WO2019026438A1 - 車両用照明システム、車両システム及び車両 - Google Patents
車両用照明システム、車両システム及び車両 Download PDFInfo
- Publication number
- WO2019026438A1 WO2019026438A1 PCT/JP2018/022790 JP2018022790W WO2019026438A1 WO 2019026438 A1 WO2019026438 A1 WO 2019026438A1 JP 2018022790 W JP2018022790 W JP 2018022790W WO 2019026438 A1 WO2019026438 A1 WO 2019026438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- surrounding environment
- unit
- information
- detection data
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 737
- 230000002093 peripheral effect Effects 0.000 claims description 244
- 238000005286 illumination Methods 0.000 description 391
- 238000013507 mapping Methods 0.000 description 163
- 238000000034 method Methods 0.000 description 125
- 230000006870 function Effects 0.000 description 120
- 230000004927 fusion Effects 0.000 description 84
- 238000004891 communication Methods 0.000 description 74
- 230000008569 process Effects 0.000 description 67
- 238000012545 processing Methods 0.000 description 45
- 230000005540 biological transmission Effects 0.000 description 36
- 230000003287 optical effect Effects 0.000 description 36
- 230000015654 memory Effects 0.000 description 35
- 238000010586 diagram Methods 0.000 description 27
- 238000004364 calculation method Methods 0.000 description 20
- 239000011159 matrix material Substances 0.000 description 18
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 238000013528 artificial neural network Methods 0.000 description 12
- 238000013135 deep learning Methods 0.000 description 12
- 238000010801 machine learning Methods 0.000 description 12
- 230000007613 environmental effect Effects 0.000 description 8
- 238000010295 mobile communication Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/865—Combination of radar systems with lidar systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/02—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
- B60Q1/24—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead
- B60Q1/249—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead for illuminating the field of view of a sensor or camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/06—Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/862—Combination of radar systems with sonar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/0017—Devices integrating an element dedicated to another function
- B60Q1/0023—Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q2800/00—Features related to particular types of vehicles not otherwise provided for
- B60Q2800/10—Autonomous vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/06—Direction of travel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/05—Type of road, e.g. motorways, local streets, paved or unpaved roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/867—Combination of radar systems with cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/86—Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/932—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9322—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93277—Sensor installation details in the lights
Definitions
- the present disclosure relates to a lighting system for a vehicle, a vehicle system, and a vehicle.
- the present disclosure relates to a vehicle lighting system and a vehicle system provided in a vehicle capable of traveling in an automatic driving mode.
- the present disclosure also relates to a vehicle provided with a vehicle system.
- the vehicle system automatically controls the traveling of the vehicle. Specifically, in the automatic driving mode, the vehicle system performs steering control based on information (peripheral environment information) indicating the peripheral environment of the vehicle obtained from a sensor such as a camera or radar (for example, laser radar or millimeter wave radar) (Control of the traveling direction of the vehicle), at least one of brake control and accelerator control (braking of the vehicle, control of acceleration and deceleration) is automatically performed.
- a sensor for example, laser radar or millimeter wave radar
- the driver controls the travel of the vehicle, as is the case with many conventional vehicles.
- traveling of the vehicle is controlled in accordance with a driver's operation (steering operation, braking operation, accelerator operation), and the vehicle system does not automatically perform steering control, brake control, and accelerator control.
- the driving mode of a vehicle is not a concept that exists only in some vehicles, but a concept that exists in all vehicles including conventional vehicles that do not have an automatic driving function, for example, vehicle control It is classified according to the method etc.
- autonomous driving vehicles vehicles traveling in the automatic driving mode on public roads
- manual driving vehicles vehicles traveling in the manual driving mode
- Patent Document 1 discloses an automatic follow-up traveling system in which a following vehicle is automatically followed by a preceding vehicle.
- each of the leading vehicle and the following vehicle is equipped with a lighting system, and character information for preventing other vehicles from breaking in between the leading vehicle and the following vehicle is used as the lighting system of the preceding vehicle.
- character information indicating that the vehicle is following automatically is displayed on the illumination system of the following vehicle.
- a vehicle system is provided to a vehicle capable of traveling in an automatic driving mode.
- the vehicle system A sensor configured to obtain detection data indicative of a surrounding environment of the vehicle; A generation unit configured to generate surrounding environment information indicating a surrounding environment of the vehicle based on the detection data; A usage frequency setting unit configured to set the usage frequency of the sensor based on predetermined information associated with the vehicle or a surrounding environment of the vehicle; Equipped with
- the use frequency of the sensor is set based on the predetermined information associated with the vehicle or the surrounding environment of the vehicle. Therefore, for example, by reducing the frequency of use of the sensor, it is possible to reduce the power consumption consumed by the sensor and / or the generation unit (electronic control unit), and to reduce the calculation load of the generation unit. it can. Furthermore, by increasing the frequency of use of the sensor, the accuracy of the surrounding environment information can be increased, so that the traveling control of the vehicle can be performed with higher accuracy. Therefore, it is possible to provide a vehicle system capable of optimizing the frequency of use of the sensor in accordance with the condition of the vehicle or the surrounding environment of the vehicle.
- the use frequency setting unit may be configured to reduce the use frequency of the sensor based on the predetermined information.
- the frequency of use of the sensor is reduced based on the predetermined information associated with the vehicle or the surrounding environment of the vehicle. Therefore, the power consumption consumed by the sensor and / or the generation unit (electronic control unit) can be reduced, and the calculation load of the generation unit can be reduced.
- the frequency of use of the sensor is It may be a frame rate of the detection data, a bit rate of the detection data, a mode of the sensor or an update rate of the surrounding environment information.
- the update rate of is set.
- the vehicle system capable of optimizing the frame rate of detection data, the bit rate of detection data, the mode of the sensor or the update rate of the surrounding environment information according to the condition of the vehicle or the surrounding environment of the vehicle can do.
- the predetermined information may be at least one of information indicating the brightness of the surrounding environment and weather information of the current position of the vehicle.
- the frequency of use of the sensor is set based on at least one of the information indicating the brightness of the surrounding environment of the vehicle and the weather information of the current position of the vehicle.
- the predetermined information may be information indicating a speed of the vehicle.
- the frequency of use of the sensor is set based on the information indicating the speed of the vehicle.
- a vehicle system capable of optimizing the frequency of use of the sensor according to the speed of the vehicle.
- the predetermined information may be information indicating that the vehicle is currently traveling on a highway.
- the frequency of use of the sensor is set based on the information indicating that the vehicle is currently traveling on the expressway.
- a vehicle system capable of optimizing the frequency of use of the sensor in accordance with the road on which the vehicle is currently traveling.
- the predetermined information may be information indicating a traveling direction of the vehicle.
- the frequency of use of the sensor is set based on the information indicating the traveling direction of the vehicle.
- a vehicle system capable of optimizing the frequency of use of the sensor according to the traveling direction of the vehicle.
- the sensor may have a plurality of sensors.
- the use frequency setting unit may reduce the use frequency of a sensor disposed on the rear side of the vehicle.
- the use frequency setting unit may reduce the use frequency of a sensor disposed on the front side of the vehicle.
- the use frequency setting unit may reduce the use frequency of the sensor disposed on the left side of the vehicle.
- the frequency of use of the sensor disposed on the rear side of the vehicle decreases when the vehicle is moving forward.
- the frequency of use of the sensor disposed on the rear side of the vehicle it is possible to reduce the power consumption consumed by the sensor and / or the generation unit (electronic control unit).
- the calculation load of the generation unit can be reduced.
- the frequency of use of the sensor disposed on the front side of the vehicle is reduced.
- the frequency of use of the sensor disposed on the front side of the vehicle it is possible to reduce the power consumption consumed by the sensor and / or the generation unit (electronic control unit) and generate It is possible to reduce the calculation load of the unit.
- the frequency of use of the sensor disposed on the left side of the vehicle decreases.
- the frequency of use of the sensor disposed on the left side of the vehicle it is possible to reduce the power consumption consumed by the sensor and / or the generation unit (electronic control unit) and generate It is possible to reduce the calculation load of the unit.
- a vehicle including the vehicle system and capable of traveling in an automatic driving mode is provided.
- a vehicle system is provided to a vehicle capable of traveling in an automatic driving mode.
- the vehicle system is A first sensor configured to obtain first detection data indicating a surrounding environment of the vehicle at a first frame rate; A second sensor configured to obtain second detection data indicating a surrounding environment of the vehicle at a second frame rate; A first generation unit configured to generate first surrounding environment information indicating a surrounding environment of the vehicle based on the first detection data; And a second generation unit configured to generate second surrounding environment information indicating the surrounding environment of the vehicle based on the second detection data.
- the acquisition period of each frame of the first detection data and the acquisition period of each frame of the second detection data overlap each other.
- the acquisition period of each frame of the first detection data and the acquisition period of each frame of the second detection data overlap each other. Therefore, the time zone of the first peripheral environment information generated based on each frame of the first detection data substantially matches the time zone of the second peripheral environment information generated based on each frame of the second detection data. Do. As described above, by using both the first surrounding environment information and the second surrounding environment information in which the time zones substantially coincide with each other, the recognition accuracy of the surrounding environment of the vehicle can be improved.
- the first sensor may be a camera.
- the second sensor may be a laser radar.
- the recognition accuracy of the surrounding environment of the vehicle can be improved.
- the vehicle system A lighting unit configured to emit light towards the outside of the vehicle;
- a lighting control unit configured to control lighting of the lighting unit at a third rate; May further be provided.
- the third rate may be the same as the first frame rate.
- the lighting unit may light up in an acquisition period of each frame of the first detection data.
- the lighting unit lights up in the acquisition period of each frame of the first detection data (that is, the image data).
- image data indicating the environment around the vehicle is acquired by the camera, so blackout occurs in the image data when the environment around the vehicle is dark (for example, at night). It is possible to preferably prevent the occurrence.
- the third rate may be half of the first frame rate.
- the lighting unit may be turned off in the acquisition period of the first frame of the first detection data, and may be lit in the acquisition period of the second frame of the first detection data.
- the second frame is a frame acquired by the first sensor next to the first frame.
- the lighting unit is turned off in the acquisition period of the first frame of the first detection data (that is, the image data) and turned on in the acquisition period of the second frame of the first detection data which is the next frame.
- the camera acquires image data indicating the environment around the vehicle while the lighting unit is turned off, and acquires the image data while the lighting unit is turned on. That is, the vehicle is obtained by comparing the image data (first image data) captured when the lighting unit is off and the image data (second image data) captured when the lighting unit is on. It is possible to specify whether an object present in the vicinity of is emitting itself or reflecting light. In this way, it is possible to more accurately identify the attributes of objects present in the vicinity of the vehicle. Furthermore, the stray light generated in the second image data can be identified by comparing the first image data and the second image data.
- the acquisition start time of each frame of the first detection data may coincide with the acquisition start time of each frame of the second detection data.
- the first periphery generated based on each frame of the first detection data substantially matches the time zone of the second peripheral environment information generated based on each frame of the second detection data.
- a vehicle including the vehicle system and capable of traveling in an automatic driving mode is provided.
- a vehicle system is provided to a vehicle capable of traveling in an automatic driving mode, A plurality of sensors each configured to obtain detection data indicative of a surrounding environment of the vehicle; A detection accuracy determining unit configured to determine detection accuracy of the plurality of sensors; Equipped with
- the detection accuracy of the plurality of sensors is determined. Therefore, for example, when the detection accuracy of the sensor is low for a predetermined period, the vehicle system can determine that the sensor is abnormal. Further, the vehicle system can adopt detection data of sensors with high detection accuracy or surrounding environment information in an overlapping area where detection areas of a plurality of sensors overlap each other. Thus, it is possible to provide a vehicle system capable of improving the recognition accuracy of the surrounding environment of the vehicle.
- the vehicle system may further include a surrounding environment information identification unit configured to specify a surrounding environment of the vehicle based on the plurality of detection data and detection accuracy of the plurality of sensors.
- the surrounding environment of the vehicle is identified based on the detection accuracy of the plurality of sensors.
- the recognition accuracy of the surrounding environment of the vehicle can be improved.
- the peripheral environment information identification unit A plurality of surrounding environment information indicating the surrounding environment of the vehicle is generated based on the plurality of detection data,
- the detection unit may be configured to determine surrounding environment information to be adopted in an overlapping area where detection areas of the plurality of sensors overlap with each other based on detection accuracy of the plurality of sensors.
- the surrounding environment information adopted in the overlapping area is determined based on the detection accuracy of the plurality of sensors, so that the recognition accuracy of the surrounding environment of the vehicle can be improved.
- the peripheral environment information identification unit The detection data to be employed in an overlapping area where detection areas of the plurality of sensors overlap with each other may be determined based on detection accuracy of the plurality of sensors.
- the detection data to be adopted in the overlapping area is determined based on the detection accuracy of the plurality of sensors, so that the recognition accuracy of the surrounding environment of the vehicle can be improved.
- the detection area of the first sensor among the plurality of sensors may be divided into a plurality of partial areas.
- the detection accuracy determination unit may be configured to determine the detection accuracy of the first sensor in each of the plurality of partial regions.
- the detection accuracy of the first sensor in each of the plurality of partial regions is determined, the detection accuracy of the first sensor can be determined in more detail according to the partial regions. As described above, it is possible to further improve the recognition accuracy of the surrounding environment of the vehicle.
- the detection accuracy determination unit may be configured to determine the detection accuracy of the plurality of sensors based on the information indicating the current position of the vehicle and the map information.
- the detection accuracy of the plurality of sensors is determined based on the information indicating the current position of the vehicle and the map information.
- map information it becomes possible to determine detection accuracy of a plurality of sensors with comparatively high accuracy by using map information.
- the vehicle system may further comprise a receiver configured to receive infrastructure information related to the traffic infrastructure from traffic infrastructure existing around the vehicle.
- the detection accuracy determination unit may be configured to determine the detection accuracy of the plurality of sensors based on the information indicating the current position of the vehicle and the infrastructure information.
- the detection accuracy of the plurality of sensors is determined based on the information indicating the current position of the vehicle and the infrastructure information received from the traffic infrastructure facility. As described above, by receiving the infrastructure information from the traffic infrastructure facility, it is possible to determine detection accuracy of a plurality of sensors with relatively high accuracy.
- the vehicle system may further include a surrounding environment information identification unit configured to specify a surrounding environment of the vehicle based on the plurality of detection data and detection accuracy of the plurality of sensors.
- the surrounding environment information specifying unit may be configured to generate a plurality of surrounding environment information indicating the surrounding environment of the vehicle based on the plurality of detection data.
- the detection accuracy determining unit may be configured to determine the detection accuracy of the plurality of sensors by comparing the plurality of pieces of generated surrounding environment information.
- the detection accuracy of the plurality of sensors is determined by comparing the plurality of pieces of surrounding environment information.
- the detection accuracy of a plurality of sensors can be determined by a relatively simple method without using external information such as map information.
- a vehicle capable of traveling in an automatic driving mode may be provided, including the vehicle system.
- a vehicle system is provided to a vehicle capable of traveling in an automatic driving mode.
- the vehicle system A plurality of sensors each configured to obtain detection data indicative of a surrounding environment of the vehicle;
- a use priority determining unit configured to determine a use priority among the plurality of sensors based on predetermined information;
- a surrounding environment specifying unit configured to specify a surrounding environment of the vehicle based on the plurality of detection data and the use priority.
- the use priority among the plurality of sensors is determined based on the predetermined information, and then the surrounding environment of the vehicle is specified based on the plurality of detection data and the use priority.
- the surrounding environment of the vehicle is specified in consideration of the use priority among the plurality of sensors, so it is possible to provide a vehicle system capable of improving the recognition accuracy of the surrounding environment of the vehicle.
- the surrounding environment identification unit A plurality of surrounding environment information indicating the surrounding environment of the vehicle is generated based on the plurality of detection data, Comparing the plurality of peripheral environment information in an overlapping area where detection areas of the plurality of sensors overlap each other;
- the plurality of pieces of surrounding environment information may be configured to determine the surrounding environment information to be adopted in the overlapping area based on the usage priority when the pieces of surrounding environment information do not match each other.
- the surrounding environment information to be adopted in the overlapping area is determined based on the use priority among the plurality of sensors. Cognitive accuracy can be improved.
- the detection data to be employed in an overlapping area where detection areas of the plurality of sensors overlap with each other may be determined based on the usage priority.
- the detection data adopted in the overlapping area is determined based on the use priority among the plurality of sensors, so that the recognition accuracy of the surrounding environment of the vehicle can be improved.
- the predetermined information may be information indicating brightness of the surrounding environment.
- the use priority among the plurality of sensors is determined based on the information indicating the brightness of the surrounding environment of the vehicle, and then the surrounding environment of the vehicle is determined based on the plurality of detection data and the use priority. Is identified.
- the use priority is optimized according to the brightness of the surrounding environment of the vehicle, it is possible to improve the recognition accuracy of the surrounding environment of the vehicle.
- the predetermined information may be information indicating the brightness of the surrounding environment and weather information.
- the use priority among the plurality of sensors is determined based on the information indicating the brightness of the surrounding environment of the vehicle and the weather information, and then the vehicle is determined based on the plurality of detection data and the use priority.
- the surrounding environment of is identified.
- the predetermined information may be information on detection accuracy of the plurality of sensors.
- the use priority among the plurality of sensors is determined based on the detection accuracy of the plurality of sensors, and then the surrounding environment of the vehicle is specified based on the plurality of detection data and the use priority.
- the use priority is determined according to the detection accuracy of a plurality of sensors, the recognition accuracy of the surrounding environment of the vehicle can be improved.
- a vehicle including the vehicle system and capable of traveling in an automatic driving mode is provided.
- a vehicle system is provided to a vehicle capable of traveling in an automatic driving mode.
- the vehicle system is A first sensor configured to obtain first detection data indicating a surrounding environment of the vehicle at a first frame rate; A second sensor configured to obtain second detection data indicating a surrounding environment of the vehicle at a second frame rate; A first generation unit configured to generate first surrounding environment information indicating a surrounding environment of the vehicle based on the first detection data; And a second generation unit configured to generate second surrounding environment information indicating the surrounding environment of the vehicle based on the second detection data.
- the acquisition start time of each frame of the first detection data and the acquisition start time of each frame of the second detection data are different from each other.
- the acquisition start time of each frame of the first detection data and the acquisition start time of each frame of the second detection data are different from each other. That is, the second detection data can be acquired in a time zone in which the first detection data can not be acquired. Therefore, the time zone of the first peripheral environment information generated based on each frame of the first detection data is different from the time zone of the second peripheral environment information generated based on each frame of the second detection data. .
- the first frame rate of the first sensor and the second frame rate of the second sensor are low, using both the first peripheral environment information and the second peripheral environment information makes a difference.
- the first sensor may be a camera.
- the second sensor may be a laser radar.
- the vehicle system A lighting unit configured to emit light towards the outside of the vehicle;
- a lighting control unit configured to control lighting of the lighting unit at a third rate; May further be provided.
- the third rate may be the same as the first frame rate.
- the lighting unit may be turned on in the acquisition period of each frame of the first detection data and may be turned off in the acquisition period of each frame of the second detection data.
- the lighting unit is turned on in the acquisition period of each frame of the first detection data (i.e., image data) and is turned off in the acquisition period of each frame of the second detection data.
- image data indicating the environment around the vehicle is acquired by the camera, so blackout occurs in the image data when the environment around the vehicle is dark (for example, at night). It is possible to preferably prevent the occurrence.
- the second detection data indicating the environment around the vehicle is acquired by the laser radar, so that part of the light emitted from the lighting unit is incident on the laser radar, It is possible to preferably prevent the adverse effect on the second detection data.
- the third rate may be half of the first frame rate.
- the lighting unit may be turned on in the acquisition period of the first frame of the first detection data and may be turned off in the acquisition period of the second frame of the first detection data.
- the second frame is a frame acquired by the first sensor next to the first frame.
- the lighting unit lights up in the acquisition period of the first frame of the first detection data (that is, the image data) and extinguishes in the acquisition period of the second frame of the first detection data which is the next frame.
- the camera acquires image data indicating the surrounding environment of the vehicle, and acquires the image data while the lighting unit is off. That is, the vehicle is obtained by comparing the image data (first image data) captured when the lighting unit is off and the image data (second image data) captured when the lighting unit is on. It is possible to specify whether an object present in the vicinity of is emitting itself or reflecting light. In this way, it is possible to more accurately identify the attributes of objects present in the vicinity of the vehicle. Furthermore, the stray light generated in the second image data can be identified by comparing the first image data and the second image data.
- the second sensor detects the second detection data at least in a first period between an acquisition end time of a first frame of the first detection data and an acquisition start time of a second frame of the first detection data. It may be configured to acquire.
- the second frame is a frame acquired by the first sensor next to the first frame.
- the second detection data is acquired in the first period between the acquisition end time of the first frame of the first detection data and the acquisition start time of the second frame of the first detection data that is the next frame.
- peripheral environment information can be temporally densely acquired.
- an interval between an acquisition start time of the first frame of the second detection data acquired at least in the first period and an acquisition start time of the first frame of the first detection data is the first detection data.
- the acquisition period of the first frame may be larger than half of the acquisition period of the first frame and smaller than the acquisition period of the first detection data.
- the interval between the acquisition start time of the first frame of the second detection data and the acquisition start time of the first frame of the first detection data corresponds to the acquisition period of the first frame of the first detection data. More than half and less than the acquisition period of the first detection data.
- a vehicle including the vehicle system and capable of traveling in an automatic driving mode is provided.
- a vehicle system is provided to a vehicle capable of traveling in an automatic driving mode, A plurality of first sensors each arranged in a first region of the vehicle and configured to obtain first detection data indicative of a surrounding environment of the vehicle; A first control unit configured to generate first surrounding environment information indicating a surrounding environment of the vehicle in a first surrounding area of the vehicle based on the plurality of first detection data.
- a sensing system A plurality of second sensors each arranged in a second area of the vehicle different from the first area and configured to obtain second detection data indicative of a surrounding environment of the vehicle; A second control unit configured to generate second surrounding environment information indicating a surrounding environment of the vehicle in a second surrounding area of the vehicle based on the plurality of second detection data.
- a sensing system Based on at least one of the first surrounding environment information and the second surrounding environment information, the surrounding environment of the vehicle in the overlapping surrounding area in which the first surrounding area and the second surrounding area overlap with each other is finally determined. And a third control unit configured to be identified.
- the surrounding environment of the vehicle in the overlapping surrounding area where the first surrounding area and the second surrounding area overlap with each other is final Identified.
- a vehicle system capable of improving the recognition accuracy of the peripheral environment of the vehicle can be provided.
- the third control unit is The surrounding environment of the vehicle in the overlapping surrounding area based on the relative positional relationship between the vehicle and the overlapping surrounding area and at least one of the first surrounding environment information and the second surrounding environment information May be configured to finally identify.
- the surrounding environment of the vehicle in the overlapping surrounding area based on the relative positional relationship between the vehicle and the overlapping surrounding area and at least one of the first surrounding environment information and the second surrounding environment information. Is finally identified.
- the surrounding environment of the vehicle in the overlapping surrounding area is finally identified, thereby improving the recognition accuracy of the surrounding environment of the vehicle. be able to.
- the third control unit is Based on the first surrounding environment information, the surrounding environment of the vehicle in a first partial area of the overlapping surrounding area is finally identified, The surrounding environment of the vehicle in a second partial area of the overlapping surrounding area may be finally identified based on the second surrounding environment information.
- the distance between the first partial area and the first area is smaller than the distance between the first partial area and the second area.
- the distance between the second partial region and the second region is smaller than the distance between the second partial region and the first region.
- the peripheral environment of the vehicle is finally specified based on the first peripheral environment information.
- the peripheral environment of the vehicle is finally specified based on the second peripheral environment information.
- the third control unit may be configured to finally specify an average value of the first value and the second value as the value of the first parameter.
- the first parameter may be a parameter related to a relative positional relationship between an object present in the overlapping peripheral area and the vehicle.
- the average value of the first value and the second value of the first parameter (for example, position, distance, direction) related to the relative positional relationship between the object and the vehicle is the first value. It is finally specified as the value of one parameter.
- the surrounding environment of the vehicle in the overlapping surrounding area is finally specified, so that the recognition accuracy of the surrounding environment of the vehicle can be improved.
- the third control unit is Based on one of the first surrounding environment information and the second surrounding environment information, information related to the detection accuracy of the plurality of first sensors, and information related to the detection accuracy of the plurality of second sensors It may be configured to finally identify the surrounding environment of the vehicle in the overlapping surrounding area.
- the peripheral environment of the vehicle in the overlapping peripheral area is finally determined in consideration of the information related to the detection accuracy of the plurality of first sensors and the information related to the detection accuracy of the plurality of second sensors. Since the identification is made, the recognition accuracy of the surrounding environment of the vehicle can be improved.
- a vehicle capable of traveling in an automatic driving mode may be provided, including the vehicle system.
- FIG. 1 is a schematic view showing a top view of a vehicle provided with a vehicle system. It is a block diagram showing a vehicle system. It is a figure which shows the functional block of the control part of the left front illumination system. It is a figure which shows the detection area
- FIG. 1 is a schematic view showing a top view of a vehicle provided with a vehicle system. It is a block diagram showing a vehicle system. It is a figure which shows the functional block of the control part of the left front illumination system. It is a figure which shows the detection area
- FIG. 7 is a diagram (part 1) for explaining the relationship between the acquisition timing of each frame of image data, the acquisition timing of each frame of 3D mapping data, and the lighting timing of the lighting unit.
- FIG. 1 is a top view of a vehicle equipped with a vehicle system. It is a block diagram showing a vehicle system. It is a figure which shows the functional block of the control part of the left front illumination system. It is a figure which shows the detection area
- A is a flowchart for demonstrating an example of the process which determines the detection data employ
- B is a flowchart for demonstrating another example of the process which produces
- FIG. 1 is a schematic view showing a top view of a vehicle provided with a vehicle system. It is a block diagram showing a vehicle system. It is a figure which shows the functional block of the control part of the left front illumination system.
- A) is a flowchart for demonstrating an example of the process which determines a use priority.
- B) is a flow chart for explaining an example of processing to generate merged peripheral environment information. It is a figure which shows the detection area
- FIG. 1 is a schematic view showing a top view of a vehicle provided with a vehicle system. It is a block diagram showing a vehicle system. It is a figure which shows the functional block of the control part of the left front illumination system. It is a figure which shows the detection area
- FIG. 1 is a schematic view showing a top view of a vehicle provided with a vehicle system. It is a block diagram showing a vehicle system. It is a figure which shows the functional block of the control part of the left front illumination system. It is a figure which shows the detection area
- FIG. 7 is a diagram (part 1) for explaining the relationship between the acquisition timing of each frame of image data, the acquisition timing of each frame of 3D mapping data, and the lighting timing of the lighting unit. It is a figure (2) for explaining the relation between the acquisition timing of each frame of image data, the acquisition timing of each frame of 3D mapping data, and the lighting timing of a lighting unit. It is a top view of vehicles provided with a vehicle system concerning a 6th embodiment. It is a block diagram showing a vehicle system concerning a 6th embodiment. It is a figure which shows the functional block of the control part of the left front illumination system. It is a flowchart for demonstrating an example of the process which produces
- FIG. 7 shows a detection area of the left front illumination system, a detection area of the right front illumination system, and an overlapping peripheral area where these two detection areas overlap each other. It is a figure which shows a mode that a pedestrian exists in the duplication peripheral area
- FIG. 5 shows a detection area of the left rear illumination system, a detection area of the right rear illumination system, and an overlapping peripheral area in which these two detection areas overlap each other. It is a block diagram showing the vehicles system concerning the modification of a 6th embodiment.
- the present embodiment a first embodiment of the present disclosure (hereinafter, simply referred to as “the present embodiment”) will be described with reference to the drawings.
- the description is abbreviate
- the dimensions of the respective members shown in the drawings may differ from the actual dimensions of the respective members for the convenience of the description.
- left and right direction and “front and back direction” will be referred to as appropriate for convenience of description. These directions are relative directions set for the vehicle 1 shown in FIG.
- the “front-rear direction” is a direction including the “front direction” and the “rear direction”.
- the “left-right direction” is a direction including the “left direction” and the “right direction”.
- FIG. 1 is a schematic view showing a top view of a vehicle 1 provided with a vehicle system 2.
- the vehicle 1 is a vehicle (automobile) that can travel in an automatic driving mode, and includes a vehicle system 2.
- the vehicle system 2 includes a vehicle control unit 3, a front left illumination system 4a (hereinafter simply referred to as “illumination system 4a”), a front right illumination system 4b (hereinafter simply referred to as “illumination system 4b”) and a left rear illumination.
- At least a system 4c hereeinafter, simply referred to as “illumination system 4c”
- a right rear illumination system 4d hereinafter, simply referred to as "illumination system 4d”).
- the illumination system 4 a is provided on the left front side of the vehicle 1.
- the lighting system 4a includes a housing 24a installed on the left front side of the vehicle 1 and a light transmitting cover 22a attached to the housing 24a.
- the illumination system 4 b is provided on the right front side of the vehicle 1.
- the lighting system 4b includes a housing 24b installed on the right front side of the vehicle 1, and a light transmitting cover 22b attached to the housing 24b.
- the illumination system 4 c is provided on the left rear side of the vehicle 1.
- the lighting system 4 c includes a housing 24 c installed on the left rear side of the vehicle 1 and a light transmitting cover 22 c attached to the housing 24 c.
- the illumination system 4 d is provided on the right rear side of the vehicle 1.
- the illumination system 4d includes a housing 24d installed on the right rear side of the vehicle 1 and a light transmitting cover 22d attached to the housing 24d.
- FIG. 2 is a block diagram showing the vehicle system 2.
- the vehicle system 2 includes a vehicle control unit 3, illumination systems 4a to 4d, a sensor 5, an HMI (Human Machine Interface) 8, a GPS (Global Positioning System) 9, and a wireless communication unit. 10 and a storage device 11.
- the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
- the vehicle system 2 also includes a battery (not shown) configured to supply power.
- the vehicle control unit 3 is configured to control the traveling of the vehicle 1.
- the vehicle control unit 3 is configured of, for example, at least one electronic control unit (ECU: Electronic Control Unit).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuitry including active and passive elements such as transistors.
- the processor is, for example, a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), and / or a tensor processing unit (TPU).
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- a vehicle control program may be stored in the ROM.
- the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
- AI is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- the RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating a surrounding environment of the vehicle.
- the processor may be configured to expand a program specified from the vehicle control program stored in the ROM on the RAM, and execute various processes in cooperation with the RAM.
- the electronic control unit may be configured by at least one integrated circuit such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). Furthermore, the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the illumination system 4a further includes a control unit 40a, an illumination unit 42a, a camera 43a, a LiDAR (Light Detection and Ranging) unit 44a (an example of a laser radar), and a millimeter wave radar 45a.
- the control unit 40a, the illumination unit 42a, the camera 43a, the LiDAR unit 44a, and the millimeter wave radar 45a, as shown in FIG. 1, are in a space Sa (a light chamber) formed by a housing 24a and a light transmission cover 22a. Will be placed.
- the control unit 40a may be disposed at a predetermined place of the vehicle 1 other than the space Sa.
- the control unit 40a may be configured integrally with the vehicle control unit 3.
- the control unit 40a is configured by, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits (eg, transistors, etc.).
- the processor is, for example, a CPU, an MPU, a GPU and / or a TPU.
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM and a RAM.
- the ROM may store a surrounding environment specifying program for specifying the surrounding environment of the vehicle 1.
- the peripheral environment identification program is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- a peripheral environment identification program In the RAM, a peripheral environment identification program, image data acquired by the camera 43a, three-dimensional mapping data (point group data) acquired by the LiDAR unit 44a, and / or detection data acquired by the millimeter wave radar 45a, etc. are temporarily stored. May be stored.
- the processor may be configured to expand a program specified from the peripheral environment specifying program stored in the ROM on the RAM and execute various processing in cooperation with the RAM.
- the electronic control unit (ECU) may be configured by at least one integrated circuit such as an ASIC or an FPGA.
- the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- the illumination unit 42 a is configured to form a light distribution pattern by emitting light toward the outside (forward) of the vehicle 1.
- the illumination unit 42a has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, a light emitting diode (LED), a laser diode (LD), or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the lighting unit 42a, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector. And at least one of the lenses.
- the lighting unit 42a displays a light distribution pattern for the driver (for example, a low beam light distribution pattern or a high beam light distribution pattern) in front of the vehicle 1. It is configured to form. Thus, the lighting unit 42a functions as a left headlamp unit.
- the lighting unit 42a may be configured to form a light distribution pattern for a camera in front of the vehicle 1.
- Control part 40a may be constituted so that an electric signal (for example, PWM (Pulse Width Modulation) signal) may be separately supplied to each of a plurality of light emitting elements provided in lighting unit 42a.
- the control unit 40a can individually select the light emitting elements to which the electric signal is supplied, and can adjust the duty ratio of the electric signal for each light emitting element. That is, the control unit 40a can select a light emitting element to be turned on or off among the plurality of light emitting elements arranged in a matrix, and can determine the luminance of the light emitting element that is turned on.
- the control unit 40a can change the shape and brightness of the light distribution pattern emitted forward from the lighting unit 42a.
- the camera 43a is configured to detect the surrounding environment of the vehicle 1.
- the camera 43a is configured to transmit the image data to the control unit 40a after acquiring image data indicating the surrounding environment of the vehicle 1 at a predetermined frame rate.
- the control unit 40a specifies the surrounding environment information based on the transmitted image data.
- the surrounding environment information may include information on an object present outside the vehicle 1.
- the surrounding environment information may include information on the attribute of an object present outside the vehicle 1 and information on the position of the object relative to the vehicle 1.
- the camera 43a is configured by an imaging device such as, for example, a charge-coupled device (CCD) or a metal oxide semiconductor (CMOS).
- CCD charge-coupled device
- CMOS metal oxide semiconductor
- the camera 43a may be configured as a monocular camera or may be configured as a stereo camera.
- the control unit 40a uses parallax to make the vehicle 1 and an object existing outside the vehicle 1 (for example, based on two or more image data acquired by the stereo camera) The distance between the pedestrian and the like can be specified.
- one camera 43a is provided in the illumination system 4a in the present embodiment, two or more cameras 43a may be provided in the illumination system 4a.
- the LiDAR unit 44 a (an example of a laser radar) is configured to detect the surrounding environment of the vehicle 1.
- the LiDAR unit 44a is configured to transmit 3D mapping data to the control unit 40a after acquiring 3D mapping data (point cloud data) indicating the surrounding environment of the vehicle 1 at a predetermined frame rate.
- the control unit 40a specifies the surrounding environment information based on the transmitted 3D mapping data.
- the surrounding environment information may include information on an object present outside the vehicle 1.
- the surrounding environment information may include information on the attribute of an object present outside the vehicle 1 and information on the position of the object relative to the vehicle 1.
- the LiDAR unit 44a acquires information on the time of flight (TOF) ⁇ T1 of the laser beam (light pulse) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) of the laser beam. Then, based on the information on the time of flight ⁇ T1, the information on the distance D between the LiDAR unit 44a (vehicle 1) and the object existing outside the vehicle 1 at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) is obtained can do.
- the flight time ⁇ T1 can be calculated, for example, as follows.
- Time of flight ⁇ T1 time at which laser light (light pulse) returned to LiDAR unit t1—time at which LiDAR unit emitted laser light (light pulse)
- the LiDAR unit 44a can acquire 3D mapping data indicating the environment around the vehicle 1.
- the LiDAR unit 44a includes, for example, a laser light source configured to emit a laser beam, an optical deflector configured to scan the laser beam in the horizontal direction and the vertical direction, and an optical system such as a lens. And a light receiving unit configured to receive the laser light reflected by the object.
- the central wavelength of the laser light emitted from the laser light source is not particularly limited.
- the laser light may be invisible light whose center wavelength is around 900 nm.
- the light deflector may be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
- the light receiving unit is, for example, a photodiode.
- the LIDAR unit 44a may acquire 3D mapping data without scanning the laser beam by the light deflector.
- the LiDAR unit 44a may obtain 3D mapping data in a phased array method or a flash method.
- one LiDAR unit 44a is provided in the illumination system 4a in the present embodiment, two or more LiDAR units 44a may be provided in the illumination system 4a.
- one LiDAR unit 44a is configured to detect the surrounding environment in the front area of the vehicle 1 and the other LiDAR unit 44a is a vehicle 1 It may be configured to detect the surrounding environment in the side area of the
- the millimeter wave radar 45 a is configured to detect the surrounding environment of the vehicle 1.
- the millimeter wave radar 45a is configured to transmit detection data to the control unit 40a after acquiring detection data indicating the surrounding environment of the vehicle 1 at a predetermined frame rate.
- the control unit 40a specifies the surrounding environment information based on the transmitted detection data.
- the surrounding environment information may include information on an object present outside the vehicle 1.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 1, information on the position of the object relative to the vehicle 1, and information on the speed of the object relative to the vehicle 1.
- the millimeter wave radar 45 a may be between the millimeter wave radar 45 a (vehicle 1) and an object existing outside the vehicle 1 by a pulse modulation method, an FM-CW (Frequency Moduled-Continuous Wave) method, or a two-frequency CW method.
- the distance D of can be obtained.
- the pulse modulation method is used, the millimeter wave radar 45a acquires the information on the time of flight ⁇ T2 of the millimeter wave at each emission angle of the millimeter wave, and then the millimeter wave radar at each emission angle based on the information on the time of flight ⁇ T2. It is possible to acquire information on the distance D between 45a (vehicle 1) and an object present outside the vehicle 1.
- the flight time ⁇ T2 can be calculated, for example, as follows.
- Time of flight ⁇ T2 time t3 when millimeter wave returns to millimeter wave radar
- the millimeter wave radar 45a is a vehicle 1 for the millimeter wave radar 45a (vehicle 1) based on the frequency f0 of the millimeter wave emitted from the millimeter wave radar 45a and the frequency f1 of the millimeter wave returned to the millimeter wave radar 45a. It is possible to obtain information on the relative velocity V of an object that exists outside of.
- the illumination system 4a may have a millimeter wave radar 45a for short distance, a millimeter wave radar 45a for medium distance, and a millimeter wave radar 45a for long distance.
- the illumination system 4b further includes a control unit 40b, an illumination unit 42b, a camera 43b, a LiDAR unit 44b, and a millimeter wave radar 45b.
- the control unit 40b, the illumination unit 42b, the camera 43b, the LiDAR unit 44b, and the millimeter wave radar 45b, as shown in FIG. 1, are in the space Sb formed by the housing 24b and the light transmission cover 22b (light chamber) Will be placed.
- the control unit 40b may be disposed at a predetermined place of the vehicle 1 other than the space Sb.
- the control unit 40 b may be configured integrally with the vehicle control unit 3.
- the control unit 40b may have the same function and configuration as the control unit 40a.
- the lighting unit 42b may have the same function and configuration as the lighting unit 42a.
- the lighting unit 42a functions as a left headlamp unit, while the lighting unit 42b functions as a right headlamp unit.
- the camera 43b may have the same function and configuration as the camera 43a.
- the LiDAR unit 44b may have the same function and configuration as the LiDAR unit 44a.
- the millimeter wave radar 45 b may have the same function and configuration as the millimeter wave radar 45 a.
- the illumination system 4c further includes a control unit 40c, an illumination unit 42c, a camera 43c, a LiDAR unit 44c, and a millimeter wave radar 45c.
- the control unit 40c, the illumination unit 42c, the camera 43c, the LiDAR unit 44c, and the millimeter wave radar 45c, as shown in FIG. 1, are in the space Sc formed by the housing 24c and the light transmission cover 22c (light chamber) Will be placed.
- the control unit 40c may be disposed at a predetermined place of the vehicle 1 other than the space Sc.
- the control unit 40c may be configured integrally with the vehicle control unit 3.
- the control unit 40c may have the same function and configuration as the control unit 40a.
- the illumination unit 42 c is configured to form a light distribution pattern by emitting light toward the outside (rear) of the vehicle 1.
- the illumination unit 42c has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, an LED, an LD or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the lighting unit 42c, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector. And at least one of the lenses.
- the lighting unit 42c When the driving mode of the vehicle 1 is the manual driving mode or the driving support mode, the lighting unit 42c may be turned off. On the other hand, when the driving mode of the vehicle 1 is the advanced driving assistance mode or the fully automatic driving mode, the lighting unit 42c may be configured to form a light distribution pattern for a camera behind the vehicle 1.
- the camera 43c may have the same function and configuration as the camera 43a.
- the LiDAR unit 44c may have the same function and configuration as the LiDAR unit 44c.
- the millimeter wave radar 45c may have the same function and configuration as the millimeter wave radar 45a.
- the illumination system 4d further includes a control unit 40d, an illumination unit 42d, a camera 43d, a LiDAR unit 44d, and a millimeter wave radar 45d.
- the control unit 40d, the illumination unit 42d, the camera 43d, the LiDAR unit 44d, and the millimeter wave radar 45d are in a space Sd formed by the housing 24d and the light transmission cover 22d (light chamber) Will be placed.
- the control unit 40d may be disposed at a predetermined place of the vehicle 1 other than the space Sd.
- the control unit 40 d may be configured integrally with the vehicle control unit 3.
- the control unit 40d may have the same function and configuration as the control unit 40c.
- the lighting unit 42d may have the same function and configuration as the lighting unit 42c.
- the camera 43d may have the same function and configuration as the camera 43c.
- the LiDAR unit 44d may have the same function and configuration as the LiDAR unit 44c.
- the millimeter wave radar 45 d may have the same function and configuration as the millimeter wave radar 45 c.
- the sensor 5 may include an acceleration sensor, a speed sensor, a gyro sensor, and the like.
- the sensor 5 is configured to detect the traveling state of the vehicle 1 and to output traveling state information indicating the traveling state of the vehicle 1 to the vehicle control unit 3.
- the sensor 5 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face direction sensor that detects the direction of the driver's face, an external weather sensor that detects an external weather condition, and a person in the car You may further provide a human sensor etc. which detect whether it is.
- the sensor 5 may include an illuminance sensor configured to detect the brightness (illuminance etc.) of the surrounding environment of the vehicle 1.
- the illuminance sensor may determine the brightness of the surrounding environment according to, for example, the magnitude of the photocurrent output from the photodiode.
- the HMI (Human Machine Interface) 8 includes an input unit that receives an input operation from the driver, and an output unit that outputs traveling state information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode switching switch for switching the operation mode of the vehicle 1 and the like.
- the output unit includes a display and the like configured to display the traveling state information, the surrounding environment information, and the lighting state of the lighting system 4.
- the GPS (Global Positioning System) 9 is configured to acquire current position information of the vehicle 1 and to output the acquired current position information to the vehicle control unit 3.
- the wireless communication unit 10 receives information (for example, other vehicle traveling information and the like) related to other vehicles around the vehicle 1 from the other vehicles and also transmits information (for example, own vehicle traveling information and the like) for the vehicle 1 to the other vehicles. It is configured to transmit (inter-vehicle communication).
- the wireless communication unit 10 is configured to receive infrastructure information from an infrastructure facility such as a traffic light and a marker light and to transmit vehicle running information of the vehicle 1 to the infrastructure facility (inter-vehicle communication).
- the wireless communication unit 10 receives information on the pedestrian from a portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the traveling information of the vehicle 1 of the vehicle 1 to the portable electronic device. It is configured to (pedal communication).
- the vehicle 1 may communicate directly with other vehicles, infrastructure equipment or portable electronic devices in an ad hoc mode, or may communicate via an access point.
- the wireless communication standard is, for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) or LPWA.
- the vehicle 1 may communicate with other vehicles, infrastructure equipment, or portable electronic devices via a mobile communication network.
- the storage device 11 is an external storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
- the storage device 11 may store 2D or 3D map information and / or a vehicle control program.
- the storage device 11 is configured to output map information and a vehicle control program to the vehicle control unit 3 in response to a request from the vehicle control unit 3.
- the map information and the vehicle control program may be updated via the wireless communication unit 10 and a communication network such as the Internet.
- the vehicle control unit 3 controls the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information and / or the map information. Automatically generate at least one of them.
- the steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and to control the steering device 13 based on the received steering control signal.
- the brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal.
- the accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and to control the accelerator device 17 based on the received accelerator control signal. As described above, in the automatic driving mode, the traveling of the vehicle 1 is automatically controlled by the vehicle system 2.
- the vehicle control unit 3 when the vehicle 1 travels in the manual operation mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal and a brake control signal according to the driver's manual operation on the accelerator pedal, the brake pedal and the steering wheel. Do. As described above, in the manual operation mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so the travel of the vehicle 1 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a completely automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle system 2 In the fully automatic operation mode, the vehicle system 2 automatically performs all travel control of steering control, brake control and accelerator control, and the driver is not in a state where the vehicle 1 can be driven.
- the vehicle system 2 In the advanced driving support mode, the vehicle system 2 automatically performs all travel control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 1 although the vehicle 1 can be driven.
- the driving support mode the vehicle system 2 automatically performs traveling control of a part of steering control, brake control and accelerator control, and the driver drives the vehicle 1 under the driving support of the vehicle system 2.
- the manual operation mode the vehicle system 2 does not automatically perform travel control, and the driver drives the vehicle 1 without driving assistance from the vehicle system 2.
- the operation mode of the vehicle 1 may be switched by operating the operation mode switch.
- the vehicle control unit 3 sets the driving mode of the vehicle 1 to four driving modes (completely automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) according to the driver's operation to the drive mode switching switch. Switch between).
- the operation mode of the vehicle 1 is automatically based on the information on the travelable section where the autonomous driving vehicle can travel and the prohibited travel interval where the autonomous driving vehicle is prohibited or the information on the external weather condition. It may be switched to In this case, the vehicle control unit 3 switches the driving mode of the vehicle 1 based on these pieces of information.
- the driving mode of the vehicle 1 may be automatically switched by using a seating sensor, a face direction sensor, or the like. In this case, the vehicle control unit 3 may switch the operation mode of the vehicle 1 based on output signals from the seating sensor and the face direction sensor.
- FIG. 3 is a diagram showing functional blocks of the control unit 40a of the illumination system 4a.
- the control unit 40a controls operations of the illumination unit 42a, the camera 43a (an example of a sensor), the LiDAR unit 44a (an example of a sensor), and the millimeter wave radar 45a (an example of a sensor).
- the control unit 40a includes an illumination control unit 410a, a camera control unit 420a (an example of a generation unit), a LiDAR control unit 430a (an example of a generation unit), and a millimeter wave radar control unit 440a (an example of a generation unit).
- a surrounding environment information fusion unit 450a and a usage frequency setting unit 460a a surrounding environment information fusion unit 450a and a usage frequency setting unit 460a.
- the camera 43a, the LiDAR unit 44a, and the millimeter wave radar 45a may be collectively referred to simply as a "sensor”.
- the illumination control unit 410 a is configured to control the illumination unit 42 a so that the illumination unit 42 a emits a predetermined light distribution pattern toward the front area of the vehicle 1.
- the illumination control unit 410 a may change the light distribution pattern emitted from the illumination unit 42 a according to the operation mode of the vehicle 1.
- the camera control unit 420a controls the operation of the camera 43a and, based on the image data (detection data) output from the camera 43a, surrounding environment information of the vehicle 1 in the detection area S1 (see FIG. 4) of the camera 43a (see Hereinafter, it is configured to generate peripheral environment information I1.
- the LiDAR control unit 430a controls the operation of the LiDAR unit 44a and, based on the 3D mapping data (detection data) output from the LiDAR unit 44a, the vehicle 1 of the detection area S2 (see FIG. 4) of the LiDAR unit 44a. It is configured to generate peripheral environment information (hereinafter referred to as peripheral environment information I2).
- the millimeter wave radar control unit 440a controls the operation of the millimeter wave radar 45a and, based on the detection data output from the millimeter wave radar 45a, the vehicle 1 in the detection area S3 (see FIG. 4) of the millimeter wave radar 45a. It is configured to generate peripheral environment information (hereinafter referred to as peripheral environment information I3).
- the surrounding environment information fusion unit 450a is configured to merge the surrounding environment information I1, I2, and I3 to generate the fused surrounding environment information If.
- the surrounding environment information If is a vehicle 1 in a detection area Sf in which the detection area S1 of the camera 43a, the detection area S2 of the LiDAR unit 44a, and the detection area S3 of the millimeter wave radar 45a are combined.
- the information related to the object for example, a pedestrian, another vehicle, etc.
- the surrounding environment information If may include information on the attribute of the object, the position of the object relative to the vehicle 1, the distance between the vehicle 1 and the object, and / or the velocity of the object relative to the vehicle 1.
- the surrounding environment information fusion unit 450 a transmits the surrounding environment information If to the vehicle control unit 3.
- the surrounding environment information fusion unit 450a compares the surrounding environment information I1 with the surrounding environment information I2 in an overlapping area Sx where the detection area S1 of the camera 43a and the detection area S2 of the LiDAR unit 44a overlap. May be For example, when the surrounding environment information I1 indicates the presence of the pedestrian P1 in the overlapping area Sx, but the surrounding environment information I2 does not indicate the presence of the pedestrian P1 in the overlapping area Sx, the surrounding environment information fusion unit 450a Either one of the surrounding environment information I1 and I2 may be adopted based on (information indicating the reliability of the sensor, etc.).
- the use frequency setting unit 460a sets the use frequency of the camera 43a, the use frequency of the LiDAR unit 44a, and the use frequency of the millimeter wave radar 45a based on the information associated with the vehicle 1 or the surrounding environment of the vehicle 1 Is configured. A specific example of the "information associated with the vehicle 1 or the surrounding environment of the vehicle 1" will be described later.
- the frequency of use of the sensor may be a frame rate (fps) of detection data (image data, 3D mapping data, detection data of millimeter wave radar) of the sensor.
- the frame rate of the detection data may be the number of frames of the detection data acquired by the sensor in one second (acquisition frame rate), or the detection data transmitted from the sensor to the control unit 40a in one second
- the number of frames may be used. For example, when the frequency of use of the camera 43a is reduced, the frame rate of the image data is reduced. On the other hand, when the frequency of use of the camera 43a is increased, the frame rate of the image data is increased.
- the frequency of use of the sensor may be a bit rate (bps) of detection data of the sensor.
- the bit rate of detection data may be the data amount (acquisition bit rate) of detection data acquired by the sensor in one second, or the detection data transmitted from the sensor to the control unit 40 a in one second
- the amount of data may be used.
- the bit rate of the detection data By adjusting the spatial resolution and / or temporal resolution of the detection data, it is possible to adjust the bit rate of the detection data. For example, when reducing the usage frequency of the LiDAR unit 44a, the bit rate of 3D mapping data decreases. On the other hand, when the use frequency of the LiDAR unit 44a is increased, the bit rate of 3D mapping data is increased.
- the frequency of use of the sensor may be the mode of the sensor.
- the mode of the sensor may have two modes, an active mode and a sleep mode.
- the mode of the millimeter wave radar 45a is set to the sleep mode.
- the frequency of use of the millimeter wave radar 45a is normal, the millimeter wave radar 45a is in the active mode.
- the frequency of use of the sensor may be the update rate (Hz) of the surrounding environment information.
- the update rate is the number of times of surrounding environment information updated in one second.
- the update rate of the surrounding environment information I1 is increased. More specifically, when the transmission frame rate of image data is 60 fps, it is assumed that the normal update rate of the surrounding environment information I1 is 50 Hz. In this case, when decreasing the frequency of use of the camera 43a, the update rate of the surrounding environment information I1 may be set to 30 Hz. On the other hand, when raising the use frequency of the camera 43a, the update rate of the surrounding environment information I1 may be set to 60 Hz.
- the use frequency setting unit 460a selects one of the frame rate of detection data, the bit rate of detection data, the mode (active mode or sleep mode) of the sensor or the update rate of the surrounding environment information. You may change at least one. For example, when reducing the frequency of use of the sensor, the use frequency setting unit 460a may lower both the frame rate of the image data and the update rate of the surrounding environment information I1.
- the usage frequency setting unit 460a transmits an instruction signal indicating the usage frequency of the camera 43a to the camera control unit 420a. Thereafter, the camera control unit 420a controls the camera 43a to set the usage frequency of the camera 43a to a predetermined usage frequency according to the received instruction signal.
- the use frequency setting unit 460a sets the frame rate of image data to a frame rate a1 ( ⁇ a0) lower than the normal frame rate a0 when reducing the frame rate of image data (in other words, And transmits an instruction signal indicating the frame rate a1 to the camera control unit 420a. Thereafter, the camera control unit 420a controls the camera 43a to set the frame rate of the image data to the frame rate a1 according to the received instruction signal.
- the usage frequency setting unit 460a transmits an instruction signal indicating the usage frequency of the LiDAR unit 44a to the LiDAR control unit 430a. Thereafter, the LiDAR control unit 430a controls the LiDAR unit 44a to set the usage frequency of the LiDAR unit 44a to a predetermined usage frequency according to the received instruction signal.
- the use frequency setting unit 460a reduces the bit rate of 3D mapping data (in other words, the bit rate of 3D mapping data is lower than the normal bit rate b0 bit rate b1 ( ⁇ b0))
- the instruction signal indicating the bit rate b1 is transmitted to the LiDAR control unit 430a. Thereafter, the LiDAR control unit 430a controls the LiDAR unit 44a to set the bit rate of the 3D mapping data to the bit rate b1 according to the received instruction signal.
- the use frequency setting unit 460a transmits an instruction signal indicating the use frequency of the millimeter wave radar 45a to the millimeter wave radar control unit 440a. Thereafter, the millimeter wave radar control unit 440a controls the millimeter wave radar 45a to set the use frequency of the millimeter wave radar 45a to a predetermined use frequency according to the received instruction signal.
- the mode of the millimeter wave radar 45 a is set to the sleep mode
- an instruction signal indicating the sleep mode is transmitted to the millimeter wave radar control unit 440 a.
- the millimeter wave radar control unit 440a controls the millimeter wave radar 45a to set the mode of the millimeter wave radar 45a to the sleep mode in accordance with the received instruction signal.
- peripheral environment information fusion unit 450a and the usage frequency setting unit 460a are realized by the control unit 40a, but these may be realized by the vehicle control unit 3.
- the control units 40b, 40c, and 40d may have the same function as the control unit 40a. That is, each of the control units 40b to 40d may include an illumination control unit, a camera control unit, a LiDAR control unit, a millimeter wave radar control unit, a peripheral environment information fusion unit, and a usage frequency setting unit. .
- the surrounding environment information fusion unit of each of the control units 40b to 40c may transmit the merged surrounding environment information If to the vehicle control unit 3.
- Vehicle control unit 3 controls the traveling of vehicle 1 based on surrounding environment information If and other information (travel control information, current position information, map information, etc.) transmitted from control units 40a to 40d. Good.
- FIG. 5 is a flowchart for explaining a first example of a setting method of the usage frequency of each sensor.
- the operation flow of the illumination system 4a is also applicable to the illumination systems 4b to 4d.
- the vehicle 1 is traveling in the automatic driving mode.
- the “frequency of use” of the sensor is, as already described, the frame rate of the detection data, the bit rate of the detection data, the mode of the sensor or the update rate of the surrounding environment information.
- the use frequency setting unit 460a determines whether or not information indicating the brightness of the surrounding environment of the vehicle 1 (hereinafter referred to as "brightness information”) has been received. Specifically, the illuminance sensor mounted on the vehicle 1 transmits detection data indicating the brightness of the surrounding environment of the vehicle 1 to the vehicle control unit 3. Next, the vehicle control unit 3 generates brightness information based on the received detection data, and then transmits the generated brightness information to the use frequency setting unit 460a.
- the "brightness information” may include two pieces of information of "bright” or "dark”.
- the vehicle control unit 3 generates brightness information indicating that the surrounding environment is bright when the brightness (such as illuminance) of the surrounding environment indicated by the detection data is larger than a predetermined value (such as threshold illuminance). May be On the other hand, the vehicle control unit 3 may generate brightness information indicating that the surrounding environment is dark when the brightness (illuminance or the like) of the surrounding environment indicated by the detection data is equal to or less than a predetermined value.
- the "brightness information” may include information on numerical values such as illuminance.
- the use frequency setting unit 460a may determine whether the surrounding environment of the vehicle 1 is bright or dark based on the information on the numerical value such as the illuminance.
- the vehicle control unit 3 may transmit brightness information to the usage frequency setting unit 460a when the vehicle system 2 is activated. Furthermore, when the brightness of the surrounding environment of the vehicle 1 changes (for example, when the surrounding environment changes from a bright state to a dark state or when the surrounding environment changes from a dark state to a bright state) The brightness information may be transmitted to the usage frequency setting unit 460a. For example, when the vehicle 1 enters or leaves the tunnel, the vehicle control unit 3 may transmit the brightness information to the usage frequency setting unit 460a. Further, the vehicle control unit 3 may transmit the brightness information to the use frequency setting unit 460a at a predetermined cycle.
- step S10 When it is determined that the brightness information is received (YES in step S10), the use frequency setting unit 460a executes the process of step S11. On the other hand, when the determination result of step S10 is NO, the use frequency setting unit 460a stands by until the brightness information is received.
- the usage frequency setting unit 460a may specify the brightness of the surrounding environment based on the detection data acquired from the illuminance sensor . Thereafter, the usage frequency setting unit 460a may execute the process of step S11.
- the use frequency setting unit 460a determines the use frequency of the camera 43a, the use frequency of the LiDAR unit 44a, and the use frequency of the millimeter wave radar 45a based on the received brightness information.
- the use frequency setting unit 460a may set the use frequency of each sensor as follows according to the brightness of the surrounding environment.
- the use frequency setting unit 460a sets the use frequency of all the sensors to the normal use frequency.
- the usage frequency setting unit 460a reduces the usage frequency of the camera 43a (that is, the usage frequency of the camera 43a is usually Set the frequency of use less than the frequency of use of the), while setting the frequency of use of the remaining sensors to the normal frequency of use.
- the detection accuracy of the surrounding environment using the camera 43a is lowered, so even if the frequency of use of the camera 43a is lowered, the recognition accuracy of the surrounding environment is greatly affected.
- power consumption consumed by the camera 43a and / or the camera control unit 420a can be reduced by lowering the frequency of use of the camera 43a (for example, acquisition frame rate of image data), and camera control can be performed.
- the calculation load of the unit 420a can be reduced.
- the frequency of use of the sensor can be optimized according to the brightness of the environment around the vehicle 1.
- the information on the frequency of use shown in Table 1 may be stored in the memory or storage device 11 of the control unit 40a.
- the brightness information is generated based on the detection data acquired from the illuminance sensor, but the brightness information may be generated based on the image data acquired by the camera 43a.
- the use frequency setting unit 460a may set the use frequency of each sensor based on the brightness information after generating the brightness information based on the image data acquired by the camera 43a.
- FIG. 6 is a flowchart for explaining a second example of the setting method of the usage frequency of each sensor.
- step S20 the usage frequency setting unit 460a determines whether information indicating the brightness of the surrounding environment of the vehicle 1 (brightness information) and weather information of the current position of the vehicle 1 have been received. Do.
- the method of acquiring the weather information will be described in detail. For example, after the vehicle control unit 3 acquires the current position information of the vehicle 1 using the GPS 9, the weather information request including the current position information of the vehicle 1 and the IP address via the wireless communication unit 10 on the communication network Send to server Thereafter, the vehicle control unit 3 receives weather information at the current position of the vehicle 1 from the server.
- the "weather information” may be information on the weather at the current position of the vehicle 1 (clear, cloudy, rain, snow, fog, etc.).
- the vehicle control unit 3 transmits the brightness information and the weather information to the use frequency setting unit 460a of the control unit 40a.
- the weather information at the current position of the vehicle 1 may be generated based on the image data acquired by the camera 43a.
- the usage frequency setting unit 460a or the camera control unit 420a generates weather information based on the image data acquired by the camera 43a.
- weather information at the current position of the vehicle 1 may be generated based on the information indicating the state of the wiper attached to the window of the vehicle. For example, when the wiper is driving, the weather at the current position of the vehicle 1 may be determined to be rain (that is, bad weather). On the other hand, when the wiper is not driven, the weather at the current position of the vehicle 1 may be determined to be sunny or cloudy (that is, the weather is good).
- the usage frequency setting unit 460a may acquire weather information from an external weather sensor.
- step S20 when it is determined that the brightness information and the weather information have been received (YES in step S20), the use frequency setting unit 460a executes the process of step S21. On the other hand, if the determination result in step S20 is NO, the use frequency setting unit 460a stands by until the brightness information and the weather information are received.
- the use frequency setting unit 460a determines the use frequency of the camera 43a, the use frequency of the LiDAR unit 44a, and the use frequency of the millimeter wave radar 45a based on the received brightness information and weather information. .
- the use frequency setting unit 460a may set the use frequency of each sensor as follows according to the brightness of the surrounding environment.
- the use frequency setting unit 460a reduces the use frequency of the camera 43a and the LiDAR unit 44a, The frequency of use of the wave radar 45a is set to the normal frequency of use.
- the use frequency setting unit 460a sets the use frequency of all the sensors to the normal use frequency. Do. Furthermore, when the weather at the current position of the vehicle 1 is good and the surrounding environment of the vehicle 1 is dark, the use frequency setting unit 460a reduces the use frequency of the camera 43a while using the remaining sensors normally Set the frequency of use.
- the detection accuracy of the camera 43a and the detection accuracy of the LiDAR unit 44a decrease. Therefore, even if the frequency of use of the camera 43a and the LiDAR unit 44a is reduced There is no big influence on the recognition accuracy of the environment. Therefore, by reducing the frequency of use of the camera 43a, it is possible to reduce the power consumption consumed by the camera 43a and / or the camera control unit 420a, and to reduce the calculation load of the camera control unit 420a. . Furthermore, the power consumption consumed by the LiDAR unit 44a and / or the LiDAR control unit 430a can be reduced by reducing the frequency of use of the LiDAR unit 44a (for example, the acquisition frame rate of 3D mapping data).
- the calculation load of the LiDAR control unit 430a can be reduced.
- the frequency of use of the sensor can be optimized in accordance with the weather condition at the current position of the vehicle 1.
- the frequency of use of the sensor is optimized according to the brightness (bright or dark) of the surrounding environment of the vehicle 1.
- FIG. 7 is a flowchart for explaining a third example of the setting method of the use frequency of each sensor.
- step S30 the use frequency setting unit 460a determines whether or not information indicating the speed of the vehicle 1 (hereinafter referred to as speed information) has been received. Specifically, the speed sensor mounted on the vehicle 1 transmits the speed information to the vehicle control unit 3. Next, the vehicle control unit 3 transmits the received speed information to the usage frequency setting unit 460a. Thereafter, when it is determined that the speed information has been received (YES in step S30), the use frequency setting unit 460a executes the process of step S31. On the other hand, when the determination result of step S30 is NO, the use frequency setting unit 460a stands by until the speed information is received.
- speed information indicating the speed of the vehicle 1
- the use frequency setting unit 460a sets the use frequency of the camera 43a, the use frequency of the LiDAR unit 44a, and the use frequency of the millimeter wave radar 45a based on the received speed information.
- the use frequency setting unit 460 a may set the use frequency of each sensor as follows according to the speed of the vehicle 1.
- the use frequency setting unit 460a increases the use frequency of all the sensors (that is, the use frequency of all the sensors is higher than the normal use frequency) Set the frequency of use).
- the use frequency setting unit 460a sets the use frequency of all the sensors to the normal use frequency.
- the use frequency setting unit 460a sets the use frequency of the camera 43a to a normal use frequency, while reducing the use frequency of the remaining sensors.
- low speed may be defined as a speed at which the speed V of the vehicle 1 is equal to or less than a first speed Vth1 (for example, 30 km / h).
- intermediate speed may be defined as a speed at which the speed V of the vehicle 1 is greater than the first speed Vth and not more than the second speed Vth (for example, 80 km / h).
- high speed may be defined as a speed at which the speed V of the vehicle 1 is greater than the second speed Vth.
- the frequency of use of all the sensors is increased.
- the surrounding environment of the vehicle 1 changes at a high speed, so the frequency of use of all the sensors (in particular, detection data) It is preferable to increase the frame rate and the update rate of the surrounding environment information.
- the accuracy of the surrounding environment information If generated based on the surrounding environment information I1, I2, I3 can be further improved, the traveling control of the vehicle 1 can be performed with higher accuracy.
- the traveling safety of the vehicle 1 can be sufficiently ensured only by the surrounding environment information I1 generated based on the image data. Therefore, by reducing the frequency of use of the LiDAR unit 44a and the millimeter wave radar 45a, the power consumption consumed by the LiDAR unit 44a and / or the LiDAR control unit 430a can be reduced, and the millimeter wave radar 45a and / or Alternatively, power consumption consumed by the millimeter wave radar control unit 440a can be reduced. Furthermore, the calculation load of the LiDAR control unit 430a and the calculation load of the millimeter wave radar control unit 440a can be reduced. Thus, the frequency of use of each sensor can be optimized according to the speed of the vehicle 1.
- the use frequency setting unit 460a adds the use frequency of each sensor to the speed information based on the information indicating that the vehicle 1 is currently traveling on the expressway. It may be set. For example, when the use frequency setting unit 460a receives information indicating that the vehicle 1 is currently traveling on a freeway (hereinafter referred to as freeway travel information), the use frequency setting unit 460a does not depend on the speed of the vehicle 1; The frequency of use may be increased. In this respect, since there is a high possibility that the vehicle 1 travels at a high speed on a freeway, there is a need to further improve the accuracy of the surrounding environment information If in order to control the traveling of the vehicle 1 with high accuracy.
- freeway travel information information indicating that the vehicle 1 is currently traveling on a freeway
- the use frequency setting unit 460a may set the use frequency of each sensor according to the speed of the vehicle 1.
- the expressway travel information may be generated based on the current position information acquired by the GPS 9 and the map information stored in the storage device 11.
- the vehicle control unit 3 may generate expressway travel information based on current position information and map information, and then transmit the expressway travel information to the usage frequency setting unit 460a.
- the frequency of use of each sensor can be optimized according to the road on which the vehicle 1 is currently traveling.
- FIG. 8 is a flowchart for explaining a fourth example of the setting method of the use frequency of each sensor.
- the camera, the LiDAR unit, the millimeter wave radar and the like may be collectively referred to simply as “sensor”.
- step S ⁇ b> 40 the usage frequency setting unit 460 a determines whether information indicating the traveling direction of the vehicle 1 (hereinafter referred to as traveling direction information) has been received. Specifically, the vehicle control unit 3 that controls the traveling of the vehicle 1 transmits traveling direction information to the usage frequency setting unit 460a. Thereafter, the use frequency setting unit 460a executes the process of step S41 when the traveling direction information is received (YES in step S40). On the other hand, when the determination result of step S40 is NO, the use frequency setting unit 460a stands by until the traveling direction information is received.
- traveling direction information information indicating the traveling direction of the vehicle 1
- the use frequency setting unit 460a uses the frequency of the sensor disposed in the illumination system 4a, the frequency of use of the sensor disposed in the illumination system 4b, and the illumination system 4c.
- the frequency of use of the sensors arranged in the and the frequency of use of the sensors arranged in the illumination system 4d are set (see FIG. 2).
- the use frequency setting unit 460a may set the use frequency of the sensor disposed in each lighting system as follows according to the traveling direction information.
- the usage frequency setting unit 460a is a sensor (camera, LiDAR unit, millimeter wave radar, or the like) disposed in the illumination system 4a, 4b located on the front side of the vehicle 1.
- the frequency of use of is set to the normal frequency of use, and the frequency of use of sensors (camera, LiDAR unit, millimeter wave radar) disposed in the illumination systems 4c and 4d located behind the vehicle 1 is reduced.
- the surrounding environment information of the rear region of the vehicle 1 is not as high in importance as the surrounding environment information of the front region of the vehicle 1.
- the frequency of use of the sensors placed on the side can be reduced.
- power consumption consumed by the sensor and / or control unit 40c of the lighting system 4c can be reduced, and the calculation load of the control unit 40c can be reduced.
- power consumption consumed by the sensor and / or control unit 40d of the illumination system 4d can be reduced, and the calculation load of the control unit 40d can be reduced.
- the use frequency setting unit 460a reduces the use frequency of the sensors disposed in the illumination systems 4a and 4b, and reduces the frequency to the illumination systems 4c and 4d.
- Set the frequency of use of the deployed sensor to the normal frequency of use.
- the surrounding environment information of the front region of the vehicle 1 is not as important as the surrounding environment information of the rear region of the vehicle 1, so the front side of the vehicle 1 is The frequency of use of the sensors placed on the
- power consumption consumed by the sensor and / or control unit 40a of the lighting system 4a can be reduced, and the calculation load of the control unit 40a can be reduced.
- the power consumption consumed by the sensor and / or control unit 40b of the lighting system 4b can be reduced, and the calculation load of the control unit 40b can be reduced.
- the use frequency setting unit 460a reduces the use frequency of the sensors disposed in the illumination systems 4a and 4c located on the left side of the vehicle 1,
- the use frequency of the sensors disposed in the illumination systems 4b and 4d located on the right side of the vehicle 1 is set to the normal use frequency.
- the surrounding environment information of the left region of the vehicle 1 is disposed at the left side of the vehicle 1 because the importance is not high compared to the surrounding environment information of the right region of the vehicle 1
- the frequency of use of the sensor can be reduced.
- power consumption consumed by the sensor and / or control unit 40a of the lighting system 4a can be reduced, and the calculation load of the control unit 40a can be reduced.
- power consumption consumed by the sensor and / or control unit 40c of the lighting system 4c can be reduced, and the computational load of the control unit 40c can be reduced.
- the frequency of use of the sensor is set based on the traveling direction information, it is possible to optimize the frequency of use of the sensor according to the traveling direction of the vehicle 1.
- a camera, a LiDAR unit, and a millimeter wave radar are mentioned as a plurality of sensors, but the present embodiment is not limited to this.
- ultrasonic sensors may be mounted on the illumination system.
- the control unit of the illumination system may control the operation of the ultrasonic sensor and may generate the surrounding environment information based on the detection data acquired by the ultrasonic sensor.
- at least two of the camera, the LiDAR unit, the millimeter wave radar, and the ultrasonic sensor may be mounted on the illumination system.
- each illumination system includes a long distance LiDAR unit, a short distance LiDAR unit, a camera, a millimeter wave radar, and an ultrasonic sensor.
- the use frequency setting unit 460a reduces the use frequency of the camera and the LiDAR unit for short distance, and sets the use frequency of the remaining sensors to the normal use frequency.
- the use frequency setting unit 460a reduces the use frequency of the LiDAR unit for short distance and the ultrasonic sensor, and The frequency of use of the sensor may be set to a normal frequency of use. Furthermore, when the vehicle 1 is traveling at a low speed, the usage frequency setting unit 460a reduces the usage frequency of the long distance LiDAR unit and the millimeter wave radar and sets the usage frequency of the remaining sensors to the normal usage frequency You may
- left and right direction and “front and back direction” will be referred to as appropriate for convenience of description. These directions are relative directions set for the vehicle 101 shown in FIG.
- the “front-rear direction” is a direction including the “front direction” and the “rear direction”.
- the “left-right direction” is a direction including the “left direction” and the “right direction”.
- FIG. 9 is a schematic view showing a top view of a vehicle 101 provided with the vehicle 102.
- the vehicle 101 is a vehicle (car) capable of traveling in the automatic operation mode, and includes the vehicle 102.
