[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019093374A1 - 遠隔制御装置、システム、方法、及びプログラム - Google Patents

遠隔制御装置、システム、方法、及びプログラム Download PDF

Info

Publication number
WO2019093374A1
WO2019093374A1 PCT/JP2018/041339 JP2018041339W WO2019093374A1 WO 2019093374 A1 WO2019093374 A1 WO 2019093374A1 JP 2018041339 W JP2018041339 W JP 2018041339W WO 2019093374 A1 WO2019093374 A1 WO 2019093374A1
Authority
WO
WIPO (PCT)
Prior art keywords
target device
remote control
control target
control
information
Prior art date
Application number
PCT/JP2018/041339
Other languages
English (en)
French (fr)
Inventor
太一 熊谷
裕志 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/761,346 priority Critical patent/US11579615B2/en
Priority to JP2019552349A priority patent/JP6939896B2/ja
Publication of WO2019093374A1 publication Critical patent/WO2019093374A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention is based on the claim of priority of Japanese Patent Application No. 2017-215744 (filed on November 8, 2017), and the entire contents of the same application are incorporated herein by reference. It shall be.
  • the present invention relates to a remote control device, system, method, and program for remotely controlling a control target device at a remote location via a communication network.
  • AAV Automatic Control Vehicle
  • drones construction machines
  • security robots disasters from remote control devices via communication networks from remote control devices
  • Efforts have been made to construct a remote control system for remotely controlling controlled devices such as a rescue robot, a remote surgery support robot, and a mobile robot.
  • LTE Long Term Evolution
  • WiMAX Worldwide Interoperability for Microwave
  • a wireless communication network such as an Access (Access) or a Wireless Local Area Network (LAN) is used.
  • Patent Document 1 discloses an operation control system for remotely controlling a plurality of autonomous mobile bodies (corresponding to control target devices) operating in a factory or the like. There is.
  • a central control unit (corresponding to a remote control unit) acquires position information from each autonomous mobile body via a wireless transmission channel (corresponding to a wireless communication network), and responds to a conveyance instruction given from the outside. Indicate the destination for each autonomous mobile unit.
  • the autonomous mobile body whose destination has been instructed prepares a travel plan composed of a travel route and the like, and moves to the destination.
  • loss of data packets, communication delay, and fluctuations thereof may occur due to changes in the quality of received signals or congestion of communication lines, and the stability of the remote control system performing control in real time is degraded.
  • loss of data packets, communication delay, or variation thereof in the communication network may delay the transmission of control signals from the remote control device, causing the control target device to move more than expected (overshoot) there's a possibility that.
  • the control target device overshoots, it may collide with peripheral objects such as a wall.
  • the user of the collision prevention device remotely steers the mobile robot (corresponding to a control target device) via a data communication network (corresponding to a communication network).
  • a data communication network corresponding to a communication network
  • safety is improved by making the user recognize the obstacle by sounding a warning sound before the mobile robot collides with the obstacle.
  • the collision prevention device maps a collision predicted area in which the mobile robot may collide with an obstacle based on information including image information captured by a camera of the mobile robot, and the mobile robot approaches the obstacle. The user is warned by a warning sound before a predetermined collision estimated time based on the information.
  • Patent Document 3 in a system in which an operator of an operation control apparatus (corresponding to a remote control apparatus) remotely operates a controlled object (corresponding to a control target apparatus) via a communication path (corresponding to a communication network).
  • the safety is improved by notifying the operator before the contact between the control body and the obstacle in the vicinity of the control body is in contact.
  • the controlled object specifies the distance between the controlled object and the obstacle, obtains a predicted value of the required transmission time (corresponding to the communication delay) in the communication path, and predicts the distance and the required transmission time.
  • the object to be controlled approaches the obstacle at such a time that the object to be controlled reaches the operation control device via the communication path before the object to be controlled contacts the obstacle. Send notification of the presence to the operation control device.
  • Patent Document 4 safety is improved by autonomously controlling the moving speed before the mobile robot (corresponding to the control target device) contacts an obstacle. Specifically, the mobile robot detects an obstacle, calculates the distance to the obstacle, calculates the movement speed that can be stopped before touching the obstacle based on the calculated distance, and from the monitoring center It moves at the calculated moving speed in the received moving direction.
  • the collision prevention device warns the user with a warning sound before a predetermined collision prediction time, but since a communication delay time in the data communication network is not taken into consideration, a large communication delay time occurs. There is a possibility that the mobile robot collides with an obstacle before the alarm sounds. Further, since the operation after the warning is not described in Patent Document 2 and the operation of the collision prevention device after the warning is entrusted to the user, the mobile robot collides with the obstacle depending on the user's operation contents. there is a possibility.
  • Patent Document 3 the operator is notified by vibration etc. in advance that the controlled object is approaching an obstacle in consideration of the communication delay time in the communication path.
  • the operation of the controlled object after notification is left to the operator, and the controlled object may collide with an obstacle depending on the operation content of the operator.
  • the mobile robot autonomously controls the moving speed according to the distance from the mobile robot to the obstacle, but the operation after controlling the moving speed is not described, and after stopping Because the mobile robot maintains the stopped state until safety is secured, remote control becomes impossible.
  • the main object of the present invention is to provide a remote control device, system, method and program which can contribute to continuing remote control without compromising safety even if communication delay or its variation occurs in the communication network. To provide.
  • the present invention is a remote control device for remotely controlling a control target device via a communication network, the communication unit transmitting and receiving predetermined data to and from the control target device; And a controller configured to remotely control the control target device.
  • the control unit calculates a trajectory and a moving speed for reaching a desired destination from the current location of the control target device, and measures a communication delay time between the remote control device and the control target device.
  • a second aspect of the present invention is a remote control system, comprising the remote control device according to the first aspect, the communication network, and the control target device.
  • the control target device includes a communication unit that transmits and receives predetermined data to and from the remote control device, an operation unit that performs a predetermined operation, and a sensor unit that measures an operation state related to the operation of the control target device. And a control unit that controls the operation unit.
  • the control unit of the control target device controls the operation of the operation unit using the control signal received from the remote control device, and acquires the operation state measured by the sensor unit. Transmitting a controlled signal including the operating state to the remote control device.
  • a remote control method using a remote control device for remotely controlling a control target device via a communication network the method being used to reach a desired destination from the current location of the control target device.
  • Calculating a trajectory and a moving speed measuring a communication delay time between the remote control device and the control target device, measuring the communication delay time, and a size of the control target device held
  • estimating the overshoot region based on the calculated moving speed, the calculated trajectory, the estimated overshoot region, and the stored peripheral information of the control target device.
  • the device to be controlled Predicting, based on the contact between the device to be controlled and the peripheral object, if the contact is predicted, the device to be controlled Calculating moving speed information to be given to the control target device such that the moving direction of the target changes by a predetermined value or more, and transmitting a control signal including the calculated moving speed information to the control target device .
  • it is a remote control program that causes the remote control device to execute remote control of the control target device, and calculates a trajectory and moving speed for reaching the desired destination from the current location of the control target device.
  • Processing to measure the communication delay time between the remote control device and the control target device, the measured communication delay time, the size of the held control target device, and the calculated A process of estimating an overshoot region based on the moving speed, the control object based on the calculated trajectory, the estimated overshoot region, and the stored peripheral information of the control target device
  • the program can be recorded on a computer readable storage medium.
  • the storage medium can be non-transient such as a semiconductor memory, a hard disk, a magnetic recording medium, an optical recording medium, and the like.
  • the present disclosure can also be embodied as a computer program product.
  • FIG. 1 is a block diagram schematically showing an example of the configuration of a remote control system according to a first embodiment.
  • 5 is a flowchart schematically showing an example of the operation of the control unit of the remote control device in the remote control system according to the first embodiment. It is a schematic diagram for demonstrating the estimation process of the overshoot area
  • region. 5 is a flowchart schematically showing an example of the operation of the control unit of the control target device in the remote control system according to the first embodiment.
  • FIG. 7 is a block diagram schematically showing an example of the configuration of a remote control system according to a second embodiment.
  • FIG. 13 is a block diagram schematically showing a modification of the configuration of the remote control system according to the second embodiment.
  • FIG. 13 is a block diagram schematically showing another modification of the configuration of the remote control system according to the second embodiment. It is the flowchart which showed typically an example of operation
  • FIG. FIG. 13 is a block diagram showing an example of the configuration of a remote control system according to a third embodiment. It is the flowchart which showed typically an example of operation
  • FIG. 16 is a block diagram schematically showing an example of the configuration of a remote control system according to a fourth embodiment.
  • 15 is a flowchart schematically showing an example of the operation of the control unit of the remote control device in the remote control system according to the fourth embodiment.
  • FIG. 16 is a schematic view showing an example of the correction result of the overshoot area by the overshoot area correction processing unit of the remote control device in the remote control system according to the fourth embodiment.
  • FIG. 16 is a block diagram schematically showing an example of the configuration of a remote control system according to a fifth embodiment. It is the flowchart which showed typically an example of operation
  • FIG. It is a block diagram showing an example of the hardware constitutions of a remote control.
  • connection lines between blocks such as drawings referred to in the following description include both bidirectional and unidirectional directions.
  • the unidirectional arrows schematically indicate the flow of main signals (data), and do not exclude bidirectionality.
  • input ports and output ports are respectively present at the input end and the output end of each connection line, although they are not explicitly shown. The same is true for the input / output interface.
  • FIG. 1 is a block diagram schematically showing an example of the configuration of the remote control system according to the first embodiment.
  • the remote control system 1 is a system for remotely controlling the operation of the control target device 40 located at a remote location from the remote control device 30 via the communication network 10.
  • the operation of the control target device 40 here is, for example, an operation of the operation unit 43 such as movement of the entire device, rotation (rotation), operation of an arm or a manipulator, and the like.
  • the remote control system 1 has a communication network 10, a remote control device 30, and a control target device 40 as main components.
  • the communication network 10 is an information communication network that communicably connects the remote control device 30 and the control target device 40.
  • the communication network 10 has a wired network 11 and a wireless base station apparatus 12 as main components.
  • the wired network 11 is a communication network that performs wired communication.
  • the wired network 11 is communicably connected to the communication unit 32 of the remote control device 30 via the wired link 101.
  • the wired network 11 is communicably connected to the wireless base station apparatus 12 via a wired link 102 and a base station control device (not shown) in the wired network 11.
  • the wireless base station apparatus 12 is an apparatus for providing a wireless communication service to a wireless terminal having a wireless communication function.
  • the wireless base station apparatus 12 is communicably connected to the communication unit 42 of the control target apparatus 40 via the wireless link 103.
  • the communication network 10 is not limited to the configuration shown in FIG. 1, and may be connectable to the remote control device 30 by a wireless link, or may be connectable to the control target device 40 by a wired link. .
  • the remote control device 30 is a device for remotely controlling the control target device 40 via the communication network 10.
  • the remote control device 30 is installed at a position (remote location) different from the position of the control target device 40.
  • the remote control device 30 has a control unit 31, a communication unit 32, and a storage unit 33 as main components.
  • the control unit 31 is a functional unit that controls the communication unit 32 and the storage unit 33 and performs information processing for remotely controlling the control target device 40.
  • the control unit 31 reads out the remote control program stored in the storage unit 33, loads it into the main storage, and executes it to execute the trajectory calculation processing unit 31a, the communication delay time measurement processing unit 31b, and the overshoot area estimation processing.
  • the unit 31c, the contact prediction processing unit 31d, the moving speed information calculation processing unit 31e, and the control signal transmission processing unit 31f are realized.
  • the track calculation processing unit 31 a is an information processing unit that calculates a track (moving route) for moving from the current location of the control target device 40 to a desired destination and a moving speed.
  • the trajectory calculation processing unit 31a acquires the controlled signal from the control target device 40 (the controlled signal transmission processing unit 41c) at a predetermined cycle or at an instructed timing.
  • position information and direction information of the control target device 40 included in the latest controlled signal acquired from the control target device 40 can be used as the current location of the control target device 40.
  • the desired destination may be a destination provided in advance to the remote control device 30 from the outside (not shown; for example, a controller). Further, as a method of calculating the trajectory, any known method can be used. Further, the track calculation processing unit 31a calculates a moving speed for the control target device 40 to follow the calculated track.
  • the communication delay time measurement processing unit 31 b is an information processing unit that measures a communication delay time between the remote control device 30 and the control target device 40.
  • the communication delay time measurement processing unit 31 b transmits and receives measurement data (for example, an ACK (ACKnowledgement) packet, a PING (Packed InterNet Gopher) command, and the like) to the control target device 40 via the communication unit 32 and the communication network 10.
  • measurement data for example, an ACK (ACKnowledgement) packet, a PING (Packed InterNet Gopher) command, and the like
  • RTT Round Trip Time
  • the one-way delay time to the target device 40 is measured.
  • the overshoot area estimation processing unit 31c measures the size of the control target device 40 held in the storage unit 33 in advance, the moving speed calculated by the trajectory calculation processing unit 31a, and the communication delay time measurement processing unit 31b. It is an information processing unit that estimates an overshoot region based on a communication delay time (or round trip delay time is also possible).
  • the overshoot region here is, for example, the influence of the communication delay time from when the remote control device 30 instructs the control target device 40 in motion to stop until the control target device 40 actually stops. It is the space formed by the distance which passes too much and the size of the control target device 40.
  • the contact prediction processing unit 31 d controls the control target device 40 based on the overshoot region estimated by the overshoot region estimation processing unit 31 c and the peripheral information of the control target device 40 stored in the storage unit 33 in advance.
  • the peripheral information is, for example, map information including the position of a peripheral such as a wall, a pillar, or the like, a fixture, a mechanical device, etc., and is stored in the storage unit 33 in advance.
  • the contact prediction processing unit 31d detects that the overshoot region and the position of the peripheral object related to the peripheral object information at least partially overlap, or the closest contact between the overshoot region and the position of the peripheral object related to the peripheral object information If the distance is less than the predetermined value, it is predicted that the controlled device 40 contacts.
  • the moving speed information calculation processing unit 31 e is an information processing unit that calculates moving speed information that is instructed to the control target device 40.
  • the traveling speed information causes the control target device 40 to follow the trajectory calculated by the trajectory calculation processing unit 31a.
  • the movement velocity information calculation processing unit 31 e calculates movement velocity information so that the movement direction of the control target device 40 changes by a predetermined value or more.
  • the control signal transmission processing unit 31 f is an information processing unit that transmits a control signal including movement speed information to the control target device 40 via the communication unit 32 and the communication network 10.
  • the control signal transmission processing unit 31 f transmits the control signal at a predetermined cycle or at an arbitrary timing.
  • the communication unit 32 is a functional unit that transmits and receives predetermined information, data, or signals between the remote control device 30 and the control target device 40.
  • the communication unit 32 transmits and receives information under the control of the control unit 31.
