WO2016076072A1 - 測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システム - Google Patents
測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システム Download PDFInfo
- Publication number
- WO2016076072A1 WO2016076072A1 PCT/JP2015/079341 JP2015079341W WO2016076072A1 WO 2016076072 A1 WO2016076072 A1 WO 2016076072A1 JP 2015079341 W JP2015079341 W JP 2015079341W WO 2016076072 A1 WO2016076072 A1 WO 2016076072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- sensor
- identification information
- unit
- sensor identification
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C15/00—Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
Definitions
- the present invention relates to a measuring device used in a measurement system in which a plurality of measuring devices and a management device that manages the plurality of measuring devices are connected in a communicable manner, a control method thereof, a management device, a control method thereof, and a measurement About the system.
- a measuring apparatus that measures a certain physical quantity based on a detection signal from a certain sensor is known.
- a plurality of current values detected by a plurality of current detection means, a plurality of voltage values detected by a plurality of voltage detection means, and the like are output.
- the main device is connected to a single-phase two-wire circuit, detects the voltage of the circuit, and outputs a voltage signal.
- Two current signals are output by detecting the currents of the two loads.
- the individual measuring device calculates two powers based on the voltage signal and the two current signals, and transmits the calculated power values to the main device separately.
- a measurement system in which a plurality of measurement devices and a management device that manages the measurement devices are connected to be communicable.
- a plurality of power meters that respectively measure the power consumption of a plurality of press machines are connected to a server via a communication line. Thereby, the server can collect the measured power consumption for each power meter.
- the management device gives an instruction to one of the measurement devices using a device ID (identification information) for identifying a plurality of measurement devices.
- a device ID identification information
- the server uses the device ID that identifies the plurality of power meters to calculate the power consumption of the press machine measured by the power meter for each power meter, that is, for each press machine. To collect.
- Patent Documents 1 and 2 when one measurement device measures a plurality of measurement values from a plurality of sensors, the management device uses the device ID to obtain a plurality of measurement values from the measurement device. Therefore, it is necessary to specify which sensor the collected measurement value is from.
- the device ID of the measuring device and the channel number, port number, etc. for identifying the input path from the plurality of sensors to the measuring device.
- the management device is provided for each measurement device. It is necessary to change the process, and the burden of the process increases.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to perform processing for transmitting a measurement value from a measurement device to a management device in accordance with an instruction from the management device, the number of sensors connected to the measurement device. It is to provide a measuring device or the like that does not need to be changed according to the conditions.
- a measuring apparatus is connected to one or a plurality of sensors for detecting a physical quantity to be measured, a plurality of measuring apparatuses that measure the physical quantity based on a detection signal from the sensor, and the plurality of measurements
- a measurement device used in a measurement system that is communicably connected to a management device that manages the device, and in order to solve the above-described problem, all the sensors connected to the plurality of measurement devices are identified.
- a reception unit that receives sensor identification information from the management device, and a transmission unit that transmits a measured value of the physical quantity measured through the sensor specified by the sensor identification information received by the reception unit to the management device It is characterized by providing these.
- control method of the measuring apparatus includes a plurality of measuring apparatuses connected to one or a plurality of sensors for detecting a physical quantity to be measured and measuring the physical quantity based on a detection signal from the sensor.
- a control method of a measurement device used in a measurement system that is communicably connected to a management device that manages the plurality of measurement devices, and is connected to the plurality of measurement devices in order to solve the above problem.
- the management device is connected to one or a plurality of sensors for detecting a physical quantity to be measured, and is communicably connected to a plurality of measuring apparatuses that measure the physical quantity based on a detection signal from the sensor.
- a management device that manages the plurality of measurement devices, and a storage device that stores sensor identification information for identifying all the sensors connected to the plurality of measurement devices,
- a transmitter that acquires the sensor identification information from a storage device and transmits the sensor identification information to the plurality of measurement apparatuses, and a measurement value via the sensor specified by the sensor identification information, the measurement to which the sensor is connected
- a receiving unit for receiving from the apparatus.
- control method of the management device includes a plurality of measuring devices connected to one or more sensors for detecting a physical quantity to be measured and measuring the physical quantity based on a detection signal from the sensor.
- a control method of a management device that is communicably connected and manages the plurality of measurement devices, and for identifying the sensor identification information for identifying all the sensors connected to the plurality of measurement devices in order to solve the above-mentioned problem
- the sensor connects the transmission step of acquiring the sensor identification information from the storage device storing the information and transmitting the sensor identification information to the plurality of measurement apparatuses, and the measurement value via the sensor specified by the sensor identification information. Receiving from the measuring device.
- the measuring device and the management device according to the present invention are all connected to the plurality of measurement devices managed by the management device when the measurement value is transmitted from the measurement device to the management device according to an instruction from the management device. Since the sensor identification information for identifying the sensor is used, there is no need to change the transmission process according to the number of sensors connected to the measurement apparatus. As a result, the process of the measurement apparatus and the management apparatus There is an effect that the burden can be reduced.
- FIGS. 2 and 3 are block diagrams showing a schematic configuration of the measurement system according to the present embodiment.
- the measurement device measures the amount of power flowing through each of the plurality of power lines, and the management device manages the measurement device.
- the amount of power corresponds to energy consumption in a load connected to the power line. Therefore, the measurement system can grasp the energy consumption consumed via the power line for each of the plurality of power lines.
- the measurement system 10 includes a plurality of detection circuits 11, a plurality of measurement devices 12, a communication line 13, and a management device 14.
- the detection circuit 11 is attached to the power line PL to be measured, and includes a sensor 20 for detecting a current flowing through the power line PL, and a signal line 21 for transmitting a detection signal from the sensor 20 to the measurement device 12. It is the composition provided. In addition, since the sensor 20 and the signal line 21 are well-known techniques, the description is abbreviate
- the measuring device 12 is connected to the detection circuit 11 and measures the amount of electricity based on a detection signal from the detection circuit 11. Specifically, the measuring device 12 measures the instantaneous value of the current based on the detection signal, calculates the effective value of the current from the time-series data of the instantaneous value, and calculates the calculated effective value and the power line PL. The power value is calculated by multiplying the predetermined voltage value.
- the detection circuit 11 connected to the measuring device 12 may be one or plural.
- the measuring device 12 shown in FIG. 3A is a single circuit power amount monitor 12a that measures and monitors the amount of power flowing through the power line PL based on a detection signal from the detection circuit 11 provided in one power line PL. is there.
- the measuring device 12 shown in FIG. 3B is detected from a plurality of detection circuits 11 provided on a plurality of power lines (branch lines) PL branched from the main line ML and inserted with the breaker BR.
- the measurement device 12 of the present embodiment may measure the amount of power in one power line PL based on the detection signal from one detection circuit 11, or the detection signal from a plurality of detection circuits 11. Based on the above, a plurality of power amounts in the plurality of power lines PL may be respectively measured.
- the management device 14 is connected to a plurality of measurement devices 12 via a communication line 13 so as to be able to communicate with each other, and manages the plurality of measurement devices 12. Specifically, the management device 14 collects the electric energy measured by the plurality of measurement devices 12 and changes or confirms various settings for the plurality of measurement devices 12.
- Communication between the measurement device 12 and the management device 14 may be performed via a communication I / F (interface) such as RS-485, or via a network I / F such as Ethernet (registered trademark). You may go. Thus, the communication can be performed using a known communication technique. Further, the measurement device 12 and the management device 14 may communicate wirelessly without using the communication line 13.
- the management device 14 uses sensor IDs (sensor identification information) for identifying the sensors 20 of the detection circuit 11 connected to the plurality of measurement devices 12 instead of the device IDs for identifying the plurality of measurement devices 12.
- the plurality of measuring devices 12 are managed by using them. Thereby, it is not necessary to change the process for the management according to the number of the sensors 20 of the detection circuit 11 connected to the measuring device 12, and as a result, the burden on the management device 14 can be reduced.
- FIG. 1 is a block diagram showing a schematic configuration of the measuring device 12.
- n is a natural number
- the measuring device 12 includes a control unit 30, a storage unit (storage device) 31, n measurement circuits 32, an operation unit 33, a display unit 34, and a communication unit 35.
- the control unit 30 controls the operation of various components in the measuring apparatus 12 in an integrated manner, and is configured by a computer including a CPU (Central Processing Unit) and a memory, for example. And operation control of various composition is performed by making a computer run a control program.
- the storage unit 31 records information and includes a recording device such as a hard disk or a flash memory. Details of the control unit 30 and the storage unit 31 will be described later.
- the n measurement circuits 32 are respectively connected to the n detection circuits 11, and each measurement circuit 32 has a current detected by the sensor 20 of the detection circuit 11 based on the detection signal from the connected detection circuit 11. Instantaneous values are measured one after another.
- the measurement circuit 32 transmits measurement data that is time-series data of the instantaneous value of the current to the control unit 30.
- the measurement circuit 32 includes an A / D converter, an amplifier circuit, and the like.
- the operation unit 33 receives various inputs from the user by the user's operation, and includes an input button, a touch panel, and other operation devices.
- the operation unit 33 converts information operated by the user into operation data and transmits the operation data to the control unit 30.
- the display unit 34 displays display data from the control unit 30.
- the display unit 34 includes a display element such as a segment display element or a bitmap display element.
- the communication unit 35 is for data communication with the external management device 14.
- the communication unit 35 converts various data received from the control unit 30 into a format suitable for data communication, and then transmits the data to the management device 14. Further, the communication unit 35 converts various data received from the management device 14 into a data format inside the device, and then transmits the data to the control unit 30.
- the control unit 30 includes an ID setting unit (setting unit) 40, a measurement control unit 41, a measurement unit 42, an instruction acquisition unit (reception unit) 43, a setting change unit 44, and a response creation unit (transmission). Part) 45.
- the storage unit 31 includes a set ID storage unit 50 and n measurement storage units 51.
- the ID setting unit 40 sets a sensor ID for identifying the sensor 20 of the detection circuit 11 connected to the own device 12.
- the ID setting unit 40 may set the sensor ID according to an instruction from the user via the operation unit 33, or may automatically set the sensor ID according to a predetermined rule.
- the ID setting unit 40 stores the set sensor ID (hereinafter referred to as “set ID”) in the set ID storage unit 50.
- the ID setting unit 40 associates the set ID set for the sensor 20 of the detection circuit 11 with information (for example, measurement target, measurement item, etc.) regarding the sensor 20 of the detection circuit 11 and stores the set ID. You may memorize
- the measurement control unit 41 controls n measurement circuits 32. Specifically, the measurement control unit 41 changes the setting of the measurement circuit 32 based on an instruction from the setting change unit 44, acquires measurement data from the measurement circuit 32 based on a predetermined condition, and measures the measurement unit 42. Or send it to.
- the measurement unit 42 measures the amount of power in the power line PL provided with the sensor 20 of the detection circuit 11 based on the measurement data from the measurement circuit 32 via the measurement control unit 41.
- the measurement unit 42 stores measurement data including the measurement value of the electric energy for each unit time in the storage unit 31. Note that the measurement unit 42 may store measurement data from the measurement circuit 32 in the storage unit 31 as additional measurement data.
- the instruction acquisition unit 43 acquires instruction data from the management device 14 via the communication line 13 and the communication unit 35.
- the instruction acquisition unit 43 instructs each unit of the control unit 30 based on the acquired instruction data. Specifically, the instruction acquisition unit 43 sends the instruction data to the setting change unit 44 when the instruction content included in the acquired instruction data is to change various settings in the own device 12. On the other hand, the instruction acquisition unit 43 sends the instruction data to the response creation unit 45 when the content of the instruction requests various data in the own device.
- the setting change unit 44 changes the setting of each unit in the control unit 30 based on the instruction data from the instruction acquisition unit 43. Specifically, the setting change unit 44 instructs the measurement control unit 41 to change various settings in the measurement circuit 32 based on the instruction data, and changes various setting information in the storage unit 31. .
- the response creation unit 45 reads various data such as measurement data and setting information from the storage unit 31 based on the instruction data from the instruction acquisition unit 43, and creates response data including the read data.
- the response creation unit 45 transmits the created response data to the management device 14 via the communication unit 35 and the communication line 13.
- FIG. 4 is a diagram illustrating a memory map of the measurement storage unit 51 in the storage unit 31 of the present embodiment.
- FIG. 15 is a reference example and is a diagram showing a memory map of a storage unit in a conventional measuring apparatus.
- the storage unit 31 includes a measurement storage unit 51 for each sensor 20 of the detection circuit 11 connected to the own device 12.
