 27.7 dB, and 26.6 dB, respectively.
  • the values of the 1% elements are 29.7 dB, 28.3 dB and 27.1 dB, respectively.
  • the values of the 10% elements are 31.6 dB, 29.0 dB and 27.7 dB, respectively.
  • the background noise data generation function unit 212 may generate background noise data based on the distribution of the frequency of sensing data.
  • the background noise data is the frequency of the portion corresponding to the background noise in the distribution of the frequency of the sensing data.
  • FIG. 10A and FIG. 10B show examples of the distribution of the frequency of sensing data.
  • FIG. 10 (B) shows a portion corresponding to background noise in the distribution of the frequency of the sensing data shown in FIG. 10 (A).
  • the vertical axis is the frequency. More specifically, the vertical axis is the number of sensing data belonging to the section of 1 dB.
  • the number of pieces of sensing data belonging to the section of 27.5 dB or more and less than 28.5 dB is about 360.
  • the horizontal axis is the sound pressure level.
  • the distributions of frequencies FD1, FD2, and FD3 are obtained from the sensing data shown in FIGS. 6A, 6B, and 6C, respectively.
  • background noise data is frequency in a section where the sound pressure level is 27.5 dB or more and less than 28.5 dB.
  • background noise data When background noise data is generated based on the sorted array, there are the following advantages as compared with the case where background noise data is generated based on the frequency of sensing data. First, the order of sensing data can be expressed as a percentage. Second, when background noise data is generated based on the sorted array, since it is not necessary to define a section as in the case of generating background noise data based on the frequency of sensing data, it is difficult to enter arbitraryness.
  • FIG. 11 is a flowchart showing registration processing of the sensor device 2 in the GW terminal 1 according to this example.
  • the GW terminal 1 transmits a registration request to the sensor device 2 to which the sensor device registration function unit 111 is connected to the sensor device connection unit 12 (s11).
  • the sensor device 2 receives the registration request transmitted from the GW terminal 1, the sensor device 2 transmits the device identifier of its own device to the GW terminal 1.
  • the sensor device registration function unit 111 When the sensor device registration function unit 111 receives the device identifier transmitted from the sensor device 2 (s12), the sensor device registration function unit 111 performs device registration for storing the device identifier received this time in the memory (s13), and ends this processing.
  • the sensor device registration function unit 111 acquires the template of the provider data catalog 100 from the sensor device 2 in this registration process. May be In this case, the sensor device registration function unit 111 stores the acquired template of the providing-side data catalog 100 in association with the device identifier in the template storage DB 15. In addition, if the sensor device registration function unit 111 is configured to store the address of the site on the Internet where the sensor device 2 stores the template of the provider-side data catalog 100, the sensor device registration function unit 111 acquires and acquires this address. The address may be accessed to obtain a template of the provider data catalog 100.
  • FIG. 12 is a flowchart showing generation processing of the providing side data catalog 100 in the GW terminal 1 according to this example.
  • the GW terminal 1 receives the selection of the sensor device 2 that generates the present provision data catalog 100 (s21).
  • the operator operates the operation unit 13 of the GW terminal 1 and performs an operation to select the sensor device 2 for generating the provider data catalog 100 this time.
  • the GW terminal 1 displays the device identifier of the sensor device 2 already registered at this point on the display.
  • the operator performs an operation of selecting the sensor device 2 for generating the provider data catalog 100 among the sensor devices 2 whose device identifiers are displayed on the display.
  • the data catalog generation function unit 113 performs edit generation processing of the provider data catalog 100 according to the sensor device 2 selected in s21 (s22).
  • the GW terminal 1 receives, at the operation unit 13, an edit relating to the selection of the type of sensing data to be sold by SDTM.
  • the sensor device 2 is an environment sensor and can output six items of air temperature, humidity, air pressure, sound pressure, acceleration, and illuminance as sensing data, air temperature, humidity, air pressure, sound pressure
  • the selection of whether to sell in SDTM is received for each item of acceleration and illuminance (see FIG. 13A).
  • FIG. 13 (A) items for which the check is put on the right (in FIG. 13 (A), the temperature, humidity, and illuminance) are selected to be sold by SDTM (check is included). It is selected that the item which is not sold is not sold by SDTM.
  • the GW terminal 1 accepts editing of each item (including an item not described at this time) of the providing side data catalog 100 in the operation unit 13 (see FIG. 13B).
  • FIG. 13B is an example of a screen when the GW terminal 1 receives editing of the observation target, application range, transaction conditions, personal information, and anonymous processing information.
  • the GW terminal 1 accepts editing in s22 also for other attributes not shown in FIG. 13 (B).
  • the data catalog generation function unit 113 When the data catalog generation function unit 113 receives an instruction to complete the editing operation from the operator, the data catalog generation function unit 113 generates the provider data catalog 100 reflecting the editing by the operator.
  • the data catalog generation function unit 113 may generate the providing side data catalog 100 reflecting the determination result of the reliability of the sensing data. For example, the data catalog generation function unit 113 may request the reliability determination unit 116 to determine the reliability of the sensing data, or even when searching the database in which the determination result of the reliability of the sensing data is stored. Good.
  • the data catalog generation function unit 113 stores the provider data catalog 100 generated in s22 in the data catalog storage DB 16, and transmits the provider data catalog 100 to the sensor network server 3 for registration (s23).
  • FIG. 14 is a flowchart showing sensing data provision processing according to this example. If the GW terminal 1 determines that it is the provision timing for providing the sensing data to the application system 4, the sensing data storage based on the provider-side data catalog 100 according to the sensing data provided by the sensing data output limiting function unit 114 this time The sensing data provided from the DB 17 is read (s31, s32). In s32, the sensing data of the observation characteristic selected to be provided to the provider-side data catalog 100 is read out, and the sensing of the observation characteristic not selected to be supplied is not read out.
  • the sensing data output restriction function unit 114 transmits the sensing data subjected to the filtering process to the application system 4 (s33).
  • the GW terminal 1 repeats the processes of s31 to s33.
  • FIG. 15 is a flowchart showing the process of determining the reliability of sensing data in the GW terminal 1 according to this example.
  • the reliability determination unit 116 performs sensing using background noise data including the value of the first element, the value of the 1% element, and the value of the 10% element in the sorted array. Determine the reliability of the data.
  • the value of the first element of the sorted array constituting the background noise data is referred to as a feature parameter Xmin.
  • the value of the 1% element of the sorted array making up the background noise data is referred to as feature parameter X1.
  • the value of 10% of the elements of the sorted array making up the background noise data is referred to as feature parameter X10.
  • the reliability determination unit 116 determines the reliability of the sensing data to be B1 (s42).
  • the threshold THmin is set to the minimum value of the sensing data output when the sensor unit 22 of the sensor device 2 is operating normally.
  • the determination result B1 means that the background noise is much smaller than usual.
  • the reliability of the sensing data having received the determination result B1 is low.
  • the feature parameter Xmin is equal to or greater than the threshold THmin
  • the feature parameter X1 is equal to or greater than the threshold TH1L and less than the threshold TH1H
  • the feature parameter X10 is equal to or greater than the threshold TH10L and less than the threshold TH10H (s41: No, s43: Yes, s44: Yes)
  • the reliability of the sensing data is A (s45).
  • the determination result A means that background noise is substantially the same as normal.
  • the reliability of the sensing data that received the determination result A is high.
  • the thresholds TH1L, TH1H, TH10L, and TH10H may be determined based on sensing data obtained from sensing at the time of installation of the sensor device 2.
  • the thresholds TH1L, TH1H, TH10L, and TH10H may be determined based on background noise data obtained in the past. For example, in the threshold values TH1L, TH1H, TH10L, and TH10H, the sensing data illustrated in FIG. 6A receives the following determination result B3, and the sensing data illustrated in FIG. 6B and FIG. It may be determined to receive B2.
  • the reliability determination unit 116 determines the reliability of the sensing data. It determines with B2 (s47).
  • the determination result B2 means that the background noise is usually smaller.
  • the reliability of the sensing data having received the determination result B2 is low.
  • the reliability determination unit 116 determines the reliability of the sensing data to be B3 when the feature parameter X1 is equal to or greater than the threshold TH1H and the feature parameter X10 is equal to or greater than the threshold TH10H (s46: No, s48: Yes) (s49).
  • the determination result B3 means that the background noise is usually larger.
  • the reliability of the sensing data having received the determination result B3 is low.
  • the reliability determination unit 116 determines the reliability of the sensing data to be C (s50).
  • the determination result C means that the behavior of the background noise is different from normal.
  • the reliability of the sensing data that received the determination result C is low.
  • the reliability determination part 116 compares the frequency of sensing data contained in background noise data, and the threshold value suitably determined. The reliability of sensing data may be determined.
  • background noise data in which background noise is reflected is generated from sensing data. Then, the reliability of the sensing data is determined using the background noise data. Therefore, it is possible to provide the user with the determination result of the reliability of the sensing data.
  • background noise data is "voice data".
  • the background noise data does not necessarily have to be "voice data”.
  • the background noise data may be, for example, data other than audio data such as image data.
  • image data representing a subject imaged for a relatively long time may be background noise data.
  • FIG. 16 is a block diagram showing the configuration of the main part of the GW terminal 6.
  • the GW terminal 6 includes a control unit 61, a determination result storage database 68 (determination result storage DB 68), and a sensor device installation place storage database 69 (sensor device installation place storage DB 69).
  • the control unit 61 includes a reliability determination unit 616, a determination result output unit 617, and a sensor device selection unit 618.
  • the determination result storage DB 68 stores the determination result of the reliability of the sensing data.
  • the sensor device installation place storage DB 69 stores sensor device installation place data concerning the installation place of the sensor device 2.
  • the reliability determination unit 616 includes background noise data concerning sensing data to be judged obtained by sensing by the sensor device 2a and background noise data concerning sensing data obtained by sensing by the sensor device 2b different from the sensor device 2a. The reliability of the sensing data to be judged is judged by comparing.
  • the determination result output unit 617 stores the determination result of the reliability of the sensing data in the determination result storage DB 68.
  • the sensor device selection unit 618 uses the sensor device installation location data to select a sensor device close to the sensor device 2 a as the sensor device 2 b.
  • FIG. 17 is a flowchart illustrating the process of determining the reliability of sensing data in the GW terminal 6.
  • the reliability determination unit 616 notifies the sensor device selection unit 618 of the sensor device 2a concerning the sensing data of the determination target and the observation characteristic of the observation target (s61).
  • the sensing data of the determination target is sensing data concerning the background noise acquired by the background noise data acquisition function unit 115.
  • the sensor device selection unit 618 senses the notified observation characteristic of the observation target, and selects the sensor device 2b that is in proximity to the notified sensor device 2a and is operating normally (s62).
  • the sensor device selection unit 618 determines whether the two sensor devices 2 sense the same observation characteristics of the observation target with reference to the sensing data objects of the provider-side data catalog 100.
  • the sensor device selection unit 618 calculates the distance between the two sensor devices 2 based on the sensor device installation location data stored in the sensor device installation location storage DB 69. Then, when the calculated distance between the two sensor devices 2 is shorter than the threshold, the sensor device selection unit 618 determines that the two sensor devices 2 are close to each other.
  • the sensor device selection unit 618 refers to the determination result of the reliability of the sensing data stored in the determination result storage DB 68 to determine whether the sensor device 2 is operating normally.
  • the sensor device selection unit 618 considers that the sensor device 2 determined to be reliable in the sensing data is operating normally during a predetermined period before the current time.
  • the reliability determination unit 616 requests, from the sensor device 2b selected by the sensor device selection unit 618, background noise data corresponding to background noise data concerning sensing data to be determined (s63). When receiving the background noise data from the sensor device 2b (s64), the reliability determination unit 616 performs the process shown in FIG. 15 to determine the reliability of the sensing data to be determined (s65).
  • the feature parameters Xmin, X1, and X10 are background noise data applied to sensing data obtained from the sensor device 2a.
  • the threshold THmin is set to the minimum value of the sensing data output when the sensor unit 22 of the sensor device 2a operates normally.
  • the reliability determination unit 616 determines the thresholds TH1L, TH1H, TH10L, and TH10H based on the background noise data applied to the sensor device 2b.
  • TH1H, TH10L, and TH10H the feature parameter Y1 is the value of the 1% element of the sorted array applied to the sensor device 2b.
  • the feature parameter Y10 is the value of an element of 10% of the sorted array applied to the sensor device 2b. ⁇ > 0 is appropriately determined.
  • (Supplementary Note 1) Has at least one hardware processor, The hardware processor is Get sensing data, Background noise data reflecting background noise is generated from the acquired sensing data. Sensor device. (Supplementary Note 2) Using at least one hardware processor Get sensing data, Background noise data reflecting background noise is generated from the acquired sensing data. Background noise data generation method.
  • User-side data catalog (User-side DC) 111 ... sensor device registration function unit 112 ... sensing data acquisition function unit 113 ... data catalog generation function unit 114 ... sensing data output restriction function unit 115 ... background noise data acquisition function unit 116, 616 ... reliability judgment unit 117, 617 ... judgment Result output unit 211 ... sensing data management unit 212 ... background noise data generation function unit 618 ... sensor device selection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)