  • the storage unit 33 is a functional unit that stores programs (including a remote control program), software, data, files, and the like.
  • the storage unit 33 performs reading, writing, and the like under the control of the control unit 31.
  • the program may be a recording medium (not shown) on which the program is recorded (not shown; a flexible disk, a magnetic disk such as a hard disk, a magnetic tape, or a CD (Compact Disk) -ROM (Read Only Memory), a DVD (Digital Versatile Disk) , Etc., may be stored (installed) in the storage unit 33 via a mechanical reading device (not shown) and an interface (not shown) of the recording medium. Also, the program is transmitted from the storage device (not shown) of another computer (not shown) via a wired or wireless network medium (not shown) and a communication interface (not shown) to the storage unit 33. You may memorize (install).
  • the control target device 40 is a device that is remotely controlled from the remote control device 30 via the communication network 10.
  • the control target device 40 can be installed, for example, at a work site such as a factory or a warehouse.
  • equipment such as an AGV, a drone, a construction machine, a security robot, a disaster rescue robot, a remote surgery support robot, a mobile robot or the like can be used.
  • the control target device 40 includes, as main components, a control unit 41, a communication unit 42, an operation unit 43, a sensor unit 44, and a storage unit 45.
  • the control unit 41 is a functional unit that controls the communication unit 42, the operation unit 43, the sensor unit 44, and the storage unit 45, and performs information processing for operating the operation unit 43 according to an instruction from the remote control device 30. .
  • the control unit 41 reads out the remote control program stored in the storage unit 45, loads it to the main storage, and executes it to execute the operation control processing unit 41a, the operation state acquisition processing unit 41b, and the controlled signal transmission processing.
  • the unit 41c is realized.
  • the operation control processing unit 41 a is an information processing unit that controls the operation of the operation unit 43 based on a control signal from the remote control device 30.
  • the operation state acquisition processing unit 41 b is an information processing unit that acquires an operation state (for example, the current location, direction, angle, speed, and the like of the control target device 40) related to the operation of the operation unit 43 detected by the sensor unit 44.
  • the operation state acquisition processing unit 41 b acquires the operation state from the sensor unit 44 in response to a predetermined cycle or a request from the remote control device 30.
  • the controlled signal transmission processing unit 41 c is an information processing unit that transmits a controlled signal including an operation state to the remote control device 30 via the communication unit 42 and the communication network 10.
  • the controlled signal transmission processing unit 41c transmits a controlled signal at a predetermined cycle or at a timing instructed by the remote control device 30 (track calculation processing unit 31a).
  • the communication unit 42 is a functional unit that transmits and receives predetermined data to and from the remote control device 30.
  • the communication unit 42 transmits and receives information under the control of the control unit 41.
  • the operating unit 43 is a functional unit that performs a predetermined operation, and is, for example, a motor control device, a hydraulic control device, an engine control device, or the like. Examples of the operation of the operation unit 43 include movement, rotation, rotation, sliding, and extension and the like.
  • the operating unit 43 operates under the control of the control unit 41.
  • the sensor unit 44 is a functional unit that detects an operation state related to the operation of the operation unit 43.
  • sensors such as a position sensor, an orientation sensor, an angle sensor, a rotation sensor, an acceleration sensor, a distance sensor, a pressure sensor, and a magnetic sensor can be used.
  • the sensor unit 44 detects the operating state under the control of the control unit 41.
  • the storage unit 45 is a functional unit that stores data such as software, programs, databases, files, and information.
  • the storage unit 45 performs reading, writing, and the like under the control of the control unit 41.
  • FIG. 2 is a flow chart schematically showing an example of the operation of the control unit of the remote control device in the remote control system according to the first embodiment.
  • the remote control system 1 For the configuration of the remote control system 1, refer to FIG.
  • control unit 31 track calculation processing unit 31a of the remote control device 30 calculates a track (moving path) and a moving speed for reaching the desired destination from the current location of the control target device 40 (step S101) .
  • the trajectory calculation processing unit 31a acquires the controlled signal from the control target device 40 at a predetermined cycle or at any timing. Further, in the calculation of the trajectory of the trajectory calculation processing unit 31a, for example, position information and direction information as the current location of the control target device 40 included in the latest controlled signal acquired from the control target device 40, and remote control from the outside Based on the desired destination given to the device 30 in advance, the trajectory (straight line, curve (parabola, spline curve, clothoid curve, etc.), arc, etc.) connecting the current location and the desired destination is calculated Do. Furthermore, the track calculation processing unit 31a calculates a moving speed for the control target device 40 to follow the calculated track.
  • control unit 31 communication delay time measurement processing unit 31b of the remote control device 30 transmits / receives measurement data between the remote control device 30 and the control target device 40 to obtain communication delay time (round trip delay). The time may be measured) (step S102).
  • the communication delay time measurement processing unit 31b includes at least one of an identification number or a transmission time at a predetermined cycle or at any timing with respect to the control target device 40 when measuring the communication delay time.
  • Data for measurement for example, an ACK (ACKnowledgement) packet
  • the transmitted measurement data is received by the control target device 40, and is immediately returned from the control target device 40 to the remote control device 30.
  • the communication delay time measurement processing unit 31 b calculates the round trip delay time by comparing the reception time of the measurement data with the transmission time, and calculates the round trip Communication delay time is measured based on the delay time.
  • the communication delay time measurement processing unit 31b associates the identification number according to the measurement data with the transmission time and holds the association in the storage unit 33.
  • control unit 31 (overshoot area estimation processing unit 31c) of the remote control device 30 stores the communication delay time (or round trip delay time) measured by the communication delay time measurement processing unit 31b in advance and the storage unit 33.
  • the overshoot region is estimated based on the size of the control target device 40 held in the control unit 31 and the moving speed calculated by the trajectory calculation processing unit 31a (step S103).
  • FIG. 3 is a schematic diagram for explaining estimation processing of an overshoot region of the control unit of the remote control device in the remote control system according to the first embodiment.
  • the control target device 40 corresponds to the calculated trajectory of the position information and the direction information of the control target device 40 included in the control signal received by the remote control device 30 at time (t).
  • the moving speed of the operation unit 43 (left and right wheels) for following and the size of the control target device 40 are shown.
  • FIG. 3B shows that the control target device 40 moves too much (overshoots) due to the influence of the communication delay time.
  • the control target device 40 of FIG. The estimated value position and the estimated direction are shown.
  • FIG. 3C shows the overshoot region of the control target device 40 estimated. That is, using the measured communication delay time, an area in which the control target device 40 moves in the communication delay time is estimated as an overshoot area.
  • time “position information (X axis)”, “position information (Y axis)”, “direction information”, “moving speed (right wheel)”, “moving” that appear in formulas 1 to 3 Speed (left wheel), “size of control target device”, “communication delay time”, “estimated value position (X axis)”, “estimated value position (Y axis)”, and “estimated direction”
  • control unit 31 contact prediction processing unit 31d of the remote control device 30 calculates the overshoot region estimated in step S103 and the peripheral information of the control target device 40 previously stored in the storage unit 33, It is estimated whether the control object apparatus 40 and a surrounding thing contact based on (step S104).
  • the overshoot region and the position of the peripheral object related to the peripheral object information at least partially overlap, or the overshoot region
  • the closest distance between the position of the object and the position of the object related to the object information is less than a predetermined value, it is predicted that the device to be controlled 40 and the object contact.
  • step S104 When it is predicted that contact will occur (step S104: YES), the control unit 31 (moving speed information calculation processing unit 31e) of the remote control device 30 controls the moving object of the controlled device 40 so that the moving direction changes by a predetermined value or more.
  • the movement speed information given to the device 40 is calculated (step S105).
  • the movement speed information calculation processing unit 31e avoids contact between the control target device 40 and surrounding objects.
  • movement speed information given to the control target device 40 so as to have the same positive and negative different sizes with respect to the operation unit 43 (left and right wheels) of the control target device 40 Can be calculated.
  • the moving speed information calculation processing unit 31 e causes the peripheral objects of the control target device 40 to In order to increase the moving speed to be given to the closer working unit 43 (for example, the left wheel) and to decrease the moving speed to be given to the working unit 43 (for example, the right wheel) far from the peripheral object of the control target device 40
  • the movement speed information given to the control target device 40 can be calculated.
  • step S104 when it is predicted that it does not contact (step S104: NO), the control unit 31 (moving speed information calculation processing unit 31e) of the remote control device 30 controls the trajectory calculated by the trajectory calculation processing unit 31a.
  • the movement speed information given to the control target device 40 is calculated so that the device 40 follows (step S106).
  • step S106 When the moving speed calculated by the trajectory calculation processing unit 31a is used as moving speed information, step S106 may be omitted and the process may proceed to step S107.
  • control unit 31 control signal transmission processing unit 31f of the remote control device 30 transmits the control signal including the moving speed information calculated in step S105 or step S106 to the communication unit 32 and the communication network. It transmits to the control object apparatus 40 via 10 (step S107), and returns to a start after that.
  • FIG. 4 is a flowchart schematically illustrating an example of the operation of the control unit of the control target device in the remote control system according to the first embodiment.
  • the remote control system 1 For the configuration of the remote control system 1, refer to FIG.
  • control unit 41 the operation control processing unit 41a of the control target device 40 controls the operation of the operation unit 43 based on the control signal received from the remote control device 30 via the communication network 10 and the communication unit 42. (Step S201).
  • control unit 41 operation state acquisition processing unit 41b of the control target device 40 acquires the operation state of the control target device 40 measured by the sensor unit 44 (step S202).
  • the acquisition of the operation state may be performed not only after step S201 but also before or at the same time as step S201, and can be performed according to a predetermined cycle or a request from the remote control device 30.
  • the operation state for example, an angle, a rotation speed, the number of rotations, a torque, an acceleration, a distance to a peripheral object, a pressure, a direction and the like can be mentioned.
  • control unit 41 controlled signal transmission processing unit 41c of the control target device 40 transmits a controlled signal including the operation state acquired by the operation state acquisition processing unit 41b to the remote control device 30 (step S203) . Then return to the start.
  • the overshoot region in which the control target device 40 moves is estimated in consideration of the communication delay time,
  • the movement direction of the control target device 40 is changed to impair safety even if communication delay or its variation occurs in the communication network 10 It is possible to continue remote control without contributing to the improvement of safety in the remote control system 1.
  • FIG. 5 to 7 are block diagrams schematically showing the configuration of the remote control system according to the second embodiment.
  • the configuration of the remote control system 1 according to the second embodiment is different from the configuration of the control unit 31 of the remote control device 30 in that a peripheral object information update processing unit 34a is newly added.
  • the peripheral object information update processing unit 34a detects the distance between the control target device 40 and the peripheral object detected (measured) by the sensor unit 44 (here, the distance sensor) of the control target device 40 (equivalent to operating state and peripheral object information)
  • the controlled signal including the signal is acquired from the control target device 40 via the communication network 10 and the communication unit 32 at a predetermined cycle or at any timing, and the distance included in the acquired controlled signal is the peripheral object information As, the peripheral object information held in the storage unit 33 is updated (see FIG. 5).
  • the peripheral object information update processing unit 34a has a predetermined cycle or a controlled signal including an image (corresponding to an operation state) obtained by photographing a peripheral object. It is generally known based on an image (corresponding to an operation state) acquired from the control target device 40 via the communication network 10 and the communication unit 32 at an arbitrary timing and included in the acquired controlled signal. Using image processing technology, the distance from the control target device 40 to the peripheral object is calculated from the parallax of the image, and the peripheral object information held in the storage unit 33 is updated using the calculated distance as peripheral object information (See FIG. 6).
  • the peripheral object information update processing unit 34a captures an image of the area captured by the surveillance camera 50 (corresponding to the operation state) An image included in the acquired controlled signal (corresponding to the operating state) is acquired from the monitoring camera 50 via the communication network 10 and the communication unit 32 at a predetermined cycle or at any timing, including the controlled signal including And detects the positions of the control target device 40 and surrounding objects from the image using generally known image processing technology, and based on the detected positions, the control target device 40 The distance to the peripheral object may be calculated, and the peripheral object information held in the storage unit 33 may be updated using the calculated distance as peripheral object information (see FIG. 7).
  • the other configuration of the second embodiment is the same as that of the first embodiment.
  • FIG. 8 is a flow chart schematically showing an example of the operation of the control unit of the remote control device in the remote control system according to the second embodiment.
  • the configuration of the remote control system 1 refer to FIG. 5 to FIG.
  • control unit 31 of the remote control device 30 performs the same operation steps as steps S101 to S103 in FIG. 2 of the first embodiment (steps S101 to S103 in FIG. 8).
  • control unit 31 peripheral object information update processing unit 34a of the remote control device 30 determines the peripheral object information held in the storage unit 33 based on the operation state included in the acquired latest controlled signal. It updates (step S301).
  • the peripheral object information update processing unit 34a includes the operation state from the control target device (40 of FIGS. 5 to 7) or the monitoring camera (50 of FIG. 7) at a predetermined cycle or at any timing. Receive a controlled signal.
  • the operation state included in the control signal is the distance between the control target device 40 and the peripheral object
  • the peripheral object information update processing unit 34a stores the distance as peripheral object information in the storage unit 33. Update the surrounding information.
  • the operation state included in the controlled signal is an image of a peripheral object captured by a stereo camera (46 in FIG. 6)
  • the peripheral object information update processing unit 34a is a generally known image.
  • the distance from the control target device 40 to the peripheral object is calculated using the processing technology, and the peripheral object information held in the storage unit 33 is updated as the peripheral object information.
  • the peripheral object information update processing unit 34a is generally The position of the control target device 40 and the peripheral object is detected from the image using the image processing technology known to the present invention, and the distance from the detected control target device 40 to the peripheral object is calculated and calculated.
  • the peripheral object information held in the storage unit 33 is updated with the distance as peripheral object information.
  • control unit 31 contact prediction processing unit 31d of the remote control device 30 controls the control target device 40 based on the overshoot region estimated in step S103 and the peripheral object information updated in step S301. It is predicted whether or not there is contact with the surrounding objects (step S302).
  • step S302 When it is predicted that contact will occur (step S302: YES), the control unit 31 of the remote control device 30 performs the same operation steps as steps S105 and S107 in FIG. 2 of the first embodiment (steps S105 and S107 in FIG. 8). , Then return to the start.
  • step S302 when it is predicted that it does not contact (step S302: NO), the control unit 31 of the remote control device 30 performs the same operation steps as steps S106 and S107 of FIG. 2 of the first embodiment (step S106 of FIG. 8). , S107), then return to the start.
  • the remote control can be continued without losing the safety, and the safety in the remote control system 1 Contribute to the improvement of
  • the control target device 40 or the remote control device 30 detects (measures) or calculates the distance between the control target device 40 and the peripheral object, and the calculated distance is the peripheral object of the control target device 40
  • the control target device 40 detects (measures) or calculates the distance between the control target device 40 and the peripheral object, and the calculated distance is the peripheral object of the control target device 40
  • new peripherals appear (for example, a new package is placed on a track (moving path) In such a case, collision with surrounding objects can be avoided, which contributes to improving the safety of the remote control system 1.
  • FIG. 9 is a block diagram schematically showing an example of the configuration of the remote control system according to the third embodiment.