- the vehicle 102 includes a vehicle control unit 103, a left front illumination system 104a (hereinafter simply referred to as “illumination system 104a”), a right front illumination system 104b (hereinafter referred to simply as “illumination system 104b”), and a left back illumination system. And at least a right rear illumination system 104d (hereinafter simply referred to as "illumination system 104d").
- the illumination system 104 a is provided on the left front side of the vehicle 101.
- the illumination system 104a includes a housing 124a installed on the left front side of the vehicle 101, and a light transmitting cover 122a attached to the housing 124a.
- the illumination system 104 b is provided on the right front side of the vehicle 101.
- the illumination system 104b includes a housing 124b installed on the right front side of the vehicle 101, and a translucent cover 122b attached to the housing 124b.
- the illumination system 104 c is provided on the left rear side of the vehicle 101.
- the illumination system 104c includes a housing 124c installed on the left rear side of the vehicle 101, and a translucent cover 122c attached to the housing 124c.
- the illumination system 104 d is provided on the right rear side of the vehicle 101.
- the lighting system 104d includes a housing 124d installed on the right rear side of the vehicle 101, and a light transmitting cover 122d attached to the housing 124d.
- FIG. 10 is a block diagram showing the vehicle 102.
- the vehicle 102 includes a vehicle control unit 103, illumination systems 104a to 104d, a sensor 105, an HMI (Human Machine Interface) 108, a GPS (Global Positioning System) 109, and a wireless communication unit 110. And a storage device 111.
- Vehicle 102 further includes a steering actuator 112, a steering device 113, a brake actuator 114, a brake device 115, an accelerator actuator 116, and an accelerator device 117.
- Vehicle 102 also includes a battery (not shown) configured to provide power.
- the vehicle control unit 103 is configured to control the traveling of the vehicle 101.
- the vehicle control unit 103 is configured by, for example, at least one electronic control unit (ECU: Electronic Control Unit).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuitry including active and passive elements such as transistors.
- the processor is, for example, a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), and / or a tensor processing unit (TPU).
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- a vehicle control program may be stored in the ROM.
- the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
- AI is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- the RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating a surrounding environment of the vehicle.
- the processor may be configured to expand a program specified from the vehicle control program stored in the ROM on the RAM, and execute various processes in cooperation with the RAM.
- the electronic control unit may be configured by at least one integrated circuit such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). Furthermore, the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the illumination system 104a further includes a control unit 140a, an illumination unit 142a, a camera 143a, a LiDAR (Light Detection and Ranging) unit 144a (an example of a laser radar), and a millimeter wave radar 145a.
- the control unit 140a, the illumination unit 142a, the camera 143a, the LiDAR unit 144a, and the millimeter wave radar 145a, as shown in FIG. 9, are in a space Sa (a light chamber) formed by a housing 124a and a light transmission cover 122a. Will be placed.
- the control unit 140a may be disposed at a predetermined place of the vehicle 101 other than the space Sa.
- the control unit 140a may be configured integrally with the vehicle control unit 103.
- the control unit 140a is configured by, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits (eg, transistors, etc.).
- the processor is, for example, a CPU, an MPU, a GPU and / or a TPU.
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM and a RAM.
- a peripheral environment specifying program for specifying the peripheral environment of the vehicle 101 may be stored in the ROM.
- the peripheral environment identification program is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- a peripheral environment identification program In the RAM, a peripheral environment identification program, image data acquired by the camera 143a, three-dimensional mapping data (point group data) acquired by the LiDAR unit 144a, and / or detection data acquired by the millimeter wave radar 145a, etc. are temporarily stored. May be stored.
- the processor may be configured to expand a program specified from the peripheral environment specifying program stored in the ROM on the RAM and execute various processing in cooperation with the RAM.
- the electronic control unit ECU
- the electronic control unit may be configured by an integrated circuit such as an ASIC or an FPGA.
- the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- the illumination unit 142 a is configured to form a light distribution pattern by emitting light toward the outside (forward) of the vehicle 101.
- the illumination unit 142a has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, a light emitting diode (LED), a laser diode (LD), or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the lighting unit 142a, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector.
- the lighting unit 142a displays a light distribution pattern for the driver (for example, a low beam light distribution pattern or a high beam light distribution pattern) in front of the vehicle 101. It is configured to form. Thus, the lighting unit 142a functions as a left headlamp unit.
- the lighting unit 142a may be configured to form a light distribution pattern for a camera in front of the vehicle 101.
- the control unit 140a may be configured to individually supply an electrical signal (for example, a PWM (Pulse Width Modulation) signal) to each of the plurality of light emitting elements provided in the lighting unit 142a.
- an electrical signal for example, a PWM (Pulse Width Modulation) signal
- the control unit 140a can individually select the light emitting elements to which the electric signal is supplied, and can adjust the duty ratio of the electric signal for each light emitting element. That is, the control unit 140a can select a light emitting element to be turned on or off among the plurality of light emitting elements arranged in a matrix, and can determine the luminance of the light emitting element that is turned on. Therefore, the control unit 140a can change the shape and brightness of the light distribution pattern emitted forward from the illumination unit 142a.
- PWM Pulse Width Modulation
- the camera 143a is configured to detect the surrounding environment of the vehicle 101.
- the camera 143a is configured to transmit the image data to the control unit 140a after acquiring the image data indicating the peripheral environment of the vehicle 101 at the frame rate a1 (fps).
- the control unit 140a specifies the surrounding environment information based on the transmitted image data.
- the surrounding environment information may include information on an object present outside the vehicle 101.
- the surrounding environment information may include information related to the attribute of an object present outside the vehicle 101 and information related to the position of the object relative to the vehicle 101.
- the camera 143a is configured by an imaging device such as, for example, a charge-coupled device (CCD) or a metal oxide semiconductor (CMOS).
- CCD charge-coupled device
- CMOS metal oxide semiconductor
- the camera 143a may be configured as a single-eye camera or may be configured as a stereo camera.
- the control unit 140a uses parallax to make the vehicle 101 and an object existing outside the vehicle 101 (e.g., based on two or more image data acquired by the stereo camera). The distance between the pedestrian and the like can be specified.
- one camera 143a is provided in the illumination system 104a in the present embodiment, two or more cameras 143a may be provided in the illumination system 104a.
- the LiDAR unit 144a (an example of a laser radar) is configured to detect the surrounding environment of the vehicle 101.
- the LiDAR unit 144a is configured to transmit 3D mapping data to the control unit 140a after acquiring 3D mapping data (point group data) indicating the surrounding environment of the vehicle 101 at a frame rate a2 (fps). ing.
- the control unit 140a specifies the surrounding environment information based on the transmitted 3D mapping data.
- the surrounding environment information may include information on an object present outside the vehicle 101.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 101 and information on the position of the object relative to the vehicle 101.
- the frame rate a2 (second frame rate) of the 3D mapping data may be the same as or different from the frame rate a1 (first frame rate) of the image data.
- the LiDAR unit 144a acquires information on the time of flight (TOF) ⁇ T1 of the laser beam (light pulse) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) of the laser beam. Then, based on the information on the time of flight ⁇ T1, the information on the distance D between the LiDAR unit 144a (vehicle 101) and the object existing outside the vehicle 101 at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) is obtained can do.
- the flight time ⁇ T1 can be calculated, for example, as follows.
- Time of flight ⁇ T1 time at which laser light (light pulse) returned to LiDAR unit t1—time at which LiDAR unit emitted laser light (light pulse)
- the LiDAR unit 144a can acquire 3D mapping data indicating the surrounding environment of the vehicle 101.
- the LiDAR unit 144a includes, for example, a laser light source configured to emit a laser beam, an optical deflector configured to scan the laser beam in the horizontal direction and the vertical direction, and an optical system such as a lens. And a light receiving unit configured to receive the laser light reflected by the object.
- the central wavelength of the laser light emitted from the laser light source is not particularly limited.
- the laser light may be invisible light whose center wavelength is around 900 nm.
- the light deflector may be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
- the light receiving unit is, for example, a photodiode.
- the LiDAR unit 144a may acquire 3D mapping data without scanning the laser light by the light deflector.
- the LiDAR unit 144a may obtain 3D mapping data in a phased array method or a flash method.
- one LiDAR unit 144a is provided in the illumination system 104a in the present embodiment, two or more LiDAR units 144a may be provided in the illumination system 104a.
- one LiDAR unit 144a is configured to detect the surrounding environment in the area in front of the vehicle 101 and the other LiDAR unit 144a is a vehicle 101 It may be configured to detect the surrounding environment in the side area of the
- the millimeter wave radar 145 a is configured to detect the surrounding environment of the vehicle 101.
- the millimeter wave radar 145a is configured to transmit detection data to the control unit 140a after acquiring detection data indicating the peripheral environment of the vehicle 101.
- the control unit 140a specifies the surrounding environment information based on the transmitted detection data.
- the surrounding environment information may include information on an object present outside the vehicle 101.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 101, information on the position of the object relative to the vehicle 101, and information on the speed of the object relative to the vehicle 101.
- the millimeter wave radar 145a may be a pulse modulation method, an FM-CW (Frequency Moduled-Continuous Wave) method, or a two-frequency CW method, between the millimeter wave radar 145a (vehicle 101) and an object existing outside the vehicle 101.
- the distance D of can be obtained.
- the millimeter wave radar 145a acquires information on the time of flight ⁇ T2 of the millimeter wave at each emission angle of the millimeter wave, and then the millimeter wave radar at each emission angle based on the information on the time of flight ⁇ T2. It is possible to obtain information on the distance D between the vehicle 145a (the vehicle 101) and an object present outside the vehicle 101.
- the flight time ⁇ T2 can be calculated, for example, as follows.
- Time of flight ⁇ T2 time t3 when millimeter wave returns to millimeter wave radar
- the millimeter wave radar 145a is a vehicle 101 for the millimeter wave radar 145a (vehicle 101) based on the frequency f0 of the millimeter wave emitted from the millimeter wave radar 145a and the frequency f1 of the millimeter wave returned to the millimeter wave radar 145a. It is possible to obtain information on the relative velocity V of an object that exists outside of.
- the illumination system 104a may include a millimeter wave radar 145a for short distance, a millimeter wave radar 145a for medium distance, and a millimeter wave radar 145a for long distance.
- the illumination system 104b further includes a control unit 140b, an illumination unit 142b, a camera 143b, a LiDAR unit 144b, and a millimeter wave radar 145b.
- the control unit 140b, the illumination unit 142b, the camera 143b, the LiDAR unit 144b, and the millimeter wave radar 145b, as shown in FIG. 9, are in the space Sb formed by the housing 124b and the light transmission cover 122b (light chamber) Will be placed.
- the control unit 140 b may be disposed at a predetermined place of the vehicle 101 other than the space Sb.
- the control unit 140 b may be configured integrally with the vehicle control unit 103.
- the control unit 140 b may have the same function and configuration as the control unit 140 a.
- the lighting unit 142b may have the same function and configuration as the lighting unit 142a.
- the lighting unit 142a functions as a left headlamp unit
- the lighting unit 142b functions as a right headlamp unit.
- the camera 143 b may have the same function and configuration as the camera 143 a.
- the LiDAR unit 144b may have the same function and configuration as the LiDAR unit 144a.
- the millimeter wave radar 145 b may have the same function and configuration as the millimeter wave radar 145 a.
- the illumination system 104c further includes a control unit 140c, an illumination unit 142c, a camera 143c, a LiDAR unit 144c, and a millimeter wave radar 145c.
- the control unit 140c, the illumination unit 142c, the camera 143c, the LiDAR unit 144c, and the millimeter wave radar 145c, as shown in FIG. 9, are in a space Sc formed by the housing 124c and the light transmission cover 122c (light chamber) Will be placed.
- the control unit 140c may be disposed at a predetermined place of the vehicle 101 other than the space Sc.
- the control unit 140c may be configured integrally with the vehicle control unit 103.
- the control unit 140c may have the same function and configuration as the control unit 140a.
- the illumination unit 142 c is configured to form a light distribution pattern by emitting light toward the outside (rear) of the vehicle 101.
- the illumination unit 142c has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, an LED, an LD or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the illumination unit 142c, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector. And at least one of the lenses.
- the lighting unit 142c may turn off.
- the lighting unit 142c may be configured to form a light distribution pattern for a camera behind the vehicle 101.
- the camera 143c may have the same function and configuration as the camera 143a.
- the LiDAR unit 144c may have the same function and configuration as the LiDAR unit 144c.
- the millimeter wave radar 145 c may have the same function and configuration as the millimeter wave radar 145 a.
- the illumination system 104d further includes a control unit 140d, an illumination unit 142d, a camera 143d, a LiDAR unit 144d, and a millimeter wave radar 145d.
- the control unit 140 d may be disposed at a predetermined place of the vehicle 101 other than the space Sd.
- the control unit 140d may be configured integrally with the vehicle control unit 103.
- the control unit 140d may have the same function and configuration as the control unit 140c.
- the lighting unit 142d may have the same function and configuration as the lighting unit 142c.
- the camera 143d may have the same function and configuration as the camera 143c.
- the LiDAR unit 144d may have the same function and configuration as the LiDAR unit 144c.
- the millimeter wave radar 145 d may have the same function and configuration as the millimeter wave radar 145 c.
- the sensor 105 may include an acceleration sensor, a speed sensor, a gyro sensor, and the like.
- the sensor 105 is configured to detect the traveling state of the vehicle 101 and to output traveling state information indicating the traveling state of the vehicle 101 to the vehicle control unit 103.
- the sensor 105 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face direction sensor that detects the direction of the driver's face, an external weather sensor that detects an external weather condition, and a person in the vehicle You may further provide a human sensor etc. which detect whether it is.
- the sensor 105 may include an illuminance sensor configured to detect the brightness (such as illuminance) of the surrounding environment of the vehicle 101. The illuminance sensor may determine the brightness of the surrounding environment according to, for example, the magnitude of the photocurrent output from the photodiode.
- the HMI (Human Machine Interface) 108 includes an input unit that receives an input operation from the driver, and an output unit that outputs traveling state information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode switching switch for switching the operation mode of the vehicle 101, and the like.
- the output unit includes a display and the like configured to display the traveling state information, the surrounding environment information, and the lighting state of the lighting system 4.
- a GPS (Global Positioning System) 109 is configured to acquire current position information of the vehicle 101 and to output the acquired current position information to the vehicle control unit 103.
- the wireless communication unit 110 receives information (for example, other vehicle traveling information and the like) related to other vehicles around the vehicle 101 from the other vehicles and also transmits information (for example, own vehicle traveling information and the like) for the vehicle 101 to the other vehicles. It is configured to transmit (inter-vehicle communication).
- the wireless communication unit 110 is configured to receive infrastructure information from an infrastructure facility such as a traffic light and a marker light, and to transmit vehicle traveling information of the vehicle 101 to the infrastructure facility (inter-vehicle communication). Further, the wireless communication unit 110 receives information on the pedestrian from a portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle travel information of the vehicle 101 to the portable electronic device. It is configured to (pedal communication).
- the vehicle 101 may communicate directly with other vehicles, infrastructure equipment or portable electronic devices in an ad hoc mode, or may communicate via an access point.
- the wireless communication standard is, for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) or LPWA.
- the vehicle 101 may communicate with other vehicles, infrastructure equipment, or portable electronic devices via a mobile communication network.
- the storage device 111 is an external storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
- the storage device 111 may store 2D or 3D map information and / or a vehicle control program.
- the storage device 111 is configured to output map information and a vehicle control program to the vehicle control unit 103 in response to a request from the vehicle control unit 103.
- the map information and the vehicle control program may be updated via the wireless communication unit 110 and a communication network such as the Internet.
- the vehicle control unit 103 controls the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information and / or the map information. Automatically generate at least one of them.
- the steering actuator 112 is configured to receive a steering control signal from the vehicle control unit 103 and to control the steering device 113 based on the received steering control signal.
- the brake actuator 114 is configured to receive a brake control signal from the vehicle control unit 103 and to control the brake device 115 based on the received brake control signal.
- the accelerator actuator 116 is configured to receive an accelerator control signal from the vehicle control unit 103 and to control the accelerator device 117 based on the received accelerator control signal.
- the traveling of the vehicle 101 is automatically controlled by the vehicle 102.
- the vehicle control unit 103 when the vehicle 101 travels in the manual operation mode, the vehicle control unit 103 generates a steering control signal, an accelerator control signal and a brake control signal according to the driver's manual operation on the accelerator pedal, the brake pedal and the steering wheel. Do. As described above, in the manual operation mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so the travel of the vehicle 101 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a completely automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle 102 automatically performs all travel control of steering control, brake control and accelerator control, and the driver is not in a state where the vehicle 101 can be driven.
- the vehicle 102 automatically performs all travel control of steering control, brake control and accelerator control, and the driver does not drive the vehicle 101 although the vehicle 101 can be driven.
- the driving support mode the vehicle 102 automatically performs traveling control of part of the steering control, the brake control, and the accelerator control, and the driver drives the vehicle 101 under the driving support of the vehicle 102.
- the manual operation mode the vehicle 102 does not automatically perform travel control, and the driver drives the vehicle 101 without driving assistance from the vehicle 102.
- the operation mode of the vehicle 101 may be switched by operating the operation mode switch.
- the vehicle control unit 103 sets the drive mode of the vehicle 101 to four drive modes (complete automatic drive mode, advanced drive support mode, drive support mode, manual drive mode) according to the driver's operation on the drive mode switching switch. Switch between).
- the operation mode of the vehicle 101 is automatically based on information on a drivable section in which the automatically driven vehicle can travel and a ditched section in which the automatically driven vehicle is prohibited from traveling or information on the external weather condition. It may be switched to In this case, the vehicle control unit 103 switches the driving mode of the vehicle 101 based on these pieces of information.
- the operation mode of the vehicle 101 may be switched automatically by using a seating sensor, a face direction sensor, or the like.
- the vehicle control unit 103 may switch the driving mode of the vehicle 101 based on output signals from the seating sensor and the face direction sensor.
- FIG. 11 is a diagram showing functional blocks of the control unit 140a of the illumination system 104a.
- the control unit 140a is configured to control the operations of the illumination unit 142a, the camera 143a, the LiDAR unit 144a, and the millimeter wave radar 145a.
- the control unit 140a includes an illumination control unit 1410a, a camera control unit 1420a (an example of a first generation unit), a LiDAR control unit 1430a (an example of a second generation unit), a millimeter wave radar control unit 1440a, and a periphery And an environmental information fusion unit 1450a.
- the lighting control unit 1410 a is configured to control the lighting unit 142 a so that the lighting unit 142 a emits a predetermined light distribution pattern toward the front area of the vehicle 101.
- the illumination control unit 1410a may change the light distribution pattern emitted from the illumination unit 142a according to the operation mode of the vehicle 101.
- the illumination control unit 1410a is configured to perform lighting control of the illumination unit 142a at a rate a3 (Hz).
- the rate a3 (third rate) of the illumination unit 142a may be the same as or different from the frame rate a1 of the image data acquired by the camera 143a.
- the camera control unit 1420a is configured to control the operation of the camera 143a.
- the camera control unit 1420a is configured to control the camera 143a to acquire image data (first detection data) at a frame rate a1 (first frame rate).
- the camera control unit 1420a is configured to control acquisition timing of each frame of image data (in particular, acquisition start time).
- the camera control unit 1420a also generates surrounding environment information (hereinafter referred to as surrounding environment information Ic) of the vehicle 101 in the detection area S1 (see FIG. 12) of the camera 143a based on the image data output from the camera 143a. It is configured to More specifically, as shown in FIG.
- the camera control unit 1420a generates the surrounding environment information Ic1 of the vehicle 101 based on the frame Fc1 of the image data, and based on the frame Fc2 of the image data, the surrounding environment The information Ic2 is generated, and the surrounding environment information Ic3 is generated based on the frame Fc3 of the image data.
- the camera control unit 1420a generates peripheral environment information for each frame of image data.
- the LiDAR control unit 1430a is configured to control the operation of the LiDAR unit 144a.
- the LiDAR control unit 1430a is configured to control the LiDAR unit 144a to acquire 3D mapping data (second detection data) at a frame rate a2 (second frame rate).
- the LiDAR control unit 1430a is configured to control acquisition timing (in particular, acquisition start time) of each frame of 3D mapping data.
- the LiDAR control unit 1430a receives peripheral environment information (hereinafter, peripheral environment information Il) of the vehicle 101 in the detection area S2 (see FIG. 12) of the LiDAR unit 144a. It is configured to generate. More specifically, as shown in FIG.
- the LiDAR control unit 1430a generates the surrounding environment information Il1 based on the frame Fl1 of the 3D mapping data, and the surrounding environment information based on the frame Fl2 of the 3D mapping data. Il2 is generated, and peripheral environment information Il3 is generated based on the frame Fl3 of the 3D mapping data. Thus, the LiDAR control unit 1430a generates peripheral environment information for each frame of 3D mapping data.
- the millimeter wave radar control unit 1440a controls the operation of the millimeter wave radar 145a and, based on the detection data output from the millimeter wave radar 145a, the vehicle 101 in the detection area S3 (see FIG. 12) of the millimeter wave radar 145a. It is configured to generate peripheral environment information Im. For example, the millimeter wave radar control unit 1440a generates the surrounding environment information Im1 based on the frame Fm1 (not shown) of the detection data, and the surrounding environment information Im2 based on the frame Fm2 (not shown) of the detection data. And generates the surrounding environment information Im3 based on the frame Fm3 (not shown) of the detection data.
- the peripheral environment information fusion unit 1450a acquires peripheral environment information Ic, Il, Im, and fuses the acquired peripheral environment information Ic, Il, Im to generate merged peripheral environment information If. Configured In particular, when the acquisition period of the frame Fc1 of the image data, the acquisition period of the frame Fl1 of the 3D mapping data, and the acquisition period of the frame Fm1 of the detection data acquired by the millimeter wave radar mutually overlap, the surrounding environment information fusion unit 1450a Generates a fused peripheral environment information If1 by fusing the peripheral environment information Ic1 corresponding to the frame Fc1, the peripheral environment information Il1 corresponding to the frame F11, and the peripheral environment information Im1 corresponding to the frame Fm1 respectively. May be
- the surrounding environment information If is outside the vehicle 101 in the detection area Sf in which the detection area S1 of the camera 143a, the detection area S2 of the LiDAR unit 144a, and the detection area S3 of the millimeter wave radar 145a are combined. It may include information about the existing object.
- the surrounding environment information If may include information on the attribute of the object, the position of the object relative to the vehicle 101, the distance between the vehicle 101 and the object, and / or the velocity of the object relative to the vehicle 101.
- the surrounding environment information fusion unit 1450a transmits the surrounding environment information If to the vehicle control unit 103.
- control units 140b, 140c, and 140d may have the same function as the control unit 140a. That is, each of the control units 140b to 140d includes an illumination control unit, a camera control unit (an example of a first generation unit), a LiDAR control unit (an example of a second generation unit), a millimeter wave radar control unit, and a periphery An environmental information fusion unit may be provided.
- the surrounding environment information fusion unit of each of the control units 140b to 140c may transmit the merged surrounding environment information If to the vehicle control unit 103.
- Vehicle control unit 103 controls the traveling of vehicle 101 based on surrounding environment information If and other information (travel control information, current position information, map information, etc.) transmitted from control units 140a to 140d. Good.
- the acquisition timing of the detection data of the millimeter wave radar 145a is not particularly mentioned. That is, in the present embodiment, the relationship between the acquisition timing of the image data and the acquisition timing of the 3D mapping data is particularly noted.
- the upper part of FIG. 13 shows acquisition timings of frames (for example, frames Fc1, Fc2, Fc3) of image data acquired by the camera 143a in a predetermined period.
- the frame Fc2 (an example of the second frame of the first detection data) is a frame of image data acquired by the camera 143a next to the frame Fc1 (an example of the first frame of the first detection data).
- the frame Fc3 is a frame of image data acquired by the camera 143a next to the frame Fc2.
- the acquisition period ⁇ Tc of one frame of image data corresponds to the exposure time required to form one frame of image data (in other words, the time for taking in light forming one frame of image data).
- the time for processing the electrical signal output from the image sensor such as a CCD or CMOS is not included in the acquisition period ⁇ Tc.
- a period between the acquisition start time tc1 of the frame Fc1 and the acquisition start time tc2 of the frame Fc2 corresponds to the frame period T1 of the image data.
- the middle part of FIG. 13 shows acquisition timings of frames (for example, frames Fl1, Fl2, Fl3) of 3D mapping data acquired by the LiDAR unit 144a in a predetermined period.
- the frame Fl2 (an example of the second frame of the second detection data) is a frame of 3D mapping data acquired by the LiDAR unit 144a next to the frame Fl1 (an example of the first frame of the second detection data) .
- the frame F13 is a frame of 3D mapping data acquired by the LiDAR unit 144a next to the frame F12.
- the acquisition period ⁇ T1 of one frame of 3D mapping data does not include the time for processing the electric signal output from the light receiving unit of the LiDAR unit 144a.
- a period between the acquisition start time tl1 of the frame Fl1 and the acquisition start time tl2 of the frame Fl2 corresponds to the frame period T2 of the 3D mapping data.
- an acquisition period ⁇ Tc of each frame of image data and an acquisition period ⁇ T1 of each frame of 3D mapping data overlap each other.
- the acquisition period ⁇ T1 of the frame Fl1 of the 3D mapping data overlaps with the acquisition period ⁇ Tc of the frame Fc1 of the image data.
- the acquisition period ⁇ T1 of the frame Fl2 of the 3D mapping data overlaps with the acquisition period ⁇ Tc of the frame Fc2 of the image data.
- the acquisition period ⁇ T1 of the frame Fl3 of the 3D mapping data overlaps with the acquisition period ⁇ Tc of the frame Fc3 of the image data.
- the acquisition start time of each frame of the image data may coincide with the acquisition start time of each frame of the 3D mapping data.
- the acquisition start time tl1 of the frame Fl1 of the 3D mapping data may coincide with the acquisition start time tc1 of the frame Fc1 of the image data.
- the acquisition start time tl2 of the frame Fl2 of the 3D mapping data may coincide with the acquisition start time tc2 of the frame Fc2 of the image data.
- the acquisition start time tl3 of the frame Fl3 of the 3D mapping data may coincide with the acquisition start time tc3 of the frame Fc3 of the image data.
- the acquisition period ⁇ Tc of each frame of image data and the acquisition period ⁇ T1 of each frame of 3D mapping data overlap each other. Therefore, for example, the time zone of the surrounding environment information Ic1 generated based on the frame Fc1 substantially coincides with the time zone of the surrounding environment information Il1 generated based on the frame Fl1.
- the recognition accuracy of the surrounding environment of the vehicle 101 can be improved by using the surrounding environment information Ic1 and Il1 in which the time zones substantially coincide with each other.
- the time zone of the surrounding environment information Ic1 and the time zone of the surrounding environment information Il1 substantially coincide with each other, it is possible to improve the accuracy of the surrounding environment information If1 generated by the surrounding environment information fusion unit 1450a.
- the surrounding environment information If1 is composed of the surrounding environment information Ic1, I11 and the surrounding environment information Im1 generated based on the frame Fm1 of the millimeter wave radar 145a.
- the acquisition period of the frame Fm1 of the millimeter wave radar 145a may overlap with the acquisition period ⁇ Tc of the frame Fc1 and the acquisition period ⁇ T1 of the frame Fl1. In this case, it is possible to further improve the accuracy of the surrounding environment information If1.
- the surrounding environment information Ic1 and the surrounding environment information Il1 may be different from each other in the overlapping area Sx (see FIG. 12) in which S2 overlaps with each other.
- the surrounding environment information Ic1 indicates the presence of the pedestrian P2
- the surrounding environment information Il1 does not indicate the presence of the pedestrian P2.
- the surrounding environment information Ic1 and Il1 having different time zones are merged, there is a possibility that the accuracy of the surrounding environment information If1 may be deteriorated.
- the lower part of FIG. 13 shows the lighting timing (lighting period ⁇ Ton and lighting-off period ⁇ Toff) of the lighting unit 142a in a predetermined period.
- a period between the lighting start time ts1 of the lighting period ⁇ Ton of the lighting unit 142a and the lighting start time ts2 of the next lighting period ⁇ Ton corresponds to the lighting cycle T3.
- the lighting cycle T3 of the lighting unit 142a matches the frame cycle T1 of the image data.
- the rate a3 of the lighting unit 142a matches the frame rate a1 of the image data.
- the illumination unit 142a lights up in an acquisition period ⁇ Tc of each frame (for example, frames Fc1, Fc2, Fc3) of image data.
- the lighting unit 142a while the lighting unit 142a is on, the image data indicating the environment around the vehicle 101 is acquired by the camera 143a, so the environment around the vehicle 101 is dark (for example, In the case of nighttime), it is possible to preferably prevent the occurrence of blackout in the image data.
- the acquisition period ⁇ Tc of each frame of the image data completely overlaps the lighting period ⁇ Ton of the illumination unit 142 a
- the present embodiment is not limited to this.
- a part of the acquisition period ⁇ Tc of each frame of the image data may overlap with the lighting period ⁇ Ton of the illumination unit 142a.
- the camera control unit 1420a determines the acquisition timing of the image data (for example, including the acquisition start time of the first frame etc.) and then the image data.
- the information regarding the acquisition timing of may be transmitted to the LiDAR control unit 1430a and the illumination control unit 1410a.
- the LiDAR control unit 1430a determines the acquisition timing (such as the acquisition start time of the first frame) of the 3D mapping data based on the information related to the acquisition timing of the received image data.
- the lighting control unit 1410a determines the lighting timing (the first lighting start time and the like) of the lighting unit 142a based on the information on the acquisition timing of the received image data.
- the camera control unit 1420a drives the camera 143a based on the information on the acquisition timing of the image data.
- the LiDAR control unit 1430a drives the LiDAR unit 144a based on the information on the acquisition timing of the 3D mapping data.
- the lighting control unit 1410a turns on / off the lighting unit 142a based on the information on the lighting timing of the lighting unit 142a.
- the surrounding environment information fusion unit 1450a may determine the acquisition timing of the image data, the acquisition timing of the 3D mapping data, and the lighting timing of the lighting unit 142a.
- the peripheral environment information fusion unit 1450a transmits information on acquisition timing of image data to the camera control unit 1420a, transmits information on acquisition timing of 3D mapping data to the LiDAR control unit 1430a, and turns on the lighting timing of the lighting unit 142a.
- Information on the lighting control unit 1410a Thereafter, the camera control unit 1420a drives the camera 143a based on the information on the acquisition timing of the image data.
- the LiDAR control unit 1430a drives the LiDAR unit 144a based on the information on the acquisition timing of the 3D mapping data. Furthermore, the lighting control unit 1410a turns on / off the lighting unit 142a based on the information on the lighting timing of the lighting unit 142a.
- the lighting cycle of the lighting unit 142a is set to 2T3.
- the rate of the lighting unit 142a is set to a3 / 2, which is half the frame rate a1 of the image data.
- the lighting unit 142a lights up in the acquisition period ⁇ Tc of the frame Fc1 of the image data, and turns off in the acquisition period ⁇ Tc of the next frame Fc2 of the image data.
- the acquisition period of the predetermined frame of the image data overlaps with the lighting period ⁇ Ton2 of the lighting unit 142a.
- the acquisition period of the next frame of the predetermined frame overlaps with the turn-off period ⁇ Toff2 of the lighting unit 142a.
- the camera 143a acquires image data indicating the peripheral environment of the vehicle 101 while the lighting unit 142a is on, and acquires the image data while the lighting unit 142a is off. That is, the camera 143a alternately acquires a frame of image data when the lighting unit 142a is turned on and a frame of image data when the lighting unit 142a is turned off. Therefore, by comparing the image data M1 captured when the lighting unit 142a is turned off with the image data M2 captured when the lighting unit 142a is turned on, objects existing around the vehicle 101 can be obtained. It can be specified whether an object emits light itself or reflects light. Thus, the camera control unit 1420a can more accurately specify the attribute of an object present around the vehicle 101.
- the lighting unit 142a when the lighting unit 142a is on, part of the light emitted from the lighting unit 142a and reflected by the light transmitting cover 122a may enter the camera 143a, which may cause stray light in the image data M2 is there.
- the illumination unit 142a when the illumination unit 142a is turned off, stray light does not occur in the image data M1.
- the camera control unit 1420a can specify the stray light generated in the image data M2 by comparing the image data M1 and the image data M2. Therefore, the recognition accuracy of the surrounding environment of the vehicle 101 can be improved.
- left and right direction and “front and back direction” will be referred to as appropriate for convenience of description. These directions are relative directions set for the vehicle 201 shown in FIG.
- the “front-rear direction” is a direction including the “front direction” and the “rear direction”.
- the “left-right direction” is a direction including the “left direction” and the “right direction”.
- FIG. 15 is a schematic view showing a top view of a vehicle 201 provided with a vehicle system 202.
- the vehicle 201 is a vehicle (automobile) that can travel in an automatic driving mode, and includes a vehicle system 202.
- the vehicle system 202 includes a vehicle control unit 203, a front left illumination system 204a (hereinafter simply referred to as “illumination system 204a”), a front right illumination system 204b (hereinafter simply referred to as “illumination system 204b”), and a left rear illumination.
- a system 204c hereinafter, simply referred to as "illumination system 204c”
- a right rear illumination system 204d hereinafter, simply referred to as "illumination system 204d”).
- the illumination system 204 a is provided on the left front side of the vehicle 201.
- the illumination system 204a includes a housing 224a installed on the left front side of the vehicle 201, and a translucent cover 222a attached to the housing 224a.
- the illumination system 204 b is provided on the right front side of the vehicle 201.
- the lighting system 204b includes a housing 224b installed on the right front side of the vehicle 201, and a translucent cover 222b attached to the housing 224b.
- the illumination system 204 c is provided on the left rear side of the vehicle 201.
- the lighting system 204c includes a housing 224c installed on the left rear side of the vehicle 201, and a light transmitting cover 222c attached to the housing 224c.
- the illumination system 204 d is provided on the right rear side of the vehicle 201.
- the illumination system 204 d includes a housing 224 d installed on the right rear side of the vehicle 201 and a light transmitting cover 222 d attached to the housing 224 d.
- FIG. 16 is a block diagram showing a vehicle system 202.
- the vehicle system 202 includes a vehicle control unit 203, lighting systems 204a to 204d, a sensor 205, an HMI (Human Machine Interface) 208, a GPS (Global Positioning System) 209, and a wireless communication unit. 210 and a storage device 211.
- the vehicle system 202 includes a steering actuator 212, a steering device 213, a brake actuator 214, a brake device 215, an accelerator actuator 216, and an accelerator device 217.
- Vehicle system 202 also includes a battery (not shown) configured to provide power.
- the vehicle control unit 203 is configured to control the traveling of the vehicle 201.
- the vehicle control unit 203 includes, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuitry including active and passive elements such as transistors.
- the processor is, for example, a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), and / or a tensor processing unit (TPU).
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- a vehicle control program may be stored in the ROM.
- the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
- AI is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- the RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating a surrounding environment of the vehicle.
- the processor may be configured to expand a program specified from the vehicle control program stored in the ROM on the RAM, and execute various processes in cooperation with the RAM.
- the electronic control unit may be configured by at least one integrated circuit such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). Furthermore, the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the illumination system 204a further includes a control unit 240a, an illumination unit 242a, a camera 243a, a LiDAR (Light Detection and Ranging) unit 244a (an example of a laser radar), and a millimeter wave radar 245a.
- the control unit 240a, the illumination unit 242a, the camera 243a, the LiDAR unit 244a, and the millimeter wave radar 245a are, as shown in FIG. 15, in the space Sa formed by the housing 224a and the light transmission cover 222a (light chamber) Will be placed.
- the control unit 240a may be disposed at a predetermined place of the vehicle 201 other than the space Sa.
- the control unit 240a may be configured integrally with the vehicle control unit 203.
- the control unit 240a is configured of, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits (eg, transistors, etc.).
- the processor is, for example, a CPU, an MPU, a GPU and / or a TPU.
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM and a RAM.
- a peripheral environment specifying program for specifying the peripheral environment of the vehicle 201 may be stored in the ROM.
- the peripheral environment identification program is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- a peripheral environment identification program In the RAM, a peripheral environment identification program, image data acquired by the camera 243a, three-dimensional mapping data (point group data) acquired by the LiDAR unit 244a, and / or detection data acquired by the millimeter wave radar 245a, etc. are temporarily stored. May be stored.
- the processor may be configured to expand a program specified from the peripheral environment specifying program stored in the ROM on the RAM and execute various processing in cooperation with the RAM.
- the electronic control unit ECU
- the electronic control unit may be configured by at least one integrated circuit such as an ASIC or an FPGA.
- the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- the illumination unit 242 a is configured to form a light distribution pattern by emitting light toward the outside (forward) of the vehicle 201.
- the illumination unit 242a has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, a light emitting diode (LED), a laser diode (LD), or an organic EL element.
- the optical system is configured to refract light emitted by the light source and reflected by the reflector directly configured to reflect light emitted from the light source toward the front of the lighting unit 242a and light reflected from the light source.
- the lighting unit 242a displays a light distribution pattern for the driver (for example, a low beam light distribution pattern or a high beam light distribution pattern) in front of the vehicle 201. It is configured to form. Thus, the lighting unit 242a functions as a left headlamp unit.
- the lighting unit 242a may be configured to form a light distribution pattern for a camera in front of the vehicle 201.
- the control unit 240a may be configured to individually supply an electrical signal (for example, a PWM (Pulse Width Modulation) signal) to each of the plurality of light emitting elements provided in the lighting unit 242a.
- an electrical signal for example, a PWM (Pulse Width Modulation) signal
- the control unit 240a can individually select the light emitting elements to which the electric signal is supplied, and can adjust the duty ratio of the electric signal for each light emitting element. That is, the control unit 240a can select a light emitting element to be turned on or off among the plurality of light emitting elements arranged in a matrix, and can determine the luminance of the light emitting element being turned on. Therefore, the control unit 240a can change the shape and the brightness of the light distribution pattern emitted forward from the lighting unit 242a.
- PWM Pulse Width Modulation
- the camera 243 a is configured to detect the surrounding environment of the vehicle 201.
- the camera 243a is configured to transmit image data to the control unit 240a after acquiring image data indicating the surrounding environment of the vehicle 201.
- the control unit 240a specifies the surrounding environment information based on the transmitted image data.
- the surrounding environment information may include information on an object present outside the vehicle 201.
- the surrounding environment information may include information on the attribute of an object present outside the vehicle 201, and information on the distance and position of the object relative to the vehicle 201.
- the camera 243a is configured by an imaging device such as, for example, a charge-coupled device (CCD) or a metal oxide semiconductor (CMOS).
- CCD charge-coupled device
- CMOS metal oxide semiconductor
- the camera 243a may be configured as a monocular camera or may be configured as a stereo camera.
- the control unit 240a uses parallax to make the vehicle 201 and an object existing outside the vehicle 201 (for example, based on two or more image data acquired by the stereo camera). The distance between the pedestrian and the like can be specified.
- one camera 243a is provided in the illumination system 204a in the present embodiment, two or more cameras 243a may be provided in the illumination system 204a.
- the LiDAR unit 244a (an example of a laser radar) is configured to detect the surrounding environment of the vehicle 201.
- the LiDAR unit 244a is configured to transmit 3D mapping data to the control unit 240a after acquiring 3D mapping data (point cloud data) indicating the surrounding environment of the vehicle 201.
- the control unit 240a specifies the surrounding environment information based on the transmitted 3D mapping data.
- the surrounding environment information may include information on an object present outside the vehicle 201.
- the surrounding environment information may include information on the attribute of an object present outside the vehicle 201, and information on the distance and position of the object relative to the vehicle 201.
- the LiDAR unit 244a acquires information on the time of flight (TOF) ⁇ T1 of the laser light (light pulse) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) of the laser light. Then, based on the information on the time of flight ⁇ T1, the information on the distance D between the LiDAR unit 244a (vehicle 201) and the object existing outside the vehicle 201 at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) is obtained can do.
- the flight time ⁇ T1 can be calculated, for example, as follows.
- Time of flight ⁇ T1 time at which laser light (light pulse) returned to LiDAR unit t1—time at which LiDAR unit emitted laser light (light pulse)
- the LiDAR unit 244a can acquire 3D mapping data indicating the environment around the vehicle 201.
- the LiDAR unit 244a includes, for example, a laser light source configured to emit a laser beam, an optical deflector configured to scan the laser beam in the horizontal direction and the vertical direction, and an optical system such as a lens. And a light receiving unit configured to receive the laser light reflected by the object.
- the central wavelength of the laser light emitted from the laser light source is not particularly limited.
- the laser light may be invisible light whose center wavelength is around 900 nm.
- the light deflector may be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
- the light receiving unit is, for example, a photodiode.
- the LiDAR unit 244a may acquire 3D mapping data without scanning the laser light by the light deflector.
- the LiDAR unit 244a may obtain 3D mapping data in a phased array method or a flash method.
- one LiDAR unit 244a is provided in the illumination system 204a in the present embodiment, two or more LiDAR units 244a may be provided in the illumination system 204a.
- one LiDAR unit 244a is configured to detect the surrounding environment in the front area of the vehicle 201 and the other LiDAR unit 244a is a vehicle 201. It may be configured to detect the surrounding environment in the side area of the
- the millimeter wave radar 245 a is configured to detect the surrounding environment of the vehicle 201.
- the millimeter wave radar 245a is configured to transmit detection data to the control unit 240a after acquiring detection data indicating the peripheral environment of the vehicle 201.
- the control unit 240a specifies the surrounding environment information based on the transmitted detection data.
- the surrounding environment information may include information on an object present outside the vehicle 201.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 201, information on the position of the object relative to the vehicle 201, and information on the speed of the object relative to the vehicle 201.
- the millimeter wave radar 245a may be a pulse modulation method, an FM-CW (Frequency Moduled-Continuous Wave) method, or a two-frequency CW method, between the millimeter wave radar 245a (vehicle 201) and an object existing outside the vehicle 201.
- the distance D of can be obtained.
- the millimeter wave radar 245a acquires the information on the time of flight ⁇ T2 of the millimeter wave at each emission angle of the millimeter wave, and then the millimeter wave radar at each emission angle based on the information on the time of flight ⁇ T2. It is possible to obtain information on the distance D between 245a (vehicle 201) and an object present outside the vehicle 201.
- the flight time ⁇ T2 can be calculated, for example, as follows.
- Time of flight ⁇ T2 time t3 when millimeter wave returns to millimeter wave radar
- the millimeter wave radar 245a is a vehicle 201 for the millimeter wave radar 245a (vehicle 201) based on the frequency f0 of the millimeter wave emitted from the millimeter wave radar 245a and the frequency f1 of the millimeter wave returned to the millimeter wave radar 245a. It is possible to obtain information on the relative velocity V of an object that exists outside of.
- the illumination system 204a may include a millimeter wave radar 245a for short distance, a millimeter wave radar 245a for medium distance, and a millimeter wave radar 245a for long distance.
- the illumination system 204b further includes a control unit 240b, an illumination unit 242b, a camera 243b, a LiDAR unit 244b, and a millimeter wave radar 245b.
- the control unit 240b, the illumination unit 242b, the camera 243b, the LiDAR unit 244b, and the millimeter wave radar 245b are, as shown in FIG. 15, in the space Sb formed by the housing 224b and the light transmission cover 222b (light chamber) Will be placed.
- the control unit 240b may be disposed at a predetermined place of the vehicle 201 other than the space Sb.
- the control unit 240b may be configured integrally with the vehicle control unit 203.
- the control unit 240 b may have the same function and configuration as the control unit 240 a.
- the lighting unit 242b may have the same function and configuration as the lighting unit 242a.
- the lighting unit 242a functions as a left headlamp unit, while the lighting unit 242b functions as a right headlamp unit.
- the camera 243 b may have the same function and configuration as the camera 243 a.
- the LiDAR unit 244b may have the same function and configuration as the LiDAR unit 244a.
- the millimeter wave radar 245b may have the same function and configuration as the millimeter wave radar 245a.
- the illumination system 204c further includes a control unit 240c, an illumination unit 242c, a camera 243c, a LiDAR unit 244c, and a millimeter wave radar 245c.
- the control unit 240 c may be disposed at a predetermined place of the vehicle 201 other than the space Sc.
- the control unit 240 c may be configured integrally with the vehicle control unit 203.
- the control unit 240 c may have the same function and configuration as the control unit 240 a.
- the illumination unit 242 c is configured to form a light distribution pattern by emitting light toward the outside (rear) of the vehicle 201.
- the illumination unit 242c has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, an LED, an LD or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the illumination unit 242c, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector. And at least one of the lenses.
- the lighting unit 242c may turn off.
- the lighting unit 242 c may be configured to form a light distribution pattern for the camera behind the vehicle 201.
- the camera 243c may have the same function and configuration as the camera 243a.
- the LiDAR unit 244c may have the same function and configuration as the LiDAR unit 244c.
- the millimeter wave radar 245c may have the same function and configuration as the millimeter wave radar 245a.
- the illumination system 204d further includes a control unit 240d, an illumination unit 242d, a camera 243d, a LiDAR unit 244d, and a millimeter wave radar 245d.
- the control unit 240d, the illumination unit 242d, the camera 243d, the LiDAR unit 244d, and the millimeter wave radar 245d are in a space Sd formed by the housing 224d and the light transmission cover 222d (light chamber) Will be placed.
- the control unit 240 d may be disposed at a predetermined place of the vehicle 201 other than the space Sd.
- the control unit 240 d may be configured integrally with the vehicle control unit 203.
- the control unit 240 d may have the same function and configuration as the control unit 240 c.
- the lighting unit 242d may have the same function and configuration as the lighting unit 242c.
- the camera 243 d may have the same function and configuration as the camera 243 c.
- the LiDAR unit 244d may have the same function and configuration as the LiDAR unit 244c.
- the millimeter wave radar 245d may have the same function and configuration as the millimeter wave radar 245c.
- the sensor 205 may include an acceleration sensor, a speed sensor, a gyro sensor, and the like.
- the sensor 205 is configured to detect the traveling state of the vehicle 201 and to output traveling state information indicating the traveling state of the vehicle 201 to the vehicle control unit 203.
- the sensor 205 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face direction sensor that detects the direction of the driver's face, an external weather sensor that detects an external weather condition, and a person in the vehicle You may further provide a human sensor etc. which detect whether it is.
- the sensor 205 may include an illuminance sensor configured to detect the brightness (such as illuminance) of the surrounding environment of the vehicle 201. The illuminance sensor may determine the brightness of the surrounding environment according to, for example, the magnitude of the photocurrent output from the photodiode.
- An HMI (Human Machine Interface) 208 includes an input unit that receives an input operation from the driver, and an output unit that outputs traveling state information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode switching switch for switching the operation mode of the vehicle 201, and the like.
- the output unit includes a display and the like configured to display the traveling state information, the surrounding environment information, and the lighting state of the lighting system 4.
- a GPS (Global Positioning System) 209 is configured to acquire current position information of the vehicle 201 and to output the acquired current position information to the vehicle control unit 203.
- the wireless communication unit 210 receives information (for example, other vehicle traveling information and the like) related to other vehicles around the vehicle 201 from other vehicles and also transmits information (for example, own vehicle traveling information and the like) for the vehicle 201 to the other vehicles. It is configured to transmit (inter-vehicle communication).
- the wireless communication unit 210 is configured to receive infrastructure information from an infrastructure facility such as a traffic light and a marker light, and to transmit vehicle traveling information of the vehicle 201 to the infrastructure facility (inter-vehicle communication).
- the wireless communication unit 210 receives information on the pedestrian from a portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 201 to the portable electronic device. It is configured to (pedal communication).
- the vehicle 201 may directly communicate with other vehicles, infrastructure equipment, or portable electronic devices in an ad hoc mode, or may communicate via an access point.
- the wireless communication standard is, for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) or LPWA.
- the vehicle 201 may communicate with other vehicles, infrastructure equipment, or portable electronic devices via a mobile communication network.
- the storage device 211 is an external storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
- the storage device 211 may store 2D or 3D map information and / or a vehicle control program.
- 3D map information may be configured by point cloud data.
- the storage device 211 is configured to output map information and a vehicle control program to the vehicle control unit 203 in response to a request from the vehicle control unit 203.
- the map information and the vehicle control program may be updated via the wireless communication unit 210 and a communication network such as the Internet.
- the vehicle control unit 203 controls the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information and / or the map information. Automatically generate at least one of them.
- the steering actuator 212 is configured to receive a steering control signal from the vehicle control unit 203 and control the steering device 213 based on the received steering control signal.
- the brake actuator 214 is configured to receive a brake control signal from the vehicle control unit 203 and control the brake device 215 based on the received brake control signal.
- the accelerator actuator 216 is configured to receive an accelerator control signal from the vehicle control unit 203 and control the accelerator device 217 based on the received accelerator control signal.
- the traveling of the vehicle 201 is automatically controlled by the vehicle system 202.
- the vehicle control unit 203 when the vehicle 201 travels in the manual operation mode, the vehicle control unit 203 generates a steering control signal, an accelerator control signal, and a brake control signal according to the driver's manual operation on the accelerator pedal, the brake pedal, and the steering wheel. Do. As described above, in the manual operation mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so that the travel of the vehicle 201 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a completely automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle system 202 In the fully automatic operation mode, the vehicle system 202 automatically performs all travel control of steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 201 can be driven.
- the vehicle system 202 In the advanced driving support mode, the vehicle system 202 automatically performs all travel control of steering control, brake control and accelerator control, and the driver does not drive the vehicle 201 although the vehicle 201 can be driven.
- the vehicle system 202 In the driving support mode, the vehicle system 202 automatically performs traveling control of part of steering control, brake control, and accelerator control, and the driver drives the vehicle 201 under the driving support of the vehicle system 202.
- the vehicle system 202 In the manual operation mode, the vehicle system 202 does not automatically perform travel control, and the driver drives the vehicle 201 without driving assistance from the vehicle system 202.
- the operation mode of the vehicle 201 may be switched by operating the operation mode switching switch.
- the vehicle control unit 203 sets the drive mode of the vehicle 201 to four drive modes (complete automatic drive mode, advanced drive support mode, drive support mode, manual drive mode) according to the driver's operation on the drive mode switching switch. Switch between).
- the operation mode of the vehicle 201 is automatically based on the information on the travelable section where the autonomous driving vehicle can travel and the prohibited travel interval where the autonomous driving vehicle is prohibited or the information on the external weather condition. It may be switched to In this case, the vehicle control unit 203 switches the driving mode of the vehicle 201 based on the information.
- the operation mode of the vehicle 201 may be switched automatically by using a seating sensor, a face direction sensor, or the like. In this case, the vehicle control unit 203 may switch the driving mode of the vehicle 201 based on output signals from the seating sensor and the face direction sensor.
- FIG. 17 is a diagram showing functional blocks of the control unit 240a of the illumination system 204a.
- the control unit 240a is configured to control the operations of the illumination unit 242a, the camera 243a, the LiDAR unit 244a, and the millimeter wave radar 245a.
- the control unit 240a includes an illumination control unit 2410a, a surrounding environment information identification unit 2400a, and a detection accuracy determination unit 2460a.
- the illumination control unit 2410 a is configured to control the illumination unit 242 a so that the illumination unit 242 a emits a predetermined light distribution pattern toward the front area of the vehicle 201.
- the illumination control unit 2410a may change the light distribution pattern emitted from the illumination unit 242a according to the operation mode of the vehicle 201.
- the surrounding environment information specifying unit 2400a includes a camera control unit 2420a, a LiDAR control unit 2430a, a millimeter wave radar control unit 2440a, and a surrounding environment information merging unit 2450a.
- the camera control unit 2420a controls the operation of the camera 243a and, based on the image data (detection data) output from the camera 243a, the surrounding environment information of the vehicle 201 in the detection area S1 (see FIG. 18) of the camera 243a (see FIG. 18). Hereinafter, it is configured to generate peripheral environment information I1.
- the LiDAR control unit 2430a controls the operation of the LiDAR unit 244a and, based on the 3D mapping data (detection data) output from the LiDAR unit 244a, of the vehicle 201 in the detection area S2 (see FIG. 18) of the LiDAR unit 244a. It is configured to generate peripheral environment information (hereinafter referred to as peripheral environment information I2).
- the millimeter wave radar control unit 2440a controls the operation of the millimeter wave radar 245a and, based on the detection data output from the millimeter wave radar 245a, the vehicle 201 in the detection area S3 (see FIG. 18) of the millimeter wave radar 245a. It is configured to generate peripheral environment information (hereinafter referred to as peripheral environment information I3).
- the surrounding environment information fusion unit 2450a is configured to merge the surrounding environment information I1, I2, and I3 to generate the fused surrounding environment information If.
- the surrounding environment information If is a vehicle 201 in a detection area Sf in which a detection area S1 of the camera 243a, a detection area S2 of the LiDAR unit 244a, and a detection area S3 of the millimeter wave radar 245a are combined. It may include information on an object that exists outside of.
- the surrounding environment information If may include information on the attribute of the object, the position of the object relative to the vehicle 201, the distance between the vehicle 201 and the object, and / or the velocity of the object relative to the vehicle 201.
- the surrounding environment information fusion unit 2450a may be configured to transmit the surrounding environment information If to the vehicle control unit 203.
- the detection accuracy determination unit 2460a is configured to determine the detection accuracy of each of the plurality of sensors (the camera 243a, the LiDAR unit 244a, and the millimeter wave radar 245a).
- the detection accuracy of the sensor may be defined as a percentage (0% to 100%). In this case, as the detection accuracy of the sensor is higher, the detection accuracy of the sensor approaches 100%.
- the detection accuracy of the sensor may be ranked in three classes A to C. For example, when the detection accuracy of the sensor is high, the detection accuracy of the sensor may be determined as the A rank. On the other hand, when the detection accuracy of the sensor is low, the detection accuracy of the sensor may be determined as the C rank.
- the vehicle system 202 determines that the predetermined sensor is abnormal. May be Furthermore, the control unit 240a may adopt detection data of sensors with high detection accuracy or surrounding environment information in an overlapping area where detection areas of a plurality of sensors overlap each other. Thus, the vehicle system 202 which can improve the recognition precision of the surrounding environment of the vehicle 201 can be provided by utilizing the information regarding the detection precision of a sensor.
- the image data (detection data of the camera 243a) is used in preference to the 3D mapping data (detection data of the LiDAR unit 244a). Ru.
- the surrounding environment information fusion unit 2450a when generating the surrounding environment information If, the surrounding environment information fusion unit 2450a generates based on the 3D mapping data in the overlapping area Sx (see FIG. 18) in which the detection area S1 and the detection area S2 overlap each other.
- the surrounding environment information I1 generated based on the image data is adopted rather than the surrounding environment information I2.
- the surrounding environment information I1 and the surrounding environment information I2 in the overlapping area Sx when there is a contradiction between the surrounding environment information I1 and the surrounding environment information I2 in the overlapping area Sx (when the surrounding environment information I1 and the surrounding environment information I2 do not match each other), the surrounding environment information is fused.
- the unit 2450a adopts the surrounding environment information I1.
- the surrounding environment information identification unit 2400a identifies the surrounding environment of the vehicle 201 based on detection data of a plurality of sensors (camera 243a, LiDAR unit 244a, millimeter wave radar 245a) and detection accuracy of the plurality of sensors. It is configured to
- the surrounding environment information fusion unit 2450a and the detection accuracy determination unit 2460a are realized by the control unit 240a, but these may be realized by the vehicle control unit 203.
- control units 240b, 240c, and 240d may have the same function as the control unit 240a. That is, each of the control units 240b to 240d may have a lighting control unit, a surrounding environment information identification unit, and a detection accuracy determination unit. Further, the surrounding environment information specifying unit of the control units 240b to 240d may include a camera control unit, a LiDAR control unit, a millimeter wave radar control unit, and a surrounding environment information merging unit. The surrounding environment information fusion unit of each of the control units 240b to 240d may transmit the merged surrounding environment information If to the vehicle control unit 203. The vehicle control unit 203 controls the travel of the vehicle 201 based on the surrounding environment information If and other information (travel control information, current position information, map information, etc.) transmitted from the control units 240 a to 240 d. Good.
- FIG. 19 is a flowchart for explaining the process of determining the detection accuracy of each sensor according to the present embodiment.
- the operation flow of the illumination system 204a will be described, but it should be noted that the operation flow of the illumination system 204a is also applicable to the illumination systems 204b to 204d.
- step S201 the vehicle control unit 203 determines whether the vehicle 201 is stopped. If the determination result is YES in step S201, the vehicle control unit 203 acquires current position information of the vehicle 201 using the GPS 209 (step S202). On the other hand, when the determination result of step S201 is NO, the vehicle control part 203 waits until the determination result of step S201 becomes YES.
- the processes of steps S202 to S208 are performed in a state where the vehicle 201 is stopped, but the processes may be performed in a state where the vehicle is traveling.
- the vehicle control unit 203 acquires map information from the storage device 211 (step S203).
- the map information may be, for example, 3D map information configured by point cloud data.
- the vehicle control unit 203 transmits the current position information of the vehicle 201 and the map information to the detection accuracy determination unit 2460a. Thereafter, based on the current position information of the vehicle 201 and the map information, the detection accuracy determining unit 2460a determines whether a test object for determining the detection accuracy of the sensor exists around the vehicle 201 (step S204).
- the test object may be, for example, a traffic infrastructure facility fixedly disposed at a predetermined position, such as a traffic light, a traffic sign, a telephone pole, a street lamp, and the like.
- the detection accuracy of the three sensors when the detection accuracy of the three sensors is determined, in the test object, the detection area S1 of the camera 243a, the detection area S2 of the LiDAR unit 244a, and the detection area S3 of the millimeter wave radar 245a mutually overlap. It is preferable to exist in the overlapping area Sy (see, for example, a traffic light T1 which is an example of a test object shown in FIG. 18).
- the detection accuracy determining unit 2460a determines the detection accuracy of the camera 243a and the LiDAR unit 244a.
- the detection accuracy determining unit 2460a acquires information related to the test object (step S205). For example, the detection accuracy determining unit 2460a may acquire the attribute information, distance information, and / or position information of the test object based on the current position information of the vehicle 201 and the map information.
- the surrounding environment information identification unit 2400a acquires detection data of each sensor (step S206). Specifically, the camera control unit 2420a acquires image data from the camera 243a.
- the LiDAR control unit 2430a acquires 3D mapping data (point cloud data) from the LiDAR unit 244a.
- the millimeter wave radar control unit 2440a acquires detection data from the millimeter wave radar 245a.
- the surrounding environment information identification unit 2400a acquires a plurality of surrounding environment information based on the detection data acquired from the plurality of sensors (step S207). Specifically, the camera control unit 2420a acquires the surrounding environment information I1 based on the image data. The LiDAR control unit 2430a acquires the surrounding environment information I2 based on the 3D mapping data. The millimeter wave radar control unit 2440a acquires the surrounding environment information I3 based on the detection data of the millimeter wave radar 245a.
- the detection accuracy determination unit 2460a receives the peripheral environment information I1, I2, and I3 from the peripheral environment information identification unit 2400a, and then transmits the test object (for example, the traffic light T1 illustrated in FIG.
- the detection accuracy of each sensor is determined by comparing the related information with each of the surrounding environment information I1 to I3 (step S208).
- the detection accuracy determination unit 2460a determines that the information related to the test object included in the peripheral environment information I1 matches the information related to the test object acquired in step S205, the detection accuracy of the camera 243a is high. decide. In this case, the detection accuracy of the camera 243a may be determined as A rank.
- the detection accuracy of the LiDAR unit 244a Is determined to be low. In this case, the detection accuracy of the LiDAR unit 244a may be determined as C rank.
- the detection accuracy determination unit 2460a may transmit information on detection accuracy of each sensor to the cloud server existing on the communication network via the wireless communication unit 210 at a predetermined update cycle.
- the information on the detection accuracy of each sensor stored in the cloud server may be used as big data to improve the detection accuracy of each sensor.
- the information related to the detection accuracy may be used for abnormality determination of each sensor. For example, when the detection accuracy of the camera 243a is low for a predetermined period, the cloud server may transmit information indicating an abnormality of the camera 243a to the vehicle 201.
- the vehicle 201 may present information indicating the abnormality of the camera 243a visually, aurally and / or tactilely to the occupant. As described above, since the abnormality of the camera 243a is presented to the occupant, the traveling safety of the vehicle 201 can be further enhanced.
- step S20 the camera 243a acquires image data indicating the environment surrounding the vehicle 201 in the detection area S1 (see FIG. 18). Further, in step S21, the LiDAR unit 244a acquires 3D mapping data indicating the environment around the vehicle 201 in the detection area S2. Furthermore, in step S222, the millimeter wave radar 245a acquires detection data indicating the peripheral environment of the vehicle 201 in the detection area S3.
- the camera control unit 2420a acquires the image data from the camera 243a, and then generates the surrounding environment information I1 based on the image data (step S223). Further, the LiDAR control unit 2430a acquires 3D mapping data from the LiDAR unit 244a, and then generates the surrounding environment information I2 based on the 3D mapping data (step S224). Furthermore, after acquiring the detection data from the millimeter wave radar 245a, the millimeter wave radar control unit 2440a generates the surrounding environment information I3 based on the detection data (step S225).
- the surrounding environment information fusion unit 2450a receives information on detection accuracy of each sensor from the detection accuracy determination unit 2460a, and compares a plurality of pieces of surrounding environment information in each overlapping area Sx, Sy, Sz. Specifically, peripheral environment information fusion unit 2450a compares peripheral environment information I1 with peripheral environment information I2 in overlapping area Sx where detection area S1 and detection area S2 overlap with each other, And the surrounding environment information I2 match each other.
- the surrounding environment information I1 indicates the position of the pedestrian P4 as the position Z1 in the overlapping region Sx
- the surrounding environment information I2 indicates the position of the pedestrian P4 as the position Z2 in the overlapping region Sx
- the surrounding environment information I1 and the surrounding environment information I1 It is determined that the environmental information I2 does not match each other.
- the surrounding environment information fusion unit 2450a determines that the surrounding environment information I1 and the surrounding environment information I2 do not match each other as a comparison result, the relationship between the detection accuracy of the camera 243a and the detection accuracy of the LiDAR unit 244a (camera 243a
- the peripheral environment information adopted in the overlapping area Sx is determined as the peripheral environment information I1 based on the LiDAR unit 244a).
- the peripheral environment information fusion unit 2450a compares the peripheral environment information I2 with the peripheral environment information I3, and then compares the peripheral environment information I2 with the peripheral environment. It is determined whether the information I3 matches each other.
- the surrounding environment information fusion unit 2450a determines that the surrounding environment information I2 and the surrounding environment information I3 do not match each other as a comparison result, the relationship between the detection accuracy of the LiDAR unit 244a and the detection accuracy of the millimeter wave radar 245a ( Based on the LiDAR unit 244a> millimeter wave radar 245a), the surrounding environment information adopted in the overlapping area Sz is determined as the surrounding environment information I2.
- the peripheral environment information fusion unit 2450a outputs the peripheral environment information I1, the peripheral environment information I2, and the peripheral environment information I3. Are compared, and it is determined whether the surrounding environment information I1, the surrounding environment information I2, and the surrounding environment information I3 coincide with each other. If the surrounding environment information fusion unit 2450a determines that the surrounding environment information I1, the surrounding environment information I2, and the surrounding environment information I3 do not match each other as a comparison result, the detection accuracy of each sensor (camera 243a> LiDAR unit 244a> Based on the millimeter wave radar 245a), the surrounding environment information adopted in the overlapping area Sy is determined as the surrounding environment information I1.
- the surrounding environment information fusion unit 2450a fuses the surrounding environment information I1, I2, and I3 to generate the fused surrounding environment information If.
- the surrounding environment information If may include information on an object present outside the vehicle 201 in a detection area Sf in which the detection areas S1, S2, and S3 are combined.
- the surrounding environment information If may be configured by the following information. .
- Ambient environment information I1 in detection area S1 Surrounding environment information I2 in the detection area S2 excluding the overlapping areas Sx and Sy ⁇ Surrounding environment information I3 in detection area S3 excluding overlapping areas Sy and Sz
- the process of generating the surrounding environment information If shown in FIG. 20 is repeatedly performed.
- the detection accuracy of the plurality of sensors is determined, and then based on the detection data and the detection accuracy of the plurality of sensors.
- the surrounding environment of the vehicle 201 is identified (in other words, the surrounding environment information If is generated).
- the lighting system 204a and the vehicle system 202 capable of improving the recognition accuracy of the surrounding environment of the vehicle 201 are provided. be able to.
- a plurality of pieces of peripheral environment information are compared in the overlapping regions Sx, Sy, and Sz.
- the surrounding environment information to be adopted in each of the overlapping areas Sx, Sy, and Sz is determined based on the detection accuracy of the plurality of sensors.
- merged peripheral environment information If is generated.
- the surrounding environment information If is generated in consideration of the detection accuracy of a plurality of sensors, so that the recognition accuracy of the surrounding environment of the vehicle 201 can be improved.
- the surrounding environment information fusion unit 2450a does not compare a plurality of surrounding environment information in the overlapping areas Sx, Sy, Sz, but based on information on detection accuracy of a plurality of sensors and surrounding environment information I1 to I3.
- the surrounding environment information If may be generated.
- FIG. 21A is a flow chart for explaining an example of a process of determining detection data adopted in each overlapping area Sx, Sy, Sz (see FIG. 18).
- FIG. 21B is a flowchart for explaining another example of the process of generating the merged peripheral environment information If.
- step S230 the detection accuracy determination unit 2460a determines the detection accuracy of the camera 243a, the LiDAR unit 244a, and the millimeter wave radar 245a.
- step S231 the surrounding environment information fusion unit 2450a receives the information on the detection accuracy of each sensor from the detection accuracy determination unit 2460a, and then, based on the information on the detection accuracy of each sensor, the overlapping areas Sx and Sy. , Sz determine the detection data of the sensor employed.
- the peripheral environment information fusion unit 2450a detects detection data of the sensor employed in the overlapping area Sx. Are determined as image data of the camera 243a.
- the surrounding environment information fusion unit 2450a is adopted in the overlapping area Sz based on the relationship between the detection accuracy of the LiDAR unit 244a and the detection accuracy of the millimeter wave radar 245a (LiDAR unit 244a> millimeter wave radar 245a).
- the sensor detection data is determined as 3D mapping data of the LiDAR unit 244a.
- the peripheral environment information fusion unit 2450a uses the detection data of the sensor employed in the overlapping area Sy as the image data of the camera 243a. decide.
- step S240 the camera 243a acquires image data in the detection area S1.
- step S241 the LiDAR unit 244a acquires 3D mapping data in the detection area S2.
- step S242 the millimeter wave radar 245a acquires detection data in the detection area S3.
- the camera control unit 2420a acquires image data from the camera 243a, and from the surrounding environment information fusion unit 2450a, information on detection data of a sensor employed in each overlapping area Sx, Sy, Sz (hereinafter referred to as “detection data Obtain priority information. Since the detection data priority information indicates that the image data is adopted in the overlap areas Sx and Sy, the camera control unit 2420a generates the surrounding environment information I1 in the detection area S1 (step S243).
- the LiDAR control unit 2430a acquires 3D mapping data from the LiDAR unit 244a, and acquires detection data priority information from the peripheral environment information merging unit 2450a. Since the detection data priority information indicates that the image data is adopted in the overlapping areas Sx and Sy and the 3D mapping data is adopted in the overlapping area Sz, the LiDAR control unit 2430a selects the overlapping areas Sx and Sy. The surrounding environment information I2 in the detection area S2 to be excluded is generated.
- the millimeter wave radar control unit 2440a acquires detection data from the millimeter wave radar 245a, and acquires detection data priority information from the surrounding environment information fusion unit 2450a. Since the detection data priority information indicates that the image data is adopted in the overlapping area Sy and the 3D mapping data is adopted in the overlapping area Sz, the millimeter wave radar control unit 2440a sets the overlapping areas Sy and Sz The surrounding environment information I3 in the detection area S3 to be excluded is generated.
- the surrounding environment information fusion unit 2450a fuses the surrounding environment information I1, I2, and I3 to generate the fused surrounding environment information If.
- the surrounding environment information If includes the surrounding environment information I1 in the detecting area S1, the surrounding environment information I2 in the detecting area S2 excluding the overlapping areas Sx and Sy, and the surrounding environment information I3 in the detecting area S3 excluding the overlapping areas Sy and Sz Be done.
- the process of generating the surrounding environment information If shown in FIG. 21B is repeatedly executed.
- the surrounding environment information If is generated based on the detection data priority information. It is possible to improve the recognition accuracy of Furthermore, the LiDAR control unit 2430a generates the surrounding environment information I2 in the detection area S2 excluding the overlapping areas Sx and Sy, and the millimeter wave radar control unit 2440a outputs the surrounding environment information in the detection area S3 excluding the overlapping areas Sy and Sz. Generate I3. As described above, since the process of generating the surrounding environment information in the overlapping area is omitted, it is possible to reduce the amount of calculation by the control unit 240 a. In particular, since the process shown in FIG. 21B is repeatedly executed, the reduction effect of the calculation amount by the control unit 240a is large.
- FIG. 22 is a flowchart for describing an example of processing of determining detection accuracy of each sensor according to the first modification of the second embodiment.
- step S250 the vehicle control unit 203 determines whether the vehicle 201 is stopped. If the determination result in step S250 is YES, the vehicle control unit 203 acquires current position information of the vehicle 201 using the GPS 209 (step S251). On the other hand, when the determination result of step S250 is NO, the vehicle control part 203 waits until the determination result of step S250 becomes YES.
- the processes of steps S251 to S255 are performed in a state where the vehicle 201 is stopped, but the processes may be performed in a state where the vehicle is traveling.
- the vehicle control unit 203 receives infrastructure information from the traffic infrastructure facility fixedly disposed at a predetermined position via the wireless communication unit 210 (step S252).
- the transportation infrastructure facility has a wireless communication function, and is, for example, a traffic light T1 (see FIG. 18), a traffic sign, a telephone pole, a street lamp, and the like.
- the infrastructure information may be information related to the transport infrastructure equipment that is the transmission source, and may include, for example, attribute information and / or location information of the transport infrastructure equipment. Since the vehicle 201 is located within a range in which the infrastructure information can be received wirelessly from the traffic infrastructure facility, the traffic infrastructure facility is assumed to be present in the detection area of each sensor.
- Road-to-vehicle communication between the vehicle 201 and the traffic infrastructure facility may be realized by 5G, Wi-Fi, Bluetooth, ZigBee or the like, for example. Thereafter, the vehicle control unit 203 transmits the infrastructure information to the detection accuracy determination unit 2460a.
- the surrounding environment information identification unit 2400a acquires detection data of each sensor (step S253).
- the camera control unit 2420a acquires image data from the camera 243a.
- the LiDAR control unit 2430a acquires 3D mapping data (point cloud data) from the LiDAR unit 244a.
- the millimeter wave radar control unit 2440a acquires detection data from the millimeter wave radar 245a.
- the surrounding environment information identification unit 2400a acquires a plurality of surrounding environment information based on the detection data acquired from the plurality of sensors (step S254). Specifically, the camera control unit 2420a acquires the surrounding environment information I1 based on the image data. The LiDAR control unit 2430a acquires the surrounding environment information I2 based on the 3D mapping data. The millimeter wave radar control unit 2440a acquires the surrounding environment information I3 based on the detection data of the millimeter wave radar 245a.
- the detection accuracy determining unit 2460a receives each of the infrastructure information acquired in step S252 and the surrounding environment information I1 to I3. The detection accuracy of each sensor is determined by comparison (step S255).