Abstract

センサ装置は、対象を観測することによって生成されたセンシングデータをセンサ装置の外部に設けられた外部装置に送信するように構成されたセンサ装置であって、センシングデータを生成するように構成されたセンサ部を備え、センシングデータは、対象以外に起因した雑音を示す背景雑音データを含み、センシングデータから背景雑音データを抽出するように構成された抽出部と、抽出部によって抽出された背景雑音データを外部装置に送信するように構成された送信部とをさらに備える。

Description

センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム
 この発明は、センシングデータを、提供側と利用側との間で流通させる技術に関する。
 従来、センサ装置でセンシングしたセンシングデータを、提供側と利用側との間で流通させるセンサネットワークシステムが検討されている(例えば、特許文献1参照)。ここで言うセンサ装置とは、センサ、あるいはセンサが複数接続されるデバイスである。センシングデータは、観測対象の観測特性をセンサ装置でセンシングしたものである。ここで言う、観測対象は、実世界の現象の抽象(人、物、事象等)である。また、観測特性は、センサで観測する観測対象の特性である。観測対象は、例えば、環境である。環境の観測特性は、例えば、温度、湿度、気圧、音圧、照度、紫外線、加速度である。
 提供側は、センサ装置、およびこのセンサ装置でセンシングして提供するセンシングデータにかかるセンサ側メタデータをネットワークサーバに登録する。また利用側は、センシングデータを利用するアプリケーション、およびこのアプリケーションで利用するセンシングデータにかかるアプリ側メタデータをネットワークサーバに登録する。センサ側メタデータは、センサ、および当該センサにより得られるセンシングデータの属性に関する情報である。アプリ側メタデータは、アプリケーション自身、および当該アプリケーションが必要とするセンシングデータの属性に関する情報である。
 ネットワークサーバは、センサ側メタデータと、アプリ側メタデータとのマッチングを行って、アプリケーションの要求を満たすセンシングデータを提供可能なセンサ装置を抽出する。ネットワークサーバは、抽出したセンサ装置を管理するセンサ管理ユニットに対してデータフロー制御指令を送信する。このデータフロー制御指令は、データ提供元(センサ装置)からデータ利用先(アプリケーション)にセンシングデータを流通させることを指令するものである。
特許第5445722号公報
 ところで、従来、環境の観測特性をセンシングするセンサ装置は、所定の場所に設置されて、一方的にセンシングデータを送信していた。このため、利用側はセンサ装置の状況を知ることができなかった。例えば、センサ装置が、設置場所から脱落して、設置場所とは異なる場所の環境の観測特性をセンシングしていても、利用側は、そのセンサ装置のセンシングで得られたセンシングデータを受信することになる。このため、利用側はセンサ装置の上記状況を知ることができない。従って、提供側と利用側との間で、信頼性が低いセンシングデータが流通するおそれがあった。
 この発明の目的は、センシングデータの信頼性の指標を得るためのデータを提供する技術を提供することにある。
 この発明に従うセンサ装置は、対象を観測することによって生成されたセンシングデータをセンサ装置の外部に設けられた外部装置に送信するように構成されたセンサ装置であって、センシングデータを生成するように構成されたセンサ部を備え、センシングデータは、対象以外に起因した雑音を示す背景雑音データを含み、センシングデータから背景雑音データを抽出するように構成された抽出部と、抽出部によって抽出された背景雑音データを外部装置に送信するように構成された送信部とをさらに備える。
 背景雑音は、観測者が注目する観測対象の観測特性に依存しないが、センサ装置の状況に応じて変化する。このため、背景雑音を解析することで、センサ装置の状況の変化を検知でき、その結果として、センシングデータの信頼性の指標を得ることができる。従って、上記構成によれば、センシングデータの信頼性の指標を得るためのデータを提供できる。
 この発明に従うセンサ装置は、複数のタイミングの各々において生成されたセンシングデータを記憶するように構成された記憶部をさらに備え、送信部は、記憶部に記憶されたセンシングデータを、外部装置に一括して送信するように構成されてもよい。
 抽出部は、複数のタイミングの各々において生成されたセンシングデータを値の大きさに従ってソートすることによって、背景雑音データを抽出してもよい。
 この発明によれば、センシングデータの信頼性を判断するためのデータを提供できる。
図1は、センシングデータ流通システムを示す概略図である。 図2は、センサ装置2の主要部の構成を示すブロック図である。 図3は、GW端末1の主要部の構成を示すブロック図である。 図4は、提供側データカタログ100を示す概略図である。 図5は、センサ装置2における背景雑音データの生成処理を示すフローチャートである。 図6(A)、図6(B)、および図6(C)は、背景雑音データ生成機能部212がソートするセンシングデータの例を示す図である。 図7(A)、図7(B)、および図7(C)は、センシングデータを昇順にソートすることで得られたソート済み配列の例を示す図である。 図8(A)および図8(B)は、背景雑音データ生成機能部212がソートするセンシングデータの例を示す図である。 図9は、センシングデータを昇順にソートすることで得られたソート済み配列の例を示す図である。 図10(A)および図10(B)はセンシングデータの頻度の分布の例を示す図である。 図11は、GW端末1におけるセンサ装置2の登録処理を示すフローチャートである。 図12は、GW端末1における提供側データカタログ100の生成処理を示すフローチャートである。 図13(A)および図13(B)は、GW端末1における提供側データカタログ100の編集時の画面例を示す図である。 図14は、センシングデータ提供処理を示すフローチャートである。 図15は、GW端末1におけるセンシングデータの信頼性の判定処理を示すフローチャートである。 図16は、GW端末6の主要部の構成を示すブロック図である。 図17は、GW端末6におけるセンシングデータの信頼性の判定処理を示すフローチャートである。
 以下、この発明の実施形態について説明する。
 まず、センシングデータ流通システムについて説明しておく。図1は、センシングデータ流通システムを示す概略図である。このセンシングデータ流通システムは、ゲートウェイ端末1(GW(Gateway)端末1)、センサ装置2、センサネットワークサーバ3、およびアプリケーションシステム4を備えている。このセンシングデータ流通システムは、提供側と利用側との間でセンシングデータを流通させるシステムである。GW端末1が、この発明で言う外部装置に相当する。センサ装置2は、センサ、あるいはセンサが複数接続されるデバイスである。以下では、複数のセンサ装置2のそれぞれを区別する場合、それらをセンサ装置2a,2bのように記載することがある。
 GW端末1およびセンサ装置2が、センシングデータを提供する提供側の構成である。アプリケーションシステム4が、センシングデータを利用する利用側の構成である。センサネットワークサーバ3が、センシングデータの取引を行うインタネット上のマーケットプレースであるセンシングデータ流通市場、すなわちSensing Data Trading Market(SDTM)を実現するための構成である。
 提供側は、SDTMで取引(販売)するセンシングデータにかかる提供側データカタログ100(提供側DC100)をセンサネットワークサーバ3に送信し、登録する。提供側データカタログ100は、提供するセンシングデータにかかる属性情報を記述したものである。
 利用側は、SDTMで取引(購入)するセンシングデータにかかる利用側データカタログ101(利用側DC101)をセンサネットワークサーバ3に送信し、登録する。利用側データカタログ101は、利用するセンシングデータの属性情報を記述したものである。
 センサネットワークサーバ3は、登録済みの提供側データカタログ100と利用側データカタログ101とに基づき、利用側データカタログ101を満たすセンシングデータを提供できる提供側を抽出するマッチング処理を行う。
 提供側は、マッチング処理にともなうデータフロー制御指令に応じて、センシングデータを利用側に送信する。このデータフロー制御指令は、マッチング処理のマッチング結果に応じて、センサネットワークサーバ3、提供側、利用側等の何れかの機器において発生される。すなわち、データフロー制御指令を発生させる機器は、特定の機器に限定されるものではない。
 センサネットワークサーバ3は、ネットワーク5を介して提供側(GW端末1、およびセンサ装置2)が複数接続できる構成である。また、センサネットワークサーバ3は、ネットワーク5を介して利用側(アプリケーションシステム4)が複数接続できる構成である。図1では、提供側、および利用側を1つずつ例示している。また、センシングデータは、図1に示すように、センサネットワークサーバ3を介して、提供側から利用側に送信される構成であってもよいし、センサネットワークサーバ3を介することなく、提供側から利用側に直接送信される構成であってもよい。