  • the configuration of the remote control system 1 according to the third embodiment is different from the configuration of the control unit 31 of the remote control device 30 in that a communication delay time estimation processing unit 35a is newly provided.
  • the communication delay time estimation processing unit 35a estimates a future communication delay time based on the communication delay time (or round trip time may be used) measured by the communication delay time measurement processing unit 31b. The method of estimating the future communication delay time will be described later.
  • the other configuration of the third embodiment is the same as that of the first embodiment.
  • the third embodiment may be combined with the second embodiment as appropriate.
  • FIG. 10 is a flowchart schematically showing an example of the operation of the control unit of the remote control device in the remote control system according to the third embodiment.
  • the remote control system 1 For the configuration of the remote control system 1, refer to FIG.
  • control unit 31 of the remote control device 30 performs the same operation steps as steps S101 and S102 of FIG. 2 of the first embodiment (steps S101 and S102 of FIG. 10).
  • control unit 31 (the communication delay time estimation processing unit 35a) of the remote control device 30 estimates a future communication delay time based on the communication delay time (may be a round trip delay time) measured in step S102. (Step S401).
  • FIG. 11 is a graph illustrating an estimation result of communication delay time by the communication delay time estimation processing unit of the remote control device in the remote control system according to the third embodiment.
  • the communication delay time measured by the communication delay time measurement processing unit 31b may be round trip delay time; RTT (Round Trip Time) in FIG. 11).
  • the upper envelope (refer to the upper envelope in FIG. 11) of the variation of the communication delay time is calculated based on f.), And the value of the calculated upper envelope is used to estimate the future communication delay time. That is, it is considered that a communication delay time equivalent to the value of the upper envelope calculated by the communication delay time estimation processing unit 35a occurs in the next communication.
  • the upper envelope can be calculated by smoothing (or averaging) the measured communication delay time.
  • the communication delay time estimation processing unit 35a estimates an estimated value of the future round trip delay time estimated at time (t-1), and a measured value of the round trip delay time measured at time (t). Based on Equation 4, an estimate of the future round trip delay estimated at time (t) can be obtained.
  • Estimated value of future round trip delay time estimated at time (t ⁇ 1) “measured value of round trip delay time measured at time (t),” appearing in Equation 4. And “estimate of future round trip delay estimated at time (t)” are defined as follows.
  • ⁇ in Equation 4 is a weighting coefficient, and is a parameter that gives priority to the measured value of the round trip delay time measured at time (t) as the value is smaller.
  • the weighting factor ⁇ takes a value in the range of 0 to 1.
  • control unit 31 (overshoot area estimation processing unit 31c) of the remote control device 30 determines the size of the control target device 40 held in the storage unit 33 in advance and the moving speed calculated by the trajectory calculation processing unit 31a.
  • the overshoot region is estimated based on the communication delay time estimation processing unit 35a and the future communication delay time (step S402).
  • estimation method (calculation method) of an overshoot area
  • control unit 31 of the remote control device 30 performs the same operation steps as steps S104, S105 or S106, S107 in FIG. 2 of the first embodiment (S104, S105 or S106, S107 in FIG. 10), and then starts Return to
  • the remote control can be continued without losing the safety, and the safety in the remote control system 1 Contribute to the improvement of
  • the communication delay time relating to the future communication between the remote control device 30 and the control target device 40 is estimated, and the overshoot region is estimated in consideration of the estimated communication delay time. . That is, in the case where the remote control device 30 predicts contact between the control target device 40 and a peripheral object in consideration of the distance over which the control target device 40 passes due to the influence of the communication delay time, it is predicted that contact occurs. By changing the moving direction of the control target device 40, collision with surrounding objects can be avoided, which contributes to improving the safety of the remote control system 1.
  • FIG. 12 is a block diagram schematically showing an example of the configuration of the remote control system according to the fourth embodiment.
  • the configuration of the remote control system 1 according to the fourth embodiment is different from the configuration of the control unit 31 of the remote control device 30 in that an overshoot area correction processing unit 36a is newly provided.
  • the overshoot area correction processing unit 36a corrects the overshoot area estimated by the overshoot area estimation processing unit 31c based on the trajectory of the control target device 40 in the past. The method of correcting the estimated overshoot area will be described later.
  • the other configuration of the fourth embodiment is the same as that of the first embodiment.
  • the fourth embodiment may be combined with the second and third embodiments as appropriate.
  • FIG. 13 is a flow chart schematically showing the operation of the control unit of the remote control device in the remote control system according to the fourth embodiment. Refer to FIG. 12 for the configuration of the remote control system 1.
  • control unit 31 of the remote control device 30 performs the same operation steps as steps S101 to S103 in FIG. 2 of the first embodiment (steps S101 to S103 in FIG. 13).
  • control unit 31 overshoot area correction processing unit 36a of the remote control device 30 corrects the estimated overshoot area based on the locus of movement of the control target device 40 in the past (step S501).
  • FIG. 14 is a schematic view showing an example of the correction result of the overshoot area by the overshoot area correction processing unit 36a of the remote control device in the remote control system according to the fourth embodiment.
  • the overshoot area correction processing unit 36a calculates the left and right deviation amounts d L1 , d R1 , and d L2 with respect to the traveling direction, using the trajectory of the control target device 40 that has moved in the past (see FIG. 14A). .
  • the overshoot area correction processing unit 36a corrects the estimated overshoot area to expand to the left and right as the left and right displacement amounts d L1 , d R1 , and d L2 increase (see FIG. 14B).
  • the correction amount on the left side of the overshoot region is the maximum value of the deviation amounts d L1 and d L2 of the trajectory on the left side with respect to the traveling direction within the predetermined period, and the correction amount on the right side of the overshoot region is within the predetermined period. It may be the maximum value of the deviation amount d R1 of the trajectory on the right side with respect to the traveling direction.
  • control unit 31 (the contact prediction processing unit 31d) of the remote control device 30 calculates the overshoot region corrected in step S501 and the peripheral object information of the control target device 40 held in the storage unit 33 in advance. It is predicted whether or not the device to be controlled 40 and the peripherals are in contact with each other based on (step S502).
  • step S502 When it is predicted that contact will occur (step S502: YES), the control unit 31 of the remote control device 30 performs the same operation steps as steps S105 and S107 in FIG. 2 of the first embodiment (steps S105 and S107 in FIG. 13). , Then return to the start.
  • step S502 when it is predicted that contact will not occur (step S502: NO), the control unit 31 of the remote control device 30 performs the same operation steps as steps S106 and S107 in FIG. 2 of the first embodiment (step S106 in FIG. 13). , S107), then return to the start.
  • the remote control can be continued without losing the safety, and the safety in the remote control system 1 Contribute to the improvement of
  • the remote control device 30 remotely controls the control target device 40 while correcting the estimated overshoot region using the trajectory of the control target device 40 that has moved in the past. That is, in consideration of the influence of the road surface condition (the unevenness or inclination of the road surface, etc.) and the individual difference in the operation of the operation unit 43 (left and right wheels) of the control target device 40, Contact can be predicted. As a result, by changing the moving direction of the control target device 40 when it is predicted to be in contact, collision with surrounding objects can be avoided, which contributes to improving the safety in the remote control system 1.
  • FIG. 15 is a block diagram schematically showing an example of the configuration of the remote control system according to the fifth embodiment.
  • the remote control system 1 is a system for remotely controlling the operation of the control target device 40 located at a remote location from the remote control device 30 via the communication network 10.
  • the remote control system 1 includes a communication network 10, a remote control device 30, and a control target device 40.
  • the communication network 10 is an information communication network that communicably connects the remote control device 30 and the control target device 40.
  • the remote control device 30 is a device for remotely controlling the control target device 40 via the communication network 10.
  • the remote control device 30 includes a communication unit 32 that transmits and receives predetermined data to and from the control target device 40, and a control unit 31 that remotely controls the control target device 40 through the communication unit 32.
  • the control unit 31 performs processing of calculating a trajectory and a moving speed for reaching a desired destination from the current location of the control target device 40.
  • the control unit 31 performs processing of measuring a communication delay time between the remote control device 30 and the control target device 40.
  • the control unit 31 performs a process of estimating the overshoot region based on the measured communication delay time, the size of the control target device 40 held in advance, and the calculated moving speed.
  • the control unit 31 predicts, based on the calculated trajectory, the estimated overshoot region, and the stored peripheral information of the control target device 40, whether the control target device and the peripherals are in contact with each other. Do the processing.
  • control unit 31 When it is predicted that the control unit 31 is in contact, the control unit 31 performs processing of calculating movement speed information given to the control target device 40 so that the movement direction of the control target device 40 changes by a predetermined value or more.
  • the control unit 31 performs a process of transmitting a control signal including the calculated moving speed information to the control target device 40.
  • the control target device 40 is a device that is remotely controlled from the remote control device 30 via the communication network 10.
  • the control target device 40 includes a communication unit 42 that transmits and receives predetermined data to and from the remote control device 30, an operation unit 43 that performs a predetermined operation, and a sensor unit 44 that measures an operation state related to the operation of the control target device. And a control unit 41 that controls the operation unit 43.
  • the control unit 41 performs a process of controlling the operation of the operation unit 43 using the control signal received from the remote control device 30.
  • the control unit 41 performs a process of acquiring the operation state measured by the sensor unit 44.
  • the control unit 41 performs a process of transmitting a controlled signal including an operation state to the remote control device 30.
  • FIG. 16 is a flowchart schematically illustrating an example of the operation of the control unit of the remote control device in the remote control system according to the fifth embodiment.
  • control unit 31 of the remote control device 30 calculates a trajectory and a moving speed for reaching a desired destination from the current location of the control target device 40 (step S601).
  • control unit 31 of the remote control device 30 measures a communication delay time between the remote control device 30 and the control target device 40 (step S602).
  • control unit 31 of the remote control device 30 estimates an overshoot region based on the measured communication delay time, the size of the held control target device, and the calculated moving speed ((1) Step S603).
  • control unit 31 of the remote control device 30 controls the control target device 40 and the peripheral objects based on the calculated trajectory, the estimated overshoot region, and the peripheral object information of the control target device 40 held. Predict whether or not to touch (step S604).
  • control unit 31 of the remote control device 30 calculates movement speed information given to the control target device such that the movement direction of the control target device changes by a predetermined value or more (step S605).
  • control unit 31 of the remote control device 30 transmits a control signal including the calculated moving speed information to the control target device (step S606), and then ends.
  • the movement speed calculated by step S601 can be included in a control signal as movement speed information, and can be transmitted to the control target device 40.
  • the communication delay or the variation thereof occurs in the communication network 10 by changing the moving direction of the control target device 40. Also, the remote control can be continued without compromising the safety, which contributes to the improvement of the safety in the remote control system 1.
  • the remote control device 30 can be configured by a so-called information processing device (computer), and a device having a configuration illustrated in FIG. 17 can be used.
  • the remote control device 30 includes a central processing unit (CPU) 61, a memory 62, a network interface 63, and the like connected to one another by the internal bus 64.
  • the configuration shown in FIG. 17 is not intended to limit the hardware configuration of the remote control device 30.
  • the remote control device 30 may include hardware (for example, an input / output interface) not shown.
  • the number of units such as the CPU 61 included in the remote control device 30 is not limited to the example illustrated in FIG. 17.
  • a plurality of CPUs 61 may be included in the remote control device 30.
  • a random access memory (RAM), a read only memory (ROM), an auxiliary storage device (such as a hard disk), or the like can be used.
  • the network interface 63 for example, a LAN (Local Area Network) card, a network adapter, a network interface card or the like can be used.
  • LAN Local Area Network
  • the functions of the remote control device 30 are realized by the processing module described above.
  • the processing module is realized, for example, by the CPU 61 executing a program stored in the memory 62. Also, the program can be downloaded via a network, or can be updated using a storage medium storing the program. Furthermore, the processing module may be realized by a semiconductor chip. That is, the function performed by the processing module may be realized by executing software in some hardware.
  • control unit may calculate the trajectory and the moving speed by using the latest controlled signal included in the latest controlled signal acquired from the controlled device. Based on position information and direction information as a present location, and the desired destination given in advance, the trajectory connecting the current location and the desired destination is calculated, and for the calculated trajectory The movement speed for the control target device to follow is calculated.
  • control unit transmits and receives measurement data for measuring the communication delay time to the control target device when measuring the communication delay time.
  • the communication delay time is measured.
  • the controller may estimate at least the estimated overshoot region and the position of the peripheral object related to the peripheral object information when predicting whether the contact is made or not.
  • the control target device and the surrounding object Predict that the
  • the control unit when the control unit calculates the moving speed information, the control unit causes the control target device to pivot on the spot, or the control target device has a circle with an arbitrary curvature.
  • the movement speed information is calculated so as to exercise.
  • the surrounding object information is map information including a position of the surrounding object, and is stored in advance.
  • control unit is based on status information included in the latest controlled signal acquired from the control target device or a monitoring camera monitoring the control target device. And performing processing for updating the stored peripheral information.
  • control unit may update state information included in the latest controlled signal acquired from the control target device when updating the peripheral object information with the control target device.
  • the peripheral object information held as the peripheral object information is updated.
  • the control unit may update state information included in the latest controlled signal acquired from the control target device when the peripheral object information is updated.
  • the distance from the device to be controlled to the peripheral object is calculated from the parallax of the image using a predetermined image processing technique, and the calculated distance is used as peripheral object information Update the stored peripheral information as
  • the monitoring camera captures status information included in the latest controlled signal acquired from the control target device
  • a predetermined image processing technique is used to detect the positions of the control target device and the peripheral object from the image, and the control target device is detected based on the detected position.
  • the distance to the peripheral object is calculated, and the calculated peripheral object information is updated as the peripheral object information.
  • control unit performs processing for estimating a future communication delay time based on the measured communication delay time, and the control unit performs the overshoot region In the estimation, the overshoot region is estimated using the estimated future communication delay time instead of the measured communication delay time.
  • the control unit when estimating the future communication delay time, sets the upper envelope of the fluctuation of the communication delay time based on the measured communication delay time.
  • the future communication delay time is estimated using the calculated and calculated value of the upper envelope.
  • the control unit calculates an amount of lateral shift with respect to the current traveling direction based on a locus on which the control target device has moved in the past, and the larger the amount of displacement is A process of correcting the estimated overshoot area so as to extend left and right, and the control unit corrects the estimated overshoot area instead of the estimated overshoot area when predicting whether the contact is made or not By using the overshoot region, it is predicted whether or not the device to be controlled and the peripheral object are in contact with each other.
  • control target device further includes a stereo camera capable of capturing an object around the control target device, and the control unit of the control target device performs the operation.
  • a stereo camera capable of capturing an object around the control target device
  • the control unit of the control target device performs the operation.
  • the remote control system further includes a monitoring camera that monitors an area in which the control target device operates, and the monitoring camera is controlled including the image obtained by photographing the area. A process is performed to transmit a signal to the remote control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Selective Calling Equipment (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Telephonic Communication Services (AREA)