- the detection accuracy determination unit 2460a determines that the information related to the transport infrastructure facility of the transmission source included in the surrounding environment information I1 matches the infrastructure information acquired in step S252, the detection accuracy of the camera 243a is high. decide.
- the detection accuracy determination unit 2460a determines that the information related to the transport infrastructure facility of the transmission source included in the surrounding environment information I2 does not match the infrastructure information acquired in step S252 at all, the detection accuracy of the LiDAR unit 244a Is determined to be low.
- the detection accuracy of the LiDAR unit 244a Is determined to be low.
- FIG. 23 is a flowchart for describing an example of a process of determining the detection accuracy of each sensor according to the second modified example of the second embodiment.
- step S260 the vehicle control unit 203 determines whether the vehicle 201 has stopped. If the determination result is YES in step S260, the vehicle control unit 203 instructs the surrounding environment information identification unit 2400a to execute the process of step S261. On the other hand, when the determination result of step S260 is NO, the vehicle control part 203 waits until the determination result of step S260 becomes YES.
- the processes of steps S261 to S263 are performed in a state where the vehicle 201 is stopped, but the processes may be performed in a state where the vehicle is traveling.
- the surrounding environment information identification unit 2400a acquires detection data of each sensor.
- the camera control unit 2420a acquires image data from the camera 243a.
- the LiDAR control unit 2430a acquires 3D mapping data (point cloud data) from the LiDAR unit 244a.
- the millimeter wave radar control unit 2440a acquires detection data from the millimeter wave radar 245a.
- the surrounding environment information identification unit 2400a acquires a plurality of surrounding environment information based on detection data acquired from a plurality of sensors (step S262). Specifically, the camera control unit 2420a acquires the surrounding environment information I1 based on the image data. The LiDAR control unit 2430a acquires the surrounding environment information I2 based on the 3D mapping data. The millimeter wave radar control unit 2440a acquires the surrounding environment information I3 based on the detection data of the millimeter wave radar 245a.
- the detection accuracy determining unit 2460a determines the detection accuracy of each sensor by comparing the surrounding environment information I1 to I3. (Step S263). For example, as shown in FIG. 18, the position of the traffic light T1 in which the surrounding environment information I1 and I2 exist in the overlapping area Sy is indicated as the position X1, while the position of the traffic light T1 in which the surrounding environment information I3 is present in the overlapping area Sy When it is indicated as X2, the detection accuracy determining unit 2460a may determine that the surrounding environment information I3 is incorrect by majority decision. In this case, the detection accuracy determination unit 2460a may determine that the detection accuracy of the millimeter wave radar 245a is low. As described above, the detection accuracy of a plurality of sensors can be determined by a relatively simple method without using external information such as map information.
- FIG. 24 is a diagram showing a state in which the detection area S1 of the camera 243a and the detection area S2 of the LiDAR unit 244a are divided into a plurality of partial areas.
- the detection area S1 is divided into three partial areas (partial areas S11, S12, and S13) in the horizontal direction.
- the detection area S2 is divided into three partial areas (partial areas S21, S22, and S23) in the horizontal direction.
- the detection areas S1 and S2 are divided into a plurality of partial areas for each predetermined angular range, but may be divided into a plurality of partial areas for each predetermined angular range and predetermined distance. Good.
- the detection accuracy determination unit 2460a determines the detection accuracy of the camera 243a in each of the partial regions S11 to S13, and determines the detection accuracy of the LiDAR unit 244a in each of the partial regions S21 to S23. Further, the detection accuracy determination unit 2460a determines the surrounding environment information employed in the overlapping region Sy by comparing the detection accuracy of the partial region S12, the detection accuracy of the partial region S22, and the detection accuracy of the millimeter wave radar 245a. You may For example, it is assumed that the detection accuracy of partial region S11 is B rank, the detection accuracy of partial region S12 is A rank, and the detection accuracy of partial region S13 is B rank.
- the detection accuracy of partial region S21 is A rank
- the detection accuracy of partial region S22 is B rank
- the detection accuracy of partial region S23 is A rank
- the detection accuracy of the millimeter wave radar 245a is B rank.
- the detection accuracy determining unit 2460a determines the surrounding environment information adopted in the overlapping region Sy as the surrounding environment information I1. As described above, since the detection accuracy of each sensor can be determined in detail according to the partial region, it is possible to further improve the recognition accuracy of the surrounding environment information of the vehicle 201. Further, the detection accuracy determination unit 2460a may transmit information on detection accuracy of each sensor for each partial area to the cloud server existing on the communication network via the wireless communication unit 210 at a predetermined update cycle.
- a camera, a LiDAR unit, and a millimeter wave radar are mentioned as a plurality of sensors, but the present embodiment is not limited to this.
- ultrasonic sensors may be mounted on the illumination system.
- the control unit of the illumination system may control the operation of the ultrasonic sensor and may generate the surrounding environment information based on the detection data acquired by the ultrasonic sensor.
- at least two of the camera, the LiDAR unit, the millimeter wave radar, and the ultrasonic sensor may be mounted on the illumination system.
- the present embodiment a fourth embodiment of the present disclosure (hereinafter simply referred to as “the present embodiment”) will be described with reference to the drawings.
- the description is abbreviate
- the dimensions of the respective members shown in the drawings may differ from the actual dimensions of the respective members for the convenience of the description.
- left and right direction and “front and back direction” will be referred to as appropriate for convenience of description. These directions are relative directions set for the vehicle 301 shown in FIG.
- the “front-rear direction” is a direction including the “front direction” and the “rear direction”.
- the “left-right direction” is a direction including the “left direction” and the “right direction”.
- FIG. 25 is a schematic view showing a top view of a vehicle 301 provided with a vehicle system 302.
- a vehicle 301 is a vehicle (automobile) that can travel in an automatic driving mode, and includes a vehicle system 302.
- the vehicle system 302 includes a vehicle control unit 303, a left front illumination system 304a (hereinafter simply referred to as “illumination system 304a”), a right front illumination system 304b (hereinafter referred to simply as “illumination system 304b”), and a left rear illumination.
- the illumination system 304 a is provided on the left front side of the vehicle 301.
- the illumination system 304a includes a housing 324a installed on the left front side of the vehicle 301, and a translucent cover 322a attached to the housing 324a.
- the illumination system 304 b is provided on the right front side of the vehicle 301.
- the lighting system 304 b includes a housing 324 b installed on the right front side of the vehicle 301 and a light transmitting cover 322 b attached to the housing 324 b.
- the illumination system 304 c is provided on the left rear side of the vehicle 301.
- the lighting system 304 c includes a housing 324 c installed on the left rear side of the vehicle 301 and a light transmitting cover 322 c attached to the housing 324 c.
- the illumination system 304 d is provided on the right rear side of the vehicle 301.
- the illumination system 304 d includes a housing 324 d installed on the right rear side of the vehicle 301 and a translucent cover 322 d attached to the housing 324 d.
- FIG. 26 is a block diagram showing a vehicle system 302.
- the vehicle system 302 includes a vehicle control unit 303, lighting systems 304a to 304d, a sensor 305, an HMI (Human Machine Interface) 308, a GPS (Global Positioning System) 309, and a wireless communication unit. 310 and a storage device 311.
- the vehicle system 302 includes a steering actuator 312, a steering device 313, a brake actuator 314, a brake device 315, an accelerator actuator 316, and an accelerator device 317.
- Vehicle system 302 also includes a battery (not shown) configured to provide power.
- the vehicle control unit 303 is configured to control the traveling of the vehicle 301.
- the vehicle control unit 303 is configured by, for example, at least one electronic control unit (ECU: Electronic Control Unit).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuitry including active and passive elements such as transistors.
- the processor is, for example, a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), and / or a tensor processing unit (TPU).
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- a vehicle control program may be stored in the ROM.
- the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
- AI is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- the RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating a surrounding environment of the vehicle.
- the processor may be configured to expand a program specified from the vehicle control program stored in the ROM on the RAM, and execute various processes in cooperation with the RAM.
- the electronic control unit may be configured by at least one integrated circuit such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). Furthermore, the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the illumination system 304a further includes a control unit 340a, an illumination unit 342a, a camera 343a, a LiDAR (Light Detection and Ranging) unit 344a (an example of a laser radar), and a millimeter wave radar 345a.
- the control unit 340a, the illumination unit 342a, the camera 343a, the LiDAR unit 344a, and the millimeter wave radar 345a are, as shown in FIG. 25, in a space Sa formed by the housing 324a and the light transmission cover 322a (light chamber) Will be placed.
- the control unit 340a may be disposed at a predetermined place of the vehicle 301 other than the space Sa.
- the control unit 340a may be configured integrally with the vehicle control unit 303.
- the control unit 340a is configured by, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits (eg, transistors, etc.).
- the processor is, for example, a CPU, an MPU, a GPU and / or a TPU.
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM and a RAM.
- a peripheral environment specifying program for specifying the peripheral environment of the vehicle 301 may be stored in the ROM.
- the peripheral environment identification program is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- a peripheral environment identification program In the RAM, a peripheral environment identification program, image data acquired by the camera 343a, three-dimensional mapping data (point cloud data) acquired by the LiDAR unit 344a, and / or detection data acquired by the millimeter wave radar 345a, etc. are temporarily stored. May be stored.
- the processor may be configured to expand a program specified from the peripheral environment specifying program stored in the ROM on the RAM and execute various processing in cooperation with the RAM.
- the electronic control unit ECU
- the electronic control unit may be configured by at least one integrated circuit such as an ASIC or an FPGA.
- the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- the illumination unit 342 a is configured to form a light distribution pattern by emitting light toward the outside (forward) of the vehicle 301.
- the illumination unit 342a has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, a light emitting diode (LED), a laser diode (LD), or an organic EL element.
- the optical system is configured to refract light emitted by the light source or a reflector that is configured to reflect light emitted from the light source toward the front of the illumination unit 342a and light that is emitted directly from the light source or reflected by the reflector. And at least one of the lenses.
- the lighting unit 342a displays a light distribution pattern for the driver (for example, a light distribution pattern for low beam or a light distribution pattern for high beam) It is configured to form.
- the lighting unit 342a functions as a left headlamp unit.
- the driving mode of the vehicle 301 is the advanced driving assistance mode or the fully automatic driving mode
- the lighting unit 342a may be configured to form a light distribution pattern for a camera in front of the vehicle 301.
- the control unit 340a may be configured to individually supply an electrical signal (for example, a PWM (Pulse Width Modulation) signal) to each of the plurality of light emitting elements provided in the lighting unit 342a.
- an electrical signal for example, a PWM (Pulse Width Modulation) signal
- the control unit 340a can individually select the light emitting elements to which the electric signal is supplied, and can adjust the duty ratio of the electric signal for each light emitting element. That is, the control unit 340a can select the light emitting element to be turned on or off among the plurality of light emitting elements arranged in a matrix, and can determine the luminance of the light emitting element that is turned on. For this reason, the control unit 340a can change the shape and brightness of the light distribution pattern emitted forward from the lighting unit 342a.
- PWM Pulse Width Modulation
- the camera 343a is configured to detect the surrounding environment of the vehicle 301.
- the camera 343a is configured to transmit image data to the control unit 340a after acquiring image data indicating the surrounding environment of the vehicle 301.
- the control unit 340a specifies the surrounding environment information based on the transmitted image data.
- the surrounding environment information may include information on an object present outside the vehicle 301.
- the surrounding environment information may include information related to the attribute of an object present outside the vehicle 301 and information related to the position of the object relative to the vehicle 301.
- the camera 343a is configured by an imaging device such as, for example, a charge-coupled device (CCD) or a metal oxide semiconductor (CMOS).
- CCD charge-coupled device
- CMOS metal oxide semiconductor
- the camera 343a may be configured as a monocular camera or may be configured as a stereo camera.
- the control unit 340a uses parallax to make the vehicle 301 and an object existing outside the vehicle 301 (for example, based on two or more image data acquired by the stereo camera). The distance between the pedestrian and the like can be specified.
- one camera 343a is provided in the illumination system 304a in this embodiment, two or more cameras 343a may be provided in the illumination system 304a.
- the LiDAR unit 344a (an example of a laser radar) is configured to detect the surrounding environment of the vehicle 301.
- the LiDAR unit 344a is configured to transmit 3D mapping data to the control unit 340a after acquiring 3D mapping data (point cloud data) indicating the surrounding environment of the vehicle 301.
- the control unit 340a specifies the surrounding environment information based on the transmitted 3D mapping data.
- the surrounding environment information may include information on an object present outside the vehicle 301.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 301 and information on the position of the object with respect to the vehicle 301.
- the LiDAR unit 344a acquires information on the time of flight (TOF) ⁇ T1 of the laser beam (light pulse) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) of the laser beam. Then, based on the information on the time of flight ⁇ T1, the information on the distance D between the LiDAR unit 344a (vehicle 301) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) and the object existing outside the vehicle 301 is acquired can do.
- the flight time ⁇ T1 can be calculated, for example, as follows.
- Time of flight ⁇ T1 time at which laser light (light pulse) returned to LiDAR unit t1—time at which LiDAR unit emitted laser light (light pulse)
- the LiDAR unit 344a can acquire 3D mapping data indicating the environment around the vehicle 301.
- the LiDAR unit 344a includes, for example, a laser light source configured to emit a laser beam, an optical deflector configured to scan the laser beam in the horizontal direction and the vertical direction, and an optical system such as a lens. And a light receiving unit configured to receive the laser light reflected by the object.
- the central wavelength of the laser light emitted from the laser light source is not particularly limited.
- the laser light may be invisible light whose center wavelength is around 900 nm.
- the light deflector may be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
- the light receiving unit is, for example, a photodiode.
- the LiDAR unit 344a may acquire 3D mapping data without scanning the laser light by the light deflector.
- the LiDAR unit 344a may obtain 3D mapping data in a phased array method or a flash method.
- one LiDAR unit 344a is provided in the illumination system 304a in the present embodiment, two or more LiDAR units 344a may be provided in the illumination system 304a.
- one LiDAR unit 344a is configured to detect the surrounding environment in the forward region of the vehicle 301 and the other LiDAR unit 344a is a vehicle 301. It may be configured to detect the surrounding environment in the side area of the
- the millimeter wave radar 345 a is configured to detect the surrounding environment of the vehicle 301.
- the millimeter wave radar 345a is configured to transmit detection data to the control unit 340a after acquiring detection data indicating the surrounding environment of the vehicle 301.
- the control unit 340a specifies the surrounding environment information based on the transmitted detection data.
- the surrounding environment information may include information on an object present outside the vehicle 301.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 301, information on the position of the object relative to the vehicle 301, and information on the speed of the object relative to the vehicle 301.
- the millimeter wave radar 345a may be a pulse modulation method, an FM-CW (Frequency Moduled-Continuous Wave) method, or a two-frequency CW method, between the millimeter wave radar 345a (vehicle 301) and an object existing outside the vehicle 301.
- the distance D of can be obtained.
- the millimeter wave radar 345a acquires the information on the time of flight ⁇ T2 of the millimeter wave at each emission angle of the millimeter wave, and then the millimeter wave radar at each emission angle based on the information on the time of flight ⁇ T2. It is possible to obtain information on the distance D between 345a (vehicle 301) and an object present outside the vehicle 301.
- the flight time ⁇ T2 can be calculated, for example, as follows.
- Time of flight ⁇ T2 time t3 when millimeter wave returns to millimeter wave radar
- the millimeter wave radar 345a is a vehicle 301 for the millimeter wave radar 345a (vehicle 301) based on the frequency f0 of the millimeter wave emitted from the millimeter wave radar 345a and the frequency f1 of the millimeter wave returned to the millimeter wave radar 345a. It is possible to obtain information on the relative velocity V of an object that exists outside of.
- the illumination system 304a may have a short distance millimeter wave radar 345a, a medium distance millimeter wave radar 345a, and a long distance millimeter wave radar 345a.
- the illumination system 304b further includes a control unit 340b, an illumination unit 342b, a camera 343b, a LiDAR unit 344b, and a millimeter wave radar 345b.
- the control unit 340b, the illumination unit 342b, the camera 343b, the LiDAR unit 344b, and the millimeter wave radar 345b, as shown in FIG. 25, are in the space Sb formed by the housing 324b and the light transmission cover 322b (light chamber) Will be placed.
- the controller 340 b may be disposed at a predetermined place of the vehicle 301 other than the space Sb.
- the control unit 340 b may be configured integrally with the vehicle control unit 303.
- the controller 340b may have the same function and configuration as the controller 340a.
- the lighting unit 342b may have the same function and configuration as the lighting unit 342a.
- the lighting unit 342a functions as a left headlamp unit, while the lighting unit 342b functions as a right headlamp unit.
- the camera 343b may have the same function and configuration as the camera 343a.
- the LiDAR unit 344b may have the same function and configuration as the LiDAR unit 344a.
- the millimeter wave radar 345b may have the same function and configuration as the millimeter wave radar 345a.
- the illumination system 304c further includes a control unit 340c, an illumination unit 342c, a camera 343c, a LiDAR unit 344c, and a millimeter wave radar 345c.
- the control unit 340c, the illumination unit 342c, the camera 343c, the LiDAR unit 344c, and the millimeter wave radar 345c are in a space Sc (a light chamber) formed by a housing 324c and a light transmission cover 322c. Will be placed.
- the controller 340 c may be disposed at a predetermined place of the vehicle 301 other than the space Sc.
- the control unit 340c may be configured integrally with the vehicle control unit 303.
- the control unit 340c may have the same function and configuration as the control unit 340a.
- the illumination unit 342 c is configured to form a light distribution pattern by emitting light toward the outside (rear) of the vehicle 301.
- the illumination unit 342c has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, an LED, an LD or an organic EL element.
- the optical system is configured to refract light emitted by the light source or a reflector that is configured to reflect light emitted from the light source toward the front of the illumination unit 342c and light that is emitted directly from the light source And at least one of the lenses.
- the lighting unit 342c When the driving mode of the vehicle 301 is the manual driving mode or the driving support mode, the lighting unit 342c may be turned off. On the other hand, when the driving mode of the vehicle 301 is the advanced driving assistance mode or the fully automatic driving mode, the lighting unit 342c may be configured to form a light distribution pattern for a camera behind the vehicle 301.
- the camera 343c may have the same function and configuration as the camera 343a.
- the LiDAR unit 344c may have the same function and configuration as the LiDAR unit 344c.
- the millimeter wave radar 345c may have the same function and configuration as the millimeter wave radar 345a.
- the illumination system 304d further includes a control unit 340d, an illumination unit 342d, a camera 343d, a LiDAR unit 344d, and a millimeter wave radar 345d.
- the control unit 340d, the illumination unit 342d, the camera 343d, the LiDAR unit 344d, and the millimeter wave radar 345d are in a space Sd formed by the housing 324d and the light transmission cover 322d (light chamber) Will be placed.
- the controller 340 d may be disposed at a predetermined place of the vehicle 301 other than the space Sd.
- the control unit 340 d may be configured integrally with the vehicle control unit 303.
- the controller 340 d may have the same function and configuration as the controller 340 c.
- the lighting unit 342d may have the same function and configuration as the lighting unit 342c.
- the camera 343d may have the same function and configuration as the camera 343c.
- the LiDAR unit 344d may have the same function and configuration as the LiDAR unit 344c.
- the millimeter wave radar 345 d may have the same function and configuration as the millimeter wave radar 345 c.
- the sensor 305 may include an acceleration sensor, a speed sensor, a gyro sensor, and the like.
- the sensor 305 is configured to detect the traveling state of the vehicle 301 and to output traveling state information indicating the traveling state of the vehicle 301 to the vehicle control unit 303.
- the sensor 305 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face direction sensor that detects the direction of the driver's face, an external weather sensor that detects an external weather condition, and a person in the vehicle You may further provide a human sensor etc. which detect whether it is.
- the sensor 305 may include an illuminance sensor configured to detect the brightness (such as illuminance) of the surrounding environment of the vehicle 301.
- the illuminance sensor may determine the brightness of the surrounding environment according to, for example, the magnitude of the photocurrent output from the photodiode.
- the HMI (Human Machine Interface) 308 includes an input unit that receives an input operation from the driver, and an output unit that outputs traveling state information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode switching switch for switching the operation mode of the vehicle 301, and the like.
- the output unit includes a display and the like configured to display the traveling state information, the surrounding environment information, and the lighting state of the lighting system 4.
- a GPS (Global Positioning System) 309 is configured to acquire current position information of the vehicle 301 and to output the acquired current position information to the vehicle control unit 303.
- the wireless communication unit 310 receives information (for example, other vehicle traveling information and the like) related to other vehicles around the vehicle 301 from the other vehicle and also transmits information (for example, own vehicle traveling information and the like) for the vehicle 301 to the other vehicle It is configured to transmit (inter-vehicle communication).
- the wireless communication unit 310 is configured to receive infrastructure information from an infrastructure facility such as a traffic light and a marker light, and to transmit vehicle traveling information of the vehicle 301 to the infrastructure facility (inter-vehicle communication).
- the wireless communication unit 310 receives information on the pedestrian from a portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 301 to the portable electronic device. It is configured to (pedal communication).
- the vehicle 301 may communicate directly with other vehicles, infrastructure equipment, or portable electronic devices in an ad hoc mode, or may communicate via an access point.
- the wireless communication standard is, for example, the fifth generation mobile communication system (5G), Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) or LPWA.
- the vehicle 301 may communicate with other vehicles, infrastructure equipment, or portable electronic devices via a mobile communication network.
- the storage device 311 is an external storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
- the storage device 311 may store 2D or 3D map information and / or a vehicle control program.
- the storage device 311 is configured to output map information and a vehicle control program to the vehicle control unit 303 in response to a request from the vehicle control unit 303.
- the map information and the vehicle control program may be updated via the wireless communication unit 310 and a communication network such as the Internet.
- the vehicle control unit 303 controls the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information and / or the map information. Automatically generate at least one of them.
- the steering actuator 312 is configured to receive a steering control signal from the vehicle control unit 303 and control the steering device 313 based on the received steering control signal.
- the brake actuator 314 is configured to receive a brake control signal from the vehicle control unit 303 and control the brake device 315 based on the received brake control signal.
- the accelerator actuator 316 is configured to receive an accelerator control signal from the vehicle control unit 303 and to control the accelerator device 317 based on the received accelerator control signal.
- the traveling of the vehicle 301 is automatically controlled by the vehicle system 302.
- the vehicle control unit 303 when the vehicle 301 travels in the manual operation mode, the vehicle control unit 303 generates a steering control signal, an accelerator control signal and a brake control signal according to the driver's manual operation on the accelerator pedal, the brake pedal and the steering wheel. Do. As described above, in the manual operation mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so the travel of the vehicle 301 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a completely automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle system 302 In the fully automatic operation mode, the vehicle system 302 automatically performs all travel control of steering control, brake control and accelerator control, and the driver is not in a state where the vehicle 301 can be driven.
- the vehicle system 302 In the advanced driving support mode, the vehicle system 302 automatically performs all travel control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 301 although the vehicle 301 can be driven.
- the vehicle system 302 In the driving support mode, the vehicle system 302 automatically performs traveling control of a part of steering control, brake control and accelerator control, and the driver drives the vehicle 301 under the driving support of the vehicle system 302. On the other hand, in the manual operation mode, the vehicle system 302 does not automatically perform travel control, and the driver drives the vehicle 301 without driving assistance from the vehicle system 302.
- the operation mode of the vehicle 301 may be switched by operating the operation mode switch.
- the vehicle control unit 303 sets the drive mode of the vehicle 301 to four drive modes (complete automatic drive mode, advanced drive support mode, drive support mode, manual drive mode) according to the driver's operation on the drive mode switch. Switch between).
- the operation mode of the vehicle 301 is automatically based on information on a drivable section in which the automatically driven vehicle can travel and a prohibited travel zone in which the automatically driven vehicle is prohibited from traveling or information on the external weather condition. It may be switched to In this case, the vehicle control unit 303 switches the driving mode of the vehicle 301 based on these pieces of information.
- the operation mode of the vehicle 301 may be switched automatically by using a seating sensor, a face direction sensor, or the like.
- the vehicle control unit 303 may switch the driving mode of the vehicle 301 based on output signals from the seating sensor and the face direction sensor.
- FIG. 27 is a diagram showing functional blocks of the control unit 340a of the illumination system 304a.
- the control unit 340a is configured to control the operations of the illumination unit 342a, the camera 343a, the LiDAR unit 344a, and the millimeter wave radar 345a.
- the control unit 340a includes a lighting control unit 3410a, a surrounding environment specifying unit 3400a, and a use priority determining unit 3460a.
- the illumination control unit 3410 a is configured to control the illumination unit 342 a so that the illumination unit 342 a emits a predetermined light distribution pattern toward the front area of the vehicle 301.
- the illumination control unit 3410a may change the light distribution pattern emitted from the illumination unit 342a according to the operation mode of the vehicle 301.
- the surrounding environment specifying unit 3400a includes a camera control unit 3420a, a LiDAR control unit 3430a, a millimeter wave radar control unit 3440a, and a surrounding environment information merging unit 3450a.
- the camera control unit 3420a controls the operation of the camera 343a and, based on the image data (detection data) output from the camera 343a, the surrounding environment information of the vehicle 301 in the detection area S1 (see FIG. 29) of the camera 343a (see FIG. Hereinafter, it is configured to generate peripheral environment information I1.
- the LiDAR control unit 3430a controls the operation of the LiDAR unit 344a and, based on the 3D mapping data (detection data) output from the LiDAR unit 344a, of the vehicle 301 in the detection area S2 (see FIG. 29) of the LiDAR unit 344a. It is configured to generate peripheral environment information (hereinafter referred to as peripheral environment information I2).
- the millimeter wave radar control unit 3440a controls the operation of the millimeter wave radar 345a and, based on the detection data output from the millimeter wave radar 345a, the vehicle 301 in the detection area S3 (see FIG. 29) of the millimeter wave radar 345a. It is configured to generate peripheral environment information (hereinafter referred to as peripheral environment information I3).
- the surrounding environment information fusion unit 3450a is configured to merge the surrounding environment information I1, I2, and I3 to generate the fused surrounding environment information If.
- the surrounding environment information If is a vehicle 301 in a detection area Sf in which a detection area S1 of the camera 343a, a detection area S2 of the LiDAR unit 344a, and a detection area S3 of the millimeter wave radar 345a are combined. It may include information on an object that exists outside of.
- the surrounding environment information If may include information on the attribute of the object, the position of the object relative to the vehicle 301, the distance between the vehicle 301 and the object, and / or the speed of the object relative to the vehicle 301.
- the surrounding environment information fusion unit 3450a transmits the surrounding environment information If to the vehicle control unit 303.
- the use priority determination unit 3460a is configured to determine the use priorities among a plurality of sensors (the camera 343a, the LiDAR unit 344a, and the millimeter wave radar 345a).
- the “use priority” is an index for determining which detection data among the detection data acquired by a plurality of sensors is to be used with priority. For example, if the use priority of the camera 343a is higher than the use priority of the LiDAR unit 344a, the image data (detection data of the camera 343a) has priority over the 3D mapping data (detection data of the LiDAR unit 344a) used.
- the surrounding environment information fusion unit 3450a when generating the surrounding environment information If, the surrounding environment information fusion unit 3450a generates based on the 3D mapping data in the overlapping area Sx (see FIG. 29) in which the detection area S1 and the detection area S2 overlap each other.
- the surrounding environment information I1 generated based on the image data is adopted rather than the surrounding environment information I2.
- the surrounding environment information fusion unit The 3450a adopts the surrounding environment information I1 by trusting the surrounding environment information I1.
- the surrounding environment specifying unit 3400a It is configured to identify.
- the surrounding environment information fusion unit 3450a and the usage priority determination unit 3460a are realized by the control unit 340a, they may be realized by the vehicle control unit 303.
- control units 340b, 340c, and 340d may have the same function as the control unit 340a. That is, each of the control units 340b to 340d may have a lighting control unit, a surrounding environment specifying unit, and a use priority determining unit. Further, the peripheral environment specifying unit of the control units 340b to 340d may have a camera control unit, a LiDAR control unit, a millimeter wave radar control unit, and a peripheral environment information fusion unit. The surrounding environment information fusion unit of each of the control units 340b to 340c may transmit the merged surrounding environment information If to the vehicle control unit 303. Vehicle control unit 303 controls the traveling of vehicle 301 based on surrounding environment information If and other information (travel control information, current position information, map information, etc.) transmitted from control units 340a to 340d. Good.
- vehicle control unit 303 controls the traveling of vehicle 301 based on surrounding environment information If and other information (travel control information, current position information, map information, etc.) transmitted from control units
- FIG. 28A is a flowchart for describing an example of a process of determining the use priority.
- FIG. 28 (b) is a flow chart for explaining an example of processing for generating the merged peripheral environment information If.
- FIG. 29 is a view showing a detection area S1 of the camera 343a in the illumination system 304a, a detection area S2 of the LiDAR unit 344a, and a detection area S3 of the millimeter wave radar 345a.
- the operation flow of the illumination system 304a is also applicable to the illumination systems 304b to 4d. Further, in the description of the present embodiment, it is assumed that the vehicle 301 is traveling in the automatic driving mode (in particular, the advanced driving support mode or the fully automatic driving mode).
- the use priority determination unit 3460a determines whether or not information indicating the brightness of the surrounding environment of the vehicle 301 (hereinafter referred to as "brightness information") has been received. judge. Specifically, the illuminance sensor mounted on the vehicle 301 transmits detection data indicating the brightness of the surrounding environment of the vehicle 301 to the vehicle control unit 303. Next, the vehicle control unit 303 generates brightness information based on the received detection data, and then transmits the generated brightness information to the usage priority determination unit 3460a.
- the “brightness information” may include two pieces of information of "bright” or “dark”.
- the vehicle control unit 303 generates brightness information indicating that the surrounding environment is bright when the brightness (such as the illuminance) of the surrounding environment indicated by the detection data is larger than a predetermined value (such as threshold illuminance). May be On the other hand, the vehicle control unit 303 may generate brightness information indicating that the surrounding environment is dark when the brightness (illuminance or the like) of the surrounding environment indicated by the detection data is equal to or less than a predetermined value.
- the "brightness information” may include information on numerical values such as illuminance. In this case, the use priority determination unit 3460a may determine whether the surrounding environment of the vehicle is bright or dark.
- the vehicle control unit 303 may transmit brightness information to the use priority determination unit 3460a when the vehicle system 302 is activated. Furthermore, when the brightness of the surrounding environment of the vehicle 301 changes (for example, when the surrounding environment changes from a bright state to a dark state, or when the surrounding environment changes from a dark state to a bright state) The brightness information may be transmitted to the use priority determination unit 3460a. For example, when the vehicle 301 enters a tunnel or exits a tunnel, the vehicle control unit 303 may transmit brightness information to the usage priority determination unit 3460a. In addition, the vehicle control unit 303 may transmit the brightness information to the use priority determination unit 3460a at a predetermined cycle.
- step S310 When it is determined that the brightness information is received (YES in step S310), the use priority determination unit 3460a executes the process of step S311. On the other hand, when the determination result in step S310 is NO, the use priority determination unit 3460a stands by until the brightness information is received.
- the use priority determining unit 3460a specifies the brightness of the surrounding environment based on the detection data acquired from the illuminance sensor. It is also good. Thereafter, the use priority determination unit 3460a may execute the process of step S311.
- the use priority determination unit 3460a determines the use priority among the camera 343a, the LiDAR unit 344a, and the millimeter wave radar 345a based on the received brightness information.
- the use priority determination unit 3460a may determine the use priority among a plurality of sensors as follows according to the brightness of the surrounding environment.
- the use priority determination unit 3460a sets the use priority of the camera 343a to the highest use priority while the use priority of the millimeter wave radar 345a is set. Set to the lowest usage priority.
- the use priority determination unit 3460a sets the use priority of the LiDAR unit 344a to the highest use priority. Set the usage priority to the lowest usage priority.
- the information relating to the use priority shown in Table 1 may be stored in the memory or storage device 311 of the control unit 340a.
- the brightness information is generated based on the detection data acquired from the illuminance sensor, but the brightness information may be generated based on the image data acquired by the camera 343a. In this case, even if the use priority determination unit 3460a generates brightness information based on the image data acquired by the camera 343a, the use priority determination unit 3460a determines the use priority among a plurality of sensors based on the brightness information Good.
- FIG. 28 (b) and 29 an example of a process of generating the merged peripheral environment information If will be described with reference to FIGS. 28 (b) and 29.
- FIG. In the present description, it is assumed that the surrounding environment of the vehicle 301 is bright. Therefore, the use priority between the camera 343a, the LiDAR unit 344a, and the millimeter wave radar 345a is set as camera 343a> LiDAR unit 344a> millimeter wave radar 345a.
- step S320 the camera 343a acquires image data indicating the surrounding environment of the vehicle 301 in the detection area S1 (see FIG. 29).
- step S321 the LiDAR unit 344a acquires 3D mapping data indicating the surrounding environment of the vehicle 301 in the detection area S2.
- step S322 the millimeter wave radar 345a acquires detection data indicating the peripheral environment of the vehicle 301 in the detection area S3.
- the camera control unit 3420a obtains the image data from the camera 343a, and then generates the surrounding environment information I1 based on the image data (step S323).
- the LiDAR control unit 3430a acquires 3D mapping data from the LiDAR unit 344a, and then generates the surrounding environment information I2 based on the 3D mapping data (step S324).
- the millimeter wave radar control unit 3440a obtains the detection data from the millimeter wave radar 345a, and then generates the surrounding environment information I3 based on the detection data (step S325).
- the surrounding environment information fusion unit 3450a receives information on the use priority from the use priority determination unit 3460a, and compares a plurality of pieces of surrounding environment information in each overlapping area Sx, Sy, Sz. Specifically, peripheral environment information fusion unit 3450a compares peripheral environment information I1 with peripheral environment information I2 in overlapping area Sx where detection area S1 and detection area S2 overlap with each other, and then compares peripheral environment information I1. And the surrounding environment information I2 match each other.
- the surrounding environment information I1 indicates the presence of the pedestrian P6 in the overlapping region Sx
- the surrounding environment information I2 does not indicate the presence of the pedestrian P6 in the overlapping region Sx
- the surrounding environment information I1 and the surrounding environment information I2 mutually It is determined that they do not match.
- the surrounding environment information fusion unit 3450a determines that the surrounding environment information I1 and the surrounding environment information I2 do not match each other as a comparison result
- the use priority between the camera 343a and the LiDAR unit 344a (camera 343a> LiDAR unit 344a
- the surrounding environment information adopted in the overlapping area Sx is determined as the surrounding environment information I1 on the basis of.
- the peripheral environment information fusion unit 3450a compares the peripheral environment information I2 with the peripheral environment information I3, and then compares the peripheral environment information I2 with the peripheral environment. It is determined whether the information I3 matches each other.
- the peripheral environment information fusion unit 3450a determines that the peripheral environment information I2 and the peripheral environment information I3 do not match each other as a comparison result, the use priority between the LiDAR unit 344a and the millimeter wave radar 345a (LiDAR unit 344a> Based on the millimeter wave radar 345a), the surrounding environment information adopted in the overlapping area Sz is determined as the surrounding environment information I2.
- the peripheral environment information fusion unit 3450a converts the peripheral environment information I1, the peripheral environment information I2, and the peripheral environment information I3. Are compared, and it is determined whether the surrounding environment information I1, the surrounding environment information I2, and the surrounding environment information I3 coincide with each other. When it is determined that the surrounding environment information I1, the surrounding environment information I2, and the surrounding environment information I3 do not match each other as a comparison result, the surrounding environment information fusion unit 3450a uses the priority (camera 343a> LiDAR unit 344a> millimeter wave Based on the radar 345a), the surrounding environment information adopted in the overlapping area Sy is determined as the surrounding environment information I1.
- the surrounding environment information fusion unit 3450a fuses the surrounding environment information I1, I2, and I3 to generate the fused surrounding environment information If.
- the surrounding environment information may include information on an object present outside the vehicle 301 in a detection area Sf in which the detection areas S1, S2, and S3 are combined.
- the surrounding environment information If may be configured by the following information. .
- Ambient environment information I1 in detection area S1 Surrounding environment information I2 in the detection area S2 excluding the overlapping areas Sx and Sy ⁇ Surrounding environment information I3 in detection area S3 excluding overlapping areas Sy and Sz
- the process of generating the surrounding environment information If shown in FIG. 28B is repeatedly performed.
- the detection data of the plurality of sensors and the use priority are determined.
- the surrounding environment of the vehicle 301 is identified (in other words, the surrounding environment information If is generated).
- the surrounding environment of the vehicle 301 is identified in consideration of the use priority among a plurality of sensors, so that the lighting system 304 a and the vehicle system 302 capable of improving the recognition accuracy of the surrounding environment of the vehicle 301. Can be provided.
- a plurality of pieces of peripheral environment information are compared in the overlapping regions Sx, Sy, and Sz.
- the peripheral environment information to be adopted in each of the overlapping regions Sx, Sy, and Sz is determined based on the use priorities among the plurality of sensors.
- merged peripheral environment information If is generated.
- the surrounding environment information If is generated in consideration of the use priority among a plurality of sensors, so that the recognition accuracy of the surrounding environment of the vehicle 301 can be improved.
- the surrounding environment of the vehicle 301 is determined based on the detection data of the plurality of sensors and the use priority. It is identified.
- the use priority is optimized according to the brightness of the surrounding environment of the vehicle 301, the recognition accuracy of the surrounding environment of the vehicle 301 can be improved.
- a plurality of pieces of surrounding environment information may not be compared in each overlapping area Sx, Sy, and Sz (that is, the process of step S326 may be omitted).
- the peripheral environment information fusion unit 3450a does not compare the plurality of peripheral environment information in the overlapping regions Sx, Sy, Sz, but based on the information related to the use priority between the plurality of sensors and the peripheral environment information I1 to I3.
- the peripheral environment information If may be generated.
- FIG. 30A is a flowchart for describing an example of a process of determining detection data adopted in each overlapping area Sx, Sy, Sz (see FIG. 29).
- FIG. 30 (b) is a flowchart for explaining another example of the process of generating the merged peripheral environment information If.
- step S330 the use priority determination unit 3460a determines whether brightness information has been received. When it is determined that the brightness information has been received (YES in step S330), the use priority determination unit 3460a executes the process of step S331. On the other hand, when the determination result of step S330 is NO, the use priority determination unit 3460a stands by until the brightness information is received.
- the use priority determination unit 3460a determines the use priorities among the camera 343a, the LiDAR unit 344a, and the millimeter wave radar 345a based on the received brightness information (step S332). Thereafter, in step S32, the surrounding environment information fusion unit 3450a receives information on the use priority from the use priority determination unit 3460a, and the sensor employed in each overlapping area Sx, Sy, Sz based on the use priority. Determine detection data.
- the peripheral environment information fusion unit 3450a detects detection data of a sensor employed in the overlapping area Sx of the camera 343a. Determined as image data.
- the peripheral environment information fusion unit 3450a detects detection data of the sensor adopted in the overlapping area Sz based on the usage priority (LiDAR unit 344a> millimeter wave radar 345a) between the LiDAR unit 344a and the millimeter wave radar 345a. Are determined as 3D mapping data of the LiDAR unit 344a.
- the surrounding environment information fusion unit 3450a determines the detection data of the sensor adopted in the overlapping area Sy as the image data of the camera 343a based on the usage priority (camera 343a> LiDAR unit 344a> millimeter wave radar 345a). .
- step S340 the camera 343a acquires image data in the detection area S1. Further, in step S341, the LiDAR unit 344a acquires 3D mapping data in the detection area S2. Furthermore, in step S342, the millimeter wave radar 345a acquires detection data in the detection area S3.
- the camera control unit 3420a acquires image data from the camera 343a, and from the surrounding environment information fusion unit 3450a, information on detection data of a sensor employed in each overlapping area Sx, Sy, Sz (hereinafter referred to as “detection data Obtain priority information. Since the detection data priority information indicates that the image data is adopted in the overlap areas Sx and Sy, the camera control unit 3420a generates the surrounding environment information I1 in the detection area S1 (step S343).
- the LiDAR control unit 3430a acquires 3D mapping data from the LiDAR unit 344a, and acquires detection data priority information from the peripheral environment information merging unit 3450a.
- the detection data priority information indicates that the image data is adopted in the overlapping areas Sx and Sy and that the 3D mapping data is adopted in the overlapping area Sz. Therefore, the LiDAR control unit 3430a selects the overlapping areas Sx and Sy.
- the surrounding environment information I2 in the detection area S2 to be excluded is generated.
- the millimeter wave radar control unit 3440a acquires detection data from the millimeter wave radar 345a, and acquires detection data priority information from the surrounding environment information fusion unit 3450a. Since the detection data priority information indicates that the image data is adopted in the overlapping area Sy and the 3D mapping data is adopted in the overlapping area Sz, the millimeter wave radar control unit 3440a selects the overlapping areas Sy and Sz. The surrounding environment information I3 in the detection area S3 to be excluded is generated.
- the surrounding environment information fusion unit 3450a fuses the surrounding environment information I1, I2, and I3 to generate the fused surrounding environment information If.
- the surrounding environment information If includes the surrounding environment information I1 in the detecting area S1, the surrounding environment information I2 in the detecting area S2 excluding the overlapping areas Sx and Sy, and the surrounding environment information I3 in the detecting area S3 excluding the overlapping areas Sy and Sz Be done.
- the process of generating the surrounding environment information If shown in FIG. 30B is repeatedly performed.
- the surrounding environment information If is generated based on the detection data priority information. It is possible to improve the recognition accuracy of the surrounding environment 301. Furthermore, the LiDAR control unit 3430a generates the surrounding environment information I2 in the detection area S2 excluding the overlapping areas Sx and Sy, and the millimeter wave radar control unit 3440a outputs the surrounding environment information in the detection area S3 excluding the overlapping areas Sy and Sz. Generate I3. As described above, since the process of generating the surrounding environment information in the overlapping area is omitted, it is possible to reduce the amount of calculation by the control unit 340a. In particular, since the process shown in FIG. 30B is repeatedly executed, the effect of reducing the amount of calculation by the control unit 340a is large.
- the use priority among the plurality of sensors is determined based on the brightness information, but the present embodiment is limited to this. Absent. For example, usage priorities among multiple sensors may be determined based on brightness information and weather information.
- the vehicle control unit 303 transmits a weather information request including the current position information of the vehicle 301 to the server on the communication network via the wireless communication unit 310. . Thereafter, the vehicle control unit 303 receives weather information at the current position of the vehicle 301 from the server.
- the “weather information” may be information on the weather at the current position of the vehicle 301 (clear, cloudy, rain, snow, fog, etc.).
- the vehicle control unit 303 transmits the brightness information and the weather information to the use priority determination unit 3460a of the control unit 340a.
- the use priority determination unit 3460a determines the use priority among a plurality of sensors based on the received brightness information and weather information.
- the use priority determination unit 3460a may determine the use priority among a plurality of sensors as follows according to the brightness of the surrounding environment and the weather at the current position of the vehicle 301.
- the use priority determination unit 3460a uses the millimeter wave radar 345a with the highest use priority. While, the use priority of the camera 343a is set to the lowest use priority. When the weather at the current position of the vehicle 301 is bad, the brightness of the surrounding environment may not be considered.
- the use priority determination unit 3460a uses the camera 343a with the highest use priority.
- the use priority of the millimeter wave radar 345a is set to the lowest use priority.
- the use priority determination unit 3460a sets the use priority of the LiDAR unit 344a to the highest use priority.
- the use priority of the camera 343a is set to the lowest use priority.
- the information on the use priority shown in Table 2 may be stored in the memory or storage device 311 of the control unit 340a.
- Weather information at the current position of the vehicle 301 may be generated based on the image data acquired by the camera 343a.
- the use priority determination unit 3460a generates weather information based on the image data acquired by the camera 343a, and then determines use priorities among the plurality of sensors based on the weather information and the brightness information. It is also good.
- weather information at the current position of the vehicle 301 may be generated based on information indicating the state of the wiper attached to the window of the vehicle. For example, when the wiper is driven, the weather at the current position of the vehicle 301 may be determined to be rain (that is, bad weather).
- the use priority determination unit 3460a may determine the use priority among a plurality of sensors based on weather information and brightness information after acquiring weather information from an external weather sensor.
- the use priority between the plurality of sensors may be determined based on information on detection accuracy of the plurality of sensors (hereinafter referred to as “detection accuracy information”). For example, when the detection accuracy of the camera 343a is A rank, the detection accuracy of the LiDAR unit 344a is B rank, and the detection accuracy of the millimeter wave radar 345a is C rank (here, the rank order is A rank> B rank> C) Based on the detection accuracy information, the use priority determination unit 3460a determines the use priorities among the camera 343a, the LiDAR unit 344a, and the millimeter wave radar 345a as follows. Camera 343a> LiDAR unit 344a> millimeter wave radar 345a
- the surrounding environment of the vehicle 301 is identified based on the plurality of detection data and the use priority.
- the use priority is determined according to the detection accuracy of a plurality of sensors, the recognition accuracy of the surrounding environment of the vehicle 301 can be improved.
- the detection accuracy information may be stored in the memory or storage device 311 of the control unit 340a.
- the detection accuracy information may be updated at a predetermined timing.
- the updated detection accuracy information may be transmitted to the server on the communication network via the wireless communication unit 310.
- the vehicle control unit 303 detects the detection accuracy information, the position information of the vehicle, the weather information, and the time information indicating the time when the detection accuracy information is updated on the communication network. May be sent to the server of These pieces of information stored in the server may be utilized as big data to improve the detection accuracy of each sensor.
- detection accuracy of a plurality of sensors may be acquired based on test information for measuring sensor accuracy such as map information. For example, it is assumed that there is a traffic light at an intersection while the vehicle 301 is present near the intersection. At this time, it is assumed that the vehicle control unit 303 recognizes a traffic signal present at an intersection based on the local position information and the map information.
- the control unit 340a may determine that the detection accuracy of the camera 343a is low (for example, C rank).
- control unit 340a may determine that the detection accuracy of the LiDAR unit 344a and the millimeter wave radar 345a is high (for example, A rank).
- a camera, a LiDAR unit, and a millimeter wave radar are mentioned as a plurality of sensors, but the present embodiment is not limited to this.
- ultrasonic sensors may be mounted on the illumination system.
- the control unit of the illumination system may control the operation of the ultrasonic sensor and may generate the surrounding environment information based on the detection data acquired by the ultrasonic sensor.
- at least two of the camera, the LiDAR unit, the millimeter wave radar, and the ultrasonic sensor may be mounted on the illumination system.
- the present embodiment a fifth embodiment of the present disclosure (hereinafter simply referred to as “the present embodiment”) will be described with reference to the drawings.
- the description is abbreviate
- the dimensions of the respective members shown in the drawings may differ from the actual dimensions of the respective members for the convenience of the description.
- left and right direction and “front and back direction” will be referred to as appropriate for convenience of description. These directions are relative directions set for the vehicle 501 shown in FIG.
- the “front-rear direction” is a direction including the “front direction” and the “rear direction”.
- the “left-right direction” is a direction including the “left direction” and the “right direction”.
- FIG. 31 is a schematic view showing a top view of a vehicle 501 provided with a vehicle system 502.
- a vehicle 501 is a vehicle (car) that can travel in an automatic driving mode, and includes a vehicle system 502.
- Vehicle system 502 includes a vehicle control unit 503, a front left illumination system 504a (hereinafter simply referred to as “illumination system 504a”), a front right illumination system 504b (hereinafter referred to simply as “illumination system 504b”), and a left rear illumination.
- the illumination system 504 a is provided on the left front side of the vehicle 501.
- the illumination system 504a includes a housing 524a installed on the left front side of the vehicle 501, and a translucent cover 522a attached to the housing 524a.
- the illumination system 504 b is provided on the right front side of the vehicle 501.
- the illumination system 504b includes a housing 524b installed on the right front side of the vehicle 501, and a translucent cover 522b attached to the housing 524b.
- the illumination system 504 c is provided on the left rear side of the vehicle 501.
- the illumination system 504c includes a housing 524c installed on the left rear side of the vehicle 501, and a translucent cover 522c attached to the housing 524c.
- the illumination system 504 d is provided on the right rear side of the vehicle 501.
- the illumination system 504d includes a housing 524d installed on the right rear side of the vehicle 501, and a translucent cover 522d attached to the housing 524d.
- FIG. 32 is a block diagram showing a vehicle system 502.
- the vehicle system 502 includes a vehicle control unit 503, lighting systems 504a to 504d, a sensor 505, an HMI (Human Machine Interface) 508, a GPS (Global Positioning System) 509, and a wireless communication unit. And a storage device 511.
- the vehicle system 502 includes a steering actuator 512, a steering device 513, a brake actuator 514, a brake device 515, an accelerator actuator 516, and an accelerator device 517.
- Vehicle system 502 also includes a battery (not shown) configured to provide power.
- the vehicle control unit 503 is configured to control the traveling of the vehicle 501.
- the vehicle control unit 503 is configured by, for example, at least one electronic control unit (ECU: Electronic Control Unit).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuitry including active and passive elements such as transistors.
- the processor is, for example, a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), and / or a tensor processing unit (TPU).
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- a vehicle control program may be stored in the ROM.
- the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
- AI is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- the RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating a surrounding environment of the vehicle.
- the processor may be configured to expand a program specified from the vehicle control program stored in the ROM on the RAM, and execute various processes in cooperation with the RAM.
- the electronic control unit may be configured by at least one integrated circuit such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). Furthermore, the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the illumination system 504a further includes a control unit 540a, an illumination unit 542a, a camera 543a, a LiDAR (Light Detection and Ranging) unit 544a (an example of a laser radar), and a millimeter wave radar 545a.
- the control unit 540a, the illumination unit 542a, the camera 543a, the LiDAR unit 544a, and the millimeter wave radar 545a are in a space Sa (a light chamber) formed by a housing 524a and a light transmission cover 522a. Will be placed.
- the control unit 540a may be disposed at a predetermined place of the vehicle 501 other than the space Sa.
- control unit 540a may be configured integrally with vehicle control unit 503.
- the control unit 540a is configured by, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits (eg, transistors, etc.).
- the processor is, for example, a CPU, an MPU, a GPU and / or a TPU.
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM and a RAM.
- a peripheral environment specifying program for specifying the peripheral environment of the vehicle 501 may be stored in the ROM.
- the peripheral environment identification program is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- a peripheral environment identification program In the RAM, a peripheral environment identification program, image data acquired by the camera 543a, three-dimensional mapping data (point cloud data) acquired by the LiDAR unit 544a, and / or detection data acquired by the millimeter wave radar 545a, etc. are temporarily stored. May be stored.
- the processor may be configured to expand a program specified from the peripheral environment specifying program stored in the ROM on the RAM and execute various processing in cooperation with the RAM.
- the electronic control unit ECU
- the electronic control unit may be configured by at least one integrated circuit such as an ASIC or an FPGA.
- the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- the illumination unit 542a is configured to form a light distribution pattern by emitting light toward the outside (forward) of the vehicle 501.
- the illumination unit 542a has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, a light emitting diode (LED), a laser diode (LD), or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the illumination unit 542a, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector.
- the lighting unit 542a displays a light distribution pattern for the driver (for example, a low beam light distribution pattern or a high beam light distribution pattern) in front of the vehicle 501. It is configured to form. Thus, the lighting unit 542a functions as a left headlamp unit.
- the lighting unit 542a may be configured to form a light distribution pattern for a camera in front of the vehicle 501.
- the control unit 540a may be configured to individually supply an electrical signal (for example, a PWM (Pulse Width Modulation) signal) to each of the plurality of light emitting elements provided in the lighting unit 542a.
- an electrical signal for example, a PWM (Pulse Width Modulation) signal
- the control unit 540a can individually select the light emitting elements to which the electric signal is supplied, and can adjust the duty ratio of the electric signal for each light emitting element. That is, the control unit 540a can select a light emitting element to be turned on or off among the plurality of light emitting elements arranged in a matrix, and can determine the luminance of the light emitting element being turned on. Therefore, the control unit 540a can change the shape and brightness of the light distribution pattern emitted forward from the illumination unit 542a.
- PWM Pulse Width Modulation
- the camera 543a is configured to detect the surrounding environment of the vehicle 501.
- the camera 543a is configured to transmit the image data to the control unit 540a after acquiring the image data indicating the peripheral environment of the vehicle 501 at the frame rate a1 (fps).
- Control unit 540a specifies the surrounding environment information based on the transmitted image data.
- the surrounding environment information may include information on an object present outside the vehicle 501.
- the surrounding environment information may include information on the attribute of an object present outside the vehicle 501 and information on the position of the object relative to the vehicle 501.
- the camera 543a is constituted by an imaging device such as, for example, a charge-coupled device (CCD) or a metal oxide semiconductor (CMOS).
- CCD charge-coupled device
- CMOS metal oxide semiconductor
- the camera 543a may be configured as a monocular camera or may be configured as a stereo camera.
- the control unit 540a uses parallax to make the vehicle 501 and an object existing outside the vehicle 501 (for example, based on two or more image data acquired by the stereo camera). The distance between the pedestrian and the like can be specified. Further, although one camera 543a is provided in the illumination system 504a in the present embodiment, two or more cameras 543a may be provided in the illumination system 504a.
- the LiDAR unit 544a (an example of a laser radar) is configured to detect the surrounding environment of the vehicle 501.
- the LiDAR unit 544a is configured to transmit 3D mapping data to the control unit 540a after acquiring 3D mapping data (point cloud data) indicating the surrounding environment of the vehicle 501 at a frame rate a2 (fps). ing.
- the control unit 540a specifies the surrounding environment information based on the transmitted 3D mapping data.
- the surrounding environment information may include information on an object present outside the vehicle 501.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 501, and information on the position of the object relative to the vehicle 501.
- the frame rate a2 (second frame rate) of the 3D mapping data may be the same as or different from the frame rate a1 (first frame rate) of the image data.
- the LiDAR unit 544a acquires information on the time of flight (TOF) ⁇ T1 of the laser beam (light pulse) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) of the laser beam. Then, based on the information on the time of flight ⁇ T1, the information on the distance D between the LiDAR unit 544a (vehicle 501) and the object existing outside the vehicle 501 at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) is obtained can do.
- the flight time ⁇ T1 can be calculated, for example, as follows.
- Time of flight ⁇ T1 time at which laser light (light pulse) returned to LiDAR unit t1—time at which LiDAR unit emitted laser light (light pulse)
- the LiDAR unit 544a can acquire 3D mapping data indicating the environment around the vehicle 501.
- the LiDAR unit 544a includes, for example, a laser light source configured to emit a laser beam, an optical deflector configured to scan the laser beam horizontally and vertically, and an optical system such as a lens. And a light receiving unit configured to receive the laser light reflected by the object.
- the central wavelength of the laser light emitted from the laser light source is not particularly limited.
- the laser light may be invisible light whose center wavelength is around 900 nm.
- the light deflector may be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
- the light receiving unit is, for example, a photodiode.
- the LiDAR unit 544a may acquire 3D mapping data without scanning the laser light by the light deflector.
- the LiDAR unit 544a may obtain 3D mapping data in a phased array method or a flash method.
- one LiDAR unit 544a is provided in the illumination system 504a in this embodiment, two or more LiDAR units 544a may be provided in the illumination system 504a.
- one LiDAR unit 544a is configured to detect the surrounding environment in the front area of the vehicle 501 and the other LiDAR unit 544a is a vehicle 501. It may be configured to detect the surrounding environment in the side area of the
- the millimeter wave radar 545a is configured to detect the surrounding environment of the vehicle 501.
- the millimeter wave radar 545a is configured to transmit detection data to the control unit 540a after acquiring detection data indicating the surrounding environment of the vehicle 501.
- Control unit 540a specifies the surrounding environment information based on the transmitted detection data.
- the surrounding environment information may include information on an object present outside the vehicle 501.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 501, information on the position of the object relative to the vehicle 501, and information on the speed of the object relative to the vehicle 501.
- the millimeter wave radar 545a may be a pulse modulation method, an FM-CW (Frequency Moduled-Continuous Wave) method, or a two-frequency CW method, between the millimeter wave radar 545a (vehicle 501) and an object existing outside the vehicle 501.
- the distance D of can be obtained.
- the millimeter wave radar 545a acquires the information on the time of flight ⁇ T2 of the millimeter wave at each emission angle of the millimeter wave, and then the millimeter wave radar at each emission angle based on the information on the time of flight ⁇ T2. It is possible to obtain information on the distance D between 545a (vehicle 501) and an object present outside the vehicle 501.
- the flight time ⁇ T2 can be calculated, for example, as follows.
- Time of flight ⁇ T2 time t3 when millimeter wave returns to millimeter wave radar
- the millimeter wave radar 545a is a vehicle 501 for the millimeter wave radar 545a (vehicle 501) based on the frequency f0 of the millimeter wave emitted from the millimeter wave radar 545a and the frequency f1 of the millimeter wave returned to the millimeter wave radar 545a. It is possible to obtain information on the relative velocity V of an object that exists outside of.
- one millimeter wave radar 545a is provided in the illumination system 504a, but two or more millimeter wave radars 545a may be provided in the illumination system 504a.
- the illumination system 504a may include a millimeter wave radar 545a for short distance, a millimeter wave radar 545a for medium distance, and a millimeter wave radar 545a for long distance.
- the illumination system 504b further includes a control unit 540b, an illumination unit 542b, a camera 543b, a LiDAR unit 544b, and a millimeter wave radar 545b.
- the control unit 540b, the illumination unit 542b, the camera 543b, the LiDAR unit 544b, and the millimeter wave radar 545b are, as shown in FIG. 31, in the space Sb formed by the housing 524b and the light transmission cover 522b (light chamber) Will be placed.
- Control unit 540b may be disposed at a predetermined place of vehicle 501 other than space Sb.
- control unit 540b may be configured integrally with vehicle control unit 503.
- Control unit 540b may have the same function and configuration as control unit 540a.
- the lighting unit 542b may have the same function and configuration as the lighting unit 542a.
- the lighting unit 542a functions as a left headlamp unit
- the lighting unit 542b functions as a right headlamp unit.
- the camera 543 b may have the same function and configuration as the camera 543 a.
- the LiDAR unit 544b may have the same function and configuration as the LiDAR unit 544a.
- the millimeter wave radar 545b may have the same function and configuration as the millimeter wave radar 545a.
- the illumination system 504c further includes a control unit 540c, an illumination unit 542c, a camera 543c, a LiDAR unit 544c, and a millimeter wave radar 545c.
- the control unit 540c, the illumination unit 542c, the camera 543c, the LiDAR unit 544c, and the millimeter wave radar 545c are, as shown in FIG. 31, in the space Sc formed by the housing 524c and the light transmission cover 522c (light chamber) Will be placed.
- Control unit 540c may be disposed at a predetermined place of vehicle 501 other than space Sc.
- control unit 540c may be configured integrally with vehicle control unit 503.
- Control unit 540c may have the same function and configuration as control unit 540a.
- the illumination unit 542 c is configured to form a light distribution pattern by emitting light toward the outside (rear) of the vehicle 501.
- the illumination unit 542c has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, an LED, an LD or an organic EL element.
- the optical system is configured to refract light emitted by the light source and reflected by the reflector directly configured to reflect light emitted from the light source toward the front of the illumination unit 542c and light from the light source. And at least one of the lenses.
- the lighting unit 542c may turn off.
- the lighting unit 542 c may be configured to form a light distribution pattern for a camera behind the vehicle 501.
- the camera 543c may have the same function and configuration as the camera 543a.
- the LiDAR unit 544c may have the same function and configuration as the LiDAR unit 544c.
- the millimeter wave radar 545c may have the same function and configuration as the millimeter wave radar 545a.
- the illumination system 504d further includes a control unit 540d, an illumination unit 542d, a camera 543d, a LiDAR unit 544d, and a millimeter wave radar 545d.
- the control unit 540d, the illumination unit 542d, the camera 543d, the LiDAR unit 544d, and the millimeter wave radar 545d are in a space Sd formed by the housing 524d and the light transmission cover 522d (light chamber) Will be placed.
- the controller 540 d may be disposed at a predetermined place of the vehicle 501 other than the space Sd.
- the control unit 540d may be configured integrally with the vehicle control unit 503.
- Control unit 540d may have the same function and configuration as control unit 540c.
- the lighting unit 542 d may have the same function and configuration as the lighting unit 542 c.
- the camera 543 d may have the same function and configuration as the camera 543 c.
- the LiDAR unit 544d may have the same function and configuration as the LiDAR unit 544c.
- the millimeter wave radar 545 d may have the same function and configuration as the millimeter wave radar 545 c.
- the sensor 505 may include an acceleration sensor, a speed sensor, a gyro sensor, and the like.
- the sensor 505 is configured to detect the traveling state of the vehicle 501 and to output traveling state information indicating the traveling state of the vehicle 501 to the vehicle control unit 503.
- a sensor 505 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face direction sensor that detects the direction of the driver's face, an external weather sensor that detects an external weather condition, You may further provide a human sensor etc. which detect whether it is.
- the sensor 505 may include an illuminance sensor configured to detect the brightness (illuminance or the like) of the surrounding environment of the vehicle 501. The illuminance sensor may determine the brightness of the surrounding environment according to, for example, the magnitude of the photocurrent output from the photodiode.
- An HMI (Human Machine Interface) 508 includes an input unit that receives an input operation from the driver, and an output unit that outputs traveling state information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, a driving mode switching switch for switching the driving mode of the vehicle 501, and the like.
- the output unit includes a display and the like configured to display the traveling state information, the surrounding environment information, and the lighting state of the lighting system 4.
- a GPS (Global Positioning System) 509 is configured to acquire current position information of the vehicle 501 and to output the acquired current position information to the vehicle control unit 503.
- the wireless communication unit 510 receives information (for example, other vehicle traveling information and the like) related to other vehicles around the vehicle 501 from the other vehicle and also transmits information (for example, own vehicle traveling information and the like) for the vehicle 501 to the other vehicle It is configured to transmit (inter-vehicle communication).
- the wireless communication unit 510 is configured to receive infrastructure information from an infrastructure facility such as a traffic light and a marker light, and to transmit vehicle traveling information of the vehicle 501 to the infrastructure facility (inter-vehicle communication).
- the wireless communication unit 510 receives information on the pedestrian from a portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the traveling information of the vehicle 501 of the vehicle 501 to the portable electronic device. It is configured to (pedal communication).
- the vehicle 501 may communicate directly with other vehicles, infrastructure equipment or portable electronic devices in an ad hoc mode, or may communicate via an access point.
- the wireless communication standard is, for example, the fifth generation mobile communication system (5G), Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) or LPWA.
- the vehicle 501 may communicate with other vehicles, infrastructure equipment, or portable electronic devices via a mobile communication network.
- the storage device 511 is an external storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
- the storage device 511 may store 2D or 3D map information and / or a vehicle control program.
- the storage device 511 is configured to output map information and a vehicle control program to the vehicle control unit 503 in response to a request from the vehicle control unit 503.
- the map information and the vehicle control program may be updated via the wireless communication unit 510 and a communication network such as the Internet.
- the vehicle control unit 503 When the vehicle 501 travels in the automatic driving mode, the vehicle control unit 503 generates the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information and / or the map information. Automatically generate at least one of them.
- the steering actuator 512 is configured to receive a steering control signal from the vehicle control unit 503 and to control the steering device 513 based on the received steering control signal.
- the brake actuator 514 is configured to receive a brake control signal from the vehicle control unit 503 and to control the brake device 515 based on the received brake control signal.
- the accelerator actuator 516 is configured to receive an accelerator control signal from the vehicle control unit 503 and control the accelerator device 517 based on the received accelerator control signal.
- the traveling of the vehicle 501 is automatically controlled by the vehicle system 502.
- the vehicle control unit 503 when the vehicle 501 travels in the manual operation mode, the vehicle control unit 503 generates a steering control signal, an accelerator control signal and a brake control signal according to the driver's manual operation on the accelerator pedal, the brake pedal and the steering wheel. Do. As described above, in the manual operation mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so the travel of the vehicle 501 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a completely automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle system 502 In the fully automatic operation mode, the vehicle system 502 automatically performs all travel control of steering control, brake control and accelerator control, and the driver is not in a state capable of driving the vehicle 501.
- the vehicle system 502 In the advanced driving support mode, the vehicle system 502 automatically performs all travel control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 501 although the driver can drive the vehicle 501.
- the vehicle system 502 In the driving support mode, the vehicle system 502 automatically performs traveling control of a part of steering control, brake control, and accelerator control, and the driver drives the vehicle 501 under the driving support of the vehicle system 502. On the other hand, in the manual operation mode, the vehicle system 502 does not automatically perform travel control, and the driver drives the vehicle 501 without driving assistance from the vehicle system 502.
- the operation mode of the vehicle 501 may be switched by operating the operation mode switching switch.
- the vehicle control unit 503 sets the driving mode of the vehicle 501 to four driving modes (completely automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) according to the driver's operation to the drive mode switching switch. Switch between).
- the operation mode of the vehicle 501 is automatically based on the information on the travelable section where the autonomous driving vehicle can travel and the prohibited travel interval where the autonomous driving vehicle is prohibited or the information on the external weather condition. It may be switched to In this case, the vehicle control unit 503 switches the driving mode of the vehicle 501 based on these pieces of information.
- the operation mode of the vehicle 501 may be switched automatically by using a seating sensor, a face direction sensor, or the like.
- the vehicle control unit 503 may switch the driving mode of the vehicle 501 based on output signals from the seating sensor and the face direction sensor.
- FIG. 33 is a diagram showing functional blocks of the control unit 540a of the illumination system 504a.
- the control unit 540a is configured to control the operation of the illumination unit 542a, the camera 543a, the LiDAR unit 544a, and the millimeter wave radar 545a.
- control unit 540a includes illumination control unit 5410a, camera control unit 5420a (an example of a first generation unit), LiDAR control unit 5430a (an example of a second generation unit), millimeter wave radar control unit 5440a, and the periphery. And an environmental information transmission unit 5450a.
- the illumination control unit 5410a is configured to control the illumination unit 542a so that the illumination unit 542a emits a predetermined light distribution pattern toward the front area of the vehicle 501.
- the illumination control unit 5410a may change the light distribution pattern emitted from the illumination unit 542a according to the operation mode of the vehicle 501.
- the illumination control unit 5410a is configured to perform lighting control of the illumination unit 542a at a rate a3 (Hz).
- the rate a3 (third rate) of the illumination unit 542a may be the same as or different from the frame rate a1 of the image data acquired by the camera 543a.
- the camera control unit 5420a is configured to control the operation of the camera 543a.
- the camera control unit 5420a is configured to control the camera 543a so as to obtain image data (first detection data) at a frame rate a1 (first frame rate).
- the camera control unit 5420a is configured to control acquisition timing (particularly, acquisition start time) of each frame of image data.
- the camera control unit 5420a generates surrounding environment information (hereinafter referred to as surrounding environment information Ic) of the vehicle 501 in the detection area S1 (see FIG. 34) of the camera 543a based on the image data output from the camera 543a. It is configured to More specifically, as shown in FIG.
- the camera control unit 5420a generates the surrounding environment information Ic1 of the vehicle 501 based on the frame Fc1 of the image data, and based on the frame Fc2 of the image data, the surrounding environment The information Ic2 is generated, and the surrounding environment information Ic3 is generated based on the frame Fc3 of the image data. As described above, the camera control unit 5420a generates peripheral environment information for each frame of image data.
- the LiDAR control unit 5430a is configured to control the operation of the LiDAR unit 544a.
- the LiDAR control unit 5430a is configured to control the LiDAR unit 544a so as to obtain 3D mapping data (second detection data) at a frame rate a2 (second frame rate).
- the LiDAR control unit 5430a is configured to control acquisition timing (particularly, acquisition start time) of each frame of 3D mapping data.
- the LiDAR control unit 5430a outputs peripheral environment information (hereinafter, peripheral environment information Il) of the vehicle 501 in the detection area S2 (see FIG. 34) of the LiDAR unit 544a. It is configured to generate.
- the LiDAR control unit 5430a generates the surrounding environment information Il1 based on the frame Fl1 of the 3D mapping data, and the surrounding environment information based on the frame Fl2 of the 3D mapping data.
- Il2 is generated, and peripheral environment information Il3 is generated based on the frame Fl3 of the 3D mapping data.
- the LiDAR control unit 5430a generates the surrounding environment information for each frame of 3D mapping data.
- the millimeter wave radar control unit 5440a controls the operation of the millimeter wave radar 545a and, based on the detection data output from the millimeter wave radar 545a, of the vehicle 501 in the detection area S3 (see FIG. 34) of the millimeter wave radar 545a. It is configured to generate peripheral environment information Im.
- the surrounding environment information transmission unit 5450a is configured to acquire the surrounding environment information Ic, Il, Im, and transmit the acquired surrounding environment information Ic, Il, Im to the vehicle control unit 503.
- the peripheral environment information transmission unit 5450a is a camera control unit
- the surrounding environment information Ic1 is transmitted to the vehicle control unit 503.
- the surrounding environment information transmitting unit 5450a transmits the surrounding environment information Il1 to the vehicle control unit 503 after acquiring the surrounding environment information Il1 corresponding to the frame Fl1 of the 3D mapping data from the LiDAR control unit 5430a.
- control units 540b, 540c, and 540d may have the same function as the control unit 540a. That is, each of the control units 540b to 540d includes an illumination control unit, a camera control unit (an example of a first generation unit), a LiDAR control unit (an example of a second generation unit), a millimeter wave radar control unit, and a periphery An environmental information transmission unit may be provided.
- the surrounding environment information transmission unit of each of the control units 540b to 540c may transmit the surrounding environment information Ic, Il, and Im to the vehicle control unit 503.
- the vehicle control unit 503 may control the traveling of the vehicle 501 based on the surrounding environment information and other information (traveling control information, current position information, map information, etc.) transmitted from each of the control units 540a to 540d. .
- the upper part of FIG. 35 shows acquisition timings of frames of image data (for example, frames Fc1, Fc2, Fc3) acquired by the camera 543a in a predetermined period.
- the frame Fc2 (an example of a second frame of the first detection data) is a frame of image data acquired by the camera 543a next to the frame Fc1 (an example of the first frame of the first detection data).
- the frame Fc3 is a frame of image data acquired by the camera 543a next to the frame Fc2.
- the acquisition period ⁇ Tc of one frame of image data corresponds to the exposure time required to form one frame of image data (in other words, the time for taking in light forming one frame of image data).
- the time for processing the electrical signal output from the image sensor such as a CCD or CMOS is not included in the acquisition period ⁇ Tc.
- a period between the acquisition start time tc1 of the frame Fc1 and the acquisition start time tc3 of the frame Fc2 corresponds to the frame period T1 of the image data.
- the middle part of FIG. 35 shows acquisition timings of frames (for example, frames Fl1, Fl2, Fl3) of 3D mapping data acquired by the LiDAR unit 544a in a predetermined period.
- the frame Fl2 (an example of the second frame of the second detection data) is a frame of 3D mapping data acquired by the LiDAR unit 544a next to the frame Fl1 (an example of the first frame of the second detection data) .
- the frame F13 is a frame of 3D mapping data acquired by the LiDAR unit 544a next to the frame F12.
- the acquisition period ⁇ T1 of one frame of 3D mapping data does not include the time for processing the electrical signal output from the light receiving unit of the LiDAR unit 544a.
- a period between the acquisition start time tl1 of the frame Fl1 and the acquisition start time tl3 of the frame Fl2 corresponds to the frame period T2 of the 3D mapping data.
