[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019077709A1 - 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム - Google Patents

吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム Download PDF

Info

Publication number
WO2019077709A1
WO2019077709A1 PCT/JP2017/037755 JP2017037755W WO2019077709A1 WO 2019077709 A1 WO2019077709 A1 WO 2019077709A1 JP 2017037755 W JP2017037755 W JP 2017037755W WO 2019077709 A1 WO2019077709 A1 WO 2019077709A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
diagnostic function
value
load
Prior art date
Application number
PCT/JP2017/037755
Other languages
English (en)
French (fr)
Inventor
剛志 赤尾
創 藤田
山田 学
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2017/037755 priority Critical patent/WO2019077709A1/ja
Priority to CN201780096111.9A priority patent/CN111246756B/zh
Priority to JP2019549057A priority patent/JP6752375B2/ja
Priority to EP17929279.2A priority patent/EP3698658B1/en
Priority to KR1020207013246A priority patent/KR102467946B1/ko
Priority to CA3079154A priority patent/CA3079154C/en
Priority to EA202090963A priority patent/EA039450B1/ru
Priority to TW106137763A priority patent/TWI718345B/zh
Publication of WO2019077709A1 publication Critical patent/WO2019077709A1/ja
Priority to US16/851,135 priority patent/US11399572B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/90Arrangements or methods specially adapted for charging batteries thereof
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/90Arrangements or methods specially adapted for charging batteries thereof
    • A24F40/95Arrangements or methods specially adapted for charging batteries thereof structurally associated with cases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop

Definitions

  • the present invention relates to a suction component generation device including a load that vaporizes or atomizes a suction component source by power from a power source, a suction component generation system, a method of controlling the suction component generation device, and a program.
  • a suction component generation device electronic cigarette or heated cigarette
  • tastes suction components generated by vaporizing or atomizing a flavor source such as tobacco or an aerosol source with a load such as a heater Patent documents 1 to 3
  • Such an aspiration component generator includes a load that vaporizes or atomizes the flavor source and / or the aerosol source, a power supply that supplies power to the load, and a control unit that controls the load and the power supply.
  • the load is, for example, a heater.
  • Patent documents 4 to 6 disclose a method of estimating power supply degradation.
  • Patent Documents 7 and 8 disclose a method of monitoring a power supply abnormality.
  • Patent Document 9 discloses a method of suppressing deterioration of a power supply.
  • Patent documents 10 to 12 disclose calibration of the battery's state of charge (SOC) and charge capacity when the power supply reaches a full charge under predetermined conditions.
  • Patent documents 4 to 12 do not specify application of those methods to a suction component generation device.
  • a first feature is a suction component generation device, a load for vaporizing or atomizing a suction component source by power from a power source, and a control unit configured to be able to control power supply from the power source to the load. And the first control function to estimate or detect at least one of deterioration and failure of the power supply during operation of the load; and the control unit is configured to evaluate the deterioration and failure of the power supply during charging of the power supply.
  • a second diagnostic function that estimates or detects at least one of the plurality of functions is configured to be executable, wherein the first diagnostic function and the second diagnostic function include different algorithms.
  • a second feature is the suction component generation device according to the first feature, wherein the first diagnostic function and the second diagnostic function are at least for estimating or detecting at least one of deterioration and failure of the power supply.
  • the gist is that the number of the algorithms included in the second diagnostic function is larger than the number of the algorithms included in the first diagnostic function.
  • a third feature is the suction component generation device according to the first feature or the second feature, wherein the first diagnostic function and the second diagnostic function estimate at least one of deterioration and failure of the power supply or Including at least one algorithm for detecting, the number of simultaneously executable algorithms included in the second diagnostic function being greater than the number of concurrently executable algorithms included in the first diagnostic function It is a summary.
  • a fourth feature is the suction component generation device according to the second feature or the third feature, wherein the first diagnostic function includes only one of the algorithm.
  • a fifth feature is the suction component generation device according to any one of the first to fourth features, wherein charging of the power source is controlled by an external charger separate from the suction component generation device.
  • a sixth feature is the suction component generation device according to any one of the first feature to the fifth feature, wherein the first diagnostic function determines that the voltage value of the power supply that changes during operation of the load is predetermined. Configured to be executable while in the first voltage range, and wherein the second diagnostic function is configured to be executable while the voltage value of the power supply changing during charging of the power supply is in the second predetermined voltage range.
  • the gist is that the second voltage range is wider than the first voltage range.
  • a seventh feature is the suction component generation device according to any one of the first feature to the sixth feature, wherein only the second diagnostic function among the first diagnostic function and the second diagnostic function is the power supply
  • the present invention is summarized as being configured to be executable below the discharge termination voltage of the power supply.
  • An eighth feature is the suction component generation device according to any one of the first to seventh features, including a plurality of sensors for outputting the state of the suction component generation device, wherein the second diagnostic function is executed. It is essential that the number of sensors required to do so is less than the number of sensors required to perform the first diagnostic function.
  • a ninth feature is the suction component generation device according to the eighth feature, wherein the plurality of sensors include a demand sensor capable of outputting a signal requesting operation of the load, and the first diagnostic function is The present invention can be implemented by using a demand sensor, and the second diagnostic function can be performed without using the demand sensor.
  • a tenth feature is the suction component generation device according to the eighth feature or the ninth feature, wherein the plurality of sensors include a voltage sensor for outputting a voltage value of the power supply, and the first diagnostic function and the above
  • the gist of the second diagnostic function is that the second diagnostic function can be performed by using the voltage sensor.
  • An eleventh feature is the suction component generation device according to any one of the first to tenth features, wherein the analog voltage value of the power supply is converted into a digital voltage value using a prescribed correlation, and the digital voltage
  • the first diagnostic function and the second diagnostic function can be performed by using the voltage sensor, and the control unit is configured to change the voltage of the power supply during charging of the power supply.
  • the gist of the present invention is that the correlation can be calibrated.
  • a twelfth feature is the suction component generation device according to any one of the first to eleventh features, wherein the second diagnostic function is a voltage of the power supply relative to an amount of power supplied to the power supply during charging.
  • the gist of the present invention includes an algorithm for estimating or detecting at least one of the deterioration and the failure of the power source based on the change of the value.
  • a thirteenth feature is the suction component generation device according to any one of the first to twelfth features, wherein the first diagnostic function is based on a change in voltage value of the power supply during operation of the load.
  • the gist of the present invention includes an algorithm for estimating or detecting at least one of deterioration and failure of the power supply.
  • a fourteenth feature is a method of controlling a suction component generation device including a load that vaporizes or atomizes a suction component source by power from a power source, and at least at least one of deterioration and failure of the power source during operation of the load. Performing a first diagnostic function to estimate or detect one, and a second diagnostic function to estimate or detect at least one of deterioration and failure of the power source during charging of the power source, the first diagnostic function And performing the second diagnostic function using an algorithm different from the above.
  • the gist of the fifteenth feature is a program that causes the suction component generation device to execute the method of the fourteenth feature.
  • a sixteenth feature is a suction component generation system, which is a load configured to vaporize or atomize a suction component source by power from a power supply, and a first control capable of controlling power supply from the power supply to the load
  • a suction component generating device comprising: a unit; and an external charger comprising a second control unit configured to control charging of the power supply, the first control unit being operative during operation of the load
  • a first diagnostic function for estimating or detecting at least one of degradation and failure of the power supply, and the second control unit is configured to at least one of degradation and failure of the power supply during charging of the power supply.
  • a second diagnostic function configured to estimate or detect S.
  • the present invention is summarized in that the first diagnostic function and the second diagnostic function include different algorithms.
  • FIG. 1 is a schematic view of a suction component generation device according to one embodiment.
  • FIG. 2 is a schematic view of an atomization unit according to an embodiment.
  • FIG. 3 is a schematic view showing an example of the configuration of a suction sensor according to an embodiment.
  • FIG. 4 is a block diagram of a suction component generation device.
  • FIG. 5 is a diagram showing an electric circuit of the atomization unit and the electrical unit.
  • FIG. 6 is a diagram showing an electric circuit of the charger and the electrical unit in a state where the charger is connected.
  • FIG. 7 is a flowchart showing an example of a control method in the power supply mode of the suction component generation device.
  • FIG. 8 is a graph showing an example of control of the amount of power supplied from the power supply to the load.
  • FIG. 9 is a diagram illustrating an example of a flowchart of the first diagnosis process.
  • FIG. 10 is a diagram for explaining a predetermined voltage range in the first diagnostic function.
  • FIG. 11 is a flowchart illustrating an example of a control method by the processor of the charger.
  • FIG. 12 is a flowchart showing an example of a control method of the control unit in the charge mode.
  • FIG. 13 is a diagram for explaining increase in voltage of a normal power supply and a deteriorated or broken power supply during charging.
  • FIG. 14 is a diagram showing a block of a voltage sensor.
  • FIG. 15 is a flow chart showing a process for calibration of a predetermined correlation of voltage sensors.
  • FIG. 16 is a diagram showing an example of calibration of predetermined correlation of voltage sensors.
  • FIG. 17 is a diagram showing another example of calibration of predetermined correlations of voltage sensors.
  • FIG. 18 is a block diagram of a voltage sensor according to another embodiment.
  • the suction component generation device includes a load that vaporizes or atomizes the suction component source by the power from the power source, and a control unit configured to control power supply from the power source to the load.
  • the control unit is configured to perform a first diagnostic function to estimate or detect at least one of degradation and failure of the power supply during operation of the load, and a second to estimate or detect at least one of degradation and failure of the power supply while charging the power supply.
  • the diagnostic function is configured to be executable.
  • the first diagnostic function and the second diagnostic function include different algorithms.
  • the method of controlling the suction component generation device relates to a method of controlling the suction component generation device including a load that vaporizes or atomizes the suction component source by the power from the power source.
  • the method comprises the steps of performing a first diagnostic function to estimate or detect at least one of power degradation and / or failure during operation of the load, and / or estimate at least one of power degradation and / or failure during power charging.
  • At least one of deterioration and failure of the power supply is estimated or detected by different algorithms during charging of the power supply and operation of the load. This makes it possible to estimate or detect at least one of deterioration and failure of the power supply by an appropriate algorithm according to the state of the suction component generation device.
  • FIG. 1 is an exploded view showing a suction component generation device according to one embodiment.
  • FIG. 2 is a view showing an atomization unit according to an embodiment.
  • FIG. 3 is a schematic view showing an example of the configuration of a suction sensor according to an embodiment.
  • FIG. 4 is a block diagram showing an electrical configuration of the suction component generation device.
  • FIG. 5 is a diagram showing an electric circuit of the atomization unit and the electrical unit.
  • FIG. 6 is a diagram showing an electric circuit of the charger and the electrical unit in a state where the charger is connected.
  • the suction component generation device 100 may be a non-burning type flavor suction device for suctioning a suction component (flavoring component) without combustion.
  • the suction component generation device 100 may have a shape extending along a predetermined direction A which is a direction from the non-sucking end E2 to the suction end E1.
  • the suction component generation device 100 may include one end E1 having the suction port 141 for suctioning the suction component, and the other end E2 opposite to the suction port 141.
  • the suction component generation device 100 may have an electrical unit 110 and an atomization unit 120.
  • the atomization unit 120 may be configured to be detachable from the electrical unit 110 via mechanical connection parts 111 and 121.
  • a load 121R described later in the atomization unit 120 is provided to the electrical unit 110 via the electrical connection terminals 110t and 120t.
  • the power supply 10 is electrically connected. That is, the electrical connection terminals 110 t and 120 t constitute a connection portion capable of electrically connecting and disconnecting the load 121 R and the power supply 10.
  • the atomization unit 120 has a suction component source sucked by the user, and a load 121 R that vaporizes or atomizes the suction component source by the power from the power source 10.
  • the aspiration component source may include an aerosol source that generates an aerosol, and / or a flavor source that generates a flavor component.
  • the load 121R may be any device capable of generating an aerosol and / or a flavor component from an aerosol source and / or a flavor source by receiving power.
  • the load 121R may be a heating element such as a heater or an element such as an ultrasonic wave generator.
  • the heat generating element include a heat generating resistor, a ceramic heater, and a heater of an induction heating type.
  • the atomization unit 120 may include a reservoir 121P, a wick 121Q, and a load 121R.
  • the reservoir 121P may be configured to store a liquid aerosol source or a flavor source.
  • the reservoir 121P may be, for example, a porous body made of a material such as a resin web.
  • the wick 121Q may be a liquid holding member that draws in an aerosol source or a flavor source from the reservoir 121P using capillary action.
  • the wick 121Q can be made of, for example, glass fiber or porous ceramic.
  • the load 121R atomizes the aerosol source held by the wick 121Q or heats the flavor source.
  • the load 121R is formed of, for example, a resistive heating element (for example, a heating wire) wound around the wick 121Q.
  • the air flowing in from the inflow hole 122A passes near the load 121R in the atomization unit 120.
  • the suction component generated by the load 121R flows with the air towards the suction port.
  • the aerosol source may be liquid at ambient temperature.
  • polyhydric alcohols such as glycerin and propylene glycol, water, and the like can be used.
  • the aerosol source itself may have a flavor component.
  • the aerosol source may include a tobacco material which releases flavoring ingredients by heating, or an extract derived from the tobacco material.
  • the atomization unit 120 may include a replaceable flavor unit (cartridge) 130.
  • the flavor unit 130 has a cylinder 131 containing a flavor source.
  • the cylinder 131 may include the film member 133 and the filter 132.
  • a flavor source may be provided in the space formed by the membrane member 133 and the filter 132.
  • the atomization unit 120 may include the destruction unit 90.
  • the destruction part 90 is a member for destroying a part of the membrane member 133 of the flavor unit 130.
  • the destruction portion 90 may be held by a partition member 126 for separating the atomization unit 120 and the flavor unit 130.
  • the partition member 126 is, for example, polyacetal resin.
  • the breaking part 90 is, for example, a cylindrical hollow needle. By piercing the tip of the hollow needle into the membrane member 133, an air flow path is formed that allows the atomization unit 120 and the flavoring unit 130 to be in air communication.
  • a mesh having a roughness that does not allow passage of the flavor source is provided inside the hollow needle.
  • the flavor source in the flavor unit 130 imparts a flavor ingredient to the aerosol generated by the load 121 R of the atomization unit 120.
  • the flavor imparted to the aerosol by the flavor source is carried to the mouth of the aspiration component generator 100.
  • the suction component generation device 100 may have a plurality of suction component sources.
  • the aspiration component generator 100 may have only one aspiration component source.
  • the flavor source in the flavor unit 130 may be solid at normal temperature.
  • the flavor source is constituted by a raw material piece of plant material that imparts a flavor and taste component to the aerosol.
  • a raw material piece which comprises a flavor source the molded object which shape
  • the flavor source may be a molded article obtained by forming the tobacco material into a sheet.
  • the raw material piece which comprises a flavor source may be comprised by plants (for example, mint, herbs, etc.) other than tobacco.
  • the flavor source may be provided with a flavor such as menthol.
  • the suction component generation device 100 may include a mouthpiece 142 having a suction port 141 for the user to suction the suction component.
  • the mouthpiece 142 may be configured to be removable from the atomization unit 120 or the flavor unit 130, and may be configured to be integral and inseparable.
  • the electrical unit 110 may include the power supply 10, the notification unit 40, and the control unit 50.
  • the power supply 10 stores the power necessary for the operation of the flavor suction device 100.
  • the power source 10 may be removable from the electrical unit 110.
  • the power source 10 may be a rechargeable battery, such as, for example, a lithium ion secondary battery.
  • the control unit 50 may have, for example, a control unit 51 such as a microcomputer, the suction sensor 20, and the push button 30. Furthermore, the suction component generation device 100 may include a voltage sensor 150, a current sensor 160, and a temperature sensor 170 as needed. The control unit 51 performs various controls necessary for the operation of the suction component generation device 100 according to the output values from the voltage sensor 150, the current sensor 160, and the temperature sensor 170. For example, the control unit 51 may configure a power control unit that controls the power from the power supply 10 to the load 121R.
  • the load 121R provided in the atomization unit 120 is electrically connected to the power supply 10 of the electrical unit 110 (see FIG. 5).
  • the suction component generation device 100 may include a switch 140 capable of electrically connecting and disconnecting the load 121R and the power supply 10.
  • the switch 140 is opened and closed by the control unit 50.
  • the switch 140 may be configured of, for example, a MOSFET.
  • the control unit 50 may include a demand sensor capable of outputting a signal requesting operation of the load 121R.
  • the request sensor may be, for example, a push button 30 pressed by the user or a suction sensor 20 that detects a suction operation of the user.
  • the control unit 50 acquires an operation request signal to the load 121R and generates a command for operating the load 121R.
  • the control unit 50 outputs a command for operating the load 121R to the switch 140, and the switch 140 is turned on according to the command.
  • the control unit 50 is configured to control the power supply from the power supply 10 to the load 121R. When power is supplied from the power supply 10 to the load 121R, the load 121R vaporizes or atomizes the suction component source.
  • the suction component generation device 100 may include a stop unit 180 that shuts off or reduces the charging current to the power supply 10 as necessary.
  • the stop unit 180 may be configured of, for example, a MOSFET switch. By turning off the stopping unit 180, the control unit 50 can forcibly cut off or lower the charging current to the power supply 10 even if the electrical unit 110 is connected to the charger 200. Note that even if the dedicated stop unit 180 is not provided, the control unit 50 may forcibly shut off or reduce the charging current to the power supply 10 by turning off the switch 140.
  • the voltage sensor 150 may be configured to output the voltage of the power supply 10.
  • the control unit 50 can obtain the output value of the voltage sensor 150. That is, the control unit 50 is configured to be able to acquire the voltage value of the power supply 10.
  • the current sensor 160 may be configured to be able to detect the amount of current flowing out of the power supply 10 and the amount of current flowing into the power supply 10.
  • the temperature sensor 170 may be configured to output the temperature of the power supply 10, for example.
  • the control unit 50 is configured to be able to obtain the outputs of the voltage sensor 150, the current sensor 160, and the temperature sensor 170. The control unit 50 performs various controls using these outputs.
  • the suction component generation device 100 may have a heater 70 for heating the power supply 10 as necessary.
  • the heater 70 may be provided in the vicinity of the power supply 10 and is configured to be operable according to a command from the control unit 50.
  • the suction sensor 20 may be configured to output an output value that fluctuates according to suction from the suction port. Specifically, the suction sensor 20 outputs a value (for example, a voltage value or a current value) that changes according to the flow rate of air drawn from the non-sucking side toward the suction side (that is, puff operation of the user). It may be a sensor that Such sensors include, for example, condenser microphone sensors and known flow sensors.
  • FIG. 3 shows a specific example of the suction sensor 20.
  • the suction sensor 20 illustrated in FIG. 3 includes a sensor body 21, a cover 22, and a substrate 23.
  • the sensor body 21 is configured of, for example, a capacitor.
  • the electric capacity of the sensor body 21 changes due to the vibration (pressure) generated by the air drawn from the air introduction hole 125 (that is, the air drawn from the non-suction side toward the suction side).
  • the cover 22 is provided on the suction side with respect to the sensor body 21 and has an opening 22A. By providing the cover 22 having the opening 22A, the electric capacity of the sensor body 21 is easily changed, and the response characteristic of the sensor body 21 is improved.
  • the substrate 23 outputs a value (here, a voltage value) indicating the electric capacitance of the sensor body 21 (capacitor).
  • the suction component generation device 100 may be configured to be connectable to a charger 200 for charging the power supply 10 in the electrical unit 110 (see FIG. 6).
  • the charger 200 is electrically connected to the power supply 10 of the electrical unit 110.
  • the electrical unit 110 may have a determination unit that determines whether the charger 200 is connected.
  • the determination unit may be, for example, a unit that determines the presence or absence of connection of the charger 200 based on a change in potential difference between a pair of electric terminals to which the charger 200 is connected.
  • the determination unit is not limited to this means, and may be any means as long as it can determine the presence or absence of the connection of the charger 200.
  • the charger 200 has an external power supply 210 for charging the power supply 10 in the electrical unit 110.
  • the pair of electrical terminals 110t of the electrical unit 110 for electrically connecting the charger 200 can also serve as the pair of electrical terminals of the electrical unit 110 for electrically connecting the load 121R.
  • the charger 200 may include an inverter that converts AC to DC.
  • the charger 200 may include a processor 250 that controls the charging of the power supply 10.
  • the charger 200 may include an ammeter 230 and a voltmeter 240 as needed.
  • the ammeter 230 obtains the charging current supplied from the charger 200 to the power supply 10.
  • the voltmeter 240 obtains a voltage between a pair of electrical terminals to which the charger 200 is connected.
  • the processor 250 of the charger 200 uses the output value from the ammeter 230 and / or the voltmeter 240 to control the charging of the power supply 10.
  • the charger 200 may further include a voltage sensor for acquiring a DC voltage output from the inverter, and a converter capable of boosting and / or stepping down the DC voltage output from the inverter.
  • the processor 250 of the charger 200 may be configured to be incapable of communicating with the control unit 50 of the electrical unit 110. That is, the communication terminal for communicating between the processor 250 of the charger 200 and the control unit 50 is unnecessary.
  • the electrical unit 110 has only two electrical terminals, one for the main positive bus and the other for the main negative bus.
  • the notification unit 40 issues a notification for notifying the user of various types of information.
  • the notification unit 40 may be, for example, a light emitting element such as an LED. Instead of this, the notification unit 40 may be an element that generates a sound or a vibrator.
  • the notification unit 40 may be configured to notify the user, based on the voltage of the power supply 10, at least when the remaining amount of the power supply 10 is not insufficient and when the remaining amount of the power supply 10 is insufficient. . For example, when the remaining amount of the power supply 10 is insufficient, the notification unit 40 issues a different notification than when the remaining amount of the power supply 10 is not insufficient.
  • the shortage of the remaining amount of the power supply 10 can be determined, for example, by the voltage of the power supply 10 being in the vicinity of the discharge termination voltage.
  • FIG. 7 is a flowchart showing a control method in the feed mode according to an embodiment.
  • the power supply mode is a mode in which power can be supplied from the power supply 10 to the load 121R.
  • the feed mode can be implemented at least when the atomization unit 120 is connected to the electrical unit 110.
  • the control unit 50 sets a counter (Co) that measures a value related to the amount of movement of the load to "0" (step S100), and determines whether an operation request signal to the load 121R has been acquired (step S102). ).
  • the operation request signal may be a signal acquired from the suction sensor 20 when the suction sensor 20 detects a suction operation of the user. That is, the control unit 50 may perform PWM (Pulse Width Modulation) control on the switch 140 when the suction sensor 20 detects the suction operation of the user (Step S104).
  • the operation request signal may be a signal obtained from the push button 30 when it is detected that the push button 30 is pressed.
  • step S104 when the control unit 50 detects that the user has pressed the push button, the control unit 50 may perform PWM control on the switch 140 (step S104).
  • PWM Pulse Frequency Modulation
  • the duty ratio in PWM control and the switching frequency in PFM control may be adjusted by various parameters such as the voltage of the power supply 10 acquired by the voltage sensor 150.
  • the control unit 50 determines whether the end timing of the power supply to the load 121R has been detected (step S106). When detecting the end timing, the control unit 50 ends the power supply to the load (step S108). When the control unit 50 ends the power supply to the load (step S108), the control unit 50 acquires a value ( ⁇ Co) related to the operation amount of the load 121R (step S110).
  • the value ( ⁇ Co) related to the operation amount of the load 121R acquired here is a value between steps S104 and S108.
  • the value ( ⁇ Co) related to the operating amount of the load 121R is, for example, consumed for a predetermined time, that is, the amount of power supplied to the load 121R between steps S104 to S108, the operating time of the load 121R, or the predetermined time It may be the consumption amount of the aspiration component source.
  • the end timing of the power supply to the load 121R may be the timing when the suction sensor 20 detects the end of the operation for using the load 121R.
  • the end timing of the power supply to the load 121R may be the timing at which the end of the suction operation by the user is detected.
  • the end timing of the power supply to the load 121R may be the timing at which the release of the pressing of the push button 30 is detected.
  • the end timing of the power supply to the load 121R may be a timing when it is detected that a predetermined cutoff time has elapsed since the start of the power supply to the load 121R.
  • the predetermined cut-off time may be preset based on the time required for a general user to perform one suction operation.
  • the predetermined cutoff time may be in the range of 1 to 5 seconds, preferably 1.5 to 3 seconds, more preferably 1.5 to 2.5 seconds.
  • control unit 50 If the control unit 50 does not detect the end timing of the power supply to the load 121R, the control unit 50 again performs the PWM control on the switch 140 and continues the power supply to the load 121R (step S104). Thereafter, when the control unit 50 detects the end timing of the power supply to the load 121R, the control unit 50 obtains a value related to the operation amount of the load 121R (step S110), and derives an accumulated value of the values related to the operation amount of the load 121R ( Step S112).
  • the control unit 50 performs from the acquisition of the operation request signal to the load to the end timing of the power supply to the load 121R, that is, in one puff operation. It is possible to obtain a value related to the amount of movement of the load 121R.
  • the operation amount of the load 121R in one puff operation may be, for example, the amount of power supplied to the load 121R in one puff operation.
  • the operation amount of the load 121R in one puff operation may be, for example, the operation time of the load 121R in one puff operation.
  • the operating time of the load 121R may be the sum of power pulses (see also FIG.
  • the operation amount of the load 121R in one puff operation may be the consumption amount of the suction component source consumed in one puff operation.
  • the consumption of the suction component source can be estimated, for example, from the amount of power supplied to the load 121R.
  • the consumption amount of the aspiration component source may be obtained by a sensor that measures the weight of the aspiration component source remaining in the reservoir or the height of the liquid level of the aspiration component source. it can.
  • the operation amount of the load 121R in one puff operation may be the temperature of the load 121R, for example, the maximum temperature of the load 121R in one puff operation, or the heat generated at the load 121R.
  • the temperature and heat quantity of the load 121R can be obtained or estimated, for example, by using a temperature sensor.
  • FIG. 8 is a graph showing an example of control of the amount of power supplied from the power supply 10 to the load 121R.
  • FIG. 8 shows the relationship between the output value of the suction sensor 20 and the supply voltage to the load 121R.
  • the suction sensor 20 is configured to output an output value that fluctuates according to suction from the suction port 141.
  • the output value of the suction sensor 20 may be a value (for example, a value indicating a pressure change in the suction component generation device 100) according to the flow velocity or flow rate of the gas in the flavor suction device as shown in FIG. It is not necessarily limited to this.
  • the control unit 50 may be configured to detect suction according to the output value of the suction sensor 20.
  • the control unit 50 may be configured to detect the suction operation by the user when the output value of the suction sensor 20 becomes equal to or more than the first predetermined value O1. Therefore, the control unit 50 may determine that the operation request signal to the load 121R is acquired when the output value of the suction sensor 20 becomes equal to or more than the first predetermined value O1 (step S102).
  • the control unit 50 may determine that the end timing of the power supply to the load 121R is detected when the output value of the suction sensor 20 becomes equal to or less than the second predetermined value O2 (step S106).
  • control unit 50 is configured to be able to derive a value related to the operation amount of the load 121R, for example, the total time of supplying power to the load 121R in one puff operation, based on the output of the suction sensor 20. You may More specifically, the control unit 50 is configured to be able to derive a value related to the operation amount of the load 121R based on at least one of the detected suction period or suction amount.
  • the control unit 50 is configured to detect suction only when the absolute value of the output value of the suction sensor 20 is equal to or greater than a first predetermined value (predetermined threshold) O1. As a result, it is possible to suppress the load 121R from operating due to the noise of the suction sensor 20.
  • the second predetermined value O2 for detecting the end timing of the power supply to the load 121R is a value for executing the transition from the state in which the load 121R is already operating to the state in which the load 121R is not operating. Therefore, it may be smaller than the first predetermined value O1. This is because a malfunction due to picking up noise of the suction sensor 20 like the first predetermined value O1, that is, a transition from a state where the load 121R is not operating to a state where it is operating can not occur.
  • control unit 50 may have a power control unit that controls the amount of power supplied from the power supply 10 to the load 121R.
  • the power control unit adjusts, for example, the amount of power supplied from the power supply 10 to the load 121R by pulse width modulation (PWM) control.
  • PWM pulse width modulation
  • the duty ratio for the pulse width may be less than 100%.
  • the power control unit may control the amount of power supplied from the power supply 10 to the load 121R by pulse frequency modulation (PFM) control instead of pulse width control.
  • PFM pulse frequency modulation
  • the control unit 50 narrows the pulse width of the voltage supplied to the load 121R (see the middle graph in FIG. 8). For example, when the voltage value of the power supply 10 is relatively low, the control unit 50 widens the pulse width of the voltage supplied to the load 121R (see the lower graph in FIG. 8).
  • the control of the pulse width can be performed, for example, by adjusting the time from the ON of the switch 140 to the OFF of the switch 140.
  • the voltage value of the power supply 10 decreases with the decrease of the charge amount of the power supply, so the power amount may be adjusted according to the voltage value.
  • PWM pulse width modulation
  • the power control unit is configured to control the voltage applied to the load 121R by pulse width modulation (PWM) control having a larger duty ratio as the voltage value of the power supply 10 decreases. .
  • PWM pulse width modulation
  • the power control unit preferably controls the duty ratio of pulse width modulation (PWM) control so that the amount of power per pulse supplied to the load 121R becomes constant.
  • FIG. 9 shows an example of a flowchart of the first diagnostic function.
  • the first diagnostic function estimates or detects at least one of deterioration and failure of the power supply 10 based on a value related to the operation amount of the load 121R operated while the voltage value of the power supply 10 is within the predetermined voltage range.
  • FIG. 10 is a diagram for explaining a predetermined voltage range in the first diagnostic function.
  • the control unit 50 first obtains the voltage (V batt ) of the power supply 10 (step S200).
  • the voltage (V batt ) of the power supply 10 can be obtained by using the voltage sensor 150.
  • the voltage of the power supply 10 may be an open circuit voltage (OCV, Open Circuit Voltage) obtained without electrically connecting the load 121R to the power supply 10, and the load 121R may be electrically connected to the power supply 10 It may be a closed circuit voltage (CCV, Closed Circuit Voltage) acquired.
  • OCV Open Circuit Voltage
  • CCV Closed Circuit Voltage
  • the voltage of power supply 10 is more dependent on open circuit voltage (OCV) than closed circuit voltage (CCV) It is preferred to be defined.
  • the open circuit voltage (OCV) is obtained by acquiring the voltage of the power supply 10 with the switch 140 turned off.
  • the open circuit voltage (OCV) may be estimated from the closed circuit voltage (CCV) by various known methods without obtaining the open circuit voltage (OCV) using the voltage sensor 150.
  • control unit 50 determines whether the acquired voltage of the power supply 10 is less than or equal to the upper limit value of the predetermined voltage range (step S202). If the voltage of the power supply 10 is higher than the upper limit value of the predetermined voltage range, the processing is ended without estimating or detecting the deterioration and the failure of the power supply.