Abstract

通信ネットワークにおいて通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することができる遠隔制御装置等を提供する。遠隔制御装置の制御部は、制御対象装置の現在地から所望の目的地に到達するための軌道及び移動速度を算出し、遠隔制御装置と制御対象装置との間の通信遅延時間を計測し、計測された通信遅延時間、保持された制御対象装置の大きさ、及び、算出された移動速度に基づいて、オーバーシュート領域を推定し、算出された軌道、推定されたオーバーシュート領域、及び、保持された制御対象装置の周辺物情報に基づいて、制御対象装置と周辺物とが接触するか否かを予測し、接触すると予測される場合には、制御対象装置の移動方向が所定値以上変化するように制御対象装置に与える移動速度情報を算出し、算出された移動速度情報を含む制御信号を前記制御対象装置に送信する。

Description

遠隔制御装置、システム、方法、及びプログラム
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2017-215744号(2017年11月8日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、通信ネットワークを介して遠隔地にある制御対象装置を遠隔制御する遠隔制御装置、システム、方法、及びプログラムに関する。
 近年のインターネット等の普及および通信速度の高速化に伴い、遠隔制御装置から、通信ネットワークを介して、遠隔地にあるAGV(Automatic Guided Vehicle;無人搬送車)、ドローン、建機、警備ロボット、災害救助ロボット、遠隔手術支援ロボット、移動ロボットなどの制御対象装置を遠隔制御する遠隔制御システムを構築する取り組みが行われている。一般的に、このような制御対象装置を遠隔制御する遠隔制御システムでは、制御対象装置と通信ネットワークとの間には、LTE(Long Term Evolution;ロング・ターム・エボリューション)、WiMAX(Worldwide Interoperability for Microwave Access)、無線LAN(Wireless Local Area Network)等の無線通信ネットワークを用いることが多い。
 このような無線通信ネットワークを用いた遠隔制御システムとして、例えば、特許文献1では、工場などで稼動する複数台の自律移動体(制御対象装置に相当)を遠隔制御する運行制御システムが開示されている。特許文献1では、集中制御装置(遠隔制御装置に相当)は、無線伝送路(無線通信ネットワークに相当)を介して各自律移動体から位置情報を取得し、外部から与えられる搬送指示に応じて、各自律移動体に対して目的地を指示する。また、目的地を指示された自律移動体は、走行ルートなどで構成される走行計画を立案し、目的地に移動する。
 しかしながら、無線通信ネットワークでは、受信信号の品質の変化や通信回線の混雑などにより、データパケットの損失、通信遅延やその変動が生じることがあり、リアルタイムに制御を行う遠隔制御システムの安定性が劣化する可能性がある。例えば、通信ネットワークにおいてデータパケットの損失、通信遅延やその変動が生じたことで、遠隔制御装置からの制御信号の伝送が遅れてしまい、制御対象装置が想定よりも移動し過ぎてしまう(オーバーシュートする)可能性がある。制御対象装置がオーバーシュートすると壁等の周辺物に衝突するおそれがある。
 そこで、遠隔制御装置と制御対象装置との間で通信遅延やその変動が発生した場合にも、安全に遠隔制御を可能にする技術が検討されている。
 このような技術として、例えば、特許文献2では、衝突防止装置(遠隔制御装置に相当)のユーザがデータ通信網(通信ネットワークに相当)を介して移動ロボット(制御対象装置に相当)を遠隔操縦するシステムにおいて、移動ロボットが障害物と衝突する前に警告音を鳴らしてユーザに障害物を認知させることで安全性を向上させている。詳細には、衝突防止装置は、移動ロボットのカメラで撮影した映像情報を含む情報に基づいて障害物に移動ロボットが衝突する可能性がある衝突予想領域をマッピングし、障害物に移動ロボットが接近する時に、前記情報に基づいて所定の衝突予想時間前に警告音でユーザに警告する。
 また、特許文献3では、操作制御装置(遠隔制御装置に相当)の操作者が通信路(通信ネットワークに相当)を介して被制御体(制御対象装置に相当)を遠隔操作するシステムにおいて、被制御体とその周辺にある障害物とが接近していることを接触するよりも前に操作者へ伝えることで安全性を向上させている。詳細には、被制御体は、当該被制御体と障害物との距離を特定し、通信路における伝送所要時間(通信遅延に相当)の予測値を取得し、距離と伝送所要時間の予測値とに基づいて、被制御体が障害物に接触するよりも前に、被制御体から通信路を経由して操作制御装置に到達するような時期に、被制御体が障害物に接近している旨の通知を操作制御装置に送信する。
 さらに、特許文献4では、移動ロボット(制御対象装置に相当)が障害物に接触する前に自律的に移動速度を制御することで安全性を向上させている。詳細には、移動ロボットは、障害物を検出し、当該障害物までの距離を算出し、算出された距離に基づいて障害物に接触する前に停止可能な移動速度を算出し、監視センタから受信した移動方向に、算出された移動速度で移動する。
特開2005-242489号公報 特許第5323910号公報 特開2010-248703号公報 特開2006-285548号公報
 以下の分析は、本願発明者により与えられる。
 特許文献2では、衝突防止装置が所定の衝突予想時間前に警告音でユーザに警告しているが、データ通信網における通信遅延時間を考慮していないため、大きな通信遅延時間が発生した場合には警告音が鳴る前に移動ロボットが障害物に衝突する可能性がある。また、特許文献2には警告後の動作については記載されておらず、警告後の衝突防止装置の操作はユーザに委ねられているため、ユーザの操作内容によっては移動ロボットが障害物に衝突する可能性がある。
 特許文献3では、通信路における通信遅延時間を考慮して事前に、被制御体が障害物に接近している旨を、操作者に対して振動などで報知しているが、報知後の動作については記載されておらず、報知後の被制御体の操作は操作者に委ねられており、操作者の操作内容によっては被制御体が障害物に衝突する可能性がある。
 特許文献4では、移動ロボットから障害物までの距離に応じて、移動ロボットが自律的に移動速度を制御しているが、移動速度を制御した後の動作については記載されておらず、停止後の移動ロボットは安全が確保されるまで停止状態を維持するため、遠隔制御が不可能となってしまう。
 本発明の主な課題は、通信ネットワークにおいて通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することに貢献することができる遠隔制御装置、システム、方法、及びプログラムを提供することである。
 第1の視点においては、通信ネットワークを介して、制御対象装置を遠隔制御する遠隔制御装置であって、前記制御対象装置に対して所定のデータの送受信を行う通信部と、前記通信部を通じて前記制御対象装置を遠隔制御する制御部と、を備える。前記制御部は、前記制御対象装置の現在地から所望の目的地に到達するための軌道及び移動速度を算出することと、前記遠隔制御装置と前記制御対象装置との間の通信遅延時間を計測することと、計測された前記通信遅延時間、保持された前記制御対象装置の大きさ、及び、算出された前記移動速度に基づいて、オーバーシュート領域を推定することと、算出された前記軌道、推定された前記オーバーシュート領域、及び、保持された前記制御対象装置の周辺物情報に基づいて、前記制御対象装置と前記周辺物とが接触するか否かを予測することと、前記接触すると予測される場合には、前記制御対象装置の移動方向が所定値以上変化するように前記制御対象装置に与える移動速度情報を算出することと、算出された前記移動速度情報を含む制御信号を前記制御対象装置に送信することと、を行う。
 第2の視点においては遠隔制御システムであって、前記第1の視点に係る遠隔制御装置と、前記通信ネットワークと、前記制御対象装置と、を備える。前記制御対象装置は、前記遠隔制御装置に対して所定のデータの送受信を行う通信部と、所定の動作を行う動作部と、前記制御対象装置の動作に係る動作状態を測定するセンサ部と、前記動作部を制御する制御部と、を備える。前記制御対象装置の前記制御部は、前記遠隔制御装置から受信した前記制御信号を用いて、前記動作部の動作を制御することと、前記センサ部が測定した前記動作状態を取得することと、前記動作状態を含む被制御信号を前記遠隔制御装置に送信することと、を行う。
 第3の視点においては、通信ネットワークを介して、制御対象装置を遠隔制御する遠隔制御装置を用いて行う遠隔制御方法であって、前記制御対象装置の現在地から所望の目的地に到達するための軌道及び移動速度を算出するステップと、前記遠隔制御装置と前記制御対象装置との間の通信遅延時間を計測するステップと、計測された前記通信遅延時間、保持された前記制御対象装置の大きさ、及び、算出された前記移動速度に基づいて、オーバーシュート領域を推定するステップと、算出された前記軌道、推定された前記オーバーシュート領域、及び、保持された前記制御対象装置の周辺物情報に基づいて、前記制御対象装置と前記周辺物とが接触するか否かを予測するステップと、前記接触すると予測される場合には、前記制御対象装置の移動方向が所定値以上変化するように前記制御対象装置に与える移動速度情報を算出するステップと、算出された前記移動速度情報を含む制御信号を前記制御対象装置に送信するステップと、を含む。
 第4の視点においては、遠隔制御装置にて制御対象装置の遠隔制御を実行させる遠隔制御プログラムであって、前記制御対象装置の現在地から所望の目的地に到達するための軌道及び移動速度を算出する処理と、前記遠隔制御装置と前記制御対象装置との間の通信遅延時間を計測する処理と、計測された前記通信遅延時間、保持された前記制御対象装置の大きさ、及び、算出された前記移動速度に基づいて、オーバーシュート領域を推定する処理と、算出された前記軌道、推定された前記オーバーシュート領域、及び、保持された前記制御対象装置の周辺物情報に基づいて、前記制御対象装置と前記周辺物とが接触するか否かを予測する処理と、前記接触すると予測される場合には、前記制御対象装置の移動方向が所定値以上変化するように前記制御対象装置に与える移動速度情報を算出する処理と、算出された前記移動速度情報を含む制御信号を前記制御対象装置に送信する処理と、を実行させる。なお、プログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。また、本開示では、コンピュータプログラム製品として具現することも可能である。
 前記第1から第4の視点によれば、通信ネットワークにおいて通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することに貢献することができる。
実施形態1に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。 実施形態1に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。 実施形態1に係る遠隔制御システムにおける遠隔制御装置の制御部のオーバーシュート領域の推定処理を説明するための模式図であり、(a)現在地の模式図、(b)オーバーシュートしたことを想定した模式図、(c)オーバーシュート領域の模式図である。 実施形態1に係る遠隔制御システムにおける制御対象装置の制御部の動作の一例を模式的に示したフローチャートである。 実施形態2に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。 実施形態2に係る遠隔制御システムの構成の変形例を模式的に示したブロック図である。 実施形態2に係る遠隔制御システムの構成の別の変形例を模式的に示したブロック図である。 実施形態2に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。 実施形態3に係る遠隔制御システムの構成の一例を示すブロック図である。 実施形態3に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。 実施形態3に係る遠隔制御システムにおける遠隔制御装置の通信遅延時間推定処理部による通信遅延時間の推定結果を例示するグラフである。 実施形態4に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。 実施形態4に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。 実施形態4に係る遠隔制御システムにおける遠隔制御装置のオーバーシュート領域補正処理部によるオーバーシュート領域の補正結果の一例を示した模式図である。 実施形態5に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。 実施形態5に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。 遠隔制御装置のハードウェア構成の一例を示したブロック図である。
 以下、実施形態について図面を参照しつつ説明する。なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。また、下記の実施形態は、あくまで例示であり、本発明を限定するものではない。さらに、以降の説明で参照する図面等のブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。さらに、本願開示に示す回路図、ブロック図、内部構成図、接続図などにおいて、明示は省略するが、入力ポート及び出力ポートが各接続線の入力端及び出力端のそれぞれに存在する。入出力インターフェイスも同様である。
[実施形態1]
 実施形態1に係る遠隔制御システムについて図面を用いて説明する。図1は、実施形態1に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。
 遠隔制御システム1は、遠隔制御装置30から通信ネットワーク10を介して遠隔地にある制御対象装置40の動作を遠隔制御するためのシステムである。ここでの制御対象装置40の動作とは、例えば、装置全体の移動、旋回(回転)、アームやマニピュレータの動作などの動作部43の動作である。遠隔制御システム1は、主な構成要素として、通信ネットワーク10と、遠隔制御装置30と、制御対象装置40と、を有する。
 通信ネットワーク10は、遠隔制御装置30と制御対象装置40とを通信可能に接続する情報通信網である。通信ネットワーク10は、主な構成部として、有線ネットワーク11と、無線基地局装置12と、を有する。
 有線ネットワーク11は、有線通信を行う通信網である。有線ネットワーク11は、有線リンク101を介して遠隔制御装置30の通信部32と通信可能に接続されている。有線ネットワーク11は、有線ネットワーク11における基地局制御装置(図示せず)と有線リンク102を介して無線基地局装置12と通信可能に接続されている。
