[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018225122A1 - 内視鏡装置 - Google Patents

内視鏡装置 Download PDF

Info

Publication number
WO2018225122A1
WO2018225122A1 PCT/JP2017/020796 JP2017020796W WO2018225122A1 WO 2018225122 A1 WO2018225122 A1 WO 2018225122A1 JP 2017020796 W JP2017020796 W JP 2017020796W WO 2018225122 A1 WO2018225122 A1 WO 2018225122A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fluorescence
signal
imaging
visible light
Prior art date
Application number
PCT/JP2017/020796
Other languages
English (en)
French (fr)
Inventor
祐輔 山本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/020796 priority Critical patent/WO2018225122A1/ja
Publication of WO2018225122A1 publication Critical patent/WO2018225122A1/ja
Priority to US16/698,222 priority patent/US11457800B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Definitions

  • the present invention relates to an endoscope apparatus.
  • a fluorescence endoscope apparatus capable of acquiring a visible light image and a fluorescence image in one system is known.
  • the visible light image is used to acquire morphological information of an observation object which is a living body or the like.
  • the fluorescence image is used to diagnose the presence or absence of a tumor in vivo.
  • the fluorescence endoscope apparatus disclosed in Patent Document 1 can acquire a plurality of types of fluorescence images in addition to the visible light image.
  • the fluorescence image is based on autofluorescence originally existing in the living body and fluorescence from a fluorescent drug administered into the body.
  • a fluorescence image based on autofluorescence from collagen irradiated with a certain excitation light is acquired, and a fluorescence image based on fluorescence from a tumor irradiated with another excitation light is acquired.
  • the fluorescence from the tumor is that from the fluorescent drug Alexa 680, which has been administered.
  • the fluorescence endoscope apparatus shown in Patent Document 1 by being able to acquire a plurality of types of fluorescence images in addition to a normal visible light image, it is possible to further improve the performance of diagnosis such as the presence or absence of a tumor.
  • FIG. 30 shows the configuration of the excitation wavelength selection filter 60.
  • the excitation wavelength selection filter 60 has a first filter 61, a second filter 62, and a third filter 63.
  • the excitation wavelength selection filter 60 rotates about the rotation axis 64.
  • FIG. 31 shows the spectral transmission characteristics of the first filter 61.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the first filter 61 transmits only light in a band whose wavelength is near 400 nm. That is, the first filter 61 transmits only light that excites collagen. Below, the light which excites collagen is defined as 1st excitation light.
  • FIG. 32 shows the spectral transmission characteristics of the second filter 62.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the second filter 62 transmits only light in a band whose wavelength is around 680 nm. That is, the second filter 62 transmits only the light that excites Alexa 680.
  • the light which excites Alexa 680 is defined as 2nd excitation light.
  • FIG. 33 shows the spectral transmission characteristics of the third filter 63.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the third filter 63 transmits only light in a band whose wavelength is near 400 nm to near 600 nm. That is, the third filter 63 transmits only visible light.
  • An excitation wavelength blocking filter is disposed in front of the imaging device.
  • FIG. 34 shows the spectral transmission characteristics of the excitation wavelength cutoff filter.
  • the excitation wavelength blocking filter blocks the first excitation light and the second excitation light, and transmits visible light, fluorescence from collagen, and fluorescence from Alexa 680.
  • the fluorescence from collagen is defined as the first fluorescence and the fluorescence from Alexa 680 as the second fluorescence.
  • FIG. 35 shows the spectral characteristics of excitation light and fluorescence.
  • the abscissa of the graph indicates the wavelength, and the ordinate of the graph indicates the excitation light intensity or the fluorescence intensity.
  • the first excitation light E1001 is light that excites collagen.
  • the second excitation light E1002 is light for exciting Alexa 680.
  • the first fluorescence F1001 is fluorescence emitted from the collagen irradiated with the first excitation light E1001.
  • the second fluorescence F1002 is fluorescence emitted from Alexa 680 irradiated with the second excitation light E1002.
  • the excitation wavelength selection filter 60 rotates, visible light, the first excitation light, and the second excitation light are sequentially applied to the living body. Thereby, the reflected light from the living body, the first fluorescence by the first excitation light, and the second fluorescence by the second excitation light are sequentially emitted. The reflection light of the first excitation light and the reflection light of the second excitation light are blocked by the excitation wavelength blocking filter disposed in front of the imaging element. Therefore, the imaging device can sequentially acquire reflected light (visible light) from the living body, the first fluorescence, and the second fluorescence.
  • the fluorescence endoscope apparatus of the prior art acquires a visible light image and a plurality of types of fluorescence images by sequentially emitting visible light and a plurality of types of excitation light to an observation target. From acquisition of a visible light image at a certain point in time to acquisition of the next visible light image, it is necessary to apply time for irradiating plural kinds of excitation light for acquiring plural kinds of fluorescence images. Therefore, an interval becomes long after acquiring a visible light image until acquiring the next visible light image.
  • the visible light image is used to observe the morphological information of the observation object.
  • the movement of a digestive organ or the like in the living body may be large.
  • the difference between the form of the observation object obtained from the visible light image acquired at a certain time point and the form of the observation object obtained from the visible light image acquired at the next time point becomes large.
  • the frame rate of the visible light image is low, and the visible light image becomes an image in which a large frame jump occurs. Therefore, it becomes difficult to grasp the form information of the observation object.
  • An object of the present invention is to provide an endoscope apparatus capable of suppressing a decrease in a frame rate of a visible light image and acquiring a visible light image and a plurality of types of fluorescent images.
  • an endoscope apparatus includes a light source unit, an imaging unit, an excitation wavelength blocking filter, and a signal processing unit.
  • the light source unit includes visible light, a first excitation light for exciting a first fluorescent substance present in an observation object, and a second for exciting a second fluorescent substance present in the observation object It emits excitation light.
  • the imaging unit includes the visible light reflected by the observation object, a first fluorescence emitted from the observation object by the first excitation light, and a second fluorescence emitted from the observation object by the second excitation light. And outputs a first imaging signal and a second imaging signal.
  • the excitation wavelength blocking filter is disposed in an optical path from the observation object to the imaging unit, blocks the wavelength band of the first excitation light and the wavelength band of the second excitation light, and the wavelength band of the visible light And the wavelength band of the first fluorescence and the wavelength band of the second fluorescence.
  • the signal processing unit is configured to generate a visible light image based on the reflected light of the visible light based on the first imaging signal and the second imaging signal output from the imaging unit, and a first fluorescence based on the first fluorescence. An image and a second fluorescence image based on the second fluorescence are generated.
  • the light source unit sequentially emits the first illumination light and the second illumination light.
  • the first illumination light includes the visible light.
  • the second illumination light includes the first excitation light.
  • At least one of the first illumination light and the second illumination light includes the second excitation light.
  • the first imaging signal is based on the reflected light of the visible light.
  • the second imaging signal is based on the first fluorescence. At least one of the first imaging signal and the second imaging signal is further based on the second fluorescence.
  • the light source unit may have a light source and a rotating filter.
  • the light source may emit light in a wavelength band including at least wavelength bands of the visible light, the first excitation light, and the second excitation light.
  • the rotary filter may be disposed in a light path of light emitted from the light source, and the first filter and the second filter may be disposed in a circumferential direction.
  • the first filter transmits the visible light.
  • the second filter may transmit the first excitation light. At least one of the first filter and the second filter may transmit the second excitation light.
  • the first illumination light may include the visible light and the second excitation light.
  • the imaging unit is a first signal which is an imaging signal based on the reflected light of the visible light, and an imaging signal which is an imaging signal based on the second fluorescence Two signals may be output as the first imaging signal.
  • the signal processing unit When the first illumination light is irradiated to the observation target, the signal processing unit generates the visible light image based on the first signal, and the second fluorescence image based on the second signal. May be generated.
  • the second illumination light may include the first excitation light and the second excitation light.
  • the imaging unit When the second illumination light is irradiated to the observation target, the imaging unit is a third signal which is an imaging signal based on the first fluorescence and the second fluorescence, and an imaging signal based on the second fluorescence. A certain fourth signal may be output as the second imaging signal.
  • the signal processing unit When the second illumination light is irradiated to the observation target, the signal processing unit generates the first fluorescence image based on the third signal and the fourth signal, and based on the fourth signal. The second fluorescence image may be generated.
  • the imaging unit may include a first substrate, a second substrate stacked on the first substrate, and an optical filter.
  • the first substrate may have a plurality of first pixels arranged in a two-dimensional manner, and may output the first signal and the third signal.
  • the second substrate may have a plurality of second pixels arranged in a two-dimensional manner, and may output the second signal and the fourth signal.
  • the imaging unit may output the first signal and the second signal.
  • the imaging unit may output the third signal and the fourth signal.
  • the optical filter is disposed between the first substrate and the second substrate, and is an optical component that blocks the wavelength band of the visible light and the wavelength band of the first fluorescence and transmits the wavelength band of the second fluorescence. It may have characteristics.
  • the first illumination light may include the visible light and the second excitation light.
  • the imaging unit is a first signal which is an imaging signal based on the reflected light of the visible light, and an imaging signal which is an imaging signal based on the second fluorescence Two signals may be output as the first imaging signal.
  • the signal processing unit When the first illumination light is irradiated to the observation target, the signal processing unit generates the visible light image based on the first signal, and the second fluorescence image based on the second signal. May be generated.
  • the second illumination light may include the first excitation light and the second excitation light.
  • the imaging unit may generate a third signal which is an imaging signal based on the first fluorescence, and a fourth signal which is an imaging signal based on the second fluorescence. May be output as the second imaging signal.
  • the signal processing unit When the second illumination light is irradiated to the observation target, the signal processing unit generates the first fluorescence image based on the third signal, and the second fluorescence based on the fourth signal. An image may be generated.
  • the endoscope apparatus may have a light separation element.
  • the light separation element separates the reflected light and the second fluorescence of the visible light, and separates the first fluorescence and the second fluorescence.
  • the imaging unit may include a first imaging device and a second imaging device. The reflected light of the visible light and the first fluorescence separated by the light separation element may be incident on the first imaging element. The second fluorescence separated by the light separation element may be incident on the second imaging element.
  • the first imaging device may output the first signal and the second imaging device may output the second signal when the first illumination light is irradiated to the observation target.
  • the first imaging device may output the third signal and the second imaging device may output the fourth signal when the observation target is irradiated with the second illumination light.
  • the light source unit is a light of a wavelength band including at least one wavelength band of the visible light, the first excitation light, and the second excitation light.
  • the light emitting device may have a plurality of light emitting elements capable of selectively emitting light.
  • each of the plurality of light emitting elements may be a light emitting diode.
  • an endoscope apparatus includes a light source unit, an imaging unit, an excitation wavelength blocking filter, and a signal processing unit.
  • the light source unit includes visible light, a first excitation light for exciting a first fluorescent substance present in an observation object, and a second for exciting a second fluorescent substance present in the observation object It emits excitation light.
  • the imaging unit includes the visible light reflected by the observation object, a first fluorescence emitted from the observation object by the first excitation light, and a second fluorescence emitted from the observation object by the second excitation light. And outputs a first imaging signal and a second imaging signal.
  • the excitation wavelength blocking filter is disposed in an optical path from the observation object to the imaging unit, blocks the wavelength band of the first excitation light and the wavelength band of the second excitation light, and the wavelength band of the visible light And the wavelength band of the first fluorescence and the wavelength band of the second fluorescence.
  • the signal processing unit is configured to generate a visible light image based on the reflected light of the visible light based on the first imaging signal and the second imaging signal output from the imaging unit, and a first fluorescence based on the first fluorescence. An image and a second fluorescence image based on the second fluorescence are generated.
  • the light source unit sequentially emits the first illumination light and the second illumination light.
  • the first illumination light includes the first excitation light.
  • the second illumination light includes the second excitation light.
  • At least one of the first illumination light and the second illumination light includes the visible light.
  • the first imaging signal is based on the first fluorescence.
  • the second imaging signal is based on the second fluorescence. At least one of the first imaging signal and the second imaging signal is further based on the reflected light of the visible light.
  • the light source unit may have a light source and a rotating filter.
  • the light source may emit light in a wavelength band including at least wavelength bands of the visible light, the first excitation light, and the second excitation light.
  • the rotary filter may be disposed in a light path of light emitted from the light source, and the first filter and the second filter may be disposed in a circumferential direction.
  • the first filter may transmit the first excitation light.
  • the second filter may transmit the second excitation light. At least one of the first filter and the second filter may transmit the visible light.
  • the first illumination light may include the visible light and the first excitation light.
  • the imaging unit is a first signal which is an imaging signal based on the reflected light of the visible light and an imaging signal which is an imaging signal based on the first fluorescence. Two signals may be output as the first imaging signal.
  • the signal processing unit When the first illumination light is irradiated to the observation target, the signal processing unit generates the visible light image based on the first signal, and the first fluorescent image based on the second signal. May be generated.
  • the second illumination light may include the visible light and the second excitation light.
  • the imaging unit may be configured to generate a third signal which is an imaging signal based on the reflected light of the visible light and an imaging signal which is an imaging signal based on the second fluorescence. Four signals may be output as the second imaging signal.
  • the signal processing unit When the second illumination light is irradiated to the observation target, the signal processing unit generates the visible light image based on the third signal, and the second fluorescent image based on the fourth signal. May be generated.
  • the imaging unit may have a first substrate, a second substrate laminated on the first substrate, and an optical filter.
  • the first substrate may have a plurality of first pixels arranged in a two-dimensional manner, and may output the first signal and the third signal.
  • the second substrate may have a plurality of second pixels arranged in a two-dimensional manner, and may output the second signal and the fourth signal.
  • the imaging unit may output the first signal and the second signal.
  • the imaging unit may output the third signal and the fourth signal.
  • the optical filter is disposed between the first substrate and the second substrate, and is an optical component that blocks the wavelength band of the visible light and transmits the wavelength band of the first fluorescence and the wavelength band of the second fluorescence. It may have characteristics.
  • the endoscope apparatus may have a light separation element.
  • the light separation element may separate the reflected light of the visible light and the first fluorescence, and separate the reflected light of the visible light and the second fluorescence.
  • the imaging unit may include a first imaging device and a second imaging device. The reflected light of the visible light separated by the light separation element may be incident on the first imaging element. The first fluorescence and the second fluorescence separated by the light separation element may be incident on the second imaging element.
  • the first imaging device may output the first signal and the second imaging device may output the second signal when the first illumination light is irradiated to the observation target.
  • the second imaging device may output the third signal and the second imaging device may output the fourth signal when the second illumination light is irradiated to the observation target.
  • the light source unit is a light of a wavelength band including at least one wavelength band of the visible light, the first excitation light, and the second excitation light.
  • the light emitting device may have a plurality of light emitting elements capable of selectively emitting light.
  • each of the plurality of light emitting elements may be a light emitting diode.
  • the first fluorescent substance may be collagen
  • the second fluorescent substance may be Alexa 680.
  • the first fluorescent substance is protoporphyrin IX
  • the second fluorescent substance is indocyanine green. It is also good.
  • the signal processing unit is configured to display the visible light image, the first fluorescence image, and the second fluorescence in a display image.
  • the display image including the visible light image and at least one of the first fluorescence image and the second fluorescence image may be generated such that at least one of the images is separated.
  • the signal processing unit determines at least a part of the visible light image in the display image, the first fluorescence image, and The display image including the visible light image and at least one of the first fluorescence image and the second fluorescence image may be generated such that at least a portion of at least one of the second fluorescence image overlaps.
  • the endoscope apparatus can suppress the decrease in the frame rate of the visible light image, and can acquire the visible light image and a plurality of types of fluorescent images.
  • FIG. 23 shows the excitation light absorption characteristics of collagen.
  • FIG. 24 shows the fluorescence spectrum of collagen.
  • the abscissa of the graph indicates the wavelength, and the ordinate of the graph indicates the intensity.
  • the wavelength of excitation light at which the autofluorescence of collagen is maximum is around 340 nm. As shown in FIG. 24, the wavelength at which the autofluorescence of collagen is maximum is around 380 nm. Therefore, by irradiating excitation light with a wavelength of 300 nm to 350 nm into a living body and detecting light with a wavelength of 380 nm to 550 nm, autofluorescence of collagen can be detected.
  • FIG. 25 shows excitation light absorption characteristics and fluorescence spectra of Alexa 680.
  • the abscissa of the graph indicates the wavelength, and the ordinate of the graph indicates the intensity.
  • Line E10 shows the excitation light absorption characteristics of Alexa 680.
  • Line F10 shows the fluorescence spectrum of Alexa 680.
  • the wavelength of the excitation light at which the fluorescence emitted from Alexa 680 is maximum is around 680 nm, and the wavelength at which the fluorescence emitted from Alexa 680 is maximum is around 703 nm. Therefore, fluorescence emitted from Alexa 680 can be detected by irradiating the living body with excitation light having a wavelength of 650 nm to 690 nm and detecting light having a wavelength of 700 nm or more.
  • FIG. 1 shows a hardware configuration of an endoscope apparatus 1 according to a first embodiment of the present invention. The schematic configuration of the endoscope apparatus 1 will be described.
  • the endoscope apparatus 1 includes a light source unit 10, an imaging device 204, an excitation wavelength blocking filter 203, and a signal processing unit 30.
  • the light source unit 10 includes visible light, first excitation light for exciting the first fluorescent material present in the subject 50, and second excitation light for exciting the second fluorescent material present in the subject 50. Emit The subject 50 is an observation object in the living body.
  • the imaging device 204 images the visible light reflected by the subject 50, the first fluorescence emitted from the subject 50 by the first excitation light, and the second fluorescence emitted from the subject 50 by the second excitation light.
  • the imaging element 204 outputs a first imaging signal and a second imaging signal.
  • the excitation wavelength blocking filter 203 is disposed in the optical path from the subject 50 to the imaging device 204.
  • the excitation wavelength blocking filter 203 blocks the wavelength band of the first excitation light and the wavelength band of the second excitation light, and transmits the wavelength band of visible light, the wavelength band of the first fluorescence, and the wavelength band of the second fluorescence. It has a characteristic.
  • the light source unit 10 sequentially emits the first illumination light and the second illumination light.
  • the first illumination light includes visible light.
  • the second illumination light includes the first excitation light. At least one of the first illumination light and the second illumination light includes a second excitation light.
  • the first imaging signal is based on reflected light of visible light.
  • the second imaging signal is based on the first fluorescence. At least one of the first imaging signal and the second imaging signal is further based on the second fluorescence.
  • the endoscope apparatus 1 includes a light source unit 10, an endoscope scope unit 20, a signal processing unit 30 (arithmetic unit), and a monitor 40.
  • the light source unit 10 includes a light source 100, an excitation wavelength selection filter 101, and a condenser lens 102.
  • the light source 100 emits light in a wavelength band including at least wavelength bands of visible light, first excitation light, and second excitation light.
  • the first excitation light is light for exciting the first fluorescent material.
  • the first fluorescent material is collagen.
  • the second excitation light is light for exciting the second fluorescent material.
  • the second fluorescent material is Alexa 680.
  • the light source 100 generates white light.
  • the excitation wavelength selection filter 101 is disposed in the optical path of the light emitted from the light source 100.
  • FIG. 2 shows the configuration of the excitation wavelength selection filter 101.
  • the configuration of the excitation wavelength selection filter 101 when the excitation wavelength selection filter 101 is viewed in a direction substantially parallel to the optical path is schematically shown.
  • the excitation wavelength selection filter 101 has a support plate 1010 on which the first filter 1011 and the second filter 1012 are disposed.
  • the first filter 1011 and the second filter 1012 are disposed on the surface of the support plate 1010.
  • the first filter 1011 and the second filter 1012 are disposed around the rotation axis 1013.
  • the first filter 1011 and the second filter 1012 are arranged in the circumferential direction of the rotation shaft 1013.
  • the excitation wavelength selection filter 101 is rotated about the rotation shaft 1013 by driving of a motor (not shown). Therefore, the excitation wavelength selection filter 101 is configured as a rotation filter.
  • the first filter 1011 and the second filter 1012 are disposed in the rotational direction.
  • the support plate 1010 is a disk.
  • the shape of the support plate 1010 is not limited to a circle.
  • the first filter 1011 transmits visible light.
  • the second filter 1012 transmits the first excitation light. At least one of the first filter 1011 and the second filter 1012 transmits the second excitation light. In the example shown in the first embodiment, both the first filter 1011 and the second filter 1012 transmit the second excitation light. Therefore, the first filter 1011 transmits visible light and second excitation light and blocks light other than those wavelength bands.
  • the second filter 1012 transmits the first excitation light and the second excitation light, and blocks light other than those wavelength bands.
  • the excitation wavelength selection filter 101 rotates, the first filter 1011 and the second filter 1012 are sequentially disposed in the optical path. Therefore, the light transmitted through the first filter 1011 and the light transmitted through the second filter 1012 enter the subject 50 in time series.
  • FIG. 3 shows the spectral transmission characteristics of the first filter 1011.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the first filter 1011 is composed of a wavelength band V11 of 380 nm to 650 nm and a wavelength band E12 of 650 nm to 690 nm.
  • the wavelength band V11 corresponds to visible light.
  • the wavelength band E12 corresponds to the second excitation light for exciting Alexa 680.
  • the first filter 1011 blocks light in wavelength bands other than the wavelength band V11 and the wavelength band E12. Therefore, the first filter 1011 transmits only the visible light and the second excitation light.
  • FIG. 4 shows the spectral transmission characteristics of the second filter 1012.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the second filter 1012 is composed of a wavelength band E11 of 300 nm to 350 nm and a wavelength band E12 of 650 nm to 690 nm.
  • the wavelength band E11 corresponds to the first excitation light for exciting collagen.
  • the second filter 1012 blocks light in wavelength bands other than the wavelength band E11 and the wavelength band E12. That is, the second filter 1012 transmits only the first excitation light and the second excitation light.
  • the condenser lens 102 causes the light transmitted through the excitation wavelength selection filter 101 to enter the endoscope section 20.
  • the endoscope scope unit 20 includes a light guide 200, an illumination lens 201, an objective lens 202, an excitation wavelength blocking filter 203, and an imaging element 204 (image sensor).
  • Light from the light source 100 is incident on the light guide 200 via the excitation wavelength selection filter 101 and the condenser lens 102.
  • the light guide 200 transmits the light from the light source 100 to the tip of the endoscope section 20.
  • the light transmitted by the light guide 200 is irradiated to the subject 50 by the illumination lens 201.
  • the excitation wavelength selection filter 101 Due to the spectral transmission characteristic of the excitation wavelength selection filter 101, light of a predetermined wavelength band is irradiated to the subject 50.
  • the first illumination light is emitted to the subject 50.
  • the first illumination light includes visible light and second excitation light.
  • the second filter 1012 is disposed in the light path, the second illumination light is emitted to the subject 50.
  • the second illumination light includes the first excitation light and the second excitation light.
  • the light source unit 10 sequentially emits the first illumination light and the second illumination light.
  • An objective lens 202 is provided adjacent to the illumination lens 201 at the distal end of the endoscope scope 20.
  • the light reflected by the subject 50 and the fluorescence emitted from the fluorescent substance in the subject 50 enter the objective lens 202.
  • the objective lens 202 forms an image of the light from the subject 50.
  • the objective lens 202 is disposed between the subject 50 and the imaging device 204, and the excitation wavelength blocking filter 203 is disposed between the objective lens 202 and the imaging device 204.
  • the excitation wavelength blocking filter 203 blocks the wavelength band of the first excitation light and the wavelength band of the second excitation light, and transmits the wavelength band of visible light, the wavelength band of the first fluorescence, and the wavelength band of the second fluorescence. It has a characteristic.
  • the visible light, the first excitation light, and the second excitation light are reflected by the subject 50 and enter the excitation wavelength cutoff filter 203.
  • the first fluorescence is emitted from the subject 50 by the first excitation light and enters the excitation wavelength blocking filter 203.
  • the second fluorescence is emitted from the subject 50 by the second excitation light and is incident on the excitation wavelength cutoff filter 203.
  • FIG. 5 shows the spectral transmission characteristics of the excitation wavelength blocking filter 203.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the cutoff wavelength band of the excitation wavelength cutoff filter 203 is configured by a wavelength band E13 of 380 nm or less and a wavelength band E14 of 650 nm to 690 nm.
  • the wavelength band E13 includes the wavelength band E11 of the first excitation light shown in FIG.
  • the wavelength band E14 includes the wavelength band E12 of the second excitation light shown in FIG. Therefore, the excitation wavelength blocking filter 203 blocks the reflected light of the first excitation light and the reflected light of the second excitation light.
  • the transmission wavelength band of the excitation wavelength blocking filter 203 is composed of a wavelength band VF11 of 380 nm to 650 nm and a wavelength band F12 of 690 nm or more.
  • the wavelength band VF11 includes a wavelength band of 380 nm to 650 nm corresponding to visible light and a wavelength band of 380 nm to 550 nm corresponding to the first fluorescence.
  • the wavelength band F12 includes a wavelength band of 700 nm to 800 nm corresponding to the second fluorescence. Therefore, the excitation wavelength blocking filter 203 transmits the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • An imaging element 204 is disposed at an imaging position of the objective lens 202.
  • the light having passed through the objective lens 202 and the excitation wavelength blocking filter 203 is incident on the imaging device 204. Due to the spectral transmission characteristics of the excitation wavelength blocking filter 203, the reflected light of visible light, the first fluorescence, and the second fluorescence enter the imaging element 204.
  • the imaging element 204 constitutes an imaging unit.
  • the imaging element 204 generates an imaging signal by imaging the light incident on the imaging element 204. That is, the imaging element 204 images the reflected light of visible light, the first fluorescence, and the second fluorescence, and generates a first imaging signal and a second imaging signal.
  • the first imaging signal and the second imaging signal generated by the imaging element 204 are output to the signal processing unit 30.
  • the signal processing unit 30 is configured by at least one of a processor and a logic circuit.
  • the processor is at least one of a central processing unit (CPU), a digital signal processor (DSP), and a graphics processing unit (GPU).
  • the logic circuit is at least one of an application specific integrated circuit (ASIC) and a field-programmable gate array (FPGA).
  • the signal processing unit 30 can include one or more processors.
  • the signal processing unit 30 can include one or more logic circuits.
  • the monitor 40 is any one of a liquid crystal display, an organic EL (Electro Luminescence) display, and the like.
  • the monitor 40 displays a visible light image, a first fluorescence image, and a second fluorescence image.
  • the signal processing unit 30 is configured to separate at least one of the visible light image, the first fluorescence image, and the second fluorescence image such that the visible light image and at least one of the first fluorescence image and the second fluorescence image are separated in the display image. Generate a display image including the image.
  • the monitor 40 displays the display image such that the visible light image and at least one of the first fluorescence image and the second fluorescence image are separated.
  • the signal processing unit 30 generates a display image including the visible light image and the first fluorescence image such that the visible light image and the first fluorescence image are separated in the display image.
  • the monitor 40 displays the display image such that the visible light image and the first fluorescence image are separated.
  • the signal processing unit 30 generates a display image including the visible light image and the second fluorescence image such that the visible light image and the second fluorescence image are separated in the display image.
  • the monitor 40 displays the display image such that the visible light image and the second fluorescence image are separated.
  • the signal processing unit 30 may display the visible light image, the first fluorescence image, and the second fluorescence image such that each of the visible light image, the first fluorescence image, and the second fluorescence image is separated in the display image. Generate an image.
  • the monitor 40 displays the display image such that each of the visible light image, the first fluorescence image, and the second fluorescence image is separated.
  • the signal processing unit 30 causes the visible light image, the first fluorescence image, and the first fluorescence image to overlap at least a portion of the visible light image and at least a portion of at least one of the first fluorescence image and the second fluorescence image
  • a display image may be generated that includes at least one of the second fluorescence images.