  • Step S204 If the voltage of the power supply 10 is less than or equal to the upper limit of the predetermined voltage range, it is determined whether the voltage of the power supply acquired one time earlier, ie, at the previous puff operation, is less than or equal to the upper limit of the predetermined voltage range. (Step S204). If the voltage value of the power supply 10 acquired in the previous puff operation is higher than the upper limit value of the above-mentioned predetermined voltage range, the voltage value of the power supply 10 is the first in the above-mentioned predetermined by the latest puff operation. It can be determined that the voltage is below the upper limit of the voltage range. In this case, an accumulation counter (IC discretion) for counting an accumulated value of values related to the operation amount of the load 121 is set to “0” (step S206). When the cumulative counter (IC Schau) is set to "0", the process proceeds to the following step S208.
  • IC discretionary counter for counting an accumulated value of values related to the operation amount of the load 121
  • step S204 If the voltage value of the power supply acquired at the time of puff operation one time ago, that is, one time before is lower than the upper limit value of the above-mentioned predetermined voltage range (step S204), or the cumulative counter (IC discretion) is set to "0" If it is set (step S206), it is determined whether the voltage of the power supply 10 is less than the lower limit value of the predetermined voltage range (step S208).
  • “C Cincinnati” is a value cumulatively obtained in step S112 shown in FIG. Then, the process ends without estimating or detecting deterioration or failure of the power supply 10.
  • control unit 50 stands by until it obtains an operation request signal to the load 121R again (step S102 in FIG. 7).
  • the control unit 50 obtains the operation request signal to the load 121R again, the control unit 50 derives a value (C Cincinnati) related to the operation amount of the load 121R in one puff operation, and starts the first diagnostic function S114 again.
  • the control unit 50 integrates values associated with the operation amount of the load 121R (step S210). Thereby, the control unit 50 can acquire a value related to the amount of operation of the load 121R operated while the acquired voltage value of the power supply 10 is in the predetermined voltage range.
  • step S208 when the voltage of the power supply 10 is less than the lower limit value of the predetermined voltage range, a value related to the operation amount of the load 121R operated while the acquired voltage value of the power supply 10 is in the predetermined voltage range; That is, it is determined whether the integrated value of IC 65 mentioned above is larger than a predetermined threshold (step S220). If the integrated value of IC 65 described above is larger than the predetermined threshold value, it is determined that the power supply 10 is normal, and the processing of the first diagnostic function is ended.
  • step S220 When the integrated value of IC Memo mentioned above is equal to or less than the predetermined threshold value, it is judged that the power supply 10 is deteriorated or broken (step S220), and the control unit 50 notifies the user of abnormality through the notification unit 40 (step S224).
  • the notification unit 40 can notify the user of deterioration or failure of the power supply 10 by predetermined light, sound or vibration.
  • the control unit 50 may perform control so as to disable the power supply to the load 121R as necessary.
  • step S208 when the voltage of the power supply 10 is determined to be less than the lower limit value of the predetermined voltage range (step S208), the operation of the load 121R is performed on the integrated value ICrome of the value related to the operation amount of the load 121R. Do not add the value C Cincinnati associated with the quantity. In other words, if step S208 is determined to be affirmative, step S210 is not performed.
  • step S208 when it is determined that the voltage of the power supply 10 is less than the lower limit value of the predetermined voltage range (step S208), the integrated value IC Harrison of the value related to the operating amount of the load 121R relates to the operating amount of the load 121R.
  • the value C Cincinnati may be added. In other words, even if step S208 is determined to be affirmative, the same step as step S210 may be performed. In this case, the same steps as step S210 can be performed before step S220.
  • the control unit 50 can estimate or detect the deterioration of the power supply 10 based on the value related to the operation amount of the load 121R operated while the voltage value of the power supply 10 is in the predetermined voltage range. is there.
  • the voltage of the power supply 10 rapidly decreases with an increase in the value related to the operation amount of the load, for example, the amount of power to the load 121R or the operation time of the load 121, as in the case where the power supply 10 breaks down. To decline.
  • control unit 50 can estimate or detect the failure of the power supply 10 based on the value related to the operation amount of the load 121R operated while the voltage value of the power supply 10 is in the predetermined voltage range. That is, the control unit 50 can estimate or detect at least one of the deterioration and the failure of the power supply 10 based on the value related to the operation amount of the load 121R operated while the voltage value of the power supply 10 is in the predetermined voltage range. It is.
  • the predetermined threshold used in step S220 may be determined in advance according to the type of the power supply 10 by experiment.
  • the predetermined threshold is set lower than a value related to the amount of operation of the load 121R that the new power supply 10 can operate in the predetermined voltage range.
  • the value related to the operation amount of the load 121R may be the amount of power supplied to the load 121R, the operation time of the load 121R, the consumption amount of the suction component source, or the like, as described above.
  • a value related to the operation amount of the load 121R is More preferably, the operating time of the load 121R.
  • the operation time of the load 121R is the time required for one puff operation, that is, the time from acquisition of the operation request signal to the load 121R to detection of the end timing of the power supply to the load 121R. .
  • the operating time of the load 121R is proportional to the total amount of power supplied to the load 121R in a predetermined voltage range. Do. Therefore, when the pulse width modulation (PWM) control of the power supplied to the load 121R is performed, the value related to the operation amount of the load 121R is defined by the operation time of the load 121R, thereby achieving high accuracy with relatively simple control. Diagnosis of the power source 10 is possible.
  • the value related to the amount of operation of the load 121R may be the number of operations of the load 121R operating in a predetermined voltage range.
  • steps S110 and S112 are unnecessary in the flowchart of FIG.
  • the number of times the voltage of the power supply 10 has entered the predetermined voltage range may be counted.
  • the value associated with the amount of movement of the load 121R may be the number of exchanges of a replaceable cartridge containing a suction component source, for example the flavor unit 130.
  • the number of times of cartridge replacement can also be used as a value related to the operation amount of the load 121R.
  • the control unit 50 executes an algorithm for estimating or detecting at least one of deterioration and failure of the power supply 10, that is, the first diagnostic function shown in FIG.
  • the algorithm may be configured to be changeable or modifiable. Specifically, it is preferable that the control unit 50 corrects the predetermined threshold in step S220 so as to be smaller, and performs the comparison in step S220 based on the corrected threshold.
  • the first temperature threshold may be set, for example, in the range of 1 to 5 ° C.
  • the predetermined threshold in step S220 is corrected to be smaller to alleviate the influence of the temperature and to suppress deterioration in the accuracy of detection of deterioration or failure of the power supply 10. be able to.
  • control unit 50 may be configured not to perform estimation or detection of at least one of deterioration and failure of the power supply 10 when the temperature of the power supply 10 is lower than the second temperature threshold. That is, when the temperature of the power supply 10 is lower than the second temperature threshold, the control unit 50 may not execute the first diagnostic function shown in FIG.
  • the second temperature threshold may be smaller than the first temperature threshold.
  • the second temperature threshold may be set, for example, in the range of -1 to 1 ° C.
  • control unit 50 may heat the power supply 10 by the control of the heater 70 when the temperature of the power supply 10 is lower than the third temperature threshold.
  • the third temperature threshold may be set, for example, in the range of ⁇ 1 to 1 ° C.
  • the predetermined voltage range used in the first diagnostic function will be further described using FIG.
  • the predetermined voltage range may be a predetermined section (voltage range) between the discharge termination voltage and the full charge voltage. Therefore, the first diagnostic function is not performed when the voltage value of the power supply 10 is less than the discharge termination voltage.
  • the predetermined voltage range is preferably set to a range excluding a plateau range in which a change in voltage value of the power supply 10 with respect to a change in the storage amount or charge state of the power supply 10 is smaller than other voltage ranges.
  • the plateau range is defined, for example, by a voltage range in which the amount of change in the voltage of the power supply 10 with respect to the change in the state of charge (SOC) is 0.01 to 0.005 (V /%) or less.
  • the predetermined voltage range is preferably set to a range excluding the plateau range.
  • the plateau range in which the default voltage range is not set is a plateau range in which the change in the voltage value of the power supply 10 with respect to the change in the storage amount or charge state of the power supply 10 in the new state is small compared to other voltage ranges.
  • the change of the voltage value of the power supply 10 with respect to the change of the storage amount or the state of charge of 10 may be defined by a range that includes both a small plateau range as compared to other voltage ranges. As a result, the possibility of false detection can be reduced for both the power supply 10 in the new state and the power supply 10 in the deteriorated state.
  • the first diagnostic function may be performed at a plurality of predetermined voltage ranges.
  • the plurality of predefined voltage ranges do not overlap one another.
  • the control unit 50 can perform the first diagnostic function in the same flow as the flowchart shown in FIG. 9 in each predetermined voltage range.
  • three predetermined voltage ranges (a first section, a second section and a third section) are set.
  • the upper limit of the first section may be 4.1V and the lower limit of the first section may be 3.9V.
  • the upper limit of the second section may be 3.9 V, and the lower limit of the second section may be 3.75 V.
  • the upper limit of the third section may be 3.75V, and the lower limit of the third section may be 3.7V.
  • the control unit 50 compares step S220 in each of the plurality of predetermined voltage ranges, and the value related to the operation amount of the load 121R in at least one of the plurality of predetermined voltage ranges is the predetermined value described above. It may be determined that the power supply 10 has deteriorated or failed if the threshold value (see step S220) or less.
  • the plurality of predetermined voltage ranges are preferably set to be narrower as the voltage range in which the change in the voltage value of the power supply 10 with respect to the change in the storage amount or the charge state of the power supply 10 is smaller.
  • the values related to the operation amount of the load 121R operating in each predetermined voltage range are equalized, so that the accuracy of the first diagnostic function implemented in each predetermined voltage range is equalized.
  • control unit 50 can also operate a load that operates while the voltage value of the power supply 10 is in the particular voltage range, even in a particular voltage range covering one or more of the plurality of predetermined voltage ranges. At least one of the deterioration and the failure of the power supply 10 may be estimated or detected based on the value related to the operation amount of 121R. Specifically, the control unit 50 sets, for example, a voltage range including at least two, preferably three of the first, second and third sections shown in FIG. 10 as a specific voltage range. Alternatively, the diagnostic function shown in FIG. 9 may be performed.
  • the predetermined threshold used in step S220 is the respective default. Is preferably smaller than the sum of the predetermined thresholds used in step S220 of the flowchart shown in FIG.
  • the predetermined threshold used in step S220 is the first section, the second section, and the third section. It may be smaller than the sum of predetermined threshold values used in step S220 in the case of separately executing the flowchart shown in FIG. 9 respectively.
  • At least one of deterioration and failure of the power supply 10 can not be estimated or detected in each of the first section, the second section, and the third section depending on the state of the power supply 10 and how the suction component generation device 100 is used. In some cases, at least one of deterioration and failure of the power supply 10 can be estimated or detected in the entire section. Therefore, the accuracy of estimation or detection of at least one of deterioration and failure of the power supply 10 can be improved.
  • the power supply 10 may be naturally discharged by a dark current or the like, and the voltage of the power supply 10 may naturally decrease.
  • the voltage range that contributes to the vaporization or atomization of the suction component source may not be 100% with respect to the predetermined voltage range described above, and may be equal to or less than a predetermined ratio or width. For example, it is assumed that the voltage of the power supply 10 is lowered from 3.9 V to 3.8 V by vaporization or atomization of the suction component source, and then the voltage of the power supply 10 becomes 3.65 V by leaving for a long time Do.
  • the voltage range that contributes to the vaporization or atomization of the suction component source is about 40% with respect to the predetermined voltage range (the second section in FIG. 10).
  • the first diagnostic function shown in FIG. 9 described above may not function properly.
  • Such long standing can be detected based on the elapsed time after the evaporation or atomization of the suction component source is performed by the load 121R. That is, the control unit 50 may start a timer that counts the elapsed time at step S108 of FIG. 7. Instead of this, long-time leaving can also be detected based on the voltage change of the power supply 10 after the suction component source is vaporized or atomized by the load 121R. In this case, the control unit 50 may obtain the difference between the current voltage of the power supply 10 and the voltage of the power supply 10 acquired before that at the step S200 of FIG. When the difference in voltage exceeds a predetermined value, the control unit 50 can determine that it has been left for a long time.
  • control unit 50 determines the deterioration or failure of the power supply 10 in the predetermined voltage range when the range contributing to the vaporization or atomization of the suction component source in the predetermined voltage range is equal to or less than the predetermined ratio or width. It is preferred not to do. As a result, the control unit 50 erroneously detects the first diagnostic function when a value related to the operation amount of the load 121R operated over the entire predetermined voltage range can not be acquired due to halfway charging, natural discharge, etc. Can be prevented.
  • control unit 50 reduces the predetermined threshold in step S220 shown in FIG. 9 when the range contributing to the vaporization or atomization of the suction component source in the predetermined voltage range is equal to or less than the predetermined ratio or width. It may be corrected.
  • the first diagnostic function is executed while suppressing false detection of the first diagnostic function by correcting the predetermined threshold value to a small value according to the range that contributes to the vaporization or atomization of the aspiration component source in the predetermined voltage range. can do.
  • the control unit 50 when the first diagnostic function is performed in a plurality of predetermined voltage ranges, the control unit 50 contributes to the vaporization or atomization of the suction component source among the plurality of predetermined voltage ranges. It is not necessary to judge the deterioration or failure of the power supply in the irregular range in which the range is equal to or less than a predetermined rate or width. That is, in each predetermined voltage range (for example, the first section, the second section, or the third section), a value related to the operation amount of the load 121R is sufficiently acquired by half charging or natural discharge or the like. The control unit 50 does not make a judgment on the deterioration or failure of the power supply in the section (irregular range) in which the control can not be performed.
  • control unit 50 can maintain the voltage value of the power supply 10 in the specific voltage range in the specific voltage range including one or more predetermined voltage ranges among the plurality of predetermined voltage ranges. At least one of the deterioration and the failure of the power supply 10 may be estimated or detected based on the value related to the operation amount of the load 121R operated. In this case, it is preferable that a specific voltage range that includes one or more predetermined voltage ranges is set excluding an irregular range.
  • the first diagnostic function may not be performed in the first section.
  • the value related to the operation amount of the load 121R operated in the voltage range of the combined section (3.7 V to 3.9 V) of the second section and the third section at least one of deterioration and failure of the power supply 10 One may be estimated or detected.
  • the predetermined threshold value used in step S220 in the case of performing the first diagnostic function based on the value related to the operation amount of the load 121R operated in the voltage range of the combined section of the first section and the second section is The predetermined threshold (specified in step S220 in the case of performing the first diagnostic function based on the value related to the operation amount of the load 121R operated in the voltage range of the entire section including one section, second section and third section) Of the threshold value) and a value equal to or less than a predetermined threshold value used in step S220 when performing the first diagnostic function based on the value related to the operation amount of the load 121R operated in the voltage range of the third section. It may be done.
  • the first range is a wider range including the irregular range, for example, the entire section (first section, second section, and third section).
  • the predetermined threshold used in step S220 may be modified to be smaller.
  • the control unit 50 corrects at least one of the lower limit value and the predetermined threshold value of the predetermined voltage range based on the voltage of the power supply 10 that contributes to vaporization or atomization of the suction component source after being left for a long time in the predetermined voltage range.
  • the control unit 50 corrects the lower limit of the predetermined voltage range to be smaller (closer to 0 V) to make the first diagnosis in the predetermined voltage range without correcting the predetermined threshold. You may perform the function.
  • the control unit 50 performs the first diagnostic function in the predetermined voltage range by correcting the predetermined threshold value to be smaller without correcting the lower limit value of the predetermined voltage range. May be As another example, the control unit 50 may modify both the lower limit value of the predetermined voltage range and the predetermined threshold to execute the first diagnostic function in the predetermined voltage range.
  • the voltage of the power supply 10 contributing to the vaporization or atomization of the suction component source after being left for a long time in the predetermined voltage range and the voltage of the power supply 10 to the lower limit value of the predetermined voltage range from the voltage A new predetermined voltage range and the corresponding predetermined threshold value in step S220 shown in FIG. 9 may be set based on the value related to the operation amount of the load 121R operated to fall. This newly set predetermined voltage range will be used in the first diagnostic function after the next charging.
  • the control unit 50 corrects at least one of the lower limit value and the predetermined threshold value of the predetermined voltage range based on the voltage of the power supply 10 that contributes to vaporization or atomization of the suction component source after being left for a long time in the predetermined voltage range.
  • the control unit 50 corrects the lower limit of the predetermined voltage range to be smaller (closer to 0 V) to make the first diagnosis in the predetermined voltage range without correcting the predetermined threshold. You may perform the function.
  • the control unit 50 performs the first diagnostic function in the predetermined voltage range by correcting the predetermined threshold value to be smaller without correcting the lower limit value of the predetermined voltage range. May be As another example, the control unit 50 may modify both the lower limit value of the predetermined voltage range and the predetermined threshold to execute the first diagnostic function in the predetermined voltage range.
  • control unit 50 may continue to monitor the voltage of the power supply 10 even when the suction component generation device 100 is not in use, for example, while the load 121R is not operating. In this case, the control unit 50 does not contribute to the vaporization or atomization of the suction component source such as natural discharge, and even when the voltage of the power supply 10 falls below the upper limit value of the predetermined voltage range, as shown in FIG.
  • the first diagnostic function may be performed while performing the correction of the predetermined threshold in step S220 shown.
  • the control unit 50 may obtain an integrated value obtained by integrating the time when the voltage of the power supply 10 has dropped without contributing to the vaporization or atomization of the suction component source. If this integrated value is converted into a value related to the amount of movement of the load 121R based on a predetermined relationship, the first diagnosis may be made without correcting the predetermined threshold in step S220 shown in FIG. 9 as described above. Function can be performed. That is, the control unit 50 integrates the time when the voltage of the power supply drops without contributing to the vaporization or atomization of the suction component source in a predetermined range as an integrated value, and the integrated value is corrected based on a predetermined relationship. And may be added to a value related to the amount of movement of the load.
  • the integrated value may be corrected to a small value based on the current value when the voltage drops or the ratio of the power consumption per unit time, and converted to a value related to the operation amount of the load 121R.
  • the current value or the power consumption per unit time when the voltage of the power supply 10 drops without contributing to the vaporization or atomization of the suction component source, and the voltage of the power supply 10 while contributing to the vaporization or atomization of the suction component source may be measured by the voltage sensor 150, the current sensor 160, or the like. Alternatively, these values may be stored in advance in a memory or the like in the control unit 50, and the control unit 51 may read these values as necessary.
  • the current value or the power consumption per unit time when the voltage of the power supply 10 drops without contributing to the vaporization or atomization of the suction component source, and the vaporization or atomization of the suction component source may be directly stored in the memory.
  • FIG. 11 is a flowchart showing an example of a control method by the processor of the charger 200.
  • the processor 250 determines whether it is connected to the electrical unit 110 (step S300).
  • the processor 250 stands by until the charger 200 is connected to the electrical unit 110.
  • the connection between the processor 250 and the electrical unit 110 can be detected in a known manner.
  • the processor 250 can determine whether or not it is connected to the electrical unit 110 by detecting a change in voltage between the pair of electrical terminals of the charger 200 with the voltmeter 240.
  • the processor 250 determines whether the power supply 10 is deeply discharged (step S302).
  • deep discharge of the power supply 10 means a state in which the voltage of the power supply 10 is less than the deep discharge determination voltage lower than the discharge termination voltage.
  • the deep discharge determination voltage may be, for example, in the range of 3.1 V to 3.2 V.
  • the processor 250 of the charger 200 can estimate the voltage of the power supply 10 by means of the voltmeter 240.
  • the processor 250 can determine whether the power supply 10 is deeply discharged by comparing the estimated value of the voltage of the power supply 10 with the deep discharge determination voltage.
  • the processor 250 determines that the power supply 10 is deeply discharged, the processor 250 charges the power supply 10 with low-rate power (step S304). As a result, the deep-discharged state of the power supply 10 can be restored to a state of a voltage higher than the discharge termination voltage.
  • the processor 250 determines whether the voltage of the power supply 10 is greater than or equal to the switching voltage (step S306).
  • the switching voltage is a threshold for dividing a section of constant current charging (CC charging) and a section of constant voltage charging (CV charging).
  • the switching voltage may be, for example, in the range of 4.0V to 4.1V.
  • the processor 250 charges the power supply 10 by a constant current charging method (step S308). If the voltage of the power supply 10 is equal to or higher than the switching voltage, the processor 250 charges the power supply 10 by a constant voltage charging method (step S310). In the constant voltage charging method, charging proceeds and the voltage of the power supply 10 increases, so the charging current decreases.
  • the processor 250 determines whether the charging current is less than or equal to a predetermined charging completion current (step S312).
  • the charging current can be acquired by the ammeter 230 in the charger 200. If the charging current is larger than the predetermined charging completion current, charging of the power supply 10 is continued by the constant voltage charging method.
  • the processor 250 determines that the power supply 10 is fully charged, and stops the charge (step S314).
  • FIG. 12 is a flowchart showing an example of a control method of the control unit in the charge mode.
  • FIG. 13 is a diagram for explaining increase in voltage of a normal power supply and a deteriorated or broken power supply during charging.
  • the charge mode is a mode in which the power supply 10 can be charged.
  • the control unit 50 may perform a second diagnostic function that estimates or detects at least one of deterioration and failure of the power supply 10 during charging of the power supply 10 by the charger 200.
  • the second diagnosis function may include a failure diagnosis function that diagnoses a failure of the power supply 10 and a deterioration diagnosis function that diagnoses deterioration of the power supply 10.
  • the control unit 50 determines whether the power supply 10 is deteriorated or damaged based on the time taken for the voltage value of the power supply 10 to reach the upper limit from the lower limit of the predetermined voltage range during charging of the power supply 10. At least one of them may be configured to be estimated or detectable. Since the voltage value of the power supply 10 can be acquired by using the voltage sensor 150, the control unit 50 can perform the failure diagnosis function and the deterioration diagnosis function described later without communicating with the processor 250 of the charger 200. it can.
  • step S400 when the control unit 50 is not activated during charging, the control unit 50 is automatically activated (step S400). More specifically, when the voltage of the power supply 10 exceeds the lower limit value of the operation guarantee voltage of the control unit 50, the control unit 50 is automatically started.
  • the lower limit value of the operation guarantee voltage may be in the range of the deep discharge voltage.
  • the lower limit value of the operation guarantee voltage may be, for example, in the range of 2.0 V to 2.5 V.
  • the control unit 50 determines whether it is in the charge mode (step S402).
  • the charge mode can be determined by detecting the connection of the charger 200 to the electrical unit 110.
  • the connection of the charger 200 to the electrical unit 110 can be detected by acquiring a change in voltage between the pair of electrical terminals 110t.
  • control unit 50 When the control unit 50 detects the connection of the charger 200 to the electrical unit 110, it starts a timer and measures the time from the start of charging or the start of the control unit (step S404).
  • the control unit 50 executes the failure diagnosis function of the power supply 10. Specifically, the control unit 50 acquires the voltage (V batt ) of the power supply 10, and determines whether the voltage (V batt ) of the power supply 10 is larger than the deep discharge determination voltage (step S406).
  • the voltage (V batt ) of the power supply 10 can be obtained by using the voltage sensor 150.
  • the deep discharge determination voltage is as described above, and may be, for example, in the range of 3.1 V to 3.2 V (discharge termination voltage).
  • the control unit 50 periodically acquires the voltage of the power supply 10.
  • the control unit 50 causes the power supply 10 to fail due to deep discharge. It estimates or detects that it has done (steps S408 and S410).
  • the control unit 50 causes the power supply 10 to fail due to deep discharge. It judges (Steps S412 and S410).
  • the control unit 50 may execute a predetermined protection operation (step S414).
  • the protection operation may be, for example, an operation in which the control unit 50 forcibly stops or restricts the charging of the power supply 10. Forced stop or restriction of charging can be realized by disconnecting the electrical connection between the power supply 10 and the charger 200 in the electrical unit 110.
  • the control unit 50 may turn off at least one of the switch 140 and the stop unit 180.
  • the control unit 50 may notify the user of an abnormality through the notification unit 40 when it estimates or detects that the power supply 10 has failed due to deep discharge.
  • control unit 50 may execute the failure diagnosis function based on the time required for the voltage value of the power supply 10 to reach the upper limit from the lower limit of the predetermined voltage range while the power supply 10 is charging.
  • the lower limit of the predetermined voltage range may be, for example, the lower limit value of the operation guarantee voltage of the control unit 50.
  • the control unit 50 executes the failure diagnosis function based on the time required from the start of the timer after the start of the control unit 50 to the deep discharge determination voltage (predetermined threshold). Good.
  • the lower limit of the predetermined voltage range may be set to a value lower than the discharge termination voltage of the power supply 10 and larger than the lower limit value of the operation guarantee voltage of the control unit 50.
  • the timer may be activated when the voltage of the power supply 10 reaches the lower limit of the predetermined voltage range.
  • the failure diagnosis function described above is preferably configured to be infeasible when the suction component generation device 100 is other than the charge mode. As a result, when the voltage of the power supply 10 is temporarily lowered to deep discharge due to factors such as falling to a very low temperature state in the power feeding mode, there is no possibility that the failure diagnosis function is erroneously executed.
  • failure diagnosis function described above may be configured to estimate or detect a failure of the power supply 10 when the voltage value of the power supply 10 is lower than the discharge termination voltage of the power supply 10 during charging of the power supply 10.
  • Step S416 the control unit 50 may further execute the deterioration diagnosis function described below.
  • the control unit 50 is preferably configured not to simultaneously execute the failure diagnosis function and the deterioration diagnosis function in order to prevent hunting of the failure diagnosis function and the deterioration diagnosis function.
  • the control unit 50 acquires the voltage value of the power supply 10 during charging, and determines whether the voltage of the power supply is equal to or more than the lower limit value of the predetermined voltage range (step S420).
  • the upper limit value of the predetermined voltage range used in the failure diagnosis function described above is preferably smaller than the lower limit value of the predetermined voltage range used in the deterioration diagnosis function.
  • the predetermined voltage range used in the degradation diagnosis function does not include the discharge termination voltage.
  • the control unit 50 is configured to be able to execute a deterioration diagnosis function that estimates or detects deterioration of the power supply 10 when the voltage value of the power supply 10 is higher than the discharge termination voltage of the power supply 10 during charging of the power supply 10 More preferable. Thereby, hunting of the failure diagnosis function and the deterioration diagnosis function can be prevented. In addition, in order to prevent hunting of the failure diagnosis function and the deterioration diagnosis function, the control unit 50 is configured not to execute both the failure diagnosis function and the deterioration diagnosis function when the voltage of the power supply 10 is the discharge termination voltage. You may
  • control unit 50 If the voltage of the power supply 10 is equal to or higher than the lower limit value of the predetermined voltage range, the control unit 50 resets the timer and restarts the timer (step S422). The control unit 50 measures an elapsed time by the timer until the voltage of the power supply 10 becomes equal to or higher than the upper limit value of the predetermined voltage range (step S424).
  • control unit 50 determines whether the elapsed time taken for the voltage of the power supply 10 to reach the upper limit value from the lower limit value of the predetermined voltage range is longer than the predetermined time (step S426). Control unit 50 estimates or detects that power supply 10 has deteriorated when the voltage value of power supply 10 reaches the upper limit to the upper limit of the predetermined voltage range within the predetermined time while charging power supply 10 (step S428). .
  • the control unit 50 may execute a predetermined protection operation (step S430).
  • the protection operation may be, for example, an operation in which the control unit 50 forcibly stops or restricts the charging of the power supply 10. Forced stop or restriction of charging can be realized by disconnecting the electrical connection between the power supply 10 and the charger 200 in the electrical unit 110.
  • the control unit 50 may turn off at least one of the switch 140 and the stop unit 180.
  • the control unit 50 may notify the user of an abnormality through the notification unit 40 when it is estimated or detected that the power supply 10 has deteriorated.
  • step S432 If the voltage value of the power supply 10 does not reach within the predetermined time from the lower limit to the upper limit of the predetermined voltage range during charging of the power supply 10, the control unit 50 determines that the deterioration of the power supply 10 is slight. Charging continues (step S432).
  • the failure diagnosis function and the deterioration diagnosis function may be configured to be implemented using the same variable value, and the elapsed time from the lower limit to the upper limit of the predetermined voltage range in the example described above.
  • the magnitude relation between the variable value and the threshold value for estimating or detecting that the power supply has failed or deteriorated is reversed between the failure diagnosis function and the deterioration diagnosis function. More specifically, the control unit 50 determines that the power supply 10 has failed when the variable value used for the failure diagnosis function, which is the above-mentioned elapsed time in the above-mentioned example, is greater than the first threshold value, for example 300 msec.
  • the control unit 50 determines that the power supply 10 has deteriorated when the variable value used for the deterioration diagnosis function, which is the above-mentioned elapsed time in the above-mentioned example, is smaller than the second threshold (predetermined time).
  • the variable value used for the deterioration diagnosis function which is the above-mentioned elapsed time in the above-mentioned example.
  • the second threshold predetermined time
  • the control unit 50 determines that the power supply 10 has deteriorated when the variable value used for the deterioration diagnosis function, which is the above-mentioned elapsed time in the above-mentioned example, is smaller than the second threshold (predetermined time).