 無線基地局装置12は、無線通信機能を有する無線端末に対して無線通信サービスを提供する装置である。無線基地局装置12は、無線リンク103を介して制御対象装置40の通信部42と通信可能に接続されている。
 なお、通信ネットワーク10は、図1の構成に限るものではなく、遠隔制御装置30と無線リンクで接続可能に構成してもよく、制御対象装置40と有線リンクで接続可能に構成してもよい。
 遠隔制御装置30は、通信ネットワーク10を介して制御対象装置40を遠隔制御するための装置である。遠隔制御装置30は、制御対象装置40の位置とは異なる位置(遠隔地)に設置される。遠隔制御装置30は、主な構成部として、制御部31と、通信部32と、記憶部33と、を有する。
 制御部31は、通信部32及び記憶部33の制御や、制御対象装置40を遠隔制御するための情報処理を行う機能部である。制御部31は、記憶部33に記憶された遠隔制御プログラムを読み出し、主記憶にロードして実行することで、軌道算出処理部31aと、通信遅延時間計測処理部31bと、オーバーシュート領域推定処理部31cと、接触予測処理部31dと、移動速度情報算出処理部31eと、制御信号送信処理部31fと、を実現する。
 軌道算出処理部31aは、制御対象装置40の現在地から所望の目的地へ到達するための軌道(移動経路)及び移動速度を算出する情報処理部である。軌道算出処理部31aは、所定の周期で、又は、指示されたタイミングで、制御対象装置40(被制御信号送信処理部41c)から被制御信号を取得する。ここで、制御対象装置40の現在地には、制御対象装置40から取得した最新の被制御信号に含まれた制御対象装置40の位置情報及び方向情報を用いることができる。また、所望の目的地は、外部(図示せず;例えば、コントローラ)から遠隔制御装置30に対して事前に与えられた目的地とすることができる。また、軌道の算出方法は、公知の任意の方法を用いることができる。さらに、軌道算出処理部31aは、算出された軌道に対して制御対象装置40が追従するための移動速度を算出する。
 通信遅延時間計測処理部31bは、遠隔制御装置30と制御対象装置40との間の通信遅延時間を計測する情報処理部である。通信遅延時間計測処理部31bは、通信部32及び通信ネットワーク10を介して制御対象装置40に対して計測用データ(例えば、ACK(ACKnowledgement)パケット、PING(Packed InterNet Gopher)コマンド等)を送受信することで、該計測用データの送信時刻と受信時刻との差から往復遅延時間(RTT: Round Trip Time)を算出し、算出された往復遅延時間に基づいて通信遅延時間(遠隔制御装置30から制御対象装置40への片道遅延時間)を計測する。
 オーバーシュート領域推定処理部31cは、事前に記憶部33に保持された制御対象装置40の大きさと、軌道算出処理部31aで算出された移動速度と、通信遅延時間計測処理部31bで計測された通信遅延時間(往復遅延時間でも可)と、に基づいて、オーバーシュート領域を推定する情報処理部である。ここでのオーバーシュート領域とは、例えば、遠隔制御装置30が移動中の制御対象装置40に対して停止を指示した時点から、制御対象装置40が実際に停止するまでに通信遅延時間の影響によって行き過ぎてしまう距離と、制御対象装置40の大きさによって形作られる空間のことである。
 接触予測処理部31dは、オーバーシュート領域推定処理部31cで推定されたオーバーシュート領域と、事前に記憶部33に保持された制御対象装置40の周辺物情報と、に基づいて、制御対象装置40と周辺物とが接触するか否かを予測する情報処理部である。ここで、周辺物情報は、例えば、壁や柱などの建造物、器具備品、機械装置などの周辺物の位置を含むマップ情報であって、事前に記憶部33に保持されている。接触予測処理部31dは、オーバーシュート領域と周辺物情報に係る周辺物の位置とが少なくとも部分的に重なる場合、又は、オーバーシュート領域と周辺物情報に係る周辺物の位置との間の最近接距離が所定値未満である場合、制御対象装置40において接触すると予測する。
 移動速度情報算出処理部31eは、制御対象装置40に指示する移動速度情報を算出する情報処理部である。移動速度情報算出処理部31eは、接触予測処理部31dで接触しないと予測された場合には、軌道算出処理部31aで算出された軌道に対して制御対象装置40が追従するように移動速度情報を算出する。一方、移動速度情報算出処理部31eは、接触予測処理部31dで接触すると予測された場合には、制御対象装置40の移動方向が所定値以上変化するように移動速度情報を算出する。
 制御信号送信処理部31fは、移動速度情報を含む制御信号を通信部32及び通信ネットワーク10を介して制御対象装置40に送信する情報処理部である。制御信号送信処理部31fは、所定の周期で、又は、任意のタイミングで制御信号を送信する。
 通信部32は、遠隔制御装置30と制御対象装置40との間で所定の情報、データ、又は信号の送受信を行う機能部である。通信部32は、制御部31の制御により、情報の送受信を行う。
 記憶部33は、プログラム(遠隔制御プログラムを含む)、ソフトウェア、データ及びファイル等を記憶する機能部である。記憶部33は、制御部31の制御により、読み出し、書き込み等を行う。
 なお、プログラムは、当該プログラムが記録された記録媒体(図示せず;フレキシブルディスク、ハードディスク等の磁気ディスク、磁気テープ、又はCD(Compact Disk)-ROM(Read Only Memory)、DVD(Digital Versatile Disk)等の光ディスク、メモリカード、若しくは、半導体メモリ等)から、該記録媒体の機械読み出し装置(図示せず)及びインタフェース(図示せず)を介して記憶部33に記憶(インストール)してもよい。また、プログラムは、他のコンピュータ(図示せず)の記憶装置(図示せず)から有線又は無線ネットワーク媒体(図示せず)及び通信インタフェース(図示せず)を介して伝送して記憶部33に記憶(インストール)してもよい。
 制御対象装置40は、通信ネットワーク10を介して遠隔制御装置30から遠隔制御される装置である。制御対象装置40は、例えば、工場や倉庫などの作業現場に設置することができる。制御対象装置40には、例えば、AGV、ドローン、建機、警備ロボット、災害救助ロボット、遠隔手術支援ロボット、移動ロボットなどの機器を用いることができる。制御対象装置40は、主な構成部として、制御部41と、通信部42と、動作部43と、センサ部44と、記憶部45と、を有する。
 制御部41は、通信部42、動作部43、センサ部44及び記憶部45の制御や、遠隔制御装置30からの指示に応じて動作部43を動作させるための情報処理を行う機能部である。制御部41は、記憶部45に記憶された被遠隔制御プログラムを読み出し、主記憶にロードして実行することで、動作制御処理部41aと、動作状態取得処理部41bと、被制御信号送信処理部41cと、を実現する。
 動作制御処理部41aは、遠隔制御装置30からの制御信号に基づいて、動作部43の動作を制御する情報処理部である。
 動作状態取得処理部41bは、センサ部44で検出された動作部43の動作に係る動作状態(例えば、制御対象装置40の現在地、方向、角度、速度等)を取得する情報処理部である。動作状態取得処理部41bは、所定の周期、又は、遠隔制御装置30の要求に応じて、センサ部44から動作状態を取得する。
 被制御信号送信処理部41cは、動作状態を含む被制御信号を通信部42及び通信ネットワーク10を介して遠隔制御装置30に送信する情報処理部である。被制御信号送信処理部41cは、所定の周期で、又は、遠隔制御装置30(軌道算出処理部31a)に指示されたタイミングで被制御信号を送信する。
 通信部42は、遠隔制御装置30との間で所定のデータの送受信を行う機能部である。通信部42は、制御部41の制御により、情報の送受信を行う。
 動作部43は、所定の動作を行う機能部であって、例えば、モータ制御装置、油圧制御装置、エンジン制御装置などである。動作部43の動作として、例えば、移動、回転、旋回、スライド、伸縮等が挙げられる。動作部43は、制御部41の制御により、動作する。
 センサ部44は、動作部43の動作に係る動作状態を検出する機能部である。センサ部44には、例えば、位置センサ、方位センサ、角度センサ、回転センサ、加速度センサ、距離センサ、圧力センサ、磁気センサなどのセンサ類を用いることができる。センサ部44は、制御部41の制御により、動作状態を検出する。
 記憶部45は、ソフトウェア、プログラム、データベース、ファイル、及び情報等のデータを記憶する機能部である。記憶部45は、制御部41の制御により、読み込み、書き込み等を行う。
 次に、実施形態1に係る遠隔制御システムにおける遠隔制御装置の制御部の動作について図面を用いて説明する。図2は、実施形態1に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。なお、遠隔制御システム1の構成については、図1を参照されたい。
 まず、遠隔制御装置30の制御部31(軌道算出処理部31a)は、制御対象装置40の現在地から所望の目的地へ到達するための軌道(移動経路)及び移動速度を算出する(ステップS101)。
 ここで、軌道算出処理部31aは、所定の周期、又は、任意のタイミングで、制御対象装置40から被制御信号を取得する。また、軌道算出処理部31aの軌道の算出では、例えば、制御対象装置40から取得した最新の被制御信号に含まれた制御対象装置40の現在地としての位置情報及び方向情報と、外部から遠隔制御装置30に対して事前に与えられた所望の目的地と、に基づいて、現在地と所望の目的地とを結ぶ軌道(直線、曲線(放物線、スプライン曲線、クロソイド曲線など)、円弧等)を算出する。さらに、軌道算出処理部31aは、算出された軌道に対して、制御対象装置40が追従するための移動速度を算出する。
 次に、遠隔制御装置30の制御部31(通信遅延時間計測処理部31b)は、遠隔制御装置30と制御対象装置40との間で計測用データを送受信することで、通信遅延時間(往復遅延時間でも可)を計測する(ステップS102)。
 ここで、通信遅延時間計測処理部31bは、通信遅延時間の計測にあたって、制御対象装置40に対して所定の周期、又は、任意のタイミングで、識別番号、又は、送信時刻の少なくともいずれかを含む計測用データ(例えば、ACK(ACKnowledgement)パケット)を送信する。送信された計測用データは、制御対象装置40で受信され、制御対象装置40から遠隔制御装置30に対して即座に返信される。通信遅延時間計測処理部31bは、制御対象装置40から返信された計測用データを受信すると、計測用データの受信時刻と送信時刻とを比較することで往復遅延時間を算出し、算出された往復遅延時間に基づいて通信遅延時間を計測する。なお、通信遅延時間計測処理部31bは、計測用データに送信時刻を含めない場合には、計測用データに係る識別番号と送信時刻とを関連付けて記憶部33に保持する。
 次に、遠隔制御装置30の制御部31(オーバーシュート領域推定処理部31c)は、通信遅延時間計測処理部31bで計測された通信遅延時間(往復遅延時間でも可)と、事前に記憶部33に保持された制御対象装置40の大きさと、軌道算出処理部31aで算出された移動速度と、に基づいて、オーバーシュート領域を推定する(ステップS103)。
 ここで、制御対象装置40が対向二輪型の車輪移動ロボットである場合を例として、オーバーシュート領域の推定方法(算出方法)を説明する。図3は、実施形態1に係る遠隔制御システムにおける遠隔制御装置の制御部のオーバーシュート領域の推定処理を説明するための模式図である。図3(a)は、遠隔制御装置30が時刻(t)に受信した被制御信号に含まれた制御対象装置40の位置情報及び方向情報と、算出された軌道に対して制御対象装置40が追従するための動作部43(左右の車輪)の移動速度と、制御対象装置40の大きさと、を示している。図3(b)は、通信遅延時間の影響で制御対象装置40が移動し過ぎて(オーバーシュートして)しまうことを想定して、式1~式3を用いて推定する制御対象装置40の推定値位置及び推定方向を示している。図3(c)は、推定された制御対象装置40のオーバーシュート領域を示している。つまり、計測された通信遅延時間を用いて、その通信遅延時間に制御対象装置40が移動する領域をオーバーシュート領域として推定する。
 ここで、式1~式3に出てくる「時刻」、「位置情報(X軸)」、「位置情報(Y軸)」、「方向情報」、「移動速度(右車輪)」、「移動速度(左車輪)」、「制御対象装置の大きさ」、「通信遅延時間」、「推定値位置(X軸)」、「推定値位置(Y軸)」、及び「推定方向」のそれぞれの記号を以下のように定義する。
Figure JPOXMLDOC01-appb-I000001
[式1]
Figure JPOXMLDOC01-appb-I000002
[式2]
Figure JPOXMLDOC01-appb-I000003
[式3]
Figure JPOXMLDOC01-appb-I000004
 次に、遠隔制御装置30の制御部31(接触予測処理部31d)は、ステップS103で推定されたオーバーシュート領域と、事前に記憶部33に保持された制御対象装置40の周辺物情報と、に基づいて、制御対象装置40と周辺物とが接触する否かを予測する(ステップS104)。
 ここで、制御対象装置40と周辺物とが接触するか否かの予測では、例えば、オーバーシュート領域と周辺物情報に係る周辺物の位置とが少なくとも部分的に重なる場合、又は、オーバーシュート領域と周辺物情報に係る周辺物の位置との間の最近接距離が所定値未満である場合には、制御対象装置40と周辺物とが接触すると予測する。
 接触すると予測された場合(ステップS104:YES)、遠隔制御装置30の制御部31(移動速度情報算出処理部31e)は、制御対象装置40の移動方向が所定値以上変化するように、制御対象装置40に与える移動速度情報を算出する(ステップS105)。
 移動速度情報の算出方法として、例えば、制御対象装置40が対向二輪型の車輪移動ロボットである場合、移動速度情報算出処理部31eは、制御対象装置40と周辺物との接触を回避するために制御対象装置40をその場で旋回運動させる場合には、制御対象装置40の動作部43(左右の車輪)に対して正負の異なる同じ大きさとなるように、制御対象装置40に与える移動速度情報を算出することができる。また、移動速度情報算出処理部31eは、制御対象装置40と周辺物との接触を回避するために制御対象装置40を任意の曲率で円運動させる場合には、制御対象装置40の周辺物に近い方の動作部43(例えば、左車輪)に与える移動速度を大きく、かつ、制御対象装置40の周辺物に遠い方の動作部43(例えば、右車輪)に与える移動速度を小さくするように、制御対象装置40に与える移動速度情報を算出することができる。
 一方、接触しないと予測された場合(ステップS104:NO)、遠隔制御装置30の制御部31(移動速度情報算出処理部31e)は、軌道算出処理部31aで算出された軌道に対して制御対象装置40が追従するように、制御対象装置40に与える移動速度情報を算出する(ステップS106)。なお、軌道算出処理部31aで算出された移動速度を移動速度情報とする場合には、ステップS106を省略し、ステップS107に進んでもよい。