- the measurement data output via the detection circuit 11, the measurement circuit 32, and the measurement unit 42 is stored in the measurement storage unit 51 corresponding to the sensor 20.
- the first measurement data output via the first detection circuit 11a, the first measurement circuit 32a, and the measurement unit 42 is stored in the first measurement storage unit 51a.
- the second measurement data output via the second detection circuit 11b, the second measurement circuit 32b, and the measurement unit 42 is stored in the second measurement storage unit 51b.
- each measurement storage unit 51 can store measurement data from a common address. Therefore, when reading the measurement data through a certain sensor 20, the control unit 30 only has to specify the common address of the measurement storage unit 51 corresponding to the sensor 20, and the processing becomes easy.
- common data common to the plurality of measurement storage units 51 is stored in the end area of each measurement storage unit 51 shown in FIG.
- Examples of the common data include a communication speed, an automatic turn-off time of an LCD (Liquid Crystal Display) backlight in the display unit 34, and the like.
- the measurement data is stored in the storage unit 1031 from different addresses for each detection circuit.
- the first measurement data by the first detection circuit is stored from the address 0000
- the second measurement data by the second detection circuit is stored from the address 1000.
- the conventional measuring apparatus for this reason, when reading the measurement data from a certain detection circuit, specifies the address of the storage unit corresponding to the detection circuit and designates the specified address. There is a need to.
- the measurement device 12 of the present embodiment can easily read the measurement data for each sensor 20 from the storage unit 31 as compared with the conventional measurement device.
- the measurement storage unit 51 desirably stores the sensor ID of the corresponding sensor 20 at a predetermined address.
- FIG. 5 is a block diagram illustrating a schematic configuration of the management apparatus 14.
- the management apparatus 14 includes a control unit 60, a storage unit (storage device) 61, an operation unit 63, a display unit 64, and a communication unit 65.
- the functions of the control unit 60, the storage unit 61, the operation unit 63, the display unit 64, and the communication unit 65 of the management device 14 are respectively the control unit 30, the storage unit 31, and the operation unit of the measurement apparatus 12 illustrated in FIG. 33, the display unit 34, and the communication unit 35 are similar in function, and thus the description thereof is omitted.
- the control unit 60 includes an instruction creation unit (transmission unit) 70 and a response acquisition unit (reception unit) 71.
- the storage unit 61 includes a set ID storage unit 80 and a measurement DB (database) 81.
- the set ID storage unit 80 Compared with the set ID storage unit 50 shown in FIGS. 1 and 4, the set ID storage unit 80 has set IDs of the sensors 20 of all the detection circuits 11 connected to the measurement device 12 managed by the management device 14. Is different, and the other configurations are the same.
- the measurement DB 81 stores measurement data collected from a plurality of measurement devices 12.
- the instruction creating unit 70 creates instruction data for giving various instructions to the measuring device 12.
- the instruction creating unit 70 transmits the created instruction data to the plurality of measuring devices 12 via the communication unit 65 and the communication line 13.
- the instruction data may be generated by an instruction from the user via the operation unit 63, or may be automatically generated based on a predetermined condition such as a predetermined period.
- the instruction creation unit 70 performs various settings for the measurement circuit 32, the measurement control unit 41, and the measurement storage unit 51 related to the sensor 20 of a certain detection circuit 11 in a certain measurement device 12.
- the set ID of the sensor 20 of the detection circuit 11 is read from the set ID storage unit 80, and the instruction data is read out. Add it. Therefore, since the instruction data does not depend on the number of sensors 20 connected to the measuring device 12, the instruction data can be easily created.
- the instruction data when requesting the measurement data stored in the measurement storage unit 51 corresponding to the sensor 20 of a certain detection circuit 11, the instruction data includes the sensor ID of the sensor 20 of the detection circuit 11 and the common address. It is not necessary to specify and include an address corresponding to the sensor 20 of the detection circuit 11. Therefore, the creation of the instruction data is further facilitated.
- the response acquisition unit 71 acquires response data for the instruction data from the measurement device 12 via the communication line 13 and the communication unit 65. Specifically, the response data is measurement data corresponding to a set ID included in the instruction data. The response acquisition unit 71 stores the acquired measurement data in the measurement DB 81 in association with the set ID.
- control unit 60 can read out various measurement values from the measurement DB 81 and display them on the display unit 64 based on an instruction from the user via the operation unit 63.
- the transition of the amount of power in the power line PL desired by the user can be displayed, or the integrated power amount in each power line PL can be compared and displayed, so that the user can grasp the amount of power used in each power line PL.
- the ID setting unit 40 sets the sensor ID of the sensor 20 of the connected detection circuit 11 and stores the set set ID in the set ID storage unit 50.
- FIG. 6 is a flowchart showing the flow of the collection process of the set ID.
- the instruction creating unit 70 creates instruction data including a certain sensor ID, and transmits the instruction data on the communication line 13 (S10).
- the response acquisition unit 71 receives response data corresponding to the instruction data from the communication line 13 (YES in S11)
- the response acquisition unit 71 determines that the sensor ID is a set ID and sets New registration or update is performed in the ID storage unit 80 (S12).
- Steps S10 to S12 are repeated for the sensor IDs that can be set, and the collection process is terminated.
- each measuring device 12 Next, measurement is started in each measuring device 12, and the measurement data detected by the sensor 20 of each detection circuit 11 and output via the measurement circuit 32, the measurement control unit 41, and the measurement unit 42 is detected.
- the data is stored in the measurement storage unit 51 corresponding to the sensor 20 of the circuit 11.
- the following processing is performed in each measuring device 12 when instruction data is received from the management device 14.
- FIG. 7 shows the flow of the processing. As shown in the figure, first, the instruction acquisition unit 43 determines whether or not the instruction data received from the management device 14 is a simultaneous broadcast (S20).
- S20 simultaneous broadcast
- the setting changing unit 44 determines whether or not the instruction data is an instruction for a general item unrelated to measurement (S21).
- An example of an instruction for this general item is turning on / off the LCD backlight in the display unit 34.
- setting changing unit 44 executes the instruction based on the instruction data only once (S22).
- the case where the instruction data is not an instruction for the general item is a case where the instruction data is an instruction for a specific item related to measurement.
- the instruction data is an instruction for a specific item related to measurement.
- clearing of the accumulated electric energy stored in each measurement storage unit 51 can be cited.
- the setting changing unit 44 individually gives instructions based on the instruction data to the plurality of measurement circuits 32 and / or the plurality of measurement storage units 51 provided for the sensors 20 of the plurality of detection circuits 11. It will be executed (S23). Thereafter, the process ends.
- the response creating unit 45 When the instruction data is not a simultaneous broadcast, that is, a request related to the sensor 20 of the detection circuit 11 identified by the sensor ID included in the instruction data (NO in S20), the response creating unit 45 The sensor 20 of the detection circuit 11 is specified (S24), and a request based on the instruction data is executed to the measurement circuit 32 and / or the measurement storage unit 51 related to the sensor 20 of the specified detection circuit 11 (S25). Then, the response creation unit 45 creates response data for the request and transmits it to the management device 14 (S26). Thereafter, the process ends.
- the measuring apparatus 12 may be switchable between a memory map of the storage unit 31 shown in FIG. 4 and a memory map of the conventional storage unit shown in FIG. In this case, the measurement apparatus 12 of this embodiment can be used in the existing measurement system 10.
- FIG. 8 is a diagram showing a memory map of the measurement storage unit 51 in the storage unit 31 which is a modification of the present embodiment.
- the first to nth measurement data in the first to nth measurement storage units 51 can be collected in the first measurement storage unit 51a.
- the illustrated memory map can be realized by sequentially transferring the second to n-th measurement data in the second to n-th measurement storage unit 51 to the first measurement storage unit 51a in the memory map shown in FIG.
- This modification is suitable for a case where it is desired to reduce the number of set IDs in the own apparatus 12 and for the management apparatus 14 to collect all measurement data in the own apparatus 12 with one set ID.
- the memory map shown in FIG. 8 if the second to nth measurement data in the first measurement storage unit 51a are cleared, the original memory map shown in FIG. 4 can be restored. Accordingly, the storage unit 31 having the memory map shown in FIG. 4 and the storage unit 31 having the memory map shown in FIG. 8 can be switched.
- the first to n-th measurement data may be stored in the measurement storage unit 51 other than the first measurement storage unit 51 as in the first measurement storage unit 51. Good. In this case, all the measurement data in the own device 12 can be transmitted to the management device 14 regardless of which of the set IDs corresponding to the first to nth measurement storage units 51 is selected.
- the measurement circuit 32 is provided separately from the control unit 30, but may be provided in the control unit 30.
- one measurement circuit 32 and n detection signals from n detection circuits 11 are selected, and the selected detection signal is transmitted to the measurement circuit 32.
- a circuit may be provided.
- the display unit 34 may display measurement data corresponding to the sensor ID together with the sensor ID. In this case, the confirmation operation by the user becomes easy.
- the operation unit 33 may further include a changeover switch for switching the display of the measurement data and sensor ID on the display unit 34 for each sensor ID.
- a changeover switch for switching the display of the measurement data and sensor ID on the display unit 34 for each sensor ID.
- the measurement data corresponding to the sensor ID that the user desires to display can be easily switched, and the confirmation operation by the user is facilitated.
- the display unit 34 may display the measurement data corresponding to the sensor ID in a color associated with the sensor ID.
- the display unit 34 may further include a light emitting element corresponding to the sensor ID.
- An example of the light emitting element is an LED (Light Emitting Diode). In these cases, it is possible to easily specify to which sensor ID the displayed measurement data corresponds.
- the measurement system 10 of the present embodiment differs from the measurement system 10 shown in FIGS. 1 to 8 in the configuration and operation of the measurement device 12, and the other configurations are the same.
- FIG. 9 shows a schematic configuration of the measuring apparatus 12 in the present embodiment.
- the measurement apparatus 12 of the present embodiment is provided with an ID setting section 40a and a set ID storage section 50a instead of the ID setting section 40 and the set ID storage section 50.
- the other configurations are the same.
- the sensor ID is constituted by a global part that can identify the measuring device 12 and a local part that can identify the sensors 20 of the plurality of detection circuits 11 connected to the measuring device 12. Good.
- the data length of the sensor ID becomes longer, and the burden of resources on the measuring device 12 and the management device 14 increases.
- the burden of the communication resource increases.
- the set ID storage unit 50a is the same as the set ID storage unit 80 in the management device 14 illustrated in FIG. 5, and all the detection circuits connected to the measurement device 12 managed by the management device 14. 11 set IDs of 11 sensors 20 are stored. This is because the management device 14 creates instruction data for instructing to store the set of set IDs stored in the set ID storage unit 80 in the set ID storage unit 50a of the measurement device 12. It can be realized by reporting.
- the sensor ID may be limited to the maximum value (for example, 99) of the sensor 20 of the detection circuit 11 that can be connected to the measuring device 12 that can be connected to the management device 14, depending on the global part and the local part.
- the data length can be shortened compared to the configured sensor ID.
- the ID setting unit 40a of the present embodiment refers to the set of set IDs stored in the set ID storage unit 50a when setting the sensor ID, as compared with the ID setting unit 40 shown in FIG.
- a configuration for warning is added, and the other configurations are the same. Thereby, it can prevent that a user tries to set sensor ID set in the other measuring apparatus 12 in the own apparatus 12.
- FIG. 10 is a flowchart showing a process flow when the user sets the sensor ID in the ID setting unit 40a.
- the control unit 30 sets an upper limit value of the number of sensor IDs (set number) set in the device 12 in advance according to the set conditions. For example, by setting the number of sensors 20 of the detection circuit 11 connected to the own device 12, the number is set as the upper limit value. As a result, the number of sensor IDs occupied by the device 12 can be minimized.
- the ID setting unit 40 a sends the sensor 20 and sensor ID information of the detection circuit 11 that the user desires to set via the operation unit 33. (S30).
- the acquired sensor ID is collated with the set of set IDs stored in the set ID storage unit 50a (S31).
- step S32 it is determined whether there is a set ID that matches the acquired sensor ID (S32). If it exists (YES in S32), a warning indicating that the sensor ID overlaps with the set ID is displayed on the display unit 34 (S33). Then, it returns to step S30 and repeats the said process.
- the acquired sensor ID is stored in the set ID storage unit 50a as the sensor ID of the detection circuit 11 (S34). Thereafter, the process ends.
- FIGS. 11 and 12 The measurement system 10 of the present embodiment differs from the measurement system 10 shown in FIGS. 1 to 8 in the configuration and operation of the management apparatus 14, and the other configurations are the same.