  • the monitor 40 may display the display image such that at least a portion of the visible light image and at least a portion of at least one of the first fluorescence image and the second fluorescence image overlap.
  • the signal processing unit 30 generates a display image including the visible light image and the first fluorescence image so that at least a part of the visible light image and at least a part of the first fluorescence image overlap in the display image.
  • the monitor 40 displays the display image such that at least a part of the visible light image and at least a part of the first fluorescence image overlap in the display image.
  • the signal processing unit 30 generates a display image including the visible light image and the second fluorescence image so that at least a part of the visible light image and at least a part of the second fluorescence image overlap in the display image.
  • the monitor 40 displays the display image such that at least a part of the visible light image and at least a part of the second fluorescence image overlap in the display image.
  • the signal processing unit 30 may display the visible light image or the first fluorescence image such that at least a part of the visible light image, at least a part of the first fluorescence image, and at least a part of the second fluorescence image overlap in the display image.
  • the monitor 40 displays the display image such that at least a part of the visible light image, at least a part of the first fluorescence image, and at least a part of the second fluorescence image overlap in the display image.
  • the first illumination light includes visible light and second excitation light.
  • the imaging device 204 may be configured to set the first signal which is an imaging signal based on the reflected light of visible light and the second signal which is an imaging signal based on a second fluorescence as the first Output as an imaging signal. That is, the first imaging signal includes the first signal and the second signal.
  • the signal processing unit 30 When the first illumination light is irradiated to the subject 50, the signal processing unit 30 generates a visible light image based on the first signal, and generates a second fluorescent image based on the second signal.
  • the second illumination light includes the first excitation light and the second excitation light.
  • the imaging device 204 may generate a third signal which is an imaging signal based on the first fluorescence and the second fluorescence, and a fourth signal which is an imaging signal based on the second fluorescence. It outputs as a 2nd imaging signal. That is, the second imaging signal includes the third signal and the fourth signal.
  • the signal processing unit 30 When the second illumination light is irradiated to the subject 50, the signal processing unit 30 generates a first fluorescence image based on the third signal and the fourth signal, and generates a second fluorescence image based on the fourth signal. Do.
  • FIG. 6 shows the configuration of the imaging device 204.
  • a cross section of the imaging element 204 is shown.
  • FIG. 7 shows a pixel array of the imaging device 204. The schematic configuration of the image sensor 204 will be described.
  • the imaging device 204 includes a first substrate 2040, a second substrate 2041 stacked on the first substrate 2040, and an optical filter 2043.
  • the first substrate 2040 has a plurality of first pixels 2040P arranged in a two-dimensional manner.
  • the plurality of first pixels 2040P of the first substrate 2040 output the first signal and the third signal.
  • the second substrate 2041 has a plurality of second pixels 2041 P arranged in a two-dimensional manner.
  • the plurality of second pixels 2041P of the second substrate 2041 output the second signal and the fourth signal.
  • the optical filter 2043 is disposed between the first substrate 2040 and the second substrate 2041.
  • the optical filter 2043 has an optical characteristic of blocking the wavelength band of visible light and the wavelength band of the first fluorescence and transmitting the wavelength band of the second fluorescence.
  • the imaging device 204 includes a first substrate 2040, a second substrate 2041, a color filter 2042, and an optical filter 2043. These are stacked in the thickness direction of the first substrate 2040.
  • the first substrate 2040 and the second substrate 2041 are semiconductor substrates.
  • the first substrate 2040 and the second substrate 2041 are made of silicon (Si).
  • the first substrate 2040 has a surface 2040 a and a surface 2040 b.
  • the surface 2040 a and the surface 2040 b are main surfaces of the first substrate 2040.
  • the main surface is a relatively wide surface among a plurality of surfaces forming the surface of the substrate.
  • the face 2040a and the face 2040b face in opposite directions to each other.
  • the second substrate 2041 has a surface 2041a and a surface 2041b.
  • the surface 2041 a and the surface 2041 b are main surfaces of the second substrate 2041.
  • the surface 2041a and the surface 2041b face in the opposite direction to each other.
  • the surface 2040 b of the first substrate 2040 and the surface 2041 a of the second substrate 2041 face each other.
  • the signal processing unit 30 is disposed outside the imaging device 204. At least one of the first substrate 2040 and the second substrate 2041 may have at least a portion of the signal processing unit 30.
  • the color filter 2042 is stacked on the surface 2040 a of the first substrate 2040.
  • the color filter 2042 includes a red filter 2042R, a green filter 2042G, and a blue filter 2042B.
  • the image sensor 204 may not have the color filter 2042.
  • the color filter 2042 may be disposed at any position on the optical path from the subject 50 to the first substrate 2040.
  • the first substrate 2040 has a plurality of first pixels 2040 P arranged in a two-dimensional manner.
  • the second substrate 2041 has a plurality of second pixels 2041 P arranged in a two-dimensional manner.
  • the first substrate 2040 has a plurality of first photoelectric conversion elements 2050.
  • the second substrate 2041 has a plurality of second photoelectric conversion elements 2051.
  • the first photoelectric conversion element 2050 and the second photoelectric conversion element 2051 are photodiodes.
  • Each of the plurality of first pixels 2040P includes a first photoelectric conversion element 2050.
  • Each of the plurality of second pixels 2041 P includes a second photoelectric conversion element 2051.
  • the plurality of first pixels 2040P include an R pixel Pr1, a G pixel Pg1, and a B pixel Pb1.
  • the first pixel 2040P described as "R” is the R pixel Pr1.
  • the first pixel 2040P described as "G” is the G pixel Pg1.
  • the first pixel 2040P described as "B” is the B pixel Pb1.
  • a red filter 2042R is disposed on the surface of the R pixel Pr1.
  • the R pixel Pr1 generates an R signal.
  • a green filter 2042G is disposed on the surface of the G pixel Pg1.
  • the G pixel Pg1 generates a G signal.
  • the blue filter 2042B is disposed on the surface of the B pixel Pb1.
  • the B pixel Pb1 generates a B signal.
  • the pixel array of the plurality of first pixels 2040P shown in FIG. 7 is a Bayer array. In the Bayer arrangement, the basic arrangement is regularly and periodically arranged in the row direction and the column direction.
  • the basic array includes one R pixel Pr1, one G pixel Pg1, and one B pixel Pb1.
  • the first photoelectric conversion element 2050 converts the light incident on the first pixel 2040P into a signal.
  • the second photoelectric conversion element 2051 converts the light incident on the second pixel 2041P into a signal.
  • the signals output from the first photoelectric conversion element 2050 correspond to the first signal and the third signal.
  • the signal output from the second photoelectric conversion element 2051 corresponds to the second signal and the fourth signal.
  • the signals output from the plurality of first photoelectric conversion elements 2050 and the signals output from the plurality of second photoelectric conversion elements 2051 are output to the signal processing unit 30.
  • FIG. 26 shows spectral sensitivity characteristics of the R pixel Pr1, the G pixel Pg1, and the B pixel Pb1.
  • the abscissa of the graph indicates the wavelength
  • the ordinate of the graph indicates the sensitivity.
  • a line Lb1 indicates the spectral sensitivity characteristic of the B pixel Pb1.
  • the B pixel Pb1 has a part of the wavelength band of 380 nm to 650 nm corresponding to visible light, the wavelength band of 380 nm to 550 nm corresponding to the first fluorescence, and 700 nm corresponding to the second fluorescence. It is sensitive to part of the 800 nm wavelength band. That is, the B pixel Pb1 detects the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • a line Lg1 indicates the spectral sensitivity characteristic of the G pixel Pg1.
  • G pixel Pg1 is a part of wavelength band from 380 nm to 650 nm corresponding to visible light, a wavelength band from 380 nm to 550 nm corresponding to first fluorescence, and 700 nm corresponding to second fluorescence. It is sensitive to the wavelength band of 800 nm. That is, the G pixel Pg1 detects the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • a line Lr1 indicates the spectral transmission characteristic of the R pixel Pr1.
  • the R pixel Pr1 has a portion of the 380 nm to 650 nm wavelength band corresponding to visible light, the 380 nm to 550 nm wavelength band corresponding to the first fluorescence, and 700 nm corresponding to the second fluorescence It is sensitive to the wavelength band of 800 nm. That is, the R pixel Pr1 detects the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • FIG. 8 shows the spectral transmission characteristics of the optical filter 2043.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the optical filter 2043 is configured by a wavelength band F13 of 700 nm or more.
  • the wavelength band F13 includes a wavelength band of 700 nm to 800 nm corresponding to the second fluorescence.
  • the optical filter 2043 blocks light in wavelength bands other than the wavelength band F13. Therefore, the optical filter 2043 blocks the reflected light and the first fluorescence of visible light and transmits the second fluorescence.
  • the light transmitted through the color filter 2042 is incident on the surface 2040 a of the first substrate 2040.
  • the first substrate 2040 is a backside illumination type imaging substrate.
  • the thickness of the first substrate 2040 is several ⁇ m. That is, the first substrate 2040 is thin.
  • the light absorptivity of silicon varies.
  • the light absorption rate of silicon for light having a short wavelength is high.
  • the light absorption rate of silicon for light with a long wavelength is low. Therefore, when the thickness of the first substrate 2040 is 3 ⁇ m, part of light having a wavelength of 500 nm or more is not absorbed by the first substrate 2040, and passes through the first substrate 2040.
  • the light having a wavelength of 500 nm or more transmitted through the first substrate 2040 is incident on the optical filter 2043.
  • the optical filter 2043 light having a wavelength of 700 nm or more passes through the optical filter 2043. That is, the second fluorescence passes through the optical filter 2043.
  • the second fluorescence transmitted through the optical filter 2043 is incident on the surface 2041 a of the second substrate 2041.
  • the operation of the endoscope apparatus 1 will be described.
  • the excitation wavelength selection filter 101 rotates, the first illumination light transmitted through the first filter 1011 and the second illumination light transmitted through the second filter 1012 are sequentially irradiated on the subject 50.
  • the first illumination light includes visible light and second excitation light.
  • the second illumination light includes the first excitation light and the second excitation light.
  • the endoscope apparatus 1 when the first illumination light is emitted to the subject 50 will be described. Due to the spectral transmission characteristics of the first filter 1011 shown in FIG. 3, the subject 50 is irradiated with visible light having a wavelength of 380 nm to 650 nm and second excitation light having a wavelength of 650 nm to 690 nm. Reflected light of visible light, reflected light of the second excitation light, and second fluorescence having a wavelength of 700 nm to 800 nm are emitted from the subject 50.
  • the light emitted from the subject 50 enters the excitation wavelength blocking filter 203.
  • the excitation wavelength blocking filter 203 blocks the reflected light of the second excitation light and transmits the reflected light of the visible light and the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the reflected light of the visible light transmitted through the excitation wavelength blocking filter 203 and the second fluorescence enter the imaging element 204.
  • the reflected light of visible light and the second fluorescence are incident on the first photoelectric conversion element 2050 of each of the B pixel Pb1, the G pixel Pg1, and the R pixel Pr1 of the first substrate 2040.
  • the second fluorescence is negligibly weak compared to the reflected light of visible light. Therefore, the plurality of first pixels 2040P of the first substrate 2040 output a first signal based on the reflected light of visible light.
  • the signal processing unit 30 generates a visible light image based on the first signal.
  • the first substrate 2040 Of the light incident on the imaging device 204, most of the light having a wavelength of 500 nm or less is absorbed by the first substrate 2040, and only a part of the light having a wavelength of 500 nm or more passes through the first substrate 2040. That is, part of the reflected light of visible light incident on the imaging element 204 and part of the second fluorescence incident on the imaging element 204 pass through the first substrate 2040.
  • the light transmitted through the first substrate 2040 is incident on the optical filter 2043.
  • the optical filter 2043 blocks the reflected light of the visible light transmitted through the first substrate 2040 and transmits the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the light transmitted through the optical filter 2043 is incident on the plurality of second photoelectric conversion elements 2051 of the second substrate 2041.
  • the plurality of second pixels 2041P of the second substrate 2041 output a second signal based on the second fluorescence.
  • the signal processing unit 30 generates a second fluorescence image based on the second signal.
  • the subject 50 is irradiated with the first excitation light having a wavelength of 300 nm to 350 nm and the second excitation light having a wavelength of 650 nm to 690 nm. Reflected light of the first excitation light, reflected light of the second excitation light, first fluorescence having a wavelength of 380 nm to 550 nm, and second fluorescence having a wavelength of 700 nm to 800 nm are emitted from the subject 50.
  • the light emitted from the subject 50 enters the excitation wavelength blocking filter 203.
  • the excitation wavelength blocking filter 203 blocks the reflected light of the first excitation light and the reflected light of the second excitation light and transmits the first fluorescence and the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the first fluorescence and the second fluorescence transmitted through the excitation wavelength blocking filter 203 enter the imaging device 204.
  • the first fluorescence and the second fluorescence are incident on the first photoelectric conversion element 2050 of each of the B pixel Pb1, the G pixel Pg1, and the R pixel Pr1 of the first substrate 2040.
  • the plurality of first pixels 2040P of the first substrate 2040 output third signals based on the first fluorescence and the second fluorescence.
  • the light transmitted through the first substrate 2040 is incident on the optical filter 2043.
  • the optical filter 2043 blocks the first fluorescence transmitted through the first substrate 2040 and transmits the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the light transmitted through the optical filter 2043 is incident on the plurality of second photoelectric conversion elements 2051 of the second substrate 2041.
  • the signal processing unit 30 generates a second fluorescence image based on the fourth signal. Further, the signal processing unit 30 generates a first fluorescence image based on the third signal and the fourth signal.
  • the signal by each of the first fluorescence and the second fluorescence detected by the first photoelectric conversion element 2050 of each pixel And to detect only the signal due to the first fluorescence.
  • An example of a method of calculating only the signal due to the first fluorescence will be described.
  • indicates a ratio at which the B pixel Pb1 of the first substrate 2040 absorbs the first fluorescence.
  • indicates the ratio of the B pixel Pb1 of the first substrate 2040 to absorb the second fluorescence.
  • indicates a ratio at which the second pixel 2041 P of the second substrate 2041 absorbs the second fluorescence.
  • ⁇ , ⁇ , and ⁇ can be calculated from the spectral sensitivities of the first substrate 2040 and the second substrate 2041.
  • the ratio of ⁇ and ⁇ is the spectral sensitivity of the B pixel Pb1 of the first substrate 2040 in the wavelength band of 700 nm to 800 nm corresponding to the second fluorescence and the spectral sensitivity of the second pixel 2041 P of the second substrate 2041 in that wavelength band. It depends on the ratio of ⁇ , ⁇ , and ⁇ are parameters based on the manufacturing conditions of the imaging device 204. For example, the thickness of each of the first substrate 2040 and the second substrate 2041 in the optical axis direction. Alternatively, it is the spectral transmission characteristics of the color filter 2042 and the optical filter 2043. ⁇ , ⁇ and ⁇ are real numbers of 0 or more and 1 or less.
  • the B pixel Pb1 generates a third signal based on the first fluorescence and the second fluorescence.
  • the signal value of the third signal generated by the B pixel Pb1 is ( ⁇ B + ⁇ IR).
  • ⁇ B is a signal value based on the first fluorescence.
  • ⁇ IR is a signal value based on the second fluorescence.
  • the second pixel 2041P generates a fourth signal based on the second fluorescence.
  • the signal value of the fourth signal generated by the second pixel 2041P is ⁇ IR.
  • ⁇ IR is a signal value based on the second fluorescence.
  • the fourth signal generated by the second pixel 2041P disposed at the position corresponding to the B pixel Pb1 is used. That is, the fourth signal generated by the second pixel 2041P to which the light transmitted through the B pixel Pb1 is incident is used.
  • the signal processing unit 30 multiplies the value of the fourth signal generated by the second pixel 2041 P, ie, ⁇ IR, by the ratio of ⁇ and ⁇ , ie, ( ⁇ / ⁇ ). Thereby, the signal processing unit 30 can calculate the signal value ⁇ IR based on the second fluorescence detected by the first pixel 2040P.
  • the signal processing unit 30 subtracts the signal value ⁇ IR calculated by the above method from the value ( ⁇ B + ⁇ IR) of the third signal generated by the B pixel Pb1. Thereby, the signal processing unit 30 generates a signal based only on the first fluorescence.
  • the signal value of this signal is ⁇ B.
  • the signal processing unit 30 may add the second signal based on the second fluorescence and the fourth signal based on the second fluorescence. Thereby, the SN ratio (Signal to Noise ratio) of the signal based on the second fluorescence is improved, and the image quality of the second fluorescence image is improved.
  • FIG. 9 is a timing chart showing the operation of the endoscope apparatus 1.
  • the types of filters of the excitation wavelength selection filter 101 disposed in the optical path are shown.
  • an image based on the signal acquired by the first substrate 2040 and an image based on the signal acquired by the second substrate 2041 are shown.
  • time progresses to the right.
  • the operation of one cycle is repeated.
  • the first filter 1011 is disposed in the optical path.
  • the first filter 1011 transmits visible light and second excitation light among the light emitted from the light source 100.
  • the first illumination light including the visible light and the second excitation light is applied to the subject 50.
  • the reflected light of the visible light, the reflected light of the second excitation light, and the second fluorescence are emitted from the subject 50 and are incident on the imaging device 204. Reflected light of visible light is detected in the first substrate 2040, and second fluorescence is detected in the second substrate 2041. As a result, a visible light image and a second fluorescence image are generated.
  • the second filter 1012 is disposed in the light path.
  • the second filter 1012 transmits the first excitation light and the second excitation light among the light emitted from the light source 100.
  • the reflected light of the first excitation light, the reflected light of the second excitation light, the first fluorescence, and the second fluorescence are emitted from the subject 50 and are incident on the imaging device 204.
  • the first fluorescence is detected in the first substrate 2040, and the second fluorescence is detected in the second substrate 2041. As a result, a first fluorescence image and a second fluorescence image are generated.
  • the second fluorescence is detected in the first half and the second half of one cycle.
  • the second fluorescence may be detected only in the first half of one cycle or only in the second half of one cycle.
  • the light source unit 10 may have a plurality of light emitting elements capable of selectively emitting light in a wavelength band including at least one wavelength band of visible light, first excitation light, and second excitation light. For example, in the first period, at least one of the plurality of light emitting elements emits visible light and second excitation light. In the second period, at least one of the plurality of light emitting elements emits the first excitation light and the second excitation light.
  • the light source unit 10 may have a first light emitting element for emitting visible light, a second light emitting element for emitting first excitation light, and a third light emitting element for emitting second excitation light. Each of the plurality of light emitting elements may be a light emitting diode.
  • the endoscope apparatus 1 of the first embodiment simultaneously images the reflected light of visible light and the second fluorescence.
  • the endoscope apparatus 1 simultaneously images the first fluorescence and the second fluorescence. This shortens the acquisition interval of visible light images. Therefore, the endoscope apparatus 1 can suppress the decrease in the frame rate of the visible light image, and can acquire the visible light image and a plurality of types of fluorescence images.
  • the frame rate of the visible light image is faster than in the prior art. Therefore, the endoscope apparatus 1 can suppress the jump of the visible light image as much as possible. As a result, the moving image of the visible light image becomes easy to view, and the user can easily grasp the form of the observation object.
  • FIG. 10 shows a hardware configuration of an endoscope apparatus 1a according to a modification of the first embodiment of the present invention.
  • the endoscope apparatus 1 a includes a light source unit 10, an imaging device 206 (first imaging device), an imaging device 207 (second imaging device), an excitation wavelength blocking filter 203, and a signal processing unit 30.
  • the light source unit 10 emits visible light, first excitation light, and second excitation light.
  • the imaging element 206 images the visible light reflected by the subject 50 and the first fluorescence emitted from the subject 50 by the first excitation light.
  • the imaging element 207 images the second fluorescence emitted from the subject 50 by the second excitation light.
  • the imaging element 206 and the imaging element 207 output a first imaging signal and a second imaging signal.
  • the excitation wavelength blocking filter 203 blocks the wavelength band of the first excitation light and the wavelength band of the second excitation light, and transmits the wavelength band of visible light, the wavelength band of the first fluorescence, and the wavelength band of the second fluorescence. It has a characteristic.
  • the signal processing unit 30 determines a visible light image based on reflected light of visible light based on the first imaging signal and the second imaging signal output from the imaging element 206 and the imaging element 207, and a first fluorescence based on the first fluorescence. An image and a second fluorescence image based on the second fluorescence are generated.
  • the first illumination light includes visible light and second excitation light.
  • the imaging device 206 outputs, as a first imaging signal, a first signal that is an imaging signal based on the reflected light of visible light.
  • the imaging element 207 outputs a second signal, which is an imaging signal based on the second fluorescence, as a first imaging signal. That is, the first imaging signal includes the first signal and the second signal.
  • the signal processing unit 30 When the first illumination light is irradiated to the subject 50, the signal processing unit 30 generates a visible light image based on the first signal, and generates a second fluorescent image based on the second signal.
  • the second illumination light includes the first excitation light and the second excitation light.
  • the imaging element 206 outputs a third signal, which is an imaging signal based on the first fluorescence, as a second imaging signal.
  • the imaging element 207 outputs a fourth signal, which is an imaging signal based on the second fluorescence, as a second imaging signal. That is, the second imaging signal includes the third signal and the fourth signal.
  • the signal processing unit 30 When the second illumination light is irradiated to the subject 50, the signal processing unit 30 generates a first fluorescence image based on the third signal, and generates a second fluorescence image based on the fourth signal.
  • the endoscope apparatus 1a further includes a dichroic mirror 205 (light separation element).
  • the dichroic mirror 205 separates the reflected light and the second fluorescence of visible light, and separates the first fluorescence and the second fluorescence.
  • the reflected light of the visible light separated by the dichroic mirror 205 and the first fluorescence enter the imaging element 206.
  • the second fluorescence separated by the dichroic mirror 205 is incident on the imaging element 207.
  • the imaging device 206 When the first illumination light is applied to the subject 50, the imaging device 206 outputs a first signal, and the imaging device 207 outputs a second signal.
  • the imaging device 206 outputs a third signal, and the imaging device 207 outputs a fourth signal.
  • the detailed configuration of the endoscope apparatus 1a will be described in terms of differences from the configuration shown in FIG.
  • the endoscope scope unit 20 shown in FIG. 1 is changed to an endoscope scope unit 20a.
  • the endoscope scope unit 20 a includes a light guide 200, an illumination lens 201, an objective lens 202, an excitation wavelength blocking filter 203, a dichroic mirror 205, an imaging element 206, and an imaging element 207.
  • the imaging element 206 and the imaging element 207 constitute an imaging unit.
  • the dichroic mirror 205 is disposed in the optical path from the excitation wavelength blocking filter 203 to the imaging device 206 and the imaging device 207. Reflected light of visible light, the first fluorescence, and the second fluorescence enter the dichroic mirror 205 according to the spectral transmission characteristic of the excitation wavelength blocking filter 203.
  • the imaging element 206 is disposed in the optical path of the light transmitted through the dichroic mirror 205.
  • the imaging element 207 is disposed in the optical path of the light reflected by the dichroic mirror 205.
  • FIG. 11 shows the spectral transmission characteristics of the dichroic mirror 205.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the dichroic mirror 205 is configured by a wavelength band VF 14 of 700 nm or less.
  • the wavelength band VF 14 includes a wavelength band of 380 nm to 650 nm corresponding to visible light and a wavelength band of 380 nm to 550 nm corresponding to the first fluorescence.
  • the dichroic mirror 205 reflects light of wavelength bands other than the wavelength band VF14.
  • the reflection wavelength band of the dichroic mirror 205 includes a wavelength band of 700 nm to 800 nm corresponding to the second fluorescence. Therefore, the dichroic mirror 205 transmits the reflected light of visible light and the first fluorescence, and reflects the second fluorescence.
  • the reflected light of the visible light and the second fluorescence are incident on the dichroic mirror 205.
  • the dichroic mirror 205 transmits the reflected light of visible light and reflects the second fluorescence. Reflected light of visible light transmitted through the dichroic mirror 205 is incident on the imaging element 206.
  • the second fluorescence reflected by the dichroic mirror 205 is incident on the imaging element 207.
  • the imaging element 206 captures the reflected light of visible light and generates a first signal based on the reflected light of visible light.
  • the imaging element 207 images the second fluorescence and generates a second signal based on the second fluorescence.
  • the first imaging signal including the first signal and the second signal is output to the signal processing unit 30.
  • the first fluorescence and the second fluorescence enter the dichroic mirror 205.
  • the dichroic mirror 205 transmits the first fluorescence and reflects the second fluorescence.
  • the first fluorescence transmitted through the dichroic mirror 205 is incident on the imaging element 206.
  • the second fluorescence reflected by the dichroic mirror 205 is incident on the imaging element 207.
  • the imaging element 206 images the first fluorescence and generates a third signal based on the first fluorescence.
  • the imaging element 207 images the second fluorescence and generates a fourth signal based on the second fluorescence.
  • the second imaging signal including the third signal and the fourth signal is output to the signal processing unit 30.
  • the endoscope apparatus 1a can suppress the decrease in the frame rate of the visible light image, and can acquire the visible light image and a plurality of types of fluorescent images.
  • the endoscope apparatus 1 shown in FIG. 1 will be used to describe a second embodiment of the present invention.
  • a fluorescent agent different in type from the fluorescent agent used in the first embodiment is used.
  • wavelength bands of visible light required to obtain morphological information of the observation object are different. If light of a wavelength band having a width of at least about 100 nm in a wavelength band of 400 nm to 700 nm can be imaged, the endoscope apparatus 1 can obtain morphological information of an observation object.
  • 5-ALA aminolevulinic acid
  • ICG indocyanine green
  • 5-ALA is an agent useful for observation of cancer cells.
  • ICG is a fluorescent drug useful for blood vessel observation.
  • Cancer cells need blood carrying nutrients and oxygen around them to grow and grow new blood vessels (tumor blood vessels). Tumor blood vessels are more curved and bent, etc., as compared to normal blood vessels. Tumor blood vessels are of unequal diameter and are running erratically. Therefore, the diagnostic performance of cancer cells is improved by simultaneously observing the cancer cells and observing the blood vessels.
  • PpIX protoporphyrin IX
  • 5-ALA is administered in vivo
  • PpIX protoporphyrin IX
  • metabolized from 5-ALA is accumulated at high concentrations in cancer cells.
  • PpIX is a fluorescent substance and emits strong fluorescence. By observing the fluorescence, it is possible to observe cancer cells.
  • FIG. 27 shows the excitation light absorption characteristics of PpIX.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the intensity.
  • the wavelength of excitation light at which the fluorescence from PpIX is maximum is 405 nm.
  • PpIX emits strong fluorescence for excitation light having a wavelength of 370 nm to 450 nm.
  • FIG. 28 shows the fluorescence spectrum of PpIX.
  • the abscissa of the graph indicates the wavelength, and the ordinate of the graph indicates the intensity.
  • PpIX emits fluorescence at a wavelength of 620 nm to 710 nm.
  • the wavelength at which the fluorescence from PpIX is maximum is around 635 nm.
  • light having a wavelength of 370 nm to 410 nm is used as light for exciting PpIX. Therefore, fluorescence from PpIX can be detected by irradiating excitation light with a wavelength of 370 nm to 410 nm into a living body and detecting light with a wavelength of 620 nm to 710 nm.
  • FIG. 29 shows the excitation light absorption characteristics and the fluorescence spectrum of ICG.
  • the abscissa of the graph indicates the wavelength, and the ordinate of the graph indicates the intensity.
  • Line E20 shows the excitation light absorption characteristics of ICG.
  • Line F20 shows the fluorescence spectrum of ICG.
  • the wavelength of the excitation light at which the fluorescence emitted from the ICG is maximum is 770 nm, and the wavelength at which the fluorescence emitted from the ICG is maximum is 810 nm. Therefore, by emitting light with a wavelength of 720 nm to 790 nm into a living body and detecting light with a wavelength of 800 nm to 900 nm, fluorescence emitted from ICG can be detected.
  • the configuration of the endoscope apparatus 1 will be described focusing on differences from the configuration in the first embodiment.
  • the first fluorescent substance excited by the first excitation light is PpIX.
  • the second fluorescent substance excited by the second excitation light is ICG.
  • FIG. 12 shows the spectral transmission characteristics of the first filter 1011 of the excitation wavelength selection filter 101.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the first filter 1011 is composed of a wavelength band V21 of 410 nm to 650 nm and a wavelength band E22 of 720 nm to 790 nm.
  • the wavelength band V21 corresponds to visible light.
  • the wavelength band E22 corresponds to the second excitation light for exciting the ICG.
  • the first filter 1011 blocks light in wavelength bands other than the wavelength band V21 and the wavelength band E22. Therefore, the first filter 1011 transmits only the visible light and the second excitation light.
  • FIG. 13 shows the spectral transmission characteristics of the second filter 1012 of the excitation wavelength selection filter 101.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the second filter 1012 is composed of a wavelength band E21 of 370 nm to 410 nm and a wavelength band E22 of 720 nm to 790 nm.
  • the wavelength band E21 corresponds to the first excitation light for exciting PpIX.
  • the second filter 1012 blocks light in wavelength bands other than the wavelength band E21 and the wavelength band E22. That is, the second filter 1012 transmits only the first excitation light and the second excitation light.
  • FIG. 14 shows the spectral transmission characteristics of the excitation wavelength blocking filter 203.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the cutoff wavelength band of the excitation wavelength cutoff filter 203 is composed of a wavelength band E23 of 410 nm or less and a wavelength band E24 of 720 nm to 790 nm.
  • the wavelength band E23 includes the wavelength band E21 of the first excitation light shown in FIG.
  • the wavelength band E24 includes the wavelength band E22 of the second excitation light shown in FIG. Therefore, the excitation wavelength blocking filter 203 blocks the reflected light of the first excitation light and the reflected light of the second excitation light.
  • the transmission wavelength band of the excitation wavelength blocking filter 203 is composed of a wavelength band VF21 of 410 nm to 720 nm and a wavelength band F22 of 790 nm or more.
  • the wavelength band VF21 includes a wavelength band of 410 nm to 650 nm corresponding to visible light and a wavelength band of 620 nm to 710 nm corresponding to the first fluorescence.
  • the wavelength band F22 includes a wavelength band of 800 nm to 900 nm corresponding to the second fluorescence. Therefore, the excitation wavelength blocking filter 203 transmits the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • the imaging device 204 includes a first substrate 2040, a second substrate 2041, a color filter 2042, and an optical filter 2043.