 ステップS105又はステップS106の後、遠隔制御装置30の制御部31(制御信号送信処理部31f)は、ステップS105又はステップS106で算出された移動速度情報を含む制御信号を、通信部32及び通信ネットワーク10を介して制御対象装置40に送信し(ステップS107)、その後、スタートに戻る。
 次に、実施形態1に係る遠隔制御システムにおける制御対象装置の制御部の動作について図面を用いて説明する。図4は、実施形態1に係る遠隔制御システムにおける制御対象装置の制御部の動作の一例を模式的に示したフローチャートである。なお、遠隔制御システム1の構成については、図1を参照されたい。
 まず、制御対象装置40の制御部41(動作制御処理部41a)は、遠隔制御装置30から通信ネットワーク10及び通信部42を介して受信した制御信号に基づいて、動作部43の動作を制御する(ステップS201)。
 次に、制御対象装置40の制御部41(動作状態取得処理部41b)は、センサ部44で測定された制御対象装置40の動作状態を取得する(ステップS202)。
 なお、動作状態の取得は、ステップS201の後に限らず、ステップS201の前、又は、ステップS201と同時に行ってもよく、所定の周期、又は、遠隔制御装置30の要求に応じて行うことができる。また、動作状態として、例えば、角度、回転速度、回転回数、トルク、加速度、周辺物への距離、圧力、方向等が挙げられる。
 次に、制御対象装置40の制御部41(被制御信号送信処理部41c)は、動作状態取得処理部41bで取得した動作状態を含む被制御信号を遠隔制御装置30に送信する(ステップS203)。その後、スタートに戻る。
 実施形態1によれば、遠隔制御装置30が通信ネットワーク10を介して制御対象装置40を遠隔制御する際に、通信遅延時間を考慮して制御対象装置40が移動するオーバーシュート領域を推定し、制御対象装置40と周辺物とが接触すると予測される場合には、制御対象装置40の移動方向を変更することにより、通信ネットワーク10において通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することができ、遠隔制御システム1における安全性の改善に貢献する。
[実施形態2]
 実施形態2に係る遠隔制御システムについて図面を参照して説明する。図5~図7は、実施形態2に係る遠隔制御システムの構成を模式的に示したブロック図である。
 実施形態2に係る遠隔制御システム1の構成は、遠隔制御装置30の制御部31の構成において、新たに周辺物情報更新処理部34aを追加した点が異なる。
 周辺物情報更新処理部34aは、制御対象装置40のセンサ部44(ここでは距離センサ)で検出(測定)された制御対象装置40と周辺物との距離(動作状態かつ周辺物情報に相当)を含む被制御信号を、所定の周期、又は、任意のタイミングで、制御対象装置40から通信ネットワーク10及び通信部32を介して取得し、取得した被制御信号に含まれた距離を周辺物情報として、記憶部33に保持された周辺物情報を更新する(図5参照)。
 また、周辺物情報更新処理部34aは、制御対象装置40がステレオカメラ46を備える場合には、周辺物を撮影した画像(動作状態に相当)を含む被制御信号を、所定の周期、又は、任意のタイミングで、制御対象装置40から通信ネットワーク10及び通信部32を介して取得し、取得した被制御信号に含まれた画像(動作状態に相当)に基づいて、一般的に知られている画像処理技術を利用して、当該画像の視差から、制御対象装置40から周辺物までの距離を算出し、算出された距離を周辺物情報として、記憶部33に保持された周辺物情報を更新してもよい(図6参照)。
 さらに、周辺物情報更新処理部34aは、制御対象装置40が動作するエリアを監視する監視カメラ50が設置されている場合には、監視カメラ50で当該エリアを撮影した画像(動作状態に相当)を含む被制御信号を、所定の周期、又は、任意のタイミングで、監視カメラ50から通信ネットワーク10及び通信部32を介して取得し、取得した被制御信号に含まれた画像(動作状態に相当)に基づいて、一般的に知られている画像処理技術を利用して、当該画像から制御対象装置40及び周辺物のそれぞれの位置を検出し、検出された位置に基づいて制御対象装置40から周辺物までの距離を算出し、算出された距離を周辺物情報として、記憶部33に保持された周辺物情報を更新してもよい(図7参照)。
 実施形態2のその他の構成は、実施形態1と同様である。
 次に、実施形態2に係る遠隔制御システムにおける遠隔制御装置の制御部の動作について図面を用いて説明する。図8は、実施形態2に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。なお、遠隔制御システム1の構成については、図5~図7を参照されたい。
 まず、遠隔制御装置30の制御部31は、実施形態1の図2のステップS101~S103と同様な動作ステップを行う(図8のステップS101~S103)。
 次に、遠隔制御装置30の制御部31(周辺物情報更新処理部34a)は、取得した最新の被制御信号に含まれた動作状態に基づいて、記憶部33に保持された周辺物情報を更新する(ステップS301)。
 ここで、周辺物情報更新処理部34aは、所定の周期、又は、任意のタイミングで、制御対象装置(図5~図7の40)又は監視カメラ(図7の50)から、動作状態を含む被制御信号を受信する。また、被制御信号に含まれた動作状態が制御対象装置40と周辺物との距離である場合には、周辺物情報更新処理部34aは、当該距離を周辺物情報として、記憶部33に保持された周辺物情報を更新する。また、被制御信号に含まれた動作状態がステレオカメラ(図6の46)で撮影した周辺物の画像である場合には、周辺物情報更新処理部34aは、一般的に知られている画像処理技術を利用して、当該画像の視差から、制御対象装置40から周辺物までの距離を算出し、算出された距離を周辺物情報として、記憶部33に保持された周辺物情報を更新する。さらに、被制御信号に含まれた動作状態が監視カメラ(図7の50)で撮影した制御対象装置40と周辺物を含む画像である場合には、周辺物情報更新処理部34aは、一般的に知られている画像処理技術を利用して、当該画像から制御対象装置40と周辺物との位置を検出し、検出された制御対象装置40から周辺物までの距離を算出し、算出された距離を周辺物情報として、記憶部33に保持された周辺物情報を更新する。
 次に、遠隔制御装置30の制御部31(接触予測処理部31d)は、ステップS103で推定されたオーバーシュート領域と、ステップS301で更新された周辺物情報と、に基づいて、制御対象装置40と周辺物とが接触するか否かを予測する(ステップS302)。
 接触すると予測された場合(ステップS302:YES)、遠隔制御装置30の制御部31は、実施形態1の図2のステップS105、S107と同様な動作ステップを行い(図8のステップS105、S107)、その後、スタートに戻る。
 一方、接触しないと予測された場合(ステップS302:NO)、遠隔制御装置30の制御部31は、実施形態1の図2のステップS106、S107と同様な動作ステップを行い(図8のステップS106、S107)、その後、スタートに戻る。
 実施形態2によれば、実施形態1と同様に通信ネットワーク10において通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することができ、遠隔制御システム1における安全性の改善に貢献する。
 また、実施形態2によれば、制御対象装置40又は遠隔制御装置30が制御対象装置40と周辺物との距離を検出(測定)又は算出し、算出された距離を制御対象装置40の周辺物情報として、記憶部33に保持された周辺物情報を更新しながら、制御対象装置40を遠隔制御するため、新たな周辺物が出現(例えば、軌道(移動経路)上に新たな荷物が置かれたなど)した場合においても、周辺物との衝突を回避することができるため、遠隔制御システム1における安全性を改善することに貢献する。
 また、複数の制御対象装置40が同時に動作することを想定すると、複数の制御対象装置40の軌道が重なった場合に、互いの存在が周辺物となることがありうるが、実施形態2によれば、このような場合にも制御対象装置40同士の衝突を回避できるため、遠隔制御システム1における安全性を改善することに貢献する。
[実施形態3]
 実施形態3に係る遠隔制御システムにおける遠隔制御装置について、図面を参照して説明する。図9は、実施形態3に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。
 実施形態3に係る遠隔制御システム1の構成は、遠隔制御装置30の制御部31の構成において、新たに通信遅延時間推定処理部35aを備える点が異なる。
 通信遅延時間推定処理部35aは、通信遅延時間計測処理部31bで計測された通信遅延時間(往復遅延時間でも可)に基づいて、将来の通信遅延時間を推定する。将来の通信遅延時間の推定方法については、後述する。
 実施形態3のその他の構成は、実施形態1と同様である。また、実施形態3は、実施形態2と適宜組み合わせてもよい。
 次に、実施形態3に係る遠隔制御システムにおける遠隔制御装置の制御部の動作について図面を用いて説明する。図10は、実施形態3に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。なお、遠隔制御システム1の構成については、図9を参照されたい。
 まず、遠隔制御装置30の制御部31は、実施形態1の図2のステップS101、S102と同様な動作ステップを行う(図10のステップS101、S102)。
 次に、遠隔制御装置30の制御部31(通信遅延時間推定処理部35a)は、ステップS102で計測された通信遅延時間(往復遅延時間でも可)に基づいて、将来の通信遅延時間を推定する(ステップS401)。
 ここで、将来の通信遅延時間の推定方法について図面を用いて説明する。図11は、実施形態3に係る遠隔制御システムにおける遠隔制御装置の通信遅延時間推定処理部による通信遅延時間の推定結果を例示するグラフである。
 通信遅延時間推定処理部35aでは、将来の通信遅延時間を推定する際に、通信遅延時間計測処理部31bで計測された通信遅延時間(往復遅延時間でも可;図11のRTT(Round Trip Time))に基づいて、通信遅延時間の変動の上側包絡線(図11の上側包絡線参照)を算出し、算出された上側包絡線の値を用いて、将来の通信遅延時間を推定する。つまり、通信遅延時間推定処理部35aで算出された上側包絡線の値と同等の通信遅延時間が次の通信において発生すると見なしたものである。上側包絡線は、計測した通信遅延時間を平滑化処理(平均化処理でも可)することで、算出することができる。
 通信遅延時間推定処理部35aは、例えば、時刻(t-1)の時点に推定された将来の往復遅延時間の推定値、時刻(t)時点に測定された往復遅延時間の計測値と、に基づいて、式4により、時刻(t)の時点で推定された将来の往復遅延時間の推定値を得ることができる。
 ここで、式4に出てくる「時刻(t-1)の時点に推定された将来の往復遅延時間の推定値」、「時刻(t)時点に測定された往復遅延時間の計測値」、及び「時刻(t)の時点で推定された将来の往復遅延時間の推定値」のそれぞれの記号を以下のように定義する。
Figure JPOXMLDOC01-appb-I000005
[式4]
Figure JPOXMLDOC01-appb-I000006
 ここで、式4におけるαは、重み係数であって、値が小さいほど、時刻(t)時点に測定された往復遅延時間の計測値を優先するようになるパラメータである。重み係数αは、0から1の範囲で値を取る。
 次に、遠隔制御装置30の制御部31(オーバーシュート領域推定処理部31c)は、事前に記憶部33に保持された制御対象装置40の大きさと、軌道算出処理部31aで算出された移動速度と、通信遅延時間推定処理部35aで推定された将来の通信遅延時間と、に基づいて、オーバーシュート領域を推定する(ステップS402)。なお、オーバーシュート領域の推定方法(算出方法)は、ステップS103と同様である。
 その後、遠隔制御装置30の制御部31は、実施形態1の図2のステップS104、S105又はS106、S107と同様な動作ステップを行い(図10のS104、S105又はS106、S107)、その後、スタートに戻る。
 実施形態3によれば、実施形態1と同様に通信ネットワーク10において通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することができ、遠隔制御システム1における安全性の改善に貢献する。
 また、実施形態3によれば、遠隔制御装置30と制御対象装置40との間の将来の通信に係る通信遅延時間を推定し、推定された通信遅延時間を考慮してオーバーシュート領域を推定する。つまり、遠隔制御装置30は、制御対象装置40が通信遅延時間の影響によって行き過ぎてしまう距離を考慮した上で、制御対象装置40と周辺物との接触を予測し、接触すると予測された場合には制御対象装置40の移動方向を変更することにより、周辺物との衝突を回避できるため、遠隔制御システム1における安全性を改善することに貢献する。
[実施形態4]
 実施形態4に係る遠隔制御システムについて図面を用いて説明する。図12は、実施形態4に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。
 実施形態4に係る遠隔制御システム1の構成は、遠隔制御装置30の制御部31の構成において、新たにオーバーシュート領域補正処理部36aを備える点が異なる。
 オーバーシュート領域補正処理部36aは、制御対象装置40が過去に移動した軌跡に基づいて、オーバーシュート領域推定処理部31cで推定されたオーバーシュート領域を補正する。なお、推定されたオーバーシュート領域の補正方法については、後述する。
 実施形態4のその他の構成は、実施形態1と同様である。また、実施形態4は、実施形態2、3と適宜組み合わせてもよい。
 次に、実施形態4に係る遠隔制御システムにおける遠隔制御装置の制御部の動作について図面を用いて説明する。図13は、実施形態4に係る遠隔制御システムにおける遠隔制御装置の制御部の動作を模式的に示したフローチャートである。なお、遠隔制御システム1の構成については、図12を参照されたい。
 まず、遠隔制御装置30の制御部31は、実施形態1の図2のステップS101~S103と同様な動作ステップを行う(図13のステップS101~S103)。
 次に、遠隔制御装置30の制御部31(オーバーシュート領域補正処理部36a)は、制御対象装置40が過去に移動した軌跡に基づいて、推定されたオーバーシュート領域を補正する(ステップS501)。
 ここで、推定されたオーバーシュート領域の補正方法について図面を用いて説明する。図14は、実施形態4に係る遠隔制御システムにおける遠隔制御装置のオーバーシュート領域補正処理部36aによるオーバーシュート領域の補正結果の一例を示した模式図である。オーバーシュート領域補正処理部36aでは、制御対象装置40の過去に移動した軌跡を用いて、進行方向に対する左右のズレ量dL1、dR1、dL2をそれぞれ算出する(図14(a)参照)。そして、オーバーシュート領域補正処理部36aは、左右それぞれのズレ量dL1、dR1、dL2が大きいほど、推定されたオーバーシュート領域を左右に拡大するように補正する(図14(b)参照)。ここで、オーバーシュート領域の左側の補正量は、所定期間内の進行方向に対する左側の軌跡のズレ量dL1、dL2の最大値とし、オーバーシュート領域の右側の補正量は、所定期間内の進行方向に対する右側の軌跡のズレ量dR1の最大値とすればよい。