- the management device 14 periodically acquires measurement data corresponding to each set ID. For example, if it is integrated electric energy, it will acquire every day. Accordingly, if the number of measurement data acquired corresponding to a certain set ID is significantly different from the number of measurement data acquired corresponding to another set ID, some abnormality has occurred in the measurement corresponding to the set ID. It is thought that there is.
- the management device 14 stores the number of acquisitions of measurement data for each set ID, and makes a setting error or the like for measurement corresponding to a set ID whose acquisition number is significantly different from other set IDs. A warning indicating that there is a possibility that some abnormality has occurred is sent to the measurement device 12. Thereby, the measurement apparatus 12 can be notified of the measurement abnormality.
- FIG. 11 shows a schematic configuration of the management apparatus 14 in the present embodiment.
- the management apparatus 14 of the present embodiment is provided with an instruction creation unit 70 a and a response acquisition unit 71 a in the control unit 60 instead of the instruction creation unit 70 and the response acquisition unit 71.
- the point that the response number acquisition unit 72 and the abnormality determination unit 73 are newly provided differs from the point that the measurement DB 81a is provided instead of the measurement DB 81 in the storage unit 61.
- the configuration of is the same.
- the measurement DB 81a stores the number of responses of response data, that is, the number of acquired measurement data for each set ID in addition to the information of the measurement DB 81 shown in FIG.
- the response acquisition unit (counting unit) 71 a adds 1 to the above acquisition number of the measurement DB 81 a when storing the acquired measurement data in the measurement DB 81 a.
- a configuration for updating (counting) is added.
- the response number acquisition unit 72 acquires the acquisition number for each set ID from the measurement DB 81a and sends it to the abnormality determination unit 73.
- the abnormality determination unit 73 determines whether the acquired number of each set ID from the response number acquisition unit 72 is within the allowable range, and some abnormality occurs in the measurement corresponding to the set ID that is outside the allowable range. It is determined that The abnormality determination unit 73 sends the set ID that has been determined that the abnormality has occurred to the instruction creation unit 70a.
- the determination of the allowable range in the abnormality determination unit 73 may be performed as follows, for example. First, the average value of the acquired numbers of each set ID, that is, the acquired number is added to all the set IDs, and a value obtained by dividing the sum by the number of all set IDs is calculated. And what is necessary is just to determine whether the absolute value of the difference of the calculated average value and the said acquisition number for every set ID exceeds a predetermined
- the instruction creation unit 70 a creates instruction data that instructs to display a warning that the measurement of the set ID from the abnormality determination unit 73 is abnormal.
- the data is transmitted on the communication line 13 via the communication unit 65.
- FIG. 12 is a flowchart showing the flow of the above process in the management apparatus 14.
- the response acquisition unit 71a Before performing the processing, when the response acquisition unit 71a receives the response data from the measurement device 12 via the communication unit 65, the response acquisition unit 71a associates the measurement data included in the response data with the set ID included in the response data. While storing in the measurement DB 81a, the number of acquired set IDs stored in the measurement DB 81a is updated by one.
- the processing shown in FIG. 12 is performed at a predetermined timing.
- the response number acquisition unit 72 acquires the acquisition number for each set ID from the measurement DB 81a (S40), and the abnormality determination unit 73 calculates the average value of the acquired acquisition numbers for each set ID. (S41).
- the abnormality determination unit 73 determines whether there is a set ID in which the absolute value of the difference between the acquired number and the average value is greater than a predetermined allowable value (S42). If it does not exist (NO in S42), it is determined that the measurement for each set ID is normal (S43), and the process is terminated.
- instruction creating unit 70 instructs to display a warning that the measurement of the set ID is abnormal.
- Instruction data is created and transmitted (S44). Thereby, the warning display is performed on the measuring device 12 having the sensor 20 corresponding to the set ID, and as a result, the user can grasp the measurement abnormality of the set ID.
- the response acquisition unit 71a acquires response data corresponding to the instruction data (S45), and ends the process.
- the measurement system 10 of the present embodiment differs from the measurement system 10 shown in FIGS. 1 to 8 in the configuration and operation of the measurement device 12, and the other configurations are the same.
- FIG. 13 shows a schematic configuration of the measuring apparatus 12 in the present embodiment.
- the measurement apparatus 12 according to the present embodiment has a statistical processing section (calculation section) 46 newly provided in the control section 30 and a statistical storage section 52 in the storage section 31. Unlike the newly provided point, the other configurations are the same.
- the statistical processing unit 46 collects the measurement data stored in each measurement storage unit 51, applies statistical processing to the collected measurement data, and creates statistical data.
- the statistical processing unit 46 stores the created statistical data in the statistical storage unit 52 of the storage unit 31.
- FIG. 14 is a diagram illustrating a memory map of the measurement storage unit 51 and the statistics storage unit 52 in the storage unit 31 of the present embodiment.
- the statistical storage unit 52 stores statistical values such as an average value, a total value, a maximum value, and a minimum value of measurement data stored in each measurement storage unit 51 as statistical data. .
- the sensor ID is set for the statistical processing unit 46.
- the setting of the statistical processing unit 46 is changed, the setting is confirmed, the statistical data is read from the statistical storage unit 52, and transmitted to the management device 14. can do.
- the conventional measurement system there is a relay that collects measurement data from a plurality of measurement devices, applies statistical processing to the collected measurement data, creates statistical data, and transmits the statistical data to the management device.
- the function of the repeater can be performed by the measurement device 12.
- an electric energy calculation unit that calculates electric energy from the current measurement data and the voltage measurement data, and calculation of the electric energy calculated by the electric energy calculation unit
- a calculation storage unit that stores calculation data including values may be provided, and a sensor ID may be set for the power calculation unit.
- the electric energy is obtained by multiplying the instantaneous value of the current measured through the sensor 20 that detects the current by the instantaneous value of the voltage measured through the sensor that detects the voltage, It can be calculated by integrating. Therefore, the calculated power amount data uses a measured voltage value instead of the predetermined voltage value as compared with the measured power amount data in the measurement system 10 shown in FIGS. Can be measured accurately.
- the setting of the power amount calculation unit can be changed, the setting can be confirmed, or the calculation data can be read from the calculation storage unit. And can be easily transmitted to the management device 14.
- the management device 14 easily collects the calculation data calculated by the calculation unit by setting the sensor ID to the calculation unit that calculates various physical quantities from the plurality of measurement data obtained by the sensors 20 of the plurality of detection circuits 11. can do.
- control blocks (particularly the control unit 30 and the control unit 60) of the measurement device 12 and the management device 14 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, It may be realized by software using a Processing Unit.
- the measurement device 12 and the management device 14 include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read that records the program and various data so that the computer (or CPU) can read the program. Only Memory) or a storage device (these are referred to as “recording media”), RAM (Random Access Memory) for expanding the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
- a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
- the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
- a transmission medium such as a communication network or a broadcast wave
- the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
- the current in the power line PL is detected and the amount of power is measured.
- the present invention is applied to any measuring device that detects and measures an arbitrary physical quantity in an arbitrary target. Can be applied.
- the measurement apparatus is connected to one or a plurality of sensors for detecting a physical quantity to be measured, and a plurality of measurement apparatuses that measure the physical quantity based on detection signals from the sensors.
- a measuring device used in a measurement system that is communicably connected to a management device that manages the plurality of measuring devices, and in order to solve the above problem, all the devices connected to the plurality of measuring devices
- a receiving unit that receives sensor identification information for identifying the sensor from the management device, and a measurement value of the physical quantity measured through the sensor specified by the sensor identification information received by the receiving unit.
- a transmission unit for transmitting to.
- control method of the measuring apparatus includes a plurality of measuring apparatuses connected to one or a plurality of sensors for detecting a physical quantity to be measured and measuring the physical quantity based on a detection signal from the sensor.
- a control method of a measurement device used in a measurement system that is communicably connected to a management device that manages the plurality of measurement devices, and is connected to the plurality of measurement devices in order to solve the above problem.
- Receiving step of receiving sensor identification information for identifying all the sensors from the management device, and measurement of the physical quantity measured through the sensor specified by the sensor identification information received in the receiving step Transmitting a value to the management device.
- the measured value measured via the sensor is transmitted to the management device.
- the identification information is not device identification information for identifying a plurality of measurement devices managed by the management device, but sensor identification information for identifying all the sensors connected to the plurality of measurement devices.
- the measurement device that has received the sensor identification information only needs to transmit the measurement value measured via the sensor specified by the sensor identification information to the management device, and the number of sensors connected to the measurement device. There is no need to change the transmission process according to the above. As a result, it is possible to reduce the processing burden on the measuring device that is the device itself.
- examples of the physical quantity include current, voltage, power, electric energy, temperature, flow rate, light quantity, pressure, and rotation speed.
- Examples of management in the management device include collecting the measurement values, making various settings for the measurement via the sensor, and checking the settings.
- the measurement apparatus preferably further includes a setting unit that sets sensor identification information for each connected sensor.
- sensor identification information can be set by the measuring device.
- the setting unit may set an upper limit of the number of sets of the sensor identification information. In this case, the number of sensor identification information occupied by the own device can be minimized.
- the setting unit may notify the outside when the sensor identification information to be set is the same as the already set sensor identification information. In this case, it is possible to prevent the sensor identification information from being set redundantly.
- a measurement storage unit that stores a measurement value of a physical quantity measured via the sensor is provided for each sensor. Further, it is preferable that the measurement values are stored from a common address in each measurement storage unit. In this case, in order to acquire a measurement value through a certain sensor, it is only necessary to read from the common address of the measurement storage unit corresponding to the sensor, and the processing becomes easy.
- the measurement storage unit may store measurement values stored in other measurement storage units. This is suitable when it is desired to reduce the number of pieces of sensor identification information set in the own apparatus, and when it is desired to transmit all measurement data in the own apparatus to the management apparatus with one sensor identification information.
- the receiving unit receives instruction data including the sensor identification information and instruction content from the management apparatus, and the instruction data is received from the management apparatus by broadcast. Then, it is determined whether or not the instruction content in the instruction data is related to the measurement via the sensor, and when it is related, the instruction based on the instruction content may be performed for each measurement via the sensor.
- the instruction content is performed for each measurement, it can be performed without omission.
- examples of instruction contents irrelevant to the measurement via the sensor include display / non-display switching, communication speed setting, and the like. These instruction contents may be inconvenient if they are set differently for each measurement. Therefore, the instruction content need only be performed once, and in this case, the above-described inconvenience can be prevented.
- the measurement apparatus further includes a calculation unit that calculates a new physical quantity using a plurality of measurement values obtained by the plurality of sensors, and the sensor identification information includes all the sensors, the calculation unit, and the like.
- the transmission unit may further transmit a calculated value, which is a physical quantity calculated by the calculation unit specified by sensor identification information received by the reception unit, to the management device. In this case, in accordance with a request from the management device, not only the measured value of the physical quantity via one sensor but also the calculated value of the physical quantity via a plurality of sensors can be easily transmitted.
- the measurement apparatus preferably further includes a display unit that displays the measurement value corresponding to the sensor identification information together with the sensor identification information. In this case, the confirmation operation by the user becomes easy.
- the measurement apparatus preferably further includes a changeover switch for switching the display of the measurement value and the sensor identification information on the display unit for each sensor identification information.
- a changeover switch for switching the display of the measurement value and the sensor identification information on the display unit for each sensor identification information.
- the display unit may display the measurement value corresponding to the sensor identification information in a color associated with the sensor identification information. In this case, it is possible to easily specify which sensor identification information corresponds to the displayed measurement value.
- the display unit may further include a light emitting element corresponding to the sensor identification information. In this case, it is possible to easily specify which sensor identification information corresponds to the displayed measurement value.
- the management device is connected to one or a plurality of sensors for detecting a physical quantity to be measured, and is communicably connected to a plurality of measuring apparatuses that measure the physical quantity based on a detection signal from the sensor.
- a management device that manages the plurality of measurement devices, and a storage device that stores sensor identification information for identifying all the sensors connected to the plurality of measurement devices,
- a transmitter that acquires the sensor identification information from a storage device and transmits the sensor identification information to the plurality of measurement apparatuses, and a measurement value via the sensor specified by the sensor identification information, the measurement to which the sensor is connected
- a receiving unit for receiving from the apparatus.
- control method of the management device includes a plurality of measuring devices connected to one or more sensors for detecting a physical quantity to be measured and measuring the physical quantity based on a detection signal from the sensor.