- the acquisition start time of each frame of image data and the acquisition start time of each frame of 3D mapping data are different from each other. Specifically, the acquisition start time tl1 of the frame Fl1 of the 3D mapping data is different from the acquisition start time tc1 of the frame Fc1 of the image data. Furthermore, the acquisition start time tl3 of the frame Fl2 of the 3D mapping data is different from the acquisition start time tc3 of the frame Fc2 of the image data.
- the frame Fl1 of the 3D mapping data is acquired in a period (first period) between the acquisition end time tc2 of the frame Fc1 of the image data and the acquisition start time tc3 of the frame Fc2 of the image data.
- the frame Fl2 of the 3D mapping data is acquired in a period between the acquisition end time tc4 of the frame Fc2 and the acquisition start time tc5 of the frame Fc3.
- at least a part of the frame Fl1 may be acquired between time tc2 and time tc3.
- at least a part of the frame Fl2 may be acquired between time tc4 and time tc5.
- the interval between the acquisition start time tl1 of the frame Fl1 of the 3D mapping data and the acquisition start time tc1 of the frame Fc1 of the image data is larger than half of the acquisition period ⁇ Tc of the frame Fc1 and the image data Smaller than the frame period T1 (acquisition period) of Similarly, the interval between the acquisition start time tl3 of the frame Fl2 of the 3D mapping data and the acquisition start time tc3 of the frame Fc2 of the image data is larger than half of the acquisition period ⁇ Tc of the frame Fc2 and the frame period of the image data Less than T1.
- the interval between the time tl1 and the time tc1 is larger than the acquisition period ⁇ Tc of the frame Fc1 and smaller than the frame period T1 of the image data.
- the interval between the time tl3 and the time tc3 is larger than the acquisition period ⁇ Tc of the frame Fc2 and smaller than the frame period T1 of the image data.
- the acquisition start time of each frame of image data and the acquisition start time of each frame of 3D mapping data are different from each other. That is, 3D mapping data (for example, frame Fl1) can be acquired in a time zone in which image data can not be acquired (for example, a time zone between time tc2 and time tc3).
- image data for example, frame Fc2
- image data for example, frame Fc2
- time zone of the surrounding environment information Ic generated based on each frame of image data is different from the surrounding environment information Il generated based on each frame of 3D mapping data.
- the time zone of the surrounding environment information Ic1 corresponding to the frame Fc1 is different from the time zone of the surrounding environment information Il1 corresponding to the frame Fl1.
- the time zone of the surrounding environment information Ic2 corresponding to the frame Fc2 is different from the time zone of the surrounding environment information I12 corresponding to the frame Fl2.
- the vehicle control unit 503 can obtain the surrounding environment information at high density in time from the surrounding environment information transmitting unit 5450a. Therefore, it is possible to provide a vehicle system 502 capable of improving the recognition accuracy of the surrounding environment of the vehicle 501.
- the lower part of FIG. 35 shows the lighting timing (lighting period ⁇ Ton and light-off period ⁇ Toff) of the lighting unit 542a in a predetermined period.
- a period between the lighting start time ts1 of the lighting period ⁇ Ton of the lighting unit 542a and the lighting start time ts3 of the next lighting period ⁇ Ton corresponds to the lighting cycle T3.
- the lighting cycle T3 of the lighting unit 542a matches the frame cycle T1 of the image data.
- the rate a3 of the illumination unit 542a matches the frame rate a1 of the image data.
- the illumination unit 542a lights up in an acquisition period ⁇ Tc of each frame (for example, frames Fc1, Fc2, Fc3) of image data.
- the lighting unit 542a turns off in the acquisition period ⁇ T1 of each frame (for example, the frames F11, F12, and F13) of the 3D mapping data.
- image data indicating the environment around the vehicle 501 is acquired by the camera 543a, so the environment around the vehicle 501 is dark (for example, In the case of nighttime), it is possible to preferably prevent the occurrence of blackout in the image data.
- 3D mapping data indicating the surrounding environment of the vehicle 501 is acquired by the LiDAR unit 544a, so that light emitted from the lighting unit 542a and reflected by the light transmission cover 522a It is possible to preferably prevent the adverse effect on the 3D mapping data by partially injecting the light into the light receiving unit of the LiDAR unit 544a.
- the present embodiment is not limited to this.
- a part of the acquisition period ⁇ Tc of each frame of the image data may be overlapped with the lighting period ⁇ Ton of the illumination unit 542a.
- a part of the acquisition period ⁇ T1 of each frame of the 3D mapping data may overlap with the turn-off period ⁇ Toff of the illumination unit 542a.
- the camera control unit 5420a determines the acquisition timing of the image data (for example, including the acquisition start time of the first frame) and then the image data.
- the information regarding the acquisition timing of may be transmitted to the LiDAR control unit 5430a and the illumination control unit 5410a.
- the LiDAR control unit 5430a determines the acquisition timing (such as the acquisition start time of the first frame) of the 3D mapping data based on the information on the acquisition timing of the received image data.
- the lighting control unit 5410a determines the lighting timing (the first lighting start time and the like) of the lighting unit 542a based on the information on the acquisition timing of the received image data.
- the camera control unit 5420a drives the camera 543a based on the information on the acquisition timing of the image data.
- the LiDAR control unit 5430a drives the LiDAR unit 544a based on the information related to the acquisition timing of the 3D mapping data.
- the lighting control unit 5410a turns on / off the lighting unit 542a based on the information on the lighting timing of the lighting unit 542a.
- the lighting unit 542a can be controlled to light up in the acquisition period ⁇ Tc of each frame of the image data and to extinguish it in the acquisition period ⁇ T1 of each frame of the 3D mapping data.
- the peripheral environment information transmission unit 5450a may determine the acquisition timing of the image data, the acquisition timing of the 3D mapping data, and the lighting timing of the lighting unit 542a.
- the peripheral environment information transmission unit 5450a transmits information on acquisition timing of image data to the camera control unit 5420a, transmits information on acquisition timing of 3D mapping data to the LiDAR control unit 5430a, and turns on lighting timing of the lighting unit 542a.
- Information on the lighting control unit 5410a Thereafter, the camera control unit 5420a drives the camera 543a based on the information on the acquisition timing of the image data.
- the LiDAR control unit 5430a drives the LiDAR unit 544a based on the information related to the acquisition timing of the 3D mapping data. Furthermore, the lighting control unit 5410a turns on / off the lighting unit 542a based on the information on the lighting timing of the lighting unit 542a.
- the lighting cycle of the lighting unit 542a is set to 2T3.
- the rate of the lighting unit 542a is set to a3 / 2, it is half the frame rate a1 of the image data.
- the illumination unit 542a lights up in the acquisition period ⁇ Tc of the frame Fc1 of the image data, and turns off in the acquisition period ⁇ Tc of the next frame Fc2 of the image data.
- the rate a3 / 2 of the lighting unit 542a is half the frame rate a1 of the image data
- the predetermined frame of the image data overlaps the lighting period ⁇ Ton2 of the lighting unit 542a and the predetermined frame The next frame of the frame overlaps the turn-off period .DELTA.Toff2 of the lighting unit 542a.
- the camera 543a acquires image data indicating the peripheral environment of the vehicle 501 while the lighting unit 542a is on, and acquires the image data while the lighting unit 542a is off. That is, the camera 543a alternately acquires a frame of image data when the lighting unit 542a is turned on and a frame of image data when the lighting unit 542a is turned off. Therefore, by comparing the image data M1 captured when the lighting unit 542a is turned off with the image data M2 captured when the lighting unit 542a is turned on, objects existing around the vehicle 501 can be obtained. It can be specified whether an object emits light itself or reflects light. In this manner, the camera control unit 5420a can more accurately specify the attribute of an object present around the vehicle 501.
- the lighting unit 542a when the lighting unit 542a is on, part of the light emitted from the lighting unit 542a and reflected by the light transmitting cover 522a may enter the camera 543a, which may cause stray light in the image data M2 is there.
- the illumination unit 542a when the illumination unit 542a is turned off, stray light does not occur in the image data M1.
- the camera control unit 5420a can specify the stray light generated in the image data M2 by comparing the image data M1 and the image data M2. Therefore, the recognition accuracy of the surrounding environment of the vehicle 501 can be improved.
- the present embodiment a sixth embodiment of the present disclosure (hereinafter simply referred to as “the present embodiment”) will be described with reference to the drawings.
- the description is abbreviate
- the dimensions of the respective members shown in the drawings may differ from the actual dimensions of the respective members for the convenience of the description.
- left and right direction and “front and back direction” will be referred to as appropriate for convenience of description. These directions are relative directions set for the vehicle 601 shown in FIG.
- the “front-rear direction” is a direction including the “front direction” and the “rear direction”.
- the “left-right direction” is a direction including the “left direction” and the “right direction”.
- FIG. 37 is a schematic view showing a top view of a vehicle 601 provided with a vehicle system 602.
- a vehicle 601 is a vehicle (automobile) that can travel in an automatic driving mode, and includes a vehicle system 602.
- the vehicle system 602 includes a vehicle control unit 603, a front left illumination system 604a (hereinafter simply referred to as “illumination system 604a”), a front right illumination system 604b (hereinafter simply referred to as “illumination system 604b”) and a left rear illumination.
- the illumination system 604 a is provided on the left front side of the vehicle 601.
- the lighting system 604a includes a housing 624a installed on the left front side of the vehicle 601, and a light transmitting cover 622a attached to the housing 624a.
- the illumination system 604 b is provided on the right front side of the vehicle 601.
- the illumination system 604 b includes a housing 624 b installed on the right front side of the vehicle 601 and a light transmitting cover 622 b attached to the housing 624 b.
- the illumination system 604 c is provided on the left rear side of the vehicle 601.
- the lighting system 604c includes a housing 624c installed on the left rear side of the vehicle 601, and a translucent cover 622c attached to the housing 624c.
- a lighting system 604 d is provided on the right rear side of the vehicle 601.
- the illumination system 604 d includes a housing 624 d installed on the right rear side of the vehicle 601 and a light transmitting cover 622 d attached to the housing 624 d.
- FIG. 38 is a block diagram showing a vehicle system 602 according to the present embodiment.
- the vehicle system 602 includes a vehicle control unit 603, lighting systems 604a to 604d, a sensor 5, an HMI (Human Machine Interface) 608, a GPS (Global Positioning System) 609, and a wireless communication unit. 610 and a storage device 611.
- the vehicle system 602 includes a steering actuator 612, a steering device 613, a brake actuator 614, a brake device 615, an accelerator actuator 616, and an accelerator device 617.
- Vehicle system 602 also includes a battery (not shown) configured to provide power.
- the vehicle control unit 603 (an example of a third control unit) is configured to control the traveling of the vehicle 601.
- the vehicle control unit 603 is configured by, for example, at least one electronic control unit (ECU: Electronic Control Unit).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuitry including active and passive elements such as transistors.
- the processor is, for example, a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), and / or a tensor processing unit (TPU).
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- a vehicle control program may be stored in the ROM.
- the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
- AI is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- the RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating a surrounding environment of the vehicle.
- the processor may be configured to expand a program specified from the vehicle control program stored in the ROM on the RAM, and execute various processes in cooperation with the RAM.
- the electronic control unit may be configured by at least one integrated circuit such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). Furthermore, the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the illumination system 604a (an example of a first sensing system) includes a control unit 640a, an illumination unit 642a, a camera 643a, a LiDAR (Light Detection and Ranging) unit 644a (an example of a laser radar), and a millimeter wave radar 645a. Furthermore, it has.
- the control unit 640a, the illumination unit 642a, the camera 643a, the LiDAR unit 644a, and the millimeter wave radar 645a are, as shown in FIG. 37, in the space Sa formed by the housing 624a and the light transmission cover 622a (a first region
- An example of The control unit 640a may be disposed at a predetermined place of the vehicle 601 other than the space Sa.
- the control unit 640a may be configured integrally with the vehicle control unit 603.
- the control unit 640a (an example of the first control unit) is configured of, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits (eg, transistors, etc.).
- the processor is, for example, a CPU, an MPU, a GPU and / or a TPU.
- the CPU may be configured by a plurality of CPU cores.
- the GPU may be configured by a plurality of GPU cores.
- the memory includes a ROM and a RAM.
- a peripheral environment specifying program for specifying the peripheral environment of the vehicle 601 may be stored in the ROM.
- the peripheral environment identification program is a program constructed by supervised or unsupervised machine learning using a neural network such as deep learning.
- the RAM temporarily stores a peripheral environment identification program, image data acquired by the camera 643a, three-dimensional mapping data (point cloud data) acquired by the LiDAR unit 644a, and / or detection data acquired by the millimeter wave radar 645a, etc. May be stored.
- the processor may be configured to expand a program specified from the peripheral environment specifying program stored in the ROM on the RAM and execute various processing in cooperation with the RAM.
- the electronic control unit may be configured by at least one integrated circuit such as an ASIC or an FPGA.
- the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- the illumination unit 642a is configured to form a light distribution pattern by emitting light toward the outside (forward) of the vehicle 601.
- the illumination unit 642a has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, a light emitting diode (LED), a laser diode (LD), or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the illumination unit 642a, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector.
- the lighting unit 642a displays a light distribution pattern for the driver (for example, a low beam light distribution pattern or a high beam light distribution pattern) in front of the vehicle 601. It is configured to form. Thus, the lighting unit 642a functions as a left headlamp unit.
- the lighting unit 642a may be configured to form a light distribution pattern for a camera in front of the vehicle 601.
- the controller 640a may be configured to individually supply an electrical signal (for example, a PWM (PulSe Width Modulation) signal) to each of the plurality of light emitting elements provided in the lighting unit 642a.
- an electrical signal for example, a PWM (PulSe Width Modulation) signal
- the control unit 640a can individually select the light emitting elements to which the electrical signal is supplied, and can adjust the duty ratio of the electrical signal for each light emitting element. That is, the control unit 640a can select a light emitting element to be turned on or off among the plurality of light emitting elements arranged in a matrix, and can determine the luminance of the light emitting element being turned on. For this reason, the control unit 640a can change the shape and brightness of the light distribution pattern emitted forward from the lighting unit 642a.
- PWM PulSe Width Modulation
- the camera 643a (an example of a first sensor) is configured to detect the surrounding environment of the vehicle 601.
- the camera 643a is configured to transmit image data to the control unit 640a after acquiring image data (an example of first detection data) indicating the surrounding environment of the vehicle 601.
- the control unit 640a specifies the surrounding environment information based on the transmitted image data.
- the surrounding environment information may include information on an object present outside the vehicle 601.
- the surrounding environment information may include information on the attribute of an object present outside the vehicle 601, and information on the distance and position of the object relative to the vehicle 601.
- the camera 643a is configured by an imaging device such as, for example, a charge-coupled device (CCD) or a metal oxide semiconductor (CMOS).
- CCD charge-coupled device
- CMOS metal oxide semiconductor
- the camera 643a may be configured as a single-eye camera or may be configured as a stereo camera.
- the control unit 640a uses parallax to make the vehicle 601 and an object existing outside the vehicle 601 (for example, based on two or more image data acquired by the stereo camera) The distance between the pedestrian and the like can be specified. Further, in the present embodiment, one camera 643a is provided in the illumination system 604a, but two or more cameras 643a may be provided in the illumination system 604a.
- the LiDAR unit 644a (an example of a first sensor) is configured to detect the surrounding environment of the vehicle 601.
- the LiDAR unit 644a is configured to transmit 3D mapping data to the control unit 640a after acquiring 3D mapping data (point cloud data) indicating the surrounding environment of the vehicle 601.
- the control unit 640a specifies the surrounding environment information based on the transmitted 3D mapping data (an example of the first detection data).
- the surrounding environment information may include information on an object present outside the vehicle 601.
- the surrounding environment information may include information on the attribute of an object present outside the vehicle 601, and information on the distance and position of the object relative to the vehicle 601.
- the LiDAR unit 644a acquires information on the time of flight (TOF) ⁇ T1 of the laser beam (light pulse) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) of the laser beam. Then, based on the information on the time of flight ⁇ T1, the information on the distance D between the LiDAR unit 644a (vehicle 601) and the object existing outside the vehicle 601 at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) is obtained can do.
- the flight time ⁇ T1 can be calculated, for example, as follows.
- Time of flight ⁇ T1 time at which laser light (light pulse) returned to LiDAR unit t1—time at which LiDAR unit emitted laser light (light pulse)
- the LiDAR unit 644a can acquire 3D mapping data indicating the environment around the vehicle 601.
- the LiDAR unit 644a includes, for example, a laser light source configured to emit a laser beam, an optical deflector configured to scan the laser beam horizontally and vertically, and an optical system such as a lens. And a light receiving unit configured to receive the laser light reflected by the object.
- the central wavelength of the laser light emitted from the laser light source is not particularly limited.
- the laser light may be invisible light whose center wavelength is around 900 nm.
- the light deflector may be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
- the light receiving unit is, for example, a photodiode.
- the LiDAR unit 644a may acquire 3D mapping data without scanning the laser light by the light deflector.
- the LiDAR unit 644a may obtain 3D mapping data in a phased array method or a flash method.
- one LiDAR unit 644a is provided in the illumination system 604a in the present embodiment, two or more LiDAR units 644a may be provided in the illumination system 604a.
- one LiDAR unit 644a is configured to detect the surrounding environment in the forward region of the vehicle 601 and the other LiDAR unit 644a is a vehicle It may be configured to detect the surrounding environment in the side area of the
- the millimeter wave radar 645a (an example of the first sensor) is configured to detect the surrounding environment of the vehicle 601.
- the millimeter wave radar 645a is configured to transmit detection data to the control unit 640a after acquiring detection data (an example of first detection data) indicating the peripheral environment of the vehicle 601.
- the control unit 640a specifies the surrounding environment information based on the transmitted detection data.
- the surrounding environment information may include information on an object present outside the vehicle 601.
- the surrounding environment information may include, for example, information on the attribute of an object present outside the vehicle 601, information on the position of the object relative to the vehicle 601, and information on the speed of the object relative to the vehicle 601.
- the millimeter wave radar 645a may be a pulse modulation method, an FM-CW (Frequency Moduled-Continuous Wave) method, or a two-frequency CW method, between the millimeter wave radar 645a (vehicle 601) and an object existing outside the vehicle 601.
- the distance D of can be obtained.
- the millimeter wave radar 645a acquires information on the time of flight ⁇ T2 of the millimeter wave at each emission angle of the millimeter wave, and then the millimeter wave radar at each emission angle based on the information on the time of flight ⁇ T2. It is possible to obtain information on the distance D between the 645a (vehicle 601) and an object present outside the vehicle 601.
- the flight time ⁇ T2 can be calculated, for example, as follows.
- Time of flight ⁇ T2 time t3 when millimeter wave returns to millimeter wave radar
- the millimeter wave radar 645a is a vehicle 601 for the millimeter wave radar 645a (vehicle 601) based on the frequency f0 of the millimeter wave emitted from the millimeter wave radar 645a and the frequency f1 of the millimeter wave returned to the millimeter wave radar 645a. It is possible to obtain information on the relative velocity V of an object that exists outside of.
- the illumination system 604a may include a millimeter wave radar 645a for short distance, a millimeter wave radar 645a for medium distance, and a millimeter wave radar 645a for long distance.
- the illumination system 604b (an example of a second sensing system) further includes a control unit 640b (an example of a second control unit), an illumination unit 642b, a camera 643b, a LiDAR unit 644b, and a millimeter wave radar 645b.
- the control unit 640b, the illumination unit 642b, the camera 643b, the LiDAR unit 644b, and the millimeter wave radar 645b are, as shown in FIG. 37, in the space Sb formed by the housing 624b and the light transmission cover 622b (second region
- An example of Control unit 640b may be disposed at a predetermined place of vehicle 601 other than space Sb.
- control unit 640 b may be configured integrally with the vehicle control unit 603.
- the controller 640 b may have the same function and configuration as the controller 640 a.
- the lighting unit 642b may have the same function and configuration as the lighting unit 642a.
- the lighting unit 642a functions as a left headlamp unit, while the lighting unit 642b functions as a right headlamp unit.
- the camera 643 b (an example of the second sensor) may have the same function and configuration as the camera 643 a.
- the LiDAR unit 644b (an example of the second sensor) may have the same function and configuration as the LiDAR unit 644a.
- the millimeter wave radar 645 b (an example of the second sensor) may have the same function and configuration as the millimeter wave radar 645 a.
- the illumination system 604c further includes a control unit 640c, an illumination unit 642c, a camera 643c, a LiDAR unit 644c, and a millimeter wave radar 645c.
- the control unit 640c, the illumination unit 642c, the camera 643c, the LiDAR unit 644c, and the millimeter wave radar 645c are, as shown in FIG. 37, in the space Sc formed by the housing 624c and the light transmission cover 622c Will be placed.
- Control unit 640 c may be disposed at a predetermined place of vehicle 601 other than space Sc.
- the control unit 640 c may be configured integrally with the vehicle control unit 603.
- the controller 640 c may have the same function and configuration as the controller 640 a.
- the illumination unit 642 c is configured to form a light distribution pattern by emitting light toward the outside (rear) of the vehicle 601.
- the illumination unit 642c has a light source for emitting light and an optical system.
- the light source may be configured by, for example, a plurality of light emitting elements arranged in a matrix (for example, N rows ⁇ M columns, N> 1, M> 1).
- the light emitting element is, for example, an LED, an LD or an organic EL element.
- the optical system is configured to reflect light emitted from the light source toward the front of the illumination unit 642c, and to refract light reflected by the light emitted directly from the light source or reflected by the reflector. And at least one of the lenses.
- the lighting unit 642 c may turn off.
- the lighting unit 642 c may be configured to form a light distribution pattern for the camera behind the vehicle 601.
- the camera 643c may have the same function and configuration as the camera 643a.
- the LiDAR unit 644c may have the same function and configuration as the LiDAR unit 644c.
- the millimeter wave radar 645c may have the same function and configuration as the millimeter wave radar 645a.
- the illumination system 604d further includes a control unit 640d, an illumination unit 642d, a camera 643d, a LiDAR unit 644d, and a millimeter wave radar 645d.
- the control unit 640d, the illumination unit 642d, the camera 643d, the LiDAR unit 644d, and the millimeter wave radar 645d are in a space Sd formed by the housing 624d and the light transmission cover 622d (light chamber), as shown in FIG. Will be placed.
- the controller 640 d may be disposed at a predetermined place of the vehicle 601 other than the space Sd.
- the control unit 640 d may be configured integrally with the vehicle control unit 603.
- the controller 640 d may have the same function and configuration as the controller 640 c.
- the lighting unit 642d may have the same function and configuration as the lighting unit 642c.
- the camera 643 d may have the same function and configuration as the camera 643 c.
- the LiDAR unit 644d may have the same function and configuration as the LiDAR unit 644c.
- the millimeter wave radar 645 d may have the same function and configuration as the millimeter wave radar 645 c.
- the sensor 5 may include an acceleration sensor, a speed sensor, a gyro sensor, and the like.
- the sensor 5 is configured to detect the traveling state of the vehicle 601 and to output traveling state information indicating the traveling state of the vehicle 601 to the vehicle control unit 603.
- the sensor 5 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face direction sensor that detects the direction of the driver's face, an external weather sensor that detects an external weather condition, and a person in the car You may further provide a human sensor etc. which detect whether it is.
- the sensor 5 may include an illuminance sensor configured to detect the brightness (illuminance or the like) of the environment around the vehicle 601. The illuminance sensor may determine the brightness of the surrounding environment according to, for example, the magnitude of the photocurrent output from the photodiode.
- the HMI (Human Machine Interface) 608 includes an input unit that receives an input operation from the driver, and an output unit that outputs traveling state information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode switching switch for switching the operation mode of the vehicle 601, and the like.
- the output unit includes a display and the like configured to display the traveling state information, the surrounding environment information, and the lighting state of the lighting system 4.
- a GPS (Global Positioning System) 609 is configured to acquire current position information of the vehicle 601 and to output the acquired current position information to the vehicle control unit 603.
- the wireless communication unit 610 receives information (for example, other vehicle traveling information and the like) related to other vehicles around the vehicle 601 from the other vehicles and also transmits information (for example, own vehicle traveling information and the like) for the vehicle 601 to the other vehicles. It is configured to transmit (inter-vehicle communication).
- the wireless communication unit 610 is configured to receive infrastructure information from an infrastructure facility such as a traffic light and a marker light, and to transmit vehicle traveling information of the vehicle 601 to the infrastructure facility (inter-vehicle communication). Further, the wireless communication unit 610 receives information on the pedestrian from a portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 601 to the portable electronic device. It is configured to (pedal communication). The vehicle 601 may communicate directly with other vehicles, infrastructure equipment or portable electronic devices in an ad hoc mode, or may communicate via an access point.
- an infrastructure facility such as a traffic light and a marker light
- vehicle traveling information of the vehicle 601 to the infrastructure facility (inter-vehicle communication). Further, the wireless communication unit 610 receives information on the pedestrian from a portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 601 to the portable electronic device. It is
- the wireless communication standard is, for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) or LPWA.
- the vehicle 601 may communicate with other vehicles, infrastructure equipment, or portable electronic devices via a mobile communication network.
- the storage device 611 is an external storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
- the storage device 611 may store 2D or 3D map information and / or a vehicle control program.
- 3D map information may be configured by point cloud data.
- the storage device 611 is configured to output map information and a vehicle control program to the vehicle control unit 603 in response to a request from the vehicle control unit 603.
- the map information and the vehicle control program may be updated via the wireless communication unit 610 and a communication network such as the Internet.
- the vehicle control unit 603 controls the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information and / or the map information. Automatically generate at least one of them.
- the steering actuator 612 is configured to receive a steering control signal from the vehicle control unit 603 and to control the steering device 613 based on the received steering control signal.
- the brake actuator 614 is configured to receive a brake control signal from the vehicle control unit 603 and control the brake device 615 based on the received brake control signal.
- the accelerator actuator 616 is configured to receive an accelerator control signal from the vehicle control unit 603 and control the accelerator device 617 based on the received accelerator control signal.
- the traveling of the vehicle 601 is automatically controlled by the vehicle system 602.
- the vehicle control unit 603 when the vehicle 601 travels in the manual operation mode, the vehicle control unit 603 generates a steering control signal, an accelerator control signal and a brake control signal according to the driver's manual operation on the accelerator pedal, the brake pedal and the steering wheel. Do. As described above, in the manual operation mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so the travel of the vehicle 601 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a completely automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle system 602 In the fully automatic operation mode, the vehicle system 602 automatically performs all travel control of steering control, brake control and accelerator control, and the driver is not in a state where the vehicle 601 can be driven.
- the vehicle system 602 In the advanced driving support mode, the vehicle system 602 automatically performs all travel control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 601 although the vehicle 601 can be driven.
- the vehicle system 602 In the driving support mode, the vehicle system 602 automatically performs traveling control of part of steering control, brake control, and accelerator control, and the driver drives the vehicle 601 under the driving support of the vehicle system 602.
- the vehicle system 602 does not automatically perform travel control, and the driver drives the vehicle 601 without driving assistance from the vehicle system 602.
- the operation mode of the vehicle 601 may be switched by operating the operation mode switch.
- the vehicle control unit 603 controls the driving mode of the vehicle 601 in four driving modes (completely automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) according to the driver's operation on the drive mode switching switch. Switch between).
- the operation mode of the vehicle 601 is automatically based on the information on the travelable section where the autonomous driving vehicle can travel and the prohibited travel interval where the autonomous driving vehicle is prohibited or the information on the external weather condition It may be switched to In this case, the vehicle control unit 603 switches the driving mode of the vehicle 601 based on these pieces of information.
- the operation mode of the vehicle 601 may be switched automatically by using a seating sensor, a face direction sensor, or the like. In this case, the vehicle control unit 603 may switch the driving mode of the vehicle 601 based on output signals from the seating sensor and the face direction sensor.
- FIG. 39 is a diagram showing functional blocks of a control unit 640a (an example of a first control unit) of the illumination system 604a.
- the control unit 640a is configured to control operations of the illumination unit 642a, the camera 643a, the LiDAR unit 644a, and the millimeter wave radar 645a.
- the control unit 640a includes an illumination control unit 6410a, a camera control unit 6420a, a LiDAR control unit 6430a, a millimeter wave radar control unit 6440a, and a surrounding environment information merging unit 6450a.
- the illumination control unit 6410 a is configured to control the illumination unit 642 a so that the illumination unit 642 a emits a predetermined light distribution pattern toward the front area of the vehicle 601.
- the lighting control unit 6410a may change the light distribution pattern emitted from the lighting unit 642a according to the operation mode of the vehicle 601.
- the camera control unit 6420a controls the operation of the camera 643a and, based on the image data output from the camera 643a, surrounding environment information of the vehicle 601 in the detection area S1a (see FIG. 41) of the camera 643a (hereinafter referred to as the surrounding environment) It is configured to generate information I1a.
- the LiDAR control unit 6430a controls the operation of the LiDAR unit 644a and, based on the 3D mapping data output from the LiDAR unit 644a, environmental information on the surroundings of the vehicle 601 in the detection area S2a (see FIG. 41) of the LiDAR unit 644a (see FIG. Hereinafter, it is configured to generate peripheral environment information I2a.
- the millimeter wave radar control unit 6440a controls the operation of the millimeter wave radar 645a and, based on the detection data output from the millimeter wave radar 645a, of the vehicle 601 in the detection area S3a (see FIG. 41) of the millimeter wave radar 645a. It is configured to generate peripheral environment information (hereinafter referred to as peripheral environment information I3a).
- the surrounding environment information fusion unit 6450a is configured to merge the surrounding environment information I1a, I2a, and I3a to generate the fused surrounding environment information Ifa.
- the surrounding environment information Ifa is a detection area Sfa in which the detection area S1a of the camera 643a, the detection area S2a of the LiDAR unit 644a, and the detection area S3a of the millimeter wave radar 645a are combined. It may include information on an object existing outside the vehicle 601 in an example of the peripheral area.
- the surrounding environment information Ifa relates to the attribute of the object, the position of the object with respect to the vehicle 601, the angle of the object with respect to the vehicle 601, the distance between the vehicle 601 and the object and / or the velocity of the object with respect to the vehicle 601. It may contain information.
- the surrounding environment information fusion unit 6450a is configured to transmit the surrounding environment information Ifa to the vehicle control unit 603.
- step S601 the camera 643a acquires image data indicating the peripheral environment of the vehicle 601 in the detection area S1a (see FIG. 41).
- step S602 the LiDAR unit 644a acquires 3D mapping data indicating the environment surrounding the vehicle 601 in the detection area S2a.
- step S603 the millimeter wave radar 645a acquires detection data indicating the peripheral environment of the vehicle 601 in the detection area S3a.
- the camera control unit 6420a obtains the image data from the camera 643a, and then generates the surrounding environment information I1a based on the image data (step S604).
- the LiDAR control unit 6430a acquires 3D mapping data from the LiDAR unit 644a, and then generates the surrounding environment information I2a based on the 3D mapping data (step S605).
- the millimeter wave radar control unit 6440a After acquiring the detection data from the millimeter wave radar 645a, the millimeter wave radar control unit 6440a generates the surrounding environment information I3a based on the detection data (step S606).
- the surrounding environment information fusion unit 6450a compares a plurality of surrounding environment information in each overlapping area Sx, Sy, Sz (see FIG. 41) based on the priority of each sensor.
- the priority of each sensor is camera 643a> LiDAR unit 644a> millimeter wave radar 645a.
- the surrounding environment information fusion unit 6450a compares the surrounding environment information I1a with the surrounding environment information I2a in the overlapping area Sx where the detecting area S1a and the detecting area S2a overlap each other, and then the surrounding environment information I1a. And the surrounding environment information I2a match each other.
- the surrounding environment information I1a indicates the position of the pedestrian in the overlapping area Sx as the position Z1
- the surrounding environment information I2a indicates the position of the pedestrian P2 in the overlapping area Sx as the position Z2
- the surrounding environment information I1a and the surrounding environment It is determined that the information I2a does not match each other. If the surrounding environment information fusion unit 6450a determines that the surrounding environment information I1a and the surrounding environment information I2a do not match each other as a comparison result, the overlapping area Sx is determined based on the priority of each sensor (camera 643a> LiDAR unit 644a).
- the surrounding environment information adopted in the above is determined as the surrounding environment information I1a.
- the peripheral environment information fusion unit 6450a compares the peripheral environment information I2a with the peripheral environment information I3a, and then compares the peripheral environment information I2a with the peripheral environment. It is determined whether the information I3a matches each other.
- the surrounding environment information fusion unit 6450a determines that the surrounding environment information I2a and the surrounding environment information I3a do not match each other as a comparison result, the overlapping is performed based on the priority of each sensor (LiDAR unit 644a> millimeter wave radar 645a).
- the surrounding environment information adopted in the area Sz is determined as the surrounding environment information I2a.
- the peripheral environment information fusion unit 6450a outputs peripheral environment information I1a, peripheral environment information I2a, and peripheral environment information I3a. Are compared, and it is determined whether the surrounding environment information I1a, the surrounding environment information I2a, and the surrounding environment information I3a match each other.
- the surrounding environment information fusion unit 6450a determines that the surrounding environment information I1a, the surrounding environment information I2a, and the surrounding environment information I3a do not match each other as a comparison result, the priority of each sensor (camera 643a> LiDAR unit 644a> Based on the millimeter wave radar 645a), the surrounding environment information adopted in the overlapping area Sy is determined as the surrounding environment information I1a.
- the surrounding environment information fusion unit 6450a fuses the surrounding environment information I1a, I2a, and I3a to generate the fused surrounding environment information Ifa (an example of the first surrounding environment information).
- the surrounding environment information Ifa may include information on an object present outside the vehicle 601 in a detection area Sfa (an example of a first surrounding area) in which the detection areas S1a, S2a, and S3a are combined.
- the surrounding environment information Ifa may be configured by the following information. .
- Ambient environment information I1a in detection area S1a ⁇ Surrounding environment information I2a in detection area S2a excluding overlapping areas Sx and Sy ⁇ Surrounding environment information I3a in the detection area S3a excluding the overlapping areas Sy and Sz
- step S608 the surrounding environment information fusion unit 6450a transmits the surrounding environment information Ifa to the vehicle control unit 603.
- the process of generating the surrounding environment information Ifa shown in FIG. 40 is repeatedly executed.
- the peripheral environment information fusion unit 6450a does not compare a plurality of peripheral environment information in the overlapping areas Sx, Sy, Sz, but based on the information on the priority of each sensor and the peripheral environment information I1a to I3a Environmental information Ifa may be generated.
- FIG. 42 is a diagram showing functional blocks of a control unit 640 b (an example of a second control unit) of the illumination system 604 b.
- the control unit 640b includes an illumination unit 642b, a camera 643b (an example of a second sensor), a LiDAR unit 644b (an example of a second sensor), and a millimeter wave radar 645b (an example of a second sensor). Is configured to control the operation of.
- control unit 640b includes an illumination control unit 6410b, a camera control unit 6420b, a LiDAR control unit 6430b, a millimeter wave radar control unit 6440b, and a surrounding environment information merging unit 6450b.
- the lighting control unit 6410 b may have the same function as the lighting control unit 6410 a.
- the camera control unit 6420b may have the same function as the camera control unit 6420a.
- the LiDAR control unit 6430b may have the same function as the LiDAR control unit 6430a.
- the millimeter wave radar control unit 6440b may have the same function as the millimeter wave radar control unit 6440a.
- step S611 the camera 643b acquires image data (an example of second detection data) indicating the peripheral environment of the vehicle 601 in the detection area S1b (see FIG. 44).
- step S612 the LiDAR unit 644b acquires 3D mapping data (an example of second detection data) indicating the environment around the vehicle 601 in the detection area S2b.
- step S613 the millimeter wave radar 645b acquires detection data (an example of second detection data) indicating the peripheral environment of the vehicle 601 in the detection area S3b.
- the camera control unit 6420b acquires image data from the camera 643b, and then generates the surrounding environment information I1b based on the image data (step S614). Further, the LiDAR control unit 6430b acquires 3D mapping data from the LiDAR unit 644b, and then generates the surrounding environment information I2b based on the 3D mapping data (step S615). Furthermore, the millimeter wave radar control unit 6440b acquires detection data from the millimeter wave radar 645b, and then generates the surrounding environment information I3b based on the detection data (step S616).
- the surrounding environment information fusion unit 6450b compares a plurality of surrounding environment information in each overlapping area St, Su, Sv (see FIG. 44) based on the priority of each sensor.
- the priority of each sensor is camera 643b> LiDAR unit 644b> millimeter wave radar 645b.
- the surrounding environment information fusion unit 6450b compares the surrounding environment information I1b with the surrounding environment information I2b in the overlapping area St where the detection area S1b and the detection area S2b overlap each other, and then the surrounding environment information I1b. And the surrounding environment information I2b match each other.
- the surrounding environment information I1b indicates the position of the pedestrian as the position Z3 in the overlapping area St
- the surrounding environment information I2b indicates the position of the pedestrian as the position Z4 in the overlapping area St
- the surrounding environment information I1b and the surrounding environmental information It is determined that I2b do not match each other.
- the surrounding environment information fusion unit 6450b determines that the surrounding environment information I1b and the surrounding environment information I2b do not match each other as a comparison result, the overlapping area St based on the priority of each sensor (camera 643b> LiDAR unit 644b).
- the surrounding environment information adopted in the above is determined as the surrounding environment information I1b.
- the peripheral environment information fusion unit 6450b compares the peripheral environment information I2b with the peripheral environment information I3b, and then compares the peripheral environment information I2b with the peripheral environment. It is determined whether the information I3b matches each other.
- the surrounding environment information fusion unit 6450b determines that the surrounding environment information I2b and the surrounding environment information I3b do not coincide with each other as a comparison result, overlapping is performed based on the priority of each sensor (LiDAR unit 644b> millimeter wave radar 645b).
- the surrounding environment information adopted in the area Sv is determined as the surrounding environment information I2b.
- the peripheral environment information fusion unit 6450b outputs the peripheral environment information I1b, the peripheral environment information I2b, and the peripheral environment information I3b. Are compared, and it is determined whether the surrounding environment information I1b, the surrounding environment information I2b, and the surrounding environment information I3b match each other.
- the surrounding environment information fusion unit 6450b determines that the surrounding environment information I1b, the surrounding environment information I2b, and the surrounding environment information I3b do not match each other as a comparison result, the priority of each sensor (camera 643b> LiDAR unit 644b> Based on the millimeter wave radar 645 b), the surrounding environment information adopted in the overlapping area Su is determined as the surrounding environment information I 1 b.
- the surrounding environment information fusion unit 6450b fuses the surrounding environment information I1b, I2b, and I3b to generate the fused surrounding environment information Ifb (an example of the second surrounding environment information).
- the surrounding environment information Ifb may include information on an object present outside the vehicle 601 in a detection area Sfb (an example of a second surrounding area) in which the detection areas S1b, S2b, and S3b are combined.
- the surrounding environment information Ifb may be configured by the following information. .
- Ambient environment information I1b in the detection area S1b ⁇ Surrounding environment information I2b in detection area S2b excluding overlapping areas St and Su ⁇ Surrounding environment information I3b in detection area S3b excluding overlapping areas Su and Sv
- step S618 the surrounding environment information fusion unit 6450b transmits the surrounding environment information Ifb to the vehicle control unit 603.
- the process of generating the surrounding environment information Ifb shown in FIG. 43 is repeatedly executed.
- the peripheral environment information fusion unit 6450b does not compare a plurality of peripheral environment information in the overlapping areas St, Su, Sv, but based on the information on the priority of each sensor and the peripheral environment information I1b to I3b. Environment information Ifb may be generated.
- FIG. 45 is a flowchart for illustrating processing for finally specifying the peripheral environment of the vehicle 601 in the overlapping peripheral area Sfl.
- FIG. 46 is a diagram showing a detection area Sfa, a detection area Sfb, and an overlapping peripheral area Sfl in which the detection area Sfa and the detection area Sfb overlap with each other.
- the shape of the detection area Sfa shown in FIG. 41 and the shape of the detection area Sfa shown in FIG. 46 do not match.
- the shape of the detection area Sfb shown in FIG. 44 and the shape of the detection area Sfb shown in FIG. 46 do not match.
- step S620 the vehicle control unit 603 receives the surrounding environment information Ifa in the detection area Sfa from the surrounding environment information merging unit 6450a.
- the vehicle control unit 603 receives the surrounding environment information Ifb in the detection area Sfb from the surrounding environment information merging unit 6450b (step S621).
- the vehicle control unit 603 based on at least one of the received surrounding environment information Ifa and Ifb, the vehicle control unit 603 finally specifies the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfl.
- the vehicle control unit 603 specifies surrounding environment information indicating the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfl (step S622).
- the overlapping peripheral area Sfl is divided into a first partial area Sf1 and a second partial area Sf2.
- the first partial area Sf1 is an area located on the left side with respect to the central axis Ax
- the second partial area Sf2 is an area located on the right side with respect to the central axis Ax.
- the central axis Ax is an axis extending parallel to the longitudinal direction of the vehicle 601 and passing through the center of the vehicle 601.
- the distance between the first partial region Sf1 and the space Sa of the illumination system 604a is smaller than the distance between the first partial region Sf1 and the space Sb of the illumination system 604b.
- the distance between the predetermined position Pa in the first partial region Sf1 and the space Sa is smaller than the distance between the predetermined position Pa and the space Sb.
- the distance between the second partial region Sf2 and the space Sb of the illumination system 604b is smaller than the distance between the second partial region Sf2 and the space Sa of the illumination system 604a.
- the distance between the predetermined position Pb in the second partial region Sf2 and the space Sb is smaller than the distance between the predetermined position Pb and the space Sa.
- the vehicle control unit 603 finally specifies the surrounding environment of the vehicle 601 in the first partial area Sf1 based on the surrounding environment information Ifa indicating the surrounding environment in the detection area Sfa. In other words, the vehicle control unit 603 adopts the surrounding environment information Ifa as the surrounding environment information in the first partial region Sf1. On the other hand, the vehicle control unit 603 finally specifies the surrounding environment of the vehicle 601 in the second partial region Sf2 based on the surrounding environment information Ifb indicating the surrounding environment in the detection region Sfb. In other words, the vehicle control unit 603 adopts the surrounding environment information Ifb as the surrounding environment information in the second partial region Sf2.
- the vehicle control unit 603 controls the vehicle 601 in the overlapping peripheral area Sfl based on the relative positional relationship between the vehicle 601 and the overlapping peripheral area Sfl and at least one of the peripheral environment information Ifa and Ifb. Finally identify the surrounding environment of
- the vehicle control unit 603 finally specifies the surrounding environment in the front area of the vehicle 601.
- the vehicle control unit 603 fuses the surrounding environment information Ifa and Ifb to generate the merged surrounding environment information Ig.
- the surrounding environment information Ig may include information on an object present outside the vehicle 601 in the detection area Sg in which the detection areas Sfa and Sfb are combined.
- the surrounding environment information Ig may be configured by the following information. ⁇ Surrounding environment information Ifa in the detection area Sfa excluding the second partial area Sf2 ⁇ Surrounding environment information Ifb in the detection area Sfb excluding the first partial area Sf1
- the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfl where the detecting area Sfa and the detecting area Sfb overlap with each other is the final Identified.
- the vehicle system 602 capable of improving the recognition accuracy of the peripheral environment of the vehicle 601 can be provided.
- the surrounding environment of the vehicle 601 is finally identified based on the surrounding environment information Ifa.
- the surrounding environment of the vehicle 601 is finally specified based on the surrounding environment information Ifb.
- the peripheral environment of the vehicle 601 in the overlapping peripheral area Sfl is finally identified. Can improve the accuracy of
- FIG. 47 is a diagram showing the presence of a pedestrian P7 in the overlapping peripheral area Sfl.
- the process of step S622 shown in FIG. 45 will be described below.
- peripheral environment information Ifa in the detection area Sfa and peripheral environment information Ifb in the detection area Sfb are different from each other.
- parameters (position, distance, angle, etc.) related to the relative positional relationship between the vehicle 601 and pedestrian P7 indicated by the surrounding environment information Ifa are indicated by the surrounding environment information Ifb and the vehicle 601 and walking It differs from the parameters (position, distance, angle, etc.) related to the relative positional relationship with the person P7.
- the angle between the vehicle 601 and the pedestrian P7 is formed, for example, between a central axis Ax (see FIG. 46) and a line connecting the central point of the pedestrian P7 and the central point of the vehicle 601. It is the angle that is
- the vehicle control unit 603 specifies the average value of the distances D1 and D2 as the distance between the vehicle 601 and the pedestrian P7.
- the vehicle control unit 603 specifies the surrounding environment information in the overlapping surrounding area Sfl by adopting the average value of the parameter indicated by the surrounding environment information Ifa and the parameter indicated by the surrounding environment information Ifb.
- the vehicle control unit 603 determines whether the surrounding environment information Ifa and the surrounding environment information Ifb It may be determined that the pedestrian P7 is present regardless of the priority between them. As described above, when at least one of the two pieces of surrounding environment information indicates the presence of an object, it is possible to further improve the traveling safety of the vehicle 601 by determining that the object is present. .
- the vehicle control unit 603 calculates an average (or median) of detection accuracy of the three sensors of the illumination system 604a and an average (or median) of detection accuracies of the three sensors of the illumination system 604b.
- the surrounding environment information in the overlapping surrounding area Sfl may be specified by comparison.
- the detection accuracy of the camera 643a, the detection accuracy of the LiDAR unit 644a, and the detection accuracy of the millimeter wave radar 645a are 95%, 97% and 90%, respectively, while the detection accuracy of the camera 643b, the detection accuracy of the LiDAR unit 644b, The detection accuracy of the millimeter wave radar 645b is 90%, 92%, and 90%, respectively.
- the average detection accuracy of the three sensors of the illumination system 604a is about 94%.
- the average value of detection accuracy of the three sensors of the illumination system 604b is about 91%.
- the average value of the detection accuracy of the illumination system 604a is larger than the average value of the detection accuracy of the illumination system 604b, so the vehicle control unit 603 adopts the surrounding environment information Ifa as the surrounding environment information in the overlapping surrounding area Sfl. .
- the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfl Is finally identified, so that the recognition accuracy of the surrounding environment of the vehicle 601 can be improved.
- detection accuracy of a sensor is specified by percentage, it may be specified by a plurality of ranks (for example, A rank, B rank, C rank).
- FIG. 48 is a diagram showing a detection area Sfc, a detection area Sfd, and an overlapping peripheral area Sfr in which the two detection areas Sfc and Sfd overlap each other.
- the vehicle control unit 603 receives the merged peripheral environment information Ifc in the detection area Sfc from the peripheral environment information fusion unit of the control unit 640c.
- the vehicle control unit 603 receives the merged surrounding environment information Ifd in the detection area Sfd from the surrounding environment information merging unit of the control unit 640d.
- the detection area Sfc is a detection area obtained by combining the detection areas of the three sensors of the illumination system 604c.
- the detection area Sfd is a detection area obtained by combining detection areas of the three sensors of the illumination system 604d.
- the vehicle control unit 603 After, based on at least one of the received surrounding environment information Ifc and Ifd, the vehicle control unit 603 finally specifies the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfr. In other words, the vehicle control unit 603 specifies surrounding environment information indicating the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfr. Next, the vehicle control unit 603 finally specifies the surrounding environment in the rear area of the vehicle 601. In particular, the vehicle control unit 603 combines the surrounding environment information Ifc and Ifd to generate the merged surrounding environment information Ir.
- the surrounding environment information Ir may include information on an object existing outside the vehicle 601 in the detection area Sr in which the detection areas Sfc and Sfd are combined. As described above, since the peripheral environment of the vehicle 601 in the overlapping peripheral area Sfr can be finally specified, the vehicle system 602 capable of improving the recognition accuracy of the peripheral environment of the vehicle 601 can be provided.
- each of the control units 640a to 640d is based on detection data of three sensors (camera, LiDAR unit, millimeter wave radar) mounted on the illumination system, and the surrounding environment is merged. Generate information.
- the vehicle control unit 603 After receiving the surrounding environment information from each control unit 640a to 640d, the vehicle control unit 603 finally specifies the surrounding environment of the vehicle 601 in the front area and the rear area of the vehicle 601. The vehicle control unit 603 selects one of the steering control signal, the accelerator control signal, and the brake control signal based on the surrounding environment information Ig and Ir finally identified, the traveling state information, the current position information, and / or the map information. After automatically generating at least one, the travel of the vehicle 601 is automatically controlled. As described above, it is possible to finally specify the surrounding environment information of the vehicle 601 by fusing the surrounding environment information generated based on the detection data of each sensor mounted in each lighting system.
- vehicle control unit 603 specifies surrounding environment information in the overlapping area where detection area Sg and detection area Sr overlap each other. You may For example, an average value of a parameter related to the relative positional relationship between the vehicle 601 and the object indicated by the surrounding environment information Ig and a parameter related to the relative positional relationship between the vehicle 601 and the object indicated by the surrounding environment information Ir is adopted. May be In addition, the vehicle control unit 603 compares the information related to the detection accuracy of the plurality of sensors of the illumination systems 604a and 604b with the information related to the detection accuracy of the plurality of sensors of the illumination systems 604c and 604d. The surrounding environment information may be specified.
- FIG. 49 is a block diagram showing a vehicle system 602A.
- the vehicle system 602A is different from the vehicle system 602 shown in FIG. 38 in that control units 631, 632 are provided.
- the control unit 631 is communicably connected to the control unit 640a of the lighting system 604a and the control unit 640b of the lighting system 604b, and is communicably connected to the vehicle control unit 603.
- the control unit 632 is communicably connected to the control unit 640 c of the lighting system 604 c and to the control unit 640 d of the lighting system 604 d, and is communicably connected to the vehicle control unit 603.
- the control units 631 and 632 are configured by, for example, at least one electronic control unit (ECU).
- the electronic control unit may include at least one microcontroller including one or more processors and one or more memories, and other electronic circuits (eg, transistors, etc.).
- the electronic control unit (ECU) may be configured by at least one integrated circuit such as an ASIC or an FPGA.
- the electronic control unit may be configured by a combination of at least one microcontroller and at least one integrated circuit (such as an FPGA).
- the control units 631 and 632 may finally specify the peripheral environment of the vehicle 601 in the overlapping peripheral area instead of the vehicle control unit 603.
- the control unit 631 receives the surrounding environment information Iaf from the surrounding environment information fusing unit 6450a of the control unit 640a (step S621), and the surrounding environment information fusing unit 6450b of the control unit 640b.
- the peripheral environment information Ibf is received from (step S 622).
- the control unit 631 based on at least one of the received surrounding environment information Ifa and Ifb, the control unit 631 finally specifies the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfl.
- the control unit 631 generates the surrounding environment information Ig in the front area of the vehicle 601 (step S623), and transmits the surrounding environment information Ig to the vehicle control unit 603.
- the control unit 632 first receives the surrounding environment information Ifc from the surrounding environment information merging unit of the control unit 640c, and receives the surrounding environment information Ifd from the surrounding environment information merging unit of the control unit 640d. Next, based on at least one of the received surrounding environment information Ifc and Ifd, the control unit 632 finally specifies the surrounding environment of the vehicle 601 in the overlapping surrounding area Sfr. Thereafter, the control unit 632 generates the surrounding environment information Ir in the rear area of the vehicle 601, and transmits the surrounding environment information Ig to the vehicle control unit 603.
- the vehicle control unit 603 receives a steering control signal and an accelerator based on the surrounding environment information Ig and Ir, the traveling state information, the current position information, and / or the map information. After automatically generating at least one of the control signal and the brake control signal, the travel of the vehicle 601 is automatically controlled.
- the control units 631 and 632 are provided, it is possible to cause the control units 631 and 632 to execute a part of the process executed by the vehicle control unit 603. As described above, since the calculation load imposed on the vehicle control unit 603 can be dispersed, the throughput and stability of the vehicle system 602A can be improved.
- a camera, a LiDAR unit, and a millimeter wave radar are mentioned as a plurality of sensors, this embodiment is not limited to this.
- ultrasonic sensors may be mounted on the illumination system.
- the control unit of the illumination system may control the operation of the ultrasonic sensor and may generate the surrounding environment information based on the detection data acquired by the ultrasonic sensor.
- the number of sensors mounted in each lighting system is not limited to three, and at least two of a camera, a LiDAR unit, a millimeter wave radar, and an ultrasonic sensor may be mounted in the lighting system.