 次に、遠隔制御装置30の制御部31(接触予測処理部31d)は、ステップS501で補正されたオーバーシュート領域と、事前に記憶部33に保持された制御対象装置40の周辺物情報と、に基づいて、制御対象装置40と周辺物とが接触するか否かを予測する(ステップS502)。
 接触すると予測された場合(ステップS502:YES)、遠隔制御装置30の制御部31は、実施形態1の図2のステップS105、S107と同様な動作ステップを行い(図13のステップS105、S107)、その後、スタートに戻る。
 一方、接触しないと予測された場合(ステップS502:NO)、遠隔制御装置30の制御部31は、実施形態1の図2のステップS106、S107と同様な動作ステップを行い(図13のステップS106、S107)、その後、スタートに戻る。
 実施形態4によれば、実施形態1と同様に通信ネットワーク10において通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することができ、遠隔制御システム1における安全性の改善に貢献する。
 また、実施形態4によれば、遠隔制御装置30が制御対象装置40の過去に移動した軌跡を用いて、推定したオーバーシュート領域を補正しながら制御対象装置40を遠隔制御する。つまり、路面状況(路面の凹凸や傾斜など)の影響や制御対象装置40の動作部43(左右の車輪)の動作の個体差の影響を考慮した上で、制御対象装置40と周辺物との接触を予測することができる。結果として、接触すると予測された場合には制御対象装置40の移動方向を変更することにより、周辺物との衝突を回避できるため、遠隔制御システム1における安全性を改善することに貢献する。
[実施形態5]
 実施形態5に係る遠隔制御システムについて図面を用いて説明する。図15は、実施形態5に係る遠隔制御システムの構成の一例を模式的に示したブロック図である。
 遠隔制御システム1は、遠隔制御装置30から通信ネットワーク10を介して遠隔地にある制御対象装置40の動作を遠隔制御するためのシステムである。遠隔制御システム1は、通信ネットワーク10と、遠隔制御装置30と、制御対象装置40と、を備える。
 通信ネットワーク10は、遠隔制御装置30と制御対象装置40とを通信可能に接続する情報通信網である。
 遠隔制御装置30は、通信ネットワーク10を介して制御対象装置40を遠隔制御するための装置である。遠隔制御装置30は、制御対象装置40に対して所定のデータの送受信を行う通信部32と、通信部32を通じて制御対象装置40を遠隔制御する制御部31と、を備える。
 制御部31は、制御対象装置40の現在地から所望の目的地に到達するための軌道及び移動速度を算出する処理を行う。制御部31は、遠隔制御装置30と制御対象装置40との間の通信遅延時間を計測する処理を行う。制御部31は、計測された通信遅延時間、事前に保持された制御対象装置40の大きさ、及び、算出された移動速度に基づいて、オーバーシュート領域を推定する処理を行う。制御部31は、算出された軌道、推定されたオーバーシュート領域、及び、保持された制御対象装置40の周辺物情報に基づいて、制御対象装置と周辺物とが接触するか否かを予測する処理を行う。制御部31は、接触すると予測される場合には、制御対象装置40の移動方向が所定値以上変化するように制御対象装置40に与える移動速度情報を算出する処理を行う。制御部31は、算出された前記移動速度情報を含む制御信号を制御対象装置40に送信する処理を行う。
 制御対象装置40は、通信ネットワーク10を介して遠隔制御装置30から遠隔制御される装置である。制御対象装置40は、遠隔制御装置30に対して所定のデータの送受信を行う通信部42と、所定の動作を行う動作部43と、制御対象装置の動作に係る動作状態を測定するセンサ部44と、動作部43を制御する制御部41と、を備える。
 制御部41は、遠隔制御装置30から受信した制御信号を用いて、動作部43の動作を制御する処理を行う。制御部41は、センサ部44が測定した動作状態を取得する処理を行う。制御部41は、動作状態を含む被制御信号を遠隔制御装置30に送信する処理を行う。
 次に、実施形態5に係る遠隔制御システムにおける遠隔制御装置の制御部の動作について図面を用いて説明する。図16は、実施形態5に係る遠隔制御システムにおける遠隔制御装置の制御部の動作の一例を模式的に示したフローチャートである。
 まず、遠隔制御装置30の制御部31は、制御対象装置40の現在地から所望の目的地に到達するための軌道及び移動速度を算出する(ステップS601)。
 次に、遠隔制御装置30の制御部31は、遠隔制御装置30と制御対象装置40との間の通信遅延時間を計測する(ステップS602)。
 次に、遠隔制御装置30の制御部31は、計測された通信遅延時間、保持された前記制御対象装置の大きさ、及び、算出された前記移動速度に基づいて、オーバーシュート領域を推定する(ステップS603)。
 次に、遠隔制御装置30の制御部31は、算出された軌道、推定されたオーバーシュート領域、及び、保持された制御対象装置40の周辺物情報に基づいて、制御対象装置40と周辺物とが接触するか否かを予測する(ステップS604)。
 接触すると予測されるときに、遠隔制御装置30の制御部31は、前記制御対象装置の移動方向が所定値以上変化するように前記制御対象装置に与える移動速度情報を算出する(ステップS605)。
 最後に、遠隔制御装置30の制御部31は、算出された移動速度情報を含む制御信号を前記制御対象装置に送信し(ステップS606)、その後、終了する。
 なお、接触しないと予測されるときは、ステップS601で算出された移動速度を移動速度情報として制御信号に含めて制御対象装置40に送信することができる。
 実施形態5によれば、制御対象装置40と周辺物とが接触すると予測されるときに、制御対象装置40の移動方向を変更することにより、通信ネットワーク10において通信遅延やその変動が発生しても、安全性を損なうことなく遠隔制御を継続することができ、遠隔制御システム1における安全性の改善に貢献する。
 なお、実施形態1~5に係る遠隔制御装置30は、いわゆる情報処理装置(コンピュータ)により構成することができ、図17に例示する構成を備えたものを用いることができる。例えば、遠隔制御装置30は、内部バス64により相互に接続される、CPU(Central Processing Unit)61、メモリ62、ネットワークインタフェース63等を備える。
 なお、図17に示す構成は、遠隔制御装置30のハードウェア構成を限定する趣旨ではない。遠隔制御装置30は、図示しないハードウェア(例えば、入出力インタフェース)を含んでもよい。あるいは、遠隔制御装置30に含まれるCPU61等のユニットの数も図17の例示に限定する趣旨ではなく、例えば、複数のCPU61が遠隔制御装置30に含まれていてもよい。
 メモリ62には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置(ハードディスク等)等を用いることができる。
 ネットワークインタフェース63には、例えば、LAN(Local Area Network)カード、ネットワークアダプタ、ネットワークインタフェースカード等を用いることができる。
 遠隔制御装置30の機能は、上述の処理モジュールにより実現される。当該処理モジュールは、例えば、メモリ62に格納されたプログラムをCPU61が実行することで実現される。また、そのプログラムは、ネットワークを介してダウンロードするか、あるいは、プログラムを記憶した記憶媒体を用いて、更新することができる。さらに、上記処理モジュールは、半導体チップにより実現されてもよい。即ち、上記処理モジュールが行う機能は、何らかのハードウェアにおいてソフトウェアが実行されることによって実現できればよい。
(付記)
 本発明では、前記第1の視点に係る遠隔制御装置の形態が可能である。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記軌道及び前記移動速度を算出するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた前記制御対象装置の前記現在地としての位置情報及び方向情報と、事前に与えられた前記所望の目的地と、に基づいて、前記現在地と前記所望の目的地とを結ぶ前記軌道を算出し、算出された前記軌道に対して、前記制御対象装置が追従するための移動速度を算出する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記通信遅延時間を計測するに際して、前記制御対象装置に対して前記通信遅延時間を計測するための計測用データを送受信することにより前記通信遅延時間を計測する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記接触するか否かを予測するに際して、推定された前記オーバーシュート領域と前記周辺物情報に係る前記周辺物の位置とが少なくとも部分的に重なるとき、又は、推定されたオーバーシュート領域と前記周辺物情報に係る前記周辺物の位置との間の最近接距離が所定値未満であるときに、前記制御対象装置と前記周辺物とが接触すると予測する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記移動速度情報を算出するに際して、前記制御対象装置をその場で旋回運動させる、又は、前記制御対象装置を任意の曲率の円運動させるように、前記移動速度情報を算出する。
 前記第1の視点に係る遠隔制御装置において、前記周辺物情報は、前記周辺物の位置を含むマップ情報であって、事前に保持されている。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記制御対象装置、又は、前記制御対象装置を監視する監視カメラから取得した最新の被制御信号に含まれた状態情報に基づいて、保持された前記周辺物情報を更新する処理を行う。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記周辺物情報を更新するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた状態情報が前記制御対象装置と前記周辺物との距離であるときに、当該距離を周辺物情報として、保持された前記周辺物情報を更新する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記周辺物情報を更新するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた状態情報が前記制御対象装置で撮影した周辺物の画像であるときに、所定の画像処理技術を利用して、当該画像の視差から、前記制御対象装置から前記周辺物までの距離を算出し、算出された距離を周辺物情報として、保持された前記周辺物情報を更新する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記周辺物情報を更新するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた状態情報が前記監視カメラで撮影された画像であるときに、所定の画像処理技術を利用して、当該画像から前記制御対象装置及び前記周辺物のそれぞれの位置を検出し、検出された前記位置に基づいて前記制御対象装置から前記周辺物までの距離を算出し、算出された距離を周辺物情報として、保持された前記周辺物情報を更新する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、計測された前記通信遅延時間に基づいて、将来の通信遅延時間を推定する処理を行い、前記制御部は、前記オーバーシュート領域を推定するに際して、計測された前記通信遅延時間の代わりに、推定された前記将来の通信遅延時間を用いて、前記オーバーシュート領域を推定する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記将来の通信遅延時間を推定するに際して、計測された前記通信遅延時間に基づいて、前記通信遅延時間の変動の上側包絡線を算出し、算出された前記上側包絡線の値を用いて、前記将来の通信遅延時間を推定する。
 前記第1の視点に係る遠隔制御装置において、前記制御部は、前記制御対象装置が過去に移動した軌跡に基づいて、現在の進行方向に対する左右のズレ量を算出し、前記ズレ量が大きいほど左右に広がるように、推定された前記オーバーシュート領域を補正する処理を行い、前記制御部は、前記接触するか否かを予測するに際して、推定された前記オーバーシュート領域の代わりに、補正された前記オーバーシュート領域を用いて、前記制御対象装置と前記周辺物とが接触するか否かを予測する。
 本発明では、前記第2の視点に係る遠隔制御システムの形態が可能である。
 前記第2の視点に係る遠隔制御システムにおいて、前記制御対象装置は、前記制御対象装置の周辺物を撮影することが可能なステレオカメラをさらに備え、前記制御対象装置の前記制御部は、前記動作状態を取得するに際して、前記ステレオカメラで撮影した画像を動作状態として取得する。
 前記第2の視点に係る遠隔制御システムにおいて、前記遠隔制御システムは、前記制御対象装置が動作するエリアを監視する監視カメラをさらに備え、前記監視カメラは、前記エリアを撮影した画像を含む被制御信号を前記遠隔制御装置に送信する処理を行う。
 本発明では、前記第3の視点に係る遠隔制御方法の形態が可能である。
 本発明では、前記第4の視点に係る遠隔制御プログラムの形態が可能である。
 なお、上記の特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(特許請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択(必要により不選択)が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、本願に記載の数値及び数値範囲については、明記がなくともその任意の中間値、下位数値、及び、小範囲が記載されているものとみなされる。
 1 遠隔制御システム
 10 通信ネットワーク
 11 有線ネットワーク
 12 無線基地局装置
 30 遠隔制御装置
 31 制御部
 31a 軌道算出処理部
 31b 通信遅延時間計測処理部
 31c オーバーシュート領域推定処理部
 31d 接触予測処理部
 31e 移動速度情報算出処理部
 31f 制御信号送信処理部
 32 通信部
 33 記憶部
 34a 周辺物情報更新処理部
 35a 通信遅延時間推定処理部
 36a オーバーシュート領域補正処理部
 40 制御対象装置
 41 制御部
 41a 動作制御処理部
 41b 動作状態取得処理部
 41c 被制御信号送信処理部
 42 通信部
 43 動作部
 44 センサ部
 45 記憶部
 46 ステレオカメラ
 50 監視カメラ
 61 CPU
 62 メモリ
 63 ネットワークインタフェース
 64 内部バス
 101、102 有線リンク
 103 無線リンク