- a control method of a management device that is communicably connected and manages the plurality of measurement devices, and for identifying the sensor identification information for identifying all the sensors connected to the plurality of measurement devices in order to solve the above-mentioned problem
- the sensor connects the transmission step of acquiring the sensor identification information from the storage device storing the information and transmitting the sensor identification information to the plurality of measurement apparatuses, and the measurement value via the sensor specified by the sensor identification information. Receiving from the measuring device.
- identification information is transmitted to a plurality of measurement devices, and a measurement value corresponding to the identification information is received.
- the identification information is not device identification information for identifying a plurality of measurement devices managed by the management device, but sensor identification information for identifying all sensors included in the plurality of measurement devices.
- the management device further includes a counting unit that counts the number of measurement values received by the receiving unit for each sensor identification information, and the measurement value for each sensor identification information counted by the counting unit
- the transmission unit transmits information indicating that the measurement by the sensor identification information corresponding to the number of measurement values exceeding the allowable range is abnormal. Is preferred. In this case, a measurement abnormality can be notified to the measurement device.
- the measurement apparatus may be realized by a computer, and in this case, a control program for the measurement apparatus that causes the measurement apparatus to be realized by the computer by operating the computer as each unit included in the measurement apparatus,
- a computer-readable recording medium on which it is recorded also falls within the scope of the present invention.
- the management apparatus may be realized by a computer.
- the management apparatus controls the computer to realize the management apparatus by causing the computer to operate as each unit included in the management apparatus.
- a program and a computer-readable recording medium on which the program is recorded also fall within the scope of the present invention.
- the present invention provides circuit identification information for identifying all detection circuits connected to a plurality of measurement devices managed by the management device when a measurement value is transmitted from the measurement device to the management device according to an instruction from the management device. By using, there is no need to change the transmission process according to the number of detection circuits connected to the measurement device, and as a result, the processing burden on the measurement device and the management device can be reduced.
- the present invention can be applied to an arbitrary measurement system that detects and measures an arbitrary physical quantity from an arbitrary measurement target.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Selective Calling Equipment (AREA)
Abstract
管理装置からの指示により測定装置から管理装置へ測定値を送信する処理が、測定装置に接続されたセンサの数に依存しないようにする。測定システムは、複数の測定装置(12)と管理装置とが通信可能に接続される。測定装置(12)は、1または複数の検出回路(11)のセンサを介して電力量を測定する。複数の測定装置(12)に接続される全てのセンサを識別するセンサIDを管理装置から取得すると、取得したセンサIDによって特定されるセンサを含む検出回路(11)を介して測定された電力量を管理装置に送信する。
Description
本発明は、複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システムに関する。
或るセンサからの検出信号に基づき、或る物理量を測定する測定装置が知られている。例えば、特許文献1に記載の電気量計測装置では、複数の電流検出手段が検出した複数の電流値、複数の電圧検出手段が検出した複数の電圧値、などが出力される。また、特許文献2に記載の電力計測装置では、主装置は、単相2線の回路に接続され、該回路の電圧を検出して電圧信号を出力する一方、2つの電流検出手段は、2つの負荷の電流をそれぞれ検出して2つの電流信号を出力する。個別計測装置は、上記電圧信号および上記2つの電流信号に基づいて2つの電力をそれぞれ演算し、演算された電力値を別々に主装置に伝送する。
また、複数の測定装置と、該測定装置を管理する管理装置とが通信可能に接続された測定システムが知られている。例えば、特許文献3に記載のシステムでは、複数のプレス加工機の消費電力をそれぞれ計測する複数の電力計が、通信回線経由でサーバに接続されている。これにより、上記サーバは、上記電力計ごとに、計測された消費電力を収集することができる。
一般に、上記測定システムでは、上記管理装置は、複数の測定装置を識別する装置ID(識別情報)を用いて、上記測定装置の何れかに対し指示を行っている。例えば特許文献3の場合、上記サーバは、上記複数の電力計を識別する装置IDを用いて、上記電力計が計測したプレス加工機の消費電力を、上記電力計ごと、すなわち上記プレス加工機ごとに収集している。
しかしながら、特許文献1・2のように、1台の測定装置が複数のセンサから複数の測定値をそれぞれ測定する場合、上記管理装置は、装置IDを用いて当該測定装置から複数の測定値を収集することになり、収集した測定値が何れのセンサからの測定値であるかを特定する必要がある。
これには、上記測定装置の装置IDと、上記複数のセンサから当該測定装置への入力経路を識別するチャネル番号、ポート番号などとを利用することが考えられる。しかしながら、この場合、1つのセンサから物理量を測定する上記測定装置と、複数のセンサから複数の物理量をそれぞれ測定する上記測定装置と、が混在する測定システムでは、管理装置は、上記測定装置ごとに処理を変更する必要があり、処理の負担が増加することになる。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、管理装置からの指示により測定装置から管理装置へ測定値を送信する処理が、測定装置に接続されたセンサの数に応じて変更する必要が無い測定装置などを提供することにある。
本発明に係る測定装置は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を、前記管理装置から受信する受信部と、該受信部が受信したセンサ識別情報によって特定される前記センサを介して測定された前記物理量の測定値を前記管理装置に送信する送信部と、を備えることを特徴としている。
また、本発明に係る測定装置の制御方法は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置の制御方法であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を、前記管理装置から受信する受信ステップと、該受信ステップにて受信されたセンサ識別情報によって特定される前記センサを介して測定された前記物理量の測定値を前記管理装置に送信する送信ステップと、を含むことを特徴としている。
本発明に係る管理装置は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と通信可能に接続され、該複数の測定装置を管理する管理装置であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を記憶する記憶デバイスと、該記憶デバイスから前記センサ識別情報を取得して、前記複数の測定装置に送信する送信部と、前記センサ識別情報によって特定される前記センサを介しての測定値を、当該センサが接続された前記測定装置から受信する受信部と、を備えることを特徴としている。
また、本発明に係る管理装置の制御方法は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と通信可能に接続され、該複数の測定装置を管理する管理装置の制御方法であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報が記憶された記憶デバイスから前記センサ識別情報を取得して、前記複数の測定装置に送信する送信ステップと、前記センサ識別情報によって特定される前記センサを介しての測定値を、当該センサが接続された前記測定装置から受信する受信ステップと、を含むことを特徴としている。
本発明に係る測定装置および管理装置は、上記管理装置からの指示により上記測定装置から上記管理装置に測定値を送信する場合に、上記管理装置が管理する複数の上記測定装置に接続される全てのセンサを識別するセンサ識別情報を利用するので、上記測定装置に接続されたセンサの数に応じて上記送信の処理を変更する必要が無く、その結果、上記測定装置および上記管理装置における処理の負担を軽減できるという効果を奏する。
以下、本発明の実施の形態について、詳細に説明する。なお、説明の便宜上、各実施形態に示した部材と同一の機能を有する部材については、同一の符号を付記し、適宜その説明を省略する。
〔実施の形態1〕
(測定システムの概要)
まず、本発明の一実施形態について図1~図8を参照して説明する。図2および図3は、本実施形態である測定システムの概略構成を示すブロック図である。上記測定システムは、複数の電力線のそれぞれを流れる電力量を測定装置が測定し、該測定装置を管理装置が管理するものである。上記電力量は、上記電力線に接続された負荷における消費エネルギに対応する。従って、上記測定システムは、電力線を介して消費される消費エネルギを、複数の電力線ごとに把握することができる。
(測定システムの概要)
まず、本発明の一実施形態について図1~図8を参照して説明する。図2および図3は、本実施形態である測定システムの概略構成を示すブロック図である。上記測定システムは、複数の電力線のそれぞれを流れる電力量を測定装置が測定し、該測定装置を管理装置が管理するものである。上記電力量は、上記電力線に接続された負荷における消費エネルギに対応する。従って、上記測定システムは、電力線を介して消費される消費エネルギを、複数の電力線ごとに把握することができる。
図2および図3に示すように、測定システム10は、複数の検出回路11、複数の測定装置12、通信線13、および管理装置14を備える構成である。
検出回路11は、測定対象の電力線PLに取り付けられ、当該電力線PLを流れる電流を検出するためのセンサ20と、該センサ20からの検出信号を測定装置12に送信するための信号線21とを備える構成である。なお、センサ20および信号線21は、周知技術であるので、その説明を省略する。また、本実施形態の電力線PLは、単相二線であるが、図3では、一方の線のみを記載している。
測定装置12は、検出回路11に接続され、該検出回路11からの検出信号に基づき、上記電気量を測定するものである。具体的には、測定装置12は、上記検出信号により上記電流の瞬間値を計測し、該瞬間値の時系列データから上記電流の実効値を算出し、算出した実効値と、上記電力線PLにおける電圧の所定値とを乗算することにより、上記電力値を算出する。
測定装置12に接続される検出回路11は、1つでもよいし複数でもよい。図3の(a)に示す測定装置12は、1つの電力線PLに設けられた検出回路11からの検出信号に基づき、当該電力線PLを流れる電力量を測定し監視する単回路電力量モニタ12aである。
一方、図3の(b)に示す測定装置12は、主幹ラインMLから分岐され、ブレーカBRが挿入された複数の電力線(分岐線)PLにそれぞれ設けられた複数の検出回路11からの検出信号に基づき、当該複数の電力線PLのそれぞれを流れる電力量を測定し管理する多回路電力量モニタ12bである。このように、本実施形態の測定装置12は、1つの検出回路11からの検出信号に基づき、1本の電力線PLにおける電力量を測定してもよいし、複数の検出回路11からの検出信号に基づき、複数の電力線PLにおける複数の電力量をそれぞれ測定してもよい。