  • the color filter 2042 includes a red filter 2042R, a green filter 2042G, and a blue filter 2042B.
  • the B pixel Pb1 has a part of a wavelength band of 410 nm to 650 nm corresponding to visible light, a part of a wavelength band of 620 nm to 710 nm corresponding to the first fluorescence, and a second It is sensitive to a wavelength band of 800 nm to 900 nm corresponding to fluorescence. That is, the B pixel Pb1 detects the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • the G pixel Pg1 has a part of a wavelength band of 410 nm to 650 nm corresponding to visible light, a part of a wavelength band of 620 nm to 710 nm corresponding to the first fluorescence, and a second It is sensitive to a wavelength band of 800 nm to 900 nm corresponding to fluorescence. That is, the G pixel Pg1 detects the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • the R pixel Pr1 corresponds to a part of the 410 nm to 650 nm wavelength band corresponding to visible light, the 620 nm to 710 nm wavelength band corresponding to the first fluorescence, and the second fluorescence It is sensitive to the wavelength band of 800 nm to 900 nm. That is, the R pixel Pr1 detects the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • FIG. 15 shows the spectral transmission characteristics of the optical filter 2043.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the optical filter 2043 is configured by a wavelength band F23 of 800 nm or more.
  • the wavelength band F23 includes a wavelength band of 800 nm to 900 nm corresponding to the second fluorescence.
  • the optical filter 2043 blocks light in wavelength bands other than the wavelength band F23. Therefore, the optical filter 2043 blocks the reflected light and the first fluorescence of visible light and transmits the second fluorescence.
  • the operation of the endoscope apparatus 1 will be described.
  • the excitation wavelength selection filter 101 rotates, the first illumination light transmitted through the first filter 1011 and the second illumination light transmitted through the second filter 1012 are sequentially irradiated on the subject 50.
  • the first illumination light includes visible light and second excitation light.
  • the second illumination light includes the first excitation light and the second excitation light.
  • the operation of the endoscope apparatus 1 when the first illumination light is emitted to the subject 50 will be described.
  • the object 50 is irradiated with visible light having a wavelength of 410 nm to 650 nm and second excitation light having a wavelength of 720 nm to 790 nm due to the spectral transmission characteristics of the first filter 1011 shown in FIG. Reflected light of visible light, reflected light of the second excitation light, and second fluorescence having a wavelength of 800 nm to 900 nm are emitted from the subject 50.
  • the light emitted from the subject 50 enters the excitation wavelength blocking filter 203.
  • the excitation wavelength blocking filter 203 blocks the reflected light of the second excitation light and transmits the reflected light of the visible light and the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the reflected light of the visible light transmitted through the excitation wavelength blocking filter 203 and the second fluorescence enter the imaging element 204.
  • the reflected light of visible light and the second fluorescence are incident on the first photoelectric conversion element 2050 of each of the B pixel Pb1, the G pixel Pg1, and the R pixel Pr1 of the first substrate 2040.
  • the second fluorescence is negligibly weak compared to the reflected light of visible light. Therefore, the plurality of first pixels 2040P of the first substrate 2040 output a first signal based on the reflected light of visible light.
  • the signal processing unit 30 generates a visible light image based on the first signal.
  • the first substrate 2040 Of the light incident on the imaging device 204, most of the light having a wavelength of 500 nm or less is absorbed by the first substrate 2040, and only a part of the light having a wavelength of 500 nm or more passes through the first substrate 2040. That is, part of the reflected light of visible light incident on the imaging element 204 and part of the second fluorescence incident on the imaging element 204 pass through the first substrate 2040.
  • the light transmitted through the first substrate 2040 is incident on the optical filter 2043.
  • the optical filter 2043 blocks the reflected light of visible light transmitted through the first substrate 2040 and transmits the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the light transmitted through the optical filter 2043 is incident on the plurality of second photoelectric conversion elements 2051 of the second substrate 2041.
  • the plurality of second pixels 2041P of the second substrate 2041 output a second signal based on the second fluorescence.
  • the signal processing unit 30 generates a second fluorescence image based on the second signal.
  • the operation of the endoscope apparatus 1 when the second illumination light is emitted to the subject 50 will be described.
  • the object 50 is irradiated with the first excitation light having a wavelength of 370 nm to 410 nm and the second excitation light having a wavelength of 720 nm to 790 nm according to the spectral transmission characteristics of the second filter 1012 shown in FIG.
  • Reflected light of the first excitation light, reflected light of the second excitation light, first fluorescence having a wavelength of 620 nm to 710 nm, and second fluorescence having a wavelength of 800 nm to 900 nm are emitted from the subject 50.
  • the light emitted from the subject 50 enters the excitation wavelength blocking filter 203.
  • the excitation wavelength blocking filter 203 blocks the reflected light of the first excitation light and the reflected light of the second excitation light and transmits the first fluorescence and the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the first fluorescence and the second fluorescence transmitted through the excitation wavelength blocking filter 203 enter the imaging device 204.
  • the first fluorescence and the second fluorescence are incident on the first photoelectric conversion element 2050 of each of the B pixel Pb1, the G pixel Pg1, and the R pixel Pr1 of the first substrate 2040.
  • the plurality of first pixels 2040P of the first substrate 2040 output third signals based on the first fluorescence and the second fluorescence.
  • the light transmitted through the first substrate 2040 is incident on the optical filter 2043.
  • the optical filter 2043 blocks the first fluorescence transmitted through the first substrate 2040 and transmits the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the light transmitted through the optical filter 2043 is incident on the plurality of second photoelectric conversion elements 2051 of the second substrate 2041.
  • the signal processing unit 30 generates a second fluorescence image based on the fourth signal. Further, the signal processing unit 30 generates a first fluorescence image based on the third signal and the fourth signal.
  • the signal by each of the first fluorescence and the second fluorescence detected by the first photoelectric conversion element 2050 of each pixel And to detect only the signal due to the first fluorescence.
  • An example of a method of calculating only the signal due to the first fluorescence will be described.
  • indicates a ratio at which the R pixel Pr1 of the first substrate 2040 absorbs the first fluorescence.
  • indicates the ratio of the R pixel Pr1 of the first substrate 2040 to absorb the second fluorescence.
  • indicates a ratio at which the second pixel 2041 P of the second substrate 2041 absorbs the second fluorescence.
  • ⁇ , ⁇ , and ⁇ can be calculated from the spectral sensitivities of the first substrate 2040 and the second substrate 2041.
  • the ratio of ⁇ and ⁇ is the spectral sensitivity of the R pixel Pr1 of the first substrate 2040 in the wavelength band of 800 nm to 900 nm corresponding to the second fluorescence and the spectral sensitivity of the second pixel 2041 P of the second substrate 2041 in that wavelength band. It depends on the ratio of ⁇ , ⁇ , and ⁇ are parameters based on the manufacturing conditions of the imaging device 204. For example, the thickness of each of the first substrate 2040 and the second substrate 2041 in the optical axis direction. Alternatively, it is the spectral transmission characteristics of the color filter 2042 and the optical filter 2043. ⁇ , ⁇ and ⁇ are real numbers of 0 or more and 1 or less.
  • the R pixel Pr1 generates a third signal based on the first fluorescence and the second fluorescence.
  • the signal value of the third signal generated by the R pixel Pr1 is ( ⁇ R + ⁇ IR).
  • ⁇ R is a signal value based on the first fluorescence.
  • ⁇ IR is a signal value based on the second fluorescence.
  • the second pixel 2041P generates a fourth signal based on the second fluorescence.
  • the signal value of the fourth signal generated by the second pixel 2041P is ⁇ IR.
  • ⁇ IR is a signal value based on the second fluorescence.
  • the fourth signal generated by the second pixel 2041P disposed at the position corresponding to the R pixel Pr1 is used. That is, the fourth signal generated by the second pixel 2041P to which the light transmitted through the R pixel Pr1 is incident is used.
  • the signal processing unit 30 multiplies the value of the fourth signal generated by the second pixel 2041 P, ie, ⁇ IR, by the ratio of ⁇ and ⁇ , ie, ( ⁇ / ⁇ ). Thereby, the signal processing unit 30 can calculate the signal value ⁇ IR based on the second fluorescence detected by the first pixel 2040P.
  • the signal processing unit 30 subtracts the signal value ⁇ IR calculated by the above method from the value ( ⁇ R + ⁇ IR) of the third signal generated by the R pixel Pr1. Thereby, the signal processing unit 30 generates a signal based only on the first fluorescence.
  • the signal value of this signal is ⁇ R.
  • the signal processing unit 30 may add the second signal based on the second fluorescence and the fourth signal based on the second fluorescence. Thereby, the SN ratio of the signal based on the second fluorescence is improved, and the image quality of the second fluorescence image is improved.
  • the timing of the operation of the endoscope apparatus 1 of the second embodiment is the same as the timing shown in FIG.
  • the light source unit 10 includes a plurality of light emitting elements capable of selectively emitting light in a wavelength band including at least one wavelength band of visible light, first excitation light, and second excitation light. May be included.
  • Each of the plurality of light emitting elements may be a light emitting diode.
  • the endoscope apparatus 1 of the second embodiment simultaneously images the reflected light of visible light and the second fluorescence.
  • the endoscope apparatus 1 simultaneously images the first fluorescence and the second fluorescence. This shortens the acquisition interval of visible light images. Therefore, the endoscope apparatus 1 can suppress the decrease in the frame rate of the visible light image, and can acquire the visible light image and a plurality of types of fluorescence images.
  • the frame rate of the visible light image is faster than in the prior art. Therefore, the endoscope apparatus 1 can suppress the jump of the visible light image as much as possible. As a result, the moving image of the visible light image becomes easy to view, and the user can easily grasp the form of the observation object.
  • FIG. 16 shows the spectral transmission characteristics of the dichroic mirror 205.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the dichroic mirror 205 is configured by a wavelength band VF 24 of 800 nm or less.
  • the wavelength band VF 24 includes a wavelength band of 410 nm to 650 nm corresponding to visible light and a wavelength band of 620 nm to 710 nm corresponding to the first fluorescence.
  • the dichroic mirror 205 reflects light of wavelength bands other than the wavelength band VF24.
  • the reflection wavelength band of the dichroic mirror 205 includes a wavelength band of 800 nm to 900 nm corresponding to the second fluorescence. Therefore, the dichroic mirror 205 transmits the reflected light of visible light and the first fluorescence, and reflects the second fluorescence.
  • the endoscope apparatus 1a can suppress a decrease in the frame rate of a visible light image, and can obtain a visible light image and a plurality of types of fluorescent images.
  • a third embodiment of the present invention will be described using the endoscope apparatus 1 shown in FIG.
  • the third embodiment is a modification of the second embodiment.
  • the endoscope apparatus 1 can always capture a visible light image.
  • the wavelength band of visible light necessary to obtain the morphological information of the observation object is the wavelength band of visible light in the first embodiment and the wavelength band of visible light in the second embodiment. Too narrow.
  • the wavelength band of visible light in the first embodiment is 380 nm to 650 nm.
  • the wavelength band of visible light in the second embodiment is 410 nm to 650 nm.
  • the wavelength band of visible light in the third embodiment is 410 nm to 610 nm. If light of a wavelength band having a width of at least about 100 nm in a wavelength band of 400 nm to 700 nm can be imaged, the endoscope apparatus 1 can obtain morphological information of an observation object.
  • signal processing using a signal of the first pixel 2040P of the first substrate 2040 and a signal of the second pixel 2041P of the second substrate 2041 is performed to detect fluorescence emitted from PpIX.
  • such signal processing is not necessary.
  • the configuration of the endoscope apparatus 1 will be described focusing on differences from the configuration in the second embodiment.
  • the first fluorescent substance excited by the first excitation light is PpIX.
  • the second fluorescent substance excited by the second excitation light is ICG.
  • the light source unit 10 sequentially emits the first illumination light and the second illumination light.
  • the first illumination light includes the first excitation light.
  • the second illumination light includes the second excitation light. At least one of the first illumination light and the second illumination light includes visible light.
  • the imaging element 204 outputs a first imaging signal and a second imaging signal.
  • the first imaging signal is based on the first fluorescence.
  • the second imaging signal is based on the second fluorescence. At least one of the first imaging signal and the second imaging signal is further based on the reflected light of visible light.
  • the light source 100 emits light in a wavelength band including at least wavelength bands of visible light, first excitation light, and second excitation light.
  • the first filter 1011 of the excitation wavelength selection filter 101 transmits the first excitation light.
  • the second filter 1012 of the excitation wavelength selection filter 101 transmits the second excitation light. At least one of the first filter 1011 and the second filter 1012 transmits visible light.
  • the first illumination light includes visible light and first excitation light.
  • the imaging device 204 performs the first signal as the imaging signal based on the reflected light of visible light and the second signal as the imaging signal based on the first fluorescence. Output as an imaging signal.
  • the signal processing unit 30 generates a visible light image based on the first signal, and generates a first fluorescent image based on the second signal.
  • the second illumination light includes visible light and second excitation light.
  • the imaging device 204 may generate a third signal, which is an imaging signal based on the reflected light of visible light, and a fourth signal, which is an imaging signal based on the second fluorescence, as a second signal. Output as an imaging signal.
  • the signal processing unit 30 When the second illumination light is emitted to the subject 50, the signal processing unit 30 generates a visible light image based on the third signal, and generates a second fluorescent image based on the fourth signal.
  • FIG. 17 shows the spectral transmission characteristics of the first filter 1011 of the excitation wavelength selection filter 101.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the first filter 1011 is composed of a wavelength band E31 of 370 nm to 410 nm and a wavelength band V31 of 410 nm to 610 nm.
  • the wavelength band E31 corresponds to the first excitation light for exciting PpIX.
  • the wavelength band V31 corresponds to visible light.
  • the first filter 1011 blocks light in wavelength bands other than the wavelength band E31 and the wavelength band V31. Therefore, the first filter 1011 transmits only visible light and the first excitation light.
  • FIG. 18 shows the spectral transmission characteristics of the second filter 1012 of the excitation wavelength selection filter 101.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the second filter 1012 is composed of a wavelength band V31 of 410 nm to 610 nm and a wavelength band E32 of 720 nm to 790 nm.
  • the wavelength band V31 corresponds to visible light.
  • the wavelength band E32 corresponds to the second excitation light for exciting the ICG.
  • the second filter 1012 blocks light in wavelength bands other than the wavelength band V31 and the wavelength band E32. That is, the second filter 1012 transmits only the visible light and the second excitation light.
  • FIG. 19 shows the spectral transmission characteristics of the excitation wavelength blocking filter 203.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the cutoff wavelength band of the excitation wavelength cutoff filter 203 is composed of a wavelength band E33 of 410 nm or less and a wavelength band E34 of 720 nm to 790 nm.
  • the wavelength band E33 includes the wavelength band E31 of the first excitation light shown in FIG.
  • the wavelength band E34 includes the wavelength band E32 of the second excitation light shown in FIG. Therefore, the excitation wavelength blocking filter 203 blocks the reflected light of the first excitation light and the reflected light of the second excitation light.
  • the transmission wavelength band of the excitation wavelength blocking filter 203 is configured by a wavelength band V32 of 410 nm to 620 nm, a wavelength band F31 of 620 nm to 720 nm, and a wavelength band F32 of 800 nm or more.
  • the wavelength band V31 includes a wavelength band of 410 nm to 610 nm corresponding to visible light.
  • the wavelength band F31 includes a wavelength band of 620 nm to 710 nm corresponding to the first fluorescence.
  • the wavelength band F32 includes a wavelength band of 800 nm to 900 nm corresponding to the second fluorescence. Therefore, the excitation wavelength blocking filter 203 transmits the reflected light of visible light, the first fluorescence, and the second fluorescence.
  • the imaging device 204 includes a first substrate 2040, a second substrate 2041 stacked on the first substrate 2040, and an optical filter 2043.
  • the first substrate 2040 has a plurality of first pixels 2040 P arranged in a two-dimensional manner.
  • the plurality of first pixels 2040P of the first substrate 2040 output the first signal and the third signal.
  • the second substrate 2041 has a plurality of second pixels 2041 P arranged in a two-dimensional manner.
  • the plurality of second pixels 2041P of the second substrate 2041 output the second signal and the fourth signal.
  • the optical filter 2043 is disposed between the first substrate 2040 and the second substrate 2041.
  • the optical filter 2043 has an optical property of blocking the wavelength band of visible light and transmitting the wavelength band of the first fluorescence and the wavelength band of the second fluorescence.
  • the imaging device 204 further includes a color filter 2042.
  • the color filter 2042 includes a red filter 2042R, a green filter 2042G, and a blue filter 2042B.
  • FIG. 20 shows the spectral transmission characteristics of the optical filter 2043.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the optical filter 2043 is composed of a wavelength band F31 of 620 nm to 720 nm and a wavelength band F33 of 800 nm or more.
  • the wavelength band F31 includes a wavelength band of 620 nm to 710 nm corresponding to the first fluorescence.
  • the wavelength band F33 includes a wavelength band of 800 nm to 900 nm corresponding to the second fluorescence.
  • the optical filter 2043 blocks light in wavelength bands other than the wavelength band F31 and the wavelength band F33. Therefore, the optical filter 2043 blocks the reflected light of visible light and transmits the first fluorescence and the second fluorescence.
  • the operation of the endoscope apparatus 1 will be described.
  • the excitation wavelength selection filter 101 rotates, the first illumination light transmitted through the first filter 1011 and the second illumination light transmitted through the second filter 1012 are sequentially irradiated on the subject 50.
  • the first illumination light includes visible light and first excitation light.
  • the second illumination light includes visible light and second excitation light.
  • the operation of the endoscope apparatus 1 when the first illumination light is emitted to the subject 50 will be described.
  • the object 50 is irradiated with visible light having a wavelength of 410 nm to 610 nm and first excitation light having a wavelength of 370 nm to 410 nm due to the spectral transmission characteristics of the first filter 1011 shown in FIG. Reflected light of visible light, reflected light of the first excitation light, and first fluorescence having a wavelength of 620 nm to 710 nm are emitted from the subject 50.
  • the light emitted from the subject 50 enters the excitation wavelength blocking filter 203.
  • the excitation wavelength blocking filter 203 blocks the reflected light of the first excitation light and transmits the reflected light of the visible light and the first fluorescence according to the spectral transmission characteristic shown in FIG.
  • the reflected light of the visible light transmitted through the excitation wavelength blocking filter 203 and the first fluorescence enter the imaging device 204.
  • the reflected light of visible light and the first fluorescence are incident on the first photoelectric conversion element 2050 of each of the B pixel Pb1, the G pixel Pg1, and the R pixel Pr1 of the first substrate 2040.
  • the first fluorescence is negligibly weak compared to the reflected light of visible light. Therefore, the plurality of first pixels 2040P of the first substrate 2040 output a first signal based on the reflected light of visible light.
  • the signal processing unit 30 generates a visible light image based on the first signal.
  • the imaging device 204 Of the light incident on the imaging device 204, most of the light having a wavelength of 600 nm or less is absorbed by the first substrate 2040, and only a part of the light having a wavelength of 600 nm or more passes through the first substrate 2040. Among the light incident on the imaging element 204, part of light having a wavelength of 600 nm or more is not absorbed by the first substrate 2040, and passes through the first substrate 2040. That is, part of the reflected light of visible light incident on the imaging element 204 and part of the first fluorescence incident on the imaging element 204 pass through the first substrate 2040.
  • the light transmitted through the first substrate 2040 is incident on the optical filter 2043.
  • the optical filter 2043 blocks the reflected light of visible light transmitted through the first substrate 2040 and transmits the first fluorescence by the spectral transmission characteristic shown in FIG.
  • the light transmitted through the optical filter 2043 is incident on the plurality of second photoelectric conversion elements 2051 of the second substrate 2041.
  • the plurality of second pixels 2041P of the second substrate 2041 output a second signal based on the first fluorescence.
  • the signal processing unit 30 generates a first fluorescence image based on the second signal.
  • the endoscope apparatus 1 when the second illumination light is emitted to the subject 50 will be described. Due to the spectral transmission characteristics of the second filter 1012, shown in FIG. 18, the subject 50 is irradiated with visible light having a wavelength of 410 nm to 610 nm and second excitation light having a wavelength of 720 nm to 790 nm. Reflected light of visible light, reflected light of the second excitation light, and second fluorescence having a wavelength of 800 nm to 900 nm are emitted from the subject 50.
  • the light emitted from the subject 50 enters the excitation wavelength blocking filter 203.
  • the excitation wavelength blocking filter 203 blocks the reflected light of the second excitation light and transmits the reflected light of the visible light and the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the reflected light of the visible light transmitted through the excitation wavelength blocking filter 203 and the second fluorescence enter the imaging element 204.
  • the reflected light of visible light and the second fluorescence are incident on the first photoelectric conversion element 2050 of each of the B pixel Pb1, the G pixel Pg1, and the R pixel Pr1 of the first substrate 2040.
  • the second fluorescence is negligibly weak compared to the reflected light of visible light. Therefore, the plurality of first pixels 2040P of the first substrate 2040 output a third signal based on the reflected light of visible light.
  • the signal processing unit 30 generates a visible light image based on the third signal.
  • a part of the reflected light of visible light incident on the imaging element 204 and a part of second fluorescence incident on the imaging element 204 are transmitted through the first substrate 2040.
  • the light transmitted through the first substrate 2040 is incident on the optical filter 2043.
  • the optical filter 2043 blocks the reflected light of visible light transmitted through the first substrate 2040 and transmits the second fluorescence according to the spectral transmission characteristic shown in FIG.
  • the light transmitted through the optical filter 2043 is incident on the plurality of second photoelectric conversion elements 2051 of the second substrate 2041.
  • the plurality of second pixels 2041P of the second substrate 2041 output a fourth signal based on the second fluorescence.
  • the signal processing unit 30 generates a second fluorescence image based on the fourth signal.
  • FIG. 21 is a timing chart showing the operation of the endoscope apparatus 1.
  • the types of filters of the excitation wavelength selection filter 101 disposed in the optical path are shown.
  • an image based on the signal acquired by the first substrate 2040 and an image based on the signal acquired by the second substrate 2041 are shown.
  • time progresses to the right.
  • the operation of one cycle is repeated.
  • the first filter 1011 is disposed in the optical path.
  • the first filter 1011 transmits visible light and first excitation light among the light emitted from the light source 100.
  • the subject 50 is irradiated with first illumination light including visible light and first excitation light.
  • the reflected light of the visible light, the reflected light of the first excitation light, and the first fluorescence are emitted from the subject 50 and are incident on the imaging device 204. Reflected light of visible light is detected in the first substrate 2040, and first fluorescence is detected in the second substrate 2041. As a result, a visible light image and a first fluorescence image are generated.
  • the second filter 1012 is disposed in the light path.
  • the second filter 1012 transmits visible light and second excitation light among the light emitted from the light source 100.
  • the reflected light of the visible light, the reflected light of the second excitation light, and the second fluorescence are emitted from the subject 50 and are incident on the imaging device 204. Reflected light of visible light is detected in the first substrate 2040, and second fluorescence is detected in the second substrate 2041. As a result, a visible light image and a second fluorescence image are generated.
  • the reflected light of visible light is detected in the first half and the second half of one cycle. Reflected visible light may be detected only in the first half of one cycle or only in the second half of one cycle.
  • the light source unit 10 includes a plurality of light emitting elements capable of selectively emitting light in a wavelength band including at least one wavelength band of visible light, first excitation light, and second excitation light. May be included. For example, in the first period, at least one of the plurality of light emitting elements emits visible light and first excitation light. In the second period, at least one of the plurality of light emitting elements emits visible light and second excitation light. Each of the plurality of light emitting elements may be a light emitting diode.
  • the endoscope apparatus 1 of the third embodiment simultaneously images the reflected light of visible light and the first fluorescence.
  • the endoscope apparatus 1 simultaneously images the reflected light of the visible light and the second fluorescence. This shortens the acquisition interval of visible light images. Therefore, the endoscope apparatus 1 can suppress the decrease in the frame rate of the visible light image, and can acquire the visible light image and a plurality of types of fluorescence images.
  • the frame rate of the visible light image is faster than in the prior art. Therefore, the endoscope apparatus 1 can suppress the jump of the visible light image as much as possible. As a result, the moving image of the visible light image becomes easy to view, and the user can easily grasp the form of the observation object.
  • Modification of the third embodiment A modification of the third embodiment of the present invention will be described using the endoscope apparatus 1a shown in FIG. The configuration of the endoscope apparatus 1a will be described focusing on differences from the configuration in the modification of the second embodiment.
  • the imaging element 206 captures visible light reflected by the subject 50.
  • the imaging element 207 images the first fluorescence emitted from the subject 50 by the first excitation light and the second fluorescence emitted from the object 50 by the second excitation light.
  • the imaging element 206 and the imaging element 207 output a first imaging signal and a second imaging signal.
  • the excitation wavelength blocking filter 203 blocks the wavelength band of the first excitation light and the wavelength band of the second excitation light, and transmits the wavelength band of visible light, the wavelength band of the first fluorescence, and the wavelength band of the second fluorescence. It has a characteristic.
  • the signal processing unit 30 determines a visible light image based on reflected light of visible light based on the first imaging signal and the second imaging signal output from the imaging element 206 and the imaging element 207, and a first fluorescence based on the first fluorescence. An image and a second fluorescence image based on the second fluorescence are generated.
  • the first illumination light includes visible light and first excitation light.
  • the imaging device 206 outputs, as a first imaging signal, a first signal that is an imaging signal based on the reflected light of visible light.
  • the imaging element 207 outputs a second signal, which is an imaging signal based on the first fluorescence, as a first imaging signal.
  • the signal processing unit 30 When the first illumination light is emitted to the subject 50, the signal processing unit 30 generates a visible light image based on the first signal, and generates a first fluorescent image based on the second signal.
  • the second illumination light includes visible light and second excitation light.
  • the imaging device 206 outputs, as a second imaging signal, a third signal which is an imaging signal based on the reflected light of visible light.
  • the imaging element 207 outputs a fourth signal, which is an imaging signal based on the second fluorescence, as a second imaging signal.
  • the signal processing unit 30 When the second illumination light is emitted to the subject 50, the signal processing unit 30 generates a visible light image based on the third signal, and generates a second fluorescent image based on the fourth signal.
  • the dichroic mirror 205 separates the reflected light of the visible light and the first fluorescence when the first illumination light is irradiated, and separates the reflected light of the visible light and the second fluorescence when the second illumination light is irradiated. Do.
  • the reflected light of visible light separated by the dichroic mirror 205 is incident on the imaging element 206.
  • the first fluorescence and the second fluorescence separated by the dichroic mirror 205 enter the imaging element 207.
  • the imaging device 206 When the first illumination light is applied to the subject 50, the imaging device 206 outputs a first signal, and the imaging device 207 outputs a second signal.
  • the imaging device 206 outputs a third signal, and the imaging device 207 outputs a fourth signal.
  • FIG. 22 shows the spectral transmission characteristics of the dichroic mirror 205.
  • the horizontal axis of the graph indicates the wavelength
  • the vertical axis of the graph indicates the transmittance.
  • the transmission wavelength band of the dichroic mirror 205 is configured by a wavelength band VF34 of 610 nm or less.
  • the wavelength band VF 34 includes a wavelength band of 410 nm to 610 nm corresponding to visible light.
  • the dichroic mirror 205 reflects light of wavelength bands other than the wavelength band VF34.
  • the reflection wavelength band of the dichroic mirror 205 includes a wavelength band of 620 nm to 710 nm corresponding to the first fluorescence and a wavelength band of 800 nm to 900 nm corresponding to the second fluorescence. Therefore, the dichroic mirror 205 transmits the reflected light of visible light and reflects the first fluorescence and the second fluorescence.
  • the reflected light of the visible light and the first fluorescence are incident on the dichroic mirror 205.
  • the dichroic mirror 205 transmits the reflected light of visible light and reflects the first fluorescence. Reflected light of visible light transmitted through the dichroic mirror 205 is incident on the imaging element 206.
  • the first fluorescence reflected by the dichroic mirror 205 is incident on the imaging element 207.
  • the imaging element 206 captures the reflected light of visible light and generates a first signal based on the reflected light of visible light.
  • the imaging element 207 images the first fluorescence and generates a second signal based on the first fluorescence.
  • the first imaging signal including the first signal and the second signal is output to the signal processing unit 30.
  • the reflected light of the visible light and the second fluorescence are incident on the dichroic mirror 205.
  • the dichroic mirror 205 transmits the reflected light of visible light and reflects the second fluorescence. Reflected light of visible light transmitted through the dichroic mirror 205 is incident on the imaging element 206.
  • the second fluorescence reflected by the dichroic mirror 205 is incident on the imaging element 207.
  • the imaging element 206 captures the reflected light of visible light and generates a third signal based on the reflected light of visible light.
  • the imaging element 207 images the second fluorescence and generates a fourth signal based on the second fluorescence.
  • the second imaging signal including the third signal and the fourth signal is output to the signal processing unit 30.
  • the endoscope apparatus 1a can suppress a decrease in the frame rate of a visible light image, and can obtain a visible light image and a plurality of types of fluorescent images.
  • the endoscope apparatus can suppress the decrease in the frame rate of the visible light image, and can acquire the visible light image and a plurality of types of fluorescence images.
  • 1, 1a endoscope apparatus 10 light source unit 20, 20a endoscope scope unit 30 signal processing unit 40 monitor 100 light source 101 excitation wavelength selection filter 102 condenser lens 1010 support plate 1011 first filter 1012 second filter 200 light guide 201 illumination Lens 202 Objective lens 203 Excitation wavelength blocking filter 204, 206, 207 Image sensor 205 Dichroic mirror 2040 First substrate 2040P First pixel 2041 Second substrate 2041P Second pixel 2042 color filter 2042R red filter 2042G green filter 2042B blue filter 2043 optical filter 2050 first photoelectric conversion element 2051 second photoelectric conversion element