 図2は、センサ装置2の主要部の構成を示すブロック図である。センサ装置2は、制御部21、センサ部22、ゲートウェイ接続部23(GW接続部23)、センシングデータ記憶部24、およびデバイス情報記憶部25を備えている。センサ装置2は、その設置場所における、温度、湿度、気圧、音圧、照度、紫外線、加速度等をセンシングする環境センサであってもよいし、これ以外の種類のセンサであってもよい。また、センサ装置2は、センシングが行える観測特性が1つである構成であってもよいし、複数である構成であってもよい。
 センサ部22は、観測対象の観測特性をセンシングするためのセンサを有する。センサ部22が有するセンサは、1つであってもよいし、複数であってもよい。GW接続部23は、有線、または無線でGW端末1を接続するための構成である。GW接続部23は、GW端末1との間におけるデータの入出力を制御するインタフェースとして機能する。センシングデータ記憶部24は、センサ部22が出力したセンシングデータを記憶している。センシングデータ記憶部24は、複数の時点(タイミング)におけるセンシングデータを記憶している。
 デバイス情報記憶部25は、デバイス情報を記憶している。デバイス情報は、センサ装置に関する情報(デバイス型式、デバイス識別子、デバイス内の設定値等)である。デバイス型式はデバイスの型式を示す。デバイス識別子は、工場出荷時にデバイス毎にユニークに設定されるコードであり、デバイスを特定する識別コードである。デバイス内の設定値は、デバイスの動作や入出力される信号等を規定するパラメータである。
 制御部21は、センサ装置2本体各部の動作を制御する。また、制御部21は、図2に示すように、センシングデータ管理部211および背景雑音データ生成機能部212を有している。センシングデータ管理部211が、この発明で言う送信部(センシングデータを外部装置に送信する。)に相当する。背景雑音データ生成機能部212が、この発明で言う抽出部及び送信部(背景雑音データを外部装置に送信する。)に相当する。
 センシングデータ管理部211は、所定時間毎に、センサ部22からセンシングデータを取得して、それをセンシングデータ記憶部24に記憶する。センシングデータ管理部211は、所定時間毎に、センシングデータ記憶部24に記憶された未送信のセンシングデータと、デバイス情報記憶部25から得られるデバイス識別子とを含むデータをGW端末1に送信する。即ち、センシングデータ管理部211は、センシングデータ記憶部24に記憶されたセンシングデータをGW端末1に一括して送信する。センシングデータ管理部211は、所定時間毎に、現在から一定期間前までのセンシングデータ以外のセンシングデータをセンシングデータ記憶部24から消去する。
 背景雑音データ生成機能部212は、所定時間毎に、センサ部22のセンシングから得られるセンシングデータから、背景雑音が反映された背景雑音データを抽出する。背景雑音は、センシングにより得られた情報の中で、観測者が注目する情報以外の情報である。すなわち、背景雑音データは、観測対象以外に起因した雑音を示すデータである。背景雑音データは、たとえば、センサ装置2の電源ON中にセンサ装置2内で生じる雑音データと、センサ装置2の周辺環境において生じる雑音データとを含む。背景雑音データ生成機能部212は、生成した背景雑音データと、デバイス情報記憶部25から得られるデバイス識別子とを含むデータをGW端末1に送信する。
 センシングデータ管理部211は、センシングデータ記憶部24に記憶されたセンシングデータを一括してGW端末1に送信する代わりに、センサ部22からセンシングデータを取得する毎に、そのセンシングデータをGW端末1に送信してもよい。背景雑音データ生成機能部212は、GW端末1の要求に応じて、背景雑音データを生成してもよい。センシングデータの送信と背景雑音データの送信とは、同じタイミングで行われてもよいし、異なるタイミングで行われてもよい。
 このセンサ装置2の制御部21は、ハードウェアCPU、メモリ、その他の電子回路によって構成されている。ハードウェアCPUが、上述した、センシングデータ管理部211および背景雑音データ生成機能部212として機能する。また、メモリは、この発明にかかるセンシングデータ提供プログラムを展開する領域や、このセンシングデータ提供プログラムの実行時に生じたデータ等を一時記憶する領域を有している。制御部21は、ハードウェアCPU、メモリ等を一体化したLSIであってもよい。
 図3は、GW端末1の主要部の構成を示すブロック図である。GW端末1は、制御部11、センサ装置接続部12、操作部13、通信部14、雛形保存データベース15(雛形保存DB15)、データカタログ保存データベース16(データカタログ保存DB16)、およびセンシングデータ保存データベース17(センシングデータ保存DB17)を備えている。このGW端末1は、パーソナルコンピュータ(PC)であってもよいし、スマートフォンやタブレット等の携帯端末であってもよいし、その他の情報処理装置であってもよい。ここでは、GW端末1は、スマートフォンとして説明する。
 制御部11は、GW端末1本体各部の動作を制御する。また、制御部11は、図3に示すように、センサ装置登録機能部111、センシングデータ取得機能部112、データカタログ生成機能部113、センシングデータ出力制限機能部114、背景雑音データ取得機能部115、信頼性判定部116、および判定結果出力部117を有している。制御部11が有する、センサ装置登録機能部111、センシングデータ取得機能部112、データカタログ生成機能部113、センシングデータ出力制限機能部114、背景雑音データ取得機能部115、信頼性判定部116、および判定結果出力部117の詳細については後述する。
 センサ装置接続部12は、有線、または無線でセンサ装置2を接続するための構成である。センサ装置接続部12は、センサ装置2との間におけるデータの入出力を制御するインタフェースとして機能する。
 操作部13は、GW端末1本体に対する操作者の入力操作を受け付ける。この例では、操作部13は、表示器、およびこの表示器の画面上に貼付したタッチパネルを有する。操作部13は、表示器に表示する画面(ユーザインタフェースにかかる画面等)の表示も制御する。
 通信部14は、ネットワーク5を介した外部機器とのデータ通信を制御する。図1に示すセンサネットワークサーバ3およびアプリケーションシステム4が、ここで言う外部機器に相当する。また、外部機器は、センサネットワークサーバ3およびアプリケーションシステム4に限らない。
 雛形保存DB15は、提供側データカタログ100の雛形を記憶する。ここで、提供側データカタログ100について説明しておく。図4は、提供側データカタログ100を示す概略図である。
 提供側データカタログ100には、大別すると、データカタログ番号、センシングデータ提供者、センシングデータ提供期間、センシングデータ測定場所、センシングデータ対象、センシングデータ信頼性、イベントデータ仕様、およびデータ売買契約条件が含まれている。データカタログ番号は、提供側データカタログ100を識別する番号である。センシングデータ提供者は、センシングデータを提供する組織(個人、または事業者)にかかる属性情報である。センシングデータ提供期間は、センシングデータを提供する期間にかかる属性情報である。センシングデータ測定場所は、観測対象をセンシングする場所にかかる属性情報である。センシングデータ対象は、観測対象、および観測特性にかかる属性情報である。センシングデータ信頼性は、センシングデータの信頼性にかかる属性情報である。イベントデータ仕様は、イベント条件に関する属性情報である。データ売買契約条件は、センシングデータの取引にかかる属性情報である。
 提供側データカタログ100は、センシング毎に変化しない静的な属性情報を含む静的データカタログと、センシング毎に変化し得る動的な属性情報を含む動的データカタログとで構成されてもよい。静的な属性情報は、例えば、センシングデータ提供者である。動的な属性情報は、例えば、センシングデータ信頼性である。
 データカタログ保存DB16は、提供側データカタログ100を記憶するための記憶部である。データカタログ保存DB16は、少なくともセンサネットワークサーバ3に登録した提供側データカタログ100を記憶している。すなわち、センサネットワークサーバ3に登録した提供側データカタログ100は、データカタログ保存DB16に記憶されている。
 なお、データカタログ保存DB16に記憶されている提供側データカタログ100の中に、センサネットワークサーバ3に登録していない提供側データカタログ100が含まれていてもよい。
 センシングデータ保存DB17は、センサ装置2でセンシングした観測対象の観測特性のセンシングデータを記憶する。
 上述した、雛形保存DB15、データカタログ保存DB16、およびセンシングデータ保存DB17は、何れか2つ以上のデータベースを組み合わせて統合した構成にしてもよい。例えば、雛形保存DB15およびデータカタログ保存DB16を1つのデータベースで構成してもよいし、雛形保存DB15、データカタログ保存DB16、およびセンシングデータ保存DB17を1つのデータベースで構成してもよい。
 次に、制御部11が有する、センサ装置登録機能部111、センシングデータ取得機能部112、データカタログ生成機能部113、センシングデータ出力制限機能部114、背景雑音データ取得機能部115、信頼性判定部116、および判定結果出力部117について説明する。