  • the variable value used for the deterioration diagnosis function which is the above-mentioned elapsed time in the above-mentioned example.
  • the control unit 50 executes an algorithm for estimating or detecting at least one of deterioration and failure of the power supply 10 when the temperature of the power supply 10 is lower than the fourth temperature threshold, that is, the second diagnostic function shown in FIG.
  • the algorithm may be configured to be changeable or modifiable.
  • the control unit 50 preferably corrects the predetermined time in step S412 and / or step S426, and performs the comparison in step S412 and / or step S426 based on the corrected time threshold.
  • the fourth temperature threshold may be set, for example, in the range of 1 to 5 ° C.
  • control unit 50 may be configured not to perform estimation or detection of at least one of deterioration and failure of the power supply 10 when the temperature of the power supply 10 is lower than the fifth temperature threshold. That is, when the temperature of the power supply 10 is lower than the fifth temperature threshold, the control unit 50 may not execute the failure diagnosis function and / or the deterioration diagnosis function shown in FIG.
  • the fifth temperature threshold may be smaller than the fourth temperature threshold.
  • the fifth temperature threshold may be set, for example, in the range of ⁇ 1 to 1 ° C.
  • the control unit 50 may heat the power supply 10 by control of the heater 70.
  • the control unit 50 may heat the power supply 10 by control of the heater 70.
  • the sixth temperature threshold may be set, for example, in the range of ⁇ 1 to 1 ° C.
  • the predetermined voltage range used in the deterioration diagnosis function will be further described with reference to FIG.
  • the predetermined voltage range may be a predetermined section (voltage range) between the discharge termination voltage and the full charge voltage.
  • the predetermined voltage range is preferably set to a range excluding a plateau range in which a change in voltage value of the power supply 10 with respect to a change in the storage amount or charge state of the power supply 10 is smaller than other voltage ranges.
  • the plateau range is defined, for example, by a voltage range in which the amount of change in the voltage of the power supply 10 with respect to the change in the state of charge is 0.01 to 0.005 (V /%) or less.
  • the plateau range is less likely to produce a significant difference between a normal power supply and a degraded power supply due to the small variation of the voltage of the power supply with respect to the elapsed time of charging. Therefore, the possibility of false detection in the above-mentioned degradation diagnostic function is increased. Therefore, the predetermined voltage range is preferably set to a range excluding the plateau range.
  • the predetermined voltage range used in the deterioration diagnosis function is set to a range excluding the range in which the constant voltage charging is performed on the power supply 10.
  • the range in which the constant voltage charging is performed corresponds to the end of the charging sequence and thus corresponds to a range in which the fluctuation of the voltage of the power supply with respect to the elapsed time of charging is small. Therefore, the accuracy of the degradation diagnostic function can be enhanced by setting the predetermined voltage range used in the degradation diagnostic function to a range excluding the range in which constant voltage charging is performed.
  • the processor 250 of the charger 200 uses the voltmeter 240 in the charger 200 to estimate the voltage of the power supply 10.
  • the control unit 50 uses the voltage sensor 150 in the electrical unit 110 to acquire the voltage of the power supply 10.
  • the voltage of the power source 10 recognized by the charger 200 is a voltage drop in the contact resistance of the connection terminal 110t or the resistance of the lead wire electrically connecting the charger 200 and the power source 10 with respect to the true value of the voltage of the power source 10. It becomes the value which added.
  • the voltage of the power supply 10 recognized by the control unit 50 is not affected by the voltage drop at least in the contact resistance of the connection terminal 110t.
  • a deviation may occur between the voltage of the power supply 10 recognized by the charger 200 and the voltage of the power supply 10 recognized by the control unit 50.
  • the voltage range of the power supply 10 that executes the degradation diagnosis function be set to a range lower than the voltage value obtained by subtracting the predetermined value from the switching voltage described above.
  • the predetermined voltage range used in the degradation diagnosis function is set to a range excluding a range where the notification unit 40 notifies that the remaining amount of the power supply 10 is insufficient. If the predetermined voltage range is set near the discharge termination voltage, the power supply 10 can not be charged over the entire predetermined voltage range if it is charged before the voltage of the power supply 10 decreases to the discharge termination voltage. The above degradation diagnostic function may not function properly. By setting the predetermined voltage range used in the degradation diagnosis function except for the range in which the remaining amount of the power supply 10 is insufficient, even if the voltage of the power supply 10 is charged before the discharge termination voltage is reduced, The degradation diagnosis function can be functioned normally.
  • the degradation diagnosis function may be implemented at a plurality of predetermined voltage ranges. Preferably, the plurality of predefined voltage ranges do not overlap one another.
  • the control unit 50 can perform the degradation diagnosis function in the same flow as the degradation diagnosis function part of the flowchart shown in FIG. 12 in each predetermined voltage range. In the example shown in FIG. 13, two predetermined voltage ranges (first and second sections) are set.
  • the control unit 50 performs the first diagnostic function of estimating or detecting at least one of degradation and failure of the power supply 10 during operation of the load 121R, and degradation and failure of the power supply 10 during charging of the power supply 10. And a second diagnostic function that estimates or detects at least one of them.
  • the first diagnostic function and the second diagnostic function preferably include different algorithms. Thereby, in order to estimate or detect at least one of deterioration and failure of the power supply 10, an optimal algorithm can be applied according to charging and discharging of the power supply 10.
  • the first diagnostic function that is, the diagnostic function performed during operation of the load 121R may include at least one algorithm for estimating or detecting at least one of degradation and failure of the power supply 10.
  • the first diagnostic function includes only one algorithm for estimating or detecting at least one of the deterioration and the failure of the power supply 10.
  • a control unit 50 having a simple control function For example, in a small-sized and portable suction component generating apparatus 100 such as an electronic cigarette or a heating type cigarette, it is desirable to mount a control unit 50 having a simple control function.
  • the control unit 50 having such a simple control function is used to control the supply of power to the load 121R in the feed mode, the calculation capability of the control unit 50 is limited in the feed mode.
  • the control unit 50 estimates at least one of the deterioration and the failure of the power supply 10 within a range not affecting the other control, for example, the power control to the load 121R. It can be detected.
  • the second diagnostic function i.e. the diagnostic function performed during charging of the power supply 10, may comprise at least one algorithm for estimating or detecting at least one of degradation and failure of the power supply 10.
  • the second diagnosis function includes two of the failure diagnosis function and the deterioration diagnosis function described above.
  • the second diagnostic function may further include one or more other algorithms for estimating or detecting at least one of the deterioration and the failure of the power supply 10.
  • the number of algorithms included in the second diagnostic function is greater than the number of algorithms included in the first diagnostic function.
  • Charging of the power source 10 is controlled by an external charger 200 separate from the aspiration component generator 100. Therefore, the control unit 50 has a surplus in computing capacity in the charge mode as compared to the feed mode.
  • the processor 250 of the charger 200 may be configured to be incapable of communicating with the control unit 50 of the electrical unit 110.
  • the control unit 50 does not have to allocate computing capacity for communication with the processor 250 of the charger 200. Therefore, since more computing power can be allocated to the second diagnostic function in the charge mode, at least one of deterioration and failure of the power supply 10 can be estimated or detected with higher accuracy in the charge mode.
  • the number of simultaneously executable algorithms included in the second diagnostic function is greater than the number of simultaneously executable algorithms included in the first diagnostic function.
  • the failure diagnosis function and the deterioration diagnosis function described above may be simultaneously executable.
  • a diagnostic function of detecting an internal short circuit of the power supply 10 as a failure may be performed simultaneously with the above-described degradation diagnosis function.
  • the number of sensors required to perform the second diagnostic function is less than the number of sensors required to perform the first diagnostic function.
  • the second diagnostic function can be implemented by using the voltage sensor 150 for acquiring the voltage of the power supply 10 and the temperature sensor 170 as needed.
  • the first diagnostic function can be implemented by using the voltage sensor 150 for acquiring the voltage of the power supply 10, the demand sensor (the suction sensor 20 or the push button 30), and the temperature sensor 170 as needed.
  • the timer which measures time is not included in a sensor.
  • the sensors required to perform the second diagnostic function preferably do not include the demand sensor (the aspiration sensor 20 or the push button 30).
  • the operation of the demand sensor during charging is unlikely from the normal usability of the suction component generation device 100.
  • the sensors necessary to perform the second diagnostic function include a request sensor that is not originally operated, some inconvenience may occur in the second diagnostic function.
  • the second diagnostic function performed during charging can be performed without using a demand sensor that requests the supply of power to the load 121R.
  • the predetermined voltage range used for the failure diagnosis function and the deterioration diagnosis function described above in the second diagnosis function for example, the section from the lower limit of the operation guarantee voltage to the deep discharge determination threshold shown in FIG.
  • the value is preferably wider than the predetermined voltage range used in the first diagnostic function, for example, the sum of the first, second, and third intervals shown in FIG. Since the range of possible values of the voltage of the power supply 10 in the charge mode is wider than that in the feed mode, the accuracy of the diagnosis of the deterioration or failure of the power supply in the charge mode can be increased by enlarging the predetermined voltage range used in the second diagnostic function. Can raise
  • the control unit 50 of the electrical unit 110 implements the second diagnostic function (the failure diagnostic function and the deterioration diagnostic function). Instead, based on the time it takes for the processor 250 of the charger 200 to reach the upper limit from the lower limit of the predetermined voltage range during charging of the power supply 10, at least one of degradation and failure of the power supply 10 A second diagnostic function may be implemented to estimate or detect one. In this case, the processor 250 of the charger 200 may execute an algorithm similar to the process shown in the flowchart of FIG.
  • step S400 in the flowchart shown in FIG. 12 is unnecessary.
  • the voltage of the power supply 10 acquired by the processor 250 is estimated by a voltmeter 240 provided in the charger 200.
  • the protection operation (steps S414 and S430) may be an operation in which the processor 250 of the charger 200 stops the charging current.
  • the other processing is the same as when the control unit 50 of the electrical equipment unit 110 executes the second diagnostic function, and thus the description thereof will be omitted.
  • the control unit 50 performs yet another algorithm Since the second diagnostic function can be performed, it is possible to raise the accuracy of the diagnosis of the deterioration or failure of the power supply in the charge mode.
  • the voltage sensor 150 is configured to convert an analog voltage value of the power supply 10 into a digital voltage value using a predetermined correlation, and to output a digital voltage value.
  • the voltage sensor 150 may include an A / D converter 154 that converts an analog input value into a digital output value.
  • the A / D converter 154 has a conversion table 158 for converting analog input values into digital output values.
  • the resolution involved in the conversion to digital voltage values is not particularly limited, and may be, for example, 0.05 V / bit.
  • the output value from the voltage sensor 150 is converted every 0.05V.
  • the conversion table 158 shown in FIG. 14 shows the correlation when the reference voltage (V ref ) 156 described later is larger than the voltage of the power supply 10, for example, the full charge voltage of the power supply 10.
  • the predetermined correlation 158 is associated with a larger digital voltage value as the larger analog voltage value.
  • Voltage of the power source 10 to the inverting input terminal 150-2 of the operational amplifier 150-1 is, on one of the non-inverting input terminal 150-3 voltage of the power supply 10 (an analog voltage (V anal Albanyg))
  • a reference voltage (V ref ) 156 (for example, 5.0 V) which is a constant voltage higher than that is input.
  • the operational amplifier 150-1 inputs the difference of these voltages or the value (V input ) obtained by amplifying the difference to the A / D converter 154.
  • the A / D converter 154 converts an analog voltage value (V input ) into a digital voltage value (V output ) based on a predetermined correlation (conversion table) 158 and outputs it.
  • the control unit 50 acquires the digital voltage value (V outut ) output from the voltage sensor 150.
  • the default correlation (conversion table) 158 and outputs the digital voltage value corresponding to the full charge voltage when the voltage of the power supply 10 (an analog voltage (V Analog) is fully charged voltage (V Output), Power it is preferably set to 10 voltage (analog voltage (V anal MEg) outputs a digital voltage value corresponding to the final discharge voltage when a discharge end voltage (V thoroughlyutput).
  • FIG. 15 is a flow chart showing a process for calibration of the predetermined correlation 158 of the voltage sensor 150.
  • the control unit 50 may be configured to be able to calibrate the correlation 158 based on changes in the analog or digital voltage values obtained during charging of the power supply 10.
  • the threshold voltage is set to an initial value (step S500).
  • the initial value of the threshold voltage it is preferable to set the initial value of the threshold voltage to a value smaller than the full charge voltage of the digital voltage value.
  • the initial value of the threshold voltage is 4.05V.
  • Control unit 50 detects the start of charging (step S502).
  • the start of charging may be detected by the connection of the charger 200 to the electrical unit 110.
  • the control unit 50 acquires the voltage of the power supply 10 every predetermined time (step S504).
  • the acquired voltage of the power supply 10 may be a digital voltage value output from the voltage sensor 150.
  • control unit 50 determines whether the acquired voltage of the power supply 10 is higher than the threshold voltage (step S506). If the acquired voltage of the power supply 10 is equal to or lower than the threshold voltage, the voltage of the power supply 10 is acquired again after a predetermined time (step S504), and the process returns to step S506.
  • the control unit 50 calibrates the predetermined correlation 158 of the voltage sensor 150 as necessary (step S510).
  • control unit 50 determines whether the charging has been completed (step S512). If charging has not ended, the voltage of the power supply 10 is acquired again (step S504), and the process returns to step S506.
  • the control unit 50 may calibrate the predetermined correlation 158 of the voltage sensor 150 each time the voltage of the power supply 10 becomes larger than the threshold voltage in the period until the charge ends. In this case, the control unit 50 does not need to perform the process (step S520) of calibrating the predetermined correlation 158 of the voltage sensor 150 after the charging is completed.
  • control unit 50 may not calibrate the predetermined correlation 158 in the period from the charge start to the charge end. That is, the control unit 50 does not need to perform step S510. In this case, the control unit 50 performs a process of calibrating the predetermined correlation 158 of the voltage sensor 150 after the charging is completed (step S520).
  • control unit 50 may perform the process of calibrating the predetermined correlation 158 of the voltage sensor 150 at any one of the timings of step S510 and step S520.
  • the threshold voltage is reset to an initial value, for example, 4.05 V (step S522).
  • the reset condition may be, for example, that the suction component generation device 100 is turned off. This is a factor causing an error in the digital voltage value (V output ) output from the voltage sensor 150, such as product error or deterioration of the power supply 10, whenever a reset condition such as the suction component generation device 100 turning off is satisfied. It is because there is a possibility of fluctuation.
  • the threshold voltage at the time of manufacture or start of the suction component generation device 100 is set to a value smaller than the full charge voltage of the power supply 10. Taking into consideration that an error may occur in the digital output value of the voltage sensor 150, even if the voltage (analog voltage value) of the power supply 10 reaches the full charge voltage during the initial charging of the power supply 10, the digital of the voltage sensor 150 The output value may stay below the full charge voltage. Therefore, by setting the threshold voltage at the time of manufacture or start of suction component generation device 100 to a value smaller than the full charge voltage, the voltage sensor at the time of the first charge from the time of manufacture or start of suction component generation device 100. It is possible to prevent 150 default correlations 158 from becoming uncalibrated.
  • the threshold voltage at the time of manufacture or start-up of the suction component generation device 100 is the full charge voltage (eg 4.2 V) of the power supply 10 among a plurality of digital voltage values that the voltage sensor 150 can output. It is preferable to set the value equal to or less than the value obtained by subtracting the absolute value of the product error. For example, when an error of about ⁇ 0.11 V can occur in the voltage sensor 150, the threshold voltage at the time of manufacture or start of the suction component generation device 100 may be set to 4.09 V or less.
  • the threshold voltage at the time of manufacture or start-up of the suction component generation device 100 is the absolute value of the product error from the full charge voltage (eg 4.2 V) of the power supply 10 among a plurality of digital voltage values that the voltage sensor 150 can output It is more preferable to set the maximum value within the range below the value obtained by subtracting the value.
  • the threshold voltage at the time of manufacture or start of the suction component generation device 100 is set, the predetermined correlation 158 of the voltage sensor 150 at the time of the first charge from the time of manufacture or start of the suction component generation device 100 described above It can be prevented from being uncalibrated.
  • the threshold voltage at the time of manufacture or start of the suction component generation device 100 is an absolute product error from the full charge voltage (eg 4.2 V) of the power supply 10 It can suppress that the voltage sensor 150 is calibrated frequently compared with the case where it sets to a value other than the largest value in the range below the value which subtracted value.
  • the threshold voltage at the time of manufacture or start of the suction component generation device 100 is 4 It may be .05V.
  • control unit 50 performs a predetermined correlation 158 calibration if the digital voltage value obtained during charging of the power supply 10 becomes greater than the threshold voltage.
  • control unit 50 may perform a predetermined correlation 158 calibration if the digital voltage value obtained during charging of the power supply 10 reaches a maximum value or a maximum value.
  • control unit 50 can extract the maximum value of the digital voltage values acquired from the start to the end of charging.
  • control unit 50 can extract the maximum value of the digital voltage value acquired from the start to the end of charging.
  • the calibration of the predetermined correlation 158 of the voltage sensor 150 does not have to be performed at the timing shown in the above-described flowchart, for example, during charging, after charging, or at the next start of the suction component generation device 100. Any of these may be performed at timing.
  • the control unit 50 correlates 158 so that the maximum or maximum value of the digital voltage value acquired during charging of the power supply 10 or the digital voltage value larger than the threshold voltage corresponds to the full charge voltage value of the power supply 10. Calibrate.
  • the correlation 158 is calibrated so that the digital voltage value larger than the threshold voltage corresponds to the full charge voltage value of the power supply 10
  • the power supply 10 is charged to the full charge voltage
  • the correlation 158 is calibrated so that the maximum value or maximum value of the digital voltage values acquired in at least some sections during charging of the power supply 10 corresponds to the full charge voltage value of the power supply 10.
  • the voltage of the power supply 10 When the power supply 10 is charged to the full charge, the voltage of the power supply 10 has reached the full charge voltage. In addition, the full charge voltage of the power supply 10 is not affected by the product error such as the reference voltage or the digital voltage value (V output ) output by the voltage sensor 150 such as the deterioration of the power supply 10 It is particularly useful as a reference when Therefore, when the correlation 158 is calibrated as described above, when an analog voltage value corresponding to the full charge voltage is input to the voltage sensor 150, the voltage sensor 150 outputs a digital voltage value corresponding to the full charge voltage value. It will be. This allows the voltage sensor 150 to be properly calibrated.
  • FIG. 16 is a diagram showing an example of calibration of the predetermined correlation 158 of the voltage sensor 150.
  • the predetermined correlation 158 may be calibrated to gain adjust the correspondence between analog voltage values and digital voltage values.
  • the gain adjustment can be performed, for example, by increasing or decreasing the predetermined vertical axis value (analog voltage value) or horizontal axis value (digital voltage value) of the correlation 158 at a constant rate. That is, in the gain adjustment, the slope of the predetermined correlation 158, more specifically, the slope of the approximate straight line of the predetermined correlation 158 is adjusted.
  • FIG. 17 is a diagram showing another example of calibration of the predetermined correlation 158 of the voltage sensor 150.
  • the predetermined correlation 158 may be calibrated to offset adjust the correspondence between analog and digital voltage values.
  • the offset adjustment can be performed, for example, by increasing or decreasing the value (analog voltage value) on the vertical axis of the predetermined correlation 158 by a fixed value.
  • the offset adjustment has an advantage of easy adjustment because it merely increases or decreases the intercept of the predetermined correlation 158, specifically, the intercept of the approximate straight line of the predetermined correlation 158 by a certain value.
  • the predetermined correlation 158 corresponds to the correspondence between the digital voltage value smaller than the discharge termination voltage of the power supply 10 and the analog voltage value, and the correspondence between the digital voltage value larger than the full charge voltage of the power supply 10 and the analog voltage value It is preferable to include at least one of
  • the default correlation 158 once calibrated, may be maintained without changing the correlation until the next time it is calibrated.
  • the predetermined correlation 158 may return to the initial correlation upon shutdown or subsequent activation of the aspiration component generator 100.
  • the initial correlation may be a predetermined correlation at the time of manufacture of the suction component generation device 100.
  • the predetermined correlation 158 is a fully charged digital voltage whose analog voltage value is smaller than the analog voltage value corresponding to the full charge voltage value when the voltage sensor 150 has no error. Preferably, it is calibrated or set to correspond to the voltage value. That is, when the suction component generation device 100 is manufactured or activated, when a predetermined analog voltage value smaller than the full charge voltage is input to the voltage sensor 150, the voltage sensor 150 is a digital corresponding to the full charge voltage. It is designed to output a voltage value.
  • the voltage sensor 150 when an analog voltage value of 4.1 V smaller than the full charge voltage (4.2 V) is input to the voltage sensor 150 at the time of manufacture or startup of the suction component generation device 100, the voltage sensor 150 It may be designed to output a digital voltage value (4.2 V) corresponding to the charging voltage. Thereby, even if there is a manufacturing error, the voltage sensor 150 is configured to output a digital voltage value that is equal to or higher than an actual analog voltage value at the time of manufacturing or starting of the suction component generation device 100.
  • the analog voltage value of the actual power supply 10 is the full charge voltage before the control unit 50 recognizes that the full charge voltage has been reached. It can prevent exceeding.
  • the voltage sensor 150 outputs a small digital voltage value due to a manufacturing error or the like with respect to the actual value of the voltage of the power supply 10
  • the voltage sensor 150 outputs a digital voltage value corresponding to the full charge voltage of the power supply 10
  • control unit 50 has a process for forcibly stopping charging when the output voltage value from voltage sensor 150 exceeds the full charge voltage, overcharging of power supply 10 can be prevented.
  • the predetermined correlation 158 at the time of manufacture or start of the suction component generation device 100 is based on the full charge voltage of the power supply 10 when there is no product error in the voltage sensor 150 among a plurality of digital voltage values that the voltage sensor 150 can output. More preferably, the analog voltage value corresponding to the value closest to the value obtained by subtracting the absolute value of the product error is calibrated or set so as to correspond to the full charge voltage value. As a result, the power supply 10 can be prevented from being overcharged by underestimating the voltage of the power supply 10 due to a product error or the like. Furthermore, in the initial state of the predetermined correlation 158, the difference in numerical value between the analog voltage value and the digital voltage value becomes large, and the deviation between the actual value of the power supply 10 and the corresponding digital voltage can be suppressed. it can.
  • FIG. 18 is a block diagram of a voltage sensor 150 according to another embodiment.
  • the configuration of the voltage sensor 150 is the same as that shown in FIG. 14 except for the voltage (non-inverted input terminal 150-2) and the non-inverted input terminal 150-3 and the predetermined correlation (conversion table) 158.
  • the conversion table 158 shows the correlation in the case where a reference voltage (V ref ) 156 described later is smaller than the voltage of the power supply 10, for example, the discharge termination voltage of the power supply 10.
  • the predetermined correlation 158 is associated with a larger digital voltage value as the smaller analog voltage value.
  • the digital value of the value input to the non-inverting input terminal corresponds to the maximum digital value that can be output.
  • the maximum digital value that can be output is constant.
  • the voltage of the power source 10 to vary the storage amount of the power supply 10 to the non-inverting input terminal 150-3 (analog voltage (V anal MEg)) is input, it outputs the maximum possible digital The value is variable.
  • the analog value corresponding to the largest digital value is determined from the calculation capability of the control unit 50 or the voltage sensor 150, regardless of the largest digital value.
  • the analog voltage value (V input ) is converted into the digital value of the voltage of the power supply 10 input to the inverting input terminal 150-2, and this is used as the digital output value (V THERutput ). Output. Further, in the embodiment shown in FIG. 18, the analog voltage value (V input ) is converted into the digital value of the power supply of the power supply 10 inputted to the non-inverting input terminal 150-3, and this is used as the digital output value (V ututput ). Output.
  • the conversion table 158 is derived from the constant maximum digital value and the constant analog value corresponding thereto.
  • the analog voltage value (V input ) input to the conversion table 158 is converted to a digital voltage value (V thoroughlyutput ) corresponding to this and output.
  • This digital voltage value (V ut utput ) corresponds to the digital value of the voltage of the power supply 10 input to the inverting input terminal 150-2.
  • the conversion table 158 is derived from the constant digital value and the corresponding analog voltage value (V input ).
  • the conversion table 158 is used to convert a constant analog value corresponding to the largest digital value into a digital voltage value (V thoroughlyutput ) and output.
  • the digital voltage value (V ut utput ) corresponds to the digital value of the voltage of the power supply 10 input to the non-inverting input terminal 150-3.
  • the relationship between coordinates of measured or known digital values and corresponding analog values, and a predetermined digital voltage value (V presentlyutput ) and an analog voltage value (V input ) May be set as the conversion table 158.
  • the conversion table 158 is positioned so that the coordinates and the segment lie on the approximate straight line. May be set. It will be apparent to those skilled in the art that the relationship between the digital voltage value (V ututput ) and the analog voltage value (V input ) can be approximated not only by a straight line but also by a curve.
  • the digital values measured or known and the corresponding analog values are the digital values of the reference voltage (V ref ) 156 and the corresponding analog values. is there.
  • the reference voltage (V ref ) 156 since the reference voltage (V ref ) 156 is input to the non-inverting input terminal 150-3, it is not necessary to measure an analog value corresponding to the reference voltage (V ref ) 156.
  • the reference voltage (V ref ) 156 since the reference voltage (V ref ) 156 is input to the inverting input terminal 150-2, it is necessary to measure an analog value corresponding to the reference voltage (V ref ) 156. Please keep in mind.
  • the analog voltage value (V input ) is converted into a digital value of the value input to the inverting input terminal 150-2 of the operational amplifier 150-1, and the digital voltage value (V It is known that in the form of outputting as utput , a larger analog voltage value is associated with a larger digital voltage value.
  • the analog voltage value (V input ) is converted into a digital value of the value input to the non-inverting input terminal 150-3 of the operational amplifier 150-1, and the digital voltage value (V Note that the smaller analog voltage value is associated with a larger digital voltage value in the format output as utput .
  • the default correlation (conversion table) 158 and outputs the digital voltage value corresponding to the full charge voltage when 10 the voltage of the power supply (analog voltage (V Analog)) is fully charged voltage (V Output) it is preferably set to 10 voltage supply (analog voltage (V anal MEg) outputs a digital voltage value corresponding to the final discharge voltage when a discharge end voltage (V thoroughlyutput).
  • Control regarding calibration of the predetermined correlation (conversion table) 158 can be implemented in the same manner as the above-described flowchart (see FIG. 15). As described above, the calibration of the predetermined correlation (conversion table) 158 may be performed by the gain correction shown in FIG. 16 or the offset correction shown in FIG. 17, but in either case, the analog corresponding to the largest digital value Note that we are calibrating the values.
  • the predetermined correlation 158 at the time of manufacture or start-up of the suction component generation device 100 has an analog voltage value (V input ) larger than the analog voltage value corresponding to the full charge voltage value when the voltage sensor 150 has no error.
  • V input an analog voltage value
  • it is calibrated or set to correspond to the full charge voltage value. That is, when the suction component generation device 100 is manufactured or activated, the voltage sensor 150 receives an analog voltage value corresponding to the voltage of the predetermined power supply 10 smaller than the full charge voltage.
  • the voltage sensor 150 receives an analog voltage value corresponding to the voltage of the predetermined power supply 10 smaller than the full charge voltage.
  • the voltage sensor 150 may be designed to output a digital voltage value (4.2 V) corresponding to the full charge voltage. Thereby, even if there is a manufacturing error, the voltage sensor 150 is configured to output a digital voltage value that is equal to or higher than an actual analog voltage value at the time of manufacturing or starting of the suction component generation device 100.
  • the control unit 50 may obtain a digital voltage value (V output ) output from the voltage sensor 150 when obtaining the voltage of the power supply 10 in all the processes described above. That is, the control unit 50 (control unit 51) preferably performs the various controls described above based on the digital voltage value output by the voltage sensor 150 using the calibrated predetermined correlation 158. As a result, the control unit 50 (control unit 51) can accurately execute the various controls described above.
  • the power control unit described above may control the power supply from the power supply 10 to the load 121R based on the digital voltage value output from the voltage sensor 150. More specifically, the power control unit may perform PWM control of the power supplied from the power supply 10 to the load 121R based on the digital voltage value.
  • control unit 50 may estimate or detect at least one of the deterioration and the failure of the power supply 10 based on the digital voltage value output by the voltage sensor 150 using the calibrated correlation 158 (First diagnostic function and / or second diagnostic function).
  • the aforementioned flow shown in FIGS. 7, 9, 12 and 15 can be executed by the control unit 50. That is, the control unit 50 may have a program that causes the suction component generation device 100 to execute the above-described method, and a storage medium in which the program is stored. Furthermore, the aforementioned flow shown in FIG. 11 and optionally in FIG. 12 can be executed by the processor 250 of the external charger 200. That is, the processor 250 may have a program that causes a system including the suction component generation device 100 and the charger 200 to execute the above-described method, and a storage medium in which the program is stored.
  • the control unit 50 controls the power supply 10 based on the value related to the operation amount of the load 121R operated while the acquired voltage value of the power supply 10 is within the predetermined voltage range. At least one of deterioration and failure is configured to be estimated or detectable. Instead, the control unit 50 estimates at least one of the deterioration and the failure of the power supply 10 based on the voltage of the power supply 10 which has been changed while the value related to the operation amount of the acquired load 121R is within the predetermined range. It may be configured to be detectable. Even in this case, it should be noted that the deterioration or failure of the power supply 10 can be estimated or detected, as described in the above embodiment.
  • a method including the step of estimating or detecting at least one of degradation and failure of Furthermore, it should be noted that a program for causing the suction component generation device 100 to execute such a method is also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