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)

Abstract

内視鏡装置において光源部は、第1照明光および第2照明光を順次に出射する。前記第1照明光は、可視光を含む。前記第2照明光は、第1励起光を含む。前記第1照明光および前記第2照明光の少なくとも1つは第2励起光を含む。励起波長遮断フィルタは、前記第1励起光の波長帯域および前記第2励起光の波長帯域を遮断し、かつ前記可視光の波長帯域と第1蛍光の波長帯域と第2蛍光の波長帯域とを透過させる特性を有する。撮像部は、前記可視光、前記第1蛍光、および前記第2蛍光を撮像し、かつ第1撮像信号および第2撮像信号を出力する。

Description

内視鏡装置
 本発明は、内視鏡装置に関する。
 可視光画像および蛍光画像を1つのシステムで取得できる蛍光内視鏡装置が知られている。可視光画像は、生体等である観察対象物の形態情報を取得するために使用される。蛍光画像は、生体内の腫瘍の有無などを診断するために使用される。
 特許文献1に開示された蛍光内視鏡装置は、可視光画像に加えて、複数種類の蛍光画像を取得できる。その蛍光画像は、生体内に元来存在する自家蛍光および体内に投与された蛍光薬剤による蛍光などに基づく。例えば、特許文献1では、ある励起光が照射されたコラーゲンからの自家蛍光に基づく蛍光画像が取得され、かつ別の励起光が照射された腫瘍からの蛍光に基づく蛍光画像が取得される。腫瘍からの蛍光は、投与された蛍光薬剤であるAlexa680からの蛍光である。特許文献1に示す蛍光内視鏡装置のように、通常の可視光画像に加えて、複数種類の蛍光画像を取得できることによって、腫瘍の有無などの診断の更なる性能向上が可能となる。
 特許文献1に開示された蛍光内視鏡装置の詳細を説明する。図30に示す励起波長選択フィルタ60が光源の後ろに配置される。図30は、励起波長選択フィルタ60の構成を示す。励起波長選択フィルタ60は、第1フィルタ61、第2フィルタ62、および第3フィルタ63を有する。励起波長選択フィルタ60は、回転軸64を中心に回転する。
 図31は、第1フィルタ61の分光透過特性を示す。図31において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図31に示すように、第1フィルタ61は、波長が400nm近傍である帯域の光のみを透過させる。つまり、第1フィルタ61は、コラーゲンを励起する光のみを透過させる。以下では、コラーゲンを励起する光を第1励起光と定義する。
 図32は、第2フィルタ62の分光透過特性を示す。図32において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図32に示すように、第2フィルタ62は、波長が680nm近傍である帯域の光のみを透過させる。つまり、第2フィルタ62は、Alexa680を励起する光のみを透過させる。以下では、Alexa680を励起する光を第2励起光と定義する。
 図33は、第3フィルタ63の分光透過特性を示す。図33において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図33に示すように、第3フィルタ63は、波長が400nm近傍から600nm近傍である帯域の光のみを透過させる。つまり、第3フィルタ63は、可視光のみを透過させる。
 励起波長遮断フィルタが撮像素子の前に配置される。図34は、励起波長遮断フィルタの分光透過特性を示す。励起波長遮断フィルタは、第1励起光および第2励起光を遮断し、かつ可視光、コラーゲンからの蛍光、およびAlexa680からの蛍光を透過させる。以下では、コラーゲンからの蛍光を第1蛍光と定義し、かつAlexa680からの蛍光を第2蛍光と定義する。
 図35は、励起光および蛍光のスペクトル特性を示す。図35において、グラフの横軸は波長を示し、かつグラフの縦軸は励起光強度または蛍光強度を示す。第1励起光E1001は、コラーゲンを励起する光である。第2励起光E1002は、Alexa680を励起する光である。第1蛍光F1001は、第1励起光E1001が照射されたコラーゲンから発する蛍光である。第2蛍光F1002は、第2励起光E1002が照射されたAlexa680から発する蛍光である。
 励起波長選択フィルタ60が回転することにより、生体には可視光、第1励起光、および第2励起光が順次に照射される。これにより、生体からの反射光、第1励起光による第1蛍光、および第2励起光による第2蛍光が順次に出射する。撮像素子の前に配置された励起波長遮断フィルタにより第1励起光の反射光および第2励起光の反射光は遮断される。そのため、撮像素子は生体からの反射光(可視光)、第1蛍光、および第2蛍光を順次に取得することができる。
日本国特開2006-296635号公報
 従来技術の蛍光内視鏡装置は、可視光と複数種類の励起光とを観察対象物に順次に照射することにより、可視光画像と複数種類の蛍光画像とを取得する。ある時点での可視光画像の取得からその次の可視光画像の取得までに、複数種類の蛍光画像の取得のために複数種類の励起光を照射する時間が必要である。そのため、可視光画像を取得してから次の可視光画像を取得するまで間隔が長くなる。
 可視光画像は観察対象物の形態情報の観察に使用される。ユーザが内視鏡を移動させながら生体内を観察する場合、および生体内の消化器官等の動きが大きい場合がある。それらの場合に、ある時点で取得された可視光画像から得られる観察対象物の形態と、次の時点で取得された可視光画像から得られる観察対象物の形態との差が大きくなる。可視光画像のフレームレートは低くなり、可視光画像は大きなコマ飛びが発生したような画像になる。そのため、観察対象物の形態情報の把握が難しくなる。
 本発明は、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる内視鏡装置を提供することを目的とする。
 本発明の第1の態様によれば、内視鏡装置は、光源部、撮像部、励起波長遮断フィルタ、および信号処理部を有する。前記光源部は、可視光と、観察対象物内に存在する第1蛍光物質を励起するための第1励起光と、前記観察対象物内に存在する第2蛍光物質を励起するための第2励起光とを出射する。前記撮像部は、前記観察対象物で反射した前記可視光と、前記第1励起光により前記観察対象物から発する第1蛍光と、前記第2励起光により前記観察対象物から発する第2蛍光とを撮像し、かつ第1撮像信号および第2撮像信号を出力する。前記励起波長遮断フィルタは、前記観察対象物から前記撮像部までの光路に配置され、前記第1励起光の波長帯域および前記第2励起光の波長帯域を遮断し、かつ前記可視光の波長帯域と前記第1蛍光の波長帯域と前記第2蛍光の波長帯域とを透過させる特性を有する。前記信号処理部は、前記撮像部から出力された前記第1撮像信号および前記第2撮像信号に基づいて、前記可視光の反射光に基づく可視光画像と、前記第1蛍光に基づく第1蛍光画像と、前記第2蛍光に基づく第2蛍光画像とを生成する。前記光源部は、第1照明光および第2照明光を順次に出射する。前記第1照明光は、前記可視光を含む。前記第2照明光は、前記第1励起光を含む。前記第1照明光および前記第2照明光の少なくとも1つは前記第2励起光を含む。前記第1撮像信号は、前記可視光の前記反射光に基づく。前記第2撮像信号は、前記第1蛍光に基づく。前記第1撮像信号および前記第2撮像信号の少なくとも1つはさらに、前記第2蛍光に基づく。
 本発明の第2の態様によれば、第1の態様において、前記光源部は、光源および回転フィルタを有してもよい。前記光源は、前記可視光、前記第1励起光、および前記第2励起光の各々の波長帯域を少なくとも含む波長帯域の光を出射してもよい。前記回転フィルタは、前記光源から出射する光の光路に配置され、第1フィルタおよび第2フィルタが円周方向に配置されてもよい。前記第1フィルタは、前記可視光を透過させる。前記第2フィルタは、前記第1励起光を透過させてもよい。前記第1フィルタおよび前記第2フィルタの少なくとも1つは、前記第2励起光を透過させてもよい。
 本発明の第3の態様によれば、第1の態様において、前記第1照明光は、前記可視光および前記第2励起光を含んでもよい。前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第1信号と、前記第2蛍光に基づく撮像信号である第2信号とを前記第1撮像信号として出力してもよい。前記第1照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第1信号に基づいて前記可視光画像を生成し、かつ前記第2信号に基づいて前記第2蛍光画像を生成してもよい。前記第2照明光は、前記第1励起光および前記第2励起光を含んでもよい。前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1蛍光および前記第2蛍光に基づく撮像信号である第3信号と、前記第2蛍光に基づく撮像信号である第4信号とを前記第2撮像信号として出力してもよい。前記第2照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第3信号および前記第4信号に基づいて前記第1蛍光画像を生成し、かつ前記第4信号に基づいて前記第2蛍光画像を生成してもよい。
 本発明の第4の態様によれば、第3の態様において、前記撮像部は、第1基板と、前記第1基板に積層された第2基板と、光学フィルタとを有してもよい。前記第1基板は、2次元状に配置された複数の第1画素を有し、かつ前記第1信号および前記第3信号を出力してもよい。前記第2基板は、2次元状に配置された複数の第2画素を有し、かつ前記第2信号および前記第4信号を出力してもよい。前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1信号および前記第2信号を出力してもよい。前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第3信号および前記第4信号を出力してもよい。前記光学フィルタは、前記第1基板および前記第2基板の間に配置され、前記可視光の波長帯域および前記第1蛍光の波長帯域を遮断し、かつ前記第2蛍光の波長帯域を透過させる光学特性を有してもよい。
 本発明の第5の態様によれば、第1の態様において、前記第1照明光は、前記可視光および前記第2励起光を含んでもよい。前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第1信号と、前記第2蛍光に基づく撮像信号である第2信号とを前記第1撮像信号として出力してもよい。前記第1照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第1信号に基づいて前記可視光画像を生成し、かつ前記第2信号に基づいて前記第2蛍光画像を生成してもよい。前記第2照明光は、前記第1励起光および前記第2励起光を含んでもよい。前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1蛍光に基づく撮像信号である第3信号と、前記第2蛍光に基づく撮像信号である第4信号とを前記第2撮像信号として出力してもよい。前記第2照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第3信号に基づいて前記第1蛍光画像を生成し、かつ前記第4信号に基づいて前記第2蛍光画像を生成してもよい。
 本発明の第6の態様によれば、第5の態様において、前記内視鏡装置は、光分離素子を有してもよい。前記光分離素子は、前記可視光の前記反射光および前記第2蛍光を分離し、かつ前記第1蛍光および前記第2蛍光を分離する。前記撮像部は、第1撮像素子および第2撮像素子を有してもよい。前記光分離素子によって分離された前記可視光の前記反射光および前記第1蛍光が前記第1撮像素子に入射してもよい。前記光分離素子によって分離された前記第2蛍光が前記第2撮像素子に入射してもよい。前記第1照明光が前記観察対象物に照射された場合、前記第1撮像素子は前記第1信号を出力し、かつ前記第2撮像素子は前記第2信号を出力してもよい。前記第2照明光が前記観察対象物に照射された場合、前記第1撮像素子は前記第3信号を出力し、かつ前記第2撮像素子は前記第4信号を出力してもよい。
 本発明の第7の態様によれば、第1の態様において、前記光源部は、前記可視光、前記第1励起光、および前記第2励起光の少なくとも1つの波長帯域を含む波長帯域の光を選択的に出射可能な複数の発光素子を有してもよい。
 本発明の第8の態様によれば、第7の態様において、前記複数の発光素子の各々は、発光ダイオードであってもよい。
 本発明の第9の態様によれば、内視鏡装置は、光源部、撮像部、励起波長遮断フィルタ、および信号処理部を有する。前記光源部は、可視光と、観察対象物内に存在する第1蛍光物質を励起するための第1励起光と、前記観察対象物内に存在する第2蛍光物質を励起するための第2励起光とを出射する。前記撮像部は、前記観察対象物で反射した前記可視光と、前記第1励起光により前記観察対象物から発する第1蛍光と、前記第2励起光により前記観察対象物から発する第2蛍光とを撮像し、かつ第1撮像信号および第2撮像信号を出力する。前記励起波長遮断フィルタは、前記観察対象物から前記撮像部までの光路に配置され、前記第1励起光の波長帯域および前記第2励起光の波長帯域を遮断し、かつ前記可視光の波長帯域と前記第1蛍光の波長帯域と前記第2蛍光の波長帯域とを透過させる特性を有する。前記信号処理部は、前記撮像部から出力された前記第1撮像信号および前記第2撮像信号に基づいて、前記可視光の反射光に基づく可視光画像と、前記第1蛍光に基づく第1蛍光画像と、前記第2蛍光に基づく第2蛍光画像とを生成する。前記光源部は、第1照明光および第2照明光を順次に出射する。前記第1照明光は、前記第1励起光を含む。前記第2照明光は、前記第2励起光を含む。前記第1照明光および前記第2照明光の少なくとも1つは前記可視光を含む。前記第1撮像信号は、前記第1蛍光に基づく。前記第2撮像信号は、前記第2蛍光に基づく。前記第1撮像信号および前記第2撮像信号の少なくとも1つはさらに、前記可視光の前記反射光に基づく。
 本発明の第10の態様によれば、第9の態様において、前記光源部は、光源および回転フィルタを有してもよい。前記光源は、前記可視光、前記第1励起光、および前記第2励起光の各々の波長帯域を少なくとも含む波長帯域の光を出射してもよい。前記回転フィルタは、前記光源から出射する光の光路に配置され、第1フィルタおよび第2フィルタが円周方向に配置されてもよい。前記第1フィルタは、前記第1励起光を透過させてもよい。前記第2フィルタは、前記第2励起光を透過させてもよい。前記第1フィルタおよび前記第2フィルタの少なくとも1つは、前記可視光を透過させてもよい。
 本発明の第11の態様によれば、第9の態様において、前記第1照明光は、前記可視光および前記第1励起光を含んでもよい。前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第1信号と、前記第1蛍光に基づく撮像信号である第2信号とを前記第1撮像信号として出力してもよい。前記第1照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第1信号に基づいて前記可視光画像を生成し、かつ前記第2信号に基づいて前記第1蛍光画像を生成してもよい。前記第2照明光は、前記可視光および前記第2励起光を含んでもよい。前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第3信号と、前記第2蛍光に基づく撮像信号である第4信号とを前記第2撮像信号として出力してもよい。前記第2照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第3信号に基づいて前記可視光画像を生成し、かつ前記第4信号に基づいて前記第2蛍光画像を生成してもよい。
 本発明の第12の態様によれば、第11の態様において、前記撮像部は、第1基板と、前記第1基板に積層された第2基板と、光学フィルタとを有してもよい。前記第1基板は、2次元状に配置された複数の第1画素を有し、かつ前記第1信号および前記第3信号を出力してもよい。前記第2基板は、2次元状に配置された複数の第2画素を有し、かつ前記第2信号および前記第4信号を出力してもよい。前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1信号および前記第2信号を出力してもよい。前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第3信号および前記第4信号を出力してもよい。前記光学フィルタは、前記第1基板および前記第2基板の間に配置され、前記可視光の波長帯域を遮断し、かつ前記第1蛍光の波長帯域および前記第2蛍光の波長帯域を透過させる光学特性を有してもよい。
 本発明の第13の態様によれば、第11の態様において、前記内視鏡装置は、光分離素子を有してもよい。前記光分離素子は、前記可視光の前記反射光および前記第1蛍光を分離し、かつ前記可視光の前記反射光および前記第2蛍光を分離してもよい。前記撮像部は、第1撮像素子および第2撮像素子を有してもよい。光分離素子によって分離された前記可視光の前記反射光が前記第1撮像素子に入射してもよい。前記光分離素子によって分離された前記第1蛍光および前記第2蛍光が前記第2撮像素子に入射してもよい。前記第1照明光が前記観察対象物に照射された場合、前記第1撮像素子は前記第1信号を出力し、かつ前記第2撮像素子は前記第2信号を出力してもよい。前記第2照明光が前記観察対象物に照射された場合、前記第2撮像素子は前記第3信号を出力し、かつ前記第2撮像素子は前記第4信号を出力してもよい。
 本発明の第14の態様によれば、第9の態様において、前記光源部は、前記可視光、前記第1励起光、および前記第2励起光の少なくとも1つの波長帯域を含む波長帯域の光を選択的に出射可能な複数の発光素子を有してもよい。
 本発明の第15の態様によれば、第14の態様において、前記複数の発光素子の各々は、発光ダイオードであってもよい。
 本発明の第16の態様によれば、第1から第15の態様のいずれか1つにおいて、前記第1蛍光物質はコラーゲンであり、かつ前記第2蛍光物質はAlexa680であってもよい。
 本発明の第17の態様によれば、第1から第15の態様のいずれか1つにおいて、前記第1蛍光物質はプロトポルフィリンIXであり、かつ前記第2蛍光物質はインドシアニングリーンであってもよい。
 本発明の第18の態様によれば、第1から第17の態様のいずれか1つにおいて、前記信号処理部は、表示画像において前記可視光画像と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つとが離間するように、前記可視光画像と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つとを含む前記表示画像を生成してもよい。
 本発明の第19の態様によれば、第1から第17の態様のいずれか1つにおいて、前記信号処理部は、表示画像において前記可視光画像の少なくとも一部と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つの少なくとも一部とが重なるように、前記可視光画像と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つとを含む前記表示画像を生成してもよい。
 上記の各態様によれば、内視鏡装置は、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
本発明の第1の実施形態の内視鏡装置のハードウェア構成を示すブロック図である。 本発明の第1の実施形態の励起波長選択フィルタの構成を示す模式図である。 本発明の第1の実施形態の励起波長選択フィルタにおける第1フィルタの分光透過特性を示すグラフである。 本発明の第1の実施形態の励起波長選択フィルタにおける第2フィルタの分光透過特性を示すグラフである。 本発明の第1の実施形態の励起波長遮断フィルタの分光透過特性を示すグラフである。 本発明の第1の実施形態の撮像素子の断面図である。 本発明の第1の実施形態の撮像素子の画素配列を示す参考図である。 本発明の第1の実施形態の光学フィルタの分光透過特性を示すグラフである。 本発明の第1の実施形態の内視鏡装置の動作を示すタイミングチャートである。 本発明の第1の実施形態の変形例の内視鏡装置のハードウェア構成を示すブロック図である。 本発明の第1の実施形態の変形例のダイクロイックミラーの分光透過特性を示すグラフである。 本発明の第2の実施形態の励起波長選択フィルタにおける第1フィルタの分光透過特性を示すグラフである。 本発明の第2の実施形態の励起波長選択フィルタにおける第2フィルタの分光透過特性を示すグラフである。 本発明の第2の実施形態の励起波長遮断フィルタの分光透過特性を示すグラフである。 本発明の第2の実施形態の光学フィルタの分光透過特性を示すグラフである。 本発明の第2の実施形態の変形例のダイクロイックミラーの分光透過特性を示すグラフである。 本発明の第3の実施形態の励起波長選択フィルタにおける第1フィルタの分光透過特性を示すグラフである。 本発明の第3の実施形態の励起波長選択フィルタにおける第2フィルタの分光透過特性を示すグラフである。 本発明の第3の実施形態の励起波長遮断フィルタの分光透過特性を示すグラフである。 本発明の第3の実施形態の光学フィルタの分光透過特性を示すグラフである。 本発明の第3の実施形態の内視鏡装置の動作を示すタイミングチャートである。 本発明の第3の実施形態の変形例のダイクロイックミラーの分光透過特性を示すグラフである。 コラーゲンの励起光吸収特性を示すグラフである。 コラーゲンの蛍光スペクトルを示すグラフである。 Alexa680の励起光吸収特性および蛍光スペクトルを示すグラフである。 画素の分光感度特性を示すグラフである。 PpIXの励起光吸収特性を示すグラフである。 PpIXの蛍光スペクトルを示すグラフである。 ICGの励起光吸収特性および蛍光スペクトルを示すグラフである。 従来技術の励起波長選択フィルタの構成を示す模式図である。 従来技術の励起波長選択フィルタにおける第1フィルタの分光透過特性を示すグラフである。 従来技術の励起波長選択フィルタにおける第2フィルタの分光透過特性を示すグラフである。 従来技術の励起波長選択フィルタにおける第3フィルタの分光透過特性を示すグラフである。 従来技術の励起波長遮断フィルタの分光透過特性を示すグラフである。 従来技術の励起光および蛍光のスペクトル特性を示すグラフである。
 図面を参照し、本発明の実施形態を説明する。
 (第1の実施形態)
 第1の実施形態では、従来技術の説明で示したコラーゲンの自家蛍光と、蛍光薬剤であるAlexa680からの蛍光とが検出される場合について説明する。Alexa680は、腫瘍に親和性があり、かつ予め生体に投与される。
 図23は、コラーゲンの励起光吸収特性を示す。図24は、コラーゲンの蛍光スペクトルを示す。図23および図24において、グラフの横軸は波長を示し、かつグラフの縦軸は強度を示す。
 図23に示すように、コラーゲンの自家蛍光が最大となる励起光の波長は340nm付近である。図24に示すように、コラーゲンの自家蛍光が最大となる波長は380nm付近である。したがって、波長が300nmから350nmの励起光を生体内に照射し、かつ波長が380nmから550nmの光を検出することにより、コラーゲンの自家蛍光を検出することができる。
 図25は、Alexa680の励起光吸収特性および蛍光スペクトルを示す。図25において、グラフの横軸は波長を示し、かつグラフの縦軸は強度を示す。線E10は、Alexa680の励起光吸収特性を示す。線F10は、Alexa680の蛍光スペクトルを示す。
 図25に示すように、Alexa680から発する蛍光が最大となる励起光の波長は680nm付近であり、かつAlexa680から発する蛍光が最大となる波長は703nm付近である。したがって、波長が650nmから690nmの励起光を生体内に照射し、かつ波長が700nm以上の光を検出することにより、Alexa680から発する蛍光を検出することができる。
 図1は、本発明の第1の実施形態の内視鏡装置1のハードウェア構成を示す。内視鏡装置1の概略構成について説明する。