 センサ装置登録機能部111は、センサ装置2のデバイス識別子をGW端末1本体に登録する処理を行う。GW端末1は、複数のセンサ装置2が登録できる構成である。GW端末1は、本体に登録されていないセンサ装置2によりセンシングされたセンシングデータをSDTMで取引することができない。言い換えれば、SDTMで取引することができるセンシングデータは、GW端末1本体に登録されたセンサ装置2によってセンシングされたセンシングデータに限られる。
 なお、提供側は、GW端末1本体に登録したセンサ装置2によってセンシングされたセンシングデータであっても、SDTMで取引しないことも選択できる。
 センシングデータ取得機能部112は、センサ装置接続部12において接続されているセンサ装置2から、このセンサ装置2によってセンシングされたセンシングデータを取得する。センシングデータ取得機能部112は、取得したセンシングデータをセンシングデータ保存DB17に保存する。
 データカタログ生成機能部113は、センサネットワークサーバ3に登録する提供側データカタログ100を生成する。データカタログ生成機能部113は、雛形保存DB15に記憶している提供側データカタログ100の雛形を利用して、提供側データカタログ100を生成する。データカタログ生成機能部113は、操作者(提供者)の編集操作を受け付け、提供側データカタログ100を生成する。操作者は、操作部13において提供側データカタログ100の編集操作を行う。
 センシングデータ出力制限機能部114は、センサ装置2によってセンシングされ、センシングデータ取得機能部112で取得したセンシングデータを分類するフィルタリング処理を行う。このフィルタリング処理は、通信部14において外部機器(利用側)に送信することを許可している項目のセンシングデータと、外部機器に送信することを許可していない項目のセンシングデータとを分類する処理である。
 背景雑音データ取得機能部115は、センサ装置接続部12に接続されているセンサ装置2から背景雑音データを取得する(受信する)。即ち、背景雑音データ取得機能部115は、センサ装置2のセンシングにより得られたセンシングデータに含まれる背景雑音が反映された背景雑音データを取得する。背景雑音データ取得機能部115は、取得した背景雑音データを信頼性判定部116に送る。
 信頼性判定部116は、背景雑音データ取得機能部115により取得された背景雑音データを用いて、センシングデータの信頼性を判定する。信頼性判定部116は、背景雑音データに含まれる背景雑音の大きさを閾値と比較することでセンシングデータの信頼性を判定する。
 なお、この例では、GW端末1がセンシングデータの信頼性を判定するが、センサ装置2がセンシングデータの信頼性を判定してもよい。
 判定結果出力部117は、信頼性判定部116によるセンシングデータの信頼性の判定結果を出力する。判定結果出力部117は、データカタログ保存DB16に保存された提供側データカタログ100のセンシングデータ信頼性を更新する。判定結果出力部117は、センシングデータの信頼性の判定結果をセンサネットワークサーバ3に送信し、センサネットワークサーバ3に登録された提供側データカタログ100のセンシングデータ信頼性を更新する。
 判定結果出力部117は、センシングデータの信頼性の判定結果が所定条件を満たさない場合、センサネットワークサーバ3を介して、またはセンサネットワークサーバ3を介さずに、センシングデータの信頼性の判定結果を、そのセンシングデータの利用者に通知してもよい。
 なお、判定結果出力部117は、更新した提供側データカタログ100をセンサネットワークサーバ3に送信し、センサネットワークサーバ3に登録された提供側データカタログ100を更新してもよい。
 判定結果出力部117は、更新対象の提供側データカタログ100がまだ生成されていない場合、センシングデータの信頼性の判定結果を消去してもよいし、提供側データカタログ100の生成に利用するために保存してもよい。
 提供側データカタログ100が静的データカタログおよび動的データカタログで構成されている場合、判定結果出力部117は動的データカタログのみを更新すればよい。
 このGW端末1の制御部11は、ハードウェアCPU、メモリ、その他の電子回路によって構成されている。ハードウェアCPUが、上述した、センサ装置登録機能部111、センシングデータ取得機能部112、データカタログ生成機能部113、センシングデータ出力制限機能部114、背景雑音データ取得機能部115、信頼性判定部116、および判定結果出力部117として機能する。また、メモリは、この発明にかかるセンシングデータ提供プログラムを展開する領域や、このセンシングデータ提供プログラムの実行時に生じたデータ等を一時記憶する領域を有している。制御部11は、ハードウェアCPU、メモリ等を一体化したLSIであってもよい。
 次に、センサ装置2における背景雑音データの生成処理について説明する。図5は、この例にかかるセンサ装置2における背景雑音データの生成処理を示すフローチャートである。
 背景雑音データ生成機能部212は、現在から所定時間前までの間にセンシングデータ管理部211がセンサ部22から取得したN個のセンシングデータを、センシングデータ記憶部24から読み出す(s1)。換言すると、背景雑音データ生成機能部212は、センサ部22のセンシングから得られた時系列データを、センシングデータ記憶部24から読み出す。背景雑音データ生成機能部212が一度に扱うセンシングデータデータの個数Nは、適宜定められる。
 背景雑音データ生成機能部212は、センシングデータの値の大きさに従ってN個のセンシングデータを昇順にソートすることで、ソート済み配列を生成する(s2)。即ち、センシングデータ管理部211は、時間の経過に従ったセンシングにより得られるセンシングデータを、センシングデータの値の大きさに従ってソートする。例えば、ソートアルゴリズムとしてクイックソートを使用してもよい。これにより、センサ装置に使用されるような、処理速度がそれほど速くないCPUでも、高速にソートを行うことができる。
 背景雑音データ生成機能部212は、センシングデータの値の大きさに従って、N個のセンシングデータを降順にソートしてもよい。
 図6(A)、図6(B)、および図6(C)は、背景雑音データ生成機能部212がソートするセンシングデータの例を示している。図6(A)、図6(B)、および図6(C)は、音圧のセンシングから得られたセンシングデータの例を示している。図6(A)、図6(B)、および図6(C)において、縦軸は音圧レベルであり、横軸は音圧レベルが測定された時間である。図6(A)は、背景雑音が通常より大きい場合の音圧レベルの例である。図6(B)は、背景雑音が通常より小さい場合の音圧レベルの例である。図6(C)は、マイクの穴が塞がれた場合の音圧レベルの例である。
 図7(A)、図7(B)、および図7(C)は、センシングデータを昇順にソートすることで得られたソート済み配列の例を示している。図7(B)および図7(C)は、図7(A)に示すソート済み配列における背景雑音に相当する部分を示している。図7(C)において、横軸は対数目盛となっている。図7(A)、図7(B)、および図7(C)において、縦軸は音圧レベル(ソート済み配列の要素の値)であり、横軸はソート済み配列の要素の順位である。p%の要素はソート済み配列のp×N/100番目の要素である。図7(A)、図7(B)、および図7(C)において、ソート済み配列SA1,SA2,SA3は、それぞれ、図6(A)、図6(B)、および図6(C)に示すセンシングデータのソートから得られたものである。ソート済み配列SA1,SA2,SA3の0%から10%の要素の値は、図6(A)、図6(B)、および図6(C)に示す音圧レベルにかかる背景雑音の特徴を反映して、ソート済み配列SA1,SA2,SA3の順に小さくなっている。
 なお、この例では、センシングデータにかかる信号の中で、挙動が大きい信号以外の信号を背景雑音としている。
 図8(A)および図8(B)は、背景雑音データ生成機能部212がソートするセンシングデータの例を示している。図8(A)および図8(B)は、音圧のセンシングから得られたセンシングデータの例を示している。図8(A)および図8(B)において、縦軸は音圧レベルであり、横軸は音圧レベルが測定された時間である。図8(A)に示すセンシングデータと図8(B)に示すセンシングデータとを比較すると、音圧レベルの大きな挙動は互いに異なるが、背景雑音は互いに類似している。
 図9は、センシングデータを昇順にソートすることで得られたソート済み配列の例を示している。図9において、縦軸は音圧レベル(ソート済み配列の要素の値)であり、横軸はソート済み配列の要素の順位である。図9において、横軸は対数目盛となっている。図9において、ソート済み配列SA4,SA5は、それぞれ、図8(A)および図8(B)に示すセンシングデータのソートから得られたものである。ソート済み配列SA4とソート済み配列SA5とを比較すると、ソート済み配列における背景雑音に相当する部分は、互いに略一致している。