吸引成分生成装置は、電源からの電力により吸引成分源を気化又は霧化する負荷と、電源から前記負荷への電力供給を制御可能に構成された制御ユニットと、を含む。制御ユニットは、負荷の動作中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能と、電源の充電中に電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能と、を実行可能に構成されている。第1診断機能と第2診断機能は、互いに異なるアルゴリズムを含む。

Description

吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム
 本発明は、電源からの電力により吸引成分源を気化又は霧化する負荷を含む吸引成分生成装置、吸引成分生成システム、当該吸引成分生成装置を制御する方法、及びプログラムに関する。
 従来のシガレットに代わり、たばこ等の香味源やエアロゾル源をヒータのような負荷で気化又は霧化することによって生じた吸引成分を味わう吸引成分生成装置(電子シガレットや加熱式たばこ)が提案されている(特許文献1~3)。このような吸引成分生成装置は、香味源及び/又はエアロゾル源を気化又は霧化させる負荷、負荷に電力を供給する電源、負荷や電源を制御する制御ユニットを備える。負荷は例えばヒータである。
 このような吸引成分生成装置において、負荷へ供給する電力や電源の充放電に関する電気制御については改善の余地がある。
 特許文献4~6は、電源の劣化を推定する方法を開示する。特許文献7,8は、電源の異常を監視する方法を開示する。特許文献9は、電源の劣化を抑制する方法を開示する。特許文献10~12は、所定の条件下で電源が満充電に達した場合に、電池の充電状態(SOC)や充電容量を較正することを開示する。特許文献4~12は、それらの方法を吸引成分生成装置に適用することを明示しない。
国際公開第2014/150942号 特表2017-514463号 特開平7-184627号 特開2000-251948号 特開2016-176709号 特開平11-052033号 特開2003-317811号 特開2010-050045号 特開2017-005985号 国際公開第2014/046232号 特開平7-128416号 特開2017-022852号
 第1の特徴は、吸引成分生成装置であって、電源からの電力により吸引成分源を気化又は霧化する負荷と、前記電源から前記負荷への電力供給を制御可能に構成された制御ユニットと、を含み、前記制御ユニットは、前記負荷の動作中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能と、前記電源の充電中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能と、を実行可能に構成されており、前記第1診断機能と前記第2診断機能は、互いに異なるアルゴリズムを含むことを要旨とする。
 第2の特徴は、第1の特徴における吸引成分生成装置であって、前記第1診断機能及び前記第2診断機能は、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するための少なくとも1つのアルゴリズムを含み、前記第2診断機能に含まれる前記アルゴリズムの数は、前記第1診断機能に含まれる前記アルゴリズムの数よりも多いことを要旨とする。
 第3の特徴は、第1の特徴又は第2の特徴における吸引成分生成装置であって、前記第1診断機能及び前記第2診断機能は、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するための少なくとも1つのアルゴリズムを含み、前記第2診断機能に含まれる同時に実行可能な前記アルゴリズムの数は、前記第1診断機能に含まれる同時に実行可能な前記アルゴリズムの数よりも多いことを要旨とする。
 第4の特徴は、第2の特徴又は第3の特徴における吸引成分生成装置であって、前記第1診断機能は1つの前記アルゴリズムのみを含むことを要旨とする。
 第5の特徴は、第1の特徴から第4の特徴のいずれかにおける吸引成分生成装置であって、前記電源の充電は前記吸引成分生成装置とは別体の外部充電器によって制御されることを要旨とする。
 第6の特徴は、第1の特徴から第5の特徴のいずれかにおける吸引成分生成装置であって、前記第1診断機能は、前記負荷の動作中に変化する前記電源の電圧値が既定の第1電圧範囲にある間に実行可能に構成され、前記第2診断機能は、前記電源の充電中に変化する前記電源の電圧値が既定の第2電圧範囲にある間に実行可能に構成され、前記第2電圧範囲は前記第1電圧範囲よりも広いことを要旨とする。
 第7の特徴は、第1の特徴から第6の特徴のいずれかにおける吸引成分生成装置であって、前記第1診断機能と前記第2診断機能のうち前記第2診断機能のみが、前記電源の電圧値が前記電源の放電終止電圧未満で実行可能に構成されていることを要旨とする。
 第8の特徴は、第1の特徴から第7の特徴のいずれかにおける吸引成分生成装置であって、前記吸引成分生成装置の状態を出力する複数のセンサを含み、前記第2診断機能を実行するために必要な前記センサの数は、前記第1診断機能を実行するために必要な前記センサの数よりも少ないことを要旨とする。
 第9の特徴は、第8の特徴における吸引成分生成装置であって、前記複数のセンサは、前記負荷の動作を要求する信号を出力可能な要求センサを含み、前記第1診断機能は、前記要求センサを利用することにより実行可能であり、前記第2診断機能は、前記要求センサを利用することなく実行可能であることを要旨とする。
 第10の特徴は、第8の特徴又は第9の特徴における吸引成分生成装置であって、前記複数のセンサは、前記電源の電圧値を出力する電圧センサを含み、前記第1診断機能及び前記第2診断機能は、前記電圧センサの利用により実行可能であることを要旨とする。
 第11の特徴は、第1の特徴から第10の特徴のいずれかにおける吸引成分生成装置であって、前記電源のアナログ電圧値を規定の相関を用いてデジタル電圧値に変換し、前記デジタル電圧値を出力する電圧センサを含み、前記第1診断機能及び前記第2診断機能は、前記電圧センサの利用により実行可能であり、前記制御ユニットは、前記電源の充電中における前記電源の電圧変化に基づき、前記相関を較正可能に構成されていることを要旨とする。
 第12の特徴は、第1の特徴から第11の特徴のいずれかにおける吸引成分生成装置であって、前記第2診断機能は、充電中に前記電源に供給される電力量に対する前記電源の電圧値の変化に基づき、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するアルゴリズムを含むことを要旨とする。
 第13の特徴は、第1の特徴から第12の特徴のいずれかにおける吸引成分生成装置であって、前記第1診断機能は、前記負荷の動作中における前記電源の電圧値の変化に基づき、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するアルゴリズムを含むことを要旨とする。
 第14の特徴は、電源からの電力により吸引成分源を気化又は霧化する負荷を含む吸引成分生成装置を制御する方法であって、前記負荷の動作中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能を実行するステップと、前記電源の充電中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能であって、前記第1診断機能とは異なるアルゴリズムを用いて第2診断機能を実行するステップと、を含むことを要旨とする。
 第15の特徴は、第14の特徴における方法を吸引成分生成装置に実行させるプログラムであることを要旨とする。
 第16の特徴は、吸引成分生成システムであって、電源からの電力により吸引成分源を気化又は霧化する負荷と、前記電源から前記負荷への電力供給を制御可能に構成された第1制御ユニットと、を備える吸引成分生成装置と、前記電源への充電を制御可能に構成された第2制御ユニットを備えた外部充電器と、を含み、前記第1制御ユニットは、前記負荷の動作中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能を実行可能に構成され、前記第2制御ユニットは、前記電源の充電中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能と、を実行可能に構成されており、前記第1診断機能と前記第2診断機能は、互いに異なるアルゴリズムを含むことを要旨とする。
図1は、一実施形態に係る吸引成分生成装置の模式図である。 図2は、一実施形態に係る霧化ユニットの模式図である。 図3は、一実施形態に係る吸引センサの構成の一例を示す模式図である。 図4は、吸引成分生成装置のブロック図である。 図5は、霧化ユニット及び電装ユニットの電気回路を示す図である。 図6は、充電器が接続された状態の充電器及び電装ユニットの電気回路を示す図である。 図7は、吸引成分生成装置の給電モードにおける制御方法の一例を示すフローチャートである。 図8は、電源から負荷へ供給される電力量の制御の例を示すグラフである。 図9は、第1診断処理のフローチャートの一例を示す図である。 図10は、第1診断機能における既定の電圧範囲を説明するための図である。 図11は、充電器のプロセッサによる制御方法の一例を示すフローチャートである。 図12は、充電モードにおける制御ユニットの制御方法の一例を示すフローチャートである。 図13は、充電中において、正常な電源と劣化又は故障した電源の電圧の上昇を説明するための図である。 図14は、電圧センサのブロックを示す図である。 図15は、電圧センサの既定の相関の較正に関する処理を示すフローチャートである。 図16は、電圧センサの既定の相関の較正の一例を示す図である。 図17は、電圧センサの既定の相関の較正の別の一例を示す図である。 図18は、別の実施例に係る電圧センサのブロックを示す図である。
 以下において、実施形態について説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。
 [開示の概要]
 装置の安全性やより高精度な制御のため、充放電可能な電源の劣化を推定又は検出することは重要である。しかしながら、電源の劣化状態を正確に診断することは難しい。特に複雑な制御回路を有しない吸引成分生成装置においては、複雑な電気制御は困難であり、電源の劣化状態を推定又は検出する試みはされていない。
 一態様に係る吸引成分生成装置は、電源からの電力により吸引成分源を気化又は霧化する負荷と、電源から負荷への電力供給を制御可能に構成された制御ユニットと、を含む。制御ユニットは、負荷の動作中に電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能と、電源の充電中に電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能と、を実行可能に構成されている。第1診断機能と第2診断機能は、互いに異なるアルゴリズムを含む。
 一態様に係る吸引成分生成装置を制御する方法は、電源からの電力により吸引成分源を気化又は霧化する負荷を含む吸引成分生成装置を制御する方法に関する。この方法は、負荷の動作中に電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能を実行するステップと、電源の充電中に電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能であって、第1診断機能とは異なるアルゴリズムを含む第2診断機能を実行するステップと、を含む。
 上記態様によれば、電源の充電中と負荷の動作中とにおいて、それぞれ異なるアルゴリズムで電源の劣化と故障のうち少なくとも一方を推定又は検知する。これにより、吸引成分生成装置の状態に応じた適切なアルゴリズムにて電源の劣化と故障のうち少なくとも一方を推定又は検知することができるようになる。
 [第1実施形態]
 (吸引成分生成装置)
 以下において、第1実施形態に係る吸引成分生成装置について説明する。図1は、一実施形態に係る吸引成分生成装置を示す分解図である。図2は、一実施形態に係る霧化ユニットを示す図である。図3は、一実施形態に係る吸引センサの構成の一例を示す模式図である。図4は、吸引成分生成装置の電気的構成を示すブロック図である。図5は、霧化ユニット及び電装ユニットの電気回路を示す図である。図6は、充電器が接続された状態の充電器及び電装ユニットの電気回路を示す図である。
 吸引成分生成装置100は、燃焼を伴わずに吸引成分(香喫味成分)を吸引するための非燃焼型の香味吸引器であってよい。吸引成分生成装置100は、非吸口端E2から吸口端E1に向かう方向である所定方向Aに沿って延びる形状を有していてよい。この場合、吸引成分生成装置100は、吸引成分を吸引する吸口141を有する一方の端部E1と、吸口141とは反対側の他方の端部E2と、を含んでいてよい。
 吸引成分生成装置100は、電装ユニット110及び霧化ユニット120を有していてよい。霧化ユニット120は、電装ユニット110に対して機械的な接続部分111,121を介して着脱可能に構成されていてよい。霧化ユニット120と電装ユニット110とが互いに機械的に接続されたときに、霧化ユニット120内の後述する負荷121Rは、電気的な接続端子110t,120tを介して、電装ユニット110に設けられた電源10に電気的に接続される。すなわち、電気的な接続端子110t,120tは、負荷121Rと電源10を電気的に断接可能な接続部を構成する。
 霧化ユニット120は、ユーザにより吸引される吸引成分源と、電源10からの電力により吸引成分源を気化又は霧化する負荷121Rと、を有する。吸引成分源は、エアロゾルを発生するエアロゾル源、及び/又は香味成分を発生する香味源を含んでいてよい。
 負荷121Rは、電力を受けることによってエアロゾル源及び/又は香味源からエアロゾル及び/又は香味成分を発生させることができる素子であればよい。例えば、負荷121Rは、ヒータのような発熱素子、又は超音波発生器のような素子であってよい。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。
 以下では、図1及び図2を参照しつつ、霧化ユニット120のより詳細な一例について説明する。霧化ユニット120は、リザーバ121Pと、ウィック121Qと、負荷121Rと、を有していてよい。リザーバ121Pは、液状のエアロゾル源又は香味源を貯留するよう構成されていてよい。リザーバ121Pは、例えば、樹脂ウェブ等材料によって構成される多孔質体であってよい。ウィック121Qは、リザーバ121Pから毛管現象を利用してエアロゾル源又は香味源を引き込む液保持部材であってよい。ウィック121Qは、例えば、ガラス繊維や多孔質セラミックなどによって構成することができる。
 負荷121Rは、ウィック121Qに保持されるエアロゾル源を霧化又は香味源を加熱する。負荷121Rは、例えば、ウィック121Qに巻き回される抵抗発熱体(例えば、電熱線)によって構成される。
 流入孔122Aから流入した空気は、霧化ユニット120の内の負荷121R付近を通過する。負荷121Rによって生成された吸引成分は、空気とともに吸口の方へ流れる。
 エアロゾル源は、常温で液体であってよい。例えば、エアロゾル源としては、グリセリンやプロピレングリコールといった多価アルコールや水などを用いることができる。エアロゾル源自身が香味成分を有していてもよい。或いは、エアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。
 なお、上記実施形態では、常温で液体のエアロゾル源についての例を詳細に説明したが、この代わりに、エアロゾル源は、常温で固体のものを用いることもできる。
 霧化ユニット120は、交換可能に構成された香味ユニット(カートリッジ)130を備えていてもよい。香味ユニット130は、香味源を収容する筒体131を有する。筒体131は、膜部材133とフィルタ132とを含んでいてよい。膜部材133とフィルタ132とにより構成される空間内に香味源が設けられていてよい。
 霧化ユニット120は、破壊部90を含んでいてもよい。破壊部90は、香味ユニット130の膜部材133の一部を破壊するための部材である。破壊部90は、霧化ユニット120と香味ユニット130とを仕切るための隔壁部材126によって保持されていてよい。隔壁部材126は、例えば、ポリアセタール樹脂である。破壊部90は、例えば、円筒状の中空針である。中空針の先端を膜部材133に突き刺すことによって、霧化ユニット120と香味ユニット130とを空気的に連通する空気流路が形成される。ここで、中空針の内部には、香味源が通過しない程度の粗さを有する網目が設けられることが好ましい。
 好ましい実施形態の一例によれば、香味ユニット130内の香味源は、霧化ユニット120の負荷121Rによって生成されたエアロゾルに香喫味成分を付与する。香味源によってエアロゾルに付与される香味は、吸引成分生成装置100の吸口に運ばれる。このように、吸引成分生成装置100は、複数の吸引成分源を有していてよい。この代わりに、吸引成分生成装置100は、1つの吸引成分源のみを有していてもよい。
 香味ユニット130内の香味源は、常温で固体であってよい。一例として、香味源は、エアロゾルに香喫味成分を付与する植物材料の原料片によって構成される。香味源を構成する原料片としては、刻みたばこやたばこ原料のようなたばこ材料を粒状に成形した成形体を用いることができる。この代わりに、香味源は、たばこ材料をシート状に成形した成形体であってもよい。また、香味源を構成する原料片は、たばこ以外の植物(例えば、ミント、ハーブ等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。
 吸引成分生成装置100は、使用者が吸引成分を吸引するための吸引口141を有するマウスピース142を含んでいてよい。マウスピース142は、霧化ユニット120又は香味ユニット130に着脱可能に構成されていてもよく、一体不可分に構成されていてもよい。
 電装ユニット110は、電源10、通知部40及び制御ユニット50を有していてよい。電源10は、香味吸引器100の動作に必要な電力を蓄える。電源10は、電装ユニット110に対して着脱可能であってよい。電源10は、例えばリチウムイオン二次電池のような再充電可能な電池であってよい。
 制御ユニット50は、例えばマイコンのような制御部51と、吸引センサ20と、押しボタン30と、を有していてよい。さらに、吸引成分生成装置100は、必要に応じて、電圧センサ150、電流センサ160及び温度センサ170を含んでいてよい。制御部51は、電圧センサ150、電流センサ160及び温度センサ170からの出力値に応じて、吸引成分生成装置100の動作に必要な各種の制御を行う。例えば、制御部51は、電源10から負荷121Rへの電力の制御を行う電力制御部を構成していてもよい。
 霧化ユニット120が電装ユニット110に接続されたとき、霧化ユニット120に設けられた負荷121Rは、電装ユニット110の電源10と電気的に接続される(図5参照)。
 吸引成分生成装置100は、負荷121Rと電源10とを電気的に接続及び切断可能なスイッチ140を含んでいてよい。スイッチ140は、制御ユニット50によって開閉される。スイッチ140は、例えばMOSFETにより構成されていてよい。
 スイッチ140がONになると、電源10から負荷121Rへ電力が供給される。一方、スイッチ140がOFFになると、電源10から負荷121Rへ電力の供給が停止される。スイッチ140のON/OFFは、制御ユニット50によって制御される。
 制御ユニット50は、負荷121Rの動作を要求する信号を出力可能な要求センサを含んでいてよい。要求センサは、例えばユーザにより押される押しボタン30、又はユーザの吸引動作を検出する吸引センサ20であってよい。制御ユニット50は、負荷121Rへの動作要求信号を取得して負荷121Rを動作させるための指令を生成する。具体的一例では、制御ユニット50は、負荷121Rを動作させるための指令をスイッチ140へ出力し、この指令に応じてスイッチ140がONになる。このように、制御ユニット50は、電源10から負荷121Rへの給電を制御するよう構成されている。電源10から負荷121Rへ電力が供給されると、負荷121Rにより吸引成分源が気化又は霧化される。
 また、吸引成分生成装置100は、必要に応じて、電源10への充電電流を遮断又は低下させる停止部180を含んでいてよい。停止部180は、例えばMOSFETスイッチにより構成されていてよい。制御ユニット50は、停止部180をOFFにすることによって、電装ユニット110が充電器200に接続されていたとしても、電源10への充電電流を強制的に遮断又は低下させることができる。なお、専用の停止部180を設けなくても、制御ユニット50がスイッチ140をOFFにすることで、電源10への充電電流を強制的に遮断又は低下させてもよい。
 電圧センサ150は、電源10の電圧を出力するように構成されていてよい。制御ユニット50は電圧センサ150の出力値を得ることができる。すなわち、制御ユニット50は、電源10の電圧値を取得可能に構成されている。
 電流センサ160は、電源10から流出した電流量及び電源10に流入した電流量を検出可能に構成されていてよい。温度センサ170は、例えば電源10の温度を出力可能に構成されていてよい。制御ユニット50は、電圧センサ150、電流センサ160及び温度センサ170の出力を取得可能に構成されている。制御ユニット50は、これらの出力を用いて各種の制御を行う。
 吸引成分生成装置100は、必要に応じて、電源10を加温するヒータ70を有していてもよい。ヒータ70は、電源10の付近に設けられていてよく、制御ユニット50からの指令により動作可能に構成されている。
 吸引センサ20は、吸口からの吸引に応じて変動する出力値を出力するよう構成されていてよい。具体的には、吸引センサ20は、非吸口側から吸口側に向けて吸引される空気の流量(すなわち、ユーザのパフ動作)に応じて変化する値(例えば、電圧値又は電流値)を出力するセンサであってよい。そのようなセンサとして、例えば、コンデンサマイクロフォンセンサや公知の流量センサなどが挙げられる。
 図3は、吸引センサ20の具体的一例を示している。図3に例示された吸引センサ20は、センサ本体21と、カバー22と、基板23と、を有する。センサ本体21は、例えば、コンデンサによって構成されている。センサ本体21の電気容量は、空気導入孔125から吸引される空気(すなわち、非吸口側から吸口側に向けて吸引される空気)によって生じる振動(圧力)によって変化する。カバー22は、センサ本体21に対して吸口側に設けられており、開口22Aを有する。開口22Aを有するカバー22を設けることによって、センサ本体21の電気容量が変化しやすく、センサ本体21の応答特性が向上する。基板23は、センサ本体21(コンデンサ)の電気容量を示す値(ここでは、電圧値)を出力する。
 吸引成分生成装置100、より具体的には電装ユニット110は、電装ユニット110内の電源10を充電する充電器200と接続可能に構成されていてよい(図6参照)。充電器200が電装ユニット110に接続されたとき、充電器200は電装ユニット110の電源10と電気的に接続される。
 電装ユニット110は、充電器200が接続されたか否かを判定する判定部を有していてよい。判定部は、例えば、充電器200が接続される一対の電気端子どうしの間の電位差の変化に基づき、充電器200の接続の有無を判定する手段であってよい。判定部は、この手段に限定されず、充電器200の接続の有無を判定することができれば、どのような手段であってもよい。
 充電器200は、電装ユニット110内の電源10を充電するための外部電源210を有する。充電器200を電気的に接続するための電装ユニット110の一対の電気端子110tは、負荷121Rを電気的に接続するための電装ユニット110の一対の電気端子を兼ねることができる。
 外部電源210が交流電源の場合、充電器200は、交流を直流に変換するインバータを有していてよい。充電器200は、電源10への充電を制御するプロセッサ250を含んでいてよい。さらに、充電器200は、必要に応じて、電流計230や電圧計240を有していてよい。電流計230は、充電器200から電源10へ供給する充電電流を取得する。電圧計240は、充電器200が接続される一対の電気端子間の電圧を取得する。充電器200のプロセッサ250は、電流計230及び/又は電圧計240からの出力値を用いて、電源10の充電を制御する。なお、充電器200は、インバータが出力する直流の電圧を取得する電圧センサや、インバータが出力する直流の電圧を昇圧及び/又は降圧可能なコンバータを、さらに有していてもよい。
 吸引成分生成装置100の構造を簡易化する目的では、充電器200のプロセッサ250は、電装ユニット110の制御ユニット50と通信不能に構成されていてもよい。すなわち、充電器200のプロセッサ250と制御ユニット50との間で通信を行うための通信用端子は不要である。換言すれば、充電器200との接続インターフェースにおいて、電装ユニット110が有する電気端子は、主正母線用と主負母線用の2つのみである。
 通知部40は、各種の情報をユーザに知らせるための通知を発する。通知部40は、例えばLEDのような発光素子であってよい。この代わりに、通知部40は、音を発生する素子、又はバイブレータであってもよい。
 通知部40は、電源10の電圧に基づき、少なくても電源10の残量が不足していない場合と電源10の残量が不足している場合を使用者に通知するよう構成されていてよい。例えば、通知部40は、電源10の残量が不足している場合、電源10の残量が不足していない場合とは異なる通知を発する。電源10の残量の不足は、例えば電源10の電圧が放電終止電圧付近にあることによって判断することができる。
 (給電モード)
 図7は、一実施形態に係る給電モードにおける制御方法を示すフローチャートである。給電モードは、電源10から負荷121Rへ給電可能なモードである。給電モードは、少なくとも電装ユニット110に霧化ユニット120が接続されている場合に実施可能である。
 制御ユニット50は、負荷の動作量に関連する値を計測するカウンタ(Co)を「0」に設定し(ステップS100)、負荷121Rへの動作要求信号を取得したかどうかを判断する(ステップS102)。動作要求信号は、吸引センサ20がユーザの吸引動作を検知したときに吸引センサ20から取得される信号であってよい。すなわち、制御ユニット50は、吸引センサ20によってユーザの吸引動作を検出したときに、スイッチ140に対するPWM(Pulse Width Modulation)制御を行えばよい(ステップS104)。この代わりに、動作要求信号は、押しボタン30が押されたことを検知したときに押しボタン30から取得される信号であってよい。すなわち、制御ユニット50は、ユーザによる押しボタンの押下を検出したときに、スイッチ140に対してPWM制御を行ってもよい(ステップS104)。なお、ステップS104においては、PWM制御に代えてPFM(Pulse Frequency Modulation)制御を行ってもよい。PWM制御におけるDUTY比や、PFM制御におけるスイッチング周波数は、電圧センサ150が取得する電源10の電圧などのさまざまなパラメータによって調整されてもよい。
 制御ユニット50によりスイッチ140に対してPWM制御が行われると、エアロゾルが発生する。
 制御ユニット50は、負荷121Rへの電力供給の終了タイミングを検知したかどうか判定する(ステップS106)。制御ユニット50は、終了タイミングを検知すると、負荷への電力供給を終了する(ステップS108)。制御ユニット50は、負荷への電力供給を終了すると(ステップS108)、負荷121Rの動作量に関連する値(ΔCo)を取得する(ステップS110)。ここで取得した負荷121Rの動作量に関連する値(ΔCo)は、ステップS104~S108の間における値である。負荷121Rの動作量に関連する値(ΔCo)は、例えば、所定の時間、すなわちステップS104~S108の間で負荷121Rに供給された電力量、負荷121Rの動作時間、又は当該所定の時間で消費された吸引成分源の消費量であってよい。
 次に、負荷121Rの動作量に関連する値の累積値「Co=Co+ΔCo」を取得する(ステップS112)。その後、制御ユニット50は、必要に応じて、第1診断機能(ステップS114)を実行する。
 負荷121Rへの電力供給の終了タイミングは、吸引センサ20が負荷121Rの使用のための操作の終了を検知したタイミングであってもよい。例えば、負荷121Rへの電力供給の終了タイミングは、ユーザによる吸引動作の終了を検知したタイミングであってよい。この代わりに、負荷121Rへの電力供給の終了タイミングは、押しボタン30の押下の解除を検知したタイミングであってもよい。さらに、負荷121Rへの電力供給の終了タイミングは、負荷121Rへの電力供給の開始から所定のカットオフ時間が経過したことを検知したタイミングであってよい。所定のカットオフ時間は、一般的なユーザが1回の吸引動作に要する期間に基づき予め設定されていてよい。例えば、所定のカットオフ時間は、1~5秒、好ましくは1.5~3秒、より好ましくは1.5~2.5秒の範囲であってよい。
 制御ユニット50が負荷121Rへの電力供給の終了タイミングを検知しなかった場合、制御ユニット50は再びスイッチ140に対してPWM制御を実行し、負荷121Rへの電力供給を続ける(ステップS104)。その後に制御ユニット50が負荷121Rへの電力供給の終了タイミングを検知したら、負荷121Rの動作量に関連する値を取得し(ステップS110)、負荷121Rの動作量に関する値の累積値を導出する(ステップS112)。
 これにより、負荷への電力供給が終了したときに(ステップS108)、制御ユニット50は、負荷への動作要求信号の取得から負荷121Rへの電力供給の終了タイミングまで、すなわち1回のパフ動作における負荷121Rの動作量に関する値を取得できる。1回のパフ動作における負荷121Rの動作量は、例えば、1回のパフ動作で負荷121Rへ供給した電力量であってもよい。この代わりに、1回のパフ動作における負荷121Rの動作量は、例えば、1回のパフ動作における負荷121Rの動作時間であってよい。負荷121Rの動作時間は、1回のパフ動作において負荷121Rへ供給した電力パルス(図8も参照)の総和であってもよく、1回のパフ動作に要する時間、すなわち負荷121Rへの動作要求信号を取得してから、負荷121Rへの電力供給の終了タイミングを検知するまでの時間であってもよい。さらに、1回のパフ動作における負荷121Rの動作量は、1回のパフ動作で消費された吸引成分源の消費量であってもよい。吸引成分源の消費量は、例えば負荷121Rへ供給された電力量から推定することができる。また、吸引成分源が液体である場合、吸引成分源の消費量は、リザーバ内に残っている吸引成分源の重量又は、吸引成分源の液面の高さを計測するセンサによって取得することができる。さらに、1回のパフ動作における負荷121Rの動作量は、負荷121Rの温度、例えば1回のパフ動作における負荷121Rの最高温度、又は負荷121Rで発生した熱量であってもよい。負荷121Rの温度や熱量は、例えば温度センサを用いることによって取得又は推定することができる。
 図8は、電源10から負荷121Rへ供給される電力量の制御の例を示すグラフである。図8は、吸引センサ20の出力値と、負荷121Rへの供給電圧の関係を示している。
 吸引センサ20は、吸口141からの吸引に応じて変動する出力値を出力するよう構成されている。吸引センサ20の出力値は、図8に示すように香味吸引器内の気体の流速や流量に応じた値(例えば、吸引成分生成装置100内の圧力変化を示す値)であってよいが、これに限定されるわけではない。
 吸引センサ20が吸引に応じて変動する出力値を出力する場合、制御ユニット50は、吸引センサ20の出力値に応じて吸引を検知するよう構成されていてよい。例えば、制御ユニット50は、吸引センサ20の出力値が第1所定値O1以上になったときに、ユーザによる吸引動作を検知するように構成されていてよい。したがって、制御ユニット50は、吸引センサ20の出力値が第1所定値O1以上になったときに、負荷121Rへの動作要求信号を取得したと判断すればよい(ステップS102)。一方、制御ユニット50は、吸引センサ20の出力値が第2所定値O2以下になったときに、負荷121Rへの電力供給の終了タイミングを検知したと判断すればよい(ステップS106)。このように、制御ユニット50は、吸引センサ20の出力に基づき、負荷121Rの動作量に関連する値、例えば1回のパフ動作で負荷121Rへ電力の供給する総時間を導出可能に構成されていてよい。より具体的には、制御ユニット50は、検知した吸引の期間又は吸引量の少なくとも一方に基づき、負荷121Rの動作量に関連する値を導出可能に構成されている。
 ここで、制御ユニット50は、吸引センサ20の出力値の絶対値が第1所定値(所定の閾値)O1以上の場合のみ吸引を検知するよう構成されている。これにより、吸引センサ20のノイズにより負荷121Rを動作してしまうことを抑制することができる。また、負荷121Rへの電力供給の終了タイミングを検知するための第2所定値O2は、既に負荷121Rが動作している状態から動作していない状態への遷移を実行するための値であることから、第1所定値O1よりも小さくてもよい。これは、第1所定値O1のように吸引センサ20のノイズを拾うことによる誤動作、すなわち負荷121Rが動作していない状態から動作している状態への遷移が生じ得ないからである。
 さらに、制御ユニット50は、電源10から負荷121Rへ供給される電力量を制御する電力制御部を有していてもよい。電力制御部は、例えば、電源10から負荷121Rへ供給する電力量を、パルス幅変調(PWM)制御によって調整する。パルス幅に関するデューティ比は、100%よりも小さい値であってよい。なお、電力制御部は、パルス幅制御に代えてパルス周波数変調(PFM)制御によって、電源10から負荷121Rへ供給する電力量を制御してもよい。
 例えば電源10の電圧値が比較的高い場合、制御ユニット50は、負荷121Rへ供給する電圧のパルス幅を狭くする(図8の中段のグラフ参照)。例えば電源10の電圧値が比較的低い場合、制御ユニット50は、負荷121Rへ供給する電圧のパルス幅を広くする(図8の下段のグラフ参照)。パルス幅の制御は、例えば、スイッチ140のONから、スイッチ140のOFFまでの時間を調節することによって実施できる。電源10の電圧値は、電源の充電量の減少とともに減少するため、電圧値に応じて電力量を調整すればよい。このように制御ユニット50がパルス幅変調(PWM)制御を実行すれば、電源10の電圧が比較的高い場合と比較的低い場合の双方において、負荷121Rに供給される電圧の実効値は同程度となる。
 前述したように、電力制御部は、電源10の電圧値が低くなるほど大きいデューティ比を有するパルス幅変調(PWM)制御で、負荷121Rに印加する電圧を制御するように構成されていることが好ましい。これにより、電源10の残量にかかわらず、パフ動作中に生成されるエアロゾル量を略均一化することができる。より好ましくは、電力制御部は、負荷121Rへ供給した1パルスあたりの電力量が一定になるように、パルス幅変調(PWM)制御のデューティ比を制御することが好ましい。
 (第1診断機能)
 図9は、第1診断機能のフローチャートの一例を示している。第1診断機能は、電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知するための処理である。図10は、第1診断機能における既定の電圧範囲を説明するための図である。
 具体的には、制御ユニット50は、まず、電源10の電圧(Vbatt)を取得する(ステップS200)。電源10の電圧(Vbatt)は、電圧センサ150を利用することによって取得することができる。電源10の電圧は、電源10に負荷121Rを電気的に接続することなく取得される開回路電圧(OCV,Open Circuit Voltage)であってもよく、電源10に負荷121Rを電気的に接続して取得される閉回路電圧(CCV,Closed Circuit Voltage)であってもよい。ただし、負荷121Rの電気的接続に伴う電圧降下や放電に伴う内部抵抗や温度の変化の影響を排除するため、電源10の電圧は、閉回路電圧(CCV)よりも開回路電圧(OCV)によって規定されることが好ましい。開回路電圧(OCV)は、スイッチ140をOFFにした状態で電源10の電圧を取得することによって得られる。なお、開回路電圧(OCV)を電圧センサ150を利用して取得せずとも、公知の様々な手法によって、閉回路電圧(CCV)から開回路電圧(OCV)を推定してもよい。
 次に、制御ユニット50は、取得した電源10の電圧が既定の電圧範囲の上限値以下であるかどうか判断する(ステップS202)。電源10の電圧が既定の電圧範囲の上限値より高い場合、電源の劣化と故障を推定又は検知することなく処理を終了する。
 電源10の電圧が既定の電圧範囲の上限値以下の場合、一回前、すなわち一回前のパフ動作時に取得された電源の電圧値が前述の既定の電圧範囲の上限値以下であったかどうか判断する(ステップS204)。一回前、すなわち一回前のパフ動作時に取得された電源10の電圧値が前述の既定の電圧範囲の上限値より高い場合、最新のパフ動作により初めて電源10の電圧値が前述の既定の電圧範囲の上限値以下になったと判断できる。この場合、負荷121の動作量に関連する値の累積値をカウントする累積カウンタ(ICо)を「0」に設定する(ステップS206)。累積カウンタ(ICо)を「0」に設定すると、以下のステップS208にすすむ。
 一回前、すなわち一回前のパフ動作時に取得された電源の電圧値が前述の既定の電圧範囲の上限値以下であった場合(ステップS204)、又は累積カウンタ(ICо)を「0」に設定した場合(ステップS206)、電源10の電圧が既定の電圧範囲の下限値未満であるかどうか判断する(ステップS208)。
 電源10の電圧が既定の電圧範囲の下限値以上であった場合、負荷121Rの動作量に関連する値の積算値「ICо=ICо+Cо」を導出する(ステップS210)。ここで、「Cо」は、図7に示すステップS112で累積的に取得した値である。それから、電源10の劣化又は故障を推定又は検知することなく処理を終了する。
 この処理を終了すると、制御ユニット50は、再び負荷121Rへの動作要求信号を取得するまで待機する(図7のステップS102)。制御ユニット50は、再び負荷121Rへの動作要求信号を取得すると、1回のパフ動作における負荷121Rの動作量に関連する値(Cо)を導出し、再び第1診断機能S114をスタートする。
 第1診断機能において電源10の電圧が既定の電圧範囲にある場合、制御ユニット50は、負荷121Rの動作量に関連する値を積算する(ステップS210)。これにより、制御ユニット50は、取得した電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値を取得することができる。
 ステップS208において、電源10の電圧が既定の電圧範囲の下限値未満であった場合、取得した電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値、すなわち前述したICоの積算値が、既定の閾値より大きいかどうか判断する(ステップS220)。前述したICоの積算値が既定の閾値より大きい場合、電源10が正常であると判断し、第1診断機能の処理を終了する。
 前述したICоの積算値が既定の閾値以下である場合、電源10の劣化又は故障と判断し(ステップS220)、制御ユニット50は通知部40を通じてユーザに異常を通知する(ステップS224)。通知部40は、所定の光、音又は振動によってユーザに電源10の劣化又は故障を通知することができる。また、制御ユニット50は、電源10の劣化又は故障と判断すると、必要に応じて負荷121Rへの電力供給を不能にするよう制御してもよい。なお、本実施形態においては、電源10の電圧が既定の電圧範囲の下限値未満と判断された場合(ステップS208)、負荷121Rの動作量に関連する値の積算値ICоに、負荷121Rの動作量に関連する値Cоを加算しない。換言すれば、ステップS208が肯定的と判断された場合には、ステップS210は実行されない。これに代えて、電源10の電圧が既定の電圧範囲の下限値未満と判断された場合(ステップS208)、負荷121Rの動作量に関連する値の積算値ICоに、負荷121Rの動作量に関連する値Cоを加算してもよい。換言すれば、ステップS208が肯定的と判断された場合にも、ステップS210と同様のステップが実行されてもよい。この場合には、ステップS210と同様の当該ステップは、ステップS220の前に実行することができる。
 図10に示すように、電源10が劣化すると、負荷の動作量に関連する値、例えば負荷121への電力量又は負荷121の動作時間等の増加とともに、電源10の電圧は急速に低下する。したがって、電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値は、電源の劣化とともに低下する。このことは、図10において「Q1<Q2」という関係によって示されている。なお、図10におけるQ1は電源10が劣化品である場合に、電圧10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値である。一方、図10におけるQ2は電源10が新品である場合に、電圧10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値である。よって、前述したように、制御ユニット50は、電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値に基づき、電源10の劣化を推定又は検知可能である。なお、電源10が故障すると電源10が劣化した場合と同様に、負荷の動作量に関連する値、例えば負荷121Rへの電力量又は負荷121の動作時間等の増加とともに、電源10の電圧は急速に低下する。よって、制御ユニット50は、電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値に基づき、電源10の故障を推定又は検知可能である。つまり、制御ユニット50は、電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知可能である。
 ステップS220で用いられる既定の閾値は、電源10の種類に応じて、予め実験により定めればよい。この既定の閾値は、新品の電源10が既定の電圧範囲において動作可能な負荷121Rの動作量に関連する値よりも低く設定される。
 負荷121Rの動作量に関連する値は、前述したように、負荷121Rに供給された電力量、負荷121Rの動作時間、又は吸引成分源の消費量等であってよい。
 ここで、前述したように負荷121Rへ供給する電力のパルス幅変調(PWM)制御が、電圧計150が取得した電源10の電圧に基づいて行われる場合、負荷121Rの動作量に関連する値は、負荷121Rの動作時間であることがより好ましい。この場合、負荷121Rの動作時間は、1回のパフ動作に要する時間、すなわち負荷121Rへの動作要求信号を取得してから、負荷121Rへの電力供給の終了タイミングを検知するまでの時間である。パルス幅変調(PWM)制御によって、単位時間あたりの負荷121Rへの電力供給量は均一化されているため、負荷121Rの動作時間は、既定の電圧範囲において負荷121Rへ供給した総電力量に比例する。したがって、負荷121Rへ供給する電力のパルス幅変調(PWM)制御が行われる場合、負荷121Rの動作量に関連する値を負荷121Rの動作時間で規定することにより、比較的簡単な制御で高精度な電源10の診断が可能になる。
 前述した例の代わりに、負荷121Rの動作量に関連する値は、既定の電圧範囲に動作した負荷121Rの動作回数であってもよい。この場合、図7のフローチャートにおいてステップS110及びS112は不要である。そして、図9のフローチャートにおいて、電源10の電圧が既定の電圧範囲に入った回数をカウントすればよい。具体的には、ステップS210において、「ICо=ICо+Cо」を「ICо=ICо+1」に置き換えればよい。
 さらに、前述した例の代わりに、負荷121Rの動作量に関連する値は、吸引成分源を含む交換可能なカートリッジ、例えば香味ユニット130の交換回数であってもよい。電源10の充電が消費されるまでの間に、カートリッジを複数回交換する必要がある吸引成分生成装置100では、負荷121Rの動作量に関連する値としてカートリッジの交換回数を利用することもできる。
 制御ユニット50は、電源10の温度が第1温度閾値より低い場合に、電源10の劣化と故障のうち少なくとも一方を推定又は検知するためのアルゴリズム、すなわち図9に示す第1診断機能を実行するアルゴリズムを変更又は修正可能に構成されていてよい。具体的には、制御ユニット50は、ステップS220における既定の閾値を小さくなるように修正し、修正した閾値に基づきステップS220における比較を行うことが好ましい。第1温度閾値は、例えば1~5℃の範囲に設定されていてよい。
 電源10の温度が低い場合、電源10の内部抵抗(インピーダンス)が増大することが知られている。これにより、劣化していない電源10であっても、既定の電圧範囲にある間に動作する負荷121Rの動作量は低下する。したがって、電源10の温度が低い場合、ステップS220における既定の閾値を小さくなるように修正することで、温度の影響を緩和し、電源10の劣化又は故障の検知の精度が低下することを抑制することができる。
 また、制御ユニット50は、電源10の温度が第2温度閾値より低い場合、電源10の劣化と故障のうち少なくとも一方の推定又は検知を実行しないように構成されていてよい。すなわち、電源10の温度が第2温度閾値より低い場合、制御ユニット50は、図9に示す第1診断機能を実行しなくてもよい。ここで、第2温度閾値は、第1温度閾値よりも小さくてもよい。第2温度閾値は、例えば-1~1℃の範囲に設定されていてよい。
 さらに、制御ユニット50は、電源10の温度が第3温度閾値より低い場合、ヒータ70の制御により電源10を加温してもよい。電源10の温度が低い場合、電源10の温度を上昇させることにより、電源10の劣化又は故障の検知の精度が低下することを抑制することができる。第3温度閾値は、例えば-1~1℃の範囲に設定されていてよい。
 (第1診断機能における既定の電圧範囲)
 第1診断機能において用いられる既定の電圧範囲について図10を用いてさらに説明する。既定の電圧範囲は、放電終止電圧から満充電電圧の間の所定の区間(電圧範囲)であってよい。したがって、第1診断機能は、電源10の電圧値が放電終止電圧未満では実行されない。
 既定の電圧範囲は、電源10の蓄電量又は充電状態の変化に対する電源10の電圧値の変化が他の電圧範囲と比較して小さいプラトー範囲を除く範囲に設定されることが好ましい。プラトー範囲は、例えば充電状態(SOC)の変化に対する電源10の電圧の変化量が0.01~0.005(V/%)以下の電圧範囲によって既定される。
 プラトー範囲は、比較的小さい電圧範囲内で多くの蓄電容量を有するため、比較的小さい電圧範囲内で負荷121Rの動作に関する値が大きく変動し得る。そのため、前述した第1診断機能において誤検知を生じる可能性が高まる。したがって、既定の電圧範囲はプラトー範囲を除く範囲に設定されることが好ましい。
 既定の電圧範囲が設定されないプラトー範囲は、新品状態の電源10の蓄電量又は充電状態の変化に対する電源10の電圧値の変化が他の電圧範囲と比較して小さいプラトー範囲と、劣化状態の電源10の蓄電量又は充電状態の変化に対する電源10の電圧値の変化が他の電圧範囲と比較して小さいプラトー範囲と、の両方を含む範囲によって規定されていてよい。これにより、新品状態の電源10と劣化状態の電源10の両方に対して、誤検知を生じる可能性を低くすることができる。
 また、第1診断機能は、複数の既定の電圧範囲で実施されてもよい。複数の既定の電圧範囲は互いに重複しないことが好ましい。制御ユニット50は、それぞれの既定の電圧範囲において、図9に示すフローチャートと全く同じフローで第1診断機能を実施できる。
 図10に示す例では、3つの既定の電圧範囲(第1区間、第2区間及び第3区間)が設定されている。一例では、第1区間の上限値は4.1Vであり、第1区間の下限値は3.9Vであってよい。第2区間の上限値は3.9Vであり、第2区間の下限値は3.75Vであってよい。第3区間の上限値は3.75Vであり、第3区間の下限値は3.7Vであってよい。
 制御ユニット50は、複数の既定の電圧範囲のそれぞれにおいてステップS220の比較を行い、前記複数の既定の電圧範囲のうち少なくとも1つの電圧範囲において負荷121Rの動作量に関連する値が前述した既定の閾値(ステップS220参照)以下の場合に、電源10が劣化又は故障したと判断すればよい。
 複数の既定の電圧範囲は、電源10の蓄電量又は充電状態の変化に対する電源10の電圧値の変化が小さい電圧範囲ほど狭く設定されていることが好ましい。これにより、それぞれの既定の電圧範囲において動作する負荷121Rの動作量に関連する値が均一化するため、各既定の電圧範囲で実施される第1診断機能の精度が均一化させることになる。
 さらに、制御ユニット50は、複数の既定の電圧範囲のうち1以上の既定の電圧範囲を包含する特定の電圧範囲においても、電源10の電圧値が当該特定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知可能に構成されていてよい。具体的には、制御ユニット50は、例えば、図10に示す第1区間、第2区間及び第3区間のうちの少なくとも2つ、好ましくは3つの区間を含む電圧範囲を特定の電圧範囲と設定し、図9に示す診断機能を実行してもよい。
 複数の既定の電圧範囲のうち互いに隣接する2以上の既定の電圧範囲を包含する特定の電圧範囲において図9に示す診断機能を実行する場合、ステップS220で用いられる既定の閾値は、それぞれの既定の電圧範囲で実行される図9に示すフローチャートのステップS220で用いられる既定の閾値の総和よりも小さいことが好ましい。例えば、第1区間、第2区間及び第3区間を含む全体区間で図9に示すフローチャートを実行する場合におけるステップS220で用いられる既定の閾値は、第1区間、第2区間及び第3区間のそれぞれで図9に示すフローチャートを別々に実行する場合におけるステップS220で用いられる既定の閾値の総和よりも小さくてよい。これにより、電源10の状態や吸引成分生成装置100の使い方によって第1区間、第2区間及び第3区間のそれぞれでは電源10の劣化と故障のうち少なくとも一方を推定又は検知できない場合であっても、全体区間で電源10の劣化と故障のうち少なくとも一方を推定又は検知できることがある。したがって、電源10の劣化と故障のうち少なくとも一方の推定又は検知の精度を向上できる。
 (第1診断機能のイレギュラー処理)
 電源10の充電によって電源10が既定の電圧範囲の下限より大きく、既定の電圧範囲の上限よりも小さい値まで充電されたとき、典型的には満充電電圧まで充電されないとき、既定の電圧範囲全体において動作した負荷121Rの動作量に関連する値を取得することができないため、前述した図9に示す第1診断機能が正常に機能しないことがある。
 また、負荷121Rによって吸引成分源の気化又は霧化が行われてから長期間が経過すると、電源10が暗電流などによって自然放電し、電源10の電圧が自然に低下することがある。このような場合、前述した既定の電圧範囲に対して、吸引成分源の気化又は霧化に寄与した電圧範囲は、100%とはならず、既定の割合又は広さ以下となることがある。例えば、吸引成分源の気化又は霧化が行われることによって電源10の電圧が3.9Vから3.8Vに低下し、それから長時間放置することによって電源10の電圧が3.65Vになったと仮定する。この場合、既定の電圧範囲(図10の第2区間)に対して、吸引成分源の気化又は霧化に寄与した電圧範囲は、約40%となる。このように電源10の電圧が吸引成分源の気化又は霧化とは関係なく大幅に低下した場合、前述した図9に示す第1診断機能が正常に機能しないことがある。
 このような長時間放置は、負荷121Rによって吸引成分源の気化又は霧化が行われてからの経過時間を計時し、この経過時間に基づき検知することができる。すなわち、制御ユニット50は、図7のステップS108のところで、経過時間をカウントするタイマをスタートすればよい。この代わりに、長時間放置は、負荷121Rによって吸引成分源の気化又は霧化が行われてからの電源10の電圧変化に基づき検知することもできる。この場合、制御ユニット50は、図9のステップS200のところで、現在の電源10の電圧と、その前に取得された電源10の電圧との差分を取得すればよい。電圧の差分が所定の値を超えると、制御ユニット50は、長時間放置があったと判断することができる。
 したがって、前述したように、第1診断機能が正常に機能しないような状況が起きた場合、第1診断機能のアルゴリズムを修正するか、第1診断機能を実施しないことが好ましい。
 例えば、制御ユニット50は、既定の電圧範囲における吸引成分源の気化又は霧化に寄与した範囲が既定の割合又は広さ以下の場合に、既定の電圧範囲における電源10の劣化又は故障の判断を行わないことが好ましい。これにより、中途半端な充電や自然放電等により、既定の電圧範囲全体において動作した負荷121Rの動作量に関連する値を取得することができない場合に、制御ユニット50が第1診断機能で誤検知することを防止することができる。
 この代わりに、制御ユニット50は、既定の電圧範囲における吸引成分源の気化又は霧化に寄与した範囲が既定の割合又は広さ以下の場合に、図9に示すステップS220における既定の閾値を小さく修正してもよい。例えば、既定の電圧範囲における吸引成分源の気化又は霧化に寄与した範囲に応じて、既定の閾値を小さく修正することで、第1診断機能の誤検知を抑制しつつ第1診断機能を実行することができる。
 また、前述したように、複数の既定の電圧範囲で第1診断機能を実行する場合には、制御ユニット50は、複数の既定の電圧範囲のうち、吸引成分源の気化又は霧化に寄与した範囲が既定の割合又は広さ以下であるイレギュラー範囲においては電源の劣化又は故障の判断を行わなくてもよい。すなわち、それぞれの既定の電圧範囲(例えば、第1区間、第2区間又は第3区間)において、中途半端な充電や自然放電等により、負荷121Rの動作量に関連する値を十分に取得することができない区間(イレギュラー範囲)では、制御ユニット50は電源の劣化又は故障の判断を行わない。
 この場合であっても、制御ユニット50は、複数の既定の電圧範囲のうち1以上の既定の電圧範囲を包含する特定の電圧範囲において、電源10の電圧値が当該特定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知してよい。この場合、1以上の既定の電圧範囲を包含する特定の電圧範囲は、イレギュラー範囲を除外して設定されることが好ましい。
 例えば、図10に示す例において、電源10の電圧が4.05Vになるまで電源10が充電された場合、第1区間では第1診断機能を実行しなくてもよい。この場合、第2区間及び第3区間を合わせた区間(3.7V~3.9V)の電圧範囲で動作した負荷121Rの動作量に関連する値に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知してよい。
 この場合、第1区間及び第2区間を合わせた区間の電圧範囲で動作した負荷121Rの動作量に関連する値に基づき第1診断機能をする場合におけるステップS220で用いられる既定の閾値は、第1区間、第2区間及び第3区間を合わせた全体区間の電圧範囲で動作した負荷121Rの動作量に関連する値に基づき第1診断機能をする場合におけるステップS220で用いられる既定の閾値(特定の閾値)から、第3区間の電圧範囲で動作した負荷121Rの動作量に関連する値に基づき第1診断機能をする場合におけるステップS220で用いられる既定の閾値以下の値を減算することによって構成されていてもよい。
 さらに、前述したように、複数の既定の電圧範囲にイレギュラー範囲が存在する場合、イレギュラー範囲を含むより広い範囲、例えば全体区間(第1区間、第2区間及び第3区間)で第1診断機能を実行する場合に、ステップS220で用いられる既定の閾値を小さく修正してもよい。
 制御ユニット50は、既定の電圧範囲において長時間放置後に吸引成分源の気化又は霧化に寄与した電源10の電圧に基づいて、当該既定の電圧範囲の下限値と既定の閾値の少なくとも一方を修正してもよい。一例として、制御ユニット50は、当該既定の電圧範囲の下限値を小さくなるように(0Vに近づけるように)修正して、既定の閾値を修正することなく、当該既定の電圧範囲で第1診断機能を実行してもよい。また別の一例として、制御ユニット50は、当該既定の電圧範囲の下限値を修正することなく、既定の閾値を小さくなるように修正して、当該既定の電圧範囲で第1診断機能を実行してもよい。また別の一例として、制御ユニット50は当該既定の電圧範囲の下限値と既定の閾値の双方を修正して、当該既定の電圧範囲で第1診断機能を実行してもよい。
 なお、制御ユニット50は、既定の電圧範囲において長時間放置後に吸引成分源の気化又は霧化に寄与した電源10の電圧と、当該電圧からこの既定の電圧範囲の下限値まで電源10の電圧が降下するまでに動作した負荷121Rの動作量に関連する値に基づいて、新たな既定の電圧範囲とこれに対応する図9に示すステップS220における既定の閾値を設定してもよい。この新たに設定された既定の電圧範囲は、次回の充電以降における第1診断機能で用いられることになる。
 制御ユニット50は、既定の電圧範囲において長時間放置後に吸引成分源の気化又は霧化に寄与した電源10の電圧に基づいて、当該既定の電圧範囲の下限値と既定の閾値の少なくとも一方を修正してもよい。一例として、制御ユニット50は、当該既定の電圧範囲の下限値を小さくなるように(0Vに近づけるように)修正して、既定の閾値を修正することなく、当該既定の電圧範囲で第1診断機能を実行してもよい。また別の一例として、制御ユニット50は、当該既定の電圧範囲の下限値を修正することなく、既定の閾値を小さくなるように修正して、当該既定の電圧範囲で第1診断機能を実行してもよい。また別の一例として、制御ユニット50は当該既定の電圧範囲の下限値と既定の閾値の双方を修正して、当該既定の電圧範囲で第1診断機能を実行してもよい。
 また、吸引成分生成装置100の未使用時、例えば負荷121Rが動作していない間においても、制御ユニット50は、電源10の電圧を監視し続けていてよい。この場合、制御ユニット50は、自然放電などの吸引成分源の気化又は霧化に寄与しないで、電源10の電圧が既定の電圧範囲の上限値を下回った場合でも、前述したような図9に示すステップS220における既定の閾値の補正などを行いつつ、第1診断機能を実行してもよい。
 この代わりに、制御ユニット50は、吸引成分源の気化又は霧化に寄与しないで電源10の電圧が降下した時間を積算した積算値を取得してもよい。この積算値を、所定の関係に基づいて負荷121Rの動作量に関連する値に変換すれば、前述したような図9に示すステップS220における既定の閾値の補正などを行わなくても第1診断機能を実行することができる。すなわち、制御ユニット50は、既定の範囲において吸引成分源の気化又は霧化に寄与しないで電源の電圧が降下した時間を積算値として積算し、当該積算値を既定の関係に基づき補正した値を、負荷の動作量に関連する値に加算すればよい。一例として、吸引成分源の気化又は霧化に寄与しないで電源10の電圧が降下する場合の電流値又は単位時間あたりの消費電力と、吸引成分源の気化又は霧化に寄与しつつ電源10の電圧が降下する場合の電流値又は単位時間あたりの消費電力の比に基づいて、当該積算値を小さく補正するようにして負荷121Rの動作量に関連する値に変換してもよい。なお、吸引成分源の気化又は霧化に寄与しないで電源10の電圧が降下する場合の電流値又は単位時間あたりの消費電力と、吸引成分源の気化又は霧化に寄与しつつ電源10の電圧が降下する場合の電流値又は単位時間あたりの消費電力は、電圧センサ150や電流センサ160などで実測してもよい。またはこれに代えて、制御ユニット50内のメモリなどにこれらの値を予め記憶しておき、必要に応じて制御部51がこれらの値を読み込んでもよい。なお、これらの値に代えて、吸引成分源の気化又は霧化に寄与しないで電源10の電圧が降下する場合の電流値又は単位時間あたりの消費電力と、吸引成分源の気化又は霧化に寄与しつつ電源10の電圧が降下する場合の電流値又は単位時間あたりの消費電力の比をメモリに直接記憶してもよい。
 (充電器のプロセッサによる充電制御)
 図11は、充電器200のプロセッサによる制御方法の一例を示すフローチャートである。プロセッサ250は、電装ユニット110に接続されたかどうかを判断する(ステップS300)。プロセッサ250は、充電器200が電装ユニット110に接続されるまで待機する。
 プロセッサ250と電装ユニット110との接続は、公知の方法で検知することができる。例えば、プロセッサ250は、充電器200の一対の電気端子間の電圧の変化を電圧計240により検知することによって、電装ユニット110に接続されたかどうかを判断することができる。
 充電器200が電装ユニット110に接続されると、プロセッサ250は、電源10が深放電していないかどうか判断する(ステップS302)。ここで、電源10の深放電は、電源10の電圧が放電終止電圧よりも低い深放電判定電圧未満となっている状態を意味する。深放電判定電圧は、例えば、3.1V~3.2Vの範囲内であってよい。
 充電器200のプロセッサ250は、電圧計240によって電源10の電圧を推定することができる。プロセッサ250は、電源10の電圧の推定値と深放電判定電圧とを比較することによって、電源10が深放電していないかどうかを判断することができる。
 プロセッサ250は、電源10が深放電していると判断した場合、低レートの電力にて電源10を充電する(ステップS304)。これにより、電源10が深放電した状態から、放電終止電圧よりも高い電圧の状態に回復し得る。
 電源10の電圧が放電終止電圧以上の場合、プロセッサ250は、電源10の電圧が切替電圧以上であるかどうか判断する(ステップS306)。切替電圧は、定電流充電(CC充電)の区間と定電圧充電(CV充電)の区間を仕切るための閾値である。切替電圧は、例えば、4.0V~4.1Vの範囲内であってよい。
 電源10の電圧が切替電圧未満である場合、プロセッサ250は、定電流充電方式により電源10を充電する(ステップS308)。電源10の電圧が切替電圧以上である場合、プロセッサ250は、定電圧充電方式により電源10を充電する(ステップS310)。定電圧充電方式では、充電が進行するとともに電源10の電圧が増加するため、充電電流が減少する。
 定電圧充電方式により電源10を充電し始めると、プロセッサ250は、充電電流が所定の充電完了電流以下であるかどうかを判断する(ステップS312)。ここで、充電電流は、充電器200内の電流計230により取得することができる。充電電流が所定の充電完了電流より大きい場合、定電圧充電方式により電源10の充電を続ける。
 充電電流が所定の充電完了電流以下である場合、プロセッサ250は、電源10が満充電状態になったと判断し、充電を停止する(ステップS314)。
 (充電モードにおける制御ユニットによる制御)
 図12は、充電モードにおける制御ユニットの制御方法の一例を示すフローチャートである。図13は、充電中において、正常な電源と劣化又は故障した電源の電圧の上昇を説明するための図である。充電モードは、電源10の充電が可能なモードである。
 制御ユニット50は、充電器200による電源10の充電中に、電源10の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能を実施してもよい。本実施形態では、第2診断機能は、電源10の故障を診断する故障診断機能と、電源10の劣化を診断する劣化診断機能と、を含んでいてよい。以下で詳細に説明するように、制御ユニット50は、電源10の充電中に電源10の電圧値が既定の電圧範囲の下限から上限に至るまでに要する時間に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知可能に構成されていてよい。電源10の電圧値は電圧センサ150の利用によって取得することができるため、制御ユニット50は、充電器200のプロセッサ250と通信することなく、後述する故障診断機能及び劣化診断機能を実施することができる。
 具体的には、まず、充電中に制御ユニット50が起動していない場合、制御ユニット50は自動的に起動する(ステップS400)。より具体的には、電源10の電圧が制御ユニット50の動作保障電圧の下限値を超えたら、制御ユニット50は自動的に起動する。ここで、動作保障電圧の下限値は、深放電電圧の範囲内であってよい。動作保障電圧の下限値は、例えば、2.0V~2.5Vの範囲であってよい。
 制御ユニット50は、充電モードであるかどうかを判定をする(ステップS402)。充電モードは、電装ユニット110への充電器200の接続を検知することによってされて判断できる。電装ユニット110への充電器200の接続は、一対の電気端子110t間の電圧の変化を取得することによって検知することができる。
 制御ユニット50が電装ユニット110への充電器200の接続を検知すると、タイマを起動し、充電開始、又は制御ユニットの起動からの時間を計測する(ステップS404)。
 次に、制御ユニット50は、電源10の故障診断機能を実行する。具体的には、制御ユニット50は、電源10の電圧(Vbatt)を取得し、電源10の電圧(Vbatt)が深放電判定電圧よりも大きいかどうか判断する(ステップS406)。電源10の電圧(Vbatt)は、電圧センサ150を利用することによって取得することができる。深放電判定電圧は、前述したとおりであり、例えば3.1Vから3.2V(放電終止電圧)の範囲であってよい。なお、電源10の充電中において、制御ユニット50は、定期的に電源10の電圧を取得する。
 深放電によって電源10の電極構造や電解質が不可逆的に変化した場合、充電しても電源10の内部で正常な充電時の電気化学反応が進行しなくなる。従って、電源10の電圧(Vbatt)が深放電判定電圧以下となっている時間が、タイマの起動から既定の時間、例えば300msecを超えた場合、制御ユニット50は、電源10が深放電により故障したと推定又は検知する(ステップS408及びS410)。また、電源10の電圧値がタイマの起動から深放電判定電圧に至るまでに要する時間が既定の時間、例えば300msecを超えた場合にも、制御ユニット50は、電源10が深放電により故障したと判断する(ステップS412及びS410)。
 電源10が深放電により故障したと推定又は検知すると、制御ユニット50は、所定の保護動作を実行すればよい(ステップS414)。保護動作は、例えば、制御ユニット50が電源10の充電を強制的に停止又は制限する動作であってよい。充電の強制的な停止又は制限は、電装ユニット110内で電源10と充電器200との間の電気的接続を切断することによって実現できる。例えば、制御ユニット50はスイッチ140と停止部180のうち少なくとも一方をOFFにすればよい。制御ユニット50は、電源10が深放電により故障したと推定又は検知すると、通知部40を通じてユーザに異常を通知してもよい。
 前述したように、制御ユニット50は、電源10の充電中に電源10の電圧値が既定の電圧範囲の下限から上限に至るまでに要する時間に基づき、故障診断機能を実行すればよい。
 既定の電圧範囲の下限は、例えば、制御ユニット50の動作保障電圧の下限値であってよい。この場合、前述したように、制御ユニット50は、制御ユニット50の起動後にタイマを起動してから深放電判定電圧(所定の閾値)に至るまでに要する時間に基づき、故障診断機能を実行すればよい。この代わりに、既定の電圧範囲の下限は、電源10の放電終止電圧よりも低く、制御ユニット50の動作保障電圧の下限値よりも大きい値に設定されていてもよい。この場合、タイマは、電源10の電圧が既定の電圧範囲の下限に達したときに起動すればよい。
 前述した故障診断機能は、吸引成分生成装置100が充電モード以外である場合には実行不能に構成されていることが好ましい。これにより、給電モードにおいて極低温状態に陥るなどの要因で電源10の電圧が、深放電まで一時的に低下した場合に、誤って故障診断機能が実行されてしまう虞を防止することができる。
 また、前述した故障診断機能は、電源10の充電中に電源10の電圧値が電源10の放電終止電圧よりも低い場合に電源の故障を推定又は検知するよう構成されていてよい。
 電源10の電圧値がタイマの起動から深放電判定電圧に至るまでに要する時間が既定の時間、例えば300msec以下である場合には、深放電による影響は小さいと判断し、電源10の充電を継続してもよい(ステップS416)。この場合、制御ユニット50は、以下で説明する劣化診断機能をさらに実行してもよい。制御ユニット50は、故障診断機能と劣化診断機能のハンチングを防止するため、故障診断機能と劣化診断機能を同時に実行しないように構成されていることが好ましい。
 劣化診断機能では、まず、制御ユニット50は充電中に電源10の電圧値を取得し、電源の電圧が既定の電圧範囲の下限値以上であるかどうかを判断する(ステップS420)。ここで、前述した故障診断機能で用いられる既定の電圧範囲の上限値は、劣化診断機能で用いられる既定の電圧範囲の下限値より小さいことが好ましい。一方、劣化診断機能で用いられる既定の電圧範囲は、放電終止電圧を含まないことが好ましい。このように故障診断機能と劣化診断機能のそれぞれで用いられる既定の電圧範囲を設定することで、前述した故障診断機能と劣化診断機能のハンチングをより効果的に防止できる。
 制御ユニット50は、電源10の充電中に電源10の電圧値が電源10の放電終止電圧よりも高い場合に電源10の劣化を推定又は検知する劣化診断機能を実行可能に構成されていることがより好ましい。これにより、故障診断機能と劣化診断機能のハンチングを防止することができる。なお、故障診断機能と劣化診断機能のハンチングを防止するため、制御ユニット50は、電源10の電圧が放電終止電圧である場合には、故障診断機能と劣化診断機能の両方を実行しないよう構成されていてよい。
 電源10の電圧が既定の電圧範囲の下限値以上である場合、制御ユニット50は、タイマをリセットし、タイマを再起動する(ステップS422)。制御ユニット50は、電源10の電圧が既定の電圧範囲の上限値以上になるまで、タイマにより経過時間を計測する(ステップS424)。
 電源10が劣化した場合、満充電電圧や放電終止電圧といった電源10が取り得る電圧値は変化しないものの、電源10の満充電容量は減少する傾向にある。従って、制御ユニット50は、電源10の電圧が既定の電圧範囲の下限値から上限値に達するまでに要した経過時間が既定の時間より大きいかどうか判断する(ステップS426)。制御ユニット50は、電源10の充電中に電源10の電圧値が既定の電圧範囲の下限から上限に既定の時間内に達した場合に、電源10が劣化したと推定又は検知する(ステップS428)。
 電源10が劣化したと推定又は検知されると、制御ユニット50は、所定の保護動作を実行すればよい(ステップS430)。保護動作は、例えば、制御ユニット50が電源10の充電を強制的に停止又は制限する動作であってよい。充電の強制的な停止又は制限は、電装ユニット110内で電源10と充電器200との間の電気的接続を切断することによって実現できる。例えば、制御ユニット50はスイッチ140と停止部180のうち少なくとも一方をOFFにすればよい。また、制御ユニット50は、電源10が劣化したと推定又は検知されると、通知部40を通じてユーザに異常を通知してもよい。
 電源10の充電中に電源10の電圧値が既定の電圧範囲の下限から上限に既定の時間内に達しない場合には、制御ユニット50は、電源10の劣化は軽微と判断し、そのまま電源10の充電が継続される(ステップS432)。
 故障診断機能及び劣化診断機能は、同じ変数値、前述した例では既定の電圧範囲の下限から上限に至るまでの経過時間を用いて実施されるよう構成されていてよい。この場合、電源が故障又は劣化したと推定又は検知するための当該変数値と閾値との大小関係は、故障診断機能と劣化診断機能とで逆転していることが好ましい。より具体的には、故障診断機能に用いられる変数値、前述した例では前述の経過時間が、第1閾値、例えば300msecより大きいときに、制御ユニット50は電源10が故障したと判断する。一方、劣化診断機能に用いられる変数値、前述した例では前述の経過時間が、第2閾値(既定の時間)より小さいときに、制御ユニット50は電源10が劣化したと判断する。図13に示すように、放電終止電圧以下の電圧範囲では、劣化又は故障した電源10よりも正常な電源10の方が充電中に早期に電圧が上昇する。一方、放電終止電圧以上の電圧範囲では、正常な電源10よりも劣化又は故障した電源10の方が充電中に早期に電圧が上昇する。故障診断機能と劣化診断機能とにおいて変数値と閾値との大小関係を逆転させることで、故障診断機能と劣化診断機能の両方において、電源10の劣化又は故障を推定又は検知することができる。