 内視鏡装置1は、光源部10、撮像素子204、励起波長遮断フィルタ203、および信号処理部30を有する。光源部10は、可視光と、被写体50内に存在する第1蛍光物質を励起するための第1励起光と、被写体50内に存在する第2蛍光物質を励起するための第2励起光とを出射する。被写体50は、生体内の観察対象物である。撮像素子204は、被写体50で反射した可視光と、第1励起光により被写体50から発する第1蛍光と、第2励起光により被写体50から発する第2蛍光とを撮像する。撮像素子204は、第1撮像信号および第2撮像信号を出力する。励起波長遮断フィルタ203は、被写体50から撮像素子204までの光路に配置されている。励起波長遮断フィルタ203は、第1励起光の波長帯域および第2励起光の波長帯域を遮断し、かつ可視光の波長帯域と第1蛍光の波長帯域と第2蛍光の波長帯域とを透過させる特性を有する。信号処理部30は、撮像素子204から出力された第1撮像信号および第2撮像信号に基づいて、可視光の反射光に基づく可視光画像と、第1蛍光に基づく第1蛍光画像と、第2蛍光に基づく第2蛍光画像とを生成する。
 光源部10は、第1照明光および第2照明光を順次に出射する。第1照明光は、可視光を含む。第2照明光は、第1励起光を含む。第1照明光および第2照明光の少なくとも1つは第2励起光を含む。第1撮像信号は、可視光の反射光に基づく。第2撮像信号は、第1蛍光に基づく。第1撮像信号および第2撮像信号の少なくとも1つはさらに、第2蛍光に基づく。
 内視鏡装置1の詳細な構成について説明する。図1に示すように、内視鏡装置1は、光源部10、内視鏡スコープ部20、信号処理部30(演算装置)、およびモニタ40を有する。
 光源部10は、光源100、励起波長選択フィルタ101、およびコンデンサレンズ102を有する。光源100は、可視光、第1励起光、および第2励起光の各々の波長帯域を少なくとも含む波長帯域の光を出射する。第1励起光は、第1蛍光物質を励起するための光である。第1の実施形態において、第1蛍光物質はコラーゲンである。第2励起光は、第2蛍光物質を励起するための光である。第1の実施形態において、第2蛍光物質はAlexa680である。例えば、光源100は、白色光を発生する。
 励起波長選択フィルタ101は、光源100から出射する光の光路に配置されている。
 図2は、励起波長選択フィルタ101の構成を示す。図2において、光路とほぼ平行な方向に励起波長選択フィルタ101を見たときの励起波長選択フィルタ101の構成が模式的に示されている。
 励起波長選択フィルタ101は、第1フィルタ1011および第2フィルタ1012が配置された支持板1010を有する。例えば、第1フィルタ1011および第2フィルタ1012は、支持板1010の表面に配置されている。第1フィルタ1011および第2フィルタ1012は、回転軸1013の周囲に配置されている。第1フィルタ1011および第2フィルタ1012は、回転軸1013の円周方向に配置されている。図示しないモータの駆動により、励起波長選択フィルタ101は、回転軸1013を中心に回転する。したがって、励起波長選択フィルタ101は、回転フィルタとして構成されている。第1フィルタ1011および第2フィルタ1012は、回転方向に配置されている。
 図2に示す例では、支持板1010は円板である。支持板1010の形状は円に限らない。
 第1フィルタ1011は、可視光を透過させる。第2フィルタ1012は、第1励起光を透過させる。第1フィルタ1011および第2フィルタ1012の少なくとも1つは、第2励起光を透過させる。第1の実施形態に示す例では、第1フィルタ1011および第2フィルタ1012の両方が第2励起光を透過させる。したがって、第1フィルタ1011は、可視光および第2励起光を透過させ、かつそれらの波長帯域以外の光を遮断する。第2フィルタ1012は、第1励起光および第2励起光を透過させ、かつそれらの波長帯域以外の光を遮断する。
 励起波長選択フィルタ101が回転することにより、第1フィルタ1011および第2フィルタ1012が順次に光路に配置される。したがって、第1フィルタ1011を透過した光と第2フィルタ1012を透過した光とが、時系列に被写体50に入射する。
 図3は、第1フィルタ1011の分光透過特性を示す。図3において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図3に示すように、第1フィルタ1011の透過波長帯域は、380nmから650nmの波長帯域V11と、650nmから690nmの波長帯域E12とで構成されている。波長帯域V11は、可視光に対応する。波長帯域E12は、Alexa680を励起するための第2励起光に対応する。第1フィルタ1011は、波長帯域V11および波長帯域E12以外の波長帯域の光を遮断する。したがって、第1フィルタ1011は、可視光および第2励起光のみを透過させる。
 図4は、第2フィルタ1012の分光透過特性を示す。図4において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図4に示すように、第2フィルタ1012の透過波長帯域は、300nmから350nmの波長帯域E11と、650nmから690nmの波長帯域E12とで構成されている。波長帯域E11は、コラーゲンを励起するための第1励起光に対応する。第2フィルタ1012は、波長帯域E11および波長帯域E12以外の波長帯域の光を遮断する。つまり、第2フィルタ1012は、第1励起光および第2励起光のみを透過させる。
 コンデンサレンズ102は、励起波長選択フィルタ101を透過した光を内視鏡スコープ部20に入射させる。
 内視鏡スコープ部20は、ライトガイド200、照明レンズ201、対物レンズ202、励起波長遮断フィルタ203、および撮像素子204(イメージセンサ)を有する。光源100からの光は、励起波長選択フィルタ101およびコンデンサレンズ102を介して、ライトガイド200に入射する。ライトガイド200は、光源100からの光を内視鏡スコープ部20の先端部に伝送する。ライトガイド200によって伝送された光は、照明レンズ201により被写体50に照射される。
 励起波長選択フィルタ101の分光透過特性により、所定の波長帯域の光が被写体50に照射される。第1フィルタ1011が光路に配置されたとき、第1照明光が被写体50に照射される。第1照明光は、可視光および第2励起光を含む。第2フィルタ1012が光路に配置されたとき、第2照明光が被写体50に照射される。第2照明光は、第1励起光および第2励起光を含む。光源部10は、第1照明光および第2照明光を順次に出射する。
 内視鏡スコープ部20の先端部において、照明レンズ201に隣接して対物レンズ202が設けられている。被写体50によって反射された光および被写体50内の蛍光物質から発する蛍光が対物レンズ202に入射する。対物レンズ202は、被写体50からの光を結像する。被写体50および撮像素子204の間に対物レンズ202が配置され、かつ対物レンズ202および撮像素子204の間に励起波長遮断フィルタ203が配置されている。
 励起波長遮断フィルタ203は、第1励起光の波長帯域および第2励起光の波長帯域を遮断し、かつ可視光の波長帯域と第1蛍光の波長帯域と第2蛍光の波長帯域とを透過させる特性を有する。可視光、第1励起光、および第2励起光は、被写体50で反射し、かつ励起波長遮断フィルタ203に入射する。第1蛍光は、第1励起光により被写体50から発し、かつ励起波長遮断フィルタ203に入射する。第2蛍光は、第2励起光により被写体50から発し、かつ励起波長遮断フィルタ203に入射する。
 図5は、励起波長遮断フィルタ203の分光透過特性を示す。図5において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図5に示すように、励起波長遮断フィルタ203の遮断波長帯域は、380nm以下の波長帯域E13と、650nmから690nmの波長帯域E14とで構成されている。波長帯域E13は、図4に示す第1励起光の波長帯域E11を含む。波長帯域E14は、図4に示す第2励起光の波長帯域E12を含む。したがって、励起波長遮断フィルタ203は、第1励起光の反射光および第2励起光の反射光を遮断する。
 図5に示すように、励起波長遮断フィルタ203の透過波長帯域は、380nmから650nmの波長帯域VF11と、690nm以上の波長帯域F12とで構成されている。波長帯域VF11は、可視光に対応する380nmから650nmの波長帯域と、第1蛍光に対応する380nmから550nmの波長帯域とを含む。波長帯域F12は、第2蛍光に対応する700nmから800nmの波長帯域を含む。したがって、励起波長遮断フィルタ203は、可視光の反射光、第1蛍光、および第2蛍光を透過させる。
 対物レンズ202の結像位置に撮像素子204が配置されている。対物レンズ202および励起波長遮断フィルタ203を通過した光は、撮像素子204に入射する。励起波長遮断フィルタ203の分光透過特性により、可視光の反射光、第1蛍光、および第2蛍光が撮像素子204に入射する。撮像素子204は、撮像部を構成する。撮像素子204は、撮像素子204に入射した光を撮像することにより、撮像信号を生成する。つまり、撮像素子204は、可視光の反射光、第1蛍光、および第2蛍光を撮像し、かつ第1撮像信号および第2撮像信号を生成する。撮像素子204によって生成された第1撮像信号および第2撮像信号は信号処理部30に出力される。
 信号処理部30は、プロセッサおよび論理回路の少なくとも1つで構成されている。例えば、プロセッサは、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、およびGPU(Graphics Processing Unit)の少なくとも1つである。例えば、論理回路は、ASIC(Application Specific Integrated Circuit)およびFPGA(Field-Programmable Gate Array)の少なくとも1つである。信号処理部30は、1つまたは複数のプロセッサを含むことができる。信号処理部30は、1つまたは複数の論理回路を含むことができる。信号処理部30は、撮像素子204から出力された第1撮像信号および第2撮像信号に基づいて、可視光の反射光に基づく可視光画像と、第1蛍光に基づく第1蛍光画像と、第2蛍光に基づく第2蛍光画像とを生成する。
 モニタ40は、液晶ディスプレイおよび有機EL(Electro Luminescence)ディスプレイ等のいずれか1つである。モニタ40は、可視光画像、第1蛍光画像、および第2蛍光画像を表示する。
 信号処理部30は、表示画像において可視光画像と、第1蛍光画像および第2蛍光画像の少なくとも1つとが離間するように、可視光画像と、第1蛍光画像および第2蛍光画像の少なくとも1つとを含む表示画像を生成する。モニタ40は、可視光画像と、第1蛍光画像および第2蛍光画像の少なくとも1つとが離間するように、表示画像を表示する。
 例えば、信号処理部30は、表示画像において可視光画像および第1蛍光画像が離間するように、可視光画像および第1蛍光画像を含む表示画像を生成する。モニタ40は、可視光画像および第1蛍光画像が離間するように、表示画像を表示する。あるいは、信号処理部30は、表示画像において可視光画像および第2蛍光画像が離間するように、可視光画像および第2蛍光画像を含む表示画像を生成する。モニタ40は、可視光画像および第2蛍光画像が離間するように、表示画像を表示する。あるいは、信号処理部30は、表示画像において可視光画像、第1蛍光画像、および第2蛍光画像の各々が離間するように、可視光画像、第1蛍光画像、および第2蛍光画像を含む表示画像を生成する。モニタ40は、可視光画像、第1蛍光画像、および第2蛍光画像の各々が離間するように、表示画像を表示する。
 信号処理部30は、表示画像において可視光画像の少なくとも一部と、第1蛍光画像および第2蛍光画像の少なくとも1つの少なくとも一部とが重なるように、可視光画像と、第1蛍光画像および第2蛍光画像の少なくとも1つとを含む表示画像を生成してもよい。モニタ40は、可視光画像の少なくとも一部と、第1蛍光画像および第2蛍光画像の少なくとも1つの少なくとも一部とが重なるように、表示画像を表示してもよい。
 例えば、信号処理部30は、表示画像において可視光画像の少なくとも一部と第1蛍光画像の少なくとも一部とが重なるように、可視光画像および第1蛍光画像を含む表示画像を生成する。モニタ40は、表示画像において可視光画像の少なくとも一部と第1蛍光画像の少なくとも一部とが重なるように、表示画像を表示する。あるいは、信号処理部30は、表示画像において可視光画像の少なくとも一部と第2蛍光画像の少なくとも一部とが重なるように、可視光画像および第2蛍光画像を含む表示画像を生成する。モニタ40は、表示画像において可視光画像の少なくとも一部と第2蛍光画像の少なくとも一部とが重なるように、表示画像を表示する。あるいは、信号処理部30は、表示画像において可視光画像の少なくとも一部と第1蛍光画像の少なくとも一部と第2蛍光画像の少なくとも一部とが重なるように、可視光画像、第1蛍光画像、および第2蛍光画像を含む表示画像を生成する。モニタ40は、表示画像において可視光画像の少なくとも一部と第1蛍光画像の少なくとも一部と第2蛍光画像の少なくとも一部とが重なるように、表示画像を表示する。
 第1照明光は、可視光および第2励起光を含む。第1照明光が被写体50に照射された場合、撮像素子204は、可視光の反射光に基づく撮像信号である第1信号と、第2蛍光に基づく撮像信号である第2信号とを第1撮像信号として出力する。つまり、第1撮像信号は、第1信号および第2信号を含む。第1照明光が被写体50に照射された場合、信号処理部30は、第1信号に基づいて可視光画像を生成し、かつ第2信号に基づいて第2蛍光画像を生成する。
 第2照明光は、第1励起光および第2励起光を含む。第2照明光が被写体50に照射された場合、撮像素子204は、第1蛍光および第2蛍光に基づく撮像信号である第3信号と、第2蛍光に基づく撮像信号である第4信号とを第2撮像信号として出力する。つまり、第2撮像信号は、第3信号および第4信号を含む。第2照明光が被写体50に照射された場合、信号処理部30は、第3信号および第4信号に基づいて第1蛍光画像を生成し、かつ第4信号に基づいて第2蛍光画像を生成する。
 図6は、撮像素子204の構成を示す。図6において、撮像素子204の断面が示されている。図7は、撮像素子204の画素配列を示す。撮像素子204の概略構成について説明する。
 撮像素子204は、第1基板2040と、第1基板2040に積層された第2基板2041と、光学フィルタ2043とを有する。第1基板2040は、2次元状に配置された複数の第1画素2040Pを有する。第1基板2040の複数の第1画素2040Pは、第1信号および第3信号を出力する。第2基板2041は、2次元状に配置された複数の第2画素2041Pを有する。第2基板2041の複数の第2画素2041Pは、第2信号および第4信号を出力する。
 第1照明光が被写体50に照射された場合、撮像素子204は、第1信号および第2信号を出力する。第2照明光が被写体50に照射された場合、撮像素子204は、第3信号および第4信号を出力する。光学フィルタ2043は、第1基板2040および第2基板2041の間に配置されている。光学フィルタ2043は、可視光の波長帯域および第1蛍光の波長帯域を遮断し、かつ第2蛍光の波長帯域を透過させる光学特性を有する。
 撮像素子204の構成について、より詳細に説明する。図6に示すように、撮像素子204は、第1基板2040、第2基板2041、カラーフィルタ2042、および光学フィルタ2043を有する。これらは、第1基板2040の厚さ方向に積層されている。
 第1基板2040および第2基板2041は、半導体基板である。例えば、第1基板2040および第2基板2041は、シリコン(Si)で構成されている。第1基板2040は、面2040aおよび面2040bを有する。面2040aおよび面2040bは、第1基板2040の主面である。主面は、基板の表面を構成する複数の面のうち相対的に広い面である。面2040aおよび面2040bは、互いに反対方向を向く。
 第2基板2041は、面2041aおよび面2041bを有する。面2041aおよび面2041bは、第2基板2041の主面である。面2041aおよび面2041bは、互いに反対方向を向く。第1基板2040の面2040bおよび第2基板2041の面2041aは、対向する。図1に示すように、信号処理部30は、撮像素子204の外部に配置されている。第1基板2040および第2基板2041の少なくとも1つは、信号処理部30の少なくとも一部を有してもよい。
 カラーフィルタ2042は、第1基板2040の面2040aに積層されている。カラーフィルタ2042は、赤フィルタ2042R、緑フィルタ2042G、および青フィルタ2042Bを有する。撮像素子204がカラーフィルタ2042を有していなくてもよい。カラーフィルタ2042は、被写体50から第1基板2040までの光路上のいずれかの位置に配置されていればよい。
 図7に示すように、第1基板2040は、2次元状に配置された複数の第1画素2040Pを有する。第2基板2041は、2次元状に配置された複数の第2画素2041Pを有する。図6に示すように、第1基板2040は、複数の第1光電変換素子2050を有する。第2基板2041は、複数の第2光電変換素子2051を有する。第1光電変換素子2050および第2光電変換素子2051は、フォトダイオードである。複数の第1画素2040Pの各々は、第1光電変換素子2050を含む。複数の第2画素2041Pの各々は、第2光電変換素子2051を含む。
 複数の第1画素2040Pは、R画素Pr1、G画素Pg1、およびB画素Pb1を含む。図7において、“R”と記載された第1画素2040PがR画素Pr1である。図7において、“G”と記載された第1画素2040PがG画素Pg1である。図7において、“B”と記載された第1画素2040PがB画素Pb1である。
 赤フィルタ2042RがR画素Pr1の表面に配置される。R画素Pr1は、R信号を生成する。緑フィルタ2042GがG画素Pg1の表面に配置される。G画素Pg1は、G信号を生成する。青フィルタ2042BがB画素Pb1の表面に配置される。B画素Pb1は、B信号を生成する。図7に示す複数の第1画素2040Pの画素配列は、ベイヤー配列である。ベイヤー配列において、基本配列が行方向かつ列方向に規則的かつ周期的に配置される。基本配列は、1個のR画素Pr1、2個のG画素Pg1、および1個のB画素Pb1を含む。
 第1光電変換素子2050は、第1画素2040Pに入射した光を信号に変換する。第2光電変換素子2051は、第2画素2041Pに入射した光を信号に変換する。
 第1光電変換素子2050から出力された信号は、第1信号および第3信号に対応する。第2光電変換素子2051から出力された信号は、第2信号および第4信号に対応する。複数の第1光電変換素子2050から出力された信号と、複数の第2光電変換素子2051から出力された信号とは、信号処理部30に出力される。
 図26は、R画素Pr1、G画素Pg1、およびB画素Pb1の分光感度特性を示す。図26において、グラフの横軸は波長を示し、かつグラフの縦軸は感度を示す。
 線Lb1は、B画素Pb1の分光感度特性を示す。線Lb1が示すように、B画素Pb1は、可視光に対応する380nmから650nmの波長帯域の一部と、第1蛍光に対応する380nmから550nmの波長帯域と、第2蛍光に対応する700nmから800nmの波長帯域の一部とに感度を有する。つまり、B画素Pb1は、可視光の反射光、第1蛍光、および第2蛍光を検出する。
 線Lg1は、G画素Pg1の分光感度特性を示す。線Lg1が示すように、G画素Pg1は、可視光に対応する380nmから650nmの波長帯域の一部と、第1蛍光に対応する380nmから550nmの波長帯域と、第2蛍光に対応する700nmから800nmの波長帯域とに感度を有する。つまり、G画素Pg1は、可視光の反射光、第1蛍光、および第2蛍光を検出する。
 線Lr1は、R画素Pr1の分光透過特性を示す。線Lr1が示すように、R画素Pr1は、可視光に対応する380nmから650nmの波長帯域の一部と、第1蛍光に対応する380nmから550nmの波長帯域と、第2蛍光に対応する700nmから800nmの波長帯域とに感度を有する。つまり、R画素Pr1は、可視光の反射光、第1蛍光、および第2蛍光を検出する。
 図8は、光学フィルタ2043の分光透過特性を示す。図8において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図8に示すように、光学フィルタ2043の透過波長帯域は、700nm以上の波長帯域F13で構成されている。波長帯域F13は、第2蛍光に対応する700nmから800nmの波長帯域を含む。光学フィルタ2043は波長帯域F13以外の波長帯域の光を遮断する。したがって、光学フィルタ2043は、可視光の反射光および第1蛍光を遮断し、かつ第2蛍光を透過させる。
 カラーフィルタ2042を透過した光は、第1基板2040の面2040aに入射する。第1基板2040は、裏面照射型の撮像基板である。例えば、第1基板2040の厚さは数μmである。つまり、第1基板2040は薄い。光の波長に応じて、シリコンの光吸収率は異なる。波長が短い光に対するシリコンの光吸収率は高い。波長が長い光に対するシリコンの光吸収率は低い。したがって、第1基板2040の厚さが3μmである場合、波長が500nm以上の光の一部は第1基板2040で吸収されず、かつ第1基板2040を透過する。
 第1基板2040を透過した波長が500nm以上の光は、光学フィルタ2043に入射する。光学フィルタ2043に入射した光のうち、波長が700nm以上の光が光学フィルタ2043を透過する。つまり、第2蛍光が光学フィルタ2043を透過する。光学フィルタ2043を透過した第2蛍光は、第2基板2041の面2041aに入射する。
 内視鏡装置1の動作を説明する。励起波長選択フィルタ101が回転することにより、第1フィルタ1011を透過した第1照明光と、第2フィルタ1012を透過した第2照明光とが順次に被写体50に照射される。第1照明光は、可視光および第2励起光を含む。第2照明光は、第1励起光および第2励起光を含む。
 第1照明光が被写体50に照射された場合の内視鏡装置1の動作を説明する。図3に示す第1フィルタ1011の分光透過特性により、波長が380nmから650nmの可視光と、波長が650nmから690nmの第2励起光とが被写体50に照射される。可視光の反射光と、第2励起光の反射光と、波長が700nmから800nmの第2蛍光とが被写体50から出射する。
 被写体50から出射した光は励起波長遮断フィルタ203に入射する。励起波長遮断フィルタ203は、図5に示す分光透過特性により、第2励起光の反射光を遮断し、かつ可視光の反射光および第2蛍光を透過させる。励起波長遮断フィルタ203を透過した可視光の反射光および第2蛍光は撮像素子204に入射する。
 第1基板2040のB画素Pb1、G画素Pg1、およびR画素Pr1の各々の第1光電変換素子2050には、可視光の反射光および第2蛍光が入射する。第2蛍光は、可視光の反射光に比べて無視できるほど微弱である。そのため、第1基板2040の複数の第1画素2040Pは、可視光の反射光に基づく第1信号を出力する。信号処理部30は、第1信号に基づいて可視光画像を生成する。
 撮像素子204に入射した光のうち、波長が500nm以下の光の大部分は第1基板2040で吸収され、かつ波長が500nm以上の光の一部のみが第1基板2040を透過する。つまり、撮像素子204に入射した可視光の反射光の一部と、撮像素子204に入射した第2蛍光の一部とは、第1基板2040を透過する。
 第1基板2040を透過した光は、光学フィルタ2043に入射する。光学フィルタ2043は、図8に示す分光透過特性により、第1基板2040を透過した可視光の反射光を遮断し、かつ第2蛍光を透過させる。光学フィルタ2043を透過した光は、第2基板2041の複数の第2光電変換素子2051に入射する。第2基板2041の複数の第2画素2041Pは、第2蛍光に基づく第2信号を出力する。信号処理部30は、第2信号に基づいて第2蛍光画像を生成する。
 第2照明光が被写体50に照射された場合の内視鏡装置1の動作を説明する。図4に示す第2フィルタ1012の分光透過特性により、波長が300nmから350nmの第1励起光と、波長が650nmから690nmの第2励起光とが被写体50に照射される。第1励起光の反射光と、第2励起光の反射光と、波長が380nmから550nmの第1蛍光と、波長が700nmから800nmの第2蛍光とが被写体50から出射する。
 被写体50から出射した光は励起波長遮断フィルタ203に入射する。励起波長遮断フィルタ203は、図5に示す分光透過特性により、第1励起光の反射光および第2励起光の反射光を遮断し、かつ第1蛍光および第2蛍光を透過させる。励起波長遮断フィルタ203を透過した第1蛍光および第2蛍光は撮像素子204に入射する。
 第1基板2040のB画素Pb1、G画素Pg1、およびR画素Pr1の各々の第1光電変換素子2050には、第1蛍光および第2蛍光が入射する。第1基板2040の複数の第1画素2040Pは、第1蛍光および第2蛍光に基づく第3信号を出力する。