- the driving mode of the vehicle has been described as including the fully automatic driving mode, the advanced driving support mode, the driving support mode, and the manual driving mode, but the driving mode of the vehicle is any of these four modes It should not be limited to The classification of the operation mode of the vehicle may be appropriately changed in accordance with the laws or regulations relating to automatic driving in each country. Similarly, the definitions of “completely automatic driving mode”, “advanced driving support mode”, and “driving support mode” described in the description of the present embodiment are merely examples, and the laws or regulations concerning automatic driving in each country or These definitions may be changed as appropriate in accordance with the rules.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Electromagnetism (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Traffic Control Systems (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
車両システムは、自動運転モードで走行可能な車両に設けられており、前記車両の周辺環境を示す検出データを取得するように構成されたセンサと、前記検出データに基づいて、前記車両の周辺環境を示す周辺環境情報を生成するように構成された生成部と、前記車両又は前記車両の周辺環境に関連付けられた所定の情報に基づいて、前記センサの使用頻度を設定するように構成された使用頻度設定部と、を備える。
Description
本開示は、車両用照明システム、車両システム及び車両に関する。特に、本開示は、自動運転モードで走行可能な車両に設けられた車両用照明システム及び車両システムに関する。また、本開示は、車両システムを備えた車両に関する。
現在、自動車の自動運転技術の研究が各国で盛んに行われており、自動運転モードで車両(以下、「車両」は自動車のことを指す。)が公道を走行することができるための法整備が各国で検討されている。ここで、自動運転モードでは、車両システムが車両の走行を自動的に制御する。具体的には、自動運転モードでは、車両システムは、カメラ、レーダ(例えば、レーザレーダやミリ波レーダ)等のセンサから得られる車両の周辺環境を示す情報(周辺環境情報)に基づいてステアリング制御(車両の進行方向の制御)、ブレーキ制御及びアクセル制御(車両の制動、加減速の制御)のうちの少なくとも1つを自動的に行う。一方、以下に述べる手動運転モードでは、従来型の車両の多くがそうであるように、運転者が車両の走行を制御する。具体的には、手動運転モードでは、運転者の操作(ステアリング操作、ブレーキ操作、アクセル操作)に従って車両の走行が制御され、車両システムはステアリング制御、ブレーキ制御及びアクセル制御を自動的に行わない。尚、車両の運転モードとは、一部の車両のみに存在する概念ではなく、自動運転機能を有さない従来型の車両も含めた全ての車両において存在する概念であって、例えば、車両制御方法等に応じて分類される。
このように、将来において、公道上では自動運転モードで走行中の車両(以下、適宜、「自動運転車」という。)と手動運転モードで走行中の車両(以下、適宜、「手動運転車」という。)が混在することが予想される。
自動運転技術の一例として、特許文献1には、先行車に後続車が自動追従走行した自動追従走行システムが開示されている。当該自動追従走行システムでは、先行車と後続車の各々が照明システムを備えており、先行車と後続車との間に他車が割り込むことを防止するための文字情報が先行車の照明システムに表示されると共に、自動追従走行である旨を示す文字情報が後続車の照明システムに表示される。
ところで、自動運転技術の発展において、車両の周辺環境の認知精度を飛躍的に向上させることが課題となっている。本開示では、車両に搭載された複数のセンサ(カメラ、レーザレーダ、ミリ波レーダ等)により取得された検出データを用いることで、車両の周辺環境の認知精度を向上させることを主な目的とする。
本開示の一態様に係る車両システムは、自動運転モードで走行可能な車両に設けられる。
前記車両システムは、
前記車両の周辺環境を示す検出データを取得するように構成されたセンサと、
前記検出データに基づいて、前記車両の周辺環境を示す周辺環境情報を生成するように構成された生成部と、
前記車両又は前記車両の周辺環境に関連付けられた所定の情報に基づいて、前記センサの使用頻度を設定するように構成された使用頻度設定部と、
を備える。
前記車両システムは、
前記車両の周辺環境を示す検出データを取得するように構成されたセンサと、
前記検出データに基づいて、前記車両の周辺環境を示す周辺環境情報を生成するように構成された生成部と、
前記車両又は前記車両の周辺環境に関連付けられた所定の情報に基づいて、前記センサの使用頻度を設定するように構成された使用頻度設定部と、
を備える。
上記構成によれば、車両又は当該車両の周辺環境に関連付けられた所定の情報に基づいてセンサの使用頻度が設定される。このため、例えば、センサの使用頻度を低下させることで、センサ及び/又は生成部(電子制御ユニット)によって消費される消費電力を低減することができると共に、生成部の演算負荷を低減することができる。さらに、センサの使用頻度を上昇させることで、周辺環境情報の精度を上げることができるため、車両の走行制御をさらに高い精度で行うことができる。従って、車両又は車両の周辺環境の状況に応じてセンサの使用頻度を最適化することが可能な車両システムを提供することができる。
また、前記使用頻度設定部は、前記所定の情報に基づいて、前記センサの使用頻度を低下させるように構成されてもよい。
上記構成によれば、車両又は当該車両の周辺環境に関連付けられた所定の情報に基づいてセンサの使用頻度が低下する。このため、センサ及び/又は生成部(電子制御ユニット)によって消費される消費電力を低減することができると共に、生成部の演算負荷を低減することができる。
また、前記センサの使用頻度は、
前記検出データのフレームレート、前記検出データのビットレート、前記センサのモード又は前記周辺環境情報の更新レートであってもよい。
前記検出データのフレームレート、前記検出データのビットレート、前記センサのモード又は前記周辺環境情報の更新レートであってもよい。
上記構成によれば、車両又は当該車両の周辺環境に関連付けられた所定の情報に基づいて、検出データのフレームレート、検出データのビットレート、センサのモード(アクティブモード又はスリープモード)又は周辺環境情報の更新レートが設定される。このように、車両又は車両の周辺環境の状況に応じて、検出データのフレームレート、検出データのビットレート、センサのモード又は周辺環境情報の更新レートを最適化することが可能な車両システムを提供することができる。
また、前記所定の情報は、前記周辺環境の明るさを示す情報及び前記車両の現在位置の天候情報のうちの少なくとも一つであってもよい。
上記構成によれば、車両の周辺環境の明るさを示す情報及び車両の現在位置の天候情報のうちの少なくとも一つに基づいて、センサの使用頻度が設定される。このように、車両の周辺環境の明るさ及び車両の現在位置の天候のうちの少なくとも一つに応じてセンサの使用頻度を最適化することが可能な車両システムを提供することができる。
また、前記所定の情報は、前記車両の速度を示す情報であってもよい。
上記構成によれば、車両の速度を示す情報に基づいて、センサの使用頻度が設定される。このように、車両の速度に応じてセンサの使用頻度を最適化することが可能な車両システムを提供することができる。
また、前記所定の情報は、前記車両が高速道路を現在走行していることを示す情報であってもよい。
上記構成によれば、車両が高速道路を現在走行していることを示す情報に基づいて、センサの使用頻度が設定される。このように、車両が現在走行している道路に応じてセンサの使用頻度を最適化することが可能な車両システムを提供することができる。
また、前記所定の情報は、前記車両の進行方向を示す情報であってもよい。
上記構成によれば、車両の進行方向を示す情報に基づいて、センサの使用頻度が設定される。このように、車両の進行方向に応じてセンサの使用頻度を最適化することが可能な車両システムを提供することができる。
また、前記センサは、複数のセンサを有してもよい。
前記車両が前進している場合、前記使用頻度設定部は、前記車両の後側に配置されたセンサの使用頻度を低下させてもよい。
前記車両が後進している場合、前記使用頻度設定部は、前記車両の前側に配置されたセンサの使用頻度を低下させてもよい。
前記車両が右折する場合、前記使用頻度設定部は、前記車両の左側に配置されたセンサの使用頻度を低下させてもよい。
前記車両が前進している場合、前記使用頻度設定部は、前記車両の後側に配置されたセンサの使用頻度を低下させてもよい。
前記車両が後進している場合、前記使用頻度設定部は、前記車両の前側に配置されたセンサの使用頻度を低下させてもよい。
前記車両が右折する場合、前記使用頻度設定部は、前記車両の左側に配置されたセンサの使用頻度を低下させてもよい。
上記構成によれば、車両が前進している場合に車両の後側に配置されたセンサの使用頻度が低下する。このように、例えば、車両の後側に配置されたセンサの使用頻度を低下させることで、当該センサ及び/又は生成部(電子制御ユニット)によって消費される消費電力を低減することができると共に、生成部の演算負荷を低減することができる。
また、車両が後進している場合に車両の前側に配置されたセンサの使用頻度が低下する。このように、例えば、車両の前側に配置されたセンサの使用頻度を低下させることで、当該センサ及び/又は生成部(電子制御ユニット)によって消費される消費電力を低減することができると共に、生成部の演算負荷を低減することができる。
さらに、車両が右折する場合に車両の左側に配置されたセンサの使用頻度が低下する。このように、例えば、車両の左側に配置されたセンサの使用頻度を低下させることで、当該センサ及び/又は生成部(電子制御ユニット)によって消費される消費電力を低減することができると共に、生成部の演算負荷を低減することができる。
前記車両システムを備え、自動運転モードで走行可能な車両が提供される。
車両又は車両の周辺環境の状況に応じてセンサの使用頻度を最適化することが可能な車両を提供することができる。
本開示の一態様に係る車両システムは、自動運転モードで走行可能な車両に設けられる。
当該車両システムは、
第1フレームレートで前記車両の周辺環境を示す第1検出データを取得するように構成された第1センサと、
第2フレームレートで前記車両の周辺環境を示す第2検出データを取得するように構成された第2センサと、
前記第1検出データに基づいて、前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1生成部と、
前記第2検出データに基づいて、前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2生成部と、を備える。
前記第1検出データの各フレームの取得期間と前記第2検出データの各フレームの取得期間は、互いに重複する。
当該車両システムは、
第1フレームレートで前記車両の周辺環境を示す第1検出データを取得するように構成された第1センサと、
第2フレームレートで前記車両の周辺環境を示す第2検出データを取得するように構成された第2センサと、
前記第1検出データに基づいて、前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1生成部と、
前記第2検出データに基づいて、前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2生成部と、を備える。
前記第1検出データの各フレームの取得期間と前記第2検出データの各フレームの取得期間は、互いに重複する。
上記構成によれば、第1検出データの各フレームの取得期間と第2検出データの各フレームの取得期間が互いに重複する。このため、第1検出データの各フレームに基づいて生成される第1周辺環境情報の時間帯は、第2検出データの各フレームに基づいて生成される第2周辺環境情報の時間帯と略一致する。このように、互いに時間帯が略一致する第1周辺環境情報と第2周辺環境情報の両方を用いることで、車両の周辺環境の認知精度を向上させることができる。
また、前記第1センサは、カメラであってもよい。
前記第2センサは、レーザーレーダであってもよい。
前記第2センサは、レーザーレーダであってもよい。
上記構成によれば、カメラの第1検出データに基づいて生成される第1周辺環境情報と、レーザーレーダの第2検出データに基づいて生成される第2周辺環境情報の両方を用いることで、車両の周辺環境の認知精度を向上させることができる。
また、車両システムは、
前記車両の外部に向けて光を出射するように構成された照明ユニットと、
第3レートで前記照明ユニットを点灯制御するように構成された照明制御部と、
をさらに備えてもよい。
前記車両の外部に向けて光を出射するように構成された照明ユニットと、
第3レートで前記照明ユニットを点灯制御するように構成された照明制御部と、
をさらに備えてもよい。
また、前記第3レートは、前記第1フレームレートと同じであってもよい。前記照明ユニットは、前記第1検出データの各フレームの取得期間において点灯してもよい。
上記構成によれば、照明ユニットは、第1検出データ(即ち、画像データ)の各フレームの取得期間において点灯する。このように、照明ユニットが点灯している間に、車両の周辺環境を示す画像データがカメラによって取得されるので、車両の周辺環境が暗い(例えば、夜間)場合において、画像データにブラックアウトが生じることを好適に防止することが可能となる。
また、前記第3レートは、前記第1フレームレートの半分であってもよい。
前記照明ユニットは、前記第1検出データの第1フレームの取得期間において消灯すると共に、前記第1検出データの第2フレームの取得期間において点灯してもよい。
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである。
前記照明ユニットは、前記第1検出データの第1フレームの取得期間において消灯すると共に、前記第1検出データの第2フレームの取得期間において点灯してもよい。
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである。
上記構成によれば、照明ユニットは、第1検出データ(即ち、画像データ)の第1フレームの取得期間において消灯すると共に、次フレームである第1検出データの第2フレームの取得期間において点灯する。このように、カメラは、照明ユニットが消灯している間に、車両の周辺環境を示す画像データを取得すると共に、照明ユニットが点灯している間に、当該画像データを取得する。つまり、照明ユニットが消灯しているときに撮像された画像データ(第1画像データ)と照明ユニットが点灯しているときに撮像された画像データ(第2画像データ)を比較することで、車両の周辺に存在する対象物が自ら発光しているか又は光を反射しているかを特定することができる。このように、車両の周辺に存在する対象物の属性をより正確に特定することができる。さらに、第1画像データと第2画像データを比較することで、第2画像データに生じる迷光を特定することができる。
また、前記第1検出データの各フレームの取得開始時刻は、前記第2検出データの各フレームの取得開始時刻と一致してもよい。
上記構成によれば、第1検出データの各フレームの取得開始時刻が第2検出データの各フレームの取得開始時刻と一致するので、第1検出データの各フレームに基づいて生成される第1周辺環境情報の時間帯は、第2検出データの各フレームに基づいて生成される第2周辺環境情報の時間帯と略一致する。このように、互いに時間帯が略一致する第1周辺環境情報と第2周辺環境情報の両方を用いることで、車両の周辺環境の認知精度を向上させることができる。
前記車両システムを備え、自動運転モードで走行可能な車両が提供される。
上記によれば、車両の周辺環境の認知精度を向上させることが可能な車両を提供することができる。
本開示の一態様に係る車両システムは、自動運転モードで走行可能な車両に設けられ、
各々が前記車両の周辺環境を示す検出データを取得するように構成された複数のセンサと、
前記複数のセンサの検出精度を決定するように構成された検出精度決定部と、
を備える。
各々が前記車両の周辺環境を示す検出データを取得するように構成された複数のセンサと、
前記複数のセンサの検出精度を決定するように構成された検出精度決定部と、
を備える。
上記構成によれば、複数のセンサの検出精度が決定される。このため、例えば、センサの検出精度が所定の期間に亘って低い場合に、車両システムは、センサに異常があると判断することができる。また、車両システムは、複数のセンサの検出領域が互いに重複する重複領域において、検出精度が高いセンサの検出データ又は周辺環境情報を採用することができる。このように、車両の周辺環境の認知精度を向上させることが可能な車両システムを提供することができる。
また、車両システムは、前記複数の検出データと、前記複数のセンサの検出精度に基づいて、前記車両の周辺環境を特定するように構成された周辺環境情報特定部をさらに備えてもよい。
上記構成によれば、複数のセンサの検出精度に基づいて、車両の周辺環境が特定される。このように、複数のセンサの検出精度を考慮して車両の周辺環境が特定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記周辺環境情報特定部は、
前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成し、
前記複数のセンサの検出精度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される周辺環境情報を決定するように構成されてもよい。
前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成し、
前記複数のセンサの検出精度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される周辺環境情報を決定するように構成されてもよい。
上記構成によれば、複数のセンサの検出精度に基づいて、重複領域において採用される周辺環境情報が決定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記周辺環境情報特定部は、
前記複数のセンサの検出精度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される検出データを決定するように構成されてもよい。
前記複数のセンサの検出精度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される検出データを決定するように構成されてもよい。
上記構成によれば、複数のセンサの検出精度に基づいて、重複領域において採用される検出データが決定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記複数のセンサのうち第1のセンサの検出領域は、複数の部分領域に区分されてもよい。
前記検出精度決定部は、前記複数の部分領域の各々における前記第1のセンサの検出精度を決定するように構成されてもよい。
前記検出精度決定部は、前記複数の部分領域の各々における前記第1のセンサの検出精度を決定するように構成されてもよい。
上記構成によれば、複数の部分領域の各々における第1のセンサの検出精度が決定されるため、部分領域に応じて第1のセンサの検出精度をより詳細に決定することができる。このように、車両の周辺環境の認知精度をより向上させることが可能となる。
また、前記検出精度決定部は、前記車両の現在位置を示す情報及び地図情報に基づいて、前記複数のセンサの検出精度を決定するように構成されてもよい。
上記構成によれば、車両の現在位置を示す情報及び地図情報に基づいて、複数のセンサの検出精度が決定される。このように、地図情報を利用することで比較的高い精度で複数のセンサの検出精度を決定することが可能となる。
また、車両システムは、前記車両の周辺に存在する交通インフラ設備から前記交通インフラ設備に関連したインフラ情報を受信するように構成された受信部をさらに備えてもよい。
前記検出精度決定部は、前記車両の現在位置を示す情報及び前記インフラ情報に基づいて、前記複数のセンサの検出精度を決定するように構成されてもよい。
前記検出精度決定部は、前記車両の現在位置を示す情報及び前記インフラ情報に基づいて、前記複数のセンサの検出精度を決定するように構成されてもよい。
上記構成によれば、車両の現在位置を示す情報及び交通インフラ設備から受信したインフラ情報に基づいて、複数のセンサの検出精度が決定される。このように、交通インフラ設備からインフラ情報を受信することで、比較的高い精度で複数のセンサの検出精度を決定することが可能となる。
また、車両システムは、前記複数の検出データと、前記複数のセンサの検出精度に基づいて、前記車両の周辺環境を特定するように構成された周辺環境情報特定部をさらに備えてもよい。前記周辺環境情報特定部は、前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成するように構成されてもよい。
前記検出精度決定部は、前記生成された複数の周辺環境情報を比較することで、前記複数のセンサの検出精度を決定するように構成されてもよい。
前記検出精度決定部は、前記生成された複数の周辺環境情報を比較することで、前記複数のセンサの検出精度を決定するように構成されてもよい。
上記構成によれば、複数の周辺環境情報を比較することで、複数のセンサの検出精度が決定される。このように、地図情報等の外部情報を利用せずに、比較的簡単な手法により複数のセンサの検出精度を決定することが可能となる。
前記車両システムを備えた、自動運転モードで走行可能な車両が提供されてもよい。
上記によれば、車両の周辺環境の認知精度を向上させることが可能な車両を提供することができる。
本開示の一態様に係る車両システムは、自動運転モードで走行可能な車両に設けられる。
前記車両システムは、
各々が前記車両の周辺環境を示す検出データを取得するように構成された複数のセンサと、
所定の情報に基づいて、前記複数のセンサ間における使用優先度を決定するように構成された使用優先度決定部と、
前記複数の検出データと、前記使用優先度に基づいて、前記車両の周辺環境を特定するように構成された周辺環境特定部と、を備える。
前記車両システムは、
各々が前記車両の周辺環境を示す検出データを取得するように構成された複数のセンサと、
所定の情報に基づいて、前記複数のセンサ間における使用優先度を決定するように構成された使用優先度決定部と、
前記複数の検出データと、前記使用優先度に基づいて、前記車両の周辺環境を特定するように構成された周辺環境特定部と、を備える。
上記構成によれば、所定の情報に基づいて、複数のセンサ間における使用優先度が決定された上で、複数の検出データと使用優先度に基づいて車両の周辺環境が特定される。このように、複数のセンサ間の使用優先度を考慮して車両の周辺環境が特定されるので、車両の周辺環境の認知精度を向上させることが可能な車両システムを提供することができる。
また、前記周辺環境特定部は、
前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成し、
前記複数のセンサの検出領域が互いに重複する重複領域において、前記複数の周辺環境情報を比較し、
前記複数の周辺環境情報が互いに一致しない場合に、前記使用優先度に基づいて、前記重複領域において採用される周辺環境情報を決定する、ように構成されてもよい。
前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成し、
前記複数のセンサの検出領域が互いに重複する重複領域において、前記複数の周辺環境情報を比較し、
前記複数の周辺環境情報が互いに一致しない場合に、前記使用優先度に基づいて、前記重複領域において採用される周辺環境情報を決定する、ように構成されてもよい。
上記構成によれば、複数の周辺環境情報が互いに一致しない場合に、複数のセンサ間の使用優先度に基づいて、重複領域において採用される周辺環境情報が決定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記周辺環境特定部は、
前記使用優先度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される検出データを決定するように構成されてもよい。
前記使用優先度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される検出データを決定するように構成されてもよい。
上記構成によれば、複数のセンサ間の使用優先度に基づいて重複領域において採用される検出データが決定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記所定の情報は、前記周辺環境の明るさを示す情報であってもよい。
上記構成によれば、車両の周辺環境の明るさを示す情報に基づいて、複数のセンサ間における使用優先度が決定された上で、複数の検出データと使用優先度に基づいて車両の周辺環境が特定される。このように、車両の周辺環境の明るさに応じて使用優先度が最適化されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記所定の情報は、前記周辺環境の明るさを示す情報及び天候情報であってもよい。
上記構成によれば、車両の周辺環境の明るさを示す情報及び天候情報に基づいて、複数のセンサ間における使用優先度が決定された上で、複数の検出データと使用優先度に基づいて車両の周辺環境が特定される。このように、車両の周辺環境の明るさ及び天候に応じて使用優先度が最適化されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記所定の情報は、前記複数のセンサの検出精度に関する情報であってもよい。
上記構成によれば、複数センサの検出精度に基づいて、複数のセンサ間における使用優先度が決定された上で、複数の検出データと使用優先度に基づいて車両の周辺環境が特定される。このように、複数センサの検出精度に応じて使用優先度が決定されるので、車両の周辺環境の認知精度を向上させることができる。
前記車両システムを備え、自動運転モードで走行可能な車両が提供される。
上記によれば、車両の周辺環境の認知精度を向上させることが可能な車両を提供することができる。
本開示の一態様に係る車両システムは、自動運転モードで走行可能な車両に設けられる。
当該車両システムは、
第1フレームレートで前記車両の周辺環境を示す第1検出データを取得するように構成された第1センサと、
第2フレームレートで前記車両の周辺環境を示す第2検出データを取得するように構成された第2センサと、
前記第1検出データに基づいて、前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1生成部と、
前記第2検出データに基づいて、前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2生成部と、を備える。
前記第1検出データの各フレームの取得開始時刻と前記第2検出データの各フレームの取得開始時刻が互いに異なる。
当該車両システムは、
第1フレームレートで前記車両の周辺環境を示す第1検出データを取得するように構成された第1センサと、
第2フレームレートで前記車両の周辺環境を示す第2検出データを取得するように構成された第2センサと、
前記第1検出データに基づいて、前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1生成部と、
前記第2検出データに基づいて、前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2生成部と、を備える。
前記第1検出データの各フレームの取得開始時刻と前記第2検出データの各フレームの取得開始時刻が互いに異なる。
上記構成によれば、第1検出データの各フレームの取得開始時刻と第2検出データの各フレームの取得開始時刻が互いに異なる。すなわち、第1検出データを取得できない時間帯に第2検出データを取得することができる。このため、第1検出データの各フレームに基づいて生成される第1周辺環境情報の時間帯は、第2検出データの各フレームに基づいて生成される第2周辺環境情報の時間帯とは異なる。このように、例えば、第1センサの第1フレームレートと第2センサの第2フレームレートが低い場合であっても、第1周辺環境情報と第2周辺環境情報の両方を用いることで、異なる時間帯における車両の周辺環境を特定する回数を増加させることができる(換言すれば、周辺環境情報を時間的に高密度に取得することができる)。従って、車両の周辺環境の認知精度を向上させることが可能な車両システムを提供することができる。
また、前記第1センサは、カメラであってもよい。
前記第2センサは、レーザーレーダであってもよい。
前記第2センサは、レーザーレーダであってもよい。
上記構成によれば、カメラの第1フレームレートとレーザーレーダの第2フレームレートが低い場合であっても、周辺環境情報を時間的に高密度に取得することが可能となる。このように、車両の周辺環境の認知精度を向上させることが可能な車両システムを提供することができる。
また、車両システムは、
前記車両の外部に向けて光を出射するように構成された照明ユニットと、
第3レートで前記照明ユニットを点灯制御するように構成された照明制御部と、
をさらに備えてもよい。
前記車両の外部に向けて光を出射するように構成された照明ユニットと、
第3レートで前記照明ユニットを点灯制御するように構成された照明制御部と、
をさらに備えてもよい。
また、前記第3レートは、前記第1フレームレートと同じであってもよい。
前記照明ユニットは、前記第1検出データの各フレームの取得期間において点灯すると共に、前記第2検出データの各フレームの取得期間において消灯してもよい。
前記照明ユニットは、前記第1検出データの各フレームの取得期間において点灯すると共に、前記第2検出データの各フレームの取得期間において消灯してもよい。
上記構成によれば、照明ユニットは、第1検出データ(即ち、画像データ)の各フレームの取得期間において点灯すると共に、第2検出データの各フレームの取得期間において消灯する。このように、照明ユニットが点灯している間に、車両の周辺環境を示す画像データがカメラによって取得されるので、車両の周辺環境が暗い(例えば、夜間)場合において、画像データにブラックアウトが生じることを好適に防止することが可能となる。一方、照明ユニットが消灯している間に、車両の周辺環境を示す第2検出データがレーザーレーダによって取得されるので、照明ユニットから出射された光の一部がレーザーレーダに入射することで、第2検出データに悪影響を及ぼすことを好適に防止することが可能となる。
また、前記第3レートは、前記第1フレームレートの半分であってもよい。
前記照明ユニットは、前記第1検出データの第1フレームの取得期間において点灯すると共に、前記第1検出データの第2フレームの取得期間において消灯してもよい。
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである。
前記照明ユニットは、前記第1検出データの第1フレームの取得期間において点灯すると共に、前記第1検出データの第2フレームの取得期間において消灯してもよい。
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである。
上記構成によれば、照明ユニットは、第1検出データ(即ち、画像データ)の第1フレームの取得期間において点灯すると共に、次フレームである第1検出データの第2フレームの取得期間において消灯する。このように、カメラは、照明ユニットが点灯している間に、車両の周辺環境を示す画像データを取得すると共に、照明ユニットが消灯している間に、当該画像データを取得する。つまり、照明ユニットが消灯しているときに撮像された画像データ(第1画像データ)と照明ユニットが点灯しているときに撮像された画像データ(第2画像データ)を比較することで、車両の周辺に存在する対象物が自ら発光しているか又は光を反射しているかを特定することができる。このように、車両の周辺に存在する対象物の属性をより正確に特定することができる。さらに、第1画像データと第2画像データを比較することで、第2画像データに生じる迷光を特定することができる。
また、前記第2センサは、少なくとも前記第1検出データの第1フレームの取得終了時刻と前記第1検出データの第2フレームの取得開始時刻の間の第1期間において、前記第2検出データを取得するように構成されてもよい。
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである。
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである。
上記構成によれば、第1検出データの第1フレームの取得終了時刻と次フレームである第1検出データの第2フレームの取得開始時刻の間の第1期間において第2検出データが取得される。このように、第1センサの第1フレームレートと第2センサの第2フレームレートが低い場合であっても、周辺環境情報を時間的に高密度に取得することができる。
また、少なくとも前記第1期間において取得される前記第2検出データの第1フレームの取得開始時刻と前記第1検出データの第1フレームの取得開始時刻との間の間隔は、前記第1検出データの第1フレームの取得期間の半分よりも大きく、且つ前記第1検出データの取得周期よりも小さくてもよい。
上記構成によれば、第2検出データの第1フレームの取得開始時刻と第1検出データの第1フレームの取得開始時刻との間の間隔は、第1検出データの第1フレームの取得期間の半分よりも大きく、且つ第1検出データの取得周期よりも小さい。このように、第1センサの第1フレームレートと第2センサの第2フレームレートが低い場合であっても、周辺環境情報を時間的に高密度に取得することができる。
前記車両システムを備え、自動運転モードで走行可能な車両が提供される。
上記によれば、車両の周辺環境の認知精度を向上させることが可能な車両を提供することができる。
本開示の一態様に係る車両システムは、自動運転モードで走行可能な車両に設けられ、
各々が前記車両の第1領域に配置され、前記車両の周辺環境を示す第1検出データを取得するように構成された複数の第1センサと、
前記複数の第1検出データに基づいて、前記車両の第1周辺領域における前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1制御部と、を備えた第1センシングシステムと、
各々が前記第1領域とは異なる前記車両の第2領域に配置され、前記車両の周辺環境を示す第2検出データを取得するように構成された複数の第2センサと、
前記複数の第2検出データに基づいて、前記車両の第2周辺領域における前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2制御部と、を備えた第2センシングシステムと、
前記第1周辺環境情報及び前記第2周辺環境情報のうちの少なくとも一方に基づいて、前記第1周辺領域と前記第2周辺領域とが互いに重複する重複周辺領域における前記車両の周辺環境を最終的に特定するように構成された第3制御部と、を備える。
各々が前記車両の第1領域に配置され、前記車両の周辺環境を示す第1検出データを取得するように構成された複数の第1センサと、
前記複数の第1検出データに基づいて、前記車両の第1周辺領域における前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1制御部と、を備えた第1センシングシステムと、
各々が前記第1領域とは異なる前記車両の第2領域に配置され、前記車両の周辺環境を示す第2検出データを取得するように構成された複数の第2センサと、
前記複数の第2検出データに基づいて、前記車両の第2周辺領域における前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2制御部と、を備えた第2センシングシステムと、
前記第1周辺環境情報及び前記第2周辺環境情報のうちの少なくとも一方に基づいて、前記第1周辺領域と前記第2周辺領域とが互いに重複する重複周辺領域における前記車両の周辺環境を最終的に特定するように構成された第3制御部と、を備える。
上記構成によれば、第1周辺環境情報及び第2周辺環境情報のうちの少なくとも一方に基づいて、第1周辺領域と第2周辺領域とが互いに重複する重複周辺領域における車両の周辺環境が最終的に特定される。このように、重複周辺領域における車両の周辺環境を最終的に特定することができるので、車両の周辺環境の認知精度を向上させることが可能な車両システムを提供することができる。
また、前記第3制御部は、
前記車両と前記重複周辺領域との間の相対的位置関係と、前記第1周辺環境情報及び前記第2周辺環境情報のうちの少なくとも一方とに基づいて、前記重複周辺領域における前記車両の周辺環境を最終的に特定するように構成されてもよい。
前記車両と前記重複周辺領域との間の相対的位置関係と、前記第1周辺環境情報及び前記第2周辺環境情報のうちの少なくとも一方とに基づいて、前記重複周辺領域における前記車両の周辺環境を最終的に特定するように構成されてもよい。
上記構成によれば、車両と重複周辺領域との間の相対的位置関係と、第1周辺環境情報及び第2周辺環境情報のうちの少なくとも一方とに基づいて、重複周辺領域における車両の周辺環境が最終的に特定される。このように、車両と重複周辺領域との間の相対的位置関係を考慮した上で、重複周辺領域における車両の周辺環境が最終的に特定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記第3制御部は、
前記第1周辺環境情報に基づいて、前記重複周辺領域のうちの第1部分領域における前記車両の周辺環境を最終的に特定し、
前記第2周辺環境情報に基づいて、前記重複周辺領域のうちの第2部分領域における前記車両の周辺環境を最終的に特定する、ように構成されてもよい。
前記第1部分領域と前記第1領域との間の距離は、前記第1部分領域と前記第2領域との間の距離よりも小さい。
前記第2部分領域と前記第2領域との間の距離は、前記第2部分領域と前記第1領域との間の距離よりも小さい。
前記第1周辺環境情報に基づいて、前記重複周辺領域のうちの第1部分領域における前記車両の周辺環境を最終的に特定し、
前記第2周辺環境情報に基づいて、前記重複周辺領域のうちの第2部分領域における前記車両の周辺環境を最終的に特定する、ように構成されてもよい。
前記第1部分領域と前記第1領域との間の距離は、前記第1部分領域と前記第2領域との間の距離よりも小さい。
前記第2部分領域と前記第2領域との間の距離は、前記第2部分領域と前記第1領域との間の距離よりも小さい。
上記構成によれば、複数の第1センサが配置される第1領域の側に位置する第1部分領域では、第1周辺環境情報に基づいて、車両の周辺環境が最終的に特定される。一方、複数の第2センサが配置される第2領域の側に位置する第2部分領域では、第2周辺環境情報に基づいて、車両の周辺環境が最終的に特定される。このように、重複周辺領域と第1,2領域との間の位置関係を考慮した上で、重複周辺領域における車両の周辺環境が最終的に特定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記第1周辺環境情報によって示される第1パラメータの第1の値が前記第2周辺環境情報によって示される前記第1パラメータの第2の値と異なる場合に、
前記第3制御部は、前記第1の値と前記第2の値との平均値を前記第1パラメータの値として最終的に特定するように構成されてもよい。
前記第1パラメータは、前記重複周辺領域に存在する対象物と前記車両との間の相対的位置関係に関連するパラメータであってもよい。
前記第3制御部は、前記第1の値と前記第2の値との平均値を前記第1パラメータの値として最終的に特定するように構成されてもよい。
前記第1パラメータは、前記重複周辺領域に存在する対象物と前記車両との間の相対的位置関係に関連するパラメータであってもよい。
上記構成によれば、対象物と車両との間の相対的位置関係に関連する第1パラメータ(例えば、位置、距離、方向)の第1の値と第2の値との平均値が当該第1パラメータの値として最終的に特定される。このように、第1パラメータの平均値を採用することで重複周辺領域における車両の周辺環境が最終的に特定されるので、車両の周辺環境の認知精度を向上させることができる。
また、前記第3制御部は、
前記第1周辺環境情報及び前記第2周辺環境情報のうちの一方と、前記複数の第1センサの検出精度に関連する情報と、前記複数の第2センサの検出精度に関連する情報とに基づいて、前記重複周辺領域における前記車両の周辺環境を最終的に特定するように構成されてもよい。
前記第1周辺環境情報及び前記第2周辺環境情報のうちの一方と、前記複数の第1センサの検出精度に関連する情報と、前記複数の第2センサの検出精度に関連する情報とに基づいて、前記重複周辺領域における前記車両の周辺環境を最終的に特定するように構成されてもよい。
上記構成によれば、複数の第1センサの検出精度に関連する情報と、複数の第2センサの検出精度に関連する情報を考慮した上で、重複周辺領域における車両の周辺環境が最終的に特定されるので、車両の周辺環境の認知精度を向上させることができる。
前記車両システムを備えた、自動運転モードで走行可能な車両が提供されてもよい。
上記によれば、車両の周辺環境の認知精度を向上させることが可能な車両を提供することができる。
(第1実施形態)
以下、本開示の第1実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
以下、本開示の第1実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」について適宜言及する。これらの方向は、図1に示す車両1について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。
最初に、図1を参照して本実施形態に係る車両1について説明する。図1は、車両システム2を備える車両1の上面図を示す模式図である。図1に示すように、車両1は、自動運転モードで走行可能な車両(自動車)であって、車両システム2を備える。車両システム2は、車両制御部3と、左前照明システム4a(以下、単に「照明システム4a」という。)と、右前照明システム4b(以下、単に「照明システム4b」という。)と、左後照明システム4c(以下、単に「照明システム4c」という。)と、右後照明システム4d(以下、単に「照明システム4d」という。)を少なくとも備える。
照明システム4aは、車両1の左前側に設けられる。特に、照明システム4aは、車両1の左前側に設置されたハウジング24aと、ハウジング24aに取り付けられた透光カバー22aとを備える。照明システム4bは、車両1の右前側に設けられる。特に、照明システム4bは、車両1の右前側に設置されたハウジング24bと、ハウジング24bに取り付けられた透光カバー22bとを備える。照明システム4cは、車両1の左後側に設けられる。特に、照明システム4cは、車両1の左後側に設置されたハウジング24cと、ハウジング24cに取り付けられた透光カバー22cとを備える。照明システム4dは、車両1の右後側に設けられる。特に、照明システム4dは、車両1の右後側に設置されたハウジング24dと、ハウジング24dに取り付けられた透光カバー22dとを備える。
次に、図2を参照することで、図1に示す車両システム2を具体的に説明する。図2は、車両システム2を示すブロック図である。図2に示すように、車両システム2は、車両制御部3と、照明システム4a~4dと、センサ5と、HMI(Human Machine Interface)8と、GPS(Global Positioning System)9と、無線通信部10と、記憶装置11とを備える。さらに、車両システム2は、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備える。また、車両システム2は、電力を供給するように構成されたバッテリー(図示せず)を備える。
車両制御部3は、車両1の走行を制御するように構成されている。車両制御部3は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及び/又はTPU(Tensor Processing Unit)である。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。
また、電子制御ユニット(ECU)は、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明システム4aは、制御部40aと、照明ユニット42aと、カメラ43aと、LiDAR(Light Detection and Ranging)ユニット44a(レーザーレーダの一例)と、ミリ波レーダ45aとを更に備える。制御部40aと、照明ユニット42aと、カメラ43aと、LiDARユニット44aと、ミリ波レーダ45aは、図1に示すように、ハウジング24aと透光カバー22aによって形成される空間Sa内(灯室内)に配置される。尚、制御部40aは、空間Sa以外の車両1の所定の場所に配置されてもよい。例えば、制御部40aは、車両制御部3と一体的に構成されてもよい。
制御部40aは、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含んでもよい。プロセッサは、例えば、CPU、MPU、GPU及び/又はTPUである。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROMと、RAMを含む。ROMには、車両1の周辺環境を特定するための周辺環境特定プログラムが記憶されてもよい。例えば、周辺環境特定プログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、周辺環境特定プログラム、カメラ43aに取得された画像データ、LiDARユニット44aによって取得された3次元マッピングデータ(点群データ)及び/又はミリ波レーダ45aによって取得された検出データ等が一時的に記憶されてもよい。プロセッサは、ROMに記憶された周辺環境特定プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、電子制御ユニット(ECU)は、ASICやFPGA等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明ユニット42aは、車両1の外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット42aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット42aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両1の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット42aは、運転者用の配光パターン(例えば、ロービーム用配光パターンやハイビーム用配光パターン)を車両1の前方に形成するように構成されている。このように、照明ユニット42aは、左側ヘッドランプユニットとして機能する。一方、車両1の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット42aは、カメラ用の配光パターンを車両1の前方に形成するように構成されてもよい。
制御部40aは、照明ユニット42aに設けられた複数の発光素子の各々に電気信号(例えば、PWM(Pulse Width Modulation)信号)を個別に供給するように構成されてもよい。このように、制御部40aは、電気信号が供給される発光素子を個別に選択することができると共に、発光素子毎に電気信号のDuty比を調整することができる。つまり、制御部40aは、マトリックス状に配列された複数の発光素子のうち、点灯又は消灯すべき発光素子を選択することができると共に、点灯している発光素子の輝度を決定することができる。このため、制御部40aは、照明ユニット42aから前方に向けて出射される配光パターンの形状及び明るさを変更することができる。
カメラ43aは、車両1の周辺環境を検出するように構成されている。特に、カメラ43aは、所定のフレームレートで、車両1の周辺環境を示す画像データを取得した上で、当該画像データを制御部40aに送信するように構成されている。制御部40aは、送信された画像データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両1の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両1の外部に存在する対象物の属性に関する情報と、車両1に対する対象物の位置に関する情報とを含んでもよい。カメラ43aは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子によって構成される。カメラ43aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ43aがステレオカメラの場合、制御部40aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両1と車両1の外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。また、本実施形態では、1つのカメラ43aが照明システム4aに設けられているが、2以上のカメラ43aが照明システム4aに設けられてもよい。
LiDARユニット44a(レーザーレーダの一例)は、車両1の周辺環境を検出するように構成されている。特に、LiDARユニット44aは、所定のフレームレートで、車両1の周辺環境を示す3Dマッピングデータ(点群データ)を取得した上で、当該3Dマッピングデータを制御部40aに送信するように構成されている。制御部40aは、送信された3Dマッピングデータに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両1の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両1の外部に存在する対象物の属性に関する情報と、車両1に対する対象物の位置に関する情報とを含んでもよい。
より具体的には、LiDARユニット44aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得した上で、飛行時間ΔT1に関する情報に基づいて、各出射角度(水平角度θ、垂直角度φ)におけるLiDARユニット44a(車両1)と車両1の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT1は、例えば、以下のように算出することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット44aは、車両1の周辺環境を示す3Dマッピングデータを取得することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット44aは、車両1の周辺環境を示す3Dマッピングデータを取得することができる。
また、LiDARユニット44aは、例えば、レーザ光を出射するように構成されたレーザ光源と、レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器と、レンズ等の光学系と、物体によって反射されたレーザ光を受光するように構成された受光部とを備える。レーザ光源から出射されるレーザ光の中心波長は特に限定されない。例えば、レーザ光は、中心波長が900nm付近である非可視光であってもよい。光偏向器は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーであってもよい。受光部は、例えば、フォトダイオードである。尚、LIDARユニット44aは、光偏向器によってレーザ光を走査せずに、3Dマッピングデータを取得してもよい。例えば、LiDARユニット44aは、フェイズドアレイ方式又はフラッシュ方式で3Dマッピングデータを取得してもよい。また、本実施形態では、1つのLiDARユニット44aが照明システム4aに設けられているが、2以上のLiDARユニット44aが照明システム4aに設けられてもよい。例えば、2つのLiDARユニット44aが照明システム4aに設けられている場合、一方のLiDARユニット44aが車両1の前方領域における周辺環境を検出するように構成されると共に、他方のLiDARユニット44aが車両1の側方領域における周辺環境を検出するように構成されてもよい。
ミリ波レーダ45aは、車両1の周辺環境を検出するように構成されている。特に、ミリ波レーダ45aは、所定のフレームレートで、車両1の周辺環境を示す検出データを取得した上で、当該検出データを制御部40aに送信するように構成されている。制御部40aは、送信された検出データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両1の外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両1の外部に存在する対象物の属性に関する情報と、車両1に対する対象物の位置に関する情報と、車両1に対する対象物の速度に関する情報を含んでもよい。
例えば、ミリ波レーダ45aは、パルス変調方式、FM-CW(Frequency Moduleted-Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ45a(車両1)と車両1の外部に存在する物体との間の距離Dを取得することができる。パルス変調方式を用いる場合、ミリ波レーダ45aは、ミリ波の各出射角度におけるミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、各出射角度におけるミリ波レーダ45a(車両1)と車両1の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT2は、例えば、以下のように算出することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ45aは、ミリ波レーダ45aから出射されたミリ波の周波数f0とミリ波レーダ45aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ45a(車両1)に対する車両1の外部に存在する物体の相対速度Vに関する情報を取得することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ45aは、ミリ波レーダ45aから出射されたミリ波の周波数f0とミリ波レーダ45aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ45a(車両1)に対する車両1の外部に存在する物体の相対速度Vに関する情報を取得することができる。
また、本実施形態では、1つのミリ波レーダ45aが照明システム4aに設けられているが、2以上のミリ波レーダ45aが照明システム4aに設けられてもよい。例えば、照明システム4aは、短距離用のミリ波レーダ45aと、中距離用のミリ波レーダ45aと、長距離用のミリ波レーダ45aを有してもよい。
照明システム4bは、制御部40bと、照明ユニット42bと、カメラ43bと、LiDARユニット44bと、ミリ波レーダ45bとを更に備える。制御部40bと、照明ユニット42bと、カメラ43bと、LiDARユニット44bと、ミリ波レーダ45bは、図1に示すように、ハウジング24bと透光カバー22bによって形成される空間Sb内(灯室内)に配置される。尚、制御部40bは、空間Sb以外の車両1の所定の場所に配置されてもよい。例えば、制御部40bは、車両制御部3と一体的に構成されてもよい。制御部40bは、制御部40aと同様な機能及び構成を有してもよい。照明ユニット42bは、照明ユニット42aと同様な機能及び構成を有してもよい。この点において、照明ユニット42aは、左側ヘッドランプユニットとして機能する一方、照明ユニット42bは、右側ヘッドランプユニットとして機能する。カメラ43bは、カメラ43aと同様な機能及び構成を有してもよい。LiDARユニット44bは、LiDARユニット44aと同様な機能及び構成を有してもよい。ミリ波レーダ45bは、ミリ波レーダ45aと同様な機能及び構成を有してもよい。
照明システム4cは、制御部40cと、照明ユニット42cと、カメラ43cと、LiDARユニット44cと、ミリ波レーダ45cとを更に備える。制御部40cと、照明ユニット42cと、カメラ43cと、LiDARユニット44cと、ミリ波レーダ45cは、図1に示すように、ハウジング24cと透光カバー22cによって形成される空間Sc内(灯室内)に配置される。尚、制御部40cは、空間Sc以外の車両1の所定の場所に配置されてもよい。例えば、制御部40cは、車両制御部3と一体的に構成されてもよい。制御部40cは、制御部40aと同様な機能及び構成を有してもよい。
照明ユニット42cは、車両1の外部(後方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット42cは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED、LD又は有機EL素子である。光学系は、光源から出射された光を照明ユニット42cの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両1の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット42cは消灯してもよい。一方、車両1の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット42cは、カメラ用の配光パターンを車両1の後方に形成するように構成されてもよい。
カメラ43cは、カメラ43aと同様な機能及び構成を有してもよい。LiDARユニット44cは、LiDARユニット44cと同様な機能及び構成を有してもよい。ミリ波レーダ45cは、ミリ波レーダ45aと同様な機能及び構成を有してもよい。
照明システム4dは、制御部40dと、照明ユニット42dと、カメラ43dと、LiDARユニット44dと、ミリ波レーダ45dとを更に備える。制御部40dと、照明ユニット42dと、カメラ43dと、LiDARユニット44dと、ミリ波レーダ45dは、図1に示すように、ハウジング24dと透光カバー22dによって形成される空間Sd内(灯室内)に配置される。尚、制御部40dは、空間Sd以外の車両1の所定の場所に配置されてもよい。例えば、制御部40dは、車両制御部3と一体的に構成されてもよい。制御部40dは、制御部40cと同様な機能及び構成を有してもよい。照明ユニット42dは、照明ユニット42cと同様な機能及び構成を有してもよい。カメラ43dは、カメラ43cと同様な機能及び構成を有してもよい。LiDARユニット44dは、LiDARユニット44cと同様な機能及び構成を有してもよい。ミリ波レーダ45dは、ミリ波レーダ45cと同様な機能及び構成を有してもよい。
センサ5は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ5は、車両1の走行状態を検出して、車両1の走行状態を示す走行状態情報を車両制御部3に出力するように構成されている。また、センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、センサ5は、車両1の周辺環境の明るさ(照度等)を検出するように構成された照度センサを備えてもよい。照度センサは、例えば、フォトダイオードから出力される光電流の大きさに応じて周辺環境の明るさを決定してもよい。
HMI(Human Machine Interface)8は、運転者からの入力操作を受付ける入力部と、走行状態情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、走行状態情報、周辺環境情報および照明システム4の照明状態を表示するように構成されたディスプレイ等を含む。
GPS(Global Positioning System)9は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。無線通信部10は、車両1の周囲にいる他車に関する情報(例えば、他車走行情報等)を他車から受信すると共に、車両1に関する情報(例えば、自車走行情報等)を他車に送信するように構成されている(車車間通信)。
また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両1の自車走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部10は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両1の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両1は、他車両、インフラ設備又は携帯型電子機器とアドホックモードにより直接通信してもよいし、アクセスポイントを介して通信してもよい。無線通信規格は、例えば、Wi-Fi(登録商標),Bluetooth(登録商標),ZigBee(登録商標)又はLPWAである。また、車両1は、他車両、インフラ設備又は携帯型電子機器と移動通信ネットワークを介して通信してもよい。
記憶装置11は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置11には、2D又は3Dの地図情報及び/又は車両制御プログラムが記憶されてもよい。記憶装置11は、車両制御部3からの要求に応じて、地図情報や車両制御プログラムを車両制御部3に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部10とインターネット等の通信ネットワークを介して更新されてもよい。
車両1が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。このように、自動運転モードでは、車両1の走行は車両システム2により自動制御される。
一方、車両1が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に応じて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両1の走行は運転者により制御される。
次に、車両1の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはない。高度運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはあるものの車両1を運転しない。運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御のうちの一部の走行制御を自動的に行うと共に、車両システム2の運転支援の下で運転者が車両1を運転する。一方、手動運転モードでは、車両システム2が走行制御を自動的に行わないと共に、車両システム2からの運転支援なしに運転者が車両1を運転する。
また、車両1の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部3は、運転モード切替スイッチに対する運転者の操作に応じて、車両1の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両1の運転モードは、自動運転車の走行が可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部3は、これらの情報に基づいて車両1の運転モードを切り替える。さらに、車両1の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部3は、着座センサや顔向きセンサからの出力信号に基づいて、車両1の運転モードを切り替えてもよい。
次に、図3を参照して、制御部40aの機能について説明する。図3は、照明システム4aの制御部40aの機能ブロックを示す図である。図3に示すように、制御部40aは、照明ユニット42aと、カメラ43a(センサの一例)と、LiDARユニット44a(センサの一例)と、ミリ波レーダ45a(センサの一例)の動作をそれぞれ制御するように構成されている。特に、制御部40aは、照明制御部410aと、カメラ制御部420a(生成部の一例)と、LiDAR制御部430a(生成部の一例)と、ミリ波レーダ制御部440a(生成部の一例)と、周辺環境情報融合部450aと、使用頻度設定部460aとを備える。以降の説明では、カメラ43aと、LiDARユニット44aと、ミリ波レーダ45aを総称して単に「センサ」という場合がある。
照明制御部410aは、照明ユニット42aが所定の配光パターンを車両1の前方領域に向けて出射するように照明ユニット42aを制御するように構成されている。例えば、照明制御部410aは、車両1の運転モードに応じて照明ユニット42aから出射される配光パターンを変更してもよい。
カメラ制御部420aは、カメラ43aの動作を制御すると共に、カメラ43aから出力された画像データ(検出データ)に基づいて、カメラ43aの検出領域S1(図4参照)における車両1の周辺環境情報(以下、周辺環境情報I1という。)を生成するように構成されている。LiDAR制御部430aは、LiDARユニット44aの動作を制御すると共に、LiDARユニット44aから出力された3Dマッピングデータ(検出データ)に基づいて、LiDARユニット44aの検出領域S2(図4参照)における車両1の周辺環境情報(以下、周辺環境情報I2という。)を生成するように構成されている。ミリ波レーダ制御部440aは、ミリ波レーダ45aの動作を制御すると共に、ミリ波レーダ45aから出力された検出データに基づいて、ミリ波レーダ45aの検出領域S3(図4参照)における車両1の周辺環境情報(以下、周辺環境情報I3という。)を生成するように構成されている。
周辺環境情報融合部450aは、周辺環境情報I1,I2,I3をそれぞれ融合することで、融合された周辺環境情報Ifを生成するように構成される。ここで、周辺環境情報Ifは、図4に示すように、カメラ43aの検出領域S1と、LiDARユニット44aの検出領域S2と、ミリ波レーダ45aの検出領域S3を組合せた検出領域Sfにおける車両1の外部に存在する対象物(例えば、歩行者や他車両等)に関する情報を含んでもよい。例えば、周辺環境情報Ifは、対象物の属性、車両1に対する対象物の位置、車両1と対象物との間の距離及び/又は車両1に対する対象物の速度に関する情報を含んでもよい。周辺環境情報融合部450aは、周辺環境情報Ifを車両制御部3に送信する。
図4に示すように、周辺環境情報融合部450aは、カメラ43aの検出領域S1とLiDARユニット44aの検出領域S2が重複する重複領域Sxにおいて、周辺環境情報I1と周辺環境情報I2とを比較してもよい。例えば、周辺環境情報I1が重複領域Sxにおいて歩行者P1の存在を示す一方、周辺環境情報I2が重複領域Sxにおいて歩行者P1の存在を示さない場合、周辺環境情報融合部450aは、所定の情報(センサの信頼性を示す情報等)に基づいて、周辺環境情報I1,I2のうちのどちらか一方を採用してもよい。
使用頻度設定部460aは、車両1又は車両1の周辺環境に関連付けられた情報に基づいて、カメラ43aの使用頻度と、LiDARユニット44aの使用頻度と、ミリ波レーダ45aの使用頻度を設定するように構成されている。「車両1又は車両1の周辺環境に関連付けられた情報」の具体例については後述する。
センサ(カメラ43a、LiDARユニット44a、ミリ波レーダ45a)の使用頻度は、センサの検出データ(画像データ、3Dマッピングデータ、ミリ波レーダの検出データ)のフレームレート(fps)であってもよい。ここで、検出データのフレームレートとは、1秒間にセンサによって取得される検出データのフレーム数(取得フレームレート)であってもよいし、1秒間にセンサから制御部40aに送信される検出データのフレーム数(送信フレームレート)であってもよい。例えば、カメラ43aの使用頻度を低下させる場合、画像データのフレームレートが低下する。一方、カメラ43aの使用頻度を上昇させる場合、画像データのフレームレートが上昇する。
また、センサの使用頻度は、センサの検出データのビットレート(bps)であってもよい。ここで、検出データのビットレートとは、1秒間にセンサによって取得される検出データのデータ量(取得ビットレート)であってもよいし、1秒間にセンサから制御部40aに送信される検出データのデータ量(送信ビットレート)であってもよい。検出データの空間分解能及び/又は時間分解能を調整することで検出データのビットレートを調整することが可能となる。例えば、LiDARユニット44aの使用頻度を低下させる場合、3Dマッピングデータのビットレートが低下する。一方、LiDARユニット44aの使用頻度を上昇させる場合、3Dマッピングデータのビットレートが上昇する。
また、センサの使用頻度は、センサのモードであってもよい。ここで、センサのモードは、アクティブモードとスリープモードの2つのモードを有してもよい。例えば、ミリ波レーダ45aの使用頻度を低下させる場合、ミリ波レーダ45aのモードがスリープモードに設定される。一方、ミリ波レーダ45aの使用頻度が通常である場合、ミリ波レーダ45aはアクティブモードとなっている。
また、センサの使用頻度は、周辺環境情報の更新レート(Hz)であってもよい。ここで、更新レートとは、1秒間に更新される周辺環境情報の回数である。例えば、カメラ43aの使用頻度を低下させる場合、画像データに基づいて生成される周辺環境情報I1の更新レートが低下する。一方、カメラ43aの使用頻度を上昇させる場合、周辺環境情報I1の更新レートが上昇する。より具体的には、画像データの送信フレームレートが60fpsである場合、周辺環境情報I1の通常の更新レートは50Hzであると仮定する。この場合、カメラ43aの使用頻度を低下させるときは、周辺環境情報I1の更新レートが30Hzに設定されてもよい。一方、カメラ43aの使用頻度を上昇させるときは、周辺環境情報I1の更新レートが60Hzに設定されてもよい。
また、使用頻度設定部460aは、センサの使用頻度を変更する場合、検出データのフレームレート、検出データのビットレート、センサのモード(アクティブモード又はスリープモード)又は周辺環境情報の更新レートのうちの少なくとも一つを変更してもよい。例えば、使用頻度設定部460aは、センサの使用頻度を低下させる場合、画像データのフレームレートと周辺環境情報I1の更新レートの両方を低下させてもよい。
使用頻度設定部460aは、カメラ43aの使用頻度を所定の使用頻度に設定する場合、カメラ43aの使用頻度を示す指示信号をカメラ制御部420aに送信する。その後、カメラ制御部420aは、受信した指示信号に従って、カメラ43aの使用頻度を所定の使用頻度に設定するようにカメラ43aを制御する。具体的な一例としては、使用頻度設定部460aは、画像データのフレームレートを低下させる場合(換言すれば、画像データのフレームレートを通常のフレームレートa0より低いフレームレートa1(<a0)に設定する場合)、フレームレートa1を示す指示信号をカメラ制御部420aに送信する。その後、カメラ制御部420aは、受信した指示信号に従って、画像データのフレームレートをフレームレートa1に設定するようにカメラ43aを制御する。
使用頻度設定部460aは、LiDARユニット44aの使用頻度を所定の使用頻度に設定する場合、LiDARユニット44aの使用頻度を示す指示信号をLiDAR制御部430aに送信する。その後、LiDAR制御部430aは、受信した指示信号に従って、LiDARユニット44aの使用頻度を所定の使用頻度に設定するようにLiDARユニット44aを制御する。具体的な一例としては、使用頻度設定部460aは、3Dマッピングデータのビットレートを低下させる場合(換言すれば、3Dマッピングデータのビットレートを通常のビットレートb0より低いビットレートb1(<b0)に設定する場合)、ビットレートb1を示す指示信号をLiDAR制御部430aに送信する。その後、LiDAR制御部430aは、受信した指示信号に従って、3Dマッピングデータのビットレートをビットレートb1に設定するようにLiDARユニット44aを制御する。
使用頻度設定部460aは、ミリ波レーダ45aの使用頻度を所定の使用頻度に設定する場合、ミリ波レーダ45aの使用頻度を示す指示信号をミリ波レーダ制御部440aに送信する。その後、ミリ波レーダ制御部440aは、受信した指示信号に従って、ミリ波レーダ45aの使用頻度を所定の使用頻度に設定するようにミリ波レーダ45aを制御する。具体的な一例としては、ミリ波レーダ45aのモードをスリープモードに設定する場合、スリープモードを示す指示信号をミリ波レーダ制御部440aに送信する。その後、ミリ波レーダ制御部440aは、受信した指示信号に従って、ミリ波レーダ45aのモードをスリープモードに設定するようにミリ波レーダ45aを制御する。
尚、本実施形態では、周辺環境情報融合部450aと使用頻度設定部460aは、制御部40aによって実現されているが、これらは車両制御部3によって実現されてもよい。
また、制御部40b,40c,40dも制御部40aと同様の機能を有してもよい。つまり、制御部40b~40dの各々は、照明制御部と、カメラ制御部と、LiDAR制御部と、ミリ波レーダ制御部と、周辺環境情報融合部と、使用頻度設定部とを備えてもよい。制御部40b~40cの各々の周辺環境情報融合部は、融合された周辺環境情報Ifを車両制御部3に送信してもよい。車両制御部3は、各制御部40a~40dから送信された周辺環境情報Ifとその他の情報(走行制御情報、現在位置情報、地図情報等)に基づいて、車両1の走行を制御してもよい。
次に、図5を参照して照明システム4aにおけるセンサ(カメラ43a、LiDARユニット44a、ミリ波レーダ45a)の使用頻度の設定方法の第1の例について説明する。図5は、各センサの使用頻度の設定方法の第1の例を説明するためのフローチャートである。
尚、本実施形態では、説明の便宜上、照明システム4aの動作フローについてのみ説明を行うが、照明システム4aの動作フローは、照明システム4b~4dにも適用可能である点に留意されたい。また、本実施形態の説明では、車両1は自動運転モードで走行中であることを前提とする。また、以降の説明では、センサの「使用頻度」は、既に説明したように、検出データのフレームレート、検出データのビットレート、センサのモード又は周辺環境情報の更新レートである。
図5に示すように、ステップS10において、使用頻度設定部460aは、車両1の周辺環境の明るさを示す情報(以下、「明るさ情報」という。)を受信したかどうかを判定する。具体的には、車両1に搭載された照度センサは、車両1の周辺環境の明るさを示す検出データを車両制御部3に送信する。次に、車両制御部3は、受信した検出データに基づいて明るさ情報を生成した上で、生成された明るさ情報を使用頻度設定部460aに送信する。ここで、「明るさ情報」は、「明るい」又は「暗い」の2つの情報を含んでもよい。この場合、車両制御部3は、検出データが示す周辺環境の明るさ(照度等)が所定の値(閾値照度等)よりも大きい場合に、周辺環境が明るいことを示す明るさ情報を生成してもよい。一方、車両制御部3は、検出データが示す周辺環境の明るさ(照度等)が所定の値以下である場合に、周辺環境が暗いことを示す明るさ情報を生成してもよい。尚、「明るさ情報」は、照度等の数値に関する情報を含んでもよい。この場合、使用頻度設定部460aは、照度等の数値に関する情報に基づいて、車両1の周辺環境が明るいか又は暗いかを判定してもよい。
車両制御部3は、車両システム2を起動したときに、明るさ情報を使用頻度設定部460aに送信してもよい。さらに、車両制御部3は、車両1の周辺環境の明るさが変化したときに(例えば、周辺環境が明るい状態から暗い状態に変化したとき又は周辺環境が暗い状態から明るい状態に変化したとき)、明るさ情報を使用頻度設定部460aに送信してもよい。例えば、車両1がトンネルに入ったとき又はトンネルを出たときに、車両制御部3は、明るさ情報を使用頻度設定部460aに送信してもよい。また、車両制御部3は、所定の周期で明るさ情報を使用頻度設定部460aに送信してもよい。
使用頻度設定部460aは、明るさ情報を受信したと判定した場合に(ステップS10でYES)、ステップS11の処理を実行する。一方、ステップS10の判定結果がNOの場合、使用頻度設定部460aは、明るさ情報を受信するまで待機する。
尚、照度センサが使用頻度設定部460aに直接的に接続されている場合、使用頻度設定部460aは、照度センサから取得された検出データに基づいて、周辺環境の明るさを特定してもよい。その後、使用頻度設定部460aは、ステップS11の処理を実行してもよい。
次に、ステップS11において、使用頻度設定部460aは、受信した明るさ情報に基づいて、カメラ43aの使用頻度、LiDARユニット44aの使用頻度及びミリ波レーダ45aの使用頻度をそれぞれ決定する。例えば、使用頻度設定部460aは、周辺環境の明るさに応じて、以下のように各センサの使用頻度を設定してもよい。
表1に示すように、車両1の周辺環境の明るさが明るい場合、使用頻度設定部460aは、全てのセンサの使用頻度を通常の使用頻度に設定する。一方、車両1の周辺環境の明るさが暗い場合(トンネル中での走行や夜間走行等)、使用頻度設定部460aは、カメラ43aの使用頻度を低下させる(つまり、カメラ43aの使用頻度を通常の使用頻度より低い使用頻度に設定する)一方、残りのセンサの使用頻度を通常の使用頻度に設定する。この点において、車両1の周辺環境が暗い場合には、カメラ43aを用いた周辺環境の検出精度が低下してしまうため、カメラ43aの使用頻度を低下させても周辺環境の認知精度に大きな影響を及ぼすことがない。このため、カメラ43aの使用頻度(例えば、画像データの取得フレームレート等)を低下させることで、カメラ43a及び/又はカメラ制御部420aによって消費される消費電力を低減することができると共に、カメラ制御部420aの演算負荷を低減することができる。このように、車両1の周辺環境の明るさに応じてセンサの使用頻度を最適化することができる。また、表1に示す使用頻度に関する情報は、制御部40aのメモリ又は記憶装置11に記憶されてもよい。
本実施形態では、照度センサから取得された検出データに基づいて明るさ情報が生成されているが、カメラ43aによって取得された画像データに基づいて明るさ情報が生成されてもよい。この場合、使用頻度設定部460aは、カメラ43aによって取得された画像データに基づいて明るさ情報を生成した上で、当該明るさ情報に基づいて各センサの使用頻度を設定してもよい。
次に、図6を参照して照明システム4aにおけるセンサ(カメラ43a、LiDARユニット44a、ミリ波レーダ45a)の使用頻度の設定方法の第2の例について説明する。図6は、各センサの使用頻度の設定方法の第2の例を説明するためのフローチャートである。
図6に示すように、ステップS20において、使用頻度設定部460aは、車両1の周辺環境の明るさを示す情報(明るさ情報)と車両1の現在位置の天候情報を受信したかどうかを判定する。ここで、明るさ情報の具体的な取得方法については既に説明したので、天候情報の取得方法について詳しく説明する。例えば、車両制御部3は、GPS9を用いて車両1の現在位置情報を取得した後に、無線通信部10を介して、車両1の現在位置情報とIPアドレスを含む天候情報リクエストを通信ネットワーク上のサーバに送信する。その後、車両制御部3は、車両1の現在位置における天候情報をサーバから受信する。ここで、「天候情報」は、車両1の現在位置における天候(晴れ、曇り、雨、雪、霧等)に関する情報であってもよい。次に、車両制御部3は、明るさ情報と天候情報を制御部40aの使用頻度設定部460aに送信する。
尚、カメラ43aによって取得された画像データに基づいて車両1の現在位置における天候情報が生成されてもよい。この場合、使用頻度設定部460a又はカメラ制御部420aは、カメラ43aによって取得された画像データに基づいて天候情報を生成する。さらに、車両のウィンドウに取り付けられたワイパーの状態を示す情報に基づいて車両1の現在位置における天候情報が生成されてもよい。例えば、ワイパーが駆動している場合、車両1の現在位置における天候は雨(つまり、天候不良)と判定されてもよい。一方、ワイパーが駆動していない場合、車両1の現在位置における天候は晴れ又は曇り(つまり、天候良好)と判定されてもよい。さらに、使用頻度設定部460aは、外部天候センサから天候情報を取得してもよい。
次に、使用頻度設定部460aは、明るさ情報及び天候情報を受信したと判定した場合に(ステップS20でYES)、ステップS21の処理を実行する。一方、ステップS20の判定結果がNOの場合、使用頻度設定部460aは、明るさ情報及び天候情報を受信するまで待機する。
次に、ステップS21において、使用頻度設定部460aは、受信した明るさ情報と天候情報に基づいて、カメラ43aの使用頻度、LiDARユニット44aの使用頻度及びミリ波レーダ45aの使用頻度をそれぞれ決定する。例えば、使用頻度設定部460aは、周辺環境の明るさに応じて、以下のように各センサの使用頻度を設定してもよい。
表2に示すように、車両1の現在位置における天候が不良(雨、雪、霧等)である場合、使用頻度設定部460aは、カメラ43a及びLiDARユニット44aの使用頻度を低下させる一方、ミリ波レーダ45aの使用頻度を通常の使用頻度に設定する。
また、車両1の現在位置における天候が良好(晴れ、曇り等)であると共に、車両1の周辺環境が明るい場合、使用頻度設定部460aは、全てのセンサの使用頻度を通常の使用頻度に設定する。さらに、車両1の現在位置における天候が良好であると共に、車両1の周辺環境が暗い場合、使用頻度設定部460aは、カメラ43aの使用頻度を低下させる一方、残りのセンサの使用頻度を通常の使用頻度に設定する。
本実施形態によれば、天候が不良である場合には、カメラ43aの検出精度とLiDARユニット44aの検出精度は低下してしまうため、カメラ43a及びLiDARユニット44aの使用頻度を低下させても周辺環境の認知精度に大きな影響を及ぼすことがない。このため、カメラ43aの使用頻度を低下させることで、カメラ43a及び/又はカメラ制御部420aによって消費される消費電力を低減することができると共に、カメラ制御部420aの演算負荷を低減させることができる。さらに、LiDARユニット44aの使用頻度(例えば、3Dマッピングデータの取得フレームレート等)を低下させることで、LiDARユニット44a及び/又はLiDAR制御部430aによって消費される消費電力を低減させることができると共に、LiDAR制御部430aの演算負荷を低減することができる。このように、車両1の現在位置の天候状況に応じてセンサの使用頻度を最適化することができる。また、天候が良好である場合には、車両1の周辺環境の明るさ(明るい又は暗い)に応じてセンサの使用頻度が最適化される。
次に、図7を参照して照明システム4aにおけるセンサ(カメラ43a、LiDARユニット44a、ミリ波レーダ45a)の使用頻度の設定方法の第3の例について説明する。図7は、各センサの使用頻度の設定方法の第3の例を説明するためのフローチャートである。
図7に示すように、ステップS30において、使用頻度設定部460aは、車両1の速度を示す情報(以下、速度情報という。)を受信したかどうかを判定する。具体的には、車両1に搭載された速度センサは、速度情報を車両制御部3に送信する。次に、車両制御部3は、受信した速度情報を使用頻度設定部460aに送信する。その後、使用頻度設定部460aは、速度情報を受信したと判定した場合に(ステップS30でYES)、ステップS31の処理を実行する。一方、ステップS30の判定結果がNOである場合、使用頻度設定部460aは、速度情報を受信するまで待機する。
次に、ステップS31において、使用頻度設定部460aは、受信した速度情報に基づいて、カメラ43aの使用頻度、LiDARユニット44aの使用頻度、ミリ波レーダ45aの使用頻度をそれぞれ設定する。例えば、使用頻度設定部460aは、車両1の速度に応じて、以下のように各センサの使用頻度を設定してもよい。
表3に示すように、車両1の速度が高速である場合、使用頻度設定部460aは、全てのセンサの使用頻度を上昇させる(つまり、全てのセンサの使用頻度を通常の使用頻度よりも高い使用頻度に設定する)。一方、車両1の速度が中速である場合、使用頻度設定部460aは、全てのセンサの使用頻度を通常の使用頻度に設定する。さらに、車両1の速度が低速である場合、使用頻度設定部460aは、カメラ43aの使用頻度を通常の使用頻度に設定する一方で、残りのセンサの使用頻度を低下させる。
ここで、「低速」とは、車両1の速度Vが第1の速度Vth1(例えば、30km/h)以下である速度として規定されてもよい。また、「中速」とは、車両1の速度Vが第1の速度Vthよりも大きく第2の速度Vth(例えば、80km/h)以下である速度として規定されてもよい。さらに、「高速」とは、車両1の速度Vが第2の速度Vthより大きい速度として規定されてもよい。
本実施形態によれば、車両1が高速で走行中の場合に、全てのセンサの使用頻度が上昇する。特に、車両1が高速で走行中の場合には、車両1の周辺環境は高速で変化するため、車両1の走行制御を高い精度で行う観点より全てのセンサの使用頻度(特に、検出データのフレームレートや周辺環境情報の更新レート)を上昇させることが好ましい。このように、周辺環境情報I1,I2,I3に基づいて生成された周辺環境情報Ifの精度をより向上させることができるため、車両1の走行制御をさらに高い精度で行うことができる。
一方、車両1が低速で走行中の場合には、画像データに基づいて生成された周辺環境情報I1のみによって十分に車両1の走行安全性を確保することができる。このため、LiDARユニット44a及びミリ波レーダ45aの使用頻度を低下させることで、LiDARユニット44a及び/又はLiDAR制御部430aによって消費される消費電力を低減することができると共に、ミリ波レーダ45a及び/又はミリ波レーダ制御部440aによって消費される消費電力を低減することができる。さらに、LiDAR制御部430aの演算負荷及びミリ波レーダ制御部440aの演算負荷を低減することができる。このように、車両1の速度に応じて各センサの使用頻度を最適化することができる。
尚、図7に示す使用頻度の設定方法では、使用頻度設定部460aは、速度情報に加えて車両1が高速道路を現在走行していることを示す情報に基づいて、各センサの使用頻度を設定してもよい。例えば、使用頻度設定部460aは、車両1が高速道路を現在走行していることを示す情報(以下、高速道路走行情報という。)を受信した場合、車両1の速度に関係なく、各センサの使用頻度を上昇させてもよい。この点において、高速道路では、車両1が高速で走行する可能性が高いため、車両1の走行制御を高い精度で行うため周辺環境情報Ifの精度をより向上させる必要性がある。一方、使用頻度設定部460aは、高速道路走行情報を受信しない場合、表3に示すように車両1の速度に応じて各センサの使用頻度を設定してもよい。高速道路走行情報は、GPS9によって取得された現在位置情報と記憶装置11に保存された地図情報に基づいて生成されてもよい。例えば、車両制御部3は、現在位置情報と地図情報に基づいて高速道路走行情報を生成した上で、当該高速道路走行情報を使用頻度設定部460aに送信してもよい。このように、車両1が現在走行している道路に応じて各センサの使用頻度を最適化することができる。
次に、図8を参照して各センサの使用頻度の設定方法の第4の例について説明する。特に、照明システム4aから4dに配置された各センサの使用頻度の設定方法について説明する。図8は、各センサの使用頻度の設定方法の第4の例を説明するためのフローチャートである。以降の説明では、カメラ、LiDARユニット、ミリ波レーダ等を総称して単に「センサ」という場合がある。
図8に示すように、ステップS40において、使用頻度設定部460aは、車両1の進行方向を示す情報(以下、進行方向情報という。)を受信したかどうかを判定する。具体的には、車両1の走行を制御する車両制御部3は、進行方向情報を使用頻度設定部460aに送信する。その後、使用頻度設定部460aは、進行方向情報を受信した場合に(ステップS40でYES)、ステップS41の処理を実行する。一方、ステップS40の判定結果がNOである場合、使用頻度設定部460aは、進行方向情報を受信するまで待機する。
次に、ステップS41において、使用頻度設定部460aは、受信した進行方向情報に基づいて、照明システム4aに配置されたセンサの使用頻度、照明システム4bに配置されたセンサの使用頻度、照明システム4cに配置されたセンサの使用頻度、照明システム4dに配置されたセンサの使用頻度をそれぞれ設定する(図2参照)。例えば、使用頻度設定部460aは、進行方向情報に応じて、以下のように各照明システムに配置されたセンサの使用頻度を設定してもよい。
表4に示すように、車両1が前進している場合に、使用頻度設定部460aは、車両1の前側に位置する照明システム4a,4bに配置されたセンサ(カメラ、LiDARユニット、ミリ波レーダ)の使用頻度を通常の使用頻度に設定すると共に、車両1の後側に位置する照明システム4c,4dに配置されたセンサ(カメラ、LiDARユニット、ミリ波レーダ)の使用頻度を低下させる。この点において、車両1が前進している場合には、車両1の後方領域の周辺環境情報は、車両1の前方領域の周辺環境情報と比較して重要度は高くないため、車両1の後側に配置されたセンサの使用頻度を低下させることができる。このように、照明システム4cのセンサ及び/又は制御部40cによって消費される消費電力を低減することができると共に、制御部40cの演算負荷を低減することができる。さらに、照明システム4dのセンサ及び/又は制御部40dによって消費される消費電力を低減することができると共に、制御部40dの演算負荷を低減することができる。
また、表4に示すように、車両1が後進している場合に、使用頻度設定部460aは、照明システム4a,4bに配置されたセンサの使用頻度を低下させると共に、照明システム4c,4dに配置されたセンサの使用頻度を通常の使用頻度に設定する。この点において、車両1が後進している場合には、車両1の前方領域の周辺環境情報は、車両1の後方領域の周辺環境情報と比較して重要度は高くないため、車両1の前側に配置されたセンサの使用頻度を低下させることができる。このように、照明システム4aのセンサ及び/又は制御部40aによって消費される消費電力を低減することができると共に、制御部40aの演算負荷を低減することができる。さらに、照明システム4bのセンサ及び/又は制御部40bによって消費される消費電力を低減することができると共に、制御部40bの演算負荷を低減することができる。
さらに、表4に示すように、車両1が右折する場合には、使用頻度設定部460aは、車両1の左側に位置する照明システム4a,4cに配置されたセンサの使用頻度を低下させると共に、車両1の右側に位置する照明システム4b,4dに配置されたセンサの使用頻度を通常の使用頻度に設定する。この点において、車両1が右折する場合に、車両1の左側領域の周辺環境情報は、車両1の右側領域の周辺環境情報と比較して重要度は高くないため、車両1の左側に配置されたセンサの使用頻度を低下させることができる。このように、照明システム4aのセンサ及び/又は制御部40aによって消費される消費電力を低減することができると共に、制御部40aの演算負荷を低減することができる。さらに、照明システム4cのセンサ及び/又は制御部40cによって消費される消費電力を低減することができると共に、制御部40cの演算負荷を低減することができる。
このように、本実施形態によれば、進行方向情報に基づいてセンサの使用頻度が設定されるため、車両1の進行方向に応じてセンサの使用頻度を最適化することができる。
尚、本実施形態では、複数センサとして、カメラと、LiDARユニットと、ミリ波レーダを挙げているが、本実施形態はこれに限定されない。例えば、これらのセンサに加えて超音波センサが照明システムに搭載されてもよい。この場合、照明システムの制御部は、超音波センサの動作を制御すると共に、超音波センサによって取得された検出データに基づいて周辺環境情報を生成してもよい。また、カメラと、LiDARユニットと、ミリ波レーダと、超音波センサのうち少なくとも2つが照明システムに搭載されてもよい。
また、表1から表4に示す各センサの使用頻度は単なる一例であって、各センサの使用頻度は適宜変更可能である点に留意されたい。例えば、各照明システムが、遠距離用のLiDARユニットと、近距離用のLiDARユニットと、カメラと、ミリ波レーダと、超音波センサとを備えている場合を想定する。この場合、天候状態が不良である場合には、使用頻度設定部460aは、カメラと近距離用のLiDARユニットの使用頻度を低下させると共に、残りのセンサの使用頻度を通常の使用頻度に設定してもよい。また、車両1が高速で走行中の場合又は車両1が高速道路を走行中の場合、使用頻度設定部460aは、近距離用のLiDARユニットと超音波センサの使用頻度を低下させると共に、残りのセンサの使用頻度を通常の使用頻度に設定してもよい。さらに、車両1が低速で走行中の場合、使用頻度設定部460aは、遠距離用のLiDARユニットとミリ波レーダの使用頻度を低下させると共に、残りのセンサの使用頻度を通常の使用頻度に設定してもよい。
(第2実施形態)
以下、本開示の第2実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
以下、本開示の第2実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」について適宜言及する。これらの方向は、図9に示す車両101について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。
最初に、図9を参照して本実施形態に係る車両101について説明する。図9は、車両102を備える車両101の上面図を示す模式図である。図9に示すように、車両101は、自動運転モードで走行可能な車両(自動車)であって、車両102を備える。車両102は、車両制御部103と、左前照明システム104a(以下、単に「照明システム104a」という。)と、右前照明システム104b(以下、単に「照明システム104b」という。)と、左後照明システム104c(以下、単に「照明システム104c」という。)と、右後照明システム104d(以下、単に「照明システム104d」という。)を少なくとも備える。
照明システム104aは、車両101の左前側に設けられる。特に、照明システム104aは、車両101の左前側に設置されたハウジング124aと、ハウジング124aに取り付けられた透光カバー122aとを備える。照明システム104bは、車両101の右前側に設けられる。特に、照明システム104bは、車両101の右前側に設置されたハウジング124bと、ハウジング124bに取り付けられた透光カバー122bとを備える。照明システム104cは、車両101の左後側に設けられる。特に、照明システム104cは、車両101の左後側に設置されたハウジング124cと、ハウジング124cに取り付けられた透光カバー122cとを備える。照明システム104dは、車両101の右後側に設けられる。特に、照明システム104dは、車両101の右後側に設置されたハウジング124dと、ハウジング124dに取り付けられた透光カバー122dとを備える。
次に、図10を参照することで、図9に示す車両102を具体的に説明する。図10は、車両102を示すブロック図である。図10に示すように、車両102は、車両制御部103と、照明システム104a~104dと、センサ105と、HMI(Human Machine Interface)108と、GPS(Global Positioning System)109と、無線通信部110と、記憶装置111とを備える。さらに、車両102は、ステアリングアクチュエータ112と、ステアリング装置113と、ブレーキアクチュエータ114と、ブレーキ装置115と、アクセルアクチュエータ116と、アクセル装置117とを備える。また、車両102は、電力を供給するように構成されたバッテリー(図示せず)を備える。
車両制御部103は、車両101の走行を制御するように構成されている。車両制御部103は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及び/又はTPU(Tensor Processing Unit)である。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。