 図8(A)、図8(B)、および図9に示すように、センシングデータにかかる信号の形状が互いに異なるにも関わらず、ソート済み配列における背景雑音に相当する部分は、互いに略一致している。換言すると、センシングデータにかかる信号の形状が変化しても、ソート済み配列における背景雑音に相当する部分は殆ど変化しない。このため、センシングデータをソートすることで、センシングデータにかかる信号の大きな挙動の影響を受けずに、背景雑音に相当する信号を正確に抽出できる。
 背景雑音データ生成機能部212は、ソート済み配列における背景雑音に相当する部分から要素を抽出することで、背景雑音データを生成する(s3)。例えば、背景雑音データは、ソート済み配列における、1番目の要素の値(N個のセンシングデータの中の最小値)、1%の要素の値、および10%の要素の値の組である。例えば、図7(C)に示すソート済み配列SA1,SA2,SA3から得られる1番目の要素の値は、それぞれ、28.9dB、27.7dB、26.6dBである。1%の要素の値は、それぞれ、29.7dB、28.3dB、27.1dBである。10%の要素の値は、それぞれ、31.6dB、29.0dB、27.7dBである。
 背景雑音データ生成機能部212は、センシングデータの頻度の分布に基づいて背景雑音データを生成してもよい。この場合、背景雑音データは、センシングデータの頻度の分布における背景雑音に相当する部分の頻度である。図10(A)および図10(B)はセンシングデータの頻度の分布の例を示している。図10(B)は、図10(A)に示すセンシングデータの頻度の分布における背景雑音に相当する部分を示している。図10(A)および図10(B)において、縦軸は頻度である。より具体的には、縦軸は、1dB毎の区間に属するセンシングデータの個数である。例えば、27.5dB以上28.5dB未満の区間に属するセンシングデータの個数は、約360個である。横軸は音圧レベルである。図10(A)および図10(B)において、頻度の分布FD1,FD2,FD3は、それぞれ、図6(A)、図6(B)、および図6(C)に示すセンシングデータから得られたものである。例えば、背景雑音データは、音圧レベルが27.5dB以上28.5dB未満である区間における頻度である。
 ソート済み配列に基づいて背景雑音データを生成する場合、センシングデータの頻度に基づいて背景雑音データを生成する場合と比較して、次のような有利な点がある。第1に、センシングデータの順位を割合で表すことができる。第2に、ソート済み配列に基づいて背景雑音データを生成する場合、センシングデータの頻度に基づいて背景雑音データを生成する場合のように区間を定める必要がないので、恣意性が入りにくい。
 以下、GW端末1の動作について説明する。まず、GW端末1におけるセンサ装置2の登録処理について説明する。図11は、この例にかかるGW端末1におけるセンサ装置2の登録処理を示すフローチャートである。
 GW端末1は、センサ装置登録機能部111がセンサ装置接続部12に接続されているセンサ装置2に対して登録要求を送信する(s11)。センサ装置2は、GW端末1から送信されてきた登録要求を受信すると、自機のデバイス識別子をGW端末1に送信する。
 センサ装置登録機能部111は、センサ装置2から送信されてきたデバイス識別子を受信すると(s12)、今回受信したデバイス識別子をメモリに記憶するデバイス登録を行い(s13)、本処理を終了する。
 また、センサ装置登録機能部111は、センサ装置2が提供側データカタログ100の雛形を記憶している構成であれば、この登録処理において、センサ装置2から提供側データカタログ100の雛形を取得してもよい。この場合、センサ装置登録機能部111は、取得した提供側データカタログ100の雛形と、デバイス識別子とを対応付けて、雛形保存DB15に記憶する。また、センサ装置登録機能部111は、センサ装置2が提供側データカタログ100の雛形を記憶しているインタネット上のサイトのアドレスを記憶している構成であれば、このアドレスを取得し、取得したアドレスにアクセスして、提供側データカタログ100の雛形を取得してもよい。
 次に、GW端末1における提供側データカタログ100の生成処理について説明する。図12は、この例にかかるGW端末1における提供側データカタログ100の生成処理を示すフローチャートである。GW端末1は、今回提供側データカタログ100を生成するセンサ装置2の選択を受け付ける(s21)。操作者は、GW端末1の操作部13を操作し、今回、提供側データカタログ100を生成するセンサ装置2を選択する操作を行う。例えば、GW端末1は、この時点において、すでに登録済みであるセンサ装置2のデバイス識別子を表示器に表示する。操作者は、表示器にデバイス識別子が表示されたセンサ装置2の中から、提供側データカタログ100を生成するセンサ装置2を選択する操作を行う。
 データカタログ生成機能部113は、s21で選択されたセンサ装置2にかかる提供側データカタログ100の編集生成処理を行う(s22)。s22では、GW端末1は、操作部13において、SDTMで販売するセンシングデータの種類の選択にかかる編集を受け付ける。例えば、GW端末1は、センサ装置2が環境センサであり、気温、湿度、気圧、音圧、加速度、照度の6項目をセンシングデータとして出力できる構成である場合、気温、湿度、気圧、音圧、加速度、照度の項目毎に、SDTMで販売するかどうかの選択を受け付ける(図13(A)参照)。図13(A)において、右側にチェックが入っている項目(図13(A)では、気温、湿度、および照度である。)がSDTMで販売することが選択されたものである(チェックが入っていない項目がSDTMで販売しないことが選択されたものである。)。
 また、GW端末1は、操作部13において、提供側データカタログ100の各項目(この時点で記述されていない項目を含む)に対する編集を受け付ける(図13(B)参照)。図13(B)は、GW端末1が、観測対象、適用範囲、取引条件、個人情報、および匿名加工情報について編集を受け付けるときの画面例である。GW端末1は、図13(B)に示していない他の属性についても、s22で編集を受け付ける。
 データカタログ生成機能部113は、操作者から編集操作の完了の指示を受け取ると、操作者による編集を反映した提供側データカタログ100を生成する。
 データカタログ生成機能部113は、センシングデータの信頼性の判定結果を取得できる場合、センシングデータの信頼性の判定結果を反映した提供側データカタログ100を生成してもよい。例えば、データカタログ生成機能部113は、信頼性判定部116にセンシングデータの信頼性の判定を要求してもよいし、センシングデータの信頼性の判定結果が保存されているデータベースを検索してもよい。
 データカタログ生成機能部113は、s22で生成した提供側データカタログ100をデータカタログ保存DB16に記憶するとともに、この提供側データカタログ100をセンサネットワークサーバ3に送信し、登録する(s23)。
 次に、GW端末1におけるセンシングデータ提供処理について説明する。図14は、この例にかかるセンシングデータ提供処理を示すフローチャートである。GW端末1は、アプリケーションシステム4に対してセンシングデータを提供する提供タイミングであると判定すると、センシングデータ出力制限機能部114が今回提供するセンシングデータにかかる提供側データカタログ100に基づき、センシングデータ保存DB17から提供するセンシングデータを読み出す(s31、s32)。s32では、提供側データカタログ100に提供することが選択されている観測特性のセンシングデータを読み出し、提供することが選択されていない観測特性のセンシングを読み出さない。すなわち、s32では、提供側データカタログ100に提供することが選択されていない観測特性のセンシングデータについては、センシングデータ保存DB17から読み出さないフィルタリング処理を行っている。センシングデータ出力制限機能部114は、フィルタリング処理を行ったセンシングデータをアプリケーションシステム4に送信する(s33)。GW端末1は、s31~s33の処理を繰り返す。
 次に、GW端末1におけるセンシングデータの信頼性の判定処理について説明する。図15は、この例にかかるGW端末1におけるセンシングデータの信頼性の判定処理を示すフローチャートである。この例では、信頼性判定部116は、上記ソート済み配列における、1番目の要素の値、1%の要素の値、および10%の要素の値で構成される背景雑音データを用いて、センシングデータの信頼性を判定する。以後、背景雑音データを構成するソート済み配列の1番目の要素の値を特徴パラメータXminと称する。背景雑音データを構成するソート済み配列の1%の要素の値を特徴パラメータX1と称する。背景雑音データを構成するソート済み配列の10%の要素の値を特徴パラメータX10と称する。
 信頼性判定部116は、特徴パラメータXminが閾値THmin未満の場合(s41:Yes)、センシングデータの信頼性をB1と判定する(s42)。閾値THminは、センサ装置2のセンサ部22が正常に動作している場合に出力されるセンシングデータの最小値に定められる。判定結果B1は、背景雑音が通常より非常に小さいことを意味する。判定結果B1を受けたセンシングデータの信頼性は低い。判定結果B1が得られた場合、例えば、センサ装置2のセンサ部22が故障により正常に機能していないことが推定される。
 信頼性判定部116は、特徴パラメータXminが閾値THmin以上、特徴パラメータX1が閾値TH1L以上閾値TH1H未満、かつ特徴パラメータX10が閾値TH10L以上閾値TH10H未満の場合(s41:No,s43:Yes,s44:Yes)、センシングデータの信頼性をAと判定する(s45)。判定結果Aは、背景雑音が通常と略同じことを意味する。判定結果Aを受けたセンシングデータの信頼性は高い。判定結果Aが得られた場合、センサ装置2の状況が適正であることが推定される。
 閾値TH1L,TH1H,TH10L,TH10Hは、センサ装置2の設置時のセンシングから得られたセンシングデータに基づいて定められてもよい。閾値TH1L,TH1H,TH10L,TH10Hは、過去に得られた背景雑音データに基づいて定められてもよい。例えば、閾値TH1L,TH1H,TH10L,TH10Hは、図6(A)に示すセンシングデータが下記の判定結果B3を受け、図6(B)および図6(C)に示すセンシングデータが下記の判定結果B2を受けるように定められてもよい。
 信頼性判定部116は、特徴パラメータX1が閾値TH1L未満、かつ特徴パラメータX10が閾値TH10L未満の場合(s43:No,s46:Yes、またはs44:No,s46:Yes)、センシングデータの信頼性をB2と判定する(s47)。判定結果B2は、背景雑音が通常より小さいことを意味する。判定結果B2を受けたセンシングデータの信頼性は低い。判定結果B2が得られた場合、例えば、センサ装置2のセンサ部22が塞がれていること、センサ装置2が設置場所から脱落していることが推定される。
 信頼性判定部116は、特徴パラメータX1が閾値TH1H以上、かつ特徴パラメータX10が閾値TH10H以上の場合(s46:No,s48:Yes)、センシングデータの信頼性をB3と判定する(s49)。判定結果B3は背景雑音が通常より大きいことを意味する。判定結果B3を受けたセンシングデータの信頼性は低い。判定結果B3が得られた場合、例えば、センサ装置2の不良により内部雑音が発生していること、観測対象のセンシングが妨げられていること、センサ装置2が設置場所から脱落していることが推定される。
 信頼性判定部116は、特徴パラメータXmin,X1,X10が上記条件の何れも満たさない場合(S48:No)、センシングデータの信頼性をCと判定する(s50)。判定結果Cは、背景雑音の挙動が通常と異なることを意味する。判定結果Cを受けたセンシングデータの信頼性は低い。
 なお、上記のように背景雑音データがセンシングデータの頻度で構成されている場合、信頼性判定部116は、背景雑音データに含まれるセンシングデータの頻度と、適宜定められた閾値とを比較することで、センシングデータの信頼性を判定してもよい。
 以上のように、この例では、センシングデータから、背景雑音が反映された背景雑音データが生成される。そして、背景雑音データを用いてセンシングデータの信頼性が判定される。このため、利用側にセンシングデータの信頼性の判定結果を提供できる。
 なお、上記実施の形態において、背景雑音データは「音声データ」であるとした。しかしながら、背景雑音データは、必ずしも「音声データ」である必要はない。背景雑音データは、たとえば、画像データ等の音声データ以外のデータであってもよい。たとえば、背景雑音データが「画像データ」である場合には、比較的長時間に渡って撮像されている被写体を示す画像データが背景雑音データになる場合がある。
 次に、変形例にかかるGW端末6について説明する。図16は、GW端末6の主要部の構成を示すブロック図である。GW端末6は、制御部61、判定結果保存データベース68(判定結果保存DB68)、およびセンサ装置設置場所保存データベース69(センサ装置設置場所保存DB69)を備えている。制御部61は、信頼性判定部616、判定結果出力部617、およびセンサ装置選択部618を有している。
 判定結果保存DB68はセンシングデータの信頼性の判定結果を記憶する。センサ装置設置場所保存DB69は、センサ装置2の設置場所にかかるセンサ装置設置場所データを記憶する。
 信頼性判定部616は、センサ装置2aのセンシングにより得られる判定対象のセンシングデータにかかる背景雑音データと、センサ装置2aとは別のセンサ装置2bのセンシングにより得られるセンシングデータにかかる背景雑音データとを比較することで、判定対象のセンシングデータの信頼性を判定する。判定結果出力部617は、上記の判定結果出力部117の動作に加えて、センシングデータの信頼性の判定結果を判定結果保存DB68に記憶する。センサ装置選択部618は、センサ装置設置場所データを用いて、センサ装置2bとして、センサ装置2aに近接するセンサ装置を選択する。
 次に、GW端末6におけるセンシングデータの信頼性の判定処理について説明する。図17は、GW端末6におけるセンシングデータの信頼性の判定処理を示すフローチャートである。
 信頼性判定部616は、判定対象のセンシングデータにかかるセンサ装置2aおよび観測対象の観測特性をセンサ装置選択部618に通知する(s61)。判定対象のセンシングデータは、背景雑音データ取得機能部115により取得された背景雑音にかかるセンシングデータである。
 センサ装置選択部618は、通知された観測対象の観測特性をセンシングし、通知されたセンサ装置2aに近接し、かつ正常に動作しているセンサ装置2bを選択する(s62)。
 例えば、センサ装置選択部618は、提供側データカタログ100のセンシングデータ対象を参照して、2つのセンサ装置2が同じ観測対象の観測特性をセンシングしているか否かを判断する。センサ装置選択部618は、センサ装置設置場所保存DB69に保存されたセンサ装置設置場所データに基づいて、2つのセンサ装置2の間の距離を算出する。そして、センサ装置選択部618は、算出した2つのセンサ装置2の間の距離が閾値より短い場合、2つのセンサ装置2が互いに近接していると判定する。センサ装置選択部618は、判定結果保存DB68に保存されたセンシングデータの信頼性の判定結果を参照して、センサ装置2が正常に動作しているか否かを判断する。センサ装置選択部618は、現在から所定期間前までの間、センシングデータが信頼できると判定されたセンサ装置2を正常に動作しているとみなす。
 信頼性判定部616は、センサ装置選択部618が選択したセンサ装置2bに、判定対象のセンシングデータにかかる背景雑音データに対応する背景雑音データを要求する(s63)。信頼性判定部616は、センサ装置2bから背景雑音データを受信すると(s64)、図15に示す処理を行うことで、判定対象のセンシングデータの信頼性を判定する(s65)。
 但し、この変形例において、特徴パラメータXmin,X1,X10は、センサ装置2aから得られるセンシングデータにかかる背景雑音データである。閾値THminは、センサ装置2aのセンサ部22が正常に動作している場合に出力されるセンシングデータの最小値に定められる。また、信頼性判定部616は、センサ装置2bにかかる背景雑音データに基づいて、閾値TH1L,TH1H,TH10L,TH10Hを定める。例えば、信頼性判定部616は、背景雑音データに含まれる特徴パラメータY1,Y10を用いて、TH1L=Y1-α,TH1H=Y1+α,TH10L=Y10-α,TH10H=Y10+αのように、閾値TH1L,TH1H,TH10L,TH10Hを定める。ここで、特徴パラメータY1は、センサ装置2bにかかるソート済み配列の1%の要素の値である。特徴パラメータY10は、センサ装置2bにかかるソート済み配列の10%の要素の値である。α>0は適宜定められる。
 なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 少なくとも1つのハードウェアプロセッサを有し、
 前記ハードウェアプロセッサが、
 センシングデータを取得し、
 取得した前記センシングデータから、背景雑音が反映された背景雑音データを生成する、
 センサ装置。
(付記2)
 少なくとも1つのハードウェアプロセッサを用いて、
 センシングデータを取得し、
 取得した前記センシングデータから、背景雑音が反映された背景雑音データを生成する、
 背景雑音データ生成方法。
1,6…ゲートウェイ端末(GW端末)
2,2a,2b…センサ装置
3…センサネットワークサーバ
4…アプリケーションシステム
5…ネットワーク
11,21,61…制御部
12…センサ装置接続部
13…操作部
14…通信部
15…雛形保存データベース(雛形保存DB)
16…データカタログ保存データベース(データカタログ保存DB)
17…センシングデータ保存データベース(センシングデータ保存DB)
22…センサ部
23…ゲートウェイ接続部(GW接続部)
24…センシングデータ記憶部
25…デバイス情報記憶部
68…判定結果保存データベース(判定結果保存DB)
69…センサ装置設置場所保存データベース(センサ装置設置場所保存DB)
100…提供側データカタログ(提供側DC)
101…利用側データカタログ(利用側DC)
111…センサ装置登録機能部
112…センシングデータ取得機能部
113…データカタログ生成機能部
114…センシングデータ出力制限機能部
115…背景雑音データ取得機能部
116,616…信頼性判定部
117,617…判定結果出力部
211…センシングデータ管理部
212…背景雑音データ生成機能部
618…センサ装置選択部

Claims (5)

  1.  対象を観測することによって生成されたセンシングデータをセンサ装置の外部に設けられた外部装置に送信するように構成されたセンサ装置であって、
     前記センシングデータを生成するように構成されたセンサ部を備え、
     前記センシングデータは、前記対象以外に起因した雑音を示す背景雑音データを含み、
     前記センシングデータから前記背景雑音データを抽出するように構成された抽出部と、
     前記抽出部によって抽出された前記背景雑音データを前記外部装置に送信するように構成された送信部とをさらに備える、センサ装置。
  2.  複数のタイミングの各々において生成された前記センシングデータを記憶するように構成された記憶部をさらに備え、
     前記送信部は、前記記憶部に記憶された前記センシングデータを、前記外部装置に一括して送信するように構成されている、請求項1に記載のセンサ装置。
  3.  前記抽出部は、複数のタイミングの各々において生成された前記センシングデータを値の大きさに従ってソートすることによって、前記背景雑音データを抽出するように構成されている、請求項1又は請求項2に記載のセンサ装置。
  4.  対象を観測することによって生成されたセンシングデータを取得するステップをコンピュータが実行し、
     前記センシングデータは、前記対象以外に起因した雑音を示す背景雑音データを含み、
     前記センシングデータから前記背景雑音データを抽出するステップと、
     抽出された前記背景雑音データを送信するステップとを前記コンピュータがさらに実行する、背景雑音データ送信方法。
  5.  対象を観測することによって生成されたセンシングデータを取得するステップをコンピュータに実行させ、
     前記センシングデータは、前記対象以外に起因した雑音を示す背景雑音データを含み、
     前記センシングデータから前記背景雑音データを抽出するステップと、
     抽出された前記背景雑音データを送信するステップとを前記コンピュータにさらに実行させる、背景雑音データ送信プログラム。
PCT/JP2018/027823 2017-08-02 2018-07-25 センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム WO2019026711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18841798.4A EP3664056B1 (en) 2017-08-02 2018-07-25 Sensor device, background noise data transmission method, and background noise data transmission program
CN201880043991.8A CN110832557B (zh) 2017-08-02 2018-07-25 传感器装置、背景噪声数据发送方法和存储介质
JP2018540071A JP6451911B1 (ja) 2017-08-02 2018-07-25 センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム
US16/625,804 US11758307B2 (en) 2017-08-02 2018-07-25 Sensor device, background noise data transmission method, and background noise data transmission program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017150106 2017-08-02
JP2017-150106 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019026711A1 true WO2019026711A1 (ja) 2019-02-07