 撮像素子204に入射した第1蛍光の一部と、撮像素子204に入射した第2蛍光の一部とは、第1基板2040を透過する。第1基板2040を透過した光は、光学フィルタ2043に入射する。光学フィルタ2043は、図8に示す分光透過特性により、第1基板2040を透過した第1蛍光を遮断し、かつ第2蛍光を透過させる。光学フィルタ2043を透過した光は、第2基板2041の複数の第2光電変換素子2051に入射する。第2基板2041の複数の第2画素2041Pは、第2蛍光に基づく第4信号を出力する。信号処理部30は、第4信号に基づいて第2蛍光画像を生成する。また、信号処理部30は、第3信号および第4信号に基づいて第1蛍光画像を生成する。
 ここで、各画素の第1光電変換素子2050に第1蛍光および第2蛍光が入射するために、各画素の第1光電変換素子2050で検出された第1蛍光および第2蛍光の各々による信号を分離し、かつ第1蛍光による信号のみを検出する必要がある。第1蛍光による信号のみを算出する方法の一例を説明する。
 以下の説明において、αは第1基板2040のB画素Pb1が第1蛍光を吸収する割合を示す。βは第1基板2040のB画素Pb1が第2蛍光を吸収する割合を示す。γは第2基板2041の第2画素2041Pが第2蛍光を吸収する割合を示す。α、β、およびγは、第1基板2040および第2基板2041の分光感度から算出することができる。βおよびγの比率は、第1基板2040のB画素Pb1の、第2蛍光に対応する700nmから800nmの波長帯域における分光感度と、第2基板2041の第2画素2041Pのその波長帯域における分光感度との比率で決まる。α、β、およびγは、撮像素子204の製造条件に基づくパラメータである。例えば、第1基板2040および第2基板2041の各々の光軸方向の厚さである。あるいは、カラーフィルタ2042および光学フィルタ2043の分光透過特性である。α、β、およびγは、0以上かつ1以下の実数である。
 B画素Pb1は、第1蛍光および第2蛍光に基づく第3信号を生成する。以下の説明において、B画素Pb1によって生成される第3信号の信号値は(αB+βIR)である。αBは第1蛍光に基づく信号値である。βIRは第2蛍光に基づく信号値である。
 第2画素2041Pは、第2蛍光に基づく第4信号を生成する。以下の説明において、第2画素2041Pによって生成される第4信号の信号値はγIRである。γIRは第2蛍光に基づく信号値である。B画素Pb1に対応する位置に配置された第2画素2041Pによって生成された第4信号が使用される。つまり、B画素Pb1を透過した光が入射する第2画素2041Pによって生成された第4信号が使用される。
 信号処理部30は、第2画素2041Pによって生成された第4信号の値すなわちγIRに、βとγとの比すなわち(β/γ)を乗じる。これにより、信号処理部30は、第1画素2040Pによって検出された第2蛍光に基づく信号値βIRを算出することができる。信号処理部30は、B画素Pb1によって生成された第3信号の値(αB+βIR)から、上記の方法で算出された信号値βIRを減算する。これにより、信号処理部30は、第1蛍光のみに基づく信号を生成する。この信号の信号値はαBである。
 信号処理部30は、第2蛍光に基づく第2信号と、第2蛍光に基づく第4信号とを加算してもよい。これにより、第2蛍光に基づく信号のSN比(Signal to Noise ratio)が向上し、かつ第2蛍光画像の画質が向上する。
 図9は、内視鏡装置1の動作を示すタイミングチャートである。図9において、光路に配置される励起波長選択フィルタ101のフィルタの種類が示されている。また、図9において、第1基板2040で取得された信号に基づく画像と、第2基板2041で取得された信号に基づく画像とが示されている。図9において、右方向に時間が進む。
 1サイクルの動作が繰り返される。1サイクルの前半の期間において、第1フィルタ1011が光路に配置される。第1フィルタ1011は、光源100から出射した光のうち可視光および第2励起光を透過させる。可視光および第2励起光を含む第1照明光が被写体50に照射される。可視光の反射光、第2励起光の反射光、および第2蛍光が被写体50から出射し、かつ撮像素子204に入射する。第1基板2040において可視光の反射光が検出され、かつ第2基板2041において第2蛍光が検出される。その結果、可視光画像および第2蛍光画像が生成される。
 1サイクルの後半の期間において、第2フィルタ1012が光路に配置される。第2フィルタ1012は、光源100から出射した光のうち第1励起光および第2励起光を透過させる。第1励起光の反射光、第2励起光の反射光、第1蛍光、および第2蛍光が被写体50から出射し、かつ撮像素子204に入射する。第1基板2040において第1蛍光が検出され、かつ第2基板2041において第2蛍光が検出される。その結果、第1蛍光画像および第2蛍光画像が生成される。
 図9に示す動作では、1サイクルの前半および後半で第2蛍光が検出される。1サイクルの前半のみまたは1サイクルの後半のみで第2蛍光が検出されてもよい。
 光源部10は、可視光、第1励起光、および第2励起光の少なくとも1つの波長帯域を含む波長帯域の光を選択的に出射可能な複数の発光素子を有してもよい。例えば、第1期間において、複数の発光素子のうち少なくとも1つは、可視光および第2励起光を出射する。第2期間において、複数の発光素子のうち少なくとも1つは、第1励起光および第2励起光を出射する。光源部10は、可視光を出射する第1発光素子、第1励起光を出射する第2発光素子、および第2励起光を出射する第3発光素子を有してもよい。複数の発光素子の各々は、発光ダイオードであってもよい。
 第1の実施形態の内視鏡装置1は、可視光の反射光および第2蛍光を同時に撮像する。あるいは、内視鏡装置1は、第1蛍光および第2蛍光を同時に撮像する。これにより、可視光画像の取得間隔が短くなる。したがって、内視鏡装置1は、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
 可視光画像のフレームレートが従来技術に比べて速くなる。そのため、内視鏡装置1は、可視光画像のコマ飛びを極力抑えることができる。その結果、可視光画像の動画が見やすくなり、かつユーザが観察対象物の形態を把握しやすくなる。
 (第1の実施形態の変形例)
 図10は、本発明の第1の実施形態の変形例の内視鏡装置1aのハードウェア構成を示す。
 内視鏡装置1aの概略構成について説明する。内視鏡装置1aは、光源部10、撮像素子206(第1撮像素子)、撮像素子207(第2撮像素子)、励起波長遮断フィルタ203、および信号処理部30を有する。光源部10は、可視光、第1励起光、および第2励起光を出射する。撮像素子206は、被写体50で反射した可視光と、第1励起光により被写体50から発する第1蛍光とを撮像する。撮像素子207は、第2励起光により被写体50から発する第2蛍光を撮像する。撮像素子206および撮像素子207は、第1撮像信号および第2撮像信号を出力する。励起波長遮断フィルタ203は、第1励起光の波長帯域および第2励起光の波長帯域を遮断し、かつ可視光の波長帯域と第1蛍光の波長帯域と第2蛍光の波長帯域とを透過させる特性を有する。信号処理部30は、撮像素子206および撮像素子207から出力された第1撮像信号および第2撮像信号に基づいて、可視光の反射光に基づく可視光画像と、第1蛍光に基づく第1蛍光画像と、第2蛍光に基づく第2蛍光画像とを生成する。
 第1照明光は、可視光および第2励起光を含む。第1照明光が被写体50に照射された場合、撮像素子206は、可視光の反射光に基づく撮像信号である第1信号を第1撮像信号として出力する。撮像素子207は、第2蛍光に基づく撮像信号である第2信号を第1撮像信号として出力する。つまり、第1撮像信号は、第1信号および第2信号を含む。第1照明光が被写体50に照射された場合、信号処理部30は、第1信号に基づいて可視光画像を生成し、かつ第2信号に基づいて第2蛍光画像を生成する。
 第2照明光は、第1励起光および第2励起光を含む。第2照明光が被写体50に照射された場合、撮像素子206は、第1蛍光に基づく撮像信号である第3信号を第2撮像信号として出力する。撮像素子207は、第2蛍光に基づく撮像信号である第4信号を第2撮像信号として出力する。つまり、第2撮像信号は、第3信号および第4信号を含む。第2照明光が被写体50に照射された場合、信号処理部30は、第3信号に基づいて第1蛍光画像を生成し、かつ第4信号に基づいて第2蛍光画像を生成する。
 内視鏡装置1aはさらに、ダイクロイックミラー205(光分離素子)を有する。ダイクロイックミラー205は、可視光の反射光および第2蛍光を分離し、かつ第1蛍光および第2蛍光を分離する。ダイクロイックミラー205によって分離された可視光の反射光および第1蛍光は撮像素子206に入射する。ダイクロイックミラー205によって分離された第2蛍光は撮像素子207に入射する。第1照明光が被写体50に照射された場合、撮像素子206は第1信号を出力し、かつ撮像素子207は第2信号を出力する。第2照明光が被写体50に照射された場合、撮像素子206は第3信号を出力し、かつ撮像素子207は第4信号を出力する。
 内視鏡装置1aの詳細な構成について、図1に示す構成と異なる点を説明する。内視鏡装置1aにおいて、図1に示す内視鏡スコープ部20は、内視鏡スコープ部20aに変更される。内視鏡スコープ部20aは、ライトガイド200、照明レンズ201、対物レンズ202、励起波長遮断フィルタ203、ダイクロイックミラー205、撮像素子206、および撮像素子207を有する。撮像素子206および撮像素子207は、撮像部を構成する。
 ダイクロイックミラー205は、励起波長遮断フィルタ203から撮像素子206および撮像素子207までの光路に配置されている。励起波長遮断フィルタ203の分光透過特性により、可視光の反射光、第1蛍光、および第2蛍光がダイクロイックミラー205に入射する。撮像素子206は、ダイクロイックミラー205を透過した光の光路に配置されている。撮像素子207は、ダイクロイックミラー205で反射した光の光路に配置されている。
 図11は、ダイクロイックミラー205の分光透過特性を示す。図11において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図11に示すように、ダイクロイックミラー205の透過波長帯域は、700nm以下の波長帯域VF14で構成されている。波長帯域VF14は、可視光に対応する380nmから650nmの波長帯域と、第1蛍光に対応する380nmから550nmの波長帯域とを含む。ダイクロイックミラー205は波長帯域VF14以外の波長帯域の光を反射させる。ダイクロイックミラー205の反射波長帯域は、第2蛍光に対応する700nmから800nmの波長帯域を含む。したがって、ダイクロイックミラー205は、可視光の反射光および第1蛍光を透過させ、かつ第2蛍光を反射させる。
 可視光および第2励起光を含む第1照明光が被写体50に照射された場合、可視光の反射光および第2蛍光がダイクロイックミラー205に入射する。ダイクロイックミラー205は、可視光の反射光を透過させ、かつ第2蛍光を反射させる。ダイクロイックミラー205を透過した可視光の反射光は撮像素子206に入射する。ダイクロイックミラー205で反射した第2蛍光は撮像素子207に入射する。撮像素子206は、可視光の反射光を撮像し、かつ可視光の反射光に基づく第1信号を生成する。撮像素子207は、第2蛍光を撮像し、かつ第2蛍光に基づく第2信号を生成する。第1信号および第2信号を含む第1撮像信号は信号処理部30に出力される。
 第1励起光および第2励起光を含む第2照明光が被写体50に照射された場合、第1蛍光および第2蛍光がダイクロイックミラー205に入射する。ダイクロイックミラー205は、第1蛍光を透過させ、かつ第2蛍光を反射させる。ダイクロイックミラー205を透過した第1蛍光は撮像素子206に入射する。ダイクロイックミラー205で反射した第2蛍光は撮像素子207に入射する。撮像素子206は、第1蛍光を撮像し、かつ第1蛍光に基づく第3信号を生成する。撮像素子207は、第2蛍光を撮像し、かつ第2蛍光に基づく第4信号を生成する。第3信号および第4信号を含む第2撮像信号は信号処理部30に出力される。
 上記以外の点について、図10に示す構成は、図1に示す構成と同様である。
 第1の実施形態の変形例の内視鏡装置1aは、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
 (第2の実施形態)
 図1に示す内視鏡装置1を使用して、本発明の第2の実施形態を説明する。第2の実施形態において、第1の実施形態で使用された蛍光薬剤と種類が異なる蛍光薬剤が使用される。第2の実施形態において、観察対象物の形態情報を得るために必要な可視光の波長帯域が異なる。400nmから700nmの波長帯域のうち、少なくとも約100nmの幅の波長帯域の光を撮像できれば、内視鏡装置1は観察対象物の形態情報を得ることができる。
 第2の実施形態では、5-ALA(アミノレブリン酸)から代謝された蛍光物質からの蛍光と、ICG(インドシアニングリーン)からの蛍光とが検出される場合について説明する。5-ALAは、癌細胞の観察に有用な薬剤である。ICGは、血管観察に有用な蛍光薬剤である。癌細胞は、自身が成長するために、自身の周りに栄養および酸素を運ぶ血液を必要とし、かつ新しい血管(腫瘍血管)を増生する。腫瘍血管は正常血管と比べて、血管の湾曲および屈曲などが多い。腫瘍血管は、不均等な径をもち、かつ乱雑に走行している。したがって、癌細胞の観察と血管の観察とを同時に行うことにより、癌細胞の診断性能が向上する。
 5-ALAが生体内に投与された場合、5-ALAから代謝されたPpIX(プロトポルフィリンIX)が癌細胞中に高濃度に蓄積される。PpIXは蛍光物質であり、かつ強い蛍光を発する。その蛍光を観察することにより癌細胞の観察が可能となる。
 図27は、PpIXの励起光吸収特性を示す。図27において、グラフの横軸は波長を示し、かつグラフの縦軸は強度を示す。
 図27に示すように、PpIXからの蛍光が最大となる励起光の波長は405nmである。特に、波長が370nmから450nmの励起光に対してPpIXは強い蛍光を発する。
 図28は、PpIXの蛍光スペクトルを示す。図28において、グラフの横軸は波長を示し、かつグラフの縦軸は強度を示す。
 PpIXは、波長が620nmから710nmの蛍光を発する。PpIXからの蛍光が最大となる波長は635nm付近である。第2の実施形態では、PpIXを励起する光として、波長が370nmから410nmの光が使用される。したがって、波長が370nmから410nmの励起光を生体内に照射し、かつ波長が620nmから710nmの光を検出することにより、PpIXからの蛍光を検出することができる。
 図29は、ICGの励起光吸収特性および蛍光スペクトルを示す。図29において、グラフの横軸は波長を示し、かつグラフの縦軸は強度を示す。線E20は、ICGの励起光吸収特性を示す。線F20は、ICGの蛍光スペクトルを示す。
 ICGから発する蛍光が最大となる励起光の波長は770nmであり、かつICGから発する蛍光が最大となる波長は810nmである。したがって、波長が720nmから790nmの光を生体内に照射し、かつ波長が800nmから900nmの光を検出することにより、ICGから発する蛍光を検出することができる。
 内視鏡装置1の構成について、第1の実施形態における構成と異なる点を中心に説明する。第2の実施形態において、第1励起光により励起される第1蛍光物質はPpIXである。第2の実施形態において、第2励起光により励起される第2蛍光物質はICGである。
 図12は、励起波長選択フィルタ101の第1フィルタ1011の分光透過特性を示す。図12において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図12に示すように、第1フィルタ1011の透過波長帯域は、410nmから650nmの波長帯域V21と、720nmから790nmの波長帯域E22とで構成されている。波長帯域V21は、可視光に対応する。波長帯域E22は、ICGを励起するための第2励起光に対応する。第1フィルタ1011は、波長帯域V21および波長帯域E22以外の波長帯域の光を遮断する。したがって、第1フィルタ1011は、可視光および第2励起光のみを透過させる。
 図13は、励起波長選択フィルタ101の第2フィルタ1012の分光透過特性を示す。図13において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図13に示すように、第2フィルタ1012の透過波長帯域は、370nmから410nmの波長帯域E21と、720nmから790nmの波長帯域E22とで構成されている。波長帯域E21は、PpIXを励起するための第1励起光に対応する。第2フィルタ1012は、波長帯域E21および波長帯域E22以外の波長帯域の光を遮断する。つまり、第2フィルタ1012は、第1励起光および第2励起光のみを透過させる。
 図14は、励起波長遮断フィルタ203の分光透過特性を示す。図14において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図14に示すように、励起波長遮断フィルタ203の遮断波長帯域は、410nm以下の波長帯域E23と、720nmから790nmの波長帯域E24とで構成されている。波長帯域E23は、図13に示す第1励起光の波長帯域E21を含む。波長帯域E24は、図13に示す第2励起光の波長帯域E22を含む。したがって、励起波長遮断フィルタ203は、第1励起光の反射光および第2励起光の反射光を遮断する。
 図14に示すように、励起波長遮断フィルタ203の透過波長帯域は、410nmから720nmの波長帯域VF21と、790nm以上の波長帯域F22とで構成されている。波長帯域VF21は、可視光に対応する410nmから650nmの波長帯域と、第1蛍光に対応する620nmから710nmの波長帯域とを含む。波長帯域F22は、第2蛍光に対応する800nmから900nmの波長帯域を含む。したがって、励起波長遮断フィルタ203は、可視光の反射光、第1蛍光、および第2蛍光を透過させる。
 図6に示すように、撮像素子204は、第1基板2040、第2基板2041、カラーフィルタ2042、および光学フィルタ2043を有する。カラーフィルタ2042は、赤フィルタ2042R、緑フィルタ2042G、および青フィルタ2042Bを有する。
 図26における線Lb1が示すように、B画素Pb1は、可視光に対応する410nmから650nmの波長帯域の一部と、第1蛍光に対応する620nmから710nmの波長帯域の一部と、第2蛍光に対応する800nmから900nmの波長帯域とに感度を有する。つまり、B画素Pb1は、可視光の反射光、第1蛍光、および第2蛍光を検出する。
 図26における線Lg1が示すように、G画素Pg1は、可視光に対応する410nmから650nmの波長帯域の一部と、第1蛍光に対応する620nmから710nmの波長帯域の一部と、第2蛍光に対応する800nmから900nmの波長帯域とに感度を有する。つまり、G画素Pg1は、可視光の反射光、第1蛍光、および第2蛍光を検出する。
 図26における線Lr1が示すように、R画素Pr1は、可視光に対応する410nmから650nmの波長帯域の一部と、第1蛍光に対応する620nmから710nmの波長帯域と、第2蛍光に対応する800nmから900nmの波長帯域とに感度を有する。つまり、R画素Pr1は、可視光の反射光、第1蛍光、および第2蛍光を検出する。
 図15は、光学フィルタ2043の分光透過特性を示す。図15において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図15に示すように、光学フィルタ2043の透過波長帯域は、800nm以上の波長帯域F23で構成されている。波長帯域F23は、第2蛍光に対応する800nmから900nmの波長帯域を含む。光学フィルタ2043は波長帯域F23以外の波長帯域の光を遮断する。したがって、光学フィルタ2043は、可視光の反射光および第1蛍光を遮断し、かつ第2蛍光を透過させる。
 内視鏡装置1の動作を説明する。励起波長選択フィルタ101が回転することにより、第1フィルタ1011を透過した第1照明光と、第2フィルタ1012を透過した第2照明光とが順次に被写体50に照射される。第1照明光は、可視光および第2励起光を含む。第2照明光は、第1励起光および第2励起光を含む。
 第1照明光が被写体50に照射された場合の内視鏡装置1の動作を説明する。図12に示す第1フィルタ1011の分光透過特性により、波長が410nmから650nmの可視光と、波長が720nmから790nmの第2励起光とが被写体50に照射される。可視光の反射光と、第2励起光の反射光と、波長が800nmから900nmの第2蛍光とが被写体50から出射する。
 被写体50から出射した光は励起波長遮断フィルタ203に入射する。励起波長遮断フィルタ203は、図14に示す分光透過特性により、第2励起光の反射光を遮断し、かつ可視光の反射光および第2蛍光を透過させる。励起波長遮断フィルタ203を透過した可視光の反射光および第2蛍光は撮像素子204に入射する。
 第1基板2040のB画素Pb1、G画素Pg1、およびR画素Pr1の各々の第1光電変換素子2050には、可視光の反射光および第2蛍光が入射する。第2蛍光は、可視光の反射光に比べて無視できるほど微弱である。そのため、第1基板2040の複数の第1画素2040Pは、可視光の反射光に基づく第1信号を出力する。信号処理部30は、第1信号に基づいて可視光画像を生成する。
 撮像素子204に入射した光のうち、波長が500nm以下の光の大部分は第1基板2040で吸収され、かつ波長が500nm以上の光の一部のみが第1基板2040を透過する。つまり、撮像素子204に入射した可視光の反射光の一部と、撮像素子204に入射した第2蛍光の一部とは、第1基板2040を透過する。
 第1基板2040を透過した光は、光学フィルタ2043に入射する。光学フィルタ2043は、図15に示す分光透過特性により、第1基板2040を透過した可視光の反射光を遮断し、かつ第2蛍光を透過させる。光学フィルタ2043を透過した光は、第2基板2041の複数の第2光電変換素子2051に入射する。第2基板2041の複数の第2画素2041Pは、第2蛍光に基づく第2信号を出力する。信号処理部30は、第2信号に基づいて第2蛍光画像を生成する。
 第2照明光が被写体50に照射された場合の内視鏡装置1の動作を説明する。図13に示す第2フィルタ1012の分光透過特性により、波長が370nmから410nmの第1励起光と、波長が720nmから790nmの第2励起光とが被写体50に照射される。第1励起光の反射光と、第2励起光の反射光と、波長が620nmから710nmの第1蛍光と、波長が800nmから900nmの第2蛍光とが被写体50から出射する。
 被写体50から出射した光は励起波長遮断フィルタ203に入射する。励起波長遮断フィルタ203は、図14に示す分光透過特性により、第1励起光の反射光および第2励起光の反射光を遮断し、かつ第1蛍光および第2蛍光を透過させる。励起波長遮断フィルタ203を透過した第1蛍光および第2蛍光は撮像素子204に入射する。
 第1基板2040のB画素Pb1、G画素Pg1、およびR画素Pr1の各々の第1光電変換素子2050には、第1蛍光および第2蛍光が入射する。第1基板2040の複数の第1画素2040Pは、第1蛍光および第2蛍光に基づく第3信号を出力する。
 撮像素子204に入射した第1蛍光の一部と、撮像素子204に入射した第2蛍光の一部とは、第1基板2040を透過する。第1基板2040を透過した光は、光学フィルタ2043に入射する。光学フィルタ2043は、図15に示す分光透過特性により、第1基板2040を透過した第1蛍光を遮断し、かつ第2蛍光を透過させる。光学フィルタ2043を透過した光は、第2基板2041の複数の第2光電変換素子2051に入射する。第2基板2041の複数の第2画素2041Pは、第2蛍光に基づく第4信号を出力する。信号処理部30は、第4信号に基づいて第2蛍光画像を生成する。また、信号処理部30は、第3信号および第4信号に基づいて第1蛍光画像を生成する。
 ここで、各画素の第1光電変換素子2050に第1蛍光および第2蛍光が入射するために、各画素の第1光電変換素子2050で検出された第1蛍光および第2蛍光の各々による信号を分離し、かつ第1蛍光による信号のみを検出する必要がある。第1蛍光による信号のみを算出する方法の一例を説明する。