管理装置14は、図2に示すように、複数の測定装置12と通信線13を介して通信可能に接続されて、複数の測定装置12を管理するものである。具体的には、管理装置14は、複数の測定装置12が測定した電力量を収集したり、複数の測定装置12に対し、各種の設定を変更したり確認したりする。
測定装置12と管理装置14との間の通信は、RS-485などの通信I/F(インタフェース)を介して行ってもよいし、イーサネット(登録商標)などのネットワーク用I/Fを介して行ってもよい。このように、上記通信は、公知の通信技術を用いて行うことができる。また、測定装置12と管理装置14との間は、通信線13を用いずに、無線で通信してもよい。
本実施形態では、管理装置14は、複数の測定装置12を識別する装置IDの代わりに、複数の測定装置12に接続された検出回路11のセンサ20を識別するセンサID(センサ識別情報)を用いて、当該複数の測定装置12を管理している。これにより、測定装置12に接続された検出回路11のセンサ20の数に応じて、上記管理のための処理を変更する必要が無く、その結果、管理装置14における負担を軽減することができる。
(測定装置の詳細)
次に、測定装置12の詳細について説明する。図1は、測定装置12の概略構成を示すブロック図である。なお、図示の例では、測定装置12には、n個(nは自然数)の検出回路が接続されているとする。図示のように、測定装置12は、制御部30、記憶部(記憶デバイス)31、n個の計測回路32、操作部33、表示部34、および通信部35を備える構成である。
次に、測定装置12の詳細について説明する。図1は、測定装置12の概略構成を示すブロック図である。なお、図示の例では、測定装置12には、n個(nは自然数)の検出回路が接続されているとする。図示のように、測定装置12は、制御部30、記憶部(記憶デバイス)31、n個の計測回路32、操作部33、表示部34、および通信部35を備える構成である。
制御部30は、測定装置12内の各種構成の動作を統括的に制御するものであり、例えばCPU(Central Processing Unit)およびメモリを含むコンピュータによって構成される。そして、各種構成の動作制御は、制御プログラムをコンピュータに実行させることによって行われる。記憶部31は、情報を記録するものであり、ハードディスク、フラッシュメモリなどの記録デバイスによって構成される。なお、制御部30および記憶部31の詳細については後述する。
n個の計測回路32は、n個の検出回路11にそれぞれ接続され、各計測回路32は、接続された検出回路11からの検出信号に基づき、該検出回路11のセンサ20が検出した電流の瞬間値を次々に計測するものである。計測回路32は、上記電流の瞬間値の時系列データである計測データを制御部30に送信する。計測回路32は、A/D変換器、増幅回路などによって構成される。
操作部33は、ユーザの操作によりユーザから各種の入力を受け付けるものであり、入力用ボタン、タッチパネル、その他の操作デバイスによって構成されている。操作部33は、ユーザが操作した情報を操作データに変換して制御部30に送信する。
表示部34は、制御部30からの表示データを表示するものである。表示部34は、セグメント型表示素子、ビットマップ型表示素子などの表示素子によって構成される。
通信部35は、外部の管理装置14とデータ通信を行うためのものである。通信部35は、制御部30から受信した各種データを、データ通信に適した形式に変換した後、管理装置14に送信する。また、通信部35は、管理装置14から受信した各種データを装置内部のデータ形式に変換した後、制御部30に送信する。
次に、制御部30および記憶部31の詳細について説明する。図1に示すように、制御部30は、ID設定部(設定部)40、計測制御部41、測定部42、指示取得部(受信部)43、設定変更部44、および応答作成部(送信部)45を備える構成である。また、記憶部31は、設定済ID記憶部50およびn個の測定用記憶部51を含んでいる。
ID設定部40は、自装置12に接続された検出回路11のセンサ20を識別するセンサIDを設定するものである。ID設定部40は、ユーザから操作部33を介しての指示に従って上記センサIDを設定してもよいし、所定のルールに従って自動的に設定してもよい。ID設定部40は、設定されたセンサID(以下「設定済ID」と称する。)を設定済ID記憶部50に記憶する。なお、ID設定部40は、検出回路11のセンサ20に対し設定された設定済IDと、当該検出回路11のセンサ20に関する情報(例えば測定対象、測定項目など)とを関連付けて設定済ID記憶部50に記憶してもよい。
計測制御部41は、n個の計測回路32を制御するものである。具体的には、計測制御部41は、設定変更部44からの指示に基づいて計測回路32の設定を変更したり、所定の条件に基づいて計測回路32から計測データを取得して測定部42に送出したりする。
測定部42は、計測回路32から計測制御部41を介しての計測データに基づき、検出回路11のセンサ20が設けられた電力線PLにおける電力量を測定するものである。測定部42は、上記電力量の測定値を単位時間ごとに含む測定データを記憶部31に記憶する。なお、測定部42は、計測回路32からの計測データを、追加の測定データとして記憶部31に記憶してもよい。
指示取得部43は、管理装置14から通信線13および通信部35を介して指示データを取得するものである。指示取得部43は、取得した指示データに基づき、制御部30の各部に指示を行う。具体的には、指示取得部43は、取得した指示データに含まれる指示内容が、自装置12における各種設定を変更するものである場合、上記指示データを設定変更部44に送出する。一方、指示取得部43は、上記指示内容が自装置における各種データを要求するものである場合、上記指示データを応答作成部45に送出する。
設定変更部44は、指示取得部43からの指示データに基づき、制御部30における各部の設定を変更する。具体的には、設定変更部44は、上記指示データに基づき、計測回路32における各種設定を変更するように計測制御部41に指示したり、記憶部31における各種の設定情報を変更したりする。
応答作成部45は、指示取得部43からの指示データに基づき、記憶部31から測定データ、設定情報などの各種のデータを読み出し、読み出したデータを含む応答データを作成するものである。応答作成部45は、作成した応答データを通信部35および通信線13を介して管理装置14に送信する。
次に、測定用記憶部51の詳細について説明する。図4は、本実施形態の記憶部31における測定用記憶部51のメモリマップを示す図である。また、図15は、参考例であり、従来の測定装置における記憶部のメモリマップを示す図である。
図1および図4に示すように、本実施形態では、記憶部31は、自装置12に接続された検出回路11のセンサ20ごとに測定用記憶部51を含んでいる。そして、検出回路11、計測回路32、および測定部42を介して出力された測定データは、当該センサ20に対応する測定用記憶部51に記憶される。例えば、第1検出回路11a、第1計測回路32a、および測定部42を介して出力される第1測定データは、第1測定用記憶部51aに記憶される。一方、第2検出回路11b、第2計測回路32b、および測定部42を介して出力される第2測定データは、第2測定用記憶部51bに記憶される。
これにより、図4に示すように、各測定用記憶部51には、共通のアドレスから測定データを記憶することができる。従って、制御部30は、或るセンサ20を介しての測定データを読み出す場合、当該センサ20に対応する測定用記憶部51の上記共通のアドレスを指定すればよく、処理が容易となる。
なお、図4に示す各測定用記憶部51の末尾領域には、複数の測定用記憶部51間で共通する共通データが格納される。該共通データの例としては、通信速度、表示部34におけるLCD(Liquid Crystal Display)バックライトの自動消灯時間、などが挙げられる。
一方、従来の測定装置では、図15に示すように、測定データは、記憶部1031において、検出回路ごとに異なる個別のアドレスから記憶される。図示の例では、第1検出回路による第1測定データは、アドレス0000から記憶され、第2検出回路による第2測定データは、アドレス1000から記憶されている。このように、従来の測定装置は、このため、従来の測定装置は、或る検出回路による測定データを読み出す場合、当該検出回路に対応する上記記憶部のアドレスを特定し、特定したアドレスを指定する必要がある。
従って、本実施形態の測定装置12は、従来の測定装置に比べて、センサ20ごとの測定データを記憶部31から容易に読み出すことができる。なお、測定用記憶部51は、対応するセンサ20のセンサIDを所定アドレスに記憶することが望ましい。
(管理装置の詳細)
次に、管理装置14の詳細について説明する。図5は、管理装置14の概略構成を示すブロック図である。図示のように、管理装置14は、制御部60、記憶部(記憶デバイス)61、操作部63、表示部64、および通信部65を備える構成である。なお、管理装置14の制御部60、記憶部61、操作部63、表示部64、および通信部65の機能は、それぞれ、図1に示す測定装置12の制御部30、記憶部31、操作部33、表示部34、および通信部35の機能と同様であるので、その説明を省略する。
次に、管理装置14の詳細について説明する。図5は、管理装置14の概略構成を示すブロック図である。図示のように、管理装置14は、制御部60、記憶部(記憶デバイス)61、操作部63、表示部64、および通信部65を備える構成である。なお、管理装置14の制御部60、記憶部61、操作部63、表示部64、および通信部65の機能は、それぞれ、図1に示す測定装置12の制御部30、記憶部31、操作部33、表示部34、および通信部35の機能と同様であるので、その説明を省略する。
次に、制御部60および記憶部61の詳細について説明する。制御部60は、指示作成部(送信部)70および応答取得部(受信部)71を備える構成である。また、記憶部61は、設定済ID記憶部80および測定DB(database)81を含んでいる。
設定済ID記憶部80は、図1および図4に示す設定済ID記憶部50に比べて、管理装置14が管理する測定装置12に接続された全ての検出回路11のセンサ20の設定済IDを記憶している点が異なり、その他の構成は同様である。測定DB81は、複数の測定装置12から収集された測定データを記憶している。
指示作成部70は、測定装置12に対し各種の指示を行うための指示データを作成するものである。指示作成部70は、作成した指示データを、通信部65および通信線13を介して複数の測定装置12に送信する。なお、上記指示データは、ユーザから操作部63を介しての指示により作成されてもよいし、所定周期など、所定の条件に基づき自動的に作成してもよい。
本実施形態では、指示作成部70は、或る測定装置12における或る検出回路11のセンサ20に関連する計測回路32、計測制御部41、および測定用記憶部51に対し各種設定を行ったり、当該測定用記憶部51に記憶された測定データ等の各種データを要求したりする場合、当該検出回路11のセンサ20の設定済IDを設定済ID記憶部80から読み出して、上記指示データに追加すればよい。従って、上記指示データは、測定装置12に接続されるセンサ20の数に依存しないので、上記指示データの作成が容易となる。
さらに、或る検出回路11のセンサ20に対応する測定用記憶部51に記憶された測定データを要求する場合、上記指示データは、当該検出回路11のセンサ20のセンサIDと、上記共通のアドレスとを含めばよく、当該検出回路11のセンサ20に対応するアドレスを特定して含む必要がない。従って、上記指示データの作成がさらに容易となる。
応答取得部71は、上記指示データに対する応答データを、測定装置12から通信線13および通信部65を介して取得するものである。上記応答データは、具体的には、上記指示データに含まれる設定済IDに対応する測定データである。応答取得部71は、取得した測定データを、設定済IDに関連付けて測定DB81に記憶する。
これにより、制御部60は、ユーザから操作部63を介しての指示に基づき、測定DB81から各種の測定値を読み出して表示部64に表示させることができる。ユーザが所望する電力線PLにおける電力量の推移を表示したり、各電力線PLにおける積算電力量を比較表示したりすることができ、ユーザが各電力線PLにおける使用電力量を把握することができる。
(測定システムの処理動作)
次に、上記構成の測定システム10における処理動作について説明する。まず、各測定装置12において、接続された検出回路11のセンサ20のセンサIDをID設定部40が設定し、設定した設定済IDを設定済ID記憶部50に記憶する。
次に、上記構成の測定システム10における処理動作について説明する。まず、各測定装置12において、接続された検出回路11のセンサ20のセンサIDをID設定部40が設定し、設定した設定済IDを設定済ID記憶部50に記憶する。
次に、管理装置14において、各測定装置12にて設定された設定済IDが収集されて、設定済ID記憶部80に記憶される。図6は、上記設定済IDの収集処理の流れを示すフローチャートである。
図6に示すように、まず、指示作成部70は、或るセンサIDを含む指示データを作成して、通信線13上に送信する(S10)。次に、応答取得部71は、上記指示データに対応する応答データを、通信線13上から受信した場合(S11にてYES)、当該センサIDが設定済IDであると判断して、設定済ID記憶部80に新規登録または更新する(S12)。そして、設定可能なセンサIDについて、ステップS10~S12が繰り返されて、上記収集処理を終了する。
次に、各測定装置12において測定が開始され、各検出回路11のセンサ20にて検出され、計測回路32、計測制御部41、および測定部42を介して出力された測定データが、当該検出回路11のセンサ20に対応する測定用記憶部51に記憶される。その一方で、各測定装置12において、管理装置14から指示データを受信した場合に下記の処理が行われる。
図7は、当該処理の流れを示している。図示のように、まず、指示取得部43は、管理装置14から受信した指示データが一斉同報であるか否かを判断する(S20)。
上記指示データが一斉同報である場合(S20にてYES)、設定変更部44は、上記指示データが、測定とは無関係の一般項目に対する指示であるか否かを判断する(S21)。この一般項目に対する指示の例としては、表示部34におけるLCDバックライトのオン・オフなどが挙げられる。上記指示データが上記一般項目に対する指示である場合(S21にてYES)、設定変更部44は、上記指示データに基づく指示を1回のみ実行することになる(S22)。
一方、上記指示データが上記一般項目に対する指示ではない場合(S21にてNO)とは、すなわち、上記指示データが測定に関する特定項目に対する指示である場合である。この特定項目に対する指示の例としては、各測定用記憶部51に記憶された積算電力量のクリアなどが挙げられる。上記の場合、設定変更部44は、上記指示データに基づく指示を、複数の検出回路11のセンサ20に関して設けられた複数の計測回路32および/または複数の測定用記憶部51に対し、個別に実行することになる(S23)。その後、処理を終了する。
一方、上記指示データが、一斉同報ではない、すなわち上記指示データに含まれるセンサIDによって識別される検出回路11のセンサ20に関する要求である場合(S20にてNO)、応答作成部45は、当該検出回路11のセンサ20を特定し(S24)、特定した検出回路11のセンサ20に関する計測回路32および/または測定用記憶部51に対し、上記指示データに基づく要求を実行する(S25)。そして、応答作成部45は、当該要求に対する応答データを作成して、管理装置14に送信する(S26)。その後、処理を終了する。
〔変形例1〕
なお、測定装置12は、図4に示す記憶部31のメモリマップと、図15に示す従来の記憶部のメモリマップとが切替可能であってもよい。この場合、本実施形態の測定装置12を、既存の測定システム10にて利用することができる。
なお、測定装置12は、図4に示す記憶部31のメモリマップと、図15に示す従来の記憶部のメモリマップとが切替可能であってもよい。この場合、本実施形態の測定装置12を、既存の測定システム10にて利用することができる。
〔変形例2〕
また、各測定用記憶部51に記憶された測定データを、特定の測定用記憶部51に集約してもよい。図8は、本実施形態の変形例である記憶部31における測定用記憶部51のメモリマップを示す図である。同図では、第1~第n測定用記憶部51の第1~第n測定データを、第1測定用記憶部51aに集約することができる。図示のメモリマップは、図4に示すメモリマップにおいて、第2~第n測定用記憶部51の第2~第n測定データを、第1測定用記憶部51aに順次転送することにより実現できる。
また、各測定用記憶部51に記憶された測定データを、特定の測定用記憶部51に集約してもよい。図8は、本実施形態の変形例である記憶部31における測定用記憶部51のメモリマップを示す図である。同図では、第1~第n測定用記憶部51の第1~第n測定データを、第1測定用記憶部51aに集約することができる。図示のメモリマップは、図4に示すメモリマップにおいて、第2~第n測定用記憶部51の第2~第n測定データを、第1測定用記憶部51aに順次転送することにより実現できる。
この変形例は、自装置12における設定済IDの数を減らしたい場合、1つの設定済IDで、自装置12における全測定データを管理装置14が収集したい場合などに好適である。なお、図8に示すメモリマップにおいて、第1測定用記憶部51aにおける第2~第n測定データをクリアすれば、図4に示す元のメモリマップに戻すことができる。従って、図4に示すメモリマップを有する記憶部31と、図8に示すメモリマップを有する記憶部31とを切替可能とすることができる。
なお、図8に示すメモリマップにおいて、第1測定用記憶部51以外の測定用記憶部51にも、第1測定用記憶部51と同様に、第1~第n測定データを格納してもよい。この場合、第1~第n測定用記憶部51に対応する設定済IDの何れを選択しても、自装置12における全測定データを管理装置14に送信することができる。
(付加事項)
なお、本実施形態では、計測回路32は、制御部30とは別に設けられているが、制御部30内に設けることもできる。また、n個の計測回路32に代えて、1個の計測回路32と、n個の検出回路11からのn個の検出信号を選択し、選択した検出信号を上記計測回路32に送信する選択回路とを設けてもよい。
なお、本実施形態では、計測回路32は、制御部30とは別に設けられているが、制御部30内に設けることもできる。また、n個の計測回路32に代えて、1個の計測回路32と、n個の検出回路11からのn個の検出信号を選択し、選択した検出信号を上記計測回路32に送信する選択回路とを設けてもよい。
また、表示部34は、センサIDに対応する測定データを、当該センサIDと共に表示してもよい。この場合、ユーザによる確認操作が容易となる。
また、操作部33は、表示部34における測定データおよびセンサIDの表示を、該センサIDごとに切り替えるための切替スイッチをさらに備えてもよい。この場合、ユーザが表示を所望するセンサIDに対応する測定データを容易に切り替えることができ、ユーザによる確認操作が容易となる。
また、表示部34は、センサIDに対応する測定データを、当該センサIDに関連付けられた色で表示してもよい。また、表示部34は、センサIDに対応する発光素子をさらに備えてもよい。該発光素子の例としては、LED(Light Emitting Diode)が挙げられる。これらの場合、表示されている測定データが、何れのセンサIDに対応するものであるかを容易に特定することができる。
〔実施の形態2〕
次に、本発明の別の実施形態について、図9および図10を参照して説明する。本実施形態の測定システム10は、図1~図8に示す測定システム10に比べて、測定装置12の構成および動作が異なり、その他の構成は同様である。
次に、本発明の別の実施形態について、図9および図10を参照して説明する。本実施形態の測定システム10は、図1~図8に示す測定システム10に比べて、測定装置12の構成および動作が異なり、その他の構成は同様である。
図9は、本実施形態における測定装置12の概略構成を示している。本実施形態の測定装置12は、図1に示す測定装置12に比べて、ID設定部40および設定済ID記憶部50に代えて、ID設定部40aおよび設定済ID記憶部50aが設けられている点が異なり、その他の構成は同様である。
ところで、図1~図8に示す測定システム10の場合、或る測定装置12にて設定された設定済IDは、別の測定装置12にて設定された設定済IDと重複する虞がある。この問題点を回避するには、センサIDを、測定装置12を識別可能なグローバル部分と、測定装置12に接続された複数の検出回路11のセンサ20を識別可能なローカル部分とによって構成すればよい。
しかしながら、この場合、上記センサIDのデータ長が長くなり、測定装置12および管理装置14におけるリソースの負担が増えることになる。また、上記センサIDは、測定装置12および管理装置14間で頻繁に通信されるため、該通信のリソースの負担が増えることになる。
そこで、本実施形態では、設定済ID記憶部50aは、図5に示す管理装置14における設定済ID記憶部80と同様に、管理装置14が管理する測定装置12に接続された全ての検出回路11のセンサ20の設定済IDを記憶している。これは、管理装置14が、設定済ID記憶部80に記憶された設定済IDのセットを、測定装置12の設定済ID記憶部50aに記憶するように指示する指示データを作成して一斉同報することにより実現できる。
これにより、センサIDは、管理装置14に接続可能な測定装置12に接続可能な検出回路11のセンサ20の最大値(例えば99)を上限とすればよく、上記グローバル部分および上記ローカル部分とによって構成されるセンサIDに比べて、データ長を短くすることができる。その結果、測定装置12および管理装置14におけるリソースの負担を抑えることができ、また、測定装置12および管理装置14間の通信のリソースの負担を抑えることができる。
また、本実施形態のID設定部40aは、図1に示すID設定部40に比べて、センサIDの設定時に、設定済ID記憶部50aに記憶された設定済IDのセットを参照して、該設定済IDのセットに含まれるセンサIDをユーザが設定するように指示した場合、警告(報知)する構成が追加されている点が異なり、その他の構成は同様である。これにより、ユーザが、他の測定装置12にて設定されたセンサIDを自装置12にて設定しようとすることを防止できる。
次に、本実施形態において、ユーザがセンサIDを設定する場合の処理について説明する。図10は、ID設定部40aにてセンサIDをユーザが設定する場合の処理の流れを示すフローチャートである。
当該処理を行う前に、制御部30は、設定される条件によって、自装置12にて設定するセンサIDの数(設定数)の上限値を予め設定する。例えば、自装置12に接続する検出回路11のセンサ20の数を設定することにより、当該数を上記上限値として設定する。これにより、自装置12が占有するセンサIDの数を必要最小限に抑えることができる。
そして、センサIDの設定処理が開始されると、図10に示すように、ID設定部40aは、ユーザが設定を所望する検出回路11のセンサ20およびセンサIDの情報を、操作部33を介して取得するまで待機する(S30)。上記情報を取得すると、取得したセンサIDと、設定済ID記憶部50aに記憶された設定済IDのセットとを照合する(S31)。
次に、取得したセンサIDに一致する設定済IDが存在するか否かを判断する(S32)。存在する場合には(S32にてYES)、当該センサIDが設定済IDと重複する旨を示す警告を表示部34にて表示させる(S33)。その後、ステップS30に戻って上記処理を繰り返す。
一方、存在しない場合には(S32にてNO)、取得したセンサIDを当該検出回路11のセンサIDとして、設定済ID記憶部50aに記憶する(S34)。その後、処理を終了する。
〔実施の形態3〕
次に、本発明のさらに別の実施形態について、図11および図12を参照して説明する。本実施形態の測定システム10は、図1~図8に示す測定システム10に比べて、管理装置14の構成および動作が異なり、その他の構成は同様である。
次に、本発明のさらに別の実施形態について、図11および図12を参照して説明する。本実施形態の測定システム10は、図1~図8に示す測定システム10に比べて、管理装置14の構成および動作が異なり、その他の構成は同様である。
通常、管理装置14は、各設定済IDに対応する測定データを定期的に取得する。例えば、積算電力量であれば、1日ごとに取得する。従って、或る設定済IDに対応する測定データの取得数が、他の設定済IDに対応する測定データの取得数と著しく異なる場合、上記設定済IDに対応する測定に何らかの異常が発生していると考えられる。
そこで、本実施形態の管理装置14は、測定データの取得数を設定済IDごとに記憶し、他の設定済IDに比べて上記取得数が著しく異なる設定済IDに対応する測定に設定ミス等の何らかの異常が発生している虞があることを示す警告を測定装置12に通知する。これにより、測定の異常を測定装置12に通知することができる。
図11は、本実施形態における管理装置14の概略構成を示している。本実施形態の管理装置14は、図5に示す管理装置14に比べて、制御部60において、指示作成部70および応答取得部71に代えて、指示作成部70aおよび応答取得部71aが設けられている点と、応答数取得部72および異常判定部73が新たに設けられている点と、記憶部61において、測定DB81に代えて、測定DB81aが設けられている点と、が異なり、その他の構成は同様である。
測定DB81aは、図5に示す測定DB81の情報に加えて、応答データの応答数、すなわち測定データの取得数を設定済IDごとに記憶している。また、応答取得部(計数部)71aは、図5に示す応答取得部71の構成に加えて、取得した測定データを測定DB81aに記憶するときに、測定DB81aの上記取得数を1だけ加算して(計数して)更新する構成が追加されている。
応答数取得部72は、設定済IDごとの上記取得数を測定DB81aから取得し、異常判定部73に送出するものである。
異常判定部73は、応答数取得部72からの各設定済IDの上記取得数が許容範囲内であるかを判断し、許容範囲外である設定済IDに対応する測定に何らかの異常が発生していると判定するものである。異常判定部73は、上記異常が発生していると判定した設定済IDを指示作成部70aに送出する。
異常判定部73における上記許容範囲の判断は、例えば以下のように行えばよい。まず、各設定済IDの上記取得数の平均値、すなわち上記取得数を全ての設定済IDについて加算し、その和を全ての設定済IDの個数で除算した値を算出する。そして、算出した平均値と、設定済IDごとの上記取得数との差の絶対値が所定の許容値(許容範囲)を超えるかを判定すればよい。なお、平均値の代わりに最頻値や中央値を用いてもよい。
指示作成部70aは、図5に示す指示作成部70の構成に加えて、異常判定部73からの設定済IDの測定が異常である旨を警告表示するように指示する指示データを作成して、通信部65を介して通信線13上に送信している。
次に、本実施形態において、測定データの取得数を用いた異常判定の処理について説明する。図12は、管理装置14における上記処理の流れを示すフローチャートである。
当該処理を行う前に、応答取得部71aは、測定装置12から通信部65を介して応答データを受信すると、応答データに含まれる測定データを、該応答データに含まれる設定済IDに関連付けて測定DB81aに記憶すると共に、測定DB81aに記憶された設定済IDの取得数を1だけ更新する。
そして、所定のタイミングで、図12に示す処理が行われる。図示のように、応答数取得部72は、測定DB81aから設定済IDごとの取得数を取得し(S40)、異常判定部73は、取得した設定済IDごとの取得数の平均値を算出する(S41)。
次に、異常判定部73は、上記取得数と上記平均値との差の絶対値が所定の許容値より大きい設定済IDが存在するか否かを判断する(S42)。存在しない場合(S42にてNO)、設定済IDごとの測定において正常であると判定して(S43)、処理を終了する。
一方、上記絶対値が上記許容値より大きい設定済IDが存在する場合(S42にてYES)、指示作成部70は、当該設定済IDの測定が異常である旨を警告表示するように指示する指示データを作成して送信する(S44)。これにより、当該設定済IDに対応するセンサ20を有する測定装置12にて上記警告表示が行われ、その結果、当該設定済IDの測定の異常をユーザが把握することができる。その後、応答取得部71aは、上記指示データに対応する応答データを取得し(S45)、処理を終了する。
〔実施の形態4〕
次に、本発明の他の実施形態について、図13および図14を参照して説明する。本実施形態の測定システム10は、図1~図8に示す測定システム10に比べて、測定装置12の構成および動作が異なり、その他の構成は同様である。
次に、本発明の他の実施形態について、図13および図14を参照して説明する。本実施形態の測定システム10は、図1~図8に示す測定システム10に比べて、測定装置12の構成および動作が異なり、その他の構成は同様である。
図13は、本実施形態における測定装置12の概略構成を示している。本実施形態の測定装置12は、図1に示す測定装置12に比べて、制御部30に統計処理部(算出部)46が新たに設けられる点と、記憶部31に統計用記憶部52が新たに設けられる点とが異なり、その他の構成は同様である。
統計処理部46は、各測定用記憶部51に記憶された測定データを収集し、収集した測定データに対し統計処理を施して、統計データを作成するものである。統計処理部46は、作成した統計データを記憶部31の統計用記憶部52に記憶する。
図14は、本実施形態の記憶部31における測定用記憶部51および統計用記憶部52のメモリマップを示す図である。図示のように、統計用記憶部52には、各測定用記憶部51に記憶された測定データの平均値、合計値、最大値、最小値、などの統計値が統計データとして記憶されている。
さらに、本実施形態では、統計処理部46に対し上記センサIDが設定される。これにより、管理装置14からの指示データに基づき、統計処理部46の設定を変更したり、該設定を確認したり、統計用記憶部52から統計データを読み出して、管理装置14に送信したりすることができる。
従来の測定システムでは、複数の測定装置からの測定データを収集し、収集した測定データに統計処理を施して統計データを作成し、管理装置に送信する中継器が存在していた。
これに対し、本実施形態の測定システム10では、上記中継器の機能を測定装置12にて行うことができる。
〔変形例〕
なお、統計処理部46および統計用記憶部52に代えて、電流の測定データと電圧の測定データとから電力量を算出する電力量算出部と、該電力量算出部が算出した電力量の算出値を含む算出データを記憶する算出用記憶部とを設け、上記電力算出部に対しセンサIDを設定してもよい。
なお、統計処理部46および統計用記憶部52に代えて、電流の測定データと電圧の測定データとから電力量を算出する電力量算出部と、該電力量算出部が算出した電力量の算出値を含む算出データを記憶する算出用記憶部とを設け、上記電力算出部に対しセンサIDを設定してもよい。
この場合、上記電力量は、電流を検出するセンサ20を介して計測された電流の瞬間値と、電圧を検出するセンサを介して計測された電圧の瞬間値とを乗算し、当該乗算値を積算することにより、算出することができる。従って、上記電力量の算出データは、図1~図8に示す測定システム10における電力量の測定データに比べて、電圧の所定値の代わりに電圧の計測値を利用しているので、電力量の測定を精度よく行うことができる。
また、上記センサIDを用いることにより、管理装置14からの指示データに基づき、上記電力量算出部の設定を変更したり、該設定を確認したり、上記算出用記憶部から算出データを読み出して、管理装置14に送信したりすることを容易に行うことができる。
すなわち、複数の検出回路11のセンサ20による複数の測定データから各種物理量を算出する算出部に対し、センサIDを設定することにより、上記算出部が算出した算出データを管理装置14が容易に収集することができる。
〔ソフトウェアによる実現例〕
測定装置12および管理装置14の制御ブロック(特に制御部30および制御部60)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
測定装置12および管理装置14の制御ブロック(特に制御部30および制御部60)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
後者の場合、測定装置12および管理装置14は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
例えば、上記実施形態の測定システム10では、電力線PLにおける電流を検出して、電力量を測定しているが、任意の対象における任意の物理量を検出して測定する任意の測定装置に本発明を適用することができる。
(まとめ)
以上のように、本発明に係る測定装置は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を、前記管理装置から受信する受信部と、該受信部が受信したセンサ識別情報によって特定される前記センサを介して測定された前記物理量の測定値を前記管理装置に送信する送信部と、を備えている。
以上のように、本発明に係る測定装置は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を、前記管理装置から受信する受信部と、該受信部が受信したセンサ識別情報によって特定される前記センサを介して測定された前記物理量の測定値を前記管理装置に送信する送信部と、を備えている。
また、本発明に係る測定装置の制御方法は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置の制御方法であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を、前記管理装置から受信する受信ステップと、該受信ステップにて受信されたセンサ識別情報によって特定される前記センサを介して測定された前記物理量の測定値を前記管理装置に送信する送信ステップと、を含んでいる。
上記の構成および方法によると、管理装置から受信した識別情報に基づき、センサを介して測定された測定値を上記管理装置に送信する。ここで、上記識別情報は、上記管理装置が管理する複数の測定装置を識別する装置識別情報ではなく、当該複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報である。これにより、上記センサ識別情報を受信した測定装置は、上記センサ識別情報によって特定されるセンサを介して測定された測定値を上記管理装置に送信すればよく、測定装置に接続されたセンサの数に応じて上記送信の処理を変更する必要がない。その結果、自装置である測定装置における処理の負担を軽減することができる。
また、上記物理量の例としては、電流、電圧、電力、電力量、温度、流量、光量、圧力、回転数などが挙げられる。また、上記管理装置における管理の例としては、上記測定値を収集したり、上記センサを介しての測定について、各種の設定を行ったり、該設定を確認したりすることが挙げられる。
本発明に係る測定装置では、接続されたセンサごとにセンサ識別情報を設定する設定部をさらに備えることが好ましい。この場合、測定装置にてセンサ識別情報を設定することができる。
本発明に係る測定装置では、前記設定部は、前記センサ識別情報の設定数の上限を設定してもよい。この場合、自装置が占有するセンサ識別情報の数を必要最小限に抑えることができる。
本発明に係る測定装置では、前記設定部は、設定しようとするセンサ識別情報が、既に設定されたセンサ識別情報と同じである場合、外部に報知してもよい。この場合、上記センサ識別情報が重複して設定されることを防止できる。
本発明に係る測定装置では、前記センサを介して測定された物理量の測定値を記憶する測定用記憶部を、前記センサごとに備えることが好ましい。また、各測定用記憶部には、共通のアドレスから前記測定値が記憶されることが好ましい。この場合、或るセンサを介しての測定値を取得するには、当該センサに対応する測定用記憶部の上記共通のアドレスから読み出せばよく、処理が容易となる。
なお、前記測定用記憶部は、他の測定用記憶部に記憶された測定値を記憶してもよい。これは、自装置にて設定されるセンサ識別情報の数を減らしたい場合、1つのセンサ識別情報で、自装置における全測定データを管理装置に送信したい場合などに好適である。
本発明に係る測定装置では、前記受信部は、前記センサ識別情報および指示内容を含む指示データを前記管理装置から受信しており、前記指示データが、前記管理装置から一斉同報により受信した場合、前記指示データにおける指示内容が、前記センサを介しての測定に関係するかを判定し、関係する場合、前記指示内容に基づく指示を、前記センサを介しての測定ごとに行ってもよい。
ここで、前記センサを介しての測定に関係する指示内容の例としては、測定値のクリアなどが挙げられる。当該指示内容は、当該測定ごとに行われるので、漏れなく行うことができる。なお、前記センサを介しての測定に無関係の指示内容の例としては、表示・非表示の切替、通信速度の設定などが挙げられる。これらの指示内容は、上記測定ごとに異なるものに設定されると不都合が生じる虞がある。そこで、上記指示内容については、1回のみ行えばよく、この場合、上記不都合が生じることを防止できる。
本発明に係る測定装置では、複数の前記センサによる複数の測定値を用いて、新たな物理量を算出する算出部を更に備えており、前記センサ識別情報は、前記全てのセンサと前記算出部とを識別するものであり、前記送信部は、さらに、前記受信部が受信したセンサ識別情報によって特定される前記算出部が算出した物理量である算出値を前記管理装置に送信してもよい。この場合、前記管理装置からの要求に応じて、1つのセンサを介しての物理量の測定値だけでなく、複数のセンサを介しての物理量の算出値を容易に送信することができる。
本発明に係る測定装置では、前記センサ識別情報に対応する前記測定値を、当該センサ識別情報と共に表示する表示部をさらに備えることが好ましい。この場合、ユーザによる確認操作が容易となる。
本発明に係る測定装置では、前記表示部における前記測定値および前記センサ識別情報の表示を、前記センサ識別情報ごとに切り替えるための切替スイッチをさらに備えることが好ましい。この場合、ユーザが表示を所望するセンサ識別情報に対応する測定値を容易に切り替えることができ、ユーザによる確認操作が容易となる。
本発明に係る測定装置では、前記表示部は、前記センサ識別情報に対応する前記測定値を、当該センサ識別情報に関連付けられた色で表示してもよい。この場合、表示されている測定値が、何れのセンサ識別情報に対応するものであるかを容易に特定できる。
本発明に係る測定装置では、前記表示部は、前記センサ識別情報に対応する発光素子をさらに備えてもよい。この場合、表示されている測定値が、何れのセンサ識別情報に対応するものであるかを容易に特定できる。
本発明に係る管理装置は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と通信可能に接続され、該複数の測定装置を管理する管理装置であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を記憶する記憶デバイスと、該記憶デバイスから前記センサ識別情報を取得して、前記複数の測定装置に送信する送信部と、前記センサ識別情報によって特定される前記センサを介しての測定値を、当該センサが接続された前記測定装置から受信する受信部と、を備えている。
また、本発明に係る管理装置の制御方法は、測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と通信可能に接続され、該複数の測定装置を管理する管理装置の制御方法であって、上記課題を解決するために、前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報が記憶された記憶デバイスから前記センサ識別情報を取得して、前記複数の測定装置に送信する送信ステップと、前記センサ識別情報によって特定される前記センサを介しての測定値を、当該センサが接続された前記測定装置から受信する受信ステップと、を含んでいる。
上記の構成および方法によると、複数の測定装置に識別情報を送信し、該識別情報に対応する測定値を受信する。ここで、上記識別情報は、上記管理装置が管理する複数の測定装置を識別する装置識別情報ではなく、当該複数の測定装置に含まれる全てのセンサを識別するセンサ識別情報である。これにより、上記センサ識別情報を上記複数の測定装置に送信すれば、上記センサ識別情報によって特定されるセンサを介して測定された測定値を受信することができる。従って、上記測定装置に接続されたセンサの数に応じて上記送信の処理を変更する必要がない。その結果、自装置である管理装置における処理の負担を軽減することができる。
本発明に係る管理装置では、前記受信部が受信する測定値の数を前記センサ識別情報ごとに計数する計数部をさらに備えており、該計数部が計数した前記センサ識別情報ごとの測定値の数の範囲が、所定の許容範囲を超えている場合、該許容範囲を超えている測定値の数に対応するセンサ識別情報による測定が異常であることを示す情報を前記送信部が送信することが好ましい。この場合、測定の異常を測定装置に通知することができる。
なお、上記構成の測定装置と、上記構成の管理装置とが通信可能に接続された測定システムであれば、上述と同様の効果を奏する。
本発明に係る測定装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記測定装置が備える各手段として動作させることにより上記測定装置をコンピュータにて実現させる測定装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
また、本発明に係る管理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記管理装置が備える各手段として動作させることにより上記管理装置をコンピュータにて実現させる管理装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
本発明は、管理装置からの指示により測定装置から上記管理装置に測定値を送信する場合に、上記管理装置が管理する複数の上記測定装置に接続される全ての検出回路を識別する回路識別情報を利用することにより、上記測定装置に接続された検出回路の数に応じて上記送信の処理を変更する必要が無く、その結果、上記測定装置および上記管理装置における処理の負担を軽減できるので、任意の測定対象から任意の物理量を検出して測定する任意の測定システムに適用することができる。
10 測定システム
11 検出回路
12 測定装置
13 通信線
14 管理装置
20 センサ
21 信号線
30、60 制御部
31、61 記憶部(記憶デバイス)
32 計測回路
33、63 操作部
34、64 表示部
35、65 通信部
40 ID設定部(設定部)
41 計測制御部
42 測定部
43 指示取得部(受信部)
44 設定変更部
45 応答作成部(送信部)
46 統計処理部(算出部)
50、80 設定済ID記憶部
51 測定用記憶部
52 統計用記憶部
70 指示作成部(送信部)
71 応答取得部(受信部、計数部)
72 応答数取得部
73 異常判定部
11 検出回路
12 測定装置
13 通信線
14 管理装置
20 センサ
21 信号線
30、60 制御部
31、61 記憶部(記憶デバイス)
32 計測回路
33、63 操作部
34、64 表示部
35、65 通信部
40 ID設定部(設定部)
41 計測制御部
42 測定部
43 指示取得部(受信部)
44 設定変更部
45 応答作成部(送信部)
46 統計処理部(算出部)
50、80 設定済ID記憶部
51 測定用記憶部
52 統計用記憶部
70 指示作成部(送信部)
71 応答取得部(受信部、計数部)
72 応答数取得部
73 異常判定部
Claims (18)
- 測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置であって、
前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を、前記管理装置から受信する受信部と、
該受信部が受信したセンサ識別情報によって特定される前記センサを介して測定された前記物理量の測定値を前記管理装置に送信する送信部と、を備えることを特徴とする測定装置。 - 接続されたセンサごとにセンサ識別情報を設定する設定部をさらに備えることを特徴とする請求項1に記載の測定装置。
- 前記設定部は、前記センサ識別情報の設定数の上限を設定することを特徴とする請求項2に記載の測定装置。
- 前記設定部は、設定しようとするセンサ識別情報が、既に設定されたセンサ識別情報と同じである場合、外部に報知することを特徴とする請求項2または3に記載の測定装置。
- 前記センサを介して測定された物理量の測定値を記憶する測定用記憶部を、前記センサごとに備えることを特徴とする請求項1から4までの何れか1項に記載の測定装置。
- 各測定用記憶部には、共通のアドレスから前記測定値が記憶されることを特徴とする請求項5に記載の測定装置。
- 前記測定用記憶部は、他の測定用記憶部に記憶された測定値を記憶することを特徴とする請求項5に記載の測定装置。
- 前記受信部は、
前記センサ識別情報および指示内容を含む指示データを前記管理装置から受信しており、
前記指示データが、前記管理装置から一斉同報により受信した場合、前記指示データにおける指示内容が、前記センサを介しての測定に関係するかを判定し、
関係する場合、前記指示内容に基づく指示を、前記センサを介しての測定ごとに行うことを特徴とする請求項1から7までの何れか1項に記載の測定装置。 - 複数の前記センサによる複数の測定値を用いて、新たな物理量を算出する算出部を更に備えており、
前記センサ識別情報は、前記全てのセンサと前記算出部とを識別するものであり、
前記送信部は、さらに、前記受信部が受信したセンサ識別情報によって特定される前記算出部が算出した物理量である算出値を前記管理装置に送信することを特徴とする請求項1から8までの何れか1項に記載の測定装置。 - 前記センサ識別情報に対応する前記測定値を、当該センサ識別情報と共に表示する表示部をさらに備えることを特徴とする請求項1から9までの何れか1項に記載の測定装置。
- 前記表示部における前記測定値および前記センサ識別情報の表示を、前記センサ識別情報ごとに切り替えるための切替スイッチをさらに備えることを特徴とする請求項10に記載の測定装置。
- 前記表示部は、前記センサ識別情報に対応する前記測定値を、当該センサ識別情報に関連付けられた色で表示することを特徴とする請求項10または11に記載の測定装置。
- 前記表示部は、前記センサ識別情報に対応する発光素子をさらに備えることを特徴とする請求項10から12までの何れか1項に記載の測定装置。
- 測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と通信可能に接続され、該複数の測定装置を管理する管理装置であって、
前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を記憶する記憶デバイスと、
該記憶デバイスから前記センサ識別情報を取得して、前記複数の測定装置に送信する送信部と、
前記センサ識別情報によって特定される前記センサを介しての測定値を、当該センサが接続された前記測定装置から受信する受信部と、を備えることを特徴とする管理装置。 - 前記受信部が受信する測定値の数を前記センサ識別情報ごとに計数する計数部をさらに備えており、
該計数部が計数した前記センサ識別情報ごとの測定値の数の範囲が、所定の許容範囲を超えている場合、該許容範囲を超えている測定値の数に対応するセンサ識別情報による測定が異常であることを示す情報を前記送信部が送信することを特徴とする請求項14に記載の管理装置。 - 請求項1から13までの何れか1項に記載の測定装置と、請求項14または15に記載の管理装置とが通信可能に接続された測定システム。