Family

ID=65233315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027823 WO2019026711A1 (ja) 2017-08-02 2018-07-25 センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム

Country Status (3)

Country Link
US (1) US11758307B2 (ja)
EP (1) EP3664056B1 (ja)
WO (1) WO2019026711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180157692A1 (en) * 2015-06-30 2018-06-07 Omron Corporation Data flow control device and data flow control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12047249B2 (en) * 2020-08-27 2024-07-23 Siemens Industry Software Inc. Centralized management of data flow maps for distributed edge node deployment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445722B1 (ja) 2012-09-12 2014-03-19 オムロン株式会社 データフロー制御指令発生装置およびセンサ管理装置
WO2016076072A1 (ja) * 2014-11-14 2016-05-19 オムロン株式会社 測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システム
JP2016211838A (ja) * 2015-04-30 2016-12-15 ゼネラル・エレクトリック・カンパニイ 燃焼最適化システムおよび方法
WO2017104287A1 (ja) * 2015-12-14 2017-06-22 オムロン株式会社 データフロー制御装置およびデータフロー制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006041867B4 (de) 2006-09-06 2008-12-04 Continental Automotive Gmbh Verfahren und Vorrichtung zur Überwachung des Rauschens eines Sensors
JP4337857B2 (ja) 2006-09-28 2009-09-30 ソニー株式会社 画像データのノイズ処理方法及びノイズ処理装置並びに撮像装置
CN101266273B (zh) 2008-05-12 2010-11-24 徐立军 一种多传感器系统故障自诊断方法
US20120166188A1 (en) * 2010-12-28 2012-06-28 International Business Machines Corporation Selective noise filtering on voice communications
CN102324034B (zh) 2011-05-25 2012-08-15 北京理工大学 基于最小二乘支持向量机在线预测的传感器故障诊断方法
US20150130652A1 (en) * 2012-06-05 2015-05-14 Panasonic Intellectual Property Management Co., Lt Signal processing device
US10066962B2 (en) * 2013-07-01 2018-09-04 Battelle Energy Alliance, Llc Apparatus, system, and method for sensor authentication
US20170163439A1 (en) * 2013-11-14 2017-06-08 LIFI Labs, Inc. Lighting system
WO2015130570A1 (en) 2014-02-26 2015-09-03 Omron Corporation Method and apparatus for detection of addressing faults in an image sensor
US10448453B2 (en) * 2015-09-25 2019-10-15 Intel Corporation Virtual sensor system
US11838036B2 (en) * 2016-05-09 2023-12-05 Strong Force Iot Portfolio 2016, Llc Methods and systems for detection in an industrial internet of things data collection environment
US10838433B2 (en) * 2016-11-22 2020-11-17 Wint Wi Ltd Abnormal consumption detection during normal usage
US10580427B2 (en) * 2017-10-30 2020-03-03 Starkey Laboratories, Inc. Ear-worn electronic device incorporating annoyance model driven selective active noise control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445722B1 (ja) 2012-09-12 2014-03-19 オムロン株式会社 データフロー制御指令発生装置およびセンサ管理装置
WO2016076072A1 (ja) * 2014-11-14 2016-05-19 オムロン株式会社 測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システム
JP2016211838A (ja) * 2015-04-30 2016-12-15 ゼネラル・エレクトリック・カンパニイ 燃焼最適化システムおよび方法
WO2017104287A1 (ja) * 2015-12-14 2017-06-22 オムロン株式会社 データフロー制御装置およびデータフロー制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180157692A1 (en) * 2015-06-30 2018-06-07 Omron Corporation Data flow control device and data flow control method
US11748326B2 (en) * 2015-06-30 2023-09-05 Omron Corporation Data flow control device and data flow control method

Also Published As

Publication number Publication date
US20200118576A1 (en) 2020-04-16
US11758307B2 (en) 2023-09-12
EP3664056A4 (en) 2021-01-27
EP3664056A1 (en) 2020-06-10
EP3664056B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP6465012B2 (ja) データフロー制御装置およびデータフロー制御方法
AU2023203714A1 (en) Model integration tool
US8515569B2 (en) Work support system, work support method, and storage medium
JP2008225995A (ja) ポリシ作成支援方法、ポリシ作成支援システム、およびプログラム
WO2019026711A1 (ja) センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム
CN115045714A (zh) 矿物开采预警方法、设备及计算机可读存储介质
WO2019026710A1 (ja) センサ管理ユニット、センシングデータ流通システム、センシングデータ評価方法、およびセンシングデータ評価プログラム
CN111567060B (zh) 质量检查装置、质量检查方法及程序
CN110678879A (zh) 数据生成装置、数据生成方法以及程序
JP6451911B1 (ja) センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム
JP6451910B1 (ja) センサ管理ユニット、センシングデータ流通システム、センシングデータ評価方法、およびセンシングデータ評価プログラム
JP5015191B2 (ja) 平常/非平常判定システム、方法及びプログラム
CN110268396B (zh) 传感器的元数据生成装置、传感器的元数据生成系统、传感器的元数据生成方法以及传感器的元数据生成程序
KR20210133090A (ko) 제품의 불량과 연관된 정보를 제공하기 위한 전자 장치 및 그 동작 방법
US20220413926A1 (en) Model management system and model management method
JP6021552B2 (ja) 監視装置、監視システム、プログラム、及び監視方法
JP6781957B2 (ja) 通知装置、通知方法、及びそのプログラム
US11405276B2 (en) Device configuration management apparatus, system, and program
KR20190070728A (ko) 시계열 데이터의 에러를 확인하는 방법 및 장치
JP2020193935A (ja) 評価システム及び評価プログラム
JP2007330740A (ja) 頭取り情報分析システム
US11422914B2 (en) Metadata generation apparatus, metadata generation method, and program
JP6528868B1 (ja) セッション制御装置、セッション制御方法及びプログラム
JP6957895B2 (ja) 情報処理装置、判定用端末装置、情報処理システム、情報処理方法及びプログラム
JP2022191010A (ja) 情報処理装置、監視制御装置、情報処理方法、及びプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540071

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018841798

Country of ref document: EP

Effective date: 20200302