 以下の説明において、αは第1基板2040のR画素Pr1が第1蛍光を吸収する割合を示す。βは第1基板2040のR画素Pr1が第2蛍光を吸収する割合を示す。γは第2基板2041の第2画素2041Pが第2蛍光を吸収する割合を示す。α、β、およびγは、第1基板2040および第2基板2041の分光感度から算出することができる。βおよびγの比率は、第1基板2040のR画素Pr1の、第2蛍光に対応する800nmから900nmの波長帯域における分光感度と、第2基板2041の第2画素2041Pのその波長帯域における分光感度との比率で決まる。α、β、およびγは、撮像素子204の製造条件に基づくパラメータである。例えば、第1基板2040および第2基板2041の各々の光軸方向の厚さである。あるいは、カラーフィルタ2042および光学フィルタ2043の分光透過特性である。α、β、およびγは、0以上かつ1以下の実数である。
 R画素Pr1は、第1蛍光および第2蛍光に基づく第3信号を生成する。以下の説明において、R画素Pr1によって生成される第3信号の信号値は(αR+βIR)である。αRは第1蛍光に基づく信号値である。βIRは第2蛍光に基づく信号値である。
 第2画素2041Pは、第2蛍光に基づく第4信号を生成する。以下の説明において、第2画素2041Pによって生成される第4信号の信号値はγIRである。γIRは第2蛍光に基づく信号値である。R画素Pr1に対応する位置に配置された第2画素2041Pによって生成された第4信号が使用される。つまり、R画素Pr1を透過した光が入射する第2画素2041Pによって生成された第4信号が使用される。
 信号処理部30は、第2画素2041Pによって生成された第4信号の値すなわちγIRに、βとγとの比すなわち(β/γ)を乗じる。これにより、信号処理部30は、第1画素2040Pによって検出された第2蛍光に基づく信号値βIRを算出することができる。信号処理部30は、R画素Pr1によって生成された第3信号の値(αR+βIR)から、上記の方法で算出された信号値βIRを減算する。これにより、信号処理部30は、第1蛍光のみに基づく信号を生成する。この信号の信号値はαRである。
 信号処理部30は、第2蛍光に基づく第2信号と、第2蛍光に基づく第4信号とを加算してもよい。これにより、第2蛍光に基づく信号のSN比が向上し、かつ第2蛍光画像の画質が向上する。
 第2の実施形態の内視鏡装置1の動作のタイミングは、図9に示すタイミングと同様である。
 第1の実施形態と同様に、光源部10は、可視光、第1励起光、および第2励起光の少なくとも1つの波長帯域を含む波長帯域の光を選択的に出射可能な複数の発光素子を有してもよい。複数の発光素子の各々は、発光ダイオードであってもよい。
 第2の実施形態の内視鏡装置1は、可視光の反射光および第2蛍光を同時に撮像する。あるいは、内視鏡装置1は、第1蛍光および第2蛍光を同時に撮像する。これにより、可視光画像の取得間隔が短くなる。したがって、内視鏡装置1は、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
 可視光画像のフレームレートが従来技術に比べて速くなる。そのため、内視鏡装置1は、可視光画像のコマ飛びを極力抑えることができる。その結果、可視光画像の動画が見やすくなり、かつユーザが観察対象物の形態を把握しやすくなる。
 (第2の実施形態の変形例)
 図10に示す内視鏡装置1aを使用して、本発明の第2の実施形態の変形例を説明する。内視鏡装置1aの構成について、第1の実施形態の変形例における構成と異なる点を中心に説明する。
 図16は、ダイクロイックミラー205の分光透過特性を示す。図16において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図16に示すように、ダイクロイックミラー205の透過波長帯域は、800nm以下の波長帯域VF24で構成されている。波長帯域VF24は、可視光に対応する410nmから650nmの波長帯域と、第1蛍光に対応する620nmから710nmの波長帯域とを含む。ダイクロイックミラー205は波長帯域VF24以外の波長帯域の光を反射させる。ダイクロイックミラー205の反射波長帯域は、第2蛍光に対応する800nmから900nmの波長帯域を含む。したがって、ダイクロイックミラー205は、可視光の反射光および第1蛍光を透過させ、かつ第2蛍光を反射させる。
 第2の実施形態の変形例の内視鏡装置1aは、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
 (第3の実施形態)
 図1に示す内視鏡装置1を使用して、本発明の第3の実施形態を説明する。第3の実施形態は、第2の実施形態の変形例である。
 第3の実施形態において、内視鏡装置1は可視光画像を常に撮像できる。第3の実施形態において、観察対象物の形態情報を得るために必要な可視光の波長帯域は、第1の実施形態における可視光の波長帯域および第2の実施形態における可視光の波長帯域よりも狭い。第1の実施形態における可視光の波長帯域は、380nmから650nmである。第2の実施形態における可視光の波長帯域は、410nmから650nmである。第3の実施形態における可視光の波長帯域は、410nmから610nmである。400nmから700nmの波長帯域のうち、少なくとも約100nmの幅の波長帯域の光を撮像できれば、内視鏡装置1は観察対象物の形態情報を得ることができる。
 第2の実施形態において、PpIXから発する蛍光を検出するために、第1基板2040の第1画素2040Pの信号および第2基板2041の第2画素2041Pの信号を使用する信号処理が行われる。第3の実施形態において、そのような信号処理は必要ない。
 内視鏡装置1の構成について、第2の実施形態における構成と異なる点を中心に説明する。第3の実施形態において、第1励起光により励起される第1蛍光物質はPpIXである。第3の実施形態において、第2励起光により励起される第2蛍光物質はICGである。
 光源部10は、第1照明光および第2照明光を順次に出射する。第1照明光は、第1励起光を含む。第2照明光は、第2励起光を含む。第1照明光および第2照明光の少なくとも1つは可視光を含む。撮像素子204は、第1撮像信号および第2撮像信号を出力する。第1撮像信号は、第1蛍光に基づく。第2撮像信号は、第2蛍光に基づく。第1撮像信号および第2撮像信号の少なくとも1つはさらに、可視光の反射光に基づく。
 光源100は、可視光、第1励起光、および第2励起光の各々の波長帯域を少なくとも含む波長帯域の光を出射する。励起波長選択フィルタ101の第1フィルタ1011は、第1励起光を透過させる。励起波長選択フィルタ101の第2フィルタ1012は、第2励起光を透過させる。第1フィルタ1011および第2フィルタ1012の少なくとも1つは、可視光を透過させる。
 第1照明光は、可視光および第1励起光を含む。第1照明光が被写体50に照射された場合、撮像素子204は、可視光の反射光に基づく撮像信号である第1信号と、第1蛍光に基づく撮像信号である第2信号とを第1撮像信号として出力する。第1照明光が被写体50に照射された場合、信号処理部30は、第1信号に基づいて可視光画像を生成し、かつ第2信号に基づいて第1蛍光画像を生成する。
 第2照明光は、可視光および第2励起光を含む。第2照明光が被写体50に照射された場合、撮像素子204は、可視光の反射光に基づく撮像信号である第3信号と、第2蛍光に基づく撮像信号である第4信号とを第2撮像信号として出力する。第2照明光が被写体50に照射された場合、信号処理部30は、第3信号に基づいて可視光画像を生成し、かつ第4信号に基づいて第2蛍光画像を生成する。
 図17は、励起波長選択フィルタ101の第1フィルタ1011の分光透過特性を示す。図17において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図17に示すように、第1フィルタ1011の透過波長帯域は、370nmから410nmの波長帯域E31と、410nmから610nmの波長帯域V31とで構成されている。波長帯域E31は、PpIXを励起するための第1励起光に対応する。波長帯域V31は、可視光に対応する。第1フィルタ1011は、波長帯域E31および波長帯域V31以外の波長帯域の光を遮断する。したがって、第1フィルタ1011は、可視光および第1励起光のみを透過させる。
 図18は、励起波長選択フィルタ101の第2フィルタ1012の分光透過特性を示す。図18において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図18に示すように、第2フィルタ1012の透過波長帯域は、410nmから610nmの波長帯域V31と、720nmから790nmの波長帯域E32とで構成されている。波長帯域V31は、可視光に対応する。波長帯域E32は、ICGを励起するための第2励起光に対応する。第2フィルタ1012は、波長帯域V31および波長帯域E32以外の波長帯域の光を遮断する。つまり、第2フィルタ1012は、可視光および第2励起光のみを透過させる。
 図19は、励起波長遮断フィルタ203の分光透過特性を示す。図19において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図19に示すように、励起波長遮断フィルタ203の遮断波長帯域は、410nm以下の波長帯域E33と、720nmから790nmの波長帯域E34とで構成されている。波長帯域E33は、図17に示す第1励起光の波長帯域E31を含む。波長帯域E34は、図18に示す第2励起光の波長帯域E32を含む。したがって、励起波長遮断フィルタ203は、第1励起光の反射光および第2励起光の反射光を遮断する。
 図19に示すように、励起波長遮断フィルタ203の透過波長帯域は、410nmから620nmの波長帯域V32と、620nmから720nmの波長帯域F31と、800nm以上の波長帯域F32とで構成されている。波長帯域V31は、可視光に対応する410nmから610nmの波長帯域を含む。波長帯域F31は、第1蛍光に対応する620nmから710nmの波長帯域を含む。波長帯域F32は、第2蛍光に対応する800nmから900nmの波長帯域を含む。したがって、励起波長遮断フィルタ203は、可視光の反射光、第1蛍光、および第2蛍光を透過させる。
 図6に示すように、撮像素子204は、第1基板2040と、第1基板2040に積層された第2基板2041と、光学フィルタ2043とを有する。図7に示すように、第1基板2040は、2次元状に配置された複数の第1画素2040Pを有する。第1基板2040の複数の第1画素2040Pは、第1信号および第3信号を出力する。図7に示すように、第2基板2041は、2次元状に配置された複数の第2画素2041Pを有する。第2基板2041の複数の第2画素2041Pは、第2信号および第4信号を出力する。
 第1照明光が被写体50に照射された場合、撮像素子204は、第1信号および第2信号を出力する。第2照明光が被写体50に照射された場合、撮像素子204は、第3信号および第4信号を出力する。光学フィルタ2043は、第1基板2040および第2基板2041の間に配置されている。光学フィルタ2043は、可視光の波長帯域を遮断し、かつ第1蛍光の波長帯域および第2蛍光の波長帯域を透過させる光学特性を有する。
 図6に示すように、撮像素子204は、カラーフィルタ2042をさらに有する。カラーフィルタ2042は、赤フィルタ2042R、緑フィルタ2042G、および青フィルタ2042Bを有する。
 図20は、光学フィルタ2043の分光透過特性を示す。図20において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図20に示すように、光学フィルタ2043の透過波長帯域は、620nmから720nmの波長帯域F31と、800nm以上の波長帯域F33とで構成されている。波長帯域F31は、第1蛍光に対応する620nmから710nmの波長帯域を含む。波長帯域F33は、第2蛍光に対応する800nmから900nmの波長帯域を含む。光学フィルタ2043は波長帯域F31および波長帯域F33以外の波長帯域の光を遮断する。したがって、光学フィルタ2043は、可視光の反射光を遮断し、かつ第1蛍光および第2蛍光を透過させる。
 内視鏡装置1の動作を説明する。励起波長選択フィルタ101が回転することにより、第1フィルタ1011を透過した第1照明光と、第2フィルタ1012を透過した第2照明光とが順次に被写体50に照射される。第1照明光は、可視光および第1励起光を含む。第2照明光は、可視光および第2励起光を含む。
 第1照明光が被写体50に照射された場合の内視鏡装置1の動作を説明する。図17に示す第1フィルタ1011の分光透過特性により、波長が410nmから610nmの可視光と、波長が370nmから410nmの第1励起光とが被写体50に照射される。可視光の反射光と、第1励起光の反射光と、波長が620nmから710nmの第1蛍光とが被写体50から出射する。
 被写体50から出射した光は励起波長遮断フィルタ203に入射する。励起波長遮断フィルタ203は、図19に示す分光透過特性により、第1励起光の反射光を遮断し、かつ可視光の反射光および第1蛍光を透過させる。励起波長遮断フィルタ203を透過した可視光の反射光および第1蛍光は撮像素子204に入射する。
 第1基板2040のB画素Pb1、G画素Pg1、およびR画素Pr1の各々の第1光電変換素子2050には、可視光の反射光および第1蛍光が入射する。第1蛍光は、可視光の反射光に比べて無視できるほど微弱である。そのため、第1基板2040の複数の第1画素2040Pは、可視光の反射光に基づく第1信号を出力する。信号処理部30は、第1信号に基づいて可視光画像を生成する。
 撮像素子204に入射した光のうち、波長が600nm以下の光の大部分は第1基板2040で吸収され、かつ波長が600nm以上の光の一部のみが第1基板2040を透過する。撮像素子204に入射した光のうち、波長が600nm以上の光の一部は第1基板2040で吸収されず、かつ第1基板2040を透過する。つまり、撮像素子204に入射した可視光の反射光の一部と、撮像素子204に入射した第1蛍光の一部とは、第1基板2040を透過する。
 第1基板2040を透過した光は、光学フィルタ2043に入射する。光学フィルタ2043は、図20に示す分光透過特性により、第1基板2040を透過した可視光の反射光を遮断し、かつ第1蛍光を透過させる。光学フィルタ2043を透過した光は、第2基板2041の複数の第2光電変換素子2051に入射する。第2基板2041の複数の第2画素2041Pは、第1蛍光に基づく第2信号を出力する。信号処理部30は、第2信号に基づいて第1蛍光画像を生成する。
 第2照明光が被写体50に照射された場合の内視鏡装置1の動作を説明する。図18に示す第2フィルタ1012の分光透過特性により、波長が410nmから610nmの可視光と、波長が720nmから790nmの第2励起光とが被写体50に照射される。可視光の反射光と、第2励起光の反射光と、波長が800nmから900nmの第2蛍光とが被写体50から出射する。
 被写体50から出射した光は励起波長遮断フィルタ203に入射する。励起波長遮断フィルタ203は、図19に示す分光透過特性により、第2励起光の反射光を遮断し、かつ可視光の反射光および第2蛍光を透過させる。励起波長遮断フィルタ203を透過した可視光の反射光および第2蛍光は撮像素子204に入射する。
 第1基板2040のB画素Pb1、G画素Pg1、およびR画素Pr1の各々の第1光電変換素子2050には、可視光の反射光および第2蛍光が入射する。第2蛍光は、可視光の反射光に比べて無視できるほど微弱である。そのため、第1基板2040の複数の第1画素2040Pは、可視光の反射光に基づく第3信号を出力する。信号処理部30は、第3信号に基づいて可視光画像を生成する。
 撮像素子204に入射した可視光の反射光の一部と、撮像素子204に入射した第2蛍光の一部とは、第1基板2040を透過する。第1基板2040を透過した光は、光学フィルタ2043に入射する。光学フィルタ2043は、図20に示す分光透過特性により、第1基板2040を透過した可視光の反射光を遮断し、かつ第2蛍光を透過させる。光学フィルタ2043を透過した光は、第2基板2041の複数の第2光電変換素子2051に入射する。第2基板2041の複数の第2画素2041Pは、第2蛍光に基づく第4信号を出力する。信号処理部30は、第4信号に基づいて第2蛍光画像を生成する。
 図21は、内視鏡装置1の動作を示すタイミングチャートである。図21において、光路に配置される励起波長選択フィルタ101のフィルタの種類が示されている。また、図21において、第1基板2040で取得された信号に基づく画像と、第2基板2041で取得された信号に基づく画像とが示されている。図21において、右方向に時間が進む。
 1サイクルの動作が繰り返される。1サイクルの前半の期間において、第1フィルタ1011が光路に配置される。第1フィルタ1011は、光源100から出射した光のうち可視光および第1励起光を透過させる。可視光および第1励起光を含む第1照明光が被写体50に照射される。可視光の反射光、第1励起光の反射光、および第1蛍光が被写体50から出射し、かつ撮像素子204に入射する。第1基板2040において可視光の反射光が検出され、かつ第2基板2041において第1蛍光が検出される。その結果、可視光画像および第1蛍光画像が生成される。
 1サイクルの後半の期間において、第2フィルタ1012が光路に配置される。第2フィルタ1012は、光源100から出射した光のうち可視光および第2励起光を透過させる。可視光の反射光、第2励起光の反射光、および第2蛍光が被写体50から出射し、かつ撮像素子204に入射する。第1基板2040において可視光の反射光が検出され、かつ第2基板2041において第2蛍光が検出される。その結果、可視光画像および第2蛍光画像が生成される。
 図21に示す動作では、1サイクルの前半および後半で可視光の反射光が検出される。1サイクルの前半のみまたは1サイクルの後半のみで可視光の反射光が検出されてもよい。
 第1の実施形態と同様に、光源部10は、可視光、第1励起光、および第2励起光の少なくとも1つの波長帯域を含む波長帯域の光を選択的に出射可能な複数の発光素子を有してもよい。例えば、第1期間において、複数の発光素子のうち少なくとも1つは、可視光および第1励起光を出射する。第2期間において、複数の発光素子のうち少なくとも1つは、可視光および第2励起光を出射する。複数の発光素子の各々は、発光ダイオードであってもよい。
 第3の実施形態の内視鏡装置1は、可視光の反射光および第1蛍光を同時に撮像する。あるいは、内視鏡装置1は、可視光の反射光および第2蛍光を同時に撮像する。これにより、可視光画像の取得間隔が短くなる。したがって、内視鏡装置1は、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
 可視光画像のフレームレートが従来技術に比べて速くなる。そのため、内視鏡装置1は、可視光画像のコマ飛びを極力抑えることができる。その結果、可視光画像の動画が見やすくなり、かつユーザが観察対象物の形態を把握しやすくなる。
 (第3の実施形態の変形例)
 図10に示す内視鏡装置1aを使用して、本発明の第3の実施形態の変形例を説明する。内視鏡装置1aの構成について、第2の実施形態の変形例における構成と異なる点を中心に説明する。
 撮像素子206は、被写体50で反射した可視光を撮像する。撮像素子207は、第1励起光により被写体50から発する第1蛍光と、第2励起光により被写体50から発する第2蛍光とを撮像する。撮像素子206および撮像素子207は、第1撮像信号および第2撮像信号を出力する。励起波長遮断フィルタ203は、第1励起光の波長帯域および第2励起光の波長帯域を遮断し、かつ可視光の波長帯域と第1蛍光の波長帯域と第2蛍光の波長帯域とを透過させる特性を有する。信号処理部30は、撮像素子206および撮像素子207から出力された第1撮像信号および第2撮像信号に基づいて、可視光の反射光に基づく可視光画像と、第1蛍光に基づく第1蛍光画像と、第2蛍光に基づく第2蛍光画像とを生成する。
 第1照明光は、可視光および第1励起光を含む。第1照明光が被写体50に照射された場合、撮像素子206は、可視光の反射光に基づく撮像信号である第1信号を第1撮像信号として出力する。撮像素子207は、第1蛍光に基づく撮像信号である第2信号を第1撮像信号として出力する。第1照明光が被写体50に照射された場合、信号処理部30は、第1信号に基づいて可視光画像を生成し、かつ第2信号に基づいて第1蛍光画像を生成する。
 第2照明光は、可視光および第2励起光を含む。第2照明光が被写体50に照射された場合、撮像素子206は、可視光の反射光に基づく撮像信号である第3信号を第2撮像信号として出力する。撮像素子207は、第2蛍光に基づく撮像信号である第4信号を第2撮像信号として出力する。第2照明光が被写体50に照射された場合、信号処理部30は、第3信号に基づいて可視光画像を生成し、かつ第4信号に基づいて第2蛍光画像を生成する。
 ダイクロイックミラー205は、第1照明光を照射した場合には可視光の反射光および第1蛍光を分離し、かつ第2照明光を照射した場合には可視光の反射光および第2蛍光を分離する。ダイクロイックミラー205によって分離された可視光の反射光は撮像素子206に入射する。ダイクロイックミラー205によって分離された第1蛍光および第2蛍光は撮像素子207に入射する。第1照明光が被写体50に照射された場合、撮像素子206は第1信号を出力し、かつ撮像素子207は第2信号を出力する。第2照明光が被写体50に照射された場合、撮像素子206は第3信号を出力し、かつ撮像素子207は第4信号を出力する。
 図22は、ダイクロイックミラー205の分光透過特性を示す。図22において、グラフの横軸は波長を示し、かつグラフの縦軸は透過率を示す。図22に示すように、ダイクロイックミラー205の透過波長帯域は、610nm以下の波長帯域VF34で構成されている。波長帯域VF34は、可視光に対応する410nmから610nmの波長帯域を含む。ダイクロイックミラー205は波長帯域VF34以外の波長帯域の光を反射させる。ダイクロイックミラー205の反射波長帯域は、第1蛍光に対応する620nmから710nmの波長帯域と、第2蛍光に対応する800nmから900nmの波長帯域とを含む。したがって、ダイクロイックミラー205は、可視光の反射光を透過させ、かつ第1蛍光および第2蛍光を反射させる。
 可視光および第1励起光を含む第1照明光が被写体50に照射された場合、可視光の反射光および第1蛍光がダイクロイックミラー205に入射する。ダイクロイックミラー205は、可視光の反射光を透過させ、かつ第1蛍光を反射させる。ダイクロイックミラー205を透過した可視光の反射光は撮像素子206に入射する。ダイクロイックミラー205で反射した第1蛍光は撮像素子207に入射する。撮像素子206は、可視光の反射光を撮像し、かつ可視光の反射光に基づく第1信号を生成する。撮像素子207は、第1蛍光を撮像し、かつ第1蛍光に基づく第2信号を生成する。第1信号および第2信号を含む第1撮像信号は信号処理部30に出力される。
 可視光および第2励起光を含む第2照明光が被写体50に照射された場合、可視光の反射光および第2蛍光がダイクロイックミラー205に入射する。ダイクロイックミラー205は、可視光の反射光を透過させ、かつ第2蛍光を反射させる。ダイクロイックミラー205を透過した可視光の反射光は撮像素子206に入射する。ダイクロイックミラー205で反射した第2蛍光は撮像素子207に入射する。撮像素子206は、可視光の反射光を撮像し、かつ可視光の反射光に基づく第3信号を生成する。撮像素子207は、第2蛍光を撮像し、かつ第2蛍光に基づく第4信号を生成する。第3信号および第4信号を含む第2撮像信号は信号処理部30に出力される。
 第3の実施形態の変形例の内視鏡装置1aは、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明の各実施形態によれば、内視鏡装置は、可視光画像のフレームレートの低下を抑えることができ、かつ可視光画像と複数種類の蛍光画像とを取得することができる。
 1,1a 内視鏡装置
 10 光源部
 20,20a 内視鏡スコープ部
 30 信号処理部
 40 モニタ
 100 光源
 101 励起波長選択フィルタ
 102 コンデンサレンズ
 1010 支持板
 1011 第1フィルタ
 1012 第2フィルタ
 200 ライトガイド
 201 照明レンズ
 202 対物レンズ
 203 励起波長遮断フィルタ
 204,206,207 撮像素子
 205 ダイクロイックミラー
 2040 第1基板
 2040P 第1画素
 2041 第2基板
 2041P 第2画素
 2042 カラーフィルタ
 2042R 赤フィルタ
 2042G 緑フィルタ
 2042B 青フィルタ
 2043 光学フィルタ
 2050 第1光電変換素子
 2051 第2光電変換素子