また、電子制御ユニット(ECU)は、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明システム104aは、制御部140aと、照明ユニット142aと、カメラ143aと、LiDAR(Light Detection and Ranging)ユニット144a(レーザーレーダの一例)と、ミリ波レーダ145aとを更に備える。制御部140aと、照明ユニット142aと、カメラ143aと、LiDARユニット144aと、ミリ波レーダ145aは、図9に示すように、ハウジング124aと透光カバー122aによって形成される空間Sa内(灯室内)に配置される。尚、制御部140aは、空間Sa以外の車両101の所定の場所に配置されてもよい。例えば、制御部140aは、車両制御部103と一体的に構成されてもよい。
制御部140aは、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含んでもよい。プロセッサは、例えば、CPU、MPU、GPU及び/又はTPUである。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROMと、RAMを含む。ROMには、車両101の周辺環境を特定するための周辺環境特定プログラムが記憶されてもよい。例えば、周辺環境特定プログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、周辺環境特定プログラム、カメラ143aに取得された画像データ、LiDARユニット144aによって取得された3次元マッピングデータ(点群データ)及び/又はミリ波レーダ145aによって取得された検出データ等が一時的に記憶されてもよい。プロセッサは、ROMに記憶された周辺環境特定プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、電子制御ユニット(ECU)は、ASICやFPGA等の集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明ユニット142aは、車両101の外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット142aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット142aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両101の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット142aは、運転者用の配光パターン(例えば、ロービーム用配光パターンやハイビーム用配光パターン)を車両101の前方に形成するように構成されている。このように、照明ユニット142aは、左側ヘッドランプユニットとして機能する。一方、車両101の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット142aは、カメラ用の配光パターンを車両101の前方に形成するように構成されてもよい。
制御部140aは、照明ユニット142aに設けられた複数の発光素子の各々に電気信号(例えば、PWM(Pulse Width Modulation)信号)を個別に供給するように構成されてもよい。このように、制御部140aは、電気信号が供給される発光素子を個別に選択することができると共に、発光素子毎に電気信号のDuty比を調整することができる。つまり、制御部140aは、マトリックス状に配列された複数の発光素子のうち、点灯又は消灯すべき発光素子を選択することができると共に、点灯している発光素子の輝度を決定することができる。このため、制御部140aは、照明ユニット142aから前方に向けて出射される配光パターンの形状及び明るさを変更することができる。
カメラ143aは、車両101の周辺環境を検出するように構成されている。特に、カメラ143aは、フレームレートa1(fps)で車両101の周辺環境を示す画像データを取得した上で、当該画像データを制御部140aに送信するように構成されている。制御部140aは、送信された画像データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両101の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両101の外部に存在する対象物の属性に関する情報と、車両101に対する対象物の位置に関する情報とを含んでもよい。カメラ143aは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子によって構成される。カメラ143aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ143aがステレオカメラの場合、制御部140aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両101と車両101の外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。また、本実施形態では、1つのカメラ143aが照明システム104aに設けられているが、2以上のカメラ143aが照明システム104aに設けられてもよい。
LiDARユニット144a(レーザーレーダの一例)は、車両101の周辺環境を検出するように構成されている。特に、LiDARユニット144aは、フレームレートa2(fps)で車両101の周辺環境を示す3Dマッピングデータ(点群データ)を取得した上で、当該3Dマッピングデータを制御部140aに送信するように構成されている。制御部140aは、送信された3Dマッピングデータに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両101の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、例えば、車両101の外部に存在する対象物の属性に関する情報と、車両101に対する対象物の位置に関する情報とを含んでもよい。3Dマッピングデータのフレームレートa2(第2フレームレート)は、画像データのフレームレートa1(第1フレームレート)と同一であってもよいし、異なってもよい。
より具体的には、LiDARユニット144aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得した上で、飛行時間ΔT1に関する情報に基づいて、各出射角度(水平角度θ、垂直角度φ)におけるLiDARユニット144a(車両101)と車両101の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT1は、例えば、以下のように算出することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット144aは、車両101の周辺環境を示す3Dマッピングデータを取得することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット144aは、車両101の周辺環境を示す3Dマッピングデータを取得することができる。
また、LiDARユニット144aは、例えば、レーザ光を出射するように構成されたレーザ光源と、レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器と、レンズ等の光学系と、物体によって反射されたレーザ光を受光するように構成された受光部とを備える。レーザ光源から出射されるレーザ光の中心波長は特に限定されない。例えば、レーザ光は、中心波長が900nm付近である非可視光であってもよい。光偏向器は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーであってもよい。受光部は、例えば、フォトダイオードである。尚、LiDARユニット144aは、光偏向器によってレーザ光を走査せずに、3Dマッピングデータを取得してもよい。例えば、LiDARユニット144aは、フェイズドアレイ方式又はフラッシュ方式で3Dマッピングデータを取得してもよい。また、本実施形態では、1つのLiDARユニット144aが照明システム104aに設けられているが、2以上のLiDARユニット144aが照明システム104aに設けられてもよい。例えば、2つのLiDARユニット144aが照明システム104aに設けられている場合、一方のLiDARユニット144aが車両101の前方領域における周辺環境を検出するように構成されると共に、他方のLiDARユニット144aが車両101の側方領域における周辺環境を検出するように構成されてもよい。
ミリ波レーダ145aは、車両101の周辺環境を検出するように構成されている。特に、ミリ波レーダ145aは、車両101の周辺環境を示す検出データを取得した上で、当該検出データを制御部140aに送信するように構成されている。制御部140aは、送信された検出データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両101の外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両101の外部に存在する対象物の属性に関する情報と、車両101に対する対象物の位置に関する情報と、車両101に対する対象物の速度に関する情報を含んでもよい。
例えば、ミリ波レーダ145aは、パルス変調方式、FM-CW(Frequency Moduleted-Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ145a(車両101)と車両101の外部に存在する物体との間の距離Dを取得することができる。パルス変調方式を用いる場合、ミリ波レーダ145aは、ミリ波の各出射角度におけるミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、各出射角度におけるミリ波レーダ145a(車両101)と車両101の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT2は、例えば、以下のように算出することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ145aは、ミリ波レーダ145aから出射されたミリ波の周波数f0とミリ波レーダ145aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ145a(車両101)に対する車両101の外部に存在する物体の相対速度Vに関する情報を取得することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ145aは、ミリ波レーダ145aから出射されたミリ波の周波数f0とミリ波レーダ145aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ145a(車両101)に対する車両101の外部に存在する物体の相対速度Vに関する情報を取得することができる。
また、本実施形態では、1つのミリ波レーダ145aが照明システム104aに設けられているが、2以上のミリ波レーダ145aが照明システム104aに設けられてもよい。例えば、照明システム104aは、短距離用のミリ波レーダ145aと、中距離用のミリ波レーダ145aと、長距離用のミリ波レーダ145aを有してもよい。
照明システム104bは、制御部140bと、照明ユニット142bと、カメラ143bと、LiDARユニット144bと、ミリ波レーダ145bとを更に備える。制御部140bと、照明ユニット142bと、カメラ143bと、LiDARユニット144bと、ミリ波レーダ145bは、図9に示すように、ハウジング124bと透光カバー122bによって形成される空間Sb内(灯室内)に配置される。尚、制御部140bは、空間Sb以外の車両101の所定の場所に配置されてもよい。例えば、制御部140bは、車両制御部103と一体的に構成されてもよい。制御部140bは、制御部140aと同様な機能及び構成を有してもよい。照明ユニット142bは、照明ユニット142aと同様な機能及び構成を有してもよい。この点において、照明ユニット142aは、左側ヘッドランプユニットとして機能する一方、照明ユニット142bは、右側ヘッドランプユニットとして機能する。カメラ143bは、カメラ143aと同様な機能及び構成を有してもよい。LiDARユニット144bは、LiDARユニット144aと同様な機能及び構成を有してもよい。ミリ波レーダ145bは、ミリ波レーダ145aと同様な機能及び構成を有してもよい。
照明システム104cは、制御部140cと、照明ユニット142cと、カメラ143cと、LiDARユニット144cと、ミリ波レーダ145cとを更に備える。制御部140cと、照明ユニット142cと、カメラ143cと、LiDARユニット144cと、ミリ波レーダ145cは、図9に示すように、ハウジング124cと透光カバー122cによって形成される空間Sc内(灯室内)に配置される。尚、制御部140cは、空間Sc以外の車両101の所定の場所に配置されてもよい。例えば、制御部140cは、車両制御部103と一体的に構成されてもよい。制御部140cは、制御部140aと同様な機能及び構成を有してもよい。
照明ユニット142cは、車両101の外部(後方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット142cは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED、LD又は有機EL素子である。光学系は、光源から出射された光を照明ユニット142cの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両101の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット142cは消灯してもよい。一方、車両101の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット142cは、カメラ用の配光パターンを車両101の後方に形成するように構成されてもよい。
カメラ143cは、カメラ143aと同様な機能及び構成を有してもよい。LiDARユニット144cは、LiDARユニット144cと同様な機能及び構成を有してもよい。ミリ波レーダ145cは、ミリ波レーダ145aと同様な機能及び構成を有してもよい。
照明システム104dは、制御部140dと、照明ユニット142dと、カメラ143dと、LiDARユニット144dと、ミリ波レーダ145dとを更に備える。制御部140dと、照明ユニット142dと、カメラ143dと、LiDARユニット144dと、ミリ波レーダ145dは、図9に示すように、ハウジング124dと透光カバー122dによって形成される空間Sd内(灯室内)に配置される。尚、制御部140dは、空間Sd以外の車両101の所定の場所に配置されてもよい。例えば、制御部140dは、車両制御部103と一体的に構成されてもよい。制御部140dは、制御部140cと同様な機能及び構成を有してもよい。照明ユニット142dは、照明ユニット142cと同様な機能及び構成を有してもよい。カメラ143dは、カメラ143cと同様な機能及び構成を有してもよい。LiDARユニット144dは、LiDARユニット144cと同様な機能及び構成を有してもよい。ミリ波レーダ145dは、ミリ波レーダ145cと同様な機能及び構成を有してもよい。
センサ105は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ105は、車両101の走行状態を検出して、車両101の走行状態を示す走行状態情報を車両制御部103に出力するように構成されている。また、センサ105は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、センサ105は、車両101の周辺環境の明るさ(照度等)を検出するように構成された照度センサを備えてもよい。照度センサは、例えば、フォトダイオードから出力される光電流の大きさに応じて周辺環境の明るさを決定してもよい。
HMI(Human Machine Interface)108は、運転者からの入力操作を受付ける入力部と、走行状態情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両101の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、走行状態情報、周辺環境情報および照明システム4の照明状態を表示するように構成されたディスプレイ等を含む。
GPS(Global Positioning System)109は、車両101の現在位置情報を取得し、当該取得された現在位置情報を車両制御部103に出力するように構成されている。無線通信部110は、車両101の周囲にいる他車に関する情報(例えば、他車走行情報等)を他車から受信すると共に、車両101に関する情報(例えば、自車走行情報等)を他車に送信するように構成されている(車車間通信)。
また、無線通信部110は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両101の自車走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部110は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両101の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両101は、他車両、インフラ設備又は携帯型電子機器とアドホックモードにより直接通信してもよいし、アクセスポイントを介して通信してもよい。無線通信規格は、例えば、Wi-Fi(登録商標),Bluetooth(登録商標),ZigBee(登録商標)又はLPWAである。また、車両101は、他車両、インフラ設備又は携帯型電子機器と移動通信ネットワークを介して通信してもよい。
記憶装置111は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置111には、2D又は3Dの地図情報及び/又は車両制御プログラムが記憶されてもよい。記憶装置111は、車両制御部103からの要求に応じて、地図情報や車両制御プログラムを車両制御部103に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部110とインターネット等の通信ネットワークを介して更新されてもよい。
車両101が自動運転モードで走行する場合、車両制御部103は、走行状態情報、周辺環境情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ112は、ステアリング制御信号を車両制御部103から受信して、受信したステアリング制御信号に基づいてステアリング装置113を制御するように構成されている。ブレーキアクチュエータ114は、ブレーキ制御信号を車両制御部103から受信して、受信したブレーキ制御信号に基づいてブレーキ装置115を制御するように構成されている。アクセルアクチュエータ116は、アクセル制御信号を車両制御部103から受信して、受信したアクセル制御信号に基づいてアクセル装置117を制御するように構成されている。このように、自動運転モードでは、車両101の走行は車両102により自動制御される。
一方、車両101が手動運転モードで走行する場合、車両制御部103は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に応じて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両101の走行は運転者により制御される。
次に、車両101の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両102がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両101を運転できる状態にはない。高度運転支援モードでは、車両102がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両101を運転できる状態にはあるものの車両101を運転しない。運転支援モードでは、車両102がステアリング制御、ブレーキ制御及びアクセル制御のうちの一部の走行制御を自動的に行うと共に、車両102の運転支援の下で運転者が車両101を運転する。一方、手動運転モードでは、車両102が走行制御を自動的に行わないと共に、車両102からの運転支援なしに運転者が車両101を運転する。
また、車両101の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部103は、運転モード切替スイッチに対する運転者の操作に応じて、車両101の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両101の運転モードは、自動運転車の走行が可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部103は、これらの情報に基づいて車両101の運転モードを切り替える。さらに、車両101の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部103は、着座センサや顔向きセンサからの出力信号に基づいて、車両101の運転モードを切り替えてもよい。
次に、図11を参照して、制御部140aの機能について説明する。図11は、照明システム104aの制御部140aの機能ブロックを示す図である。図11に示すように、制御部140aは、照明ユニット142aと、カメラ143aと、LiDARユニット144aと、ミリ波レーダ145aの動作をそれぞれ制御するように構成されている。特に、制御部140aは、照明制御部1410aと、カメラ制御部1420a(第1生成部の一例)と、LiDAR制御部1430a(第2生成部の一例)と、ミリ波レーダ制御部1440aと、周辺環境情報融合部1450aとを備える。
照明制御部1410aは、照明ユニット142aが所定の配光パターンを車両101の前方領域に向けて出射するように照明ユニット142aを制御するように構成されている。例えば、照明制御部1410aは、車両101の運転モードに応じて照明ユニット142aから出射される配光パターンを変更してもよい。さらに、照明制御部1410aは、レートa3(Hz)で照明ユニット142aを点灯制御するように構成されている。後述するように、照明ユニット142aのレートa3(第3レート)は、カメラ143aによって取得された画像データのフレームレートa1と同一であってもよいし、異なってもよい。
カメラ制御部1420aは、カメラ143aの動作を制御するように構成されている。特に、カメラ制御部1420aは、フレームレートa1(第1フレームレート)で画像データ(第1検出データ)を取得するようにカメラ143aを制御するように構成されている。さらに、カメラ制御部1420aは、画像データの各フレームの取得タイミング(特に、取得開始時刻)を制御するように構成されている。また、カメラ制御部1420aは、カメラ143aから出力された画像データに基づいて、カメラ143aの検出領域S1(図12参照)における車両101の周辺環境情報(以下、周辺環境情報Icという。)を生成するように構成されている。より具体的には、図13に示すように、カメラ制御部1420aは、画像データのフレームFc1に基づいて、車両101の周辺環境情報Ic1を生成し、画像データのフレームFc2に基づいて、周辺環境情報Ic2を生成し、画像データのフレームFc3に基づいて、周辺環境情報Ic3を生成する。このように、カメラ制御部1420aは、画像データの1フレームごとに周辺環境情報を生成する。
LiDAR制御部1430aは、LiDARユニット144aの動作を制御するように構成されている。特に、LiDAR制御部1430aは、フレームレートa2(第2フレームレート)で3Dマッピングデータ(第2検出データ)を取得するようにLiDARユニット144aを制御するように構成されている。さらに、LiDAR制御部1430aは、3Dマッピングデータの各フレームの取得タイミング(特に、取得開始時刻)を制御するように構成されている。また、LiDAR制御部1430aは、LiDARユニット144aから出力された3Dマッピングデータに基づいて、LiDARユニット144aの検出領域S2(図12参照)における車両101の周辺環境情報(以下、周辺環境情報Il)を生成するように構成されている。より具体的には、図13に示すように、LiDAR制御部1430aは、3DマッピングデータのフレームFl1に基づいて、周辺環境情報Il1を生成し、3DマッピングデータのフレームFl2に基づいて、周辺環境情報Il2を生成し、3DマッピングデータのフレームFl3に基づいて、周辺環境情報Il3を生成する。このように、LiDAR制御部1430aは、3Dマッピングデータの1フレームごとに周辺環境情報を生成する。
ミリ波レーダ制御部1440aは、ミリ波レーダ145aの動作を制御すると共に、ミリ波レーダ145aから出力された検出データに基づいて、ミリ波レーダ145aの検出領域S3(図12参照)における車両101の周辺環境情報Imを生成するように構成されている。例えば、ミリ波レーダ制御部1440aは、検出データのフレームFm1(図示せず)に基づいて、周辺環境情報Im1を生成し、検出データのフレームFm2(図示せず)に基づいて、周辺環境情報Im2を生成し、検出データのフレームFm3(図示せず)に基づいて、周辺環境情報Im3を生成する。
周辺環境情報融合部1450aは、周辺環境情報Ic,Il,Imを取得すると共に、取得した周辺環境情報Ic,Il,Imをそれぞれ融合することで、融合された周辺環境情報Ifを生成するように構成される。特に、画像データのフレームFc1の取得期間と、3DマッピングデータのフレームFl1の取得期間と、ミリ波レーダにより取得された検出データのフレームFm1の取得期間が互いに重複する場合、周辺環境情報融合部1450aは、フレームFc1に対応する周辺環境情報Ic1と、フレームFl1に対応する周辺環境情報Il1と、フレームFm1に対応する周辺環境情報Im1をそれぞれ融合することで、融合された周辺環境情報If1を生成してもよい。
周辺環境情報Ifは、図12に示すように、カメラ143aの検出領域S1と、LiDARユニット144aの検出領域S2と、ミリ波レーダ145aの検出領域S3を組合せた検出領域Sfにおける車両101の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報Ifは、対象物の属性、車両101に対する対象物の位置、車両101と対象物との間の距離及び/又は車両101に対する対象物の速度に関する情報を含んでもよい。周辺環境情報融合部1450aは、周辺環境情報Ifを車両制御部103に送信する。
また、制御部140b,140c,140dも制御部140aと同様の機能を有してもよい。つまり、制御部140b~140dの各々は、照明制御部と、カメラ制御部(第1生成部の一例)と、LiDAR制御部(第2生成部の一例)と、ミリ波レーダ制御部と、周辺環境情報融合部とを備えてもよい。制御部140b~140cの各々の周辺環境情報融合部は、融合された周辺環境情報Ifを車両制御部103に送信してもよい。車両制御部103は、各制御部140a~140dから送信された周辺環境情報Ifとその他の情報(走行制御情報、現在位置情報、地図情報等)に基づいて、車両101の走行を制御してもよい。
次に、図13を参照することで、画像データの各フレームの取得タイミングと、3Dマッピングデータの各フレームの取得タイミングとの関係について詳細に説明する。尚、以降では、説明の便宜上、ミリ波レーダ145aの検出データの取得タイミングについては特に言及しない。つまり、本実施形態では、画像データの取得タイミングと3Dマッピングデータの取得タイミングとの間の関係性について特に着目される。
図13の上段は、所定の期間におけるカメラ143aにより取得される画像データのフレーム(例えば、フレームFc1,Fc2,Fc3)の取得タイミングを示している。ここで、フレームFc2(第1検出データの第2フレームの一例)は、フレームFc1(第1検出データの第1フレームの一例)の次にカメラ143aによって取得される画像データのフレームである。フレームFc3は、フレームFc2の次にカメラ143aによって取得される画像データのフレームである。
また、画像データの1フレームの取得期間ΔTcは、画像データの1フレームを形成するために必要な露光時間(換言すれば、画像データの1フレームを形成する光を取り込む時間)に相当する。尚、CCDやCMOS等のイメージセンサーから出力された電気信号を処理する時間は、取得期間ΔTcには含まれていない。
フレームFc1の取得開始時刻tc1とフレームFc2の取得開始時刻tc2との間の期間は、画像データのフレーム周期T1に相当する。フレーム周期T1は、フレームレートa1の逆数(T1=1/a1)に相当する。
図13の中段は、所定の期間におけるLiDARユニット144aにより取得される3Dマッピングデータのフレーム(例えば、フレームFl1,Fl2,Fl3)の取得タイミングを示している。ここで、フレームFl2(第2検出データの第2フレームの一例)は、フレームFl1(第2検出データの第1フレームの一例)の次にLiDARユニット144aによって取得される3Dマッピングデータのフレームである。フレームFl3は、フレームFl2の次にLiDARユニット144aによって取得される3Dマッピングデータのフレームである。3Dマッピングデータの1フレームの取得期間ΔTlでは、LiDARユニット144aの受光部から出力された電気信号を処理する時間は含まれていない。
フレームFl1の取得開始時刻tl1とフレームFl2の取得開始時刻tl2との間の期間は、3Dマッピングデータのフレーム周期T2に相当する。フレーム周期T2は、フレームレートa2の逆数(T2=1/a2)に相当する。
図13に示すように、本実施形態では、画像データの各フレームの取得期間ΔTcと3Dマッピングデータの各フレームの取得期間ΔTlが互いに重複している。具体的には、3DマッピングデータのフレームFl1の取得期間ΔTlは、画像データのフレームFc1の取得期間ΔTcと重複している。3DマッピングデータのフレームFl2の取得期間ΔTlは、画像データのフレームFc2の取得期間ΔTcと重複している。3DマッピングデータのフレームFl3の取得期間ΔTlは、画像データのフレームFc3の取得期間ΔTcと重複している。
この点において、好ましくは、画像データの各フレームの取得開始時刻は、3Dマッピングデータの各フレームの取得開始時刻と一致してもよい。具体的には、3DマッピングデータのフレームFl1の取得開始時刻tl1は、画像データのフレームFc1の取得開始時刻tc1と一致してもよい。3DマッピングデータのフレームFl2の取得開始時刻tl2は、画像データのフレームFc2の取得開始時刻tc2と一致してもよい。3DマッピングデータのフレームFl3の取得開始時刻tl3は、画像データのフレームFc3の取得開始時刻tc3と一致してもよい。
このように、本実施形態によれば、画像データの各フレームの取得期間ΔTcと3Dマッピングデータの各フレームの取得期間ΔTlが互いに重複する。このため、例えば、フレームFc1に基づいて生成される周辺環境情報Ic1の時間帯は、フレームFl1に基づいて生成される周辺環境情報Il1の時間帯と略一致する。この結果、互いに時間帯が略一致する周辺環境情報Ic1,Il1を用いることで、車両101の周辺環境の認知精度を向上させることができる。特に、周辺環境情報Ic1の時間帯と周辺環境情報Il1の時間帯が略一致することで、周辺環境情報融合部1450aによって生成される周辺環境情報If1の精度を向上させることが可能となる。ここで、周辺環境情報If1は、周辺環境情報Ic1,Il1と、ミリ波レーダ145aのフレームFm1に基づいて生成される周辺環境情報Im1によって構成される。ミリ波レーダ145aのフレームFm1の取得期間は、フレームFc1の取得期間ΔTcとフレームFl1の取得期間ΔTlと重複してもよい。この場合、周辺環境情報If1の精度をさらに向上させることが可能となる。
また、車両101が高速で走行中の場合では、車両101の周辺環境は高速で変化するため、フレームFc1の取得期間ΔTcとフレームFl1の取得期間ΔTlが互いに重複しない場合、検出領域S1と検出領域S2とが互いに重複する重複領域Sx(図12参照)において、周辺環境情報Ic1と周辺環境情報Il1が互いに異なる可能性がある。例えば、周辺環境情報Ic1が歩行者P2の存在を示す一方、周辺環境情報Il1が歩行者P2の存在を示さないといった可能性がある。このように、互いに時間帯が異なる周辺環境情報Ic1,Il1が融合される場合、周辺環境情報If1の精度が悪化する虞がある。
次に、画像データの各フレームの取得タイミングと、3Dマッピングデータの各フレームの取得タイミングと、照明ユニット142aの点灯タイミングとの関係について詳細に説明する。図13の下段は、所定の期間における照明ユニット142aの点灯タイミング(点灯期間ΔTonと消灯期間ΔToff)を示している。照明ユニット142aの点灯期間ΔTonの点灯開始時刻ts1と次の点灯期間ΔTonの点灯開始時刻ts2との間の期間は、点灯周期T3に相当する。点灯周期T3は、レートa3の逆数(T3=1/a3)に相当する。
図13に示すように、照明ユニット142aの点灯周期T3は、画像データのフレーム周期T1と一致している。換言すれば、照明ユニット142aのレートa3は、画像データのフレームレートa1と一致している。さらに、照明ユニット142aは、画像データの各フレーム(例えば、フレームFc1,Fc2,Fc3)の取得期間ΔTcにおいて点灯する。
このように、本実施形態によれば、照明ユニット142aが点灯している間に、車両101の周辺環境を示す画像データがカメラ143aによって取得されるので、車両101の周辺環境が暗い(例えば、夜間)場合において、画像データにブラックアウトが生じることを好適に防止することが可能となる。
尚、図13に示す例では、画像データの各フレームの取得期間ΔTcが照明ユニット142aの点灯期間ΔTonに完全に重複しているが、本実施形態はこれには限定されない。画像データの各フレームの取得期間ΔTcの一部が、照明ユニット142aの点灯期間ΔTonに重複していればよい。
また、本実施形態では、カメラ143aを駆動させる前に、カメラ制御部1420aは、画像データの取得タイミング(例えば、最初のフレームの取得開始時刻等を含む。)を決定した上で、当該画像データの取得タイミングに関する情報をLiDAR制御部1430aと照明制御部1410aに送信してもよい。この場合、LiDAR制御部1430aは、受信した画像データの取得タイミングに関する情報に基づいて、3Dマッピングデータの取得タイミング(最初のフレームの取得開始時刻等)を決定する。さらに、照明制御部1410aは、受信した画像データの取得タイミングに関する情報に基づいて、照明ユニット142aの点灯タイミング(最初の点灯開始時刻等)を決定する。その後、カメラ制御部1420aは、画像データの取得タイミングに関する情報に基づいて、カメラ143aを駆動させる。また、LiDAR制御部1430aは、3Dマッピングデータの取得タイミングに関する情報に基づいて、LiDARユニット144aを駆動させる。さらに、照明制御部1410aは、照明ユニット142aの点灯タイミングに関する情報に基づいて、照明ユニット142aを点消灯させる。
このようにして、画像データの各フレームの取得開始時刻と、3Dマッピングデータの各フレームの取得開始時刻が互いに一致するように、カメラ143aとLiDARユニット144aを駆動させることが可能となる。さらに、画像データの各フレームの取得期間ΔTcにおいて点灯するように、照明ユニット142aを点灯制御させることが可能となる。
一方、上記の方法の代替案として、周辺環境情報融合部1450aは、画像データの取得タイミングと、3Dマッピングデータの取得タイミングと、照明ユニット142aの点灯タイミングを決定してもよい。この場合、周辺環境情報融合部1450aは、画像データの取得タイミングに関する情報をカメラ制御部1420aに送信し、3Dマッピングデータの取得タイミングに関する情報をLiDAR制御部1430aに送信し、照明ユニット142aの点灯タイミングに関する情報を照明制御部1410aに送信する。その後、カメラ制御部1420aは、画像データの取得タイミングに関する情報に基づいて、カメラ143aを駆動させる。また、LiDAR制御部1430aは、3Dマッピングデータの取得タイミングに関する情報に基づいて、LiDARユニット144aを駆動させる。さらに、照明制御部1410aは、照明ユニット142aの点灯タイミングに関する情報に基づいて、照明ユニット142aを点消灯させる。
次に、図14を参照して、照明ユニット142aの点灯周期T3を2倍にしたときにおける、画像データの各フレームの取得タイミングと、3Dマッピングデータの各フレームの取得タイミングと、照明ユニット142aの点灯タイミングとの関係について説明する。図14に示すように、照明ユニット142aの点灯周期が2T3に設定される。換言すれば、照明ユニット142aのレートは、a3/2に設定されるため、画像データのフレームレートa1の半分となる。さらに、照明ユニット142aは、画像データのフレームFc1の取得期間ΔTcにおいて点灯する一方、画像データの次のフレームFc2の取得期間ΔTcにおいて消灯する。このように、照明ユニット142aのレートa3/2は、画像データのフレームレートa1の半分となるため、画像データの所定のフレームの取得期間は、照明ユニット142aの点灯期間ΔTon2に重複すると共に、当該所定のフレームの次のフレームの取得期間は、照明ユニット142aの消灯期間ΔToff2に重複する。
このように、カメラ143aは、照明ユニット142aが点灯している間に車両101の周辺環境を示す画像データを取得すると共に、照明ユニット142aが消灯している間に当該画像データを取得する。つまり、カメラ143aは、照明ユニット142aが点灯したときの画像データのフレームと、照明ユニット142aが消灯したときの画像データのフレームを交互に取得する。このため、照明ユニット142aが消灯しているときに撮像された画像データM1と照明ユニット142aが点灯しているときに撮像された画像データM2を比較することで、車両101の周辺に存在する対象物が自ら発光しているのか又は光を反射しているのかを特定することができる。このように、カメラ制御部1420aは、車両101の周辺に存在する対象物の属性をより正確に特定することができる。さらに、照明ユニット142aが点灯している場合、照明ユニット142aから出射され、透光カバー122aによって反射された光の一部がカメラ143aに入射することで、画像データM2に迷光が生じる可能性がある。一方、照明ユニット142aが消灯している場合、画像データM1には迷光は生じない。このように、カメラ制御部1420aは、画像データM1と画像データM2を比較することで、画像データM2に生じる迷光を特定することができる。従って、車両101の周辺環境の認知精度を向上させることができる。
(第3実施形態)
以下、本開示の第3実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
以下、本開示の第3実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」について適宜言及する。これらの方向は、図15に示す車両201について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。
最初に、図15を参照して本実施形態に係る車両201について説明する。図15は、車両システム202を備える車両201の上面図を示す模式図である。図15に示すように、車両201は、自動運転モードで走行可能な車両(自動車)であって、車両システム202を備える。車両システム202は、車両制御部203と、左前照明システム204a(以下、単に「照明システム204a」という。)と、右前照明システム204b(以下、単に「照明システム204b」という。)と、左後照明システム204c(以下、単に「照明システム204c」という。)と、右後照明システム204d(以下、単に「照明システム204d」という。)を少なくとも備える。
照明システム204aは、車両201の左前側に設けられる。特に、照明システム204aは、車両201の左前側に設置されたハウジング224aと、ハウジング224aに取り付けられた透光カバー222aとを備える。照明システム204bは、車両201の右前側に設けられる。特に、照明システム204bは、車両201の右前側に設置されたハウジング224bと、ハウジング224bに取り付けられた透光カバー222bとを備える。照明システム204cは、車両201の左後側に設けられる。特に、照明システム204cは、車両201の左後側に設置されたハウジング224cと、ハウジング224cに取り付けられた透光カバー222cとを備える。照明システム204dは、車両201の右後側に設けられる。特に、照明システム204dは、車両201の右後側に設置されたハウジング224dと、ハウジング224dに取り付けられた透光カバー222dとを備える。
次に、図16を参照することで、図15に示す車両システム202を具体的に説明する。図16は、車両システム202を示すブロック図である。図16に示すように、車両システム202は、車両制御部203と、照明システム204a~204dと、センサ205と、HMI(Human Machine Interface)208と、GPS(Global Positioning System)209と、無線通信部210と、記憶装置211とを備える。さらに、車両システム202は、ステアリングアクチュエータ212と、ステアリング装置213と、ブレーキアクチュエータ214と、ブレーキ装置215と、アクセルアクチュエータ216と、アクセル装置217とを備える。また、車両システム202は、電力を供給するように構成されたバッテリー(図示せず)を備える。
車両制御部203は、車両201の走行を制御するように構成されている。車両制御部203は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及び/又はTPU(Tensor Processing Unit)である。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。
また、電子制御ユニット(ECU)は、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明システム204aは、制御部240aと、照明ユニット242aと、カメラ243aと、LiDAR(Light Detection and Ranging)ユニット244a(レーザーレーダの一例)と、ミリ波レーダ245aとを更に備える。制御部240aと、照明ユニット242aと、カメラ243aと、LiDARユニット244aと、ミリ波レーダ245aは、図15に示すように、ハウジング224aと透光カバー222aによって形成される空間Sa内(灯室内)に配置される。尚、制御部240aは、空間Sa以外の車両201の所定の場所に配置されてもよい。例えば、制御部240aは、車両制御部203と一体的に構成されてもよい。
制御部240aは、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含んでもよい。プロセッサは、例えば、CPU、MPU、GPU及び/又はTPUである。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROMと、RAMを含む。ROMには、車両201の周辺環境を特定するための周辺環境特定プログラムが記憶されてもよい。例えば、周辺環境特定プログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、周辺環境特定プログラム、カメラ243aに取得された画像データ、LiDARユニット244aによって取得された3次元マッピングデータ(点群データ)及び/又はミリ波レーダ245aによって取得された検出データ等が一時的に記憶されてもよい。プロセッサは、ROMに記憶された周辺環境特定プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、電子制御ユニット(ECU)は、ASICやFPGA等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明ユニット242aは、車両201の外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット242aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット242aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両201の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット242aは、運転者用の配光パターン(例えば、ロービーム用配光パターンやハイビーム用配光パターン)を車両201の前方に形成するように構成されている。このように、照明ユニット242aは、左側ヘッドランプユニットとして機能する。一方、車両201の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット242aは、カメラ用の配光パターンを車両201の前方に形成するように構成されてもよい。
制御部240aは、照明ユニット242aに設けられた複数の発光素子の各々に電気信号(例えば、PWM(Pulse Width Modulation)信号)を個別に供給するように構成されてもよい。このように、制御部240aは、電気信号が供給される発光素子を個別に選択することができると共に、発光素子毎に電気信号のDuty比を調整することができる。つまり、制御部240aは、マトリックス状に配列された複数の発光素子のうち、点灯又は消灯すべき発光素子を選択することができると共に、点灯している発光素子の輝度を決定することができる。このため、制御部240aは、照明ユニット242aから前方に向けて出射される配光パターンの形状及び明るさを変更することができる。
カメラ243aは、車両201の周辺環境を検出するように構成されている。特に、カメラ243aは、車両201の周辺環境を示す画像データを取得した上で、当該画像データを制御部240aに送信するように構成されている。制御部240aは、送信された画像データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両201の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両201の外部に存在する対象物の属性に関する情報と、車両201に対する対象物の距離や位置に関する情報とを含んでもよい。カメラ243aは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子によって構成される。カメラ243aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ243aがステレオカメラの場合、制御部240aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両201と車両201の外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。また、本実施形態では、1つのカメラ243aが照明システム204aに設けられているが、2以上のカメラ243aが照明システム204aに設けられてもよい。
LiDARユニット244a(レーザーレーダの一例)は、車両201の周辺環境を検出するように構成されている。特に、LiDARユニット244aは、車両201の周辺環境を示す3Dマッピングデータ(点群データ)を取得した上で、当該3Dマッピングデータを制御部240aに送信するように構成されている。制御部240aは、送信された3Dマッピングデータに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両201の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両201の外部に存在する対象物の属性に関する情報と、車両201に対する対象物の距離や位置に関する情報とを含んでもよい。
より具体的には、LiDARユニット244aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得した上で、飛行時間ΔT1に関する情報に基づいて、各出射角度(水平角度θ、垂直角度φ)におけるLiDARユニット244a(車両201)と車両201の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT1は、例えば、以下のように算出することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット244aは、車両201の周辺環境を示す3Dマッピングデータを取得することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット244aは、車両201の周辺環境を示す3Dマッピングデータを取得することができる。
また、LiDARユニット244aは、例えば、レーザ光を出射するように構成されたレーザ光源と、レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器と、レンズ等の光学系と、物体によって反射されたレーザ光を受光するように構成された受光部とを備える。レーザ光源から出射されるレーザ光の中心波長は特に限定されない。例えば、レーザ光は、中心波長が900nm付近である非可視光であってもよい。光偏向器は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーであってもよい。受光部は、例えば、フォトダイオードである。尚、LiDARユニット244aは、光偏向器によってレーザ光を走査せずに、3Dマッピングデータを取得してもよい。例えば、LiDARユニット244aは、フェイズドアレイ方式又はフラッシュ方式で3Dマッピングデータを取得してもよい。また、本実施形態では、1つのLiDARユニット244aが照明システム204aに設けられているが、2以上のLiDARユニット244aが照明システム204aに設けられてもよい。例えば、2つのLiDARユニット244aが照明システム204aに設けられている場合、一方のLiDARユニット244aが車両201の前方領域における周辺環境を検出するように構成されると共に、他方のLiDARユニット244aが車両201の側方領域における周辺環境を検出するように構成されてもよい。
ミリ波レーダ245aは、車両201の周辺環境を検出するように構成されている。特に、ミリ波レーダ245aは、車両201の周辺環境を示す検出データを取得した上で、当該検出データを制御部240aに送信するように構成されている。制御部240aは、送信された検出データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両201の外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両201の外部に存在する対象物の属性に関する情報と、車両201に対する対象物の位置に関する情報と、車両201に対する対象物の速度に関する情報を含んでもよい。
例えば、ミリ波レーダ245aは、パルス変調方式、FM-CW(Frequency Moduleted-Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ245a(車両201)と車両201の外部に存在する物体との間の距離Dを取得することができる。パルス変調方式を用いる場合、ミリ波レーダ245aは、ミリ波の各出射角度におけるミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、各出射角度におけるミリ波レーダ245a(車両201)と車両201の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT2は、例えば、以下のように算出することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ245aは、ミリ波レーダ245aから出射されたミリ波の周波数f0とミリ波レーダ245aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ245a(車両201)に対する車両201の外部に存在する物体の相対速度Vに関する情報を取得することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ245aは、ミリ波レーダ245aから出射されたミリ波の周波数f0とミリ波レーダ245aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ245a(車両201)に対する車両201の外部に存在する物体の相対速度Vに関する情報を取得することができる。
また、本実施形態では、1つのミリ波レーダ245aが照明システム204aに設けられているが、2以上のミリ波レーダ245aが照明システム204aに設けられてもよい。例えば、照明システム204aは、短距離用のミリ波レーダ245aと、中距離用のミリ波レーダ245aと、長距離用のミリ波レーダ245aを有してもよい。
照明システム204bは、制御部240bと、照明ユニット242bと、カメラ243bと、LiDARユニット244bと、ミリ波レーダ245bとを更に備える。制御部240bと、照明ユニット242bと、カメラ243bと、LiDARユニット244bと、ミリ波レーダ245bは、図15に示すように、ハウジング224bと透光カバー222bによって形成される空間Sb内(灯室内)に配置される。尚、制御部240bは、空間Sb以外の車両201の所定の場所に配置されてもよい。例えば、制御部240bは、車両制御部203と一体的に構成されてもよい。制御部240bは、制御部240aと同様な機能及び構成を有してもよい。照明ユニット242bは、照明ユニット242aと同様な機能及び構成を有してもよい。この点において、照明ユニット242aは、左側ヘッドランプユニットとして機能する一方、照明ユニット242bは、右側ヘッドランプユニットとして機能する。カメラ243bは、カメラ243aと同様な機能及び構成を有してもよい。LiDARユニット244bは、LiDARユニット244aと同様な機能及び構成を有してもよい。ミリ波レーダ245bは、ミリ波レーダ245aと同様な機能及び構成を有してもよい。
照明システム204cは、制御部240cと、照明ユニット242cと、カメラ243cと、LiDARユニット244cと、ミリ波レーダ245cとを更に備える。制御部240cと、照明ユニット242cと、カメラ243cと、LiDARユニット244cと、ミリ波レーダ245cは、図15に示すように、ハウジング224cと透光カバー222cによって形成される空間Sc内(灯室内)に配置される。尚、制御部240cは、空間Sc以外の車両201の所定の場所に配置されてもよい。例えば、制御部240cは、車両制御部203と一体的に構成されてもよい。制御部240cは、制御部240aと同様な機能及び構成を有してもよい。
照明ユニット242cは、車両201の外部(後方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット242cは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED、LD又は有機EL素子である。光学系は、光源から出射された光を照明ユニット242cの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両201の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット242cは消灯してもよい。一方、車両201の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット242cは、カメラ用の配光パターンを車両201の後方に形成するように構成されてもよい。
カメラ243cは、カメラ243aと同様な機能及び構成を有してもよい。LiDARユニット244cは、LiDARユニット244cと同様な機能及び構成を有してもよい。ミリ波レーダ245cは、ミリ波レーダ245aと同様な機能及び構成を有してもよい。
照明システム204dは、制御部240dと、照明ユニット242dと、カメラ243dと、LiDARユニット244dと、ミリ波レーダ245dとを更に備える。制御部240dと、照明ユニット242dと、カメラ243dと、LiDARユニット244dと、ミリ波レーダ245dは、図15に示すように、ハウジング224dと透光カバー222dによって形成される空間Sd内(灯室内)に配置される。尚、制御部240dは、空間Sd以外の車両201の所定の場所に配置されてもよい。例えば、制御部240dは、車両制御部203と一体的に構成されてもよい。制御部240dは、制御部240cと同様な機能及び構成を有してもよい。照明ユニット242dは、照明ユニット242cと同様な機能及び構成を有してもよい。カメラ243dは、カメラ243cと同様な機能及び構成を有してもよい。LiDARユニット244dは、LiDARユニット244cと同様な機能及び構成を有してもよい。ミリ波レーダ245dは、ミリ波レーダ245cと同様な機能及び構成を有してもよい。
センサ205は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ205は、車両201の走行状態を検出して、車両201の走行状態を示す走行状態情報を車両制御部203に出力するように構成されている。また、センサ205は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、センサ205は、車両201の周辺環境の明るさ(照度等)を検出するように構成された照度センサを備えてもよい。照度センサは、例えば、フォトダイオードから出力される光電流の大きさに応じて周辺環境の明るさを決定してもよい。
HMI(Human Machine Interface)208は、運転者からの入力操作を受付ける入力部と、走行状態情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両201の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、走行状態情報、周辺環境情報および照明システム4の照明状態を表示するように構成されたディスプレイ等を含む。
GPS(Global Positioning System)209は、車両201の現在位置情報を取得し、当該取得された現在位置情報を車両制御部203に出力するように構成されている。無線通信部210は、車両201の周囲にいる他車に関する情報(例えば、他車走行情報等)を他車から受信すると共に、車両201に関する情報(例えば、自車走行情報等)を他車に送信するように構成されている(車車間通信)。
また、無線通信部210は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両201の自車走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部210は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両201の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両201は、他車両、インフラ設備又は携帯型電子機器とアドホックモードにより直接通信してもよいし、アクセスポイントを介して通信してもよい。無線通信規格は、例えば、Wi-Fi(登録商標),Bluetooth(登録商標),ZigBee(登録商標)又はLPWAである。また、車両201は、他車両、インフラ設備又は携帯型電子機器と移動通信ネットワークを介して通信してもよい。
記憶装置211は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置211には、2D又は3Dの地図情報及び/又は車両制御プログラムが記憶されてもよい。例えば、3Dの地図情報は、点群データによって構成されてもよい。記憶装置211は、車両制御部203からの要求に応じて、地図情報や車両制御プログラムを車両制御部203に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部210とインターネット等の通信ネットワークを介して更新されてもよい。
車両201が自動運転モードで走行する場合、車両制御部203は、走行状態情報、周辺環境情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ212は、ステアリング制御信号を車両制御部203から受信して、受信したステアリング制御信号に基づいてステアリング装置213を制御するように構成されている。ブレーキアクチュエータ214は、ブレーキ制御信号を車両制御部203から受信して、受信したブレーキ制御信号に基づいてブレーキ装置215を制御するように構成されている。アクセルアクチュエータ216は、アクセル制御信号を車両制御部203から受信して、受信したアクセル制御信号に基づいてアクセル装置217を制御するように構成されている。このように、自動運転モードでは、車両201の走行は車両システム202により自動制御される。
一方、車両201が手動運転モードで走行する場合、車両制御部203は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に応じて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両201の走行は運転者により制御される。
次に、車両201の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム202がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両201を運転できる状態にはない。高度運転支援モードでは、車両システム202がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両201を運転できる状態にはあるものの車両201を運転しない。運転支援モードでは、車両システム202がステアリング制御、ブレーキ制御及びアクセル制御のうちの一部の走行制御を自動的に行うと共に、車両システム202の運転支援の下で運転者が車両201を運転する。一方、手動運転モードでは、車両システム202が走行制御を自動的に行わないと共に、車両システム202からの運転支援なしに運転者が車両201を運転する。
また、車両201の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部203は、運転モード切替スイッチに対する運転者の操作に応じて、車両201の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両201の運転モードは、自動運転車の走行が可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部203は、これらの情報に基づいて車両201の運転モードを切り替える。さらに、車両201の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部203は、着座センサや顔向きセンサからの出力信号に基づいて、車両201の運転モードを切り替えてもよい。
次に、図17を参照して、制御部240aの機能について説明する。図17は、照明システム204aの制御部240aの機能ブロックを示す図である。図17に示すように、制御部240aは、照明ユニット242aと、カメラ243aと、LiDARユニット244aと、ミリ波レーダ245aの動作をそれぞれ制御するように構成されている。特に、制御部240aは、照明制御部2410aと、周辺環境情報特定部2400aと、検出精度決定部2460aとを備える。
照明制御部2410aは、照明ユニット242aが所定の配光パターンを車両201の前方領域に向けて出射するように照明ユニット242aを制御するように構成されている。例えば、照明制御部2410aは、車両201の運転モードに応じて照明ユニット242aから出射される配光パターンを変更してもよい。
周辺環境情報特定部2400aは、カメラ制御部2420aと、LiDAR制御部2430aと、ミリ波レーダ制御部2440aと、周辺環境情報融合部2450aとを備える。
カメラ制御部2420aは、カメラ243aの動作を制御すると共に、カメラ243aから出力された画像データ(検出データ)に基づいて、カメラ243aの検出領域S1(図18参照)における車両201の周辺環境情報(以下、周辺環境情報I1という。)を生成するように構成されている。LiDAR制御部2430aは、LiDARユニット244aの動作を制御すると共に、LiDARユニット244aから出力された3Dマッピングデータ(検出データ)に基づいて、LiDARユニット244aの検出領域S2(図18参照)における車両201の周辺環境情報(以下、周辺環境情報I2という。)を生成するように構成されている。ミリ波レーダ制御部2440aは、ミリ波レーダ245aの動作を制御すると共に、ミリ波レーダ245aから出力された検出データに基づいて、ミリ波レーダ245aの検出領域S3(図18参照)における車両201の周辺環境情報(以下、周辺環境情報I3という。)を生成するように構成されている。
周辺環境情報融合部2450aは、周辺環境情報I1,I2,I3をそれぞれ融合することで、融合された周辺環境情報Ifを生成するように構成される。ここで、周辺環境情報Ifは、図18に示すように、カメラ243aの検出領域S1と、LiDARユニット244aの検出領域S2と、ミリ波レーダ245aの検出領域S3を組合せた検出領域Sfにおける車両201の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報Ifは、対象物の属性、車両201に対する対象物の位置、車両201と対象物との間の距離及び/又は車両201に対する対象物の速度に関する情報を含んでもよい。周辺環境情報融合部2450aは、周辺環境情報Ifを車両制御部203に送信するように構成されてもよい。
検出精度決定部2460aは、複数のセンサ(カメラ243aと、LiDARユニット244aと、ミリ波レーダ245a)の各々の検出精度を決定するように構成されている。ここで、センサの検出精度は、百分率(0%から100%)として規定されてもよい。この場合、センサの検出精度が高い程、センサの検出精度は100%に近づく。また、センサの検出精度は、AからCの3つのクラスでランク付けされてもよい。例えば、センサの検出精度が高い場合に、センサの検出精度はAランクとして決定されてもよい。一方、センサの検出精度が低い場合に、センサの検出精度は、Cランクとして決定されてもよい。また、所定のセンサの検出精度が所定の期間又は更新回数に亘って低い場合には、車両システム202(特に、車両制御部203又は制御部240a)は、所定のセンサに異常があると判定してもよい。さらに、制御部240aは、複数のセンサの検出領域が互いに重複する重複領域において、検出精度が高いセンサの検出データ又は周辺環境情報を採用してもよい。このように、センサの検出精度に関する情報を利用することで、車両201の周辺環境の認知精度を向上させることが可能な車両システム202を提供することができる。
例えば、カメラ243aの検出精度がLiDARユニット244aの検出精度よりも高い場合には、画像データ(カメラ243aの検出データ)は、3Dマッピングデータ(LiDARユニット244aの検出データ)よりも優先して使用される。この場合、周辺環境情報融合部2450aは、周辺環境情報Ifを生成する際に、検出領域S1と検出領域S2とが互いに重複する重複領域Sx(図18参照)において、3Dマッピングデータに基づいて生成される周辺環境情報I2よりも画像データに基づいて生成される周辺環境情報I1を採用する。特に、重複領域Sxにおいて、周辺環境情報I1と周辺環境情報I2との間に矛盾が生じている場合(周辺環境情報I1と周辺環境情報I2とが互いに一致していない場合)、周辺環境情報融合部2450aは、周辺環境情報I1を採用する。
このように、周辺環境情報特定部2400aは、複数のセンサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出データと、複数のセンサの検出精度に基づいて、車両201の周辺環境を特定するように構成されている。
尚、本実施形態では、周辺環境情報融合部2450aと検出精度決定部2460aは、制御部240aによって実現されているが、これらは車両制御部203によって実現されてもよい。
また、制御部240b,240c,240dも制御部240aと同様の機能を有してもよい。つまり、制御部240b~240dの各々は、照明制御部と、周辺環境情報特定部と、検出精度決定部とを有してもよい。また、制御部240b~240dの周辺環境情報特定部は、カメラ制御部と、LiDAR制御部と、ミリ波レーダ制御部と、周辺環境情報融合部とを有してもよい。制御部240b~240dの各々の周辺環境情報融合部は、融合された周辺環境情報Ifを車両制御部203に送信してもよい。車両制御部203は、各制御部240a~240dから送信された周辺環境情報Ifとその他の情報(走行制御情報、現在位置情報、地図情報等)に基づいて、車両201の走行を制御してもよい。
次に、本実施形態に係る複数センサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度を決定する処理の一例について図19を参照して説明する。図19は、本実施形態に係る各センサの検出精度を決定する処理を説明するためのフローチャートである。尚、本実施形態では、説明の便宜上、照明システム204aの動作フローについてのみ説明を行うが、照明システム204aの動作フローは、照明システム204b~204dにも適用可能である点に留意されたい。
図19に示すように、ステップS201において、車両制御部203は、車両201が停止しているかどうかを判定する。ステップS201で判定結果がYESである場合、車両制御部203は、GPS209を用いて車両201の現在位置情報を取得する(ステップS202)。一方、ステップS201の判定結果がNOである場合、車両制御部203は、ステップS201の判定結果がYESになるまで待機する。尚、本実施形態では、車両201が停止した状態で、ステップS202~S208の処理が実行されているが、車両が走行している状態で、これらの処理が実行されてもよい。
次に、車両制御部203は、記憶装置211から地図情報を取得する(ステップS203)。地図情報は、例えば、点群データによって構成された3D地図情報であってもよい。次に、車両制御部203は、車両201の現在位置情報と地図情報を検出精度決定部2460aに送信する。その後、検出精度決定部2460aは、車両201の現在位置情報と地図情報に基づいて、センサの検出精度を決定するためのテストオブジェクトが車両201の周辺に存在するかどうかを判定する(ステップS204)。テストオブジェクトは、例えば、信号機、交通標識、電柱、街路灯等の所定の位置に固定的に配置された交通インフラ設備であってもよい。特に、3つのセンサの検出精度が決定される場合には、テストオブジェクトは、カメラ243aの検出領域S1と、LiDARユニット244aの検出領域S2と、ミリ波レーダ245aの検出領域S3とが互いに重複する重複領域Syに存在することが好ましい(例えば、図18に示すテストオブジェクトの一例である信号機T1を参照)。一方、テストオブジェクトが重複領域Sxに存在する場合には、検出精度決定部2460aは、カメラ243aとLiDARユニット244aの検出精度を決定する。
検出精度決定部2460aは、テストオブジェクトが車両201の周辺に存在すると判定した場合(ステップS204でYES)、テストオブジェクトに関連する情報を取得する(ステップS205)。例えば、検出精度決定部2460aは、車両201の現在位置情報と地図情報に基づいて、テストオブジェクトの属性情報、距離情報及び/又は位置情報等を取得してもよい。次に、周辺環境情報特定部2400aは、各センサの検出データを取得する(ステップS206)。具体的には、カメラ制御部2420aは、カメラ243aから画像データを取得する。LiDAR制御部2430aは、LiDARユニット244aから3Dマッピングデータ(点群データ)を取得する。ミリ波レーダ制御部2440aは、ミリ波レーダ245aから検出データを取得する。
次に、周辺環境情報特定部2400aは、複数センサから取得された検出データに基づいて複数の周辺環境情報を取得する(ステップS207)。具体的には、カメラ制御部2420aは、画像データに基づいて周辺環境情報I1を取得する。LiDAR制御部2430aは、3Dマッピングデータに基づいて周辺環境情報I2を取得する。ミリ波レーダ制御部2440aは、ミリ波レーダ245aの検出データに基づいて周辺環境情報I3を取得する。
次に、検出精度決定部2460aは、周辺環境情報特定部2400aから周辺環境情報I1,I2,I3を受信した上で、ステップS205で取得されたテストオブジェクト(例えば、図18に示す信号機T1)に関連する情報と、周辺環境情報I1~I3の各々を比較することで、各センサの検出精度を決定する(ステップS208)。
例えば、検出精度決定部2460aは、周辺環境情報I1に含まれるテストオブジェクトに関連する情報がステップS205で取得されたテストオブジェクトに関連する情報に一致すると判定した場合、カメラ243aの検出精度は高いと決定する。この場合、カメラ243aの検出精度はAランクとして決定されてもよい。一方、検出精度決定部2460aは、周辺環境情報I2に含まれるテストオブジェクトに関連する情報がステップS205で取得されたテストオブジェクトに関連する情報に全く一致しないと判定した場合、LiDARユニット244aの検出精度は低いと決定する。この場合、LiDARユニット244aの検出精度はCランクとして決定されてもよい。このように、地図情報を利用することで比較的高い精度で複数のセンサの検出精度を決定することが可能となる。また、検出精度決定部2460aは、所定の更新周期で無線通信部210を介して各センサの検出精度に関する情報を通信ネットワーク上に存在するクラウドサーバに送信してもよい。クラウドサーバに保存された各センサの検出精度に関する情報は、ビックデータとして各センサの検出精度を向上させるために利用されてもよい。さらに、当該検出精度に関する情報は、各センサの異常判定に利用されてもよい。例えば、所定の期間に亘りカメラ243aの検出精度が低い場合には、クラウドサーバは、カメラ243aの異常を示す情報を車両201に送信してもよい。車両201は、当該情報を受信したときに、カメラ243aの異常を示す情報を視覚的、聴覚的及び/又は触覚的に乗員に提示してもよい。このように、カメラ243aの異常が乗員に提示されるので、車両201の走行安全性をさらに高めることができる。
次に、図20を参照して融合された周辺環境情報Ifを生成する処理の一例について説明する。本説明では、カメラ243aの検出精度と、LiDARユニット244aの検出精度と、ミリ波レーダ245aの検出精度との間の関係は、カメラ243a>LiDARユニット244a>ミリ波レーダ245aであるとする。
図20に示すように、ステップS20において、カメラ243aは、検出領域S1(図18参照)における車両201の周辺環境を示す画像データを取得する。また、ステップS21において、LiDARユニット244aは、検出領域S2における車両201の周辺環境を示す3Dマッピングデータを取得する。さらに、ステップS222において、ミリ波レーダ245aは、検出領域S3における車両201の周辺環境を示す検出データを取得する。
次に、カメラ制御部2420aは、カメラ243aから画像データを取得した上で、画像データに基づいて周辺環境情報I1を生成する(ステップS223)。また、LiDAR制御部2430aは、LiDARユニット244aから3Dマッピングデータを取得した上で、3Dマッピングデータに基づいて周辺環境情報I2を生成する(ステップS224)。さらに、ミリ波レーダ制御部2440aは、ミリ波レーダ245aから検出データを取得した上で、検出データに基づいて周辺環境情報I3を生成する(ステップS225)。
次に、ステップS226において、周辺環境情報融合部2450aは、各センサの検出精度に関する情報を検出精度決定部2460aから受け取ると共に、各重複領域Sx,Sy,Szにおいて複数の周辺環境情報を比較する。具体的には、周辺環境情報融合部2450aは、検出領域S1と検出領域S2とが互いに重複する重複領域Sxにおいて、周辺環境情報I1と周辺環境情報I2とを比較した上で、周辺環境情報I1と周辺環境情報I2が互いに一致するかどうかを判定する。例えば、周辺環境情報I1が重複領域Sxにおいて歩行者P4の位置を位置Z1として示す一方、周辺環境情報I2が重複領域Sxにおいて歩行者P4の位置を位置Z2として示す場合、周辺環境情報I1と周辺環境情報I2が互いに一致しないと判定される。周辺環境情報融合部2450aは、比較結果として、周辺環境情報I1と周辺環境情報I2が互いに一致しないと判定した場合、カメラ243aの検出精度とLiDARユニット244aの検出精度との間の関係(カメラ243a>LiDARユニット244a)に基づいて、重複領域Sxにおいて採用される周辺環境情報を周辺環境情報I1として決定する。
また、周辺環境情報融合部2450aは、検出領域S2と検出領域S3とが互いに重複する重複領域Szにおいて、周辺環境情報I2と周辺環境情報I3とを比較した上で、周辺環境情報I2と周辺環境情報I3が互いに一致するかどうかを判定する。周辺環境情報融合部2450aは、比較結果として、周辺環境情報I2と周辺環境情報I3が互いに一致しないと判定した場合、LiDARユニット244aの検出精度とミリ波レーダ245aの検出精度との間の関係(LiDARユニット244a>ミリ波レーダ245a)に基づいて、重複領域Szにおいて採用される周辺環境情報を周辺環境情報I2として決定する。
また、周辺環境情報融合部2450aは、検出領域S1と、検出領域S2と、検出領域S3とが互いに重複する重複領域Syにおいて、周辺環境情報I1と、周辺環境情報I2と、周辺環境情報I3とを比較した上で、周辺環境情報I1と、周辺環境情報I2と、周辺環境情報I3とが互いに一致するかどうかを判定する。周辺環境情報融合部2450aは、比較結果として、周辺環境情報I1と、周辺環境情報I2と、周辺環境情報I3が互いに一致しないと判定した場合、各センサの検出精度(カメラ243a>LiDARユニット244a>ミリ波レーダ245a)に基づいて、重複領域Syにおいて採用される周辺環境情報を周辺環境情報I1として決定する。
その後、周辺環境情報融合部2450aは、周辺環境情報I1,I2,I3をそれぞれ融合することで、融合された周辺環境情報Ifを生成する。周辺環境情報Ifは、検出領域S1,S2,S3を組合せた検出領域Sfにおける車両201の外部に存在する対象物に関する情報を含んでもよい。特に、周辺環境情報Ifは、以下の情報によって構成されてもよい。
・検出領域S1における周辺環境情報I1
・重複領域Sx,Syを除く検出領域S2における周辺環境情報I2
・重複領域Sy,Szを除く検出領域S3における周辺環境情報I3
このように、図20に示す周辺環境情報Ifを生成する処理が繰り返し実行される。
・検出領域S1における周辺環境情報I1
・重複領域Sx,Syを除く検出領域S2における周辺環境情報I2
・重複領域Sy,Szを除く検出領域S3における周辺環境情報I3
このように、図20に示す周辺環境情報Ifを生成する処理が繰り返し実行される。
このように、本実施形態によれば、複数のセンサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度が決定された上で、複数のセンサの検出データと検出精度に基づいて、車両201の周辺環境が特定される(換言すれば、周辺環境情報Ifが生成される)。このように、複数のセンサの検出精度を考慮して車両201の周辺環境が特定されるので、車両201の周辺環境の認知精度を向上させることが可能な照明システム204a及び車両システム202を提供することができる。
また、本実施形態によれば、重複領域Sx,Sy,Szにおいて複数の周辺環境情報が比較される。比較結果として、複数の周辺環境情報が互いに一致しない場合に、複数のセンサの検出精度に基づいて、各重複領域Sx,Sy,Szにおいて採用される周辺環境情報が決定される。その後、融合された周辺環境情報Ifが生成される。このように、複数のセンサの検出精度を考慮して周辺環境情報Ifが生成されるので、車両201の周辺環境の認知精度を向上させることができる。
尚、上記で説明した周辺環境情報Ifを生成する処理では、各重複領域Sx,Sy,Szにおいて複数の周辺環境情報が比較されなくてもよい。この場合、周辺環境情報融合部2450aは、重複領域Sx,Sy,Szにおいて複数の周辺環境情報を比較せずに、複数のセンサの検出精度に関する情報と、周辺環境情報I1~I3に基づいて、周辺環境情報Ifを生成してもよい。
次に、本実施形態の変形例に係る照明システム204aの動作フローの一例について図21を参照して説明する。図21(a)は、各重複領域Sx,Sy,Sz(図18参照)において採用される検出データを決定する処理の一例を説明するためのフローチャートである。図21(b)は、融合された周辺環境情報Ifを生成する処理の他の一例を説明するためのフローチャートである。
最初に、図21(a)を参照して各重複領域Sx,Sy,Szにおいて採用される検出データを決定する処理の一例について説明する。本説明では、カメラ243aの検出精度と、LiDARユニット244aの検出精度と、ミリ波レーダ245aの検出精度との間の関係は、カメラ243a>LiDARユニット244a>ミリ波レーダ245aであるとする。
図21(a)に示すように、ステップS230において、検出精度決定部2460aは、カメラ243a、LiDARユニット244a及びミリ波レーダ245aの検出精度を決定する。次に、ステップS231において、周辺環境情報融合部2450aは、各センサの検出精度に関する情報を検出精度決定部2460aから受信した後に、各センサの検出精度に関する情報に基づいて、各重複領域Sx,Sy,Szにおいて採用されるセンサの検出データを決定する。
例えば、周辺環境情報融合部2450aは、カメラ243aの検出精度とLiDARユニット244aの検出精度との間の関係(カメラ243a>LiDARユニット244a)に基づいて、重複領域Sxにおいて採用されるセンサの検出データをカメラ243aの画像データとして決定する。
また、周辺環境情報融合部2450aは、LiDARユニット244aの検出精度とミリ波レーダ245aの検出精度との間の関係(LiDARユニット244a>ミリ波レーダ245a)に基づいて、重複領域Szにおいて採用されるセンサの検出データをLiDARユニット244aの3Dマッピングデータとして決定する。
また、周辺環境情報融合部2450aは、各センサの検出精度(カメラ243a>LiDARユニット244a>ミリ波レーダ245a)に基づいて、重複領域Syにおいて採用されるセンサの検出データをカメラ243aの画像データとして決定する。
次に、図21(b)を参照して周辺環境情報Ifを生成する処理の他の一例について説明する。図21(b)に示すように、ステップS240において、カメラ243aは、検出領域S1における画像データを取得する。また、ステップS241において、LiDARユニット244aは、検出領域S2における3Dマッピングデータを取得する。さらに、ステップS242において、ミリ波レーダ245aは、検出領域S3における検出データを取得する。
次に、カメラ制御部2420aは、カメラ243aから画像データを取得すると共に、周辺環境情報融合部2450aから各重複領域Sx,Sy,Szにおいて採用されるセンサの検出データに関する情報(以下、「検出データ優先情報」という。)を取得する。検出データ優先情報は、画像データが重複領域Sx,Syにおいて採用されることを示しているため、カメラ制御部2420aは、検出領域S1における周辺環境情報I1を生成する(ステップS243)。
また、ステップS244において、LiDAR制御部2430aは、LiDARユニット244aから3Dマッピングデータを取得すると共に、周辺環境情報融合部2450aから検出データ優先情報を取得する。検出データ優先情報は、画像データが重複領域Sx,Syにおいて採用されると共に、3Dマッピングデータが重複領域Szにおいて採用されることを示しているため、LiDAR制御部2430aは、重複領域Sx,Syを除く検出領域S2における周辺環境情報I2を生成する。
さらに、ステップS245において、ミリ波レーダ制御部2440aは、ミリ波レーダ245aから検出データを取得すると共に、周辺環境情報融合部2450aから検出データ優先情報を取得する。検出データ優先情報は、画像データが重複領域Syにおいて採用されると共に、3Dマッピングデータが重複領域Szにおいて採用されることを示しているため、ミリ波レーダ制御部2440aは、重複領域Sy,Szを除く検出領域S3における周辺環境情報I3を生成する。
その後、ステップS246において、周辺環境情報融合部2450aは、周辺環境情報I1,I2,I3をそれぞれ融合することで、融合された周辺環境情報Ifを生成する。周辺環境情報Ifは、検出領域S1における周辺環境情報I1と、重複領域Sx,Syを除く検出領域S2における周辺環境情報I2と、重複領域Sy,Szを除く検出領域S3における周辺環境情報I3によって構成される。このように、図21(b)に示す周辺環境情報Ifを生成する処理が繰り返し実行される。
本実施形態の変形例によれば、複数の検出精度に基づいて検出データ優先情報が生成された上で、検出データ優先情報に基づいて周辺環境情報Ifが生成されるので、車両201の周辺環境の認知精度を向上させることが可能となる。さらに、LiDAR制御部2430aは、重複領域Sx,Syを除く検出領域S2における周辺環境情報I2を生成すると共に、ミリ波レーダ制御部2440aは、重複領域Sy,Szを除く検出領域S3における周辺環境情報I3を生成する。このように、重複領域における周辺環境情報の生成処理が省略されるため、制御部240aによる演算量を削減することが可能となる。特に、図21(b)に示す処理は繰り返し実行されるため、制御部240aによる演算量の削減効果は大きい。
(第3実施形態の第1変形例)
次に、第3実施形態の第1変形例に係る複数センサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度を決定する処理の一例について図22を参照して説明する。図22は、第2実施形態の第1変形例に係る各センサの検出精度を決定する処理の一例を説明するためのフローチャートである。
次に、第3実施形態の第1変形例に係る複数センサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度を決定する処理の一例について図22を参照して説明する。図22は、第2実施形態の第1変形例に係る各センサの検出精度を決定する処理の一例を説明するためのフローチャートである。
図22に示すように、ステップS250において、車両制御部203は、車両201が停止しているかどうかを判定する。ステップS250で判定結果がYESである場合、車両制御部203は、GPS209を用いて車両201の現在位置情報を取得する(ステップS251)。一方、ステップS250の判定結果がNOである場合、車両制御部203は、ステップS250の判定結果がYESになるまで待機する。尚、本実施形態では、車両201が停止した状態で、ステップS251~S255の処理が実行されているが、車両が走行している状態で、これらの処理が実行されてもよい。
次に、車両制御部203は、無線通信部210を介して所定の位置に固定的に配置された交通インフラ設備からインフラ情報を受信する(ステップS252)。交通インフラ設備は、無線通信機能を有しており、例えば、信号機T1(図18参照)、交通標識、電柱、街路灯等である。さらに、インフラ情報は、送信元である交通インフラ設備に関連した情報であって、例えば、交通インフラ設備の属性情報及び/又は位置情報を含んでもよい。車両201は、交通インフラ設備からインフラ情報を無線により受信可能な範囲内に位置していることから、交通インフラ設備は、各センサの検出領域内に存在するものとする。車両201と交通インフラ設備との間の路車間通信は、例えば、5G、Wi-Fi、Bluetooth又はZigBee等によって実現されてもよい。その後、車両制御部203は、インフラ情報を検出精度決定部2460aに送信する。
次に、周辺環境情報特定部2400aは、各センサの検出データを取得する(ステップS253)。具体的には、カメラ制御部2420aは、カメラ243aから画像データを取得する。LiDAR制御部2430aは、LiDARユニット244aから3Dマッピングデータ(点群データ)を取得する。ミリ波レーダ制御部2440aは、ミリ波レーダ245aから検出データを取得する。
次に、周辺環境情報特定部2400aは、複数センサから取得された検出データに基づいて複数の周辺環境情報を取得する(ステップS254)。具体的には、カメラ制御部2420aは、画像データに基づいて周辺環境情報I1を取得する。LiDAR制御部2430aは、3Dマッピングデータに基づいて周辺環境情報I2を取得する。ミリ波レーダ制御部2440aは、ミリ波レーダ245aの検出データに基づいて周辺環境情報I3を取得する。
次に、検出精度決定部2460aは、周辺環境情報特定部2400aから周辺環境情報I1,I2,I3を受信した上で、ステップS252で取得されたインフラ情報と、周辺環境情報I1~I3の各々を比較することで、各センサの検出精度を決定する(ステップS255)。
例えば、検出精度決定部2460aは、周辺環境情報I1に含まれる送信元の交通インフラ設備に関連する情報がステップS252で取得されたインフラ情報に一致すると判定した場合、カメラ243aの検出精度は高いと決定する。一方、検出精度決定部2460aは、周辺環境情報I2に含まれる送信元の交通インフラ設備に関連する情報がステップS252で取得されたインフラ情報に全く一致しないと判定した場合、LiDARユニット244aの検出精度は低いと決定する。このように、交通インフラ設備からインフラ情報を受信することで、比較的高い精度で複数のセンサの検出精度を決定することが可能となる。
(第3実施形態の第2変形例)
次に、第3実施形態の第2変形例に係る複数センサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度を決定する処理の一例について図23を参照して説明する。図23は、第2実施形態の第2変形例に係る各センサの検出精度を決定する処理の一例を説明するためのフローチャートである。
次に、第3実施形態の第2変形例に係る複数センサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度を決定する処理の一例について図23を参照して説明する。図23は、第2実施形態の第2変形例に係る各センサの検出精度を決定する処理の一例を説明するためのフローチャートである。
図23に示すように、ステップS260において、車両制御部203は、車両201が停止しているかどうかを判定する。ステップS260で判定結果がYESである場合、車両制御部203は、周辺環境情報特定部2400aにステップS261の処理を実行するように指示する。一方、ステップS260の判定結果がNOである場合、車両制御部203は、ステップS260の判定結果がYESになるまで待機する。尚、本実施形態では、車両201が停止した状態で、ステップS261~S263の処理が実行されているが、車両が走行している状態で、これらの処理が実行されてもよい。
次に、ステップS261において、周辺環境情報特定部2400aは、各センサの検出データを取得する。具体的には、カメラ制御部2420aは、カメラ243aから画像データを取得する。LiDAR制御部2430aは、LiDARユニット244aから3Dマッピングデータ(点群データ)を取得する。ミリ波レーダ制御部2440aは、ミリ波レーダ245aから検出データを取得する。
次に、周辺環境情報特定部2400aは、複数センサから取得された検出データに基づいて複数の周辺環境情報を取得する(ステップS262)。具体的には、カメラ制御部2420aは、画像データに基づいて周辺環境情報I1を取得する。LiDAR制御部2430aは、3Dマッピングデータに基づいて周辺環境情報I2を取得する。ミリ波レーダ制御部2440aは、ミリ波レーダ245aの検出データに基づいて周辺環境情報I3を取得する。
次に、検出精度決定部2460aは、周辺環境情報特定部2400aから周辺環境情報I1,I2,I3を受信した上で、周辺環境情報I1~I3を比較することで、各センサの検出精度を決定する(ステップS263)。例えば、図18に示すように、周辺環境情報I1,I2が重複領域Syに存在する信号機T1の位置を位置X1として示す一方、周辺環境情報I3が重複領域Syに存在する信号機T1の位置を位置X2として示す場合、検出精度決定部2460aは、多数決によって周辺環境情報I3が誤っていると判定してもよい。この場合、検出精度決定部2460aは、ミリ波レーダ245aの検出精度が低いと判定してもよい。このように、地図情報等の外部情報を利用せずに、比較的簡単な手法により複数のセンサの検出精度を決定することが可能となる。
(第3実施形態の第3変形例)
次に、第3実施形態の第3変形例に係る複数センサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度を決定する処理について図24を参照して説明する。図24は、カメラ243aの検出領域S1とLiDARユニット244aの検出領域S2が複数の部分領域に区分された状態を示す図である。図24に示すように、検出領域S1が水平方向において3つの部分領域(部分領域S11,S12,S13)に区分されている。また、検出領域S2が水平方向において3つの部分領域(部分領域S21,S22,S23)に区分されている。尚、本例では、検出領域S1,S2は、所定の角度範囲毎に複数の部分領域に区分されているが、所定の角度範囲及び所定の距離毎に複数の部分領域に区分されていてもよい。
次に、第3実施形態の第3変形例に係る複数センサ(カメラ243a、LiDARユニット244a、ミリ波レーダ245a)の検出精度を決定する処理について図24を参照して説明する。図24は、カメラ243aの検出領域S1とLiDARユニット244aの検出領域S2が複数の部分領域に区分された状態を示す図である。図24に示すように、検出領域S1が水平方向において3つの部分領域(部分領域S11,S12,S13)に区分されている。また、検出領域S2が水平方向において3つの部分領域(部分領域S21,S22,S23)に区分されている。尚、本例では、検出領域S1,S2は、所定の角度範囲毎に複数の部分領域に区分されているが、所定の角度範囲及び所定の距離毎に複数の部分領域に区分されていてもよい。
検出精度決定部2460aは、部分領域S11~S13の各々におけるカメラ243aの検出精度を決定すると共に、部分領域S21~S23の各々におけるLiDARユニット244aの検出精度を決定する。また、検出精度決定部2460aは、部分領域S12の検出精度と、部分領域S22の検出精度と、ミリ波レーダ245aの検出精度を比較することで、重複領域Syにおいて採用される周辺環境情報を決定してもよい。例えば、部分領域S11の検出精度がBランク、部分領域S12の検出精度がAランク、部分領域S13の検出精度がBランクと仮定する。さらに、部分領域S21の検出精度がAランク、部分領域S22の検出精度がBランク、部分領域S23の検出精度がAランクと仮定する。さらに、ミリ波レーダ245aの検出精度がBランクと仮定する。この場合、部分領域S12の検出精度が最も高いので、検出精度決定部2460aは、重複領域Syにおいて採用される周辺環境情報を周辺環境情報I1として決定する。このように、部分領域に応じて各センサの検出精度を詳細に決定することができるため、車両201の周辺環境情報の認知精度をより向上させることが可能となる。また、検出精度決定部2460aは、所定の更新周期で無線通信部210を介して部分領域毎の各センサの検出精度に関する情報を通信ネットワーク上に存在するクラウドサーバに送信してもよい。
尚、本実施形態では、複数センサとして、カメラと、LiDARユニットと、ミリ波レーダを挙げているが、本実施形態はこれに限定されない。例えば、これらのセンサに加えて超音波センサが照明システムに搭載されてもよい。この場合、照明システムの制御部は、超音波センサの動作を制御すると共に、超音波センサによって取得された検出データに基づいて周辺環境情報を生成してもよい。また、カメラと、LiDARユニットと、ミリ波レーダと、超音波センサのうち少なくとも2つが照明システムに搭載されてもよい。
(第4実施形態)
以下、本開示の第4実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