 制御ユニット50は、電源10の温度が第4温度閾値より低い場合に、電源10の劣化と故障のうち少なくとも一方を推定又は検知するためのアルゴリズム、すなわち図12に示す第2診断機能を実行するアルゴリズムを変更又は修正可能に構成されていてよい。具体的には、制御ユニット50は、ステップS412及び/又はステップS426における既定の時間を修正し、修正した時間閾値に基づきステップS412及び/又はステップS426における比較を行うことが好ましい。第4温度閾値は、例えば1~5℃の範囲に設定されていてよい。
 電源10の温度が低い場合、電源10の内部抵抗が増大することが知られている。これにより、劣化していない電源10であっても、電源10の電圧が既定の電圧範囲の下限から上限に達するまでの時間が変わる。したがって、電源10の温度が低い場合、ステップS412及び/又はステップS426における既定の時間を修正することで、温度の影響を緩和し、電源10の劣化又は故障の検知の精度が低下することを抑制することができる。
 また、制御ユニット50は、電源10の温度が第5温度閾値より低い場合、電源10の劣化と故障のうち少なくとも一方の推定又は検知を実行しないように構成されていてよい。すなわち、電源10の温度が第5温度閾値より低い場合、制御ユニット50は、図12に示す故障診断機能及び/又は劣化診断機能を実行しなくてもよい。ここで、第5温度閾値は、第4温度閾値よりも小さくてもよい。第5温度閾値は、例えば-1~1℃の範囲に設定されていてよい。
 さらに、制御ユニット50は、電源10の温度が第6温度閾値より低い場合、ヒータ70の制御により電源10を加温してもよい。電源10の温度が低い場合、電源10の温度を上昇させることにより、電源10の劣化又は故障の検知の精度が低下することを抑制することができる。第6温度閾値は、例えば-1~1℃の範囲に設定されていてよい。
 (劣化診断機能における既定の電圧範囲)
 劣化診断機能において用いられる既定の電圧範囲について図13を用いてさらに説明する。既定の電圧範囲は、放電終止電圧から満充電電圧の間の所定の区間(電圧範囲)であってよい。
 既定の電圧範囲は、電源10の蓄電量又は充電状態の変化に対する電源10の電圧値の変化が他の電圧範囲と比較して小さいプラトー範囲を除く範囲に設定されることが好ましい。プラトー範囲は、例えば充電状態の変化に対する電源10の電圧の変化量が0.01~0.005(V/%)以下の電圧範囲によって既定される。
 プラトー範囲は、充電の経過時間に対する電源の電圧の変動が小さいため、正常な電源と劣化した電源との間で有意な差が生まれにくい。そのため、前述した劣化診断機能において誤検知を生じる可能性が高まる。したがって、既定の電圧範囲はプラトー範囲を除く範囲に設定されることが好ましい。
 また、劣化診断機能で用いられる既定の電圧範囲は、電源10に対して定電圧充電が行われる範囲を除く範囲に設定されることが好ましい。定電圧充電が行われる範囲は、充電シーケンスの終期に相当するため充電の経過時間に対する電源の電圧の変動が小さい範囲に相当する。したがって、劣化診断機能で用いられる既定の電圧範囲が定電圧充電が行われる範囲を除く範囲に設定されることで、劣化診断機能の精度を高めることができる。
 ここで、充電器200のプロセッサ250は、充電器200内の電圧計240を用いて電源10の電圧を推定する。その一方で、制御ユニット50は電装ユニット110内の電圧センサ150を用いて電源10の電圧を取得する。ところで、充電器200によって認識される電源10の電圧は、電源10の電圧の真値に対して接続端子110tの接触抵抗や充電器200と電源10を電気的に接続する導線の抵抗における電圧降下を加えた値となる。一方、制御ユニット50によって認識される電源10の電圧は、少なくとも接続端子110tの接触抵抗における電圧降下の影響を受けない。したがって、充電器200によって認識される電源10の電圧と制御ユニット50によって認識される電源10の電圧との間でずれが生じることがある。このずれを考慮すると、劣化診断機能を実行する電源10の電圧範囲は、前述した切替電圧から既定の値を減算した電圧値よりも低い範囲に設定されることが好ましい。
 さらに、劣化診断機能で用いられる既定の電圧範囲は、通知部40が電源10の残量が不足していると通知する範囲を除く範囲に設定されることが好ましい。既定の電圧範囲が放電終止電圧付近に設定されている場合、電源10の電圧が放電終止電圧まで低下する前に充電されると、既定の電圧範囲の全体に亘って電源10を充電できないため、上記の劣化診断機能が正常に機能しないことがある。劣化診断機能で用いられる既定の電圧範囲が電源10の残量が不足している範囲を除いて設定されることで、電源10の電圧が放電終止電圧まで低下する前に充電されたとしても、劣化診断機能を正常に機能させることができる。
 また、劣化診断機能は、複数の既定の電圧範囲で実施されてもよい。複数の既定の電圧範囲は互いに重複しないことが好ましい。制御ユニット50は、それぞれの既定の電圧範囲において、図12に示すフローチャートの劣化診断機能の部分と全く同じフローで劣化診断機能を実施できる。図13に示す例では、2つの既定の電圧範囲(第1区間及び第2区間)が設定されている。
 (第1診断機能と第2診断機能との関係)
 前述したように、制御ユニット50は、負荷121Rの動作中に電源10の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能と、電源10の充電中に電源10の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能と、を実行可能に構成されている。
 ここで、第1診断機能と第2診断機能は、互いに異なるアルゴリズムを含むことが好ましい。これにより、電源10の劣化と故障のうち少なくとも一方を推定又は検知するために、電源10の充電及び放電に応じて最適なアルゴリズムを適用できる。
 第1診断機能、すなわち負荷121Rの動作中に実行される診断機能は、電源10の劣化と故障のうち少なくとも一方を推定又は検知するための少なくとも1つのアルゴリズムを含んでいてよい。上記実施形態では、第1診断機能は、電源10の劣化と故障のうち少なくとも一方を推定又は検知するための1つのアルゴリズムのみを含んでいる。
 例えば電子シガレットや加熱式たばこのような小型かつ携帯型の吸引成分生成装置100では、簡易な制御機能を有する制御ユニット50を搭載することが望まれる。このような簡易な制御機能を有する制御ユニット50を用いて給電モードにおいて負荷121Rへの電力の供給を制御すると、給電モードにおいて制御ユニット50の演算能力に限界が生じる。第1診断機能が1つのアルゴリズムのみを含む場合、制御ユニット50は、他の制御、例えば負荷121Rへの電力制御に影響を与えない範囲で、電源10の劣化と故障のうち少なくとも一方を推定又は検知することができる。
 第2診断機能、すなわち電源10の充電中に実行される診断機能は、電源10の劣化と故障のうち少なくとも一方を推定又は検知するための少なくとも1つのアルゴリズムを含んでいてよい。上記実施形態では、第2診断機能は、前述した故障診断機能と劣化診断機能の2つを含んでいる。上記実施形態に加え、第2診断機能は、電源10の劣化と故障のうち少なくとも一方を推定又は検知するための別の1又は複数のアルゴリズムをさらに含んでいてもよい。
 好ましくは、第2診断機能に含まれるアルゴリズムの数は、第1診断機能に含まれるアルゴリズムの数よりも多い。電源10の充電は、吸引成分生成装置100とは別体の外部充電器200によって制御される。したがって、制御ユニット50は、給電モードと比較すると、充電モードにおいて演算能力に余裕がある。この演算能力の余裕を利用して、充電モードにおける第2診断機能に含まれるアルゴリズムの数を多くすることで、充電モードにおいて、電源10の劣化と故障のうち少なくとも一方をより高精度に推定又は検知することができる。
 吸引成分生成装置100の構造を簡易化する目的では、充電器200のプロセッサ250は、電装ユニット110の制御ユニット50と通信不能に構成されていてもよい。このように吸引成分生成装置100を構成すれば、その構造を簡易化できるだけでなく、制御ユニット50が充電器200のプロセッサ250との通信のために演算能力を割く必要が無くなる。従って、より多くの演算能力を充電モードにおける第2診断機能に割り当てることができるため、充電モードにおいて、電源10の劣化と故障のうち少なくとも一方をさらに高精度に推定又は検知することができる。
 より好ましくは、第2診断機能に含まれる同時に実行可能なアルゴリズムの数は、第1診断機能に含まれる同時に実行可能なアルゴリズムの数よりも多い。上記実施形態に示す例では、前述した故障診断機能と劣化診断機能は、同時に実行可能であってよい。または、充電モードにおいて、電源10の電圧が降下した場合に、電源10の内部短絡を故障として検知するような診断機能を、前述した劣化診断機能と同時に実行してもよい。
 第2診断機能を実行するために必要なセンサの数は、第1診断機能を実行するために必要なセンサの数よりも少ないことが好ましい。上記実施形態では、第2診断機能は、電源10の電圧を取得する電圧センサ150と、必要に応じて温度センサ170を用いることによって実施可能である。一方、第1診断機能は、電源10の電圧を取得する電圧センサ150と、要求センサ(吸引センサ20又は押しボタン30)と、必要に応じて温度センサ170を用いることによって実施可能である。なお、時間を計測するタイマはセンサに含まれない。
 第2診断機能を実行するために必要なセンサは、要求センサ(吸引センサ20又は押しボタン30)を含まないことが好ましい。充電中に要求センサが操作されることは、吸引成分生成装置100の通常の使い勝手からは考えにくい。換言すれば、第2診断機能を実行するために必要なセンサに、本来操作されることがない要求センサを含めると、第2診断機能に何らかの不都合が生じる可能性がある。このように、充電中に行われる第2診断機能は、負荷121Rへの電力の供給を要求する要求センサを用いることなく実施可能であることが好ましい。
 第2診断機能で前述した故障診断機能と劣化診断機能に用いられる既定の電圧範囲、例えば図13に示す動作保証電圧の下限から深放電判定閾値までの区間と第1区間と第2区間の合算値は、第1診断機能で用いられる既定の電圧範囲、例えば図10に示す第1区間と第2区間と第3区間の合算値よりも広いことが好ましい。充電モードでは給電モードよりも電源10の電圧が取り得る値の幅が広いため、第2診断機能で用いられる既定の電圧範囲を大きくすることで、充電モードにおける電源の劣化又は故障の診断の精度を上げることができる。
 (充電器による第2診断機能の実施)
 前述した例では、電装ユニット110の制御ユニット50が第2診断機能(故障診断機能及び劣化診断機能)を実施した。この代わりに、充電器200のプロセッサ250が、電源10の充電中に電源10の電圧値が既定の電圧範囲の下限から上限に至るまでに要する時間に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能を実施してもよい。この場合、充電器200のプロセッサ250が、図12に示すフローチャートと同様の処理をアルゴリズムを実行すればよい。
 ただし、充電器200のプロセッサ250が第2診断機能を実行するため、図12に示すフローチャートにおけるステップS400は不要となる。また、プロセッサ250が取得する電源10の電圧は、充電器200に設けられた電圧計240によって推定される。保護動作(ステップS414、S430)では、充電器200のプロセッサ250が充電電流を停止するという動作であってよい。その他の処理は、電装ユニット110の制御ユニット50が第2診断機能を実行する場合と同様であるので、その説明を省略する。このように、制御ユニット50が本来行うべき第2診断機能の少なくとも一部を、電源10と電気的に接続した充電器200のプロセッサが代わりに実行すれば、制御ユニット50はさらに別のアルゴリズムを第2診断機能として実行できるため、充電モードにおける電源の劣化又は故障の診断の精度を上げることができる。
 (電圧センサ)
 まず、電圧センサ150の詳細について図5及び図14を用いて説明する。電圧センサ150は、電源10のアナログ電圧値を既定の相関を用いてデジタル電圧値に変換し、デジタル電圧値を出力するよう構成されている。具体的には、図5及び図14に示すように、電圧センサ150は、アナログ入力値をデジタル出力値に変換するA/Dコンバータ154を有していてよい。A/Dコンバータ154は、アナログ入力値をデジタル出力値に変換する変換テーブル158を有する。
 デジタル電圧値への変換に伴う分解能は、特に限定されないが、例えば、0.05V/bitであってよい。この場合、電圧センサ150からの出力値は、0.05V毎に変換される。
 なお、図14に示す変換テーブル158は、後述する参照電圧(Vref)156が電源10の電圧、例えば電源10の満充電電圧よりも大きい場合における相関を示している。この場合、既定の相関158は、大きなアナログ電圧値ほど大きなデジタル電圧値に対応付けられている。
 オペアンプ150-1の反転入力端子150-2には電源10の電圧(アナログ電圧(Vanalоg))が、一方の非反転入力端子150-3には電源10の電圧(アナログ電圧(Vanalоg))よりも高い定電圧である参照電圧(Vref)156(例えば、5.0V)が入力される。オペアンプ150-1はこれらの電圧の差分、又は差分を増幅させた値(Vinput)を、A/Dコンバータ154に入力する。A/Dコンバータ154は、既定の相関(変換テーブル)158に基づき、アナログ電圧値(Vinput)を、デジタル電圧値(Vоutput)に変換して出力する。制御ユニット50(制御部51)は、前述したすべての処理において電源10の電圧を取得する場合、電圧センサ150から出力されるデジタル電圧値(Vоutput)を取得することになる。
 ここで、既定の相関(変換テーブル)158は、電源10の電圧(アナログ電圧(Vanalоg)が満充電電圧である場合に満充電電圧に相当するデジタル電圧値(Vоutput)を出力し、電源10の電圧(アナログ電圧(Vanalоg)が放電終止電圧である場合に放電終止電圧に相当するデジタル電圧値(Vоutput)を出力するよう設定されていることが好ましい。
 しかしながら、参照電圧などの製品誤差や電源10の劣化等により、出力されるデジタル電圧値(Vоutput)に誤差が生じることがある。したがって、電圧センサ150の既定の相関(変換テーブル)158を適宜較正(キャリブレーション)することが好ましい。
 次に、電圧センサ150の既定の相関(変換テーブル)158の較正について説明する。図15は、電圧センサ150の既定の相関158の較正に関する処理を示すフローチャートである。制御ユニット50は、電源10の充電中に取得されたアナログ電圧値又は前記デジタル電圧値の変化に基づき、相関158を較正可能に構成されていてよい。
 まず、閾値電圧を初期値に設定しておく(ステップS500)。ここで、閾値電圧の初期値は、デジタル電圧値の満充電電圧よりも小さい値に設定しておくことが好ましい。例えば、閾値電圧の初期値は、4.05Vである。
 制御ユニット50は、充電の開始を検知する(ステップS502)。充電の開始は、電装ユニット110への充電器200の接続により検知してもよい。充電が開始されると、制御ユニット50は、所定の時間ごとに電源10の電圧を取得する(ステップS504)。取得される電源10の電圧は、電圧センサ150から出力されたデジタル電圧値であってよい。
 次に、制御ユニット50は、取得した電源10の電圧が閾値電圧より高いかどうか判定する(ステップS506)。取得した電源10の電圧が閾値電圧以下である場合には、所定の時間経過後、再び電源10の電圧を取得し(ステップS504)、ステップS506に戻る。
 取得した電源10の電圧が閾値電圧より大きい場合には、閾値電圧の値を、取得した電源10の電圧値に更新する(ステップS508)。それから、制御ユニット50は、必要に応じて、電圧センサ150の既定の相関158を較正する(ステップS510)。
 次に、制御ユニット50は、充電が終了したかどうか判断する(ステップS512)。充電が終了していない場合、再び電源10の電圧を取得し(ステップS504)、ステップS506に戻る。制御ユニット50は、充電が終了するまでの期間において、電源10の電圧が閾値電圧より大きくなる度に電圧センサ150の既定の相関158を較正すればよい。この場合、制御ユニット50は、充電が終了した後に、電圧センサ150の既定の相関158を較正する処理(ステップS520)を実施する必要はない。
 この代わりに、制御ユニット50は、充電開始から充電が終了するまでの期間において、既定の相関158を較正しなくてもよい。すなわち、制御ユニット50は、ステップS510を実施する必要はない。この場合には、制御ユニット50は、充電が終了した後に、電圧センサ150の既定の相関158を較正する処理を実施する(ステップS520)。
 以上のように、制御ユニット50は、ステップS510とステップS520のうち、いずれか一方のタイミングで電圧センサ150の既定の相関158を較正する処理を実施すればよい。
 電源10の充電の終了後、所定のリセット条件が満たされると、閾値電圧は、再び初期値、例えば4.05Vにリセットされる(ステップS522)。リセット条件は、例えば、吸引成分生成装置100がOFFになることであってもよい。これは製品誤差や電源10の劣化等といった電圧センサ150が出力するデジタル電圧値(Voutput)に誤差を生じさせる要因が、吸引成分生成装置100がOFFになるなどのリセット条件が成立する度に変動する可能性があるためである。
 図15に示すフローチャートにおいて、吸引成分生成装置100の製造時又は起動時における閾値電圧は、電源10の満充電電圧よりも小さな値に設定されていることが好ましい。電圧センサ150のデジタル出力値に誤差が生じ得ることを考慮すると、初回の電源10の充電中に、電源10の電圧(アナログ電圧値)が満充電電圧に達したとしても、電圧センサ150のデジタル出力値が満充電電圧未満に留まることがある。したがって、吸引成分生成装置100の製造時又は起動時における閾値電圧を満充電電圧よりも小さな値に設定することで、吸引成分生成装置100の製造時又は起動時からの初回の充電時に、電圧センサ150の既定の相関158が較正されなくなることを防止することができる。
 より具体的には、吸引成分生成装置100の製造時又は起動時における閾値電圧は、電圧センサ150が出力し得る複数のデジタル電圧値のうち、電源10の満充電電圧(例えば4.2V)から製品誤差の絶対値を減算した値以下に設定されることが好ましい。例えば、電圧センサ150に±0.11V程度の誤差が生じ得る場合、吸引成分生成装置100の製造時又は起動時における閾値電圧は、4.09V以下に設定されていてよい。
 さらに、吸引成分生成装置100の製造時又は起動時における閾値電圧は、電圧センサ150が出力し得る複数のデジタル電圧値のうち、電源10の満充電電圧(例えば4.2V)から製品誤差の絶対値を減算した値以下の範囲内で最大の値に設定されることがより好ましい。このように吸引成分生成装置100の製造時又は起動時における閾値電圧を設定すれば、前述した吸引成分生成装置100の製造時又は起動時からの初回の充電時に電圧センサ150の既定の相関158が較正されなくなることを防止できる。さらに、吸引成分生成装置100の製造時又は起動時における閾値電圧を、電圧センサ150が出力し得る複数のデジタル電圧値のうち、電源10の満充電電圧(例えば4.2V)から製品誤差の絶対値を減算した値以下の範囲内で最大の値以外の値に設定した場合と比べて、電圧センサ150が頻繁に較正されることを抑制できる。
 例えば、デジタル電圧値の分解能が0.05V/bitであり、かつ電圧センサ150に±0.11V程度の誤差が生じ得る場合、吸引成分生成装置100の製造時又は起動時における閾値電圧は、4.05Vであってよい。これは、電源10の満充電電圧から製品誤差の絶対値を減算した値である4.09V以下の電圧値であって、電圧センサ150の出力し得るデジタル電圧値(例えば3.95V,4.00V,4.05V)のうち、最大のデジタル電圧値が4.05Vであることから明らかであろう。
 前述したフローチャートでは、制御ユニット50は、電源10の充電中に取得されたデジタル電圧値が閾値電圧よりも大きくなった場合に、既定の相関158の較正を行う。この代わりに、制御ユニット50は、電源10の充電中に取得されたデジタル電圧値が最大値又は極大値となった場合に、既定の相関158の較正を行ってもよい。
 電圧センサ150から出力されたデジタル電圧値の履歴を記録しておくことによって、制御ユニット50は、充電の開始から終了までに取得したデジタル電圧値の最大値を抽出することができる。
 また、充電中に電圧センサ150から出力されたデジタル電圧値の低下を検知することによって、制御ユニット50は、充電の開始から終了までに取得したデジタル電圧値の極大値を抽出することができる。
 なお、電圧センサ150の既定の相関158の較正は、前述したフローチャートで示されたタイミングで行われる必要はなく、例えば、充電中、充電後、又は吸引成分生成装置100の次の起動時のように、いずれもタイミングで行われても構わない。
 (既定の相関の較正)
 次に、電圧センサ150の既定の相関158の較正について説明する。制御ユニット50は、電源10の充電中に取得されたデジタル電圧値の最大値若しくは極大値、又は閾値電圧よりも大きいデジタル電圧値が、電源10の満充電電圧値に対応するように相関158を較正する。ここで、閾値電圧よりも大きいデジタル電圧値が、電源10の満充電電圧値に対応するように相関158を較正する場合であっても、電源10を満充電電圧まで充電すれば、最終的には、電源10の充電中の少なくても一部の区間において取得されたデジタル電圧値の最大値若しくは極大値が、電源10の満充電電圧値に対応するように相関158が較正される。
 電源10が満充電まで充電された場合、電源10の電圧は、満充電電圧に達している。また、電源10の満充電電圧は、参照電圧などの製品誤差や電源10の劣化等の電圧センサ150出力するデジタル電圧値(Voutput)に誤差を生じさせる要因から影響を受けにくいため、較正する際の基準として特に有用である。したがって、前述のように相関158を較正すると、満充電電圧に相当するアナログ電圧値が電圧センサ150に入力されたときに、電圧センサ150は、満充電電圧値に対応するデジタル電圧値を出力するようになる。これにより、電圧センサ150を適切に較正することができる。
 図16は、電圧センサ150の既定の相関158の較正の一例を示す図である。図16に示すように、既定の相関158は、アナログ電圧値とデジタル電圧値の対応づけをゲイン調整するよう較正されてもよい。ゲイン調整は、例えば、既定の相関158の縦軸の値(アナログ電圧値)又は横軸の値(デジタル電圧値)を一定の割合で増大又は減少させることによって実施できる。すなわち、ゲイン調整では、既定の相関158の傾き、より具体的には、既定の相関158の近似直線の傾きを調整する。
 図17は、電圧センサ150の既定の相関158の較正の別の一例を示す図である。図17に示すように、既定の相関158は、アナログ電圧値とデジタル電圧値の対応づけをオフセット調整するよう較正されてもよい。オフセット調整は、例えば、既定の相関158の縦軸の値(アナログ電圧値)を一定の値だけ増大又は減少させることによって実施できる。オフセット調整は、既定の相関158の切片、具体的には既定の相関158の近似直線の切片を一定の値だけ増大又は減少させるだけであるため、調整が容易というメリットがある。
 オフセット調整の前と後の両方で、放電終止電圧から満充電電圧の範囲において、アナログ電圧値とデジタル電圧値との関係性が規定されている必要がある。したがって、既定の相関158は、電源10の放電終止電圧よりも小さいデジタル電圧値とアナログ電圧値との対応付けと、電源10の満充電電圧よりも大きいデジタル電圧値とアナログ電圧値との対応付けの少なくとも一方を含んでいることが好ましい。
 既定の相関158は、一度較正されると、次に較正されるまで相関を変えることなく維持していてよい。この代わりに、既定の相関158は、吸引成分生成装置100のシャットダウン又はその後の起動時に、初期の相関に戻ってもよい。ここで、初期の相関は、吸引成分生成装置100の製造時における既定の相関であってよい。
 吸引成分生成装置100の製造時又は起動時において、既定の相関158は、電圧センサ150に誤差が無い場合の満充電電圧値に対応するアナログ電圧値よりも小さなアナログ電圧値が、満充電のデジタル電圧値に対応するよう較正又は設定されていることが好ましい。すなわち、吸引成分生成装置100の製造時又は起動時においては、満充電電圧よりも小さい所定のアナログ電圧値が電圧センサ150に入力されたときに、電圧センサ150は、満充電電圧に相当するデジタル電圧値を出力するよう設計される。例えば、吸引成分生成装置100の製造時又は起動時において、満充電電圧(4.2V)よりも小さい4.1Vのアナログ電圧値が電圧センサ150に入力されたときに、電圧センサ150は、満充電電圧に相当するデジタル電圧値(4.2V)を出力するよう設計されていてよい。これにより、電圧センサ150は、仮に製造誤差があったとしても、吸引成分生成装置100の製造時又は起動時において、実際のアナログ電圧値以上のデジタル電圧値を出力するよう構成される。
 この場合、吸引成分生成装置100の製造時又は起動時からの最初の充電において、制御ユニット50が満充電電圧に達したと認識する前に、実際の電源10のアナログ電圧値が満充電電圧を超えることを防止することができる。換言すれば、電源10の電圧の実値に対し、製造誤差などによって電圧センサ150が小さなデジタル電圧値を出力する場合に、電圧センサ150が電源10の満充電電圧に対応するデジタル電圧値を出力した時点で、電源10の電圧値が満充電電圧を超えて過充電に陥ることを抑制できる。したがって、制御ユニット50が電圧センサ150からの出力電圧値が満充電電圧を超えたときに充電を強制的に停止する処理を有していれば、電源10の過充電を防止することができる。
 吸引成分生成装置100の製造時又は起動時における既定の相関158は、電圧センサ150が出力し得る複数のデジタル電圧値のうち、電圧センサ150に製品誤差が無い場合の電源10の満充電電圧から製品誤差の絶対値を減算した値に最も近い値に対応するアナログ電圧値が満充電電圧値に対応するよう較正又は設定されていることがより好ましい。これにより、電源10の電圧を製品誤差などによって過少評価することで電源10が過充電状態になることを抑制できる。さらに、既定の相関158の初期状態において、アナログ電圧値とデジタル電圧値との間の数値の差が大きくなり、電源10の実値とこれに対応するデジタル電圧が乖離することを抑制することができる。
 (既定の相関の別の態様)
 図18は、別の実施例に係る電圧センサ150のブロックを示す図である。電圧センサ150の構成は、反転入力端子150-2と非反転入力端子150-3に入力される電圧と既定の相関(変換テーブル)158を除き、図14に示すものと同様である。
 本実施例では、変換テーブル158は、後述する参照電圧(Vref)156が電源10の電圧、例えば電源10の放電終止電圧よりもよりも小さい場合における相関を示している。この場合、既定の相関158は、小さなアナログ電圧値ほど大きなデジタル電圧値に対応付けられている。
 オペアンプを用いた一般的なA/Dコンバータでは、非反転入力端子に入力される値のデジタル値が、出力可能な最大のデジタル値に相当する。図14で示した実施例では、非反転入力端子150-3に一定な参照電圧(Vref)156が入力されるため、出力可能な最大のデジタル値は一定である。一方、図18に示す実施例では、非反転入力端子150-3に電源10の蓄電量によって変動する電源10の電圧(アナログ電圧(Vanalоg))が入力されるため、出力可能な最大のデジタル値は可変である。また、最大のデジタル値に対応するアナログ値は、最大のデジタル値とは関係なく、制御ユニット50や電圧センサ150の演算能力などから定まる。
 つまり、図14で示した実施例では、アナログ電圧値(Vinput)を反転入力端子150-2に入力される電源10の電圧のデジタル値に変換し、これをデジタル出力値(Vоutput)として出力する。また、図18に示す実施例では、アナログ電圧値(Vinput)を非反転入力端子150-3に入力された電源10の電源のデジタル値に変換し、これをデジタル出力値(Vоutput)として出力する。
 従って、図14で示した実施例では、まずは、一定な最大のデジタル値とこれに対応する一定のアナログ値から、変換テーブル158を導出する。次に、変換テーブル158に入力されるアナログ電圧値(Vinput)を、これに対応するデジタル電圧値(Vоutput)に変換して出力する。このデジタル電圧値(Vоutput)が反転入力端子150-2に入力された電源10の電圧のデジタル値に相当する。
 一方、図18に示す実施例では、まずは、一定なデジタル値とこれに対応するアナログ電圧値(Vinput)から、変換テーブル158を導出する。次に、変換テーブル158を用いて、最大のデジタル値に対応する一定なアナログ値をデジタル電圧値(Vоutput)に変換して出力する。このデジタル電圧値(Vоutput)が、非反転入力端子150-3に入力された電源10の電圧のデジタル値に相当する。
 具体的には、測定された又は既知であるデジタル値とこれに対応するアナログ値からなる座標と、予め定めたデジタル電圧値(Vоutput)とアナログ電圧値(Vinput)の関係を結び付けたものを、変換テーブル158として設定してもよい。一例として、デジタル電圧値(Vоutput)とアナログ電圧値(Vinput)の関係が、既定の切片を通る直線に近似する場合、この座標と切片が近似直線上に位置するように、変換テーブル158を設定してもよい。なお、デジタル電圧値(Vоutput)とアナログ電圧値(Vinput)の関係が、直線に限られず曲線によっても近似できることは、当業者にとって明らかであろう。
 図14及び図18で示した双方の実施例において、測定された又は既知であるデジタル値とこれに対応するアナログ値は、参照電圧(Vref)156のデジタル値とこれに対応するアナログ値である。図14で示した実施例では、非反転入端子150-3に参照電圧(Vref)156が入力されるため、参照電圧(Vref)156に対応するアナログ値を測定する必要はない。一方、図18に示す実施例では、反転入力端子150-2に参照電圧(Vref)156が入力されるため、参照電圧(Vref)156に対応するアナログ値を測定する必要がある点に留意されたい。
 なお、図14で示した実施例のように、アナログ電圧値(Vinput)を、オペアンプ150-1の反転入力端子150-2に入力された値のデジタル値に変換し、デジタル電圧値(Vоutput)として出力する形式では、大きなアナログ電圧値ほど大きなデジタル電圧値に対応付けられることが知られている。一方、図18に示す実施例のように、アナログ電圧値(Vinput)を、オペアンプ150-1の非反転入力端子150-3に入力された値のデジタル値に変換し、デジタル電圧値(Vоutput)として出力する形式では、小さなアナログ電圧値ほど大きなデジタル電圧値に対応付けられる点に留意されたい。
 ここで、既定の相関(変換テーブル)158は、電源の10の電圧(アナログ電圧(Vanalоg))が満充電電圧である場合に満充電電圧に相当するデジタル電圧値(Vоutput)を出力し、電源の10の電圧(アナログ電圧(Vanalоg)が放電終止電圧である場合に放電終止電圧に相当するデジタル電圧値(Vоutput)を出力するよう設定されていることが好ましい。
 しかしながら、製品誤差や電源10の劣化等により、出力されるデジタル電圧値(Vоutput)に誤差が生じることがある。したがって、電圧センサ150の既定の相関(変換テーブル)158を適宜較正(キャリブレーション)することが好ましい。
 既定の相関(変換テーブル)158の較正に関する制御は、前述したフローチャート(図15参照)と同様に実施することができる。前述した通り、既定の相関(変換テーブル)158の較正は、図16で示したゲイン補正や図17で示したオフセット補正によってなされてよいが、そのどちらにおいても、最大のデジタル値に対応するアナログ値を較正している点に留意されたい。
 ただし、吸引成分生成装置100の製造時又は起動時における既定の相関158は、電圧センサ150に誤差が無い場合の満充電電圧値に対応するアナログ電圧値よりも大きなアナログ電圧値(Vinput)が、満充電電圧値に対応するよう較正又は設定されていることが好ましい。すなわち、吸引成分生成装置100の製造時又は起動時においては、満充電電圧よりも小さい所定の電源10の電圧に対応付られたアナログ電圧値が電圧センサ150に入力されたときに、電圧センサ150は、満充電電圧に相当するデジタル電圧値を出力するよう設計される。例えば、吸引成分生成装置100の製造時又は起動時において、満充電電圧(4.2V)よりも小さい4.1Vに対応付られたアナログ電圧値が電圧センサ150に入力されたときに、電圧センサ150は、満充電電圧に相当するデジタル電圧値(4.2V)を出力するよう設計されていてよい。これにより、電圧センサ150は、仮に製造誤差があったとしても、吸引成分生成装置100の製造時又は起動時において、実際のアナログ電圧値以上のデジタル電圧値を出力するよう構成される。
 (制御ユニットにより取得される電源の電圧)
 制御ユニット50(制御部51)は、前述したすべての処理において電源10の電圧を取得する場合、電圧センサ150から出力されるデジタル電圧値(Vоutput)を取得してよい。すなわち、制御ユニット50(制御部51)は、較正された既定の相関158を用いて電圧センサ150が出力するデジタル電圧値に基づいて、前述した各種の制御を行うことが好ましい。これにより、制御ユニット50(制御部51)は、前述した各種の制御を精度よく実行することができる。
 例えば、前述した電力制御部は、電圧センサ150から出力されるデジタル電圧値に基づき、電源10から負荷121Rへの電力供給を制御してよい。より具体的には、電力制御部は、デジタル電圧値に基づき、電源10から負荷121Rへ供給する電力のPWM制御を実施すればよい。
 また、別の例では、制御ユニット50は、較正された相関158を用いて電圧センサ150が出力するデジタル電圧値に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知してもよい(第1診断機能及び/又は第2診断機能)。
 (プログラム及び記憶媒体)
 図7、図9、図12及び図15に示された前述のフローは、制御ユニット50が実行することができる。すなわち、制御ユニット50は、吸引成分生成装置100に前述の方法を実行させるプログラム、及び当該プログラムが格納された記憶媒体を有していてよい。さらに、図11、及び必要に応じて図12に示された前述のフローは、外部充電器200のプロセッサ250が実行することができる。すなわち、プロセッサ250は、吸引成分生成装置100と充電器200とを含むシステムに前述の方法を実行させるプログラム、及び当該プログラムが格納された記憶媒体を有していてよい。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、図9に示す第1診断機能において、制御ユニット50は、取得した電源10の電圧値が既定の電圧範囲にある間に動作した負荷121Rの動作量に関連する値に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知可能に構成されている。この代わりに、制御ユニット50は、取得した負荷121Rの動作量に関連する値が既定の範囲にある間に変化した電源10の電圧に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知可能に構成されていてもよい。この場合であっても、上記実施形態で説明した場合と同様に、電源10の劣化又は故障を推定又は検知できることに留意されたい。また、同様に、負荷121Rの動作量に関連する値を取得するステップと、取得した負荷121Rの動作量に関連する値が既定の範囲にある間に変化した電源10の電圧に基づき、電源10の劣化と故障のうち少なくとも一方を推定又は検知するステップと、を有する方法も、本発明の範囲に含まれる。さらに、このような方法を吸引成分生成装置100に実行させるプログラムも本発明の範囲に含まれることに留意されたい。