- 測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と、該複数の測定装置を管理する管理装置とが通信可能に接続された測定システムに利用される測定装置の制御方法であって、
前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報を、前記管理装置から受信する受信ステップと、
該受信ステップにて受信されたセンサ識別情報によって特定される前記センサを介して測定された前記物理量の測定値を前記管理装置に送信する送信ステップと、を含むことを特徴とする測定装置の制御方法。 - 測定対象の物理量を検出するための1または複数のセンサに接続され、該センサからの検出信号に基づいて当該物理量を測定する複数の測定装置と通信可能に接続され、該複数の測定装置を管理する管理装置の制御方法であって、
前記複数の測定装置に接続される全ての前記センサを識別するセンサ識別情報が記憶された記憶デバイスから前記センサ識別情報を取得して、前記複数の測定装置に送信する送信ステップと、
前記センサ識別情報によって特定される前記センサを介しての測定値を、当該センサが接続された前記測定装置から受信する受信ステップと、を含むことを特徴とする管理装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580055135.0A CN106796752B (zh) | 2014-11-14 | 2015-10-16 | 测量装置及其控制方法、管理装置及其控制方法、以及测量系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-231537 | 2014-11-14 | ||
JP2014231537A JP6582395B2 (ja) | 2014-11-14 | 2014-11-14 | 測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076072A1 true WO2016076072A1 (ja) | 2016-05-19 |
Family
ID=55954164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079341 WO2016076072A1 (ja) | 2014-11-14 | 2015-10-16 | 測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システム |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6582395B2 (ja) |
CN (1) | CN106796752B (ja) |
WO (1) | WO2016076072A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6451911B1 (ja) * | 2017-08-02 | 2019-01-16 | オムロン株式会社 | センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム |
JP6451910B1 (ja) * | 2017-08-02 | 2019-01-16 | オムロン株式会社 | センサ管理ユニット、センシングデータ流通システム、センシングデータ評価方法、およびセンシングデータ評価プログラム |
WO2019026710A1 (ja) * | 2017-08-02 | 2019-02-07 | オムロン株式会社 | センサ管理ユニット、センシングデータ流通システム、センシングデータ評価方法、およびセンシングデータ評価プログラム |
WO2019026711A1 (ja) * | 2017-08-02 | 2019-02-07 | オムロン株式会社 | センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6690473B2 (ja) * | 2016-08-30 | 2020-04-28 | オムロン株式会社 | 計測装置およびその制御方法、並びに制御プログラム |
JP6903963B2 (ja) | 2017-03-15 | 2021-07-14 | オムロン株式会社 | 配電網モニタリングシステムおよび配電網モニタリング装置 |
JP6747347B2 (ja) * | 2017-03-15 | 2020-08-26 | オムロン株式会社 | 配電網モニタリングシステムおよび配電網モニタリング装置 |
JP7166217B2 (ja) * | 2019-04-25 | 2022-11-07 | Thk株式会社 | 処理装置、処理済みデータの収集方法、及びデータ収集システム |
JP6687211B1 (ja) * | 2019-10-08 | 2020-04-22 | コネクトフリー株式会社 | センシングデバイス、センシングシステムおよび情報処理方法 |
JP7374483B2 (ja) * | 2020-03-19 | 2023-11-07 | 株式会社Kmc | 無線センサシステム及びセンサタグ |
CN111768610A (zh) * | 2020-06-24 | 2020-10-13 | 北京恒通安泰科技有限公司 | 用于轨道衡的数据采集装置、数据采集方法及轨道衡 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11272976A (ja) * | 1998-03-23 | 1999-10-08 | Tokyo Electric Power Co Inc:The | 自動検針システム |
JP2003198744A (ja) * | 2001-12-27 | 2003-07-11 | Matsushita Electric Ind Co Ltd | 無線親機および無線子機 |
JP2005044639A (ja) * | 2003-07-23 | 2005-02-17 | Matsushita Electric Works Ltd | 調光データ処理システム |
JP2009169734A (ja) * | 2008-01-17 | 2009-07-30 | Oyo Keisoku Kogyo Kk | 現場計測システム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1477525A (zh) * | 2003-07-02 | 2004-02-25 | 孙永进 | 无线巡检仪及其巡检方法 |
CN101004853A (zh) * | 2006-01-18 | 2007-07-25 | 农科研发有限公司 | 远程温度传感系统 |
CN101753208B (zh) * | 2008-11-29 | 2013-07-10 | 华为数字技术(成都)有限公司 | 一种节点异常检测方法、装置及存储设备 |
CN102647769B (zh) * | 2012-02-23 | 2014-12-17 | 国网信息通信有限公司 | 远程抄表方法和系统、智能电表 |
CN103542882B (zh) * | 2012-07-10 | 2016-08-10 | 慈溪市水产技术推广中心 | 一种环境数据实时分析系统 |
CN103701694A (zh) * | 2012-09-27 | 2014-04-02 | 株式会社日立制作所 | 网关装置及数据处理方法 |
CN103063088B (zh) * | 2012-12-31 | 2015-10-28 | 战仁军 | 一种声光弹特性测量系统及测量方法 |
CN203243530U (zh) * | 2013-03-06 | 2013-10-16 | 成都信息工程学院 | 一种物联网系统 |
CN203289653U (zh) * | 2013-05-10 | 2013-11-13 | 哈尔滨惠恩科技开发有限公司 | 无线传感器及无线传感器系统 |
CN103641058A (zh) * | 2013-12-11 | 2014-03-19 | 兰州理工大学 | 罐车油料自动测量计量系统 |
CN103684950B (zh) * | 2013-12-17 | 2016-08-03 | 唐山轨道客车有限责任公司 | 多传感器复用总线系统及方法 |
-
2014
- 2014-11-14 JP JP2014231537A patent/JP6582395B2/ja active Active
-
2015
- 2015-10-16 CN CN201580055135.0A patent/CN106796752B/zh not_active Expired - Fee Related
- 2015-10-16 WO PCT/JP2015/079341 patent/WO2016076072A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11272976A (ja) * | 1998-03-23 | 1999-10-08 | Tokyo Electric Power Co Inc:The | 自動検針システム |
JP2003198744A (ja) * | 2001-12-27 | 2003-07-11 | Matsushita Electric Ind Co Ltd | 無線親機および無線子機 |
JP2005044639A (ja) * | 2003-07-23 | 2005-02-17 | Matsushita Electric Works Ltd | 調光データ処理システム |
JP2009169734A (ja) * | 2008-01-17 | 2009-07-30 | Oyo Keisoku Kogyo Kk | 現場計測システム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6451911B1 (ja) * | 2017-08-02 | 2019-01-16 | オムロン株式会社 | センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム |
JP6451910B1 (ja) * | 2017-08-02 | 2019-01-16 | オムロン株式会社 | センサ管理ユニット、センシングデータ流通システム、センシングデータ評価方法、およびセンシングデータ評価プログラム |
WO2019026710A1 (ja) * | 2017-08-02 | 2019-02-07 | オムロン株式会社 | センサ管理ユニット、センシングデータ流通システム、センシングデータ評価方法、およびセンシングデータ評価プログラム |
WO2019026711A1 (ja) * | 2017-08-02 | 2019-02-07 | オムロン株式会社 | センサ装置、背景雑音データ送信方法、および背景雑音データ送信プログラム |
CN110832557A (zh) * | 2017-08-02 | 2020-02-21 | 欧姆龙株式会社 | 传感器装置、背景噪声数据发送方法和背景噪声数据发送程序 |
US10887675B2 (en) | 2017-08-02 | 2021-01-05 | Omron Corporation | Sensor management unit, sensing data distribution system, sensing data evaluation method, and sensing data evaluation program |
US11758307B2 (en) | 2017-08-02 | 2023-09-12 | Omron Corporation | Sensor device, background noise data transmission method, and background noise data transmission program |
Also Published As
Publication number | Publication date |
---|---|
CN106796752B (zh) | 2020-09-29 |
CN106796752A (zh) | 2017-05-31 |
JP2016095683A (ja) | 2016-05-26 |
JP6582395B2 (ja) | 2019-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6582395B2 (ja) | 測定装置およびその制御方法、管理装置およびその制御方法、並びに測定システム | |
CN101755217B (zh) | 能量消耗测量 | |
JP5263819B2 (ja) | 蓄電池監視システム | |
KR20140009307A (ko) | 에너지 소비 감시 시스템, 방법, 및 컴퓨터 프로그램 | |
US20160054364A1 (en) | Power monitoring system for a power system, and power monitoring device thereof | |
US20170082986A1 (en) | Building management device, wide area management system, data acquiring method, and program | |
CN110737251A (zh) | 带时间传送的电池供电型现场设备 | |
BR112012027850B1 (pt) | Disposição e método para monitorar o estado atual de uma rede de abastecimento espacialmente extensa | |
JP5889563B2 (ja) | 水質分析計、水質分析計用管理装置、水質分析計用プログラム、水質分析計用管理プログラム及び水質分析システム | |
KR101185406B1 (ko) | 소비 전력 감시 장치 및 감시 방법 | |
CN105392170A (zh) | 一种信息处理方法和电子设备 | |
WO2016139845A1 (ja) | センサ管理装置、センサ、監視システム、センサ管理方法、センサ管理プログラム、監視方法および監視プログラム | |
CN106656558B (zh) | 一种延长数据采集服务器存储单元使用寿命的方法 | |
US20200292596A1 (en) | Monitoring system | |
US20190158602A1 (en) | Data collecting system based on distributed architecture and operation method thereof | |
KR101413829B1 (ko) | 전력 시스템에서 계측 정보 제공 기능을 가지는 하위 디지털 기기 | |
KR20150060297A (ko) | 무선기반 실시간 누적 전력량 모니터링 시스템 | |
CN104756026B (zh) | 过程自动化技术的测量器件 | |
KR101324036B1 (ko) | 소비 전력 감시 장치 및 감시 방법 | |
JP6760327B2 (ja) | センサ管理装置、監視システム、センサ管理方法およびセンサ管理プログラム | |
KR20140122820A (ko) | 디지털 계전/계측기 및 감시반 사이의 통신 모니터링 장치 | |
US20150105872A1 (en) | Reliability calculation device and method | |
US20120215493A1 (en) | Distributed Computing With Meters | |
KR20170124033A (ko) | 전력 계측 시스템 | |
JP6735502B2 (ja) | 通信ユニット、通信端末、プログラム、 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15858238 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15858238 Country of ref document: EP Kind code of ref document: A1 |