以下、本開示の第4実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」について適宜言及する。これらの方向は、図25に示す車両301について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。
最初に、図25を参照して本実施形態に係る車両301について説明する。図25は、車両システム302を備える車両301の上面図を示す模式図である。図25に示すように、車両301は、自動運転モードで走行可能な車両(自動車)であって、車両システム302を備える。車両システム302は、車両制御部303と、左前照明システム304a(以下、単に「照明システム304a」という。)と、右前照明システム304b(以下、単に「照明システム304b」という。)と、左後照明システム304c(以下、単に「照明システム304c」という。)と、右後照明システム304d(以下、単に「照明システム304d」という。)を少なくとも備える。
照明システム304aは、車両301の左前側に設けられる。特に、照明システム304aは、車両301の左前側に設置されたハウジング324aと、ハウジング324aに取り付けられた透光カバー322aとを備える。照明システム304bは、車両301の右前側に設けられる。特に、照明システム304bは、車両301の右前側に設置されたハウジング324bと、ハウジング324bに取り付けられた透光カバー322bとを備える。照明システム304cは、車両301の左後側に設けられる。特に、照明システム304cは、車両301の左後側に設置されたハウジング324cと、ハウジング324cに取り付けられた透光カバー322cとを備える。照明システム304dは、車両301の右後側に設けられる。特に、照明システム304dは、車両301の右後側に設置されたハウジング324dと、ハウジング324dに取り付けられた透光カバー322dとを備える。
次に、図26を参照することで、図25に示す車両システム302を具体的に説明する。図26は、車両システム302を示すブロック図である。図26に示すように、車両システム302は、車両制御部303と、照明システム304a~304dと、センサ305と、HMI(Human Machine Interface)308と、GPS(Global Positioning System)309と、無線通信部310と、記憶装置311とを備える。さらに、車両システム302は、ステアリングアクチュエータ312と、ステアリング装置313と、ブレーキアクチュエータ314と、ブレーキ装置315と、アクセルアクチュエータ316と、アクセル装置317とを備える。また、車両システム302は、電力を供給するように構成されたバッテリー(図示せず)を備える。
車両制御部303は、車両301の走行を制御するように構成されている。車両制御部303は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及び/又はTPU(Tensor Processing Unit)である。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。
また、電子制御ユニット(ECU)は、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明システム304aは、制御部340aと、照明ユニット342aと、カメラ343aと、LiDAR(Light Detection and Ranging)ユニット344a(レーザーレーダの一例)と、ミリ波レーダ345aとを更に備える。制御部340aと、照明ユニット342aと、カメラ343aと、LiDARユニット344aと、ミリ波レーダ345aは、図25に示すように、ハウジング324aと透光カバー322aによって形成される空間Sa内(灯室内)に配置される。尚、制御部340aは、空間Sa以外の車両301の所定の場所に配置されてもよい。例えば、制御部340aは、車両制御部303と一体的に構成されてもよい。
制御部340aは、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含んでもよい。プロセッサは、例えば、CPU、MPU、GPU及び/又はTPUである。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROMと、RAMを含む。ROMには、車両301の周辺環境を特定するための周辺環境特定プログラムが記憶されてもよい。例えば、周辺環境特定プログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、周辺環境特定プログラム、カメラ343aに取得された画像データ、LiDARユニット344aによって取得された3次元マッピングデータ(点群データ)及び/又はミリ波レーダ345aによって取得された検出データ等が一時的に記憶されてもよい。プロセッサは、ROMに記憶された周辺環境特定プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、電子制御ユニット(ECU)は、ASICやFPGA等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明ユニット342aは、車両301の外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット342aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット342aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両301の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット342aは、運転者用の配光パターン(例えば、ロービーム用配光パターンやハイビーム用配光パターン)を車両301の前方に形成するように構成されている。このように、照明ユニット342aは、左側ヘッドランプユニットとして機能する。一方、車両301の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット342aは、カメラ用の配光パターンを車両301の前方に形成するように構成されてもよい。
制御部340aは、照明ユニット342aに設けられた複数の発光素子の各々に電気信号(例えば、PWM(Pulse Width Modulation)信号)を個別に供給するように構成されてもよい。このように、制御部340aは、電気信号が供給される発光素子を個別に選択することができると共に、発光素子毎に電気信号のDuty比を調整することができる。つまり、制御部340aは、マトリックス状に配列された複数の発光素子のうち、点灯又は消灯すべき発光素子を選択することができると共に、点灯している発光素子の輝度を決定することができる。このため、制御部340aは、照明ユニット342aから前方に向けて出射される配光パターンの形状及び明るさを変更することができる。
カメラ343aは、車両301の周辺環境を検出するように構成されている。特に、カメラ343aは、車両301の周辺環境を示す画像データを取得した上で、当該画像データを制御部340aに送信するように構成されている。制御部340aは、送信された画像データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両301の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両301の外部に存在する対象物の属性に関する情報と、車両301に対する対象物の位置に関する情報とを含んでもよい。カメラ343aは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子によって構成される。カメラ343aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ343aがステレオカメラの場合、制御部340aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両301と車両301の外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。また、本実施形態では、1つのカメラ343aが照明システム304aに設けられているが、2以上のカメラ343aが照明システム304aに設けられてもよい。
LiDARユニット344a(レーザーレーダの一例)は、車両301の周辺環境を検出するように構成されている。特に、LiDARユニット344aは、車両301の周辺環境を示す3Dマッピングデータ(点群データ)を取得した上で、当該3Dマッピングデータを制御部340aに送信するように構成されている。制御部340aは、送信された3Dマッピングデータに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両301の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、例えば、車両301の外部に存在する対象物の属性に関する情報と、車両301に対する対象物の位置に関する情報とを含んでもよい。
より具体的には、LiDARユニット344aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得した上で、飛行時間ΔT1に関する情報に基づいて、各出射角度(水平角度θ、垂直角度φ)におけるLiDARユニット344a(車両301)と車両301の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT1は、例えば、以下のように算出することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット344aは、車両301の周辺環境を示す3Dマッピングデータを取得することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット344aは、車両301の周辺環境を示す3Dマッピングデータを取得することができる。
また、LiDARユニット344aは、例えば、レーザ光を出射するように構成されたレーザ光源と、レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器と、レンズ等の光学系と、物体によって反射されたレーザ光を受光するように構成された受光部とを備える。レーザ光源から出射されるレーザ光の中心波長は特に限定されない。例えば、レーザ光は、中心波長が900nm付近である非可視光であってもよい。光偏向器は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーであってもよい。受光部は、例えば、フォトダイオードである。尚、LiDARユニット344aは、光偏向器によってレーザ光を走査せずに、3Dマッピングデータを取得してもよい。例えば、LiDARユニット344aは、フェイズドアレイ方式又はフラッシュ方式で3Dマッピングデータを取得してもよい。また、本実施形態では、1つのLiDARユニット344aが照明システム304aに設けられているが、2以上のLiDARユニット344aが照明システム304aに設けられてもよい。例えば、2つのLiDARユニット344aが照明システム304aに設けられている場合、一方のLiDARユニット344aが車両301の前方領域における周辺環境を検出するように構成されると共に、他方のLiDARユニット344aが車両301の側方領域における周辺環境を検出するように構成されてもよい。
ミリ波レーダ345aは、車両301の周辺環境を検出するように構成されている。特に、ミリ波レーダ345aは、車両301の周辺環境を示す検出データを取得した上で、当該検出データを制御部340aに送信するように構成されている。制御部340aは、送信された検出データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両301の外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両301の外部に存在する対象物の属性に関する情報と、車両301に対する対象物の位置に関する情報と、車両301に対する対象物の速度に関する情報を含んでもよい。
例えば、ミリ波レーダ345aは、パルス変調方式、FM-CW(Frequency Moduleted-Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ345a(車両301)と車両301の外部に存在する物体との間の距離Dを取得することができる。パルス変調方式を用いる場合、ミリ波レーダ345aは、ミリ波の各出射角度におけるミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、各出射角度におけるミリ波レーダ345a(車両301)と車両301の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT2は、例えば、以下のように算出することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ345aは、ミリ波レーダ345aから出射されたミリ波の周波数f0とミリ波レーダ345aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ345a(車両301)に対する車両301の外部に存在する物体の相対速度Vに関する情報を取得することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ345aは、ミリ波レーダ345aから出射されたミリ波の周波数f0とミリ波レーダ345aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ345a(車両301)に対する車両301の外部に存在する物体の相対速度Vに関する情報を取得することができる。
また、本実施形態では、1つのミリ波レーダ345aが照明システム304aに設けられているが、2以上のミリ波レーダ345aが照明システム304aに設けられてもよい。例えば、照明システム304aは、短距離用のミリ波レーダ345aと、中距離用のミリ波レーダ345aと、長距離用のミリ波レーダ345aを有してもよい。
照明システム304bは、制御部340bと、照明ユニット342bと、カメラ343bと、LiDARユニット344bと、ミリ波レーダ345bとを更に備える。制御部340bと、照明ユニット342bと、カメラ343bと、LiDARユニット344bと、ミリ波レーダ345bは、図25に示すように、ハウジング324bと透光カバー322bによって形成される空間Sb内(灯室内)に配置される。尚、制御部340bは、空間Sb以外の車両301の所定の場所に配置されてもよい。例えば、制御部340bは、車両制御部303と一体的に構成されてもよい。制御部340bは、制御部340aと同様な機能及び構成を有してもよい。照明ユニット342bは、照明ユニット342aと同様な機能及び構成を有してもよい。この点において、照明ユニット342aは、左側ヘッドランプユニットとして機能する一方、照明ユニット342bは、右側ヘッドランプユニットとして機能する。カメラ343bは、カメラ343aと同様な機能及び構成を有してもよい。LiDARユニット344bは、LiDARユニット344aと同様な機能及び構成を有してもよい。ミリ波レーダ345bは、ミリ波レーダ345aと同様な機能及び構成を有してもよい。
照明システム304cは、制御部340cと、照明ユニット342cと、カメラ343cと、LiDARユニット344cと、ミリ波レーダ345cとを更に備える。制御部340cと、照明ユニット342cと、カメラ343cと、LiDARユニット344cと、ミリ波レーダ345cは、図25に示すように、ハウジング324cと透光カバー322cによって形成される空間Sc内(灯室内)に配置される。尚、制御部340cは、空間Sc以外の車両301の所定の場所に配置されてもよい。例えば、制御部340cは、車両制御部303と一体的に構成されてもよい。制御部340cは、制御部340aと同様な機能及び構成を有してもよい。
照明ユニット342cは、車両301の外部(後方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット342cは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED、LD又は有機EL素子である。光学系は、光源から出射された光を照明ユニット342cの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両301の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット342cは消灯してもよい。一方、車両301の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット342cは、カメラ用の配光パターンを車両301の後方に形成するように構成されてもよい。
カメラ343cは、カメラ343aと同様な機能及び構成を有してもよい。LiDARユニット344cは、LiDARユニット344cと同様な機能及び構成を有してもよい。ミリ波レーダ345cは、ミリ波レーダ345aと同様な機能及び構成を有してもよい。
照明システム304dは、制御部340dと、照明ユニット342dと、カメラ343dと、LiDARユニット344dと、ミリ波レーダ345dとを更に備える。制御部340dと、照明ユニット342dと、カメラ343dと、LiDARユニット344dと、ミリ波レーダ345dは、図25に示すように、ハウジング324dと透光カバー322dによって形成される空間Sd内(灯室内)に配置される。尚、制御部340dは、空間Sd以外の車両301の所定の場所に配置されてもよい。例えば、制御部340dは、車両制御部303と一体的に構成されてもよい。制御部340dは、制御部340cと同様な機能及び構成を有してもよい。照明ユニット342dは、照明ユニット342cと同様な機能及び構成を有してもよい。カメラ343dは、カメラ343cと同様な機能及び構成を有してもよい。LiDARユニット344dは、LiDARユニット344cと同様な機能及び構成を有してもよい。ミリ波レーダ345dは、ミリ波レーダ345cと同様な機能及び構成を有してもよい。
センサ305は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ305は、車両301の走行状態を検出して、車両301の走行状態を示す走行状態情報を車両制御部303に出力するように構成されている。また、センサ305は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、センサ305は、車両301の周辺環境の明るさ(照度等)を検出するように構成された照度センサを備えてもよい。照度センサは、例えば、フォトダイオードから出力される光電流の大きさに応じて周辺環境の明るさを決定してもよい。
HMI(Human Machine Interface)308は、運転者からの入力操作を受付ける入力部と、走行状態情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両301の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、走行状態情報、周辺環境情報および照明システム4の照明状態を表示するように構成されたディスプレイ等を含む。
GPS(Global Positioning System)309は、車両301の現在位置情報を取得し、当該取得された現在位置情報を車両制御部303に出力するように構成されている。無線通信部310は、車両301の周囲にいる他車に関する情報(例えば、他車走行情報等)を他車から受信すると共に、車両301に関する情報(例えば、自車走行情報等)を他車に送信するように構成されている(車車間通信)。
また、無線通信部310は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両301の自車走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部310は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両301の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両301は、他車両、インフラ設備又は携帯型電子機器とアドホックモードにより直接通信してもよいし、アクセスポイントを介して通信してもよい。無線通信規格は、例えば、第5世代移動通信システム(5G)、Wi-Fi(登録商標),Bluetooth(登録商標),ZigBee(登録商標)又はLPWAである。また、車両301は、他車両、インフラ設備又は携帯型電子機器と移動通信ネットワークを介して通信してもよい。
記憶装置311は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置311には、2D又は3Dの地図情報及び/又は車両制御プログラムが記憶されてもよい。記憶装置311は、車両制御部303からの要求に応じて、地図情報や車両制御プログラムを車両制御部303に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部310とインターネット等の通信ネットワークを介して更新されてもよい。
車両301が自動運転モードで走行する場合、車両制御部303は、走行状態情報、周辺環境情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ312は、ステアリング制御信号を車両制御部303から受信して、受信したステアリング制御信号に基づいてステアリング装置313を制御するように構成されている。ブレーキアクチュエータ314は、ブレーキ制御信号を車両制御部303から受信して、受信したブレーキ制御信号に基づいてブレーキ装置315を制御するように構成されている。アクセルアクチュエータ316は、アクセル制御信号を車両制御部303から受信して、受信したアクセル制御信号に基づいてアクセル装置317を制御するように構成されている。このように、自動運転モードでは、車両301の走行は車両システム302により自動制御される。
一方、車両301が手動運転モードで走行する場合、車両制御部303は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に応じて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両301の走行は運転者により制御される。
次に、車両301の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム302がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両301を運転できる状態にはない。高度運転支援モードでは、車両システム302がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両301を運転できる状態にはあるものの車両301を運転しない。運転支援モードでは、車両システム302がステアリング制御、ブレーキ制御及びアクセル制御のうちの一部の走行制御を自動的に行うと共に、車両システム302の運転支援の下で運転者が車両301を運転する。一方、手動運転モードでは、車両システム302が走行制御を自動的に行わないと共に、車両システム302からの運転支援なしに運転者が車両301を運転する。
また、車両301の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部303は、運転モード切替スイッチに対する運転者の操作に応じて、車両301の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両301の運転モードは、自動運転車の走行が可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部303は、これらの情報に基づいて車両301の運転モードを切り替える。さらに、車両301の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部303は、着座センサや顔向きセンサからの出力信号に基づいて、車両301の運転モードを切り替えてもよい。
次に、図27を参照して、制御部340aの機能について説明する。図27は、照明システム304aの制御部340aの機能ブロックを示す図である。図27に示すように、制御部340aは、照明ユニット342aと、カメラ343aと、LiDARユニット344aと、ミリ波レーダ345aの動作をそれぞれ制御するように構成されている。特に、制御部340aは、照明制御部3410aと、周辺環境特定部3400aと、使用優先度決定部3460aとを備える。
照明制御部3410aは、照明ユニット342aが所定の配光パターンを車両301の前方領域に向けて出射するように照明ユニット342aを制御するように構成されている。例えば、照明制御部3410aは、車両301の運転モードに応じて照明ユニット342aから出射される配光パターンを変更してもよい。
周辺環境特定部3400aは、カメラ制御部3420aと、LiDAR制御部3430aと、ミリ波レーダ制御部3440aと、周辺環境情報融合部3450aとを備える。
カメラ制御部3420aは、カメラ343aの動作を制御すると共に、カメラ343aから出力された画像データ(検出データ)に基づいて、カメラ343aの検出領域S1(図29参照)における車両301の周辺環境情報(以下、周辺環境情報I1という。)を生成するように構成されている。LiDAR制御部3430aは、LiDARユニット344aの動作を制御すると共に、LiDARユニット344aから出力された3Dマッピングデータ(検出データ)に基づいて、LiDARユニット344aの検出領域S2(図29参照)における車両301の周辺環境情報(以下、周辺環境情報I2という。)を生成するように構成されている。ミリ波レーダ制御部3440aは、ミリ波レーダ345aの動作を制御すると共に、ミリ波レーダ345aから出力された検出データに基づいて、ミリ波レーダ345aの検出領域S3(図29参照)における車両301の周辺環境情報(以下、周辺環境情報I3という。)を生成するように構成されている。
周辺環境情報融合部3450aは、周辺環境情報I1,I2,I3をそれぞれ融合することで、融合された周辺環境情報Ifを生成するように構成される。ここで、周辺環境情報Ifは、図29に示すように、カメラ343aの検出領域S1と、LiDARユニット344aの検出領域S2と、ミリ波レーダ345aの検出領域S3を組合せた検出領域Sfにおける車両301の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報Ifは、対象物の属性、車両301に対する対象物の位置、車両301と対象物との間の距離及び/又は車両301に対する対象物の速度に関する情報を含んでもよい。周辺環境情報融合部3450aは、周辺環境情報Ifを車両制御部303に送信する。
使用優先度決定部3460aは、複数のセンサ(カメラ343aと、LiDARユニット344aと、ミリ波レーダ345a)間における使用優先度を決定するように構成されている。ここで、「使用優先度」とは、複数のセンサによって取得された検出データのうちどの検出データを優先して使用するかを決定するための指標である。例えば、カメラ343aの使用優先度がLiDARユニット344aの使用優先度よりも高い場合には、画像データ(カメラ343aの検出データ)は、3Dマッピングデータ(LiDARユニット344aの検出データ)よりも優先して使用される。この場合、周辺環境情報融合部3450aは、周辺環境情報Ifを生成する際に、検出領域S1と検出領域S2とが互いに重複する重複領域Sx(図29参照)において、3Dマッピングデータに基づいて生成される周辺環境情報I2よりも画像データに基づいて生成される周辺環境情報I1を採用する。特に、重複領域Sxにおいて、周辺環境情報I1と周辺環境情報I2との間に矛盾が生じている場合(周辺環境情報I1と周辺環境情報I2と互いに一致していない場合)、周辺環境情報融合部3450aは、周辺環境情報I1を信頼することで、周辺環境情報I1を採用する。
このように、周辺環境特定部3400aは、複数のセンサ(カメラ343a、LiDARユニット344a、ミリ波レーダ345a)の検出データと、複数のセンサ間の使用優先度に基づいて、車両301の周辺環境を特定するように構成されている。
尚、本実施形態では、周辺環境情報融合部3450aと使用優先度決定部3460aは、制御部340aによって実現されているが、これらは車両制御部303によって実現されてもよい。
また、制御部340b,340c,340dも制御部340aと同様の機能を有してもよい。つまり、制御部340b~340dの各々は、照明制御部と、周辺環境特定部と、使用優先度決定部とを有してもよい。また、制御部340b~340dの周辺環境特定部は、カメラ制御部と、LiDAR制御部と、ミリ波レーダ制御部と、周辺環境情報融合部とを有してもよい。制御部340b~340cの各々の周辺環境情報融合部は、融合された周辺環境情報Ifを車両制御部303に送信してもよい。車両制御部303は、各制御部340a~340dから送信された周辺環境情報Ifとその他の情報(走行制御情報、現在位置情報、地図情報等)に基づいて、車両301の走行を制御してもよい。
次に、本実施形態に係る照明システム304aの動作フローの一例について図28及び図29を参照して説明する。図28(a)は、使用優先度を決定する処理の一例を説明するためのフローチャートである。図28(b)は、融合された周辺環境情報Ifを生成する処理の一例を説明するためのフローチャートである。図29は、照明システム304aにおけるカメラ343aの検出領域S1と、LiDARユニット344aの検出領域S2と、ミリ波レーダ345aの検出領域S3を示す図である。
尚、本実施形態では、説明の便宜上、照明システム304aの動作フローについてのみ説明を行うが、照明システム304aの動作フローは、照明システム304b~4dにも適用可能である点に留意されたい。また、本実施形態の説明では、車両301は自動運転モード(特に、高度運転支援モード又は完全自動運転モード)で走行中であることを前提とする。
最初に、図28(a)を参照して複数センサの使用優先度を決定する処理の一例について説明する。図28(a)に示すように、ステップS310において、使用優先度決定部3460aは、車両301の周辺環境の明るさを示す情報(以下、「明るさ情報」という。)を受信したかどうかを判定する。具体的には、車両301に搭載された照度センサは、車両301の周辺環境の明るさを示す検出データを車両制御部303に送信する。次に、車両制御部303は、受信した検出データに基づいて明るさ情報を生成した上で、生成された明るさ情報を使用優先度決定部3460aに送信する。ここで、「明るさ情報」は、「明るい」又は「暗い」の2つの情報を含んでもよい。この場合、車両制御部303は、検出データが示す周辺環境の明るさ(照度等)が所定の値(閾値照度等)よりも大きい場合に、周辺環境が明るいことを示す明るさ情報を生成してもよい。一方、車両制御部303は、検出データが示す周辺環境の明るさ(照度等)が所定の値以下である場合に、周辺環境が暗いことを示す明るさ情報を生成してもよい。尚、「明るさ情報」は、照度等の数値に関する情報を含んでもよい。この場合、使用優先度決定部3460aが車両の周辺環境が明るいか又は暗いかを判定してもよい。
車両制御部303は、車両システム302を起動したときに、明るさ情報を使用優先度決定部3460aに送信してもよい。さらに、車両制御部303は、車両301の周辺環境の明るさが変化したときに(例えば、周辺環境が明るい状態から暗い状態に変化したとき又は周辺環境が暗い状態から明るい状態に変化したとき)、明るさ情報を使用優先度決定部3460aに送信してもよい。例えば、車両301がトンネルに入ったとき又はトンネルを出たときに、車両制御部303は、明るさ情報を使用優先度決定部3460aに送信してもよい。また、車両制御部303は、所定の周期で明るさ情報を使用優先度決定部3460aに送信してもよい。
使用優先度決定部3460aは、明るさ情報を受信したと判定した場合に(ステップS310でYES)、ステップS311の処理を実行する。一方、ステップS310の判定結果がNOの場合、使用優先度決定部3460aは、明るさ情報を受信するまで待機する。
尚、照度センサが使用優先度決定部3460aに直接的に接続されている場合、使用優先度決定部3460aは、照度センサから取得された検出データに基づいて、周辺環境の明るさを特定してもよい。その後、使用優先度決定部3460aは、ステップS311の処理を実行してもよい。
次に、ステップS311において、使用優先度決定部3460aは、受信した明るさ情報に基づいて、カメラ343a、LiDARユニット344a及びミリ波レーダ345a間の使用優先度を決定する。例えば、使用優先度決定部3460aは、周辺環境の明るさに応じて、以下のように複数センサ間の使用優先度を決定してもよい。
表5に示すように、車両301の周辺環境が明るい場合、使用優先度決定部3460aは、カメラ343aの使用優先度を最も高い使用優先度に設定する一方、ミリ波レーダ345aの使用優先度を最も低い使用優先度に設定する。一方、車両301の周辺環境が暗い場合(トンネル中での走行や夜等)、使用優先度決定部3460aは、LiDARユニット344aの使用優先度を最も高い使用優先度に設定する一方、カメラ343aの使用優先度を最も低い使用優先度に設定する。表1に示す使用優先度に関する情報は、制御部340aのメモリ又は記憶装置311に記憶されてもよい。
本実施形態では、照度センサから取得された検出データに基づいて明るさ情報が生成されているが、カメラ343aによって取得された画像データに基づいて明るさ情報が生成されてもよい。この場合、使用優先度決定部3460aは、カメラ343aによって取得された画像データに基づいて明るさ情報を生成した上で、当該明るさ情報に基づいて複数センサ間の使用優先度を決定してもよい。
次に、図28(b)及び図29を参照して融合された周辺環境情報Ifを生成する処理の一例について説明する。本説明では、車両301の周辺環境は明るいと仮定する。このため、カメラ343aと、LiDARユニット344aと、ミリ波レーダ345aとの間の使用優先度は、カメラ343a>LiDARユニット344a>ミリ波レーダ345aとする。
図28(b)に示すように、ステップS320において、カメラ343aは、検出領域S1(図29参照)における車両301の周辺環境を示す画像データを取得する。また、ステップS321において、LiDARユニット344aは、検出領域S2における車両301の周辺環境を示す3Dマッピングデータを取得する。さらに、ステップS322において、ミリ波レーダ345aは、検出領域S3における車両301の周辺環境を示す検出データを取得する。
次に、カメラ制御部3420aは、カメラ343aから画像データを取得した上で、画像データに基づいて周辺環境情報I1を生成する(ステップS323)。また、LiDAR制御部3430aは、LiDARユニット344aから3Dマッピングデータを取得した上で、3Dマッピングデータに基づいて周辺環境情報I2を生成する(ステップS324)。さらに、ミリ波レーダ制御部3440aは、ミリ波レーダ345aから検出データを取得した上で、検出データに基づいて周辺環境情報I3を生成する(ステップS325)。
次に、ステップS326において、周辺環境情報融合部3450aは、使用優先度に関する情報を使用優先度決定部3460aから受け取ると共に、各重複領域Sx,Sy,Szにおいて複数の周辺環境情報を比較する。具体的には、周辺環境情報融合部3450aは、検出領域S1と検出領域S2とが互いに重複する重複領域Sxにおいて、周辺環境情報I1と周辺環境情報I2とを比較した上で、周辺環境情報I1と周辺環境情報I2が互いに一致するかどうかを判定する。例えば、周辺環境情報I1が重複領域Sxにおいて歩行者P6の存在を示す一方、周辺環境情報I2が重複領域Sxにおいて歩行者P6の存在を示さない場合、周辺環境情報I1と周辺環境情報I2が互いに一致しないと判定される。周辺環境情報融合部3450aは、比較結果として、周辺環境情報I1と周辺環境情報I2が互いに一致しないと判定した場合、カメラ343aとLiDARユニット344aとの間の使用優先度(カメラ343a>LiDARユニット344a)に基づいて、重複領域Sxにおいて採用される周辺環境情報を周辺環境情報I1として決定する。
また、周辺環境情報融合部3450aは、検出領域S2と検出領域S3とが互いに重複する重複領域Szにおいて、周辺環境情報I2と周辺環境情報I3とを比較した上で、周辺環境情報I2と周辺環境情報I3が互いに一致するかどうかを判定する。周辺環境情報融合部3450aは、比較結果として、周辺環境情報I2と周辺環境情報I3が互いに一致しないと判定した場合、LiDARユニット344aとミリ波レーダ345aとの間の使用優先度(LiDARユニット344a>ミリ波レーダ345a)に基づいて、重複領域Szにおいて採用される周辺環境情報を周辺環境情報I2として決定する。
また、周辺環境情報融合部3450aは、検出領域S1と、検出領域S2と、検出領域S3とが互いに重複する重複領域Syにおいて、周辺環境情報I1と、周辺環境情報I2と、周辺環境情報I3とを比較した上で、周辺環境情報I1と、周辺環境情報I2と、周辺環境情報I3とが互いに一致するかどうかを判定する。周辺環境情報融合部3450aは、比較結果として、周辺環境情報I1と、周辺環境情報I2と、周辺環境情報I3が互いに一致しないと判定した場合、使用優先度(カメラ343a>LiDARユニット344a>ミリ波レーダ345a)に基づいて、重複領域Syにおいて採用される周辺環境情報を周辺環境情報I1として決定する。
その後、ステップS327において、周辺環境情報融合部3450aは、周辺環境情報I1,I2,I3をそれぞれ融合することで、融合された周辺環境情報Ifを生成する。周辺環境情報Ifは、検出領域S1,S2,S3を組合せた検出領域Sfにおける車両301の外部に存在する対象物に関する情報を含んでもよい。特に、周辺環境情報Ifは、以下の情報によって構成されてもよい。
・検出領域S1における周辺環境情報I1
・重複領域Sx,Syを除く検出領域S2における周辺環境情報I2
・重複領域Sy,Szを除く検出領域S3における周辺環境情報I3
このように、図28(b)に示す周辺環境情報Ifを生成する処理が繰り返し実行される。
・検出領域S1における周辺環境情報I1
・重複領域Sx,Syを除く検出領域S2における周辺環境情報I2
・重複領域Sy,Szを除く検出領域S3における周辺環境情報I3
このように、図28(b)に示す周辺環境情報Ifを生成する処理が繰り返し実行される。
このように、本実施形態によれば、複数のセンサ(カメラ343a、LiDARユニット344a、ミリ波レーダ345a)間における使用優先度が決定された上で、複数のセンサの検出データと使用優先度に基づいて、車両301の周辺環境が特定される(換言すれば、周辺環境情報Ifが生成される)。このように、複数のセンサ間の使用優先度を考慮して車両301の周辺環境が特定されるので、車両301の周辺環境の認知精度を向上させることが可能な照明システム304a及び車両システム302を提供することができる。
また、本実施形態によれば、重複領域Sx,Sy,Szにおいて複数の周辺環境情報が比較される。比較結果として、複数の周辺環境情報が互いに一致しない場合に、複数のセンサ間における使用優先度に基づいて、各重複領域Sx,Sy,Szにおいて採用される周辺環境情報が決定される。その後、融合された周辺環境情報Ifが生成される。このように、複数のセンサ間の使用優先度を考慮して周辺環境情報Ifが生成されるので、車両301の周辺環境の認知精度を向上させることができる。
また、車両301の周辺環境の明るさを示す情報に基づいて複数のセンサ間における使用優先度が決定された上で、複数のセンサの検出データと使用優先度に基づいて車両301の周辺環境が特定される。このように、車両301の周辺環境の明るさに応じて使用優先度が最適化されるので、車両301の周辺環境の認知精度を向上させることができる。
尚、上記で説明した周辺環境情報Ifを生成する処理では、各重複領域Sx,Sy,Szにおいて複数の周辺環境情報が比較されなくてもよい(つまり、ステップS326の処理は省略されてもよい)。この場合、周辺環境情報融合部3450aは、重複領域Sx,Sy,Szにおいて複数の周辺環境情報が比較せずに、複数のセンサ間の使用優先度に関する情報と、周辺環境情報I1~I3に基づいて、周辺環境情報Ifを生成してもよい。
次に、本実施形態の変形例に係る照明システム304aの動作フローの一例について図29及び図30を参照して説明する。図30(a)は、各重複領域Sx,Sy,Sz(図29参照)において採用される検出データを決定する処理の一例を説明するためのフローチャートである。図30(b)は、融合された周辺環境情報Ifを生成する処理の他の一例を説明するためのフローチャートである。
最初に、図30(a)を参照して各重複領域Sx,Sy,Szにおいて採用される検出データを決定する処理の一例について説明する。本説明では、車両301の周辺環境は明るいと仮定する。このため、カメラ343aと、LiDARユニット344aと、ミリ波レーダ345aとの間の使用優先度は、カメラ343a>LiDARユニット344a>ミリ波レーダ345aとする。
図30(a)に示すように、ステップS330において、使用優先度決定部3460aは、明るさ情報を受信したかどうかを判定する。使用優先度決定部3460aは、明るさ情報を受信したと判定した場合に(ステップS330でYES)、ステップS331の処理を実行する。一方、ステップS330の判定結果がNOの場合、使用優先度決定部3460aは、明るさ情報を受信するまで待機する。
次に、使用優先度決定部3460aは、受信した明るさ情報に基づいて、カメラ343aと、LiDARユニット344aと、ミリ波レーダ345aとの間の使用優先度を決定する(ステップS332)。その後、ステップS32において、周辺環境情報融合部3450aは、使用優先度に関する情報を使用優先度決定部3460aから受け取ると共に、使用優先度に基づいて各重複領域Sx,Sy,Szにおいて採用されるセンサの検出データを決定する。
例えば、周辺環境情報融合部3450aは、カメラ343aとLiDARユニット344aとの間の使用優先度(カメラ343a>LiDARユニット344a)に基づいて、重複領域Sxにおいて採用されるセンサの検出データをカメラ343aの画像データとして決定する。
また、周辺環境情報融合部3450aは、LiDARユニット344aとミリ波レーダ345aとの間の使用優先度(LiDARユニット344a>ミリ波レーダ345a)に基づいて、重複領域Szにおいて採用されるセンサの検出データをLiDARユニット344aの3Dマッピングデータとして決定する。
また、周辺環境情報融合部3450aは、使用優先度(カメラ343a>LiDARユニット344a>ミリ波レーダ345a)に基づいて、重複領域Syにおいて採用されるセンサの検出データをカメラ343aの画像データとして決定する。
次に、図29及び図30(b)を参照して周辺環境情報Ifを生成する処理の他の一例について説明する。図30(b)に示すように、ステップS340において、カメラ343aは、検出領域S1における画像データを取得する。また、ステップS341において、LiDARユニット344aは、検出領域S2における3Dマッピングデータを取得する。さらに、ステップS342において、ミリ波レーダ345aは、検出領域S3における検出データを取得する。
次に、カメラ制御部3420aは、カメラ343aから画像データを取得すると共に、周辺環境情報融合部3450aから各重複領域Sx,Sy,Szにおいて採用されるセンサの検出データに関する情報(以下、「検出データ優先情報」という。)を取得する。検出データ優先情報は、画像データが重複領域Sx,Syにおいて採用されることを示しているため、カメラ制御部3420aは、検出領域S1における周辺環境情報I1を生成する(ステップS343)。
また、ステップS344において、LiDAR制御部3430aは、LiDARユニット344aから3Dマッピングデータを取得すると共に、周辺環境情報融合部3450aから検出データ優先情報を取得する。検出データ優先情報は、画像データが重複領域Sx,Syにおいて採用されると共に、3Dマッピングデータが重複領域Szにおいて採用されることを示しているため、LiDAR制御部3430aは、重複領域Sx,Syを除く検出領域S2における周辺環境情報I2を生成する。
さらに、ステップS345において、ミリ波レーダ制御部3440aは、ミリ波レーダ345aから検出データを取得すると共に、周辺環境情報融合部3450aから検出データ優先情報を取得する。検出データ優先情報は、画像データが重複領域Syにおいて採用されると共に、3Dマッピングデータが重複領域Szにおいて採用されることを示しているため、ミリ波レーダ制御部3440aは、重複領域Sy,Szを除く検出領域S3における周辺環境情報I3を生成する。
その後、ステップS346において、周辺環境情報融合部3450aは、周辺環境情報I1,I2,I3をそれぞれ融合することで、融合された周辺環境情報Ifを生成する。周辺環境情報Ifは、検出領域S1における周辺環境情報I1と、重複領域Sx,Syを除く検出領域S2における周辺環境情報I2と、重複領域Sy,Szを除く検出領域S3における周辺環境情報I3によって構成される。このように、図30(b)に示す周辺環境情報Ifを生成する処理が繰り返し実行される。
本実施形態の変形例によれば、複数のセンサ間の使用優先度に基づいて検出データ優先情報が生成された上で、検出データ優先情報に基づいて周辺環境情報Ifが生成されるので、車両301の周辺環境の認知精度を向上させることが可能となる。さらに、LiDAR制御部3430aは、重複領域Sx,Syを除く検出領域S2における周辺環境情報I2を生成すると共に、ミリ波レーダ制御部3440aは、重複領域Sy,Szを除く検出領域S3における周辺環境情報I3を生成する。このように、重複領域における周辺環境情報の生成処理が省略されるため、制御部340aによる演算量を削減することが可能となる。特に、図30(b)に示す処理は繰り返し実行されるため、制御部340aによる演算量の削減効果は大きい。
尚、本実施形態では、明るさ情報に基づいて複数センサ(カメラ343a,LiDARユニット344a,ミリ波レーダ345a)間の使用優先度が決定されるが、本実施形態はこれに限定されるものではない。例えば、明るさ情報及び天候情報に基づいて複数センサ間の使用優先度が決定されてもよい。
例えば、車両制御部303は、GPS309を用いて車両301の現在位置情報を取得した後に、無線通信部310を介して車両301の現在位置情報を含む天候情報リクエストを通信ネットワーク上のサーバに送信する。その後、車両制御部303は、車両301の現在位置における天候情報をサーバから受信する。ここで、「天候情報」は、車両301の現在位置における天候(晴れ、曇り、雨、雪、霧等)に関する情報であってもよい。次に、車両制御部303は、明るさ情報と天候情報を制御部340aの使用優先度決定部3460aに送信する。使用優先度決定部3460aは、受信した明るさ情報と天候情報に基づいて、複数センサ間の使用優先度を決定する。
表6に示すように、車両301の現在位置における天候が不良(雨、雪、霧等)である場合、使用優先度決定部3460aは、ミリ波レーダ345aの使用優先度を最も高い使用優先度に設定する一方、カメラ343aの使用優先度を最も低い使用優先度に設定する。車両301の現在位置における天候が不良である場合には、周辺環境の明るさについては考慮されなくもよい。
また、車両301の現在位置における天候が良好(晴れ、曇り等)であると共に、車両301の周辺環境が明るい場合、使用優先度決定部3460aは、カメラ343aの使用優先度を最も高い使用優先度に設定する一方、ミリ波レーダ345aの使用優先度を最も低い使用優先度に設定する。さらに、車両301の現在位置における天候が良好であると共に、車両301の周辺環境が暗い場合には、使用優先度決定部3460aは、LiDARユニット344aの使用優先度を最も高い使用優先度に設定する一方、カメラ343aの使用優先度を最も低い使用優先度に設定する。表2に示す使用優先度に関する情報は、制御部340aのメモリ又は記憶装置311に記憶されてもよい。
このように、車両301の周辺環境の明るさと車両301の現在位置の天候に応じて複数センサ間の使用優先度が最適化されるので、車両301の周辺環境の認知精度を向上させることが可能となる。
尚、カメラ343aによって取得された画像データに基づいて車両301の現在位置における天候情報が生成されてもよい。この場合、使用優先度決定部3460aは、カメラ343aによって取得された画像データに基づいて天候情報を生成した上で、天候情報と明るさ情報に基づいて複数センサ間の使用優先度を決定してもよい。さらに、車両のウィンドウに取り付けられたワイパーの状態を示す情報に基づいて車両301の現在位置における天候情報が生成されてもよい。例えば、ワイパーが駆動している場合、車両301の現在位置における天候は雨(つまり、天候不良)と判定されてもよい。一方、ワイパーが駆動していない場合、車両301の現在位置における天候は晴れ又は曇り(つまり、天候良好)と判定されてもよい。さらに、使用優先度決定部3460aは、外部天候センサから天候情報を取得した上で、天候情報と明るさ情報に基づいて複数センサ間の使用優先度を決定してもよい。
さらに、複数センサの検出精度に関する情報(以下、「検出精度情報」という。)に基づいて複数センサ間の使用優先度が決定されてもよい。例えば、カメラ343aの検出精度がAランク、LiDARユニット344aの検出精度がBランク、ミリ波レーダ345aの検出精度がCランクである場合(ここで、ランクの序列は、Aランク>Bランク>Cランクとする。)、使用優先度決定部3460aは、検出精度情報に基づいて、カメラ343aと、LiDARユニット344aと、ミリ波レーダ345aとの間の使用優先度を以下のように決定する。
カメラ343a>LiDARユニット344a>ミリ波レーダ345a
カメラ343a>LiDARユニット344a>ミリ波レーダ345a
このように、検出精度情報に基づいて、複数センサ間における使用優先度が決定された上で、複数の検出データと使用優先度に基づいて車両301の周辺環境が特定される。このように、複数センサの検出精度に応じて使用優先度が決定されるので、車両301の周辺環境の認知精度を向上させることができる。
検出精度情報は、制御部340aのメモリ又は記憶装置311に記憶されてよい。検出精度情報は、所定のタイミングで更新されてもよい。また、検出精度情報が更新される度に、更新された検出精度情報が無線通信部310を介して通信ネットワーク上のサーバに送信されてもよい。特に、検出精度情報が更新される度に、車両制御部303は、検出精度情報と、車両の位置情報と、天候情報と、検出精度情報が更新された時刻を示す時刻情報とを通信ネットワーク上のサーバに送信してもよい。サーバに保存されたこれらの情報は、ビックデータとして各センサの検出精度を向上させるために活用されてもよい。
また、複数センサの検出精度は、地図情報等のセンサ精度を測定するためのテスト情報に基づいて取得されてもよい。例えば、車両301が交差点付近に存在しつつ、交差点に信号機が存在する場合を想定する。このとき、車両制御部303は、現地位置情報と地図情報に基づいて、交差点に存在する信号機を認識しているものとする。ここで、周辺環境情報I1が信号機の存在を示していない場合、制御部340aは、カメラ343aの検出精度は低い(例えば、Cランク)と判定してもよい。一方、周辺環境情報I2,I3が信号機の存在を示す場合、制御部340aは、LiDARユニット344aとミリ波レーダ345aの検出精度は高い(例えば、Aランク)と判定してもよい。
尚、本実施形態では、複数センサとして、カメラと、LiDARユニットと、ミリ波レーダを挙げているが、本実施形態はこれに限定されない。例えば、これらのセンサに加えて超音波センサが照明システムに搭載されてもよい。この場合、照明システムの制御部は、超音波センサの動作を制御すると共に、超音波センサによって取得された検出データに基づいて周辺環境情報を生成してもよい。また、カメラと、LiDARユニットと、ミリ波レーダと、超音波センサのうち少なくとも2つが照明システムに搭載されてもよい。
(第5実施形態)
以下、本開示の第5実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
以下、本開示の第5実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」について適宜言及する。これらの方向は、図31に示す車両501について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。
最初に、図31を参照して本実施形態に係る車両501について説明する。図31は、車両システム502を備える車両501の上面図を示す模式図である。図31に示すように、車両501は、自動運転モードで走行可能な車両(自動車)であって、車両システム502を備える。車両システム502は、車両制御部503と、左前照明システム504a(以下、単に「照明システム504a」という。)と、右前照明システム504b(以下、単に「照明システム504b」という。)と、左後照明システム504c(以下、単に「照明システム504c」という。)と、右後照明システム504d(以下、単に「照明システム504d」という。)を少なくとも備える。
照明システム504aは、車両501の左前側に設けられる。特に、照明システム504aは、車両501の左前側に設置されたハウジング524aと、ハウジング524aに取り付けられた透光カバー522aとを備える。照明システム504bは、車両501の右前側に設けられる。特に、照明システム504bは、車両501の右前側に設置されたハウジング524bと、ハウジング524bに取り付けられた透光カバー522bとを備える。照明システム504cは、車両501の左後側に設けられる。特に、照明システム504cは、車両501の左後側に設置されたハウジング524cと、ハウジング524cに取り付けられた透光カバー522cとを備える。照明システム504dは、車両501の右後側に設けられる。特に、照明システム504dは、車両501の右後側に設置されたハウジング524dと、ハウジング524dに取り付けられた透光カバー522dとを備える。
次に、図32を参照することで、図31に示す車両システム502を具体的に説明する。図32は、車両システム502を示すブロック図である。図32に示すように、車両システム502は、車両制御部503と、照明システム504a~504dと、センサ505と、HMI(Human Machine Interface)508と、GPS(Global Positioning System)509と、無線通信部510と、記憶装置511とを備える。さらに、車両システム502は、ステアリングアクチュエータ512と、ステアリング装置513と、ブレーキアクチュエータ514と、ブレーキ装置515と、アクセルアクチュエータ516と、アクセル装置517とを備える。また、車両システム502は、電力を供給するように構成されたバッテリー(図示せず)を備える。
車両制御部503は、車両501の走行を制御するように構成されている。車両制御部503は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及び/又はTPU(Tensor Processing Unit)である。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。
また、電子制御ユニット(ECU)は、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明システム504aは、制御部540aと、照明ユニット542aと、カメラ543aと、LiDAR(Light Detection and Ranging)ユニット544a(レーザーレーダの一例)と、ミリ波レーダ545aとを更に備える。制御部540aと、照明ユニット542aと、カメラ543aと、LiDARユニット544aと、ミリ波レーダ545aは、図31に示すように、ハウジング524aと透光カバー522aによって形成される空間Sa内(灯室内)に配置される。尚、制御部540aは、空間Sa以外の車両501の所定の場所に配置されてもよい。例えば、制御部540aは、車両制御部503と一体的に構成されてもよい。
制御部540aは、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含んでもよい。プロセッサは、例えば、CPU、MPU、GPU及び/又はTPUである。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROMと、RAMを含む。ROMには、車両501の周辺環境を特定するための周辺環境特定プログラムが記憶されてもよい。例えば、周辺環境特定プログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、周辺環境特定プログラム、カメラ543aに取得された画像データ、LiDARユニット544aによって取得された3次元マッピングデータ(点群データ)及び/又はミリ波レーダ545aによって取得された検出データ等が一時的に記憶されてもよい。プロセッサは、ROMに記憶された周辺環境特定プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、電子制御ユニット(ECU)は、ASICやFPGA等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明ユニット542aは、車両501の外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット542aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット542aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両501の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット542aは、運転者用の配光パターン(例えば、ロービーム用配光パターンやハイビーム用配光パターン)を車両501の前方に形成するように構成されている。このように、照明ユニット542aは、左側ヘッドランプユニットとして機能する。一方、車両501の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット542aは、カメラ用の配光パターンを車両501の前方に形成するように構成されてもよい。
制御部540aは、照明ユニット542aに設けられた複数の発光素子の各々に電気信号(例えば、PWM(Pulse Width Modulation)信号)を個別に供給するように構成されてもよい。このように、制御部540aは、電気信号が供給される発光素子を個別に選択することができると共に、発光素子毎に電気信号のDuty比を調整することができる。つまり、制御部540aは、マトリックス状に配列された複数の発光素子のうち、点灯又は消灯すべき発光素子を選択することができると共に、点灯している発光素子の輝度を決定することができる。このため、制御部540aは、照明ユニット542aから前方に向けて出射される配光パターンの形状及び明るさを変更することができる。
カメラ543aは、車両501の周辺環境を検出するように構成されている。特に、カメラ543aは、フレームレートa1(fps)で車両501の周辺環境を示す画像データを取得した上で、当該画像データを制御部540aに送信するように構成されている。制御部540aは、送信された画像データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両501の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両501の外部に存在する対象物の属性に関する情報と、車両501に対する対象物の位置に関する情報とを含んでもよい。カメラ543aは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子によって構成される。カメラ543aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ543aがステレオカメラの場合、制御部540aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両501と車両501の外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。また、本実施形態では、1つのカメラ543aが照明システム504aに設けられているが、2以上のカメラ543aが照明システム504aに設けられてもよい。
LiDARユニット544a(レーザーレーダの一例)は、車両501の周辺環境を検出するように構成されている。特に、LiDARユニット544aは、フレームレートa2(fps)で車両501の周辺環境を示す3Dマッピングデータ(点群データ)を取得した上で、当該3Dマッピングデータを制御部540aに送信するように構成されている。制御部540aは、送信された3Dマッピングデータに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両501の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、例えば、車両501の外部に存在する対象物の属性に関する情報と、車両501に対する対象物の位置に関する情報とを含んでもよい。3Dマッピングデータのフレームレートa2(第2フレームレート)は、画像データのフレームレートa1(第1フレームレート)と同一であってもよいし、異なってもよい。
より具体的には、LiDARユニット544aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得した上で、飛行時間ΔT1に関する情報に基づいて、各出射角度(水平角度θ、垂直角度φ)におけるLiDARユニット544a(車両501)と車両501の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT1は、例えば、以下のように算出することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット544aは、車両501の周辺環境を示す3Dマッピングデータを取得することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット544aは、車両501の周辺環境を示す3Dマッピングデータを取得することができる。
また、LiDARユニット544aは、例えば、レーザ光を出射するように構成されたレーザ光源と、レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器と、レンズ等の光学系と、物体によって反射されたレーザ光を受光するように構成された受光部とを備える。レーザ光源から出射されるレーザ光の中心波長は特に限定されない。例えば、レーザ光は、中心波長が900nm付近である非可視光であってもよい。光偏向器は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーであってもよい。受光部は、例えば、フォトダイオードである。尚、LiDARユニット544aは、光偏向器によってレーザ光を走査せずに、3Dマッピングデータを取得してもよい。例えば、LiDARユニット544aは、フェイズドアレイ方式又はフラッシュ方式で3Dマッピングデータを取得してもよい。また、本実施形態では、1つのLiDARユニット544aが照明システム504aに設けられているが、2以上のLiDARユニット544aが照明システム504aに設けられてもよい。例えば、2つのLiDARユニット544aが照明システム504aに設けられている場合、一方のLiDARユニット544aが車両501の前方領域における周辺環境を検出するように構成されると共に、他方のLiDARユニット544aが車両501の側方領域における周辺環境を検出するように構成されてもよい。
ミリ波レーダ545aは、車両501の周辺環境を検出するように構成されている。特に、ミリ波レーダ545aは、車両501の周辺環境を示す検出データを取得した上で、当該検出データを制御部540aに送信するように構成されている。制御部540aは、送信された検出データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両501の外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両501の外部に存在する対象物の属性に関する情報と、車両501に対する対象物の位置に関する情報と、車両501に対する対象物の速度に関する情報を含んでもよい。
例えば、ミリ波レーダ545aは、パルス変調方式、FM-CW(Frequency Moduleted-Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ545a(車両501)と車両501の外部に存在する物体との間の距離Dを取得することができる。パルス変調方式を用いる場合、ミリ波レーダ545aは、ミリ波の各出射角度におけるミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、各出射角度におけるミリ波レーダ545a(車両501)と車両501の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT2は、例えば、以下のように算出することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ545aは、ミリ波レーダ545aから出射されたミリ波の周波数f0とミリ波レーダ545aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ545a(車両501)に対する車両501の外部に存在する物体の相対速度Vに関する情報を取得することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ545aは、ミリ波レーダ545aから出射されたミリ波の周波数f0とミリ波レーダ545aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ545a(車両501)に対する車両501の外部に存在する物体の相対速度Vに関する情報を取得することができる。
また、本実施形態では、1つのミリ波レーダ545aが照明システム504aに設けられているが、2以上のミリ波レーダ545aが照明システム504aに設けられてもよい。例えば、照明システム504aは、短距離用のミリ波レーダ545aと、中距離用のミリ波レーダ545aと、長距離用のミリ波レーダ545aを有してもよい。
照明システム504bは、制御部540bと、照明ユニット542bと、カメラ543bと、LiDARユニット544bと、ミリ波レーダ545bとを更に備える。制御部540bと、照明ユニット542bと、カメラ543bと、LiDARユニット544bと、ミリ波レーダ545bは、図31に示すように、ハウジング524bと透光カバー522bによって形成される空間Sb内(灯室内)に配置される。尚、制御部540bは、空間Sb以外の車両501の所定の場所に配置されてもよい。例えば、制御部540bは、車両制御部503と一体的に構成されてもよい。制御部540bは、制御部540aと同様な機能及び構成を有してもよい。照明ユニット542bは、照明ユニット542aと同様な機能及び構成を有してもよい。この点において、照明ユニット542aは、左側ヘッドランプユニットとして機能する一方、照明ユニット542bは、右側ヘッドランプユニットとして機能する。カメラ543bは、カメラ543aと同様な機能及び構成を有してもよい。LiDARユニット544bは、LiDARユニット544aと同様な機能及び構成を有してもよい。ミリ波レーダ545bは、ミリ波レーダ545aと同様な機能及び構成を有してもよい。
照明システム504cは、制御部540cと、照明ユニット542cと、カメラ543cと、LiDARユニット544cと、ミリ波レーダ545cとを更に備える。制御部540cと、照明ユニット542cと、カメラ543cと、LiDARユニット544cと、ミリ波レーダ545cは、図31に示すように、ハウジング524cと透光カバー522cによって形成される空間Sc内(灯室内)に配置される。尚、制御部540cは、空間Sc以外の車両501の所定の場所に配置されてもよい。例えば、制御部540cは、車両制御部503と一体的に構成されてもよい。制御部540cは、制御部540aと同様な機能及び構成を有してもよい。
照明ユニット542cは、車両501の外部(後方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット542cは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED、LD又は有機EL素子である。光学系は、光源から出射された光を照明ユニット542cの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両501の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット542cは消灯してもよい。一方、車両501の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット542cは、カメラ用の配光パターンを車両501の後方に形成するように構成されてもよい。
カメラ543cは、カメラ543aと同様な機能及び構成を有してもよい。LiDARユニット544cは、LiDARユニット544cと同様な機能及び構成を有してもよい。ミリ波レーダ545cは、ミリ波レーダ545aと同様な機能及び構成を有してもよい。
照明システム504dは、制御部540dと、照明ユニット542dと、カメラ543dと、LiDARユニット544dと、ミリ波レーダ545dとを更に備える。制御部540dと、照明ユニット542dと、カメラ543dと、LiDARユニット544dと、ミリ波レーダ545dは、図31に示すように、ハウジング524dと透光カバー522dによって形成される空間Sd内(灯室内)に配置される。尚、制御部540dは、空間Sd以外の車両501の所定の場所に配置されてもよい。例えば、制御部540dは、車両制御部503と一体的に構成されてもよい。制御部540dは、制御部540cと同様な機能及び構成を有してもよい。照明ユニット542dは、照明ユニット542cと同様な機能及び構成を有してもよい。カメラ543dは、カメラ543cと同様な機能及び構成を有してもよい。LiDARユニット544dは、LiDARユニット544cと同様な機能及び構成を有してもよい。ミリ波レーダ545dは、ミリ波レーダ545cと同様な機能及び構成を有してもよい。
センサ505は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ505は、車両501の走行状態を検出して、車両501の走行状態を示す走行状態情報を車両制御部503に出力するように構成されている。また、センサ505は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、センサ505は、車両501の周辺環境の明るさ(照度等)を検出するように構成された照度センサを備えてもよい。照度センサは、例えば、フォトダイオードから出力される光電流の大きさに応じて周辺環境の明るさを決定してもよい。
HMI(Human Machine Interface)508は、運転者からの入力操作を受付ける入力部と、走行状態情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両501の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、走行状態情報、周辺環境情報および照明システム4の照明状態を表示するように構成されたディスプレイ等を含む。
GPS(Global Positioning System)509は、車両501の現在位置情報を取得し、当該取得された現在位置情報を車両制御部503に出力するように構成されている。無線通信部510は、車両501の周囲にいる他車に関する情報(例えば、他車走行情報等)を他車から受信すると共に、車両501に関する情報(例えば、自車走行情報等)を他車に送信するように構成されている(車車間通信)。
また、無線通信部510は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両501の自車走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部510は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両501の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両501は、他車両、インフラ設備又は携帯型電子機器とアドホックモードにより直接通信してもよいし、アクセスポイントを介して通信してもよい。無線通信規格は、例えば、第5世代移動通信システム(5G)、Wi-Fi(登録商標),Bluetooth(登録商標),ZigBee(登録商標)又はLPWAである。また、車両501は、他車両、インフラ設備又は携帯型電子機器と移動通信ネットワークを介して通信してもよい。
記憶装置511は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置511には、2D又は3Dの地図情報及び/又は車両制御プログラムが記憶されてもよい。記憶装置511は、車両制御部503からの要求に応じて、地図情報や車両制御プログラムを車両制御部503に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部510とインターネット等の通信ネットワークを介して更新されてもよい。
車両501が自動運転モードで走行する場合、車両制御部503は、走行状態情報、周辺環境情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ512は、ステアリング制御信号を車両制御部503から受信して、受信したステアリング制御信号に基づいてステアリング装置513を制御するように構成されている。ブレーキアクチュエータ514は、ブレーキ制御信号を車両制御部503から受信して、受信したブレーキ制御信号に基づいてブレーキ装置515を制御するように構成されている。アクセルアクチュエータ516は、アクセル制御信号を車両制御部503から受信して、受信したアクセル制御信号に基づいてアクセル装置517を制御するように構成されている。このように、自動運転モードでは、車両501の走行は車両システム502により自動制御される。
一方、車両501が手動運転モードで走行する場合、車両制御部503は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に応じて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両501の走行は運転者により制御される。
次に、車両501の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム502がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両501を運転できる状態にはない。高度運転支援モードでは、車両システム502がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両501を運転できる状態にはあるものの車両501を運転しない。運転支援モードでは、車両システム502がステアリング制御、ブレーキ制御及びアクセル制御のうちの一部の走行制御を自動的に行うと共に、車両システム502の運転支援の下で運転者が車両501を運転する。一方、手動運転モードでは、車両システム502が走行制御を自動的に行わないと共に、車両システム502からの運転支援なしに運転者が車両501を運転する。
また、車両501の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部503は、運転モード切替スイッチに対する運転者の操作に応じて、車両501の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両501の運転モードは、自動運転車の走行が可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部503は、これらの情報に基づいて車両501の運転モードを切り替える。さらに、車両501の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部503は、着座センサや顔向きセンサからの出力信号に基づいて、車両501の運転モードを切り替えてもよい。
次に、図33を参照して、制御部540aの機能について説明する。図33は、照明システム504aの制御部540aの機能ブロックを示す図である。図33に示すように、制御部540aは、照明ユニット542aと、カメラ543aと、LiDARユニット544aと、ミリ波レーダ545aの動作をそれぞれ制御するように構成されている。特に、制御部540aは、照明制御部5410aと、カメラ制御部5420a(第1生成部の一例)と、LiDAR制御部5430a(第2生成部の一例)と、ミリ波レーダ制御部5440aと、周辺環境情報送信部5450aとを備える。
照明制御部5410aは、照明ユニット542aが所定の配光パターンを車両501の前方領域に向けて出射するように照明ユニット542aを制御するように構成されている。例えば、照明制御部5410aは、車両501の運転モードに応じて照明ユニット542aから出射される配光パターンを変更してもよい。さらに、照明制御部5410aは、レートa3(Hz)で照明ユニット542aを点灯制御するように構成されている。後述するように、照明ユニット542aのレートa3(第3レート)は、カメラ543aによって取得された画像データのフレームレートa1と同一であってもよいし、異なってもよい。
カメラ制御部5420aは、カメラ543aの動作を制御するように構成されている。特に、カメラ制御部5420aは、フレームレートa1(第1フレームレート)で画像データ(第1検出データ)を取得するようにカメラ543aを制御するように構成されている。さらに、カメラ制御部5420aは、画像データの各フレームの取得タイミング(特に、取得開始時刻)を制御するように構成されている。また、カメラ制御部5420aは、カメラ543aから出力された画像データに基づいて、カメラ543aの検出領域S1(図34参照)における車両501の周辺環境情報(以下、周辺環境情報Icという。)を生成するように構成されている。より具体的には、図35に示すように、カメラ制御部5420aは、画像データのフレームFc1に基づいて、車両501の周辺環境情報Ic1を生成し、画像データのフレームFc2に基づいて、周辺環境情報Ic2を生成し、画像データのフレームFc3に基づいて、周辺環境情報Ic3を生成する。このように、カメラ制御部5420aは、画像データの1フレームごとに周辺環境情報を生成する。
LiDAR制御部5430aは、LiDARユニット544aの動作を制御するように構成されている。特に、LiDAR制御部5430aは、フレームレートa2(第2フレームレート)で3Dマッピングデータ(第2検出データ)を取得するようにLiDARユニット544aを制御するように構成されている。さらに、LiDAR制御部5430aは、3Dマッピングデータの各フレームの取得タイミング(特に、取得開始時刻)を制御するように構成されている。また、LiDAR制御部5430aは、LiDARユニット544aから出力された3Dマッピングデータに基づいて、LiDARユニット544aの検出領域S2(図34参照)における車両501の周辺環境情報(以下、周辺環境情報Il)を生成するように構成されている。より具体的には、図35に示すように、LiDAR制御部5430aは、3DマッピングデータのフレームFl1に基づいて、周辺環境情報Il1を生成し、3DマッピングデータのフレームFl2に基づいて、周辺環境情報Il2を生成し、3DマッピングデータのフレームFl3に基づいて、周辺環境情報Il3を生成する。このように、LiDAR制御部5430aは、3Dマッピングデータの1フレームごとに周辺環境情報を生成する。
ミリ波レーダ制御部5440aは、ミリ波レーダ545aの動作を制御すると共に、ミリ波レーダ545aから出力された検出データに基づいて、ミリ波レーダ545aの検出領域S3(図34参照)における車両501の周辺環境情報Imを生成するように構成されている。
周辺環境情報送信部5450aは、周辺環境情報Ic,Il,Imを取得すると共に、取得した周辺環境情報Ic,Il,Imを車両制御部503に送信するように構成されている。例えば、図35に示すように、画像データのフレームFc1の取得開始時刻tc1は、3DマッピングデータのフレームFl1の取得開始時刻tl1よりも前であるため、周辺環境情報送信部5450aは、カメラ制御部5420aから、画像データのフレームFc1に対応する周辺環境情報Ic1を取得した後に、周辺環境情報Ic1を車両制御部503に送信する。その後、周辺環境情報送信部5450aは、LiDAR制御部5430aから、3DマッピングデータのフレームFl1に対応する周辺環境情報Il1を取得した後に、周辺環境情報Il1を車両制御部503に送信する。
また、制御部540b,540c,540dも制御部540aと同様の機能を有してもよい。つまり、制御部540b~540dの各々は、照明制御部と、カメラ制御部(第1生成部の一例)と、LiDAR制御部(第2生成部の一例)と、ミリ波レーダ制御部と、周辺環境情報送信部とを備えてもよい。制御部540b~540cの各々の周辺環境情報送信部は、周辺環境情報Ic,Il,Imを車両制御部503に送信してもよい。車両制御部503は、各制御部540a~540dから送信された周辺環境情報とその他の情報(走行制御情報、現在位置情報、地図情報等)に基づいて、車両501の走行を制御してもよい。
次に、図35を参照することで、画像データの各フレームの取得タイミングと、3Dマッピングデータの各フレームの取得タイミングとの関係について詳細に説明する。尚、以降では、説明の便宜上、ミリ波レーダ545aの検出データの取得タイミングについては特に言及しない。つまり、本実施形態では、画像データの取得タイミングと3Dマッピングデータの取得タイミングとの間の関係性について特に着目される。
図35の上段は、所定の期間におけるカメラ543aにより取得される画像データのフレーム(例えば、フレームFc1,Fc2,Fc3)の取得タイミングを示している。ここで、フレームFc2(第1検出データの第2フレームの一例)は、フレームFc1(第1検出データの第1フレームの一例)の次にカメラ543aによって取得される画像データのフレームである。フレームFc3は、フレームFc2の次にカメラ543aによって取得される画像データのフレームである。
また、画像データの1フレームの取得期間ΔTcは、画像データの1フレームを形成するために必要な露光時間(換言すれば、画像データの1フレームを形成する光を取り込む時間)に相当する。尚、CCDやCMOS等のイメージセンサーから出力された電気信号を処理する時間は、取得期間ΔTcには含まれていない。
フレームFc1の取得開始時刻tc1とフレームFc2の取得開始時刻tc3との間の期間は、画像データのフレーム周期T1に相当する。フレーム周期T1は、フレームレートa1の逆数(T1=1/a1)に相当する。
図35の中段は、所定の期間におけるLiDARユニット544aにより取得される3Dマッピングデータのフレーム(例えば、フレームFl1,Fl2,Fl3)の取得タイミングを示している。ここで、フレームFl2(第2検出データの第2フレームの一例)は、フレームFl1(第2検出データの第1フレームの一例)の次にLiDARユニット544aによって取得される3Dマッピングデータのフレームである。フレームFl3は、フレームFl2の次にLiDARユニット544aによって取得される3Dマッピングデータのフレームである。3Dマッピングデータの1フレームの取得期間ΔTlでは、LiDARユニット544aの受光部から出力された電気信号を処理する時間は含まれていない。
フレームFl1の取得開始時刻tl1とフレームFl2の取得開始時刻tl3との間の期間は、3Dマッピングデータのフレーム周期T2に相当する。フレーム周期T2は、フレームレートa2の逆数(T2=1/a2)に相当する。
図35に示すように、本実施形態では、画像データの各フレームの取得開始時刻と、3Dマッピングデータの各フレームの取得開始時刻が互いに異なっている。具体的には、3DマッピングデータのフレームFl1の取得開始時刻tl1は、画像データのフレームFc1の取得開始時刻tc1とは異なっている。さらに、3DマッピングデータのフレームFl2の取得開始時刻tl3は、画像データのフレームFc2の取得開始時刻tc3とは異なっている。この点において、好ましくは、3DマッピングデータのフレームFl1は、画像データのフレームFc1の取得終了時刻tc2と画像データのフレームFc2の取得開始時刻tc3との間の期間(第1期間)において取得される。同様に、3DマッピングデータのフレームFl2は、フレームFc2の取得終了時刻tc4とフレームFc3の取得開始時刻tc5との間の期間において取得される。ここで、フレームFl1の少なくとも一部が、時刻tc2と時刻tc3の間で取得されればよい。同様に、フレームFl2の少なくとも一部が、時刻tc4と時刻tc5の間で取得されればよい。
さらに、より好ましくは、3DマッピングデータのフレームFl1の取得開始時刻tl1と画像データのフレームFc1の取得開始時刻tc1との間の間隔は、フレームFc1の取得期間ΔTcの半分よりも大きく、且つ画像データのフレーム周期T1(取得周期)よりも小さい。同様に、3DマッピングデータのフレームFl2の取得開始時刻tl3と画像データのフレームFc2の取得開始時刻tc3との間の間隔は、フレームFc2の取得期間ΔTcの半分よりも大きく、且つ画像データのフレーム周期T1よりも小さい。
尚、図35に示す例では、時刻tl1と時刻tc1との間の間隔は、フレームFc1の取得期間ΔTcよりも大きく、且つ画像データのフレーム周期T1よりも小さい。同様に、時刻tl3と時刻tc3との間の間隔は、フレームFc2の取得期間ΔTcよりも大きく、且つ画像データのフレーム周期T1よりも小さい。
このように、本実施形態によれば、画像データの各フレームの取得開始時刻と3Dマッピングデータの各フレームの取得開始時刻が互いに異なる。すなわち、画像データを取得できない時間帯(例えば、時刻tc2と時刻tc3との間の時間帯)において3Dマッピングデータ(例えば、フレームFl1)を取得することができる。一方、3Dマッピングデータを取得できない時間帯(例えば、時刻tl2と時刻tl3との間の時間帯)において画像データ(例えば、フレームFc2)を取得することができる。このため、画像データの各フレームに基づいて生成される周辺環境情報Icの時間帯は、3Dマッピングデータの各フレームに基づいて生成される周辺環境情報Ilとは異なる。例えば、フレームFc1に対応する周辺環境情報Ic1の時間帯は、フレームFl1に対応する周辺環境情報Il1の時間帯とは異なる。同様に、フレームFc2に対応する周辺環境情報Ic2の時間帯は、フレームFl2に対応する周辺環境情報Il2の時間帯とは異なる。このように、例えば、カメラ543aのフレームレートa1とLiDARユニット544aのフレームレートa2が低い場合であっても、周辺環境情報Icと周辺環境情報Ilの両方を用いることで、異なる時間帯における車両501の周辺環境を特定する回数を増加させることができる。換言すれば、車両制御部503は、周辺環境情報送信部5450aから周辺環境情報を時間的に高密度に取得することができる。従って、車両501の周辺環境の認知精度を向上させることが可能な車両システム502を提供することができる。
次に、画像データの各フレームの取得タイミングと、3Dマッピングデータの各フレームの取得タイミングと、照明ユニット542aの点灯タイミングとの関係について詳細に説明する。図35の下段は、所定の期間における照明ユニット542aの点灯タイミング(点灯期間ΔTonと消灯期間ΔToff)を示している。照明ユニット542aの点灯期間ΔTonの点灯開始時刻ts1と次の点灯期間ΔTonの点灯開始時刻ts3との間の期間は、点灯周期T3に相当する。点灯周期T3は、レートa3の逆数(T3=1/a3)に相当する。
図35に示すように、照明ユニット542aの点灯周期T3は、画像データのフレーム周期T1と一致している。換言すれば、照明ユニット542aのレートa3は、画像データのフレームレートa1と一致している。さらに、照明ユニット542aは、画像データの各フレーム(例えば、フレームFc1,Fc2,Fc3)の取得期間ΔTcにおいて点灯する。一方、照明ユニット542aは、3Dマッピングデータの各フレーム(例えば、フレームFl1,Fl2,Fl3)の取得期間ΔTlにおいて消灯する。
このように、本実施形態によれば、照明ユニット542aが点灯している間に、車両501の周辺環境を示す画像データがカメラ543aによって取得されるので、車両501の周辺環境が暗い(例えば、夜間)場合において、画像データにブラックアウトが生じることを好適に防止することが可能となる。一方、照明ユニット542aが消灯している間に、車両501の周辺環境を示す3DマッピングデータがLiDARユニット544aによって取得されるので、照明ユニット542aから出射され、透光カバー522aによって反射された光の一部がLiDARユニット544aの受光部に入射することで、3Dマッピングデータに悪影響を及ぼすことを好適に防止することが可能となる。
尚、図35に示す例では、画像データの各フレームの取得期間ΔTcが照明ユニット542aの点灯期間ΔTonに完全に重複しているが、本実施形態はこれには限定されない。画像データの各フレームの取得期間ΔTcの一部が、照明ユニット542aの点灯期間ΔTonに重複していればよい。また、3Dマッピングデータの各フレームの取得期間ΔTlの一部が、照明ユニット542aの消灯期間ΔToffに重複していればよい。
また、本実施形態では、カメラ543aを駆動させる前に、カメラ制御部5420aは、画像データの取得タイミング(例えば、最初のフレームの取得開始時刻等を含む。)を決定した上で、当該画像データの取得タイミングに関する情報をLiDAR制御部5430aと照明制御部5410aに送信してもよい。この場合、LiDAR制御部5430aは、受信した画像データの取得タイミングに関する情報に基づいて、3Dマッピングデータの取得タイミング(最初のフレームの取得開始時刻等)を決定する。さらに、照明制御部5410aは、受信した画像データの取得タイミングに関する情報に基づいて、照明ユニット542aの点灯タイミング(最初の点灯開始時刻等)を決定する。その後、カメラ制御部5420aは、画像データの取得タイミングに関する情報に基づいて、カメラ543aを駆動させる。また、LiDAR制御部5430aは、3Dマッピングデータの取得タイミングに関する情報に基づいて、LiDARユニット544aを駆動させる。さらに、照明制御部5410aは、照明ユニット542aの点灯タイミングに関する情報に基づいて、照明ユニット542aを点消灯させる。
このようにして、画像データの各フレームの取得開始時刻と、3Dマッピングデータの各フレームの取得開始時刻が互いに異なるように、カメラ543aとLiDARユニット544aを駆動させることが可能となる。さらに、画像データの各フレームの取得期間ΔTcにおいて点灯すると共に、3Dマッピングデータの各フレームの取得期間ΔTlにおいて消灯するように、照明ユニット542aを点灯制御させることが可能となる。
一方、上記の方法の代替案として、周辺環境情報送信部5450aは、画像データの取得タイミングと、3Dマッピングデータの取得タイミングと、照明ユニット542aの点灯タイミングを決定してもよい。この場合、周辺環境情報送信部5450aは、画像データの取得タイミングに関する情報をカメラ制御部5420aに送信し、3Dマッピングデータの取得タイミングに関する情報をLiDAR制御部5430aに送信し、照明ユニット542aの点灯タイミングに関する情報を照明制御部5410aに送信する。その後、カメラ制御部5420aは、画像データの取得タイミングに関する情報に基づいて、カメラ543aを駆動させる。また、LiDAR制御部5430aは、3Dマッピングデータの取得タイミングに関する情報に基づいて、LiDARユニット544aを駆動させる。さらに、照明制御部5410aは、照明ユニット542aの点灯タイミングに関する情報に基づいて、照明ユニット542aを点消灯させる。
次に、図36を参照して、照明ユニット542aの点灯周期T3を2倍にしたときにおける、画像データの各フレームの取得タイミングと、3Dマッピングデータの各フレームの取得タイミングと、照明ユニット542aの点灯タイミングとの関係について説明する。図36に示すように、照明ユニット542aの点灯周期が2T3に設定される。換言すれば、照明ユニット542aのレートは、a3/2に設定されるため、画像データのフレームレートa1の半分となる。さらに、照明ユニット542aは、画像データのフレームFc1の取得期間ΔTcにおいて点灯する一方、画像データの次のフレームFc2の取得期間ΔTcにおいて消灯する。このように、照明ユニット542aのレートa3/2は、画像データのフレームレートa1の半分となるため、画像データの所定のフレームは、照明ユニット542aの点灯期間ΔTon2に重複すると共に、当該所定のフレームの次のフレームは、照明ユニット542aの消灯期間ΔToff2に重複する。
このように、カメラ543aは、照明ユニット542aが点灯している間に車両501の周辺環境を示す画像データを取得すると共に、照明ユニット542aが消灯している間に当該画像データを取得する。つまり、カメラ543aは、照明ユニット542aが点灯したときの画像データのフレームと、照明ユニット542aが消灯したときの画像データのフレームを交互に取得する。このため、照明ユニット542aが消灯しているときに撮像された画像データM1と照明ユニット542aが点灯しているときに撮像された画像データM2を比較することで、車両501の周辺に存在する対象物が自ら発光しているのか又は光を反射しているのかを特定することができる。このように、カメラ制御部5420aは、車両501の周辺に存在する対象物の属性をより正確に特定することができる。さらに、照明ユニット542aが点灯している場合、照明ユニット542aから出射され、透光カバー522aによって反射された光の一部がカメラ543aに入射することで、画像データM2に迷光が生じる可能性がある。一方、照明ユニット542aが消灯している場合、画像データM1には迷光は生じない。このように、カメラ制御部5420aは、画像データM1と画像データM2を比較することで、画像データM2に生じる迷光を特定することができる。従って、車両501の周辺環境の認知精度を向上させることができる。
(第6実施形態)
以下、本開示の第6実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
以下、本開示の第6実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」について適宜言及する。これらの方向は、図37に示す車両601について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。
最初に、図37を参照して本実施形態に係る車両601について説明する。図37は、車両システム602を備える車両601の上面図を示す模式図である。図37に示すように、車両601は、自動運転モードで走行可能な車両(自動車)であって、車両システム602を備える。車両システム602は、車両制御部603と、左前照明システム604a(以下、単に「照明システム604a」という。)と、右前照明システム604b(以下、単に「照明システム604b」という。)と、左後照明システム604c(以下、単に「照明システム604c」という。)と、右後照明システム604d(以下、単に「照明システム604d」という。)を少なくとも備える。
照明システム604aは、車両601の左前側に設けられる。特に、照明システム604aは、車両601の左前側に設置されたハウジング624aと、ハウジング624aに取り付けられた透光カバー622aとを備える。照明システム604bは、車両601の右前側に設けられる。特に、照明システム604bは、車両601の右前側に設置されたハウジング624bと、ハウジング624bに取り付けられた透光カバー622bとを備える。照明システム604cは、車両601の左後側に設けられる。特に、照明システム604cは、車両601の左後側に設置されたハウジング624cと、ハウジング624cに取り付けられた透光カバー622cとを備える。照明システム604dは、車両601の右後側に設けられる。特に、照明システム604dは、車両601の右後側に設置されたハウジング624dと、ハウジング624dに取り付けられた透光カバー622dとを備える。
次に、図38を参照することで、図37に示す車両システム602を具体的に説明する。図38は、本実施形態に係る車両システム602を示すブロック図である。図38に示すように、車両システム602は、車両制御部603と、照明システム604a~604dと、センサ5と、HMI(Human Machine Interface)608と、GPS(Global Positioning System)609と、無線通信部610と、記憶装置611とを備える。さらに、車両システム602は、ステアリングアクチュエータ612と、ステアリング装置613と、ブレーキアクチュエータ614と、ブレーキ装置615と、アクセルアクチュエータ616と、アクセル装置617とを備える。また、車両システム602は、電力を供給するように構成されたバッテリー(図示せず)を備える。
車両制御部603(第3制御部の一例)は、車両601の走行を制御するように構成されている。車両制御部603は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、トランジスタ等のアクティブ素子及びパッシブ素子を含むその他電子回路を含んでもよい。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及び/又はTPU(Tensor Processing Unit)である。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。
また、電子制御ユニット(ECU)は、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明システム604a(第1センシングシステムの一例)は、制御部640aと、照明ユニット642aと、カメラ643aと、LiDAR(Light Detection and Ranging)ユニット644a(レーザーレーダの一例)と、ミリ波レーダ645aとを更に備える。制御部640aと、照明ユニット642aと、カメラ643aと、LiDARユニット644aと、ミリ波レーダ645aは、図37に示すように、ハウジング624aと透光カバー622aによって形成される空間Sa内(第1領域の一例)に配置される。尚、制御部640aは、空間Sa以外の車両601の所定の場所に配置されてもよい。例えば、制御部640aは、車両制御部603と一体的に構成されてもよい。
制御部640a(第1制御部の一例)は、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含んでもよい。プロセッサは、例えば、CPU、MPU、GPU及び/又はTPUである。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROMと、RAMを含む。ROMには、車両601の周辺環境を特定するための周辺環境特定プログラムが記憶されてもよい。例えば、周辺環境特定プログラムは、ディープラーニング等のニューラルネットワークを用いた教師有り又は教師なし機械学習によって構築されたプログラムである。RAMには、周辺環境特定プログラム、カメラ643aに取得された画像データ、LiDARユニット644aによって取得された3次元マッピングデータ(点群データ)及び/又はミリ波レーダ645aによって取得された検出データ等が一時的に記憶されてもよい。プロセッサは、ROMに記憶された周辺環境特定プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、電子制御ユニット(ECU)は、ASICやFPGA等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
照明ユニット642aは、車両601の外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット642aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(LaSer Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット642aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両601の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット642aは、運転者用の配光パターン(例えば、ロービーム用配光パターンやハイビーム用配光パターン)を車両601の前方に形成するように構成されている。このように、照明ユニット642aは、左側ヘッドランプユニットとして機能する。一方、車両601の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット642aは、カメラ用の配光パターンを車両601の前方に形成するように構成されてもよい。
制御部640aは、照明ユニット642aに設けられた複数の発光素子の各々に電気信号(例えば、PWM(PulSe Width Modulation)信号)を個別に供給するように構成されてもよい。このように、制御部640aは、電気信号が供給される発光素子を個別に選択することができると共に、発光素子毎に電気信号のDuty比を調整することができる。つまり、制御部640aは、マトリックス状に配列された複数の発光素子のうち、点灯又は消灯すべき発光素子を選択することができると共に、点灯している発光素子の輝度を決定することができる。このため、制御部640aは、照明ユニット642aから前方に向けて出射される配光パターンの形状及び明るさを変更することができる。
カメラ643a(第1センサの一例)は、車両601の周辺環境を検出するように構成されている。特に、カメラ643aは、車両601の周辺環境を示す画像データ(第1検出データの一例)を取得した上で、当該画像データを制御部640aに送信するように構成されている。制御部640aは、送信された画像データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両601の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両601の外部に存在する対象物の属性に関する情報と、車両601に対する対象物の距離や位置に関する情報とを含んでもよい。カメラ643aは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子によって構成される。カメラ643aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ643aがステレオカメラの場合、制御部640aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両601と車両601の外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。また、本実施形態では、1つのカメラ643aが照明システム604aに設けられているが、2以上のカメラ643aが照明システム604aに設けられてもよい。
LiDARユニット644a(第1センサの一例)は、車両601の周辺環境を検出するように構成されている。特に、LiDARユニット644aは、車両601の周辺環境を示す3Dマッピングデータ(点群データ)を取得した上で、当該3Dマッピングデータを制御部640aに送信するように構成されている。制御部640aは、送信された3Dマッピングデータ(第1検出データの一例)に基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両601の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両601の外部に存在する対象物の属性に関する情報と、車両601に対する対象物の距離や位置に関する情報とを含んでもよい。
より具体的には、LiDARユニット644aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得した上で、飛行時間ΔT1に関する情報に基づいて、各出射角度(水平角度θ、垂直角度φ)におけるLiDARユニット644a(車両601)と車両601の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT1は、例えば、以下のように算出することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット644aは、車両601の周辺環境を示す3Dマッピングデータを取得することができる。
飛行時間ΔT1=レーザ光(光パルス)がLiDARユニットに戻ってきた時刻t1-LiDARユニットがレーザ光(光パルス)を出射した時刻t0
このように、LiDARユニット644aは、車両601の周辺環境を示す3Dマッピングデータを取得することができる。
また、LiDARユニット644aは、例えば、レーザ光を出射するように構成されたレーザ光源と、レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器と、レンズ等の光学系と、物体によって反射されたレーザ光を受光するように構成された受光部とを備える。レーザ光源から出射されるレーザ光の中心波長は特に限定されない。例えば、レーザ光は、中心波長が900nm付近である非可視光であってもよい。光偏向器は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーであってもよい。受光部は、例えば、フォトダイオードである。尚、LiDARユニット644aは、光偏向器によってレーザ光を走査せずに、3Dマッピングデータを取得してもよい。例えば、LiDARユニット644aは、フェイズドアレイ方式又はフラッシュ方式で3Dマッピングデータを取得してもよい。また、本実施形態では、1つのLiDARユニット644aが照明システム604aに設けられているが、2以上のLiDARユニット644aが照明システム604aに設けられてもよい。例えば、2つのLiDARユニット644aが照明システム604aに設けられている場合、一方のLiDARユニット644aが車両601の前方領域における周辺環境を検出するように構成されると共に、他方のLiDARユニット644aが車両601の側方領域における周辺環境を検出するように構成されてもよい。
ミリ波レーダ645a(第1センサの一例)は、車両601の周辺環境を検出するように構成されている。特に、ミリ波レーダ645aは、車両601の周辺環境を示す検出データ(第1検出データの一例)を取得した上で、当該検出データを制御部640aに送信するように構成されている。制御部640aは、送信された検出データに基づいて、周辺環境情報を特定する。ここで、周辺環境情報は、車両601の外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両601の外部に存在する対象物の属性に関する情報と、車両601に対する対象物の位置に関する情報と、車両601に対する対象物の速度に関する情報を含んでもよい。
例えば、ミリ波レーダ645aは、パルス変調方式、FM-CW(Frequency Moduleted-Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ645a(車両601)と車両601の外部に存在する物体との間の距離Dを取得することができる。パルス変調方式を用いる場合、ミリ波レーダ645aは、ミリ波の各出射角度におけるミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、各出射角度におけるミリ波レーダ645a(車両601)と車両601の外部に存在する物体との間の距離Dに関する情報を取得することができる。ここで、飛行時間ΔT2は、例えば、以下のように算出することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ645aは、ミリ波レーダ645aから出射されたミリ波の周波数f0とミリ波レーダ645aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ645a(車両601)に対する車両601の外部に存在する物体の相対速度Vに関する情報を取得することができる。
飛行時間ΔT2=ミリ波がミリ波レーダに戻ってきた時刻t3-ミリ波レーダがミリ波を出射した時刻t2
また、ミリ波レーダ645aは、ミリ波レーダ645aから出射されたミリ波の周波数f0とミリ波レーダ645aに戻ってきたミリ波の周波数f1に基づいて、ミリ波レーダ645a(車両601)に対する車両601の外部に存在する物体の相対速度Vに関する情報を取得することができる。
また、本実施形態では、1つのミリ波レーダ645aが照明システム604aに設けられているが、2以上のミリ波レーダ645aが照明システム604aに設けられてもよい。例えば、照明システム604aは、短距離用のミリ波レーダ645aと、中距離用のミリ波レーダ645aと、長距離用のミリ波レーダ645aを有してもよい。
照明システム604b(第2センシングシステムの一例)は、制御部640b(第2制御部の一例)と、照明ユニット642bと、カメラ643bと、LiDARユニット644bと、ミリ波レーダ645bとを更に備える。制御部640bと、照明ユニット642bと、カメラ643bと、LiDARユニット644bと、ミリ波レーダ645bは、図37に示すように、ハウジング624bと透光カバー622bによって形成される空間Sb内(第2領域の一例)に配置される。尚、制御部640bは、空間Sb以外の車両601の所定の場所に配置されてもよい。例えば、制御部640bは、車両制御部603と一体的に構成されてもよい。制御部640bは、制御部640aと同様な機能及び構成を有してもよい。照明ユニット642bは、照明ユニット642aと同様な機能及び構成を有してもよい。この点において、照明ユニット642aは、左側ヘッドランプユニットとして機能する一方、照明ユニット642bは、右側ヘッドランプユニットとして機能する。カメラ643b(第2センサの一例)は、カメラ643aと同様な機能及び構成を有してもよい。LiDARユニット644b(第2センサの一例)は、LiDARユニット644aと同様な機能及び構成を有してもよい。ミリ波レーダ645b(第2センサの一例)は、ミリ波レーダ645aと同様な機能及び構成を有してもよい。
照明システム604cは、制御部640cと、照明ユニット642cと、カメラ643cと、LiDARユニット644cと、ミリ波レーダ645cとを更に備える。制御部640cと、照明ユニット642cと、カメラ643cと、LiDARユニット644cと、ミリ波レーダ645cは、図37に示すように、ハウジング624cと透光カバー622cによって形成される空間Sc内(灯室内)に配置される。尚、制御部640cは、空間Sc以外の車両601の所定の場所に配置されてもよい。例えば、制御部640cは、車両制御部603と一体的に構成されてもよい。制御部640cは、制御部640aと同様な機能及び構成を有してもよい。
照明ユニット642cは、車両601の外部(後方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット642cは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED、LD又は有機EL素子である。光学系は、光源から出射された光を照明ユニット642cの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。車両601の運転モードが手動運転モード又は運転支援モードである場合に、照明ユニット642cは消灯してもよい。一方、車両601の運転モードが高度運転支援モード又は完全自動運転モードである場合に、照明ユニット642cは、カメラ用の配光パターンを車両601の後方に形成するように構成されてもよい。
カメラ643cは、カメラ643aと同様な機能及び構成を有してもよい。LiDARユニット644cは、LiDARユニット644cと同様な機能及び構成を有してもよい。ミリ波レーダ645cは、ミリ波レーダ645aと同様な機能及び構成を有してもよい。
照明システム604dは、制御部640dと、照明ユニット642dと、カメラ643dと、LiDARユニット644dと、ミリ波レーダ645dとを更に備える。制御部640dと、照明ユニット642dと、カメラ643dと、LiDARユニット644dと、ミリ波レーダ645dは、図37に示すように、ハウジング624dと透光カバー622dによって形成される空間Sd内(灯室内)に配置される。尚、制御部640dは、空間Sd以外の車両601の所定の場所に配置されてもよい。例えば、制御部640dは、車両制御部603と一体的に構成されてもよい。制御部640dは、制御部640cと同様な機能及び構成を有してもよい。照明ユニット642dは、照明ユニット642cと同様な機能及び構成を有してもよい。カメラ643dは、カメラ643cと同様な機能及び構成を有してもよい。LiDARユニット644dは、LiDARユニット644cと同様な機能及び構成を有してもよい。ミリ波レーダ645dは、ミリ波レーダ645cと同様な機能及び構成を有してもよい。
センサ5は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ5は、車両601の走行状態を検出して、車両601の走行状態を示す走行状態情報を車両制御部603に出力するように構成されている。また、センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、センサ5は、車両601の周辺環境の明るさ(照度等)を検出するように構成された照度センサを備えてもよい。照度センサは、例えば、フォトダイオードから出力される光電流の大きさに応じて周辺環境の明るさを決定してもよい。
HMI(Human Machine Interface)608は、運転者からの入力操作を受付ける入力部と、走行状態情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両601の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、走行状態情報、周辺環境情報および照明システム4の照明状態を表示するように構成されたディスプレイ等を含む。
GPS(Global Positioning System)609は、車両601の現在位置情報を取得し、当該取得された現在位置情報を車両制御部603に出力するように構成されている。無線通信部610は、車両601の周囲にいる他車に関する情報(例えば、他車走行情報等)を他車から受信すると共に、車両601に関する情報(例えば、自車走行情報等)を他車に送信するように構成されている(車車間通信)。
また、無線通信部610は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両601の自車走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部610は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両601の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両601は、他車両、インフラ設備又は携帯型電子機器とアドホックモードにより直接通信してもよいし、アクセスポイントを介して通信してもよい。無線通信規格は、例えば、Wi-Fi(登録商標),Bluetooth(登録商標),ZigBee(登録商標)又はLPWAである。また、車両601は、他車両、インフラ設備又は携帯型電子機器と移動通信ネットワークを介して通信してもよい。
記憶装置611は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置611には、2D又は3Dの地図情報及び/又は車両制御プログラムが記憶されてもよい。例えば、3Dの地図情報は、点群データによって構成されてもよい。記憶装置611は、車両制御部603からの要求に応じて、地図情報や車両制御プログラムを車両制御部603に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部610とインターネット等の通信ネットワークを介して更新されてもよい。
車両601が自動運転モードで走行する場合、車両制御部603は、走行状態情報、周辺環境情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ612は、ステアリング制御信号を車両制御部603から受信して、受信したステアリング制御信号に基づいてステアリング装置613を制御するように構成されている。ブレーキアクチュエータ614は、ブレーキ制御信号を車両制御部603から受信して、受信したブレーキ制御信号に基づいてブレーキ装置615を制御するように構成されている。アクセルアクチュエータ616は、アクセル制御信号を車両制御部603から受信して、受信したアクセル制御信号に基づいてアクセル装置617を制御するように構成されている。このように、自動運転モードでは、車両601の走行は車両システム602により自動制御される。
一方、車両601が手動運転モードで走行する場合、車両制御部603は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に応じて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両601の走行は運転者により制御される。
次に、車両601の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム602がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両601を運転できる状態にはない。高度運転支援モードでは、車両システム602がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両601を運転できる状態にはあるものの車両601を運転しない。運転支援モードでは、車両システム602がステアリング制御、ブレーキ制御及びアクセル制御のうちの一部の走行制御を自動的に行うと共に、車両システム602の運転支援の下で運転者が車両601を運転する。一方、手動運転モードでは、車両システム602が走行制御を自動的に行わないと共に、車両システム602からの運転支援なしに運転者が車両601を運転する。
また、車両601の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部603は、運転モード切替スイッチに対する運転者の操作に応じて、車両601の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両601の運転モードは、自動運転車の走行が可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部603は、これらの情報に基づいて車両601の運転モードを切り替える。さらに、車両601の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部603は、着座センサや顔向きセンサからの出力信号に基づいて、車両601の運転モードを切り替えてもよい。
次に、図39を参照して、制御部640aの機能について説明する。図39は、照明システム604aの制御部640a(第1制御部の一例)の機能ブロックを示す図である。図39に示すように、制御部640aは、照明ユニット642aと、カメラ643aと、LiDARユニット644aと、ミリ波レーダ645aの動作をそれぞれ制御するように構成されている。特に、制御部640aは、照明制御部6410aと、カメラ制御部6420aと、LiDAR制御部6430aと、ミリ波レーダ制御部6440aと、周辺環境情報融合部6450aとを備える。
照明制御部6410aは、照明ユニット642aが所定の配光パターンを車両601の前方領域に向けて出射するように照明ユニット642aを制御するように構成されている。例えば、照明制御部6410aは、車両601の運転モードに応じて照明ユニット642aから出射される配光パターンを変更してもよい。
カメラ制御部6420aは、カメラ643aの動作を制御すると共に、カメラ643aから出力された画像データに基づいて、カメラ643aの検出領域S1a(図41参照)における車両601の周辺環境情報(以下、周辺環境情報I1aという。)を生成するように構成されている。LiDAR制御部6430aは、LiDARユニット644aの動作を制御すると共に、LiDARユニット644aから出力された3Dマッピングデータに基づいて、LiDARユニット644aの検出領域S2a(図41参照)における車両601の周辺環境情報(以下、周辺環境情報I2aという。)を生成するように構成されている。ミリ波レーダ制御部6440aは、ミリ波レーダ645aの動作を制御すると共に、ミリ波レーダ645aから出力された検出データに基づいて、ミリ波レーダ645aの検出領域S3a(図41参照)における車両601の周辺環境情報(以下、周辺環境情報I3aという。)を生成するように構成されている。
周辺環境情報融合部6450aは、周辺環境情報I1a,I2a,I3aをそれぞれ融合することで、融合された周辺環境情報Ifaを生成するように構成される。ここで、周辺環境情報Ifaは、図41に示すように、カメラ643aの検出領域S1aと、LiDARユニット644aの検出領域S2aと、ミリ波レーダ645aの検出領域S3aを組合せた検出領域Sfa(第1周辺領域の一例)における車両601の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報Ifaは、対象物の属性、車両601に対する対象物の位置、車両601に対する対象物の角度、車両601と対象物との間の距離及び/又は車両601に対する対象物の速度に関する情報を含んでもよい。周辺環境情報融合部6450aは、周辺環境情報Ifaを車両制御部603に送信するように構成される。
次に、図40を参照して周辺環境情報Ifaを生成する処理の一例について説明する。図40に示すように、ステップS601において、カメラ643aは、検出領域S1a(図41参照)における車両601の周辺環境を示す画像データを取得する。ステップS602において、LiDARユニット644aは、検出領域S2aにおける車両601の周辺環境を示す3Dマッピングデータを取得する。ステップS603において、ミリ波レーダ645aは、検出領域S3aにおける車両601の周辺環境を示す検出データを取得する。
次に、カメラ制御部6420aは、カメラ643aから画像データを取得した上で、画像データに基づいて周辺環境情報I1aを生成する(ステップS604)。LiDAR制御部6430aは、LiDARユニット644aから3Dマッピングデータを取得した上で、3Dマッピングデータに基づいて周辺環境情報I2aを生成する(ステップS605)。ミリ波レーダ制御部6440aは、ミリ波レーダ645aから検出データを取得した上で、検出データに基づいて周辺環境情報I3aを生成する(ステップS606)。
次に、ステップS607において、周辺環境情報融合部6450aは、各センサの優先度に基づいて各重複領域Sx,Sy,Sz(図41参照)において複数の周辺環境情報を比較する。本実施形態では、各センサの優先度は、カメラ643a>LiDARユニット644a>ミリ波レーダ645aと仮定する。具体的には、周辺環境情報融合部6450aは、検出領域S1aと検出領域S2aとが互いに重複する重複領域Sxにおいて、周辺環境情報I1aと周辺環境情報I2aとを比較した上で、周辺環境情報I1aと周辺環境情報I2aが互いに一致するかどうかを判定する。例えば、周辺環境情報I1aが重複領域Sxにおいて歩行者の位置を位置Z1として示す一方、周辺環境情報I2aが重複領域Sxにおいて歩行者P2の位置を位置Z2として示す場合、周辺環境情報I1aと周辺環境情報I2aが互いに一致しないと判定される。周辺環境情報融合部6450aは、比較結果として、周辺環境情報I1aと周辺環境情報I2aが互いに一致しないと判定した場合、各センサの優先度(カメラ643a>LiDARユニット644a)に基づいて、重複領域Sxにおいて採用される周辺環境情報を周辺環境情報I1aとして決定する。
また、周辺環境情報融合部6450aは、検出領域S2aと検出領域S3aとが互いに重複する重複領域Szにおいて、周辺環境情報I2aと周辺環境情報I3aとを比較した上で、周辺環境情報I2aと周辺環境情報I3aが互いに一致するかどうかを判定する。周辺環境情報融合部6450aは、比較結果として、周辺環境情報I2aと周辺環境情報I3aが互いに一致しないと判定した場合、各センサの優先度(LiDARユニット644a>ミリ波レーダ645a)に基づいて、重複領域Szにおいて採用される周辺環境情報を周辺環境情報I2aとして決定する。
また、周辺環境情報融合部6450aは、検出領域S1aと、検出領域S2aと、検出領域S3aとが互いに重複する重複領域Syにおいて、周辺環境情報I1aと、周辺環境情報I2aと、周辺環境情報I3aとを比較した上で、周辺環境情報I1aと、周辺環境情報I2aと、周辺環境情報I3aとが互いに一致するかどうかを判定する。周辺環境情報融合部6450aは、比較結果として、周辺環境情報I1aと、周辺環境情報I2aと、周辺環境情報I3aが互いに一致しないと判定した場合、各センサの優先度(カメラ643a>LiDARユニット644a>ミリ波レーダ645a)に基づいて、重複領域Syにおいて採用される周辺環境情報を周辺環境情報I1aとして決定する。
その後、周辺環境情報融合部6450aは、周辺環境情報I1a,I2a,I3aをそれぞれ融合することで、融合された周辺環境情報Ifa(第1周辺環境情報の一例)を生成する。周辺環境情報Ifaは、検出領域S1a,S2a,S3aを組合せた検出領域Sfa(第1周辺領域の一例)における車両601の外部に存在する対象物に関する情報を含んでもよい。特に、周辺環境情報Ifaは、以下の情報によって構成されてもよい。
・検出領域S1aにおける周辺環境情報I1a
・重複領域Sx,Syを除く検出領域S2aにおける周辺環境情報I2a
・重複領域Sy,Szを除く検出領域S3aにおける周辺環境情報I3a
・検出領域S1aにおける周辺環境情報I1a
・重複領域Sx,Syを除く検出領域S2aにおける周辺環境情報I2a
・重複領域Sy,Szを除く検出領域S3aにおける周辺環境情報I3a
次に、ステップS608において、周辺環境情報融合部6450aは、周辺環境情報Ifaを車両制御部603に送信する。このように、図40に示す周辺環境情報Ifaを生成する処理が繰り返し実行される。
尚、上記で説明した周辺環境情報Ifaを生成する処理では、各重複領域Sx,Sy,Szにおいて複数の周辺環境情報が比較されなくてもよい。この場合、周辺環境情報融合部6450aは、重複領域Sx,Sy,Szにおいて複数の周辺環境情報を比較せずに、各センサの優先度に関する情報と、周辺環境情報I1a~I3aに基づいて、周辺環境情報Ifaを生成してもよい。
次に、図42を参照して、制御部640bの機能について説明する。図42は、照明システム604bの制御部640b(第2制御部の一例)の機能ブロックを示す図である。図42に示すように、制御部640bは、照明ユニット642bと、カメラ643b(第2センサの一例)と、LiDARユニット644b(第2センサの一例)と、ミリ波レーダ645b(第2センサの一例)の動作をそれぞれ制御するように構成されている。特に、制御部640bは、照明制御部6410bと、カメラ制御部6420bと、LiDAR制御部6430bと、ミリ波レーダ制御部6440bと、周辺環境情報融合部6450bとを備える。照明制御部6410bは、照明制御部6410aと同一の機能を有してもよい。カメラ制御部6420bは、カメラ制御部6420aと同一の機能を有してもよい。LiDAR制御部6430bは、LiDAR制御部6430aと同一の機能を有してもよい。ミリ波レーダ制御部6440bは、ミリ波レーダ制御部6440aと同一の機能を有してもよい。
次に、図43を参照して融合された周辺環境情報Ifbを生成する処理の一例について説明する。図43に示すように、ステップS611において、カメラ643bは、検出領域S1b(図44参照)における車両601の周辺環境を示す画像データ(第2検出データの一例)を取得する。また、ステップS612において、LiDARユニット644bは、検出領域S2bにおける車両601の周辺環境を示す3Dマッピングデータ(第2検出データの一例)を取得する。さらに、ステップS613において、ミリ波レーダ645bは、検出領域S3bにおける車両601の周辺環境を示す検出データ(第2検出データの一例)を取得する。
次に、カメラ制御部6420bは、カメラ643bから画像データを取得した上で、画像データに基づいて周辺環境情報I1bを生成する(ステップS614)。また、LiDAR制御部6430bは、LiDARユニット644bから3Dマッピングデータを取得した上で、3Dマッピングデータに基づいて周辺環境情報I2bを生成する(ステップS615)。さらに、ミリ波レーダ制御部6440bは、ミリ波レーダ645bから検出データを取得した上で、検出データに基づいて周辺環境情報I3bを生成する(ステップS616)。
次に、ステップS617において、周辺環境情報融合部6450bは、各センサの優先度に基づいて各重複領域St,Su,Sv(図44参照)において複数の周辺環境情報を比較する。本実施形態では、各センサの優先度は、カメラ643b>LiDARユニット644b>ミリ波レーダ645bと仮定する。具体的には、周辺環境情報融合部6450bは、検出領域S1bと検出領域S2bとが互いに重複する重複領域Stにおいて、周辺環境情報I1bと周辺環境情報I2bとを比較した上で、周辺環境情報I1bと周辺環境情報I2bが互いに一致するかどうかを判定する。例えば、周辺環境情報I1bが重複領域Stにおいて歩行者の位置を位置Z3として示す一方、周辺環境情報I2bが重複領域Stにおいて歩行者の位置を位置Z4として示す場合、周辺環境情報I1bと周辺環境情報I2bが互いに一致しないと判定される。周辺環境情報融合部6450bは、比較結果として、周辺環境情報I1bと周辺環境情報I2bが互いに一致しないと判定した場合、各センサの優先度(カメラ643b>LiDARユニット644b)に基づいて、重複領域Stにおいて採用される周辺環境情報を周辺環境情報I1bとして決定する。
また、周辺環境情報融合部6450bは、検出領域S2bと検出領域S3bとが互いに重複する重複領域Svにおいて、周辺環境情報I2bと周辺環境情報I3bとを比較した上で、周辺環境情報I2bと周辺環境情報I3bが互いに一致するかどうかを判定する。周辺環境情報融合部6450bは、比較結果として、周辺環境情報I2bと周辺環境情報I3bが互いに一致しないと判定した場合、各センサの優先度(LiDARユニット644b>ミリ波レーダ645b)に基づいて、重複領域Svにおいて採用される周辺環境情報を周辺環境情報I2bとして決定する。
また、周辺環境情報融合部6450bは、検出領域S1bと、検出領域S2bと、検出領域S3bとが互いに重複する重複領域Suにおいて、周辺環境情報I1bと、周辺環境情報I2bと、周辺環境情報I3bとを比較した上で、周辺環境情報I1bと、周辺環境情報I2bと、周辺環境情報I3bとが互いに一致するかどうかを判定する。周辺環境情報融合部6450bは、比較結果として、周辺環境情報I1bと、周辺環境情報I2bと、周辺環境情報I3bが互いに一致しないと判定した場合、各センサの優先度(カメラ643b>LiDARユニット644b>ミリ波レーダ645b)に基づいて、重複領域Suにおいて採用される周辺環境情報を周辺環境情報I1bとして決定する。
その後、周辺環境情報融合部6450bは、周辺環境情報I1b,I2b,I3bをそれぞれ融合することで、融合された周辺環境情報Ifb(第2周辺環境情報の一例)を生成する。周辺環境情報Ifbは、検出領域S1b,S2b,S3bを組合せた検出領域Sfb(第2周辺領域の一例)における車両601の外部に存在する対象物に関する情報を含んでもよい。特に、周辺環境情報Ifbは、以下の情報によって構成されてもよい。
・検出領域S1bにおける周辺環境情報I1b
・重複領域St,Suを除く検出領域S2bにおける周辺環境情報I2b
・重複領域Su,Svを除く検出領域S3bにおける周辺環境情報I3b
・検出領域S1bにおける周辺環境情報I1b
・重複領域St,Suを除く検出領域S2bにおける周辺環境情報I2b
・重複領域Su,Svを除く検出領域S3bにおける周辺環境情報I3b
次に、ステップS618において、周辺環境情報融合部6450bは、周辺環境情報Ifbを車両制御部603に送信する。このように、図43に示す周辺環境情報Ifbを生成する処理が繰り返し実行される。
尚、上記で説明した周辺環境情報Ifbを生成する処理では、各重複領域St,Su,Svにおいて複数の周辺環境情報が比較されなくてもよい。この場合、周辺環境情報融合部6450bは、重複領域St,Su,Svにおいて複数の周辺環境情報を比較せずに、各センサの優先度に関する情報と、周辺環境情報I1b~I3bに基づいて、周辺環境情報Ifbを生成してもよい。
次に、図45及び図46を参照して照明システム604aの検出領域Sfaと照明システム604bの検出領域Sfbとが互いに重複する重複周辺領域Sflにおける車両601の周辺環境を最終的に特定する処理について説明する。図45は、重複周辺領域Sflにおける車両601の周辺環境を最終的に特定する処理を説明するためのフローチャートである。図46は、検出領域Sfaと、検出領域Sfbと、検出領域Sfaと検出領域Sfbが互いに重複する重複周辺領域Sflを示す図である。尚、説明を簡略化するために、図41に示す検出領域Sfaの形状と、図46に示す検出領域Sfaの形状は一致させていない点に留意されたい。同様に、図44に示す検出領域Sfbの形状と、図46に示す検出領域Sfbの形状は一致させていない点に留意されたい。
図45に示すように、ステップS620において、車両制御部603は、周辺環境情報融合部6450aから検出領域Sfaにおける周辺環境情報Ifaを受信する。次に、車両制御部603は、周辺環境情報融合部6450bから検出領域Sfbにおける周辺環境情報Ifbを受信する(ステップS621)。その後、車両制御部603は、受信した周辺環境情報Ifa,Ifbのうちの少なくとも一方に基づいて、重複周辺領域Sflにおける車両601の周辺環境を最終的に特定する。換言すれば、車両制御部603は、重複周辺領域Sflにおける車両601の周辺環境を示す周辺環境情報を特定する(ステップS622)。
ステップS622の処理の具体例について図46を参照して説明する。図46に示すように、重複周辺領域Sflは、第1部分領域Sf1と第2部分領域Sf2に区分される。第1部分領域Sf1は、中心軸Axに対して左側に位置する領域である一方、第2部分領域Sf2は、中心軸Axに対して右側に位置する領域である。ここで、中心軸Axは、車両601の長手方向に平行に延びると共に車両601の中心を通過する軸である。第1部分領域Sf1と照明システム604aの空間Saとの間の距離は、第1部分領域Sf1と照明システム604bの空間Sbとの間の距離よりも小さい。より詳細には、第1部分領域Sf1内の所定の位置Paと空間Saとの間の距離は、所定の位置Paと空間Sbとの間の距離よりも小さい。同様に、第2部分領域Sf2と照明システム604bの空間Sbとの間の距離は、第2部分領域Sf2と照明システム604aの空間Saとの間の距離よりも小さい。より詳細には、第2部分領域Sf2内の所定の位置Pbと空間Sbとの間の距離は、所定の位置Pbと空間Saとの間の距離よりも小さい。
車両制御部603は、検出領域Sfaにおける周辺環境を示す周辺環境情報Ifaに基づいて、第1部分領域Sf1における車両601の周辺環境を最終的に特定する。換言すれば、車両制御部603は、第1部分領域Sf1における周辺環境情報として周辺環境情報Ifaを採用する。一方、車両制御部603は、検出領域Sfbにおける周辺環境を示す周辺環境情報Ifbに基づいて、第2部分領域Sf2における車両601の周辺環境を最終的に特定する。換言すれば、車両制御部603は、第2部分領域Sf2における周辺環境情報として周辺環境情報Ifbを採用する。このように、車両制御部603は、車両601と重複周辺領域Sflとの間の相対的位置関係と、周辺環境情報Ifa,Ifbのうちの少なくとも一方とに基づいて、重複周辺領域Sflにおける車両601の周辺環境を最終的に特定する。
次に、ステップS623において、車両制御部603は、車両601の前方領域における周辺環境を最終的に特定する。特に、車両制御部603は、周辺環境情報Ifa,Ifbを融合することで、融合された周辺環境情報Igを生成する。周辺環境情報Igは、検出領域Sfa,Sfbを組合せた検出領域Sgにおける車両601の外部に存在する対象物に関する情報を含んでもよい。特に、本実施形態では、周辺環境情報Igは、以下の情報によって構成されてもよい。
・第2部分領域Sf2を除く検出領域Sfaにおける周辺環境情報Ifa
・第1部分領域Sf1を除く検出領域Sfbにおける周辺環境情報Ifb
・第2部分領域Sf2を除く検出領域Sfaにおける周辺環境情報Ifa
・第1部分領域Sf1を除く検出領域Sfbにおける周辺環境情報Ifb
このように、本実施形態によれば、周辺環境情報Ifa,Ifbのうちの少なくとも一方に基づいて、検出領域Sfaと検出領域Sfbとが互いに重複する重複周辺領域Sflにおける車両601の周辺環境が最終的に特定される。このように、重複周辺領域Sflにおける車両601の周辺環境を最終的に特定することができるので、車両601の周辺環境の認知精度を向上させることが可能な車両システム602を提供することができる。
さらに、照明システム604a(空間Sa)の側に位置する第1部分領域Sf1では、周辺環境情報Ifaに基づいて車両601の周辺環境が最終的に特定される。一方、照明システム604b(空間Sb)の側に位置する第2部分領域Sf2では、周辺環境情報Ifbに基づいて車両601の周辺環境が最終的に特定される。このように、重複周辺領域Sflと照明システム604a,604bとの間の位置関係を考慮した上で、重複周辺領域Sflにおける車両601の周辺環境が最終的に特定されるので、車両601の周辺環境の認知精度を向上させることができる。
次に、図47を参照して、照明システム604aの検出領域Sfaと照明システム604bの検出領域Sfbとが互いに重複する重複周辺領域Sflにおける車両601の周辺環境を最終的に特定する処理の他の一例について説明する。図47は、重複周辺領域Sflにおいて歩行者P7が存在する様子を示す図である。本例では、図45に示すステップS622の処理について以下に説明する。
図47に示すように、重複周辺領域Sf1に歩行者P7が存在する場合に、検出領域Sfaにおける周辺環境情報Ifaと検出領域Sfbにおける周辺環境情報Ifbが互いに異なるものとする。具体的には、周辺環境情報Ifaによって示される車両601と歩行者P7との間の相対的位置関係に関連するパラメータ(位置、距離、角度等)が周辺環境情報Ifbによって示される車両601と歩行者P7との間の相対的位置関係に関連するパラメータ(位置、距離、角度等)と異なるものとする。ここで、車両601と歩行者P7との間の角度とは、例えば、歩行者P7の中心点と車両601の中心点を結んだ線分と中心軸Ax(図46参照)との間によって形成される角度である。
例えば、周辺環境情報Ifaによって示される車両601と歩行者P7との間の距離がD1である一方、周辺環境情報Ifbによって示される車両601と歩行者P7との間の距離がD2(D1≠D2)であるとする。この場合、車両制御部603は、距離D1と距離D2の平均値を車両601と歩行者P7との間の距離として最終的に特定する。このように、車両制御部603は、周辺環境情報Ifaによって示されるパラメータと周辺環境情報Ifbによって示されるパラメータとの平均値を採用することで、重複周辺領域Sflにおける周辺環境情報を特定する。
尚、周辺環境情報Ifaが歩行者P7の存在を示す一方、周辺環境情報Ifbが歩行者P7の存在を示さない場合には、車両制御部603は、周辺環境情報Ifaと周辺環境情報Ifbとの間の優先度に関係なく、歩行者P7が存在すると判定してもよい。このように、2つの周辺環境情報のうち少なくとも一方が対象物の存在を示す場合には、対象物が存在すると判定されることで、車両601の走行安全性をさらに向上させることが可能となる。
また、2つのパラメータの平均値に基づいて重複周辺領域Sflにおける周辺環境情報を特定する方法に代わって、照明システム604aの3つのセンサの検出精度に関連する情報と、照明システム604bの3つのセンサの検出精度に関連する情報とに基づいて、重複周辺領域Sflにおける車両601の周辺環境が特定されてもよい。具体的には、車両制御部603は、照明システム604aの3つのセンサの検出精度の平均値(又は中央値)と照明システム604bの3つのセンサの検出精度の平均値(又は中央値)とを比較することで、重複周辺領域Sflにおける周辺環境情報を特定してもよい。
例えば、カメラ643aの検出精度、LiDARユニット644aの検出精度、ミリ波レーダ645aの検出精度がそれぞれ、95%、97%、90%とする一方、カメラ643bの検出精度、LiDARユニット644bの検出精度、ミリ波レーダ645bの検出精度がそれぞれ、90%、92%、90%とする。この場合、照明システム604aの3つのセンサの検出精度の平均値は、約94%となる。一方、照明システム604bの3つのセンサの検出精度の平均値は、約91%となる。このため、照明システム604aの検出精度の平均値は、照明システム604bの検出精度の平均値よりも大きいため、車両制御部603は、周辺環境情報Ifaを重複周辺領域Sflにおける周辺環境情報として採用する。このように、照明システム604aの3つのセンサの検出精度に関連した情報と、照明システム604bの3つのセンサの検出精度に関連した情報を考慮した上で、重複周辺領域Sflにおける車両601の周辺環境が最終的に特定されるので、車両601の周辺環境の認知精度を向上させることができる。尚、本例では、センサの検出精度が百分率で規定されているが、複数のランク(例えば、Aランク、Bランク、Cランク)で規定されてもよい。
次に、図48を参照して照明システム604cの検出領域Sfcと照明システム604dの検出領域Sfdとが互いに重複する重複周辺領域Sfrにおける車両601の周辺環境を最終的に特定する処理について説明する。図48は、検出領域Sfcと、検出領域Sfdと、これら2つの検出領域Sfc,Sfdが互いに重複する重複周辺領域Sfrを示す図である。
最初に、車両制御部603は、制御部640cの周辺環境情報融合部から検出領域Sfcにおける融合された周辺環境情報Ifcを受信する。次に、車両制御部603は、制御部640dの周辺環境情報融合部から検出領域Sfdにおける融合された周辺環境情報Ifdを受信する。ここで、検出領域Sfcは、照明システム604cの3つのセンサの検出領域を合成することで得られる検出領域である。同様に、検出領域Sfdは、照明システム604dの3つのセンサの検出領域を合成することで得られる検出領域である。その後、車両制御部603は、受信した周辺環境情報Ifc,Ifdのうちの少なくとも一方に基づいて、重複周辺領域Sfrにおける車両601の周辺環境を最終的に特定する。換言すれば、車両制御部603は、重複周辺領域Sfrにおける車両601の周辺環境を示す周辺環境情報を特定する。次に、車両制御部603は、車両601の後方領域における周辺環境を最終的に特定する。特に、車両制御部603は、周辺環境情報Ifc,Ifdを融合することで、融合された周辺環境情報Irを生成する。周辺環境情報Irは、検出領域Sfc,Sfdを組合せた検出領域Srにおける車両601の外部に存在する対象物に関する情報を含んでもよい。このように、重複周辺領域Sfrにおける車両601の周辺環境を最終的に特定することができるので、車両601の周辺環境の認知精度を向上させることが可能な車両システム602を提供することができる。
以上より、本実施形態によれば、制御部640a~640dの各々は、照明システムに搭載された3つのセンサ(カメラ、LiDARユニット、ミリ波レーダ)の検出データに基づいて、融合された周辺環境情報を生成する。車両制御部603は、各制御部640a~640dから周辺環境情報を受信した上で、車両601の前方領域及び後方領域における車両601の周辺環境を最終的に特定する。車両制御部603は、最終的に特定された周辺環境情報Ig,Irと、走行状態情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成した上で、車両601の走行を自動的に制御する。このように、各照明システムに搭載された各センサの検出データに基づいて生成された周辺環境情報を融合することで、車両601の周辺環境情報を最終的に特定することが可能となる。
尚、図47に示す検出領域Sgと図48に示す検出領域Srが互いに重複する場合には、車両制御部603は、検出領域Sgと検出領域Srが互いに重複する重複領域における周辺環境情報を特定してもよい。例えば、周辺環境情報Igによって示される車両601と対象物の相対位置関係に関連するパラメータと周辺環境情報Irによって示される車両601と対象物の相対位置関係に関連するパラメータとの平均値が採用されてもよい。また、車両制御部603は、照明システム604a,604bの複数センサの検出精度に関連する情報と照明システム604c,604dの複数センサの検出精度に関連する情報とを比較することで、上記重複領域における周辺環境情報を特定してもよい。
次に、図49を参照して本実施形態の変形例に係る車両システム602Aについて以下に説明する。図49は、車両システム602Aを示すブロック図である。図49に示すように、車両システム602Aは、制御部631,632を備える点で図38に示す車両システム602と相違する。制御部631は、照明システム604aの制御部640a及び照明システム604bの制御部640bに通信可能に接続されると共に、車両制御部603に通信可能に接続されている。また、制御部632は、照明システム604cの制御部640c及び照明システム604dの制御部640dに通信可能に接続されると共に、車両制御部603に通信可能に接続されている。
制御部631,632は、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含む少なくとも一つのマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含んでもよい。また、電子制御ユニット(ECU)は、ASICやFPGA等の少なくとも一つの集積回路によって構成されてもよい。さらに、電子制御ユニットは、少なくとも一つのマイクロコントローラと少なくとも一つの集積回路(FPGA等)との組み合わせによって構成されてもよい。
本例では、制御部631,632は、車両制御部603に代わって、重複周辺領域における車両601の周辺環境を最終的に特定してもよい。この点において、図45に示すように、制御部631は、制御部640aの周辺環境情報融合部6450aから周辺環境情報Iafを受信すると共に(ステップS621)、制御部640bの周辺環境情報融合部6450bから周辺環境情報Ibfを受信する(ステップS622)。次に、制御部631は、受信した周辺環境情報Ifa,Ifbのうちの少なくとも一方に基づいて、重複周辺領域Sflにおける車両601の周辺環境を最終的に特定する。その後、制御部631は、車両601の前方領域における周辺環境情報Igを生成した上で(ステップS623)、周辺環境情報Igを車両制御部603に送信する。
一方、制御部632は、最初に、制御部640cの周辺環境情報融合部から周辺環境情報Ifcを受信すると共に、制御部640dの周辺環境情報融合部から周辺環境情報Ifdを受信する。次に、制御部632は、受信した周辺環境情報Ifc,Ifdのうちの少なくとも一方に基づいて、重複周辺領域Sfrにおける車両601の周辺環境を最終的に特定する。その後、制御部632は、車両601の後方領域における周辺環境情報Irを生成した上で、周辺環境情報Igを車両制御部603に送信する。
その後、車両制御部603は、周辺環境情報Ig,Irを受信した上で、周辺環境情報Ig,Irと、走行状態情報、現在位置情報及び/又は地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成した上で、車両601の走行を自動的に制御する。
図49に示す車両システム602Aでは、制御部631,632が設けられているため、車両制御部603で実行される処理の一部を制御部631,632に実行させることができる。このように、車両制御部603に課される演算負荷を分散することができるため、車両システム602Aのスループット及び安定性を向上させることができる。
また、本実施形態では、複数センサとして、カメラと、LiDARユニットと、ミリ波レーダを挙げているが、本実施形態はこれに限定されない。例えば、これらのセンサに加えて超音波センサが照明システムに搭載されてもよい。この場合、照明システムの制御部は、超音波センサの動作を制御すると共に、超音波センサによって取得された検出データに基づいて周辺環境情報を生成してもよい。また、各照明システムに搭載されるセンサの数は3つに限定されず、カメラと、LiDARユニットと、ミリ波レーダと、超音波センサのうち少なくとも2つが照明システムに搭載されてもよい。
以上、本発明の各実施形態について説明をしたが、本発明の技術的範囲が各実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。各実施形態は単なる一例であって、特許請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は特許請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
各実施形態では、車両の運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードと、手動運転モードとを含むものとして説明したが、車両の運転モードは、これら4つのモードに限定されるべきではない。車両の運転モードの区分は、各国における自動運転に係る法令又は規則に沿って適宜変更されてもよい。同様に、本実施形態の説明で記載された「完全自動運転モード」、「高度運転支援モード」、「運転支援モード」のそれぞれの定義はあくまでも一例であって、各国における自動運転に係る法令又は規則に沿って、これらの定義は適宜変更されてもよい。
本出願は、2017年8月3日に出願された日本国特許出願(特願2017-150693号)に開示された内容と、2017年8月3日に出願された日本国特許出願(特願2017-150694号)に開示された内容と、2017年8月3日に出願された日本国特許出願(特願2017-150695号)に開示された内容と、2017年10月12日に出願された日本国特許出願(特願2017-198532号)に開示された内容と、2017年10月12日に出願された日本国特許出願(特願2017-198533)に開示された内容と、2017年10月26日に出願された日本国特許出願(特願2017-207498号)に開示された内容とを適宜援用する。
Claims (46)
- 自動運転モードで走行可能な車両に設けられた車両システムであって、
前記車両の周辺環境を示す検出データを取得するように構成されたセンサと、
前記検出データに基づいて、前記車両の周辺環境を示す周辺環境情報を生成するように構成された生成部と、
前記車両又は前記車両の周辺環境に関連付けられた所定の情報に基づいて、前記センサの使用頻度を設定するように構成された使用頻度設定部と、
を備えた、車両システム。 - 前記使用頻度設定部は、前記所定の情報に基づいて、前記センサの使用頻度を低下させるように構成される、請求項1に記載の車両システム。
- 前記センサの使用頻度は、
前記検出データのフレームレート、前記検出データのビットレート、前記センサのモード又は前記周辺環境情報の更新レートである、請求項1または2に記載の車両システム。 - 前記所定の情報は、前記周辺環境の明るさを示す情報及び前記車両の現在位置の天候情報のうちの少なくとも一つである、請求項1から3のうち何れか一項に記載の車両システム。
- 前記所定の情報は、前記車両の速度を示す情報である、請求項1から4のうち何れか一項に記載の車両システム。
- 前記所定の情報は、前記車両が高速道路を現在走行していることを示す情報である、請求項1から5のうち何れか一項に記載の車両システム。
- 前記所定の情報は、前記車両の進行方向を示す情報である、請求項1から3のうち何れか一項に記載の車両システム。
- 前記センサは、複数のセンサを有し、
a)前記車両が前進している場合、前記使用頻度設定部は、前記車両の後側に配置されたセンサの使用頻度を低下させ、
b)前記車両が後進している場合、前記使用頻度設定部は、前記車両の前側に配置されたセンサの使用頻度を低下させ、
c)前記車両が右折する場合、前記使用頻度設定部は、前記車両の左側に配置されたセンサの使用頻度を低下させる、請求項7に記載の車両システム。 - 請求項1から8のうち何れか一項に記載の車両システムを備えた、自動運転モードで走行可能な車両。
- 自動運転モードで走行可能な車両に設けられた車両システムであって、
第1フレームレートで前記車両の周辺環境を示す第1検出データを取得するように構成された第1センサと、
第2フレームレートで前記車両の周辺環境を示す第2検出データを取得するように構成された第2センサと、
前記第1検出データに基づいて、前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1生成部と、
前記第2検出データに基づいて、前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2生成部と、を備え、
前記第1検出データの各フレームの取得期間と前記第2検出データの各フレームの取得期間は、互いに重複する、車両システム。 - 前記第1センサは、カメラであり、
前記第2センサは、レーザーレーダである、
請求項10に記載の車両システム。 - 前記車両の外部に向けて光を出射するように構成された照明ユニットと、
第3レートで前記照明ユニットを点灯制御するように構成された照明制御部と、
をさらに備える、請求項11に記載の車両システム。 - 前記第3レートは、前記第1フレームレートと同じであり、
前記照明ユニットは、前記第1検出データの各フレームの取得期間において点灯する、請求項12に記載の車両システム。 - 前記第3レートは、前記第1フレームレートの半分であり、
前記照明ユニットは、前記第1検出データの第1フレームの取得期間において消灯すると共に、前記第1検出データの第2フレームの取得期間において点灯し、
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである、請求項12に記載の車両システム。 - 前記第1検出データの各フレームの取得開始時刻は、前記第2検出データの各フレームの取得開始時刻と一致する、請求項10から14のうちいずれか一項に記載の車両システム。
- 請求項10から15のうちいずれか一項に記載の車両システムを備え、自動運転モードで走行可能な車両。
- 自動運転モードで走行可能な車両に設けられた車両システムであって、
各々が前記車両の周辺環境を示す検出データを取得するように構成された複数のセンサと、
前記複数のセンサの検出精度を決定するように構成された検出精度決定部と、
を備えた、車両システム。 - 前記複数の検出データと、前記複数のセンサの検出精度に基づいて、前記車両の周辺環境を特定するように構成された周辺環境情報特定部をさらに備えた、請求項17に記載の車両システム。
- 前記周辺環境情報特定部は、
前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成し、
前記複数のセンサの検出精度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される周辺環境情報を決定するように構成されている、請求項17に記載の車両システム。 - 前記周辺環境情報特定部は、
前記複数のセンサの検出精度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される検出データを決定するように構成されている、請求項18に記載の車両システム。 - 前記複数のセンサのうち第1のセンサの検出領域は、複数の部分領域に区分されており、
前記検出精度決定部は、前記複数の部分領域の各々における前記第1のセンサの検出精度を決定するように構成されている、請求項17から20のうちいずれか一項に記載の車両システム。 - 前記検出精度決定部は、前記車両の現在位置を示す情報及び地図情報に基づいて、前記複数のセンサの検出精度を決定するように構成されている、請求項17から21のうちいずれか一項に記載の車両システム。
- 前記車両の周辺に存在する交通インフラ設備から前記交通インフラ設備に関連したインフラ情報を受信するように構成された受信部をさらに備え、
前記検出精度決定部は、前記車両の現在位置を示す情報及び前記インフラ情報に基づいて、前記複数のセンサの検出精度を決定するように構成されている、請求項17から21のうちいずれか一項に記載の車両システム。 - 前記複数の検出データと、前記複数のセンサの検出精度に基づいて、前記車両の周辺環境を特定するように構成された周辺環境情報特定部をさらに備え、
前記周辺環境情報特定部は、前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成するように構成され、
前記検出精度決定部は、前記生成された複数の周辺環境情報を比較することで、前記複数のセンサの検出精度を決定するように構成されている、請求項17から21のうちいずれか一項に記載の車両システム。 - 請求項17から24のうちいずれか一項に記載の車両システムを備えた、自動運転モードで走行可能な車両。
- 自動運転モードで走行可能な車両に設けられた車両システムであって、
各々が前記車両の周辺環境を示す検出データを取得するように構成された複数のセンサと、
所定の情報に基づいて、前記複数のセンサ間における使用優先度を決定するように構成された使用優先度決定部と、
前記複数の検出データと、前記使用優先度に基づいて、前記車両の周辺環境を特定するように構成された周辺環境特定部と、を備えた、車両システム。 - 前記周辺環境特定部は、
前記複数の検出データに基づいて、前記車両の周辺環境を示す複数の周辺環境情報を生成し、
前記複数のセンサの検出領域が互いに重複する重複領域において、前記複数の周辺環境情報を比較し、
前記複数の周辺環境情報が互いに一致しない場合に、前記使用優先度に基づいて、前記重複領域において採用される周辺環境情報を決定する、ように構成されている、請求項26に記載の車両システム。 - 前記周辺環境特定部は、
前記使用優先度に基づいて、前記複数のセンサの検出領域が互いに重複する重複領域において採用される検出データを決定するように構成されている、請求項26に記載の車両システム。 - 前記所定の情報は、前記周辺環境の明るさを示す情報である、請求項26または27に記載の車両システム。
- 前記所定の情報は、前記周辺環境の明るさを示す情報及び天候情報である、請求項26または27に記載の車両システム。
- 前記所定の情報は、前記複数のセンサの検出精度に関する情報である、請求項26または27に記載の車両システム。
- 請求項26から31のうちいずれか一項に記載の車両システムを備え、自動運転モードで走行可能な車両。
- 自動運転モードで走行可能な車両に設けられた車両システムであって、
第1フレームレートで前記車両の周辺環境を示す第1検出データを取得するように構成された第1センサと、
第2フレームレートで前記車両の周辺環境を示す第2検出データを取得するように構成された第2センサと、
前記第1検出データに基づいて、前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1生成部と、
前記第2検出データに基づいて、前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2生成部と、を備え、
前記第1検出データの各フレームの取得開始時刻と前記第2検出データの各フレームの取得開始時刻が互いに異なる、車両システム。 - 前記第1センサは、カメラであり、
前記第2センサは、レーザーレーダである、
請求項33に記載の車両システム。 - 前記車両の外部に向けて光を出射するように構成された照明ユニットと、
第3レートで前記照明ユニットを点灯制御するように構成された照明制御部と、
をさらに備える、請求項34に記載の車両システム。 - 前記第3レートは、前記第1フレームレートと同じであり、
前記照明ユニットは、前記第1検出データの各フレームの取得期間において点灯すると共に、前記第2検出データの各フレームの取得期間において消灯する、請求項35に記載の車両システム。 - 前記第3レートは、前記第1フレームレートの半分であり、
前記照明ユニットは、前記第1検出データの第1フレームの取得期間において点灯すると共に、前記第1検出データの第2フレームの取得期間において消灯し、
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである、請求項35に記載の車両システム。 - 前記第2センサは、少なくとも前記第1検出データの第1フレームの取得終了時刻と前記第1検出データの第2フレームの取得開始時刻の間の第1期間において、前記第2検出データを取得するように構成され、
前記第2フレームは、前記第1フレームの次に前記第1センサによって取得されるフレームである、請求項33から37のうちいずれか一項に記載の車両システム。 - 少なくとも前記第1期間において取得される前記第2検出データの第1フレームの取得開始時刻と前記第1検出データの第1フレームの取得開始時刻との間の間隔は、前記第1検出データの第1フレームの取得期間の半分よりも大きく、且つ前記第1検出データの取得周期よりも小さい、請求項38に記載の車両システム。
- 請求項33から39のうちいずれか一項に記載の車両システムを備え、自動運転モードで走行可能な車両。
- 自動運転モードで走行可能な車両に設けられた車両システムであって、
各々が前記車両の第1領域に配置され、前記車両の周辺環境を示す第1検出データを取得するように構成された複数の第1センサと、
前記複数の第1検出データに基づいて、前記車両の第1周辺領域における前記車両の周辺環境を示す第1周辺環境情報を生成するように構成された第1制御部と、を備えた第1センシングシステムと、
各々が前記第1領域とは異なる前記車両の第2領域に配置され、前記車両の周辺環境を示す第2検出データを取得するように構成された複数の第2センサと、
前記複数の第2検出データに基づいて、前記車両の第2周辺領域における前記車両の周辺環境を示す第2周辺環境情報を生成するように構成された第2制御部と、を備えた第2センシングシステムと、
前記第1周辺環境情報及び前記第2周辺環境情報のうちの少なくとも一方に基づいて、前記第1周辺領域と前記第2周辺領域とが互いに重複する重複周辺領域における前記車両の周辺環境を最終的に特定するように構成された第3制御部と、を備えた、車両システム。 - 前記第3制御部は、
前記車両と前記重複周辺領域との間の相対的位置関係と、前記第1周辺環境情報及び前記第2周辺環境情報のうちの少なくとも一方とに基づいて、前記重複周辺領域における前記車両の周辺環境を最終的に特定するように構成されている、請求項41に記載の車両システム。 - 前記第3制御部は、
前記第1周辺環境情報に基づいて、前記重複周辺領域のうちの第1部分領域における前記車両の周辺環境を最終的に特定し、
前記第2周辺環境情報に基づいて、前記重複周辺領域のうちの第2部分領域における前記車両の周辺環境を最終的に特定する、ように構成されており、
前記第1部分領域と前記第1領域との間の距離は、前記第1部分領域と前記第2領域との間の距離よりも小さく、
前記第2部分領域と前記第2領域との間の距離は、前記第2部分領域と前記第1領域との間の距離よりも小さい、請求項42に記載の車両システム。 - 前記第1周辺環境情報によって示される第1パラメータの第1の値が前記第2周辺環境情報によって示される前記第1パラメータの第2の値と異なる場合に、
前記第3制御部は、前記第1の値と前記第2の値との平均値を前記第1パラメータの値として最終的に特定するように構成されており、
前記第1パラメータは、前記重複周辺領域に存在する対象物と前記車両との間の相対的位置関係に関連するパラメータである、請求項41に記載の車両システム。 - 前記第3制御部は、
前記第1周辺環境情報及び前記第2周辺環境情報のうちの一方と、前記複数の第1センサの検出精度に関連する情報と、前記複数の第2センサの検出精度に関連する情報とに基づいて、前記重複周辺領域における前記車両の周辺環境を最終的に特定するように構成されている、請求項41に記載の車両システム。 - 請求項41から45のうちいずれか一項に記載の車両システムを備えた、自動運転モードで走行可能な車両。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019533945A JP7222892B2 (ja) | 2017-08-03 | 2018-06-14 | 車両用照明システム、車両システム及び車両 |
CN201880050510.6A CN110998692B (zh) | 2017-08-03 | 2018-06-14 | 车辆系统以及车辆 |
US16/635,918 US20210403015A1 (en) | 2017-08-03 | 2018-06-14 | Vehicle lighting system, vehicle system, and vehicle |
EP18841063.3A EP3664064A4 (en) | 2017-08-03 | 2018-06-14 | VEHICLE LIGHTING SYSTEM, VEHICLE SYSTEM AND VEHICLE |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017150694 | 2017-08-03 | ||
JP2017-150694 | 2017-08-03 | ||
JP2017150693 | 2017-08-03 | ||
JP2017150695 | 2017-08-03 | ||
JP2017-150695 | 2017-08-03 | ||
JP2017-150693 | 2017-08-03 | ||
JP2017-198533 | 2017-10-12 | ||
JP2017198532 | 2017-10-12 | ||
JP2017-198532 | 2017-10-12 | ||
JP2017198533 | 2017-10-12 | ||
JP2017-207498 | 2017-10-26 | ||
JP2017207498 | 2017-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026438A1 true WO2019026438A1 (ja) | 2019-02-07 |
Family
ID=65233712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022790 WO2019026438A1 (ja) | 2017-08-03 | 2018-06-14 | 車両用照明システム、車両システム及び車両 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210403015A1 (ja) |
EP (1) | EP3664064A4 (ja) |
JP (1) | JP7222892B2 (ja) |
CN (1) | CN110998692B (ja) |
WO (1) | WO2019026438A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019079453A (ja) * | 2017-10-27 | 2019-05-23 | 住友電気工業株式会社 | 情報生成システム、情報生成装置、情報生成方法およびコンピュータプログラム |
WO2020100631A1 (ja) * | 2018-11-14 | 2020-05-22 | 株式会社デンソー | レーダ搭載灯具ユニットおよびレーザレーダ装置 |
JPWO2020246483A1 (ja) * | 2019-06-04 | 2020-12-10 | ||
JP2021010057A (ja) * | 2019-06-28 | 2021-01-28 | 株式会社ユピテル | システム、及びプログラム等 |
JP2021049872A (ja) * | 2019-09-25 | 2021-04-01 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
JP2021067649A (ja) * | 2019-10-28 | 2021-04-30 | 株式会社デンソー | 移動量推定装置、移動量推定方法、移動量推定プログラム、及び移動量推定システム |
CN113132682A (zh) * | 2020-01-15 | 2021-07-16 | 株式会社东芝 | 信息处理装置 |
JP2022074387A (ja) * | 2020-11-04 | 2022-05-18 | 本田技研工業株式会社 | 車両、及び、車両に搭載される車載センサの軸ずれ判定装置 |
JPWO2022145093A1 (ja) * | 2020-12-28 | 2022-07-07 | ||
US20230271628A1 (en) * | 2022-02-25 | 2023-08-31 | Hitachi Astemo, Ltd. | Distributed processing of vehicle sensor data |
JP7418476B2 (ja) | 2019-06-18 | 2024-01-19 | 華為技術有限公司 | 運転可能な領域情報を決定するための方法及び装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020194589A1 (ja) * | 2019-03-27 | 2020-10-01 | 三菱電機株式会社 | 車両制御用演算装置、車両制御装置、及び、車両制御用演算方法 |
JP7201550B2 (ja) * | 2019-07-29 | 2023-01-10 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
US20220383749A1 (en) * | 2019-09-25 | 2022-12-01 | Sony Group Corporation | Signal processing device, signal processing method, program, and mobile device |
US11450116B2 (en) * | 2020-03-09 | 2022-09-20 | Ford Global Technologies, Llc | Systems and methods for sharing camera setting control among multiple image processing components in a vehicle |
US11560083B2 (en) * | 2020-08-20 | 2023-01-24 | Pony Ai Inc. | Autonomous headlamp encapsulated with camera and artificial intelligence processor to adjust illumination |
WO2022150070A2 (en) * | 2020-09-22 | 2022-07-14 | Coast Autonomous, Inc. | Multi-layer autonomous vehicle control architecture |
JP2022117867A (ja) * | 2021-02-01 | 2022-08-12 | トヨタ自動車株式会社 | 照度提供装置および照度収集システム |
CN113212292A (zh) * | 2021-05-13 | 2021-08-06 | 蔚来汽车科技(安徽)有限公司 | 车辆的控制方法及装置、车载设备、车辆、介质 |
JP7409350B2 (ja) * | 2021-05-25 | 2024-01-09 | トヨタ自動車株式会社 | 制御装置、システム、車両、及び判定方法 |
DE102021205993A1 (de) * | 2021-06-14 | 2022-12-15 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Betreiben eines Scheinwerfersystems eines Kraftfahrzeugs |
DE102022200936A1 (de) * | 2022-01-28 | 2023-08-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Steuergerät zum Betreiben eines Sensorsystems eines Fahrzeugs |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09277887A (ja) | 1996-04-16 | 1997-10-28 | Honda Motor Co Ltd | 自動追従走行システム |
WO2004102222A1 (ja) * | 2003-05-13 | 2004-11-25 | Fujitsu Limited | 物体検出装置、物体検出方法、物体検出プログラム、距離センサ |
JP2005184395A (ja) * | 2003-12-18 | 2005-07-07 | Sumitomo Electric Ind Ltd | 画像処理方法、画像処理システム、画像処理装置および撮影装置 |
JP2013187862A (ja) * | 2012-03-09 | 2013-09-19 | Topcon Corp | 画像データ処理装置、画像データ処理方法および画像データ処理用のプログラム |
JP2014002566A (ja) * | 2012-06-19 | 2014-01-09 | Nec Corp | 情報提供のための条件設定装置、情報提供システム、条件設定方法、及びプログラム |
JP2015212941A (ja) * | 2014-04-25 | 2015-11-26 | グーグル インコーポレイテッド | 複数のセンサーを用いる物体検出方法及びシステム |
WO2016158237A1 (ja) * | 2015-03-31 | 2016-10-06 | 株式会社デンソー | 車両制御装置、及び車両制御方法 |
WO2016158238A1 (ja) * | 2015-03-31 | 2016-10-06 | 株式会社デンソー | 車両制御装置、及び車両制御方法 |
WO2017110413A1 (ja) * | 2015-12-21 | 2017-06-29 | 株式会社小糸製作所 | 車両用画像取得装置、制御装置、車両用画像取得装置または制御装置を備えた車両および車両用画像取得方法 |
JP2017150693A (ja) | 2016-02-22 | 2017-08-31 | 三菱電機株式会社 | 送風装置 |
JP2017150694A (ja) | 2016-02-22 | 2017-08-31 | 住友精化株式会社 | 排熱回収装置およびボイラシステム |
JP2017150695A (ja) | 2016-02-23 | 2017-08-31 | 株式会社デンソー | 蒸発器 |
JP2017198532A (ja) | 2016-04-27 | 2017-11-02 | キヤノン株式会社 | 形状測定装置の形状測定方法、および形状測定装置 |
JP2017198533A (ja) | 2016-04-27 | 2017-11-02 | 大日本印刷株式会社 | センサー装置 |
JP2017207498A (ja) | 2017-06-26 | 2017-11-24 | 株式会社タニタ | 測定装置、ストラップ、表示装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10323144A1 (de) * | 2003-05-22 | 2004-12-09 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Detektion von Objekten in der Umgebung eines Fahrzeugs |
JP4598653B2 (ja) | 2005-05-13 | 2010-12-15 | 本田技研工業株式会社 | 衝突予知装置 |
JP4903426B2 (ja) | 2005-11-30 | 2012-03-28 | アイシン・エィ・ダブリュ株式会社 | 画像認識装置及び方法、並びに自車位置認識装置及び方法 |
JP2012045984A (ja) | 2010-08-24 | 2012-03-08 | Mitsubishi Motors Corp | 衝突軽減装置 |
JP5632762B2 (ja) | 2011-01-25 | 2014-11-26 | パナソニック株式会社 | 測位情報形成装置、検出装置、及び測位情報形成方法 |
WO2012172632A1 (ja) | 2011-06-13 | 2012-12-20 | トヨタ自動車株式会社 | 運転支援装置及び運転支援方法 |
DE102012018099B4 (de) * | 2012-09-13 | 2021-05-20 | Volkswagen Ag | Verfahren zum Betreiben einer Sensoreinrichtung eines Kraftwagens |
DE102012108543A1 (de) * | 2012-09-13 | 2014-03-13 | Continental Teves Ag & Co. Ohg | Verfahren und Vorrichtung zum Anpassen der Umfelderfassung oder einer Assistenzfunktion auf Basis von Informationen einer digitalen Karte oder einer Verkehrsinformationen im Fahrzeug |
KR20160002178A (ko) | 2014-06-30 | 2016-01-07 | 현대자동차주식회사 | 자차 위치 인식 장치 및 방법 |
DE102014014307A1 (de) * | 2014-09-25 | 2016-03-31 | Audi Ag | Verfahren zum Betrieb einer Mehrzahl von Radarsensoren in einem Kraftfahrzeug und Kraftfahrzeug |
EP3358552A4 (en) | 2015-09-30 | 2019-04-24 | Sony Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROCESS AND PROGRAM |
CN108139476B (zh) | 2015-09-30 | 2022-04-26 | 索尼公司 | 信息处理设备、信息处理方法和程序 |
US10473786B2 (en) * | 2015-11-05 | 2019-11-12 | Arete Associates | Continuous wave laser detection and ranging |
US10338225B2 (en) * | 2015-12-15 | 2019-07-02 | Uber Technologies, Inc. | Dynamic LIDAR sensor controller |
US9946259B2 (en) * | 2015-12-18 | 2018-04-17 | Raytheon Company | Negative obstacle detector |
-
2018
- 2018-06-14 EP EP18841063.3A patent/EP3664064A4/en not_active Withdrawn
- 2018-06-14 US US16/635,918 patent/US20210403015A1/en not_active Abandoned
- 2018-06-14 WO PCT/JP2018/022790 patent/WO2019026438A1/ja unknown
- 2018-06-14 JP JP2019533945A patent/JP7222892B2/ja active Active
- 2018-06-14 CN CN201880050510.6A patent/CN110998692B/zh active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09277887A (ja) | 1996-04-16 | 1997-10-28 | Honda Motor Co Ltd | 自動追従走行システム |
WO2004102222A1 (ja) * | 2003-05-13 | 2004-11-25 | Fujitsu Limited | 物体検出装置、物体検出方法、物体検出プログラム、距離センサ |
JP2005184395A (ja) * | 2003-12-18 | 2005-07-07 | Sumitomo Electric Ind Ltd | 画像処理方法、画像処理システム、画像処理装置および撮影装置 |
JP2013187862A (ja) * | 2012-03-09 | 2013-09-19 | Topcon Corp | 画像データ処理装置、画像データ処理方法および画像データ処理用のプログラム |
JP2014002566A (ja) * | 2012-06-19 | 2014-01-09 | Nec Corp | 情報提供のための条件設定装置、情報提供システム、条件設定方法、及びプログラム |
JP2015212941A (ja) * | 2014-04-25 | 2015-11-26 | グーグル インコーポレイテッド | 複数のセンサーを用いる物体検出方法及びシステム |
WO2016158237A1 (ja) * | 2015-03-31 | 2016-10-06 | 株式会社デンソー | 車両制御装置、及び車両制御方法 |
WO2016158238A1 (ja) * | 2015-03-31 | 2016-10-06 | 株式会社デンソー | 車両制御装置、及び車両制御方法 |
WO2017110413A1 (ja) * | 2015-12-21 | 2017-06-29 | 株式会社小糸製作所 | 車両用画像取得装置、制御装置、車両用画像取得装置または制御装置を備えた車両および車両用画像取得方法 |
JP2017150693A (ja) | 2016-02-22 | 2017-08-31 | 三菱電機株式会社 | 送風装置 |
JP2017150694A (ja) | 2016-02-22 | 2017-08-31 | 住友精化株式会社 | 排熱回収装置およびボイラシステム |
JP2017150695A (ja) | 2016-02-23 | 2017-08-31 | 株式会社デンソー | 蒸発器 |
JP2017198532A (ja) | 2016-04-27 | 2017-11-02 | キヤノン株式会社 | 形状測定装置の形状測定方法、および形状測定装置 |
JP2017198533A (ja) | 2016-04-27 | 2017-11-02 | 大日本印刷株式会社 | センサー装置 |
JP2017207498A (ja) | 2017-06-26 | 2017-11-24 | 株式会社タニタ | 測定装置、ストラップ、表示装置 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019079453A (ja) * | 2017-10-27 | 2019-05-23 | 住友電気工業株式会社 | 情報生成システム、情報生成装置、情報生成方法およびコンピュータプログラム |
WO2020100631A1 (ja) * | 2018-11-14 | 2020-05-22 | 株式会社デンソー | レーダ搭載灯具ユニットおよびレーザレーダ装置 |
JP2020079773A (ja) * | 2018-11-14 | 2020-05-28 | 株式会社デンソー | レーダ搭載灯具ユニットおよびレーザレーダ装置 |
US11724636B2 (en) | 2018-11-14 | 2023-08-15 | Denso Corporation | Combined radar and lighting unit and laser radar apparatus |
JP7192420B2 (ja) | 2018-11-14 | 2022-12-20 | 株式会社デンソー | レーザレーダ装置 |
JPWO2020246483A1 (ja) * | 2019-06-04 | 2020-12-10 | ||
WO2020246483A1 (ja) * | 2019-06-04 | 2020-12-10 | 株式会社小糸製作所 | 灯具システム |
JP7496352B2 (ja) | 2019-06-04 | 2024-06-06 | 株式会社小糸製作所 | 灯具システム |
JP7418476B2 (ja) | 2019-06-18 | 2024-01-19 | 華為技術有限公司 | 運転可能な領域情報を決定するための方法及び装置 |
JP2021010057A (ja) * | 2019-06-28 | 2021-01-28 | 株式会社ユピテル | システム、及びプログラム等 |
JP7373832B2 (ja) | 2019-06-28 | 2023-11-06 | 株式会社ユピテル | システム、及びプログラム等 |
US11511738B2 (en) | 2019-09-25 | 2022-11-29 | Honda Motor Co., Ltd. | Vehicle control device, vehicle control method, and storage medium |
CN112650210B (zh) * | 2019-09-25 | 2024-07-26 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法及存储介质 |
JP7159137B2 (ja) | 2019-09-25 | 2022-10-24 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
CN112650210A (zh) * | 2019-09-25 | 2021-04-13 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法及存储介质 |
JP2021049872A (ja) * | 2019-09-25 | 2021-04-01 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
CN114599999A (zh) * | 2019-10-28 | 2022-06-07 | 株式会社电装 | 移动量估计装置、移动量估计方法、移动量估计程序以及移动量估计系统 |
JP7147729B2 (ja) | 2019-10-28 | 2022-10-05 | 株式会社デンソー | 移動量推定装置、移動量推定方法、移動量推定プログラム、及び移動量推定システム |
WO2021084891A1 (ja) * | 2019-10-28 | 2021-05-06 | 株式会社デンソー | 移動量推定装置、移動量推定方法、移動量推定プログラム、及び移動量推定システム |
JP2021067649A (ja) * | 2019-10-28 | 2021-04-30 | 株式会社デンソー | 移動量推定装置、移動量推定方法、移動量推定プログラム、及び移動量推定システム |
JP2021111262A (ja) * | 2020-01-15 | 2021-08-02 | 株式会社東芝 | 情報処理装置 |
CN113132682A (zh) * | 2020-01-15 | 2021-07-16 | 株式会社东芝 | 信息处理装置 |
JP2022074387A (ja) * | 2020-11-04 | 2022-05-18 | 本田技研工業株式会社 | 車両、及び、車両に搭載される車載センサの軸ずれ判定装置 |
JP7365319B2 (ja) | 2020-11-04 | 2023-10-19 | 本田技研工業株式会社 | 車両、及び、車両に搭載される車載センサの軸ずれ判定装置 |
JPWO2022145093A1 (ja) * | 2020-12-28 | 2022-07-07 | ||
JP7385774B2 (ja) | 2020-12-28 | 2023-11-22 | 日立Astemo株式会社 | 車両制御システム、外界認識装置、および、車両制御方法 |
WO2022145093A1 (ja) * | 2020-12-28 | 2022-07-07 | 日立Astemo株式会社 | 車両制御システム、外界認識装置、および、車両制御方法 |
US11987266B2 (en) * | 2022-02-25 | 2024-05-21 | Hitachi Astemo, Ltd. | Distributed processing of vehicle sensor data |
US20230271628A1 (en) * | 2022-02-25 | 2023-08-31 | Hitachi Astemo, Ltd. | Distributed processing of vehicle sensor data |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019026438A1 (ja) | 2020-06-11 |
US20210403015A1 (en) | 2021-12-30 |
EP3664064A1 (en) | 2020-06-10 |
CN110998692A (zh) | 2020-04-10 |
JP7222892B2 (ja) | 2023-02-15 |
EP3664064A4 (en) | 2021-01-27 |
CN110998692B (zh) | 2024-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7222892B2 (ja) | 車両用照明システム、車両システム及び車両 | |
US12077187B2 (en) | Sensing system and vehicle | |
US11066009B2 (en) | Vehicular illumination device, vehicle system, and vehicle | |
CN110944874B (zh) | 车辆用照明系统以及车辆 | |
EP3888965B1 (en) | Head-up display, vehicle display system, and vehicle display method | |
US20180312106A1 (en) | Vehicular illumination device | |
US11639138B2 (en) | Vehicle display system and vehicle | |
US20190248281A1 (en) | Vehicle illumination system and vehicle | |
US11597316B2 (en) | Vehicle display system and vehicle | |
US20240227664A1 (en) | Vehicle display system, vehicle system, and vehicle | |
JP2019119301A (ja) | 車両用照明システム及び車両 | |
CN110271480B (zh) | 车辆系统 | |
US20220009406A1 (en) | Vehicle lighting system | |
US10654406B2 (en) | Vehicle illumination system and vehicle | |
WO2022102374A1 (ja) | 車両用表示システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18841063 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019533945 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018841063 Country of ref document: EP Effective date: 20200303 |