Claims (16)

  1.  電源からの電力により吸引成分源を気化又は霧化する負荷と、
     前記電源から前記負荷への電力供給を制御可能に構成された制御ユニットと、を含み、
     前記制御ユニットは、前記負荷の動作中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能と、前記電源の充電中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能と、を実行可能に構成されており、
     前記第1診断機能と前記第2診断機能は、互いに異なるアルゴリズムを含む、吸引成分生成装置。
  2.  前記第1診断機能及び前記第2診断機能は、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するための少なくとも1つのアルゴリズムを含み、
     前記第2診断機能に含まれる前記アルゴリズムの数は、前記第1診断機能に含まれる前記アルゴリズムの数よりも多い、請求項1に記載の吸引成分生成装置。
  3.  前記第1診断機能及び前記第2診断機能は、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するための少なくとも1つのアルゴリズムを含み、
     前記第2診断機能に含まれる同時に実行可能な前記アルゴリズムの数は、前記第1診断機能に含まれる同時に実行可能な前記アルゴリズムの数よりも多い、請求項1又は2に記載の吸引成分生成装置。
  4.  前記第1診断機能は1つの前記アルゴリズムのみを含む、請求項2又は3に記載の吸引成分生成装置。
  5.  前記電源の充電は前記吸引成分生成装置とは別体の外部充電器によって制御される、請求項1から4のいずれか1項に記載の吸引成分生成装置。
  6.  前記第1診断機能は、前記負荷の動作中に変化する前記電源の電圧値が既定の第1電圧範囲にある間に実行可能に構成され、
     前記第2診断機能は、前記電源の充電中に変化する前記電源の電圧値が既定の第2電圧範囲にある間に実行可能に構成され、
     前記第2電圧範囲は前記第1電圧範囲よりも広い、請求項1から5のいずれか1項に記載の吸引成分生成装置。
  7.  前記第1診断機能と前記第2診断機能のうち前記第2診断機能のみが、前記電源の電圧値が前記電源の放電終止電圧未満で実行可能に構成されている、請求項1から6のいずれか1項に記載の吸引成分生成装置。
  8.  前記吸引成分生成装置の状態を出力する複数のセンサを含み、
     前記第2診断機能を実行するために必要な前記センサの数は、前記第1診断機能を実行するために必要な前記センサの数よりも少ない、請求項1から7のいずれか1項に記載の吸引成分生成装置。
  9.  前記複数のセンサは、前記負荷の動作を要求する信号を出力可能な要求センサを含み、
     前記第1診断機能は、前記要求センサを利用することにより実行可能であり、
     前記第2診断機能は、前記要求センサを利用することなく実行可能である、請求項8に記載の吸引成分生成装置。
  10.  前記複数のセンサは、前記電源の電圧値を出力する電圧センサを含み、
     前記第1診断機能及び前記第2診断機能は、前記電圧センサの利用により実行可能である、請求項8又は9に記載の吸引成分生成装置。
  11.  前記電源のアナログ電圧値を規定の相関を用いてデジタル電圧値に変換し、前記デジタル電圧値を出力する電圧センサを含み、
     前記第1診断機能及び前記第2診断機能は、前記電圧センサの利用により実行可能であり、
     前記制御ユニットは、前記電源の充電中における前記電源の電圧変化に基づき、前記相関を較正可能に構成されている、請求項1から10のいずれか1項に記載の吸引成分生成装置。
  12.  前記第2診断機能は、充電中に前記電源に供給される電力量に対する前記電源の電圧値の変化に基づき、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するアルゴリズムを含む、請求項1から11のいずれか1項に記載の吸引成分生成装置。
  13.  前記第1診断機能は、前記負荷の動作中における前記電源の電圧値の変化に基づき、前記電源の劣化と故障のうち少なくとも一方を推定又は検知するアルゴリズムを含む、請求項1から12のいずれか1項に記載の吸引成分生成装置。
  14.  電源からの電力により吸引成分源を気化又は霧化する負荷を含む吸引成分生成装置を制御する方法であって、
     前記負荷の動作中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能を実行するステップと、
     前記電源の充電中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能であって、前記第1診断機能とは異なるアルゴリズムを用いて第2診断機能を実行するステップと、を含む、方法。
  15.  請求項14に記載された方法を吸引成分生成装置に実行させるプログラム。
  16.  電源からの電力により吸引成分源を気化又は霧化する負荷と、前記電源から前記負荷への電力供給を制御可能に構成された第1制御ユニットと、を備える吸引成分生成装置と、
     前記電源への充電を制御可能に構成された第2制御ユニットを備えた外部充電器と、を含み、
     前記第1制御ユニットは、前記負荷の動作中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第1診断機能を実行可能に構成され、
     前記第2制御ユニットは、前記電源の充電中に前記電源の劣化と故障のうち少なくとも一方を推定又は検知する第2診断機能と、を実行可能に構成されており、
     前記第1診断機能と前記第2診断機能は、互いに異なるアルゴリズムを含む、吸引成分生成システム。
PCT/JP2017/037755 2017-10-18 2017-10-18 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム WO2019077709A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2017/037755 WO2019077709A1 (ja) 2017-10-18 2017-10-18 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム
CN201780096111.9A CN111246756B (zh) 2017-10-18 2017-10-18 吸引成分生成装置、控制吸引成分生成装置的方法、吸引成分生成系统、以及程序
JP2019549057A JP6752375B2 (ja) 2017-10-18 2017-10-18 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム
EP17929279.2A EP3698658B1 (en) 2017-10-18 2017-10-18 Inhalation component generation device and inhalation component generation system
KR1020207013246A KR102467946B1 (ko) 2017-10-18 2017-10-18 흡인성분 생성 장치, 흡인성분 생성 장치를 제어하는 방법, 흡인성분 생성 시스템, 및 프로그램
CA3079154A CA3079154C (en) 2017-10-18 2017-10-18 Inhalation component generation device, system, control method, and program
EA202090963A EA039450B1 (ru) 2017-10-18 2017-10-18 Устройство, генерирующее компонент для вдыхания, способ управления устройством, генерирующим компонент для вдыхания, система, генерирующая компонент для вдыхания, и программа
TW106137763A TWI718345B (zh) 2017-10-18 2017-11-01 吸嚐成分生成裝置及吸嚐成分生成系統
US16/851,135 US11399572B2 (en) 2017-10-18 2020-04-17 Inhalation component generation device, method of controlling inhalation component generation device, inhalation component generation system, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037755 WO2019077709A1 (ja) 2017-10-18 2017-10-18 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/851,135 Continuation US11399572B2 (en) 2017-10-18 2020-04-17 Inhalation component generation device, method of controlling inhalation component generation device, inhalation component generation system, and program

Publications (1)

Publication Number Publication Date
WO2019077709A1 true WO2019077709A1 (ja) 2019-04-25

Family

ID=66173678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037755 WO2019077709A1 (ja) 2017-10-18 2017-10-18 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム

Country Status (9)

Country Link
US (1) US11399572B2 (ja)
EP (1) EP3698658B1 (ja)
JP (1) JP6752375B2 (ja)
KR (1) KR102467946B1 (ja)
CN (1) CN111246756B (ja)
CA (1) CA3079154C (ja)
EA (1) EA039450B1 (ja)
TW (1) TWI718345B (ja)
WO (1) WO2019077709A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905911A4 (en) * 2020-03-09 2021-12-29 KT & G Corporation An aerosol generating apparatus and a method for controlling the same
WO2022030355A1 (ja) * 2020-08-04 2022-02-10 株式会社Gsユアサ 蓄電装置、蓄電システム、内部抵抗推定方法及びコンピュータプログラム
WO2022239280A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
WO2022239279A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011374A (ko) * 2018-05-18 2021-02-01 필립모리스 프로덕츠 에스.에이. 자체 진단을 포함하는 에어로졸 발생 기기
EP3808197A4 (en) * 2018-06-14 2022-01-12 Japan Tobacco Inc. POWER SUPPLY UNIT AND DEVICE, METHOD AND PROGRAM FOR AROMA GENERATION
WO2020035899A1 (ja) 2018-08-13 2020-02-20 日本たばこ産業株式会社 香味生成システム、方法及びプログラム
US11456590B2 (en) 2019-05-24 2022-09-27 Cheng Uei Precision Industry Co., Ltd. Short circuit detection module and short circuit detection method applied thereto
CN111820482B (zh) * 2020-06-29 2023-07-18 深圳麦克韦尔科技有限公司 电池杆、雾化器及电子雾化装置
JP6865879B1 (ja) * 2020-09-07 2021-04-28 日本たばこ産業株式会社 エアロゾル発生システム、吸引器用コントローラ、および電源装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128416A (ja) 1993-11-04 1995-05-19 Mitsubishi Motors Corp 電気自動車用バッテリ残存容量計
JPH07184627A (ja) 1993-09-10 1995-07-25 Philip Morris Prod Inc 香味を送り込む電気喫煙装置およびその製造方法
JPH1152033A (ja) 1997-08-07 1999-02-26 Mitsubishi Motors Corp バッテリの劣化判定装置
JPH11237455A (ja) * 1998-02-20 1999-08-31 Sony Corp 電池の電圧検出回路と電池の電圧検出方法
JP2000251948A (ja) 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd 鉛酸蓄電池の容量推定方法
JP2003317811A (ja) 2002-04-24 2003-11-07 Japan Storage Battery Co Ltd 充電監視装置
JP2010050045A (ja) 2008-08-25 2010-03-04 Panasonic Electric Works Co Ltd 充電器
WO2014046232A1 (ja) 2012-09-21 2014-03-27 日産自動車株式会社 充電状態演算装置及び充電状態演算方法
WO2014150942A2 (en) 2013-03-15 2014-09-25 Altria Client Services Inc. System and method of obtaining smoking topography data
JP2016176709A (ja) 2015-03-18 2016-10-06 積水化学工業株式会社 二次電池劣化検出システム、二次電池劣化検出方法
JP2016215836A (ja) * 2015-05-20 2016-12-22 日野自動車株式会社 バッテリ劣化判定装置
JP2017005985A (ja) 2015-06-15 2017-01-05 株式会社Gsユアサ 二次電池の監視装置、電池パック、二次電池の保護システム、車両
JP2017022852A (ja) 2015-07-09 2017-01-26 株式会社豊田自動織機 蓄電装置及び蓄電方法
WO2017013823A1 (ja) * 2015-07-21 2017-01-26 ソニー株式会社 充電方法、電池装置、充電装置、劣化診断方法、電池パック、電動車両及び蓄電装置
JP2017514463A (ja) 2014-04-30 2017-06-08 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電池表示を備えたエアロゾル発生装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170381B2 (ja) 1993-02-12 2001-05-28 オムロン株式会社 電池の寿命判定装置
JPH07239735A (ja) 1994-02-28 1995-09-12 Pfu Ltd バッテリコントローラ
JP2776764B2 (ja) 1995-07-13 1998-07-16 日本電気フィールドサービス株式会社 バッテリの寿命判定装置
JP2001094661A (ja) 1999-09-24 2001-04-06 Funai Electric Co Ltd 通信端末装置
JP4078018B2 (ja) 2000-07-12 2008-04-23 富士通株式会社 電子装置および消費電力実測支援装置
US6816797B2 (en) 2000-09-29 2004-11-09 Hydrogenics Corporation System and method for measuring fuel cell voltage and high frequency resistance
JP2002145543A (ja) * 2000-11-09 2002-05-22 Mitsubishi Electric Corp エレベータの制御装置
JP2002148323A (ja) 2000-11-14 2002-05-22 Sony Corp 測定装置の検査装置および検査方法
GB2376360B (en) * 2001-06-08 2005-08-24 Delta Electrical Ltd Measuring device
JP3743337B2 (ja) 2001-09-26 2006-02-08 日産自動車株式会社 バッテリの劣化判定装置および劣化判定方法
CN101228696B (zh) 2005-06-16 2011-03-23 高通股份有限公司 用于增益误差校正的误差校正电路和模数转换器
JP4621135B2 (ja) 2005-12-22 2011-01-26 東芝テック株式会社 2次電池駆動プリンタ
JP4853021B2 (ja) 2005-12-28 2012-01-11 パナソニック株式会社 アナログデジタル変換装置とそれを用いた車両用電源装置
JP2010122162A (ja) 2008-11-21 2010-06-03 Panasonic Corp 電源装置
CN102970885B (zh) * 2010-04-30 2015-05-20 洛艾克有限公司 电子吸烟设备
JP2012070474A (ja) 2010-09-21 2012-04-05 Denso Wave Inc 携帯端末
KR101146404B1 (ko) * 2010-12-20 2012-05-17 삼성에스디아이 주식회사 배터리 관리 시스템 및 그를 포함하는 배터리 팩
EP2468118A1 (en) 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system with means for disabling a consumable
US8903228B2 (en) 2011-03-09 2014-12-02 Chong Corporation Vapor delivery devices and methods
JP6187936B2 (ja) 2011-04-22 2017-08-30 チョン・コーポレーション 薬剤送達システム
EP2701268A1 (en) * 2012-08-24 2014-02-26 Philip Morris Products S.A. Portable electronic system including charging device and method of charging a secondary battery
JP2014048101A (ja) 2012-08-30 2014-03-17 Sato Holdings Corp プリンタに用いられる2次電池の良否判定装置及び該プリンタ
CN103675685B (zh) 2012-09-14 2016-11-02 清华大学 锂离子电池的测试方法及安全性的判断方法
US20150189916A1 (en) * 2012-09-29 2015-07-09 Ahmad Thaer Electronic smoking device
KR101428862B1 (ko) 2012-10-10 2014-08-12 노둘래 현미유자후레이크 및 그 제조방법
TWI622501B (zh) 2012-12-03 2018-05-01 可樂麗股份有限公司 液壓轉印用基膜、其製造方法、液壓轉印用膜、以及液壓轉印方法
JP2014150942A (ja) 2013-02-07 2014-08-25 Toshiba Home Technology Corp ヘアードライヤー
CN104348141B (zh) * 2013-07-31 2018-08-14 惠州市吉瑞科技有限公司 一种用于电子烟的过流过压保护电路及方法
EP2856893B2 (en) * 2013-10-02 2023-10-04 Fontem Holdings 1 B.V. Electronic smoking device
GB2519101A (en) 2013-10-09 2015-04-15 Nicoventures Holdings Ltd Electronic vapour provision system
WO2015192357A1 (zh) * 2014-06-19 2015-12-23 吉瑞高新科技股份有限公司 一种电子烟
PL3182847T3 (pl) * 2014-08-22 2024-07-01 Fontem Ventures B.V. Sposób, układ i urządzenie do sterowania elementem grzejnym
WO2016075747A1 (ja) 2014-11-10 2016-05-19 日本たばこ産業株式会社 非燃焼型香味吸引器及びパッケージ
JP6251418B2 (ja) 2014-11-10 2017-12-20 日本たばこ産業株式会社 非燃焼型香味吸引器
CN205214209U (zh) * 2015-10-21 2016-05-11 惠州市吉瑞科技有限公司深圳分公司 一种电子烟
US20170119052A1 (en) * 2015-10-30 2017-05-04 R.J. Reynolds Tobacco Company Application specific integrated circuit (asic) for an aerosol delivery device
JP6824614B2 (ja) 2016-03-17 2021-02-03 ニシム電子工業株式会社 劣化判定装置及び劣化判定方法
JP6176383B1 (ja) 2016-10-24 2017-08-09 富士電機株式会社 鉛蓄電池装置、無停電電源装置、電源システム、鉛蓄電池の制御装置、鉛蓄電池の制御方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184627A (ja) 1993-09-10 1995-07-25 Philip Morris Prod Inc 香味を送り込む電気喫煙装置およびその製造方法
JPH07128416A (ja) 1993-11-04 1995-05-19 Mitsubishi Motors Corp 電気自動車用バッテリ残存容量計
JPH1152033A (ja) 1997-08-07 1999-02-26 Mitsubishi Motors Corp バッテリの劣化判定装置
JPH11237455A (ja) * 1998-02-20 1999-08-31 Sony Corp 電池の電圧検出回路と電池の電圧検出方法
JP2000251948A (ja) 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd 鉛酸蓄電池の容量推定方法
JP2003317811A (ja) 2002-04-24 2003-11-07 Japan Storage Battery Co Ltd 充電監視装置
JP2010050045A (ja) 2008-08-25 2010-03-04 Panasonic Electric Works Co Ltd 充電器
WO2014046232A1 (ja) 2012-09-21 2014-03-27 日産自動車株式会社 充電状態演算装置及び充電状態演算方法
WO2014150942A2 (en) 2013-03-15 2014-09-25 Altria Client Services Inc. System and method of obtaining smoking topography data
JP2017514463A (ja) 2014-04-30 2017-06-08 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電池表示を備えたエアロゾル発生装置
JP2016176709A (ja) 2015-03-18 2016-10-06 積水化学工業株式会社 二次電池劣化検出システム、二次電池劣化検出方法
JP2016215836A (ja) * 2015-05-20 2016-12-22 日野自動車株式会社 バッテリ劣化判定装置
JP2017005985A (ja) 2015-06-15 2017-01-05 株式会社Gsユアサ 二次電池の監視装置、電池パック、二次電池の保護システム、車両
JP2017022852A (ja) 2015-07-09 2017-01-26 株式会社豊田自動織機 蓄電装置及び蓄電方法
WO2017013823A1 (ja) * 2015-07-21 2017-01-26 ソニー株式会社 充電方法、電池装置、充電装置、劣化診断方法、電池パック、電動車両及び蓄電装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905911A4 (en) * 2020-03-09 2021-12-29 KT & G Corporation An aerosol generating apparatus and a method for controlling the same
US12089655B2 (en) 2020-03-09 2024-09-17 Kt&G Corporation Aerosol generating apparatus and a method for controlling the same
WO2022030355A1 (ja) * 2020-08-04 2022-02-10 株式会社Gsユアサ 蓄電装置、蓄電システム、内部抵抗推定方法及びコンピュータプログラム
WO2022239280A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
WO2022239279A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット

Also Published As

Publication number Publication date
EP3698658A1 (en) 2020-08-26
TW201916820A (zh) 2019-05-01
KR20200068703A (ko) 2020-06-15
EA039450B1 (ru) 2022-01-28
JPWO2019077709A1 (ja) 2020-07-02
CN111246756B (zh) 2023-10-20
US11399572B2 (en) 2022-08-02
EA202090963A1 (ru) 2020-07-16
EP3698658A4 (en) 2020-11-18
CA3079154C (en) 2023-03-14
KR102467946B1 (ko) 2022-11-17
CN111246756A (zh) 2020-06-05
JP6752375B2 (ja) 2020-09-09
EP3698658B1 (en) 2022-07-20
CA3079154A1 (en) 2019-04-25
US20200281276A1 (en) 2020-09-10
TWI718345B (zh) 2021-02-11

Similar Documents

Publication Publication Date Title
JP6694119B2 (ja) 吸引成分生成装置、吸引成分生成装置を制御する方法、及びプログラム
US11944126B2 (en) Inhalation component generation device, method of controlling inhalation component generation device, and program
US11399572B2 (en) Inhalation component generation device, method of controlling inhalation component generation device, inhalation component generation system, and program
CA3079164C (en) Inhalation component generation device, method for controlling inhalation component generation device, and program
JP2021072819A (ja) 吸引成分生成装置、吸引成分生成装置を制御する方法、及びプログラム
JP2020195386A (ja) 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム
JP6891357B2 (ja) 吸引成分生成装置、吸引成分生成装置を制御する方法、及びプログラム
JP7510996B2 (ja) 吸引成分生成装置、吸引成分生成装置を制御する方法、及びプログラム
JP7289960B2 (ja) 吸引成分生成装置、吸引成分生成装置を制御する方法、吸引成分生成システム、及びプログラム
JP2022008114A (ja) 吸引成分生成装置、吸引成分生成装置を制御する方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549057

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3079154

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013246

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017929279

Country of ref document: EP

Effective date: 20200518