Claims (18)

  1.  通信ネットワークを介して、制御対象装置を遠隔制御する遠隔制御装置であって、
     前記制御対象装置に対して所定のデータの送受信を行う通信部と、
     前記通信部を通じて前記制御対象装置を遠隔制御する制御部と、
    を備え、
     前記制御部は、
     前記制御対象装置の現在地から所望の目的地に到達するための軌道及び移動速度を算出することと、
     前記遠隔制御装置と前記制御対象装置との間の通信遅延時間を計測することと、
     計測された前記通信遅延時間、保持された前記制御対象装置の大きさ、及び、算出された前記移動速度に基づいて、オーバーシュート領域を推定することと、
     算出された前記軌道、推定された前記オーバーシュート領域、及び、保持された前記制御対象装置の周辺物情報に基づいて、前記制御対象装置と周辺物とが接触するか否かを予測することと、
     前記接触すると予測される場合には、前記制御対象装置の移動方向が所定値以上変化するように前記制御対象装置に与える移動速度情報を算出することと、
     算出された前記移動速度情報を含む制御信号を前記制御対象装置に送信することと、
    を行う、
    遠隔制御装置。
  2.  前記制御部は、前記軌道及び前記移動速度を算出するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた前記制御対象装置の前記現在地としての位置情報及び方向情報と、事前に与えられた前記所望の目的地と、に基づいて、前記現在地と前記所望の目的地とを結ぶ前記軌道を算出し、算出された前記軌道に対して、前記制御対象装置が追従するための移動速度を算出する、
    請求項1記載の遠隔制御装置。
  3.  前記制御部は、前記通信遅延時間を計測するに際して、前記制御対象装置に対して前記通信遅延時間を計測するための計測用データを送受信することにより前記通信遅延時間を計測する、
    請求項1又は2記載の遠隔制御装置。
  4.  前記制御部は、前記接触するか否かを予測するに際して、推定された前記オーバーシュート領域と前記周辺物情報に係る前記周辺物の位置とが少なくとも部分的に重なるとき、又は、推定されたオーバーシュート領域と前記周辺物情報に係る前記周辺物の位置との間の最近接距離が所定値未満であるときに、前記制御対象装置と前記周辺物とが接触すると予測する、
    請求項1乃至3のいずれか一に記載の遠隔制御装置。
  5.  前記制御部は、前記移動速度情報を算出するに際して、前記制御対象装置をその場で旋回運動させる、又は、前記制御対象装置を任意の曲率の円運動させるように、前記移動速度情報を算出する、
    請求項1乃至4のいずれか一に記載の遠隔制御装置。
  6.  前記周辺物情報は、前記周辺物の位置を含むマップ情報であって、事前に保持されている、
    請求項1乃至5のいずれか一に記載の遠隔制御装置。
  7.  前記制御部は、前記制御対象装置、又は、前記制御対象装置を監視する監視カメラから取得した最新の被制御信号に含まれた状態情報に基づいて、保持された前記周辺物情報を更新する処理を行う、
    請求項6記載の遠隔制御装置。
  8.  前記制御部は、前記周辺物情報を更新するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた状態情報が前記制御対象装置と前記周辺物との距離であるときに、当該距離を周辺物情報として、保持された前記周辺物情報を更新する、
    請求項7記載の遠隔制御装置。
  9.  前記制御部は、前記周辺物情報を更新するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた状態情報が前記制御対象装置で撮影した周辺物の画像であるときに、所定の画像処理技術を利用して、当該画像の視差から、前記制御対象装置から前記周辺物までの距離を算出し、算出された距離を周辺物情報として、保持された前記周辺物情報を更新する、
    請求項7記載の遠隔制御装置。
  10.  前記制御部は、前記周辺物情報を更新するに際して、前記制御対象装置から取得した最新の被制御信号に含まれた状態情報が前記監視カメラで撮影された画像であるときに、所定の画像処理技術を利用して、当該画像から前記制御対象装置及び前記周辺物のそれぞれの位置を検出し、検出された前記位置に基づいて前記制御対象装置から前記周辺物までの距離を算出し、算出された距離を周辺物情報として、保持された前記周辺物情報を更新する、
    請求項7記載の遠隔制御装置。
  11.  前記制御部は、計測された前記通信遅延時間に基づいて、将来の通信遅延時間を推定する処理を行い、
     前記制御部は、前記オーバーシュート領域を推定するに際して、計測された前記通信遅延時間の代わりに、推定された前記将来の通信遅延時間を用いて、前記オーバーシュート領域を推定する、
    請求項1乃至10のいずれか一に記載の遠隔制御装置。
  12.  前記制御部は、前記将来の通信遅延時間を推定するに際して、計測された前記通信遅延時間に基づいて、前記通信遅延時間の変動の上側包絡線を算出し、算出された前記上側包絡線の値を用いて、前記将来の通信遅延時間を推定する、
    請求項11記載の遠隔制御装置。
  13.  前記制御部は、前記制御対象装置が過去に移動した軌跡に基づいて、現在の進行方向に対する左右のズレ量を算出し、前記ズレ量が大きいほど左右に広がるように、推定された前記オーバーシュート領域を補正する処理を行い、
     前記制御部は、前記接触するか否かを予測するに際して、推定された前記オーバーシュート領域の代わりに、補正された前記オーバーシュート領域を用いて、前記制御対象装置と前記周辺物とが接触するか否かを予測する、
    請求項1乃至12のいずれか一に記載の遠隔制御装置。
  14.  請求項1乃至13のいずれか一に記載の遠隔制御装置と、
     前記通信ネットワークと、
     前記制御対象装置と、
    を備え、
     前記制御対象装置は、
     前記遠隔制御装置に対して所定のデータの送受信を行う通信部と、
     所定の動作を行う動作部と、
     前記制御対象装置の動作に係る動作状態を測定するセンサ部と、
     前記動作部を制御する制御部と、
    を備え、
     前記制御対象装置の前記制御部は、
     前記遠隔制御装置から受信した前記制御信号を用いて、前記動作部の動作を制御することと、
     前記センサ部が測定した前記動作状態を取得することと、
     前記動作状態を含む被制御信号を前記遠隔制御装置に送信することと、
    を行う、
    遠隔制御システム。
  15.  前記制御対象装置は、前記制御対象装置の周辺物を撮影することが可能なステレオカメラをさらに備え、
     前記制御対象装置の前記制御部は、前記動作状態を取得するに際して、前記ステレオカメラで撮影した画像を動作状態として取得する、
    請求項14記載の遠隔制御システム。
  16.  前記遠隔制御システムは、前記制御対象装置が動作するエリアを監視する監視カメラをさらに備え、
     前記監視カメラは、前記エリアを撮影した画像を含む被制御信号を前記遠隔制御装置に送信する処理を行う、
    請求項14又は15記載の遠隔制御システム。
  17.  通信ネットワークを介して、制御対象装置を遠隔制御する遠隔制御装置を用いて行う遠隔制御方法であって、
     前記制御対象装置の現在地から所望の目的地に到達するための軌道及び移動速度を算出するステップと、
     前記遠隔制御装置と前記制御対象装置との間の通信遅延時間を計測するステップと、
     計測された前記通信遅延時間、保持された前記制御対象装置の大きさ、及び、算出された前記移動速度に基づいて、オーバーシュート領域を推定するステップと、
     算出された前記軌道、推定された前記オーバーシュート領域、及び、保持された前記制御対象装置の周辺物情報に基づいて、前記制御対象装置と周辺物とが接触するか否かを予測するステップと、
     接触すると予測される場合には、前記制御対象装置の移動方向が所定値以上変化するように前記制御対象装置に与える移動速度情報を算出するステップと、
     算出された前記移動速度情報を含む制御信号を前記制御対象装置に送信するステップと、
    を含む、
    遠隔制御方法。
  18.  遠隔制御装置にて制御対象装置の遠隔制御を実行させる遠隔制御プログラムであって、
     前記制御対象装置の現在地から所望の目的地に到達するための軌道及び移動速度を算出する処理と、
     前記遠隔制御装置と前記制御対象装置との間の通信遅延時間を計測する処理と、
     計測された前記通信遅延時間、保持された前記制御対象装置の大きさ、及び、算出された前記移動速度に基づいて、オーバーシュート領域を推定する処理と、
     算出された前記軌道、推定された前記オーバーシュート領域、及び、保持された前記制御対象装置の周辺物情報に基づいて、前記制御対象装置と周辺物とが接触するか否かを予測する処理と、
     接触すると予測される場合には、前記制御対象装置の移動方向が所定値以上変化するように前記制御対象装置に与える移動速度情報を算出する処理と、
     算出された前記移動速度情報を含む制御信号を前記制御対象装置に送信する処理と、
    を実行させる、
    遠隔制御プログラム。
PCT/JP2018/041339 2017-11-08 2018-11-07 遠隔制御装置、システム、方法、及びプログラム WO2019093374A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/761,346 US11579615B2 (en) 2017-11-08 2018-11-07 Remote control apparatus, system, method, and program
JP2019552349A JP6939896B2 (ja) 2017-11-08 2018-11-07 遠隔制御装置、システム、方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215744 2017-11-08
JP2017-215744 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093374A1 true WO2019093374A1 (ja) 2019-05-16

Family

ID=66437814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041339 WO2019093374A1 (ja) 2017-11-08 2018-11-07 遠隔制御装置、システム、方法、及びプログラム

Country Status (3)

Country Link
US (1) US11579615B2 (ja)
JP (1) JP6939896B2 (ja)
WO (1) WO2019093374A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057853A (ja) * 2019-10-02 2021-04-08 トヨタテクニカルディベロップメント株式会社 無線通信システム、無線通信方法及び無線通信プログラム
WO2022024345A1 (ja) * 2020-07-31 2022-02-03 日本電気株式会社 遠隔監視装置、遠隔監視方法、及び遠隔監視システム
JP2022032711A (ja) * 2020-08-13 2022-02-25 株式会社東芝 点検システムおよび点検方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244749B2 (ja) * 2019-03-05 2023-03-23 日本電信電話株式会社 情報処理システム、情報処理方法、管理装置、及びプログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836691A (ja) * 1994-07-22 1996-02-06 Toyota Motor Corp 自動走行車の管制制御装置
JP2005242489A (ja) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd 自律移動体の運行制御システムおよびプログラム
JP2006285548A (ja) * 2005-03-31 2006-10-19 Secom Co Ltd 移動ロボット及び遠隔操作システム
JP2008065755A (ja) * 2006-09-11 2008-03-21 Hitachi Ltd 移動装置
JP2010061346A (ja) * 2008-09-03 2010-03-18 Ihi Aerospace Co Ltd 遠隔操縦システム
JP2010248703A (ja) * 2009-04-10 2010-11-04 Ntt Docomo Inc 制御システム、制御方法、操作制御装置及び作業装置
JP5323910B2 (ja) * 2006-06-01 2013-10-23 三星電子株式会社 移動ロボットの遠隔操縦のための衝突防止装置及び方法
JP2016071585A (ja) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 運転制御システム、運転制御装置、および、遠隔操作装置
JP2017049903A (ja) * 2015-09-04 2017-03-09 Kddi株式会社 作業装置及び通信制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149046B2 (ja) 1992-10-19 2001-03-26 富士通株式会社 カメラ停止位置補正制御方式
US9527207B2 (en) 2011-03-23 2016-12-27 Sri International Dexterous telemanipulator system
JP6369392B2 (ja) 2015-05-22 2018-08-08 トヨタ自動車株式会社 遠隔制御システム
JP6383716B2 (ja) 2015-11-24 2018-08-29 三菱重工業株式会社 無人機の制御装置および制御方法
JP2017107374A (ja) 2015-12-09 2017-06-15 株式会社リコー 遠隔操縦システム及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836691A (ja) * 1994-07-22 1996-02-06 Toyota Motor Corp 自動走行車の管制制御装置
JP2005242489A (ja) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd 自律移動体の運行制御システムおよびプログラム
JP2006285548A (ja) * 2005-03-31 2006-10-19 Secom Co Ltd 移動ロボット及び遠隔操作システム
JP5323910B2 (ja) * 2006-06-01 2013-10-23 三星電子株式会社 移動ロボットの遠隔操縦のための衝突防止装置及び方法
JP2008065755A (ja) * 2006-09-11 2008-03-21 Hitachi Ltd 移動装置
JP2010061346A (ja) * 2008-09-03 2010-03-18 Ihi Aerospace Co Ltd 遠隔操縦システム
JP2010248703A (ja) * 2009-04-10 2010-11-04 Ntt Docomo Inc 制御システム、制御方法、操作制御装置及び作業装置
JP2016071585A (ja) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 運転制御システム、運転制御装置、および、遠隔操作装置
JP2017049903A (ja) * 2015-09-04 2017-03-09 Kddi株式会社 作業装置及び通信制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057853A (ja) * 2019-10-02 2021-04-08 トヨタテクニカルディベロップメント株式会社 無線通信システム、無線通信方法及び無線通信プログラム
JP7240297B2 (ja) 2019-10-02 2023-03-15 トヨタテクニカルディベロップメント株式会社 無線通信システム、無線通信方法及び無線通信プログラム
WO2022024345A1 (ja) * 2020-07-31 2022-02-03 日本電気株式会社 遠隔監視装置、遠隔監視方法、及び遠隔監視システム
JP7552699B2 (ja) 2020-07-31 2024-09-18 日本電気株式会社 遠隔監視装置、遠隔監視方法、及び遠隔監視システム
JP2022032711A (ja) * 2020-08-13 2022-02-25 株式会社東芝 点検システムおよび点検方法
JP7471953B2 (ja) 2020-08-13 2024-04-22 株式会社東芝 点検システムおよび点検方法

Also Published As

Publication number Publication date
JPWO2019093374A1 (ja) 2020-11-19
US11579615B2 (en) 2023-02-14
JP6939896B2 (ja) 2021-09-22
US20210181751A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2019093374A1 (ja) 遠隔制御装置、システム、方法、及びプログラム
US11045955B2 (en) Robot control device
US9132548B2 (en) Robot picking system, control device and method of manufacturing a workpiece
JP6605241B2 (ja) 遠隔操縦システム
JP6451857B2 (ja) 走行制御装置の制御方法および走行制御装置
JP2018106676A (ja) 情報処理装置、被操作車両、情報処理方法及びプログラム
EP3004800B1 (en) Method and apparatus for offboard navigation of a robotic device
JP2018107568A (ja) 遠隔制御装置、遠隔制御システム、遠隔制御方法及び遠隔制御プログラム
KR102494364B1 (ko) 차량 제어 시스템, 차량 외장형 전자 제어 유닛, 차량 제어 방법 및 애플리케이션
KR102169922B1 (ko) 추종 장치, 이를 포함하는 추종 시스템 및 추종 장치의 추종 방법
JP2008059218A (ja) 自律走行ロボットの自己位置回復方法
KR20140112824A (ko) 백스테핑 기법을 이용한 선도 추종자 대형제어 장치, 방법 및 이동로봇
JP5733518B2 (ja) 運動予測制御装置と方法
JP5869303B2 (ja) 自動搬送システム
CN112445222B (zh) 导航方法、装置、存储介质以及终端
JP2013052462A (ja) 遠隔操作装置及び方法
JP5439552B2 (ja) ロボットシステム
JPWO2020161910A1 (ja) 制御装置、制御方法、プログラム
JP6623202B2 (ja) モビリティ装置及びモビリティ装置における環境センシング方法
JP7167982B2 (ja) 出力装置、出力方法及び出力プログラム
KR101465706B1 (ko) 모바일 로봇의 원격 제어 방법 및 시스템
JP2018152053A (ja) データ取得システム、および、サーバ
US20220404825A1 (en) Method for remotely controlling a robot
JP6793459B2 (ja) 自律移動装置
WO2023037539A1 (ja) 制御システム、情報処理装置、制御方法、及び制御値生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875636

Country of ref document: EP

Kind code of ref document: A1