Claims (19)

  1.  可視光と、観察対象物内に存在する第1蛍光物質を励起するための第1励起光と、前記観察対象物内に存在する第2蛍光物質を励起するための第2励起光とを出射する光源部と、
     前記観察対象物で反射した前記可視光と、前記第1励起光により前記観察対象物から発する第1蛍光と、前記第2励起光により前記観察対象物から発する第2蛍光とを撮像し、かつ第1撮像信号および第2撮像信号を出力する撮像部と、
     前記観察対象物から前記撮像部までの光路に配置され、前記第1励起光の波長帯域および前記第2励起光の波長帯域を遮断し、かつ前記可視光の波長帯域と前記第1蛍光の波長帯域と前記第2蛍光の波長帯域とを透過させる特性を有する励起波長遮断フィルタと、
     前記撮像部から出力された前記第1撮像信号および前記第2撮像信号に基づいて、前記可視光の反射光に基づく可視光画像と、前記第1蛍光に基づく第1蛍光画像と、前記第2蛍光に基づく第2蛍光画像とを生成する信号処理部と、
     を有し、
     前記光源部は、第1照明光および第2照明光を順次に出射し、
     前記第1照明光は、前記可視光を含み、
     前記第2照明光は、前記第1励起光を含み、
     前記第1照明光および前記第2照明光の少なくとも1つは前記第2励起光を含み、
     前記第1撮像信号は、前記可視光の前記反射光に基づき、
     前記第2撮像信号は、前記第1蛍光に基づき、
     前記第1撮像信号および前記第2撮像信号の少なくとも1つはさらに、前記第2蛍光に基づく
     内視鏡装置。
  2.  前記光源部は、
     前記可視光、前記第1励起光、および前記第2励起光の各々の波長帯域を少なくとも含む波長帯域の光を出射する光源と、
     前記光源から出射する光の光路に配置され、第1フィルタおよび第2フィルタが円周方向に配置された回転フィルタと、
     を有し、
     前記第1フィルタは、前記可視光を透過させ、
     前記第2フィルタは、前記第1励起光を透過させ、
     前記第1フィルタおよび前記第2フィルタの少なくとも1つは、前記第2励起光を透過させる
     請求項1に記載の内視鏡装置。
  3.  前記第1照明光は、前記可視光および前記第2励起光を含み、
     前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第1信号と、前記第2蛍光に基づく撮像信号である第2信号とを前記第1撮像信号として出力し、
     前記第1照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第1信号に基づいて前記可視光画像を生成し、かつ前記第2信号に基づいて前記第2蛍光画像を生成し、
     前記第2照明光は、前記第1励起光および前記第2励起光を含み、
     前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1蛍光および前記第2蛍光に基づく撮像信号である第3信号と、前記第2蛍光に基づく撮像信号である第4信号とを前記第2撮像信号として出力し、
     前記第2照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第3信号および前記第4信号に基づいて前記第1蛍光画像を生成し、かつ前記第4信号に基づいて前記第2蛍光画像を生成する
     請求項1に記載の内視鏡装置。
  4.  前記撮像部は、第1基板と、前記第1基板に積層された第2基板と、光学フィルタとを有し、
     前記第1基板は、2次元状に配置された複数の第1画素を有し、かつ前記第1信号および前記第3信号を出力し、
     前記第2基板は、2次元状に配置された複数の第2画素を有し、かつ前記第2信号および前記第4信号を出力し、
     前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1信号および前記第2信号を出力し、
     前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第3信号および前記第4信号を出力し、
     前記光学フィルタは、前記第1基板および前記第2基板の間に配置され、前記可視光の波長帯域および前記第1蛍光の波長帯域を遮断し、かつ前記第2蛍光の波長帯域を透過させる光学特性を有する
     請求項3に記載の内視鏡装置。
  5.  前記第1照明光は、前記可視光および前記第2励起光を含み、
     前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第1信号と、前記第2蛍光に基づく撮像信号である第2信号とを前記第1撮像信号として出力し、
     前記第1照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第1信号に基づいて前記可視光画像を生成し、かつ前記第2信号に基づいて前記第2蛍光画像を生成し、
     前記第2照明光は、前記第1励起光および前記第2励起光を含み、
     前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1蛍光に基づく撮像信号である第3信号と、前記第2蛍光に基づく撮像信号である第4信号とを前記第2撮像信号として出力し、
     前記第2照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第3信号に基づいて前記第1蛍光画像を生成し、かつ前記第4信号に基づいて前記第2蛍光画像を生成する
     請求項1に記載の内視鏡装置。
  6.  前記可視光の前記反射光および前記第2蛍光を分離し、かつ前記第1蛍光および前記第2蛍光を分離する光分離素子を有し、
     前記撮像部は、
     前記光分離素子によって分離された前記可視光の前記反射光および前記第1蛍光が入射する第1撮像素子と、
     前記光分離素子によって分離された前記第2蛍光が入射する第2撮像素子と、
     を有し、
     前記第1照明光が前記観察対象物に照射された場合、前記第1撮像素子は前記第1信号を出力し、かつ前記第2撮像素子は前記第2信号を出力し、
     前記第2照明光が前記観察対象物に照射された場合、前記第1撮像素子は前記第3信号を出力し、かつ前記第2撮像素子は前記第4信号を出力する
     請求項5に記載の内視鏡装置。
  7.  前記光源部は、前記可視光、前記第1励起光、および前記第2励起光の少なくとも1つの波長帯域を含む波長帯域の光を選択的に出射可能な複数の発光素子を有する
     請求項1に記載の内視鏡装置。
  8.  前記複数の発光素子の各々は、発光ダイオードである
     請求項7に記載の内視鏡装置。
  9.  可視光と、観察対象物内に存在する第1蛍光物質を励起するための第1励起光と、前記観察対象物内に存在する第2蛍光物質を励起するための第2励起光とを出射する光源部と、
     前記観察対象物で反射した前記可視光と、前記第1励起光により前記観察対象物から発する第1蛍光と、前記第2励起光により前記観察対象物から発する第2蛍光とを撮像し、かつ第1撮像信号および第2撮像信号を出力する撮像部と、
     前記観察対象物から前記撮像部までの光路に配置され、前記第1励起光の波長帯域および前記第2励起光の波長帯域を遮断し、かつ前記可視光の波長帯域と前記第1蛍光の波長帯域と前記第2蛍光の波長帯域とを透過させる特性を有する励起波長遮断フィルタと、
     前記撮像部から出力された前記第1撮像信号および前記第2撮像信号に基づいて、前記可視光の反射光に基づく可視光画像と、前記第1蛍光に基づく第1蛍光画像と、前記第2蛍光に基づく第2蛍光画像とを生成する信号処理部と、
     を有し、
     前記光源部は、第1照明光および第2照明光を順次に出射し、
     前記第1照明光は、前記第1励起光を含み、
     前記第2照明光は、前記第2励起光を含み、
     前記第1照明光および前記第2照明光の少なくとも1つは前記可視光を含み、
     前記第1撮像信号は、前記第1蛍光に基づき、
     前記第2撮像信号は、前記第2蛍光に基づき、
     前記第1撮像信号および前記第2撮像信号の少なくとも1つはさらに、前記可視光の前記反射光に基づく
     内視鏡装置。
  10.  前記光源部は、
     前記可視光、前記第1励起光、および前記第2励起光の各々の波長帯域を少なくとも含む波長帯域の光を出射する光源と、
     前記光源から出射する光の光路に配置され、第1フィルタおよび第2フィルタが円周方向に配置された回転フィルタと、
     を有し、
     前記第1フィルタは、前記第1励起光を透過させ、
     前記第2フィルタは、前記第2励起光を透過させ、
     前記第1フィルタおよび前記第2フィルタの少なくとも1つは、前記可視光を透過させる
     請求項9に記載の内視鏡装置。
  11.  前記第1照明光は、前記可視光および前記第1励起光を含み、
     前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第1信号と、前記第1蛍光に基づく撮像信号である第2信号とを前記第1撮像信号として出力し、
     前記第1照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第1信号に基づいて前記可視光画像を生成し、かつ前記第2信号に基づいて前記第1蛍光画像を生成し、
     前記第2照明光は、前記可視光および前記第2励起光を含み、
     前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記可視光の前記反射光に基づく撮像信号である第3信号と、前記第2蛍光に基づく撮像信号である第4信号とを前記第2撮像信号として出力し、
     前記第2照明光が前記観察対象物に照射された場合、前記信号処理部は、前記第3信号に基づいて前記可視光画像を生成し、かつ前記第4信号に基づいて前記第2蛍光画像を生成する
     請求項9に記載の内視鏡装置。
  12.  前記撮像部は、第1基板と、前記第1基板に積層された第2基板と、光学フィルタとを有し、
     前記第1基板は、2次元状に配置された複数の第1画素を有し、かつ前記第1信号および前記第3信号を出力し、
     前記第2基板は、2次元状に配置された複数の第2画素を有し、かつ前記第2信号および前記第4信号を出力し、
     前記第1照明光が前記観察対象物に照射された場合、前記撮像部は、前記第1信号および前記第2信号を出力し、
     前記第2照明光が前記観察対象物に照射された場合、前記撮像部は、前記第3信号および前記第4信号を出力し、
     前記光学フィルタは、前記第1基板および前記第2基板の間に配置され、前記可視光の波長帯域を遮断し、かつ前記第1蛍光の波長帯域および前記第2蛍光の波長帯域を透過させる光学特性を有する
     請求項11に記載の内視鏡装置。
  13.  前記可視光の前記反射光および前記第1蛍光を分離し、かつ前記可視光の前記反射光および前記第2蛍光を分離する光分離素子を有し、
     前記撮像部は、
     前記光分離素子によって分離された前記可視光の前記反射光が入射する第1撮像素子と、
     前記光分離素子によって分離された前記第1蛍光および前記第2蛍光が入射する第2撮像素子と、
     を有し、
     前記第1照明光が前記観察対象物に照射された場合、前記第1撮像素子は前記第1信号を出力し、かつ前記第2撮像素子は前記第2信号を出力し、
     前記第2照明光が前記観察対象物に照射された場合、前記第2撮像素子は前記第3信号を出力し、かつ前記第2撮像素子は前記第4信号を出力する
     請求項11に記載の内視鏡装置。
  14.  前記光源部は、前記可視光、前記第1励起光、および前記第2励起光の少なくとも1つの波長帯域を含む波長帯域の光を選択的に出射可能な複数の発光素子を有する
     請求項9に記載の内視鏡装置。
  15.  前記複数の発光素子の各々は、発光ダイオードである
     請求項14に記載の内視鏡装置。
  16.  前記第1蛍光物質はコラーゲンであり、かつ前記第2蛍光物質はAlexa680である
     請求項1から請求項15のいずれか一項に記載の内視鏡装置。
  17.  前記第1蛍光物質はプロトポルフィリンIXであり、かつ前記第2蛍光物質はインドシアニングリーンである
     請求項1から請求項15のいずれか一項に記載の内視鏡装置。
  18.  前記信号処理部は、表示画像において前記可視光画像と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つとが離間するように、前記可視光画像と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つとを含む前記表示画像を生成する
     請求項1から請求項17のいずれか一項に記載の内視鏡装置。
  19.  前記信号処理部は、表示画像において前記可視光画像の少なくとも一部と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つの少なくとも一部とが重なるように、前記可視光画像と、前記第1蛍光画像および前記第2蛍光画像の少なくとも1つとを含む前記表示画像を生成する
     請求項1から請求項17のいずれか一項に記載の内視鏡装置。
PCT/JP2017/020796 2017-06-05 2017-06-05 内視鏡装置 WO2018225122A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/020796 WO2018225122A1 (ja) 2017-06-05 2017-06-05 内視鏡装置
US16/698,222 US11457800B2 (en) 2017-06-05 2019-11-27 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020796 WO2018225122A1 (ja) 2017-06-05 2017-06-05 内視鏡装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/698,222 Continuation US11457800B2 (en) 2017-06-05 2019-11-27 Endoscope device

Publications (1)

Publication Number Publication Date
WO2018225122A1 true WO2018225122A1 (ja) 2018-12-13

Family

ID=64566844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020796 WO2018225122A1 (ja) 2017-06-05 2017-06-05 内視鏡装置

Country Status (2)

Country Link
US (1) US11457800B2 (ja)
WO (1) WO2018225122A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319115A (ja) * 2004-05-10 2005-11-17 Pentax Corp 蛍光観察内視鏡装置
JP2006296635A (ja) * 2005-04-19 2006-11-02 Olympus Corp 内視鏡装置
JP2008043396A (ja) * 2006-08-11 2008-02-28 Olympus Corp 内視鏡システム
JP2008148791A (ja) * 2006-12-14 2008-07-03 Olympus Corp 内視鏡システム
JP2011147757A (ja) * 2009-09-29 2011-08-04 Fujifilm Corp 医療機器及び内視鏡装置
JP2013248319A (ja) * 2012-06-04 2013-12-12 Olympus Corp 蛍光内視鏡装置
JP2015099875A (ja) * 2013-11-20 2015-05-28 オリンパス株式会社 撮像素子
WO2017047140A1 (ja) * 2015-09-18 2017-03-23 オリンパス株式会社 内視鏡装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179222B2 (en) * 1996-11-20 2007-02-20 Olympus Corporation Fluorescent endoscope system enabling simultaneous achievement of normal light observation based on reflected light and fluorescence observation based on light with wavelengths in infrared spectrum
EP1258220B1 (en) * 2001-05-16 2008-08-13 Olympus Corporation Endoscope with image processing device
US7172553B2 (en) * 2001-05-16 2007-02-06 Olympus Corporation Endoscope system using normal light and fluorescence
US8285015B2 (en) * 2002-07-05 2012-10-09 Lawrence Livermore Natioonal Security, LLC Simultaneous acquisition of differing image types
US20050027166A1 (en) * 2003-06-17 2005-02-03 Shinya Matsumoto Endoscope system for fluorescent observation
JP5114024B2 (ja) * 2005-08-31 2013-01-09 オリンパス株式会社 光イメージング装置
JP2008043494A (ja) * 2006-08-14 2008-02-28 Olympus Corp 蛍光内視鏡システム、蛍光観測装置、蛍光観測方法、蛍光情報処理装置、および蛍光情報処理方法
US20080177140A1 (en) * 2007-01-23 2008-07-24 Xillix Technologies Corp. Cameras for fluorescence and reflectance imaging
JP2008229024A (ja) * 2007-03-20 2008-10-02 Olympus Corp 蛍光観察装置
JP4954858B2 (ja) * 2007-11-30 2012-06-20 オリンパス株式会社 蛍光観察装置および内視鏡装置
MX2010010292A (es) * 2008-03-18 2011-01-25 Novadaq Technologies Inc Sistema de formacion de imagenes para la reflectancia combinada de color completo y formacion de imagenes cercanas al infrarrojo.
US20090236541A1 (en) * 2008-03-24 2009-09-24 General Electric Company System and Methods for Optical Imaging
US8167793B2 (en) * 2008-04-26 2012-05-01 Intuitive Surgical Operations, Inc. Augmented stereoscopic visualization for a surgical robot using time duplexing
US20090289200A1 (en) * 2008-05-22 2009-11-26 Fujifilm Corporation Fluorescent image obtainment method and apparatus, fluorescence endoscope, and excitation-light unit
DE102010013307B4 (de) * 2010-03-29 2022-12-15 Karl Storz Se & Co. Kg Lichtquelleneinrichtung für endoskopische oder exoskopische Anwendungen
JP5496075B2 (ja) * 2010-12-27 2014-05-21 富士フイルム株式会社 内視鏡診断装置
JP2012217673A (ja) * 2011-04-11 2012-11-12 Fujifilm Corp 内視鏡診断装置
EP2564760A1 (en) * 2011-08-29 2013-03-06 Fujifilm Corporation Endoscopic diagnosis system
US20130075607A1 (en) * 2011-09-22 2013-03-28 Manoj Bikumandla Image sensors having stacked photodetector arrays
JP5421475B2 (ja) * 2012-07-04 2014-02-19 誠 雫石 撮像素子、半導体集積回路及び撮像装置
NL2009124C2 (en) * 2012-07-05 2014-01-07 Quest Photonic Devices B V Method and device for detecting fluorescence radiation.
US8977331B2 (en) * 2012-12-13 2015-03-10 General Electric Company Systems and methods for nerve imaging
CA2951086A1 (en) * 2014-06-05 2015-12-10 Universitat Heidelberg Method and means for multispectral imaging
JP6469996B2 (ja) * 2014-09-09 2019-02-13 オリンパス株式会社 撮像素子および内視鏡装置
CN107105977B (zh) * 2015-01-21 2019-02-12 奥林巴斯株式会社 内窥镜装置
US20160262602A1 (en) * 2015-03-09 2016-09-15 Steven Sounyoung Yu Laparoscopic Cholecystectomy With Fluorescence Cholangiography
CN107534760B (zh) * 2015-05-01 2019-06-07 奥林巴斯株式会社 摄像装置
JPWO2017072852A1 (ja) * 2015-10-27 2018-08-16 オリンパス株式会社 撮像装置および内視鏡装置
WO2018008062A1 (ja) * 2016-07-04 2018-01-11 オリンパス株式会社 蛍光観察装置および蛍光観察内視鏡装置
US11832797B2 (en) * 2016-09-25 2023-12-05 Micronvision Corp. Endoscopic fluorescence imaging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319115A (ja) * 2004-05-10 2005-11-17 Pentax Corp 蛍光観察内視鏡装置
JP2006296635A (ja) * 2005-04-19 2006-11-02 Olympus Corp 内視鏡装置
JP2008043396A (ja) * 2006-08-11 2008-02-28 Olympus Corp 内視鏡システム
JP2008148791A (ja) * 2006-12-14 2008-07-03 Olympus Corp 内視鏡システム
JP2011147757A (ja) * 2009-09-29 2011-08-04 Fujifilm Corp 医療機器及び内視鏡装置
JP2013248319A (ja) * 2012-06-04 2013-12-12 Olympus Corp 蛍光内視鏡装置
JP2015099875A (ja) * 2013-11-20 2015-05-28 オリンパス株式会社 撮像素子
WO2017047140A1 (ja) * 2015-09-18 2017-03-23 オリンパス株式会社 内視鏡装置

Also Published As

Publication number Publication date
US20200093358A1 (en) 2020-03-26
US11457800B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP6484336B2 (ja) 撮像装置
JP5441411B2 (ja) う蝕検知の方法
US10335019B2 (en) Image pickup element and endoscope device
JP4585050B1 (ja) 蛍光観察装置
JP6696912B2 (ja) マルチスペクトルイメージングのための方法及び手段
EP2378955B1 (en) Method and apparatus for detection of caries
WO2018008062A1 (ja) 蛍光観察装置および蛍光観察内視鏡装置
US20060247537A1 (en) Endoscope apparatus
US20070046778A1 (en) Optical imaging device
US9271635B2 (en) Fluorescence endoscope apparatus
JP6377181B2 (ja) 撮像装置
JP6710151B2 (ja) 内視鏡装置及び内視鏡装置の作動方法
JP2016518197A5 (ja)
JP2006061683A (ja) 内視鏡装置
EP2101637A1 (en) System for early detection of dental caries
CN107105977B (zh) 内窥镜装置
US10602919B2 (en) Imaging device
JP4245787B2 (ja) 蛍光画像取得方法および装置
US10827914B2 (en) Endoscope system and characteristic amount calculation method
JP5489785B2 (ja) 蛍光内視鏡装置
WO2018225122A1 (ja) 内視鏡装置
JP5489806B2 (ja) 蛍光内視鏡装置
JP5483522B2 (ja) 画像取得装置
JP2001212073A (ja) 蛍光撮像装置
JP6535701B2 (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP