WO2018224342A1 - Plausibilisierung eines luftmassenmessers - Google Patents
Plausibilisierung eines luftmassenmessers Download PDFInfo
- Publication number
- WO2018224342A1 WO2018224342A1 PCT/EP2018/063876 EP2018063876W WO2018224342A1 WO 2018224342 A1 WO2018224342 A1 WO 2018224342A1 EP 2018063876 W EP2018063876 W EP 2018063876W WO 2018224342 A1 WO2018224342 A1 WO 2018224342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass flow
- exhaust gas
- air
- internal combustion
- combustion engine
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
- F02D41/0072—Estimating, calculating or determining the EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1448—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/222—Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
- G01F25/15—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/50—Correcting or compensating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a method for operating a
- Air mass meters are used in the intake tract of internal combustion engines in order to ensure an optimum degree of filling of the combustion chamber and thus optimum combustion.
- the output of a gasoline engine power is proportional to the intake air mass flow.
- the correct measurement of the air mass flow is safety relevant. It is therefore required by law that the correct functioning of the air mass meter is monitored.
- a pressure-based air mass meter is selected.
- the value for [TIA is plausibilized against the mass flow ms flowing through a suction pipe connected between the air mass meter and at least one combustion chamber of the internal combustion engine.
- the mass flow ms is determined in an operating state in which a mass flow rriR of exhaust gas is recirculated into the intake manifold, wherein the mass flow rriR is additionally determined.
- the mass flow ms should nominally equal the sum of the mass flow ⁇ and the recirculated mass flow rriR of exhaust gas. It was further recognized that both the mass flow ms flowing through the intake manifold and the mass flow rriR of exhaust gas can be derived from the quantities supplied by standard sensors in the internal combustion engine at least in a sufficient accuracy for plausibility. Therefore, it is possible to dispense with redundant sensors. The requirement to monitor the correct functioning of the air mass meter can thus be met with little effort.
- Throttle equation models By measuring the intake manifold pressure, the mass flow through the throttle could then be determined as a comparison value for ⁇ .
- the plausibility check according to the invention has the advantage that the boost pressure sensor is unnecessary and accordingly costs can be saved.
- Such an air mass meter measures the static pressure as a reference pressure as well as a pressure difference caused by the mass flow and also the temperature of the air. Therefore, it is a comparatively Complex sensor, which can also take over the function of the boost pressure sensor, because the static pressure corresponds to the boost pressure, and the temperature corresponds to the charge air temperature.
- PFM Pressure-based Flow Meter
- Exhaust gas recirculation can not be closed at every operating point of the engine, especially in the case of natural gas engines for commercial vehicles, since it mainly serves there to reduce the combustion chamber or engine outlet temperature and is necessary for the protection of turbochargers and other components.
- Mass flow ms determined from the air mass in the combustion chamber and the speed n of the internal combustion engine.
- the mass flow ms can, for example, according to the formula
- the fraction indicates the air mass in the combustion chamber under the approximation that the air is treated as an ideal gas
- pc, Vc and Tc Accordingly, the pressure, volume and temperature of the air in the combustion chamber, and Rc is the specific gas constant of the air in the combustion chamber, n is the engine speed, and F (n) is dependent on the engine speed
- Vc corresponds to the effective displacement of the internal combustion engine
- pc corresponds approximately to the pressure in the intake manifold, which is measured by default.
- the temperature in the intake manifold is also measured by default. If the inlet valve of the combustion chamber is open, then the temperature Tc in the combustion chamber is at least approximately apparent from the temperature in the intake manifold and also the standard measured cooling water temperature TK of the internal combustion engine.
- a temperature Tc in the combustion chamber is used, which is determined from the temperature TM in the intake manifold in conjunction with the cooling water temperature TK of the internal combustion engine.
- the exhaust gas recirculation usually does not take place with a constant
- Exhaust gas recirculation valve also has an open state
- the mass flow rriR of recirculated exhaust gas is thus advantageously controlled via an exhaust gas recirculation valve, and the pressure pv and the temperature Tv of the exhaust gas in the flow direction upstream of the exhaust gas recirculation valve are used to determine the mass flow rriR.
- the pressure pv and the temperature Tv of the exhaust gas can be measured, for example.
- Corresponding sensors may be present, for example, in the context of exhaust gas aftertreatment. Also for the purpose of
- Exhaust aftertreatment are characteristic of many internal combustion engines or computational models that indicate the pressure pv and the temperature Tv of the exhaust gas as a function of the operating point of the internal combustion engine.
- the pressure pv and the temperature Tv of the exhaust gas are retrieved from a map or calculation model based on the operating point of the internal combustion engine.
- the determination of the mass flow rriR to exhaust gas can advantageously be significantly refined by adopting the exhaust gas recirculation valve for determining the mass flow rriR as a throttle. Since pressure and temperature of the recirculated exhaust gas in the flow direction behind the exhaust gas recirculation valve in the intake manifold are measured by default and at the same time pressure pv and temperature Tv of the exhaust gas in the flow direction before the exhaust gas recirculation valve are known, with additional knowledge of the opening cross-section and the
- the opening cross-section and the Auspoundiere the exhaust gas recirculation valve are known as a function of the valve opening or can be determined for example on the test bench.
- throttle equation can be used to calculate rriR:
- A is the opening area and ⁇ is the discharge rate of the
- the invention also relates to a
- Air supply system for an internal combustion engine comprises a turbocharger, an air mass meter arranged behind the turbocharger in the flow direction, one downstream of the turbocharger
- Air mass meter arranged throttle and arranged in the flow direction behind the throttle, a combustion chamber of the
- the air mass meter is pressure-based
- Air mass meter and it is the only sensor for measuring the boost pressure and the charge air temperature provided.
- a sensor for direct measurement of the guided through the exhaust gas recirculation line mass flow rriR is connected to exhaust gas in the exhaust gas recirculation line. This can be one
- a computer program product having machine-readable instructions which, when executed on a computer and / or on a controller, cause the computer and / or the controller to perform a method according to the invention.
- FIG. 1 embodiment of the air supply system and the method in a schematic representation
- FIG. 2 shows an example of an exhaust gas recirculation valve 25, which is used in the air supply system or method.
- combustion air 11 is drawn in through an exhaust-gas turbocharger 26, which is driven by exhaust gas 12 of internal combustion engine 1.
- the mass flow ⁇ of the combustion air 11 is measured by a pressure-based air mass meter 13.
- the combustion air 11 is fed through a throttle valve 14 to a suction pipe 15 and passes from there through an inlet valve 21 into the combustion chamber 20 of the cylinder 16 of the internal combustion engine 1 shown by way of example in FIG. 1.
- the exhaust gas 12 is through a
- Exhaust valve 22 discharged from the combustion chamber 20.
- the cylinder 16 is surrounded by a cooling water jacket 19, the temperature ⁇ is measured.
- a portion of the exhaust gas 12 is returned through the exhaust gas recirculation line 28 in the intake manifold 15.
- a temperature sensor 23 is connected, which measures the temperature Tv of the exhaust gas 12 in the flow direction in front of the exhaust gas recirculation valve 25.
- a pressure sensor 24 is further connected, the pressure pv of the exhaust gas 12 in the exhaust gas recirculation line 28 in the exhaust gas recirculation line 28 in the exhaust gas recirculation line 28 .
- the temperature Tv and the pressure pv can optionally also be determined from the operating point of the
- Internal combustion engine 1 can be retrieved from a map 27.
- step 110 the intake pipe temperature TM measured with the intake pipe temperature sensor 15b, the temperature ⁇ of the cooling water jacket 19, and optionally further
- step 120 the total mass flow ms flowing through the intake manifold 15 is determined from this temperature Tc in conjunction with the pressure PM in the intake manifold measured by the intake manifold pressure sensor 15a and the rotational speed n of the internal combustion engine 1. Therefore, in step 130, from temperature T and pressure pv of the recirculated exhaust gas 12 upstream of the exhaust gas recirculation valve 25, in conjunction with the intake pipe pressure PM, the mass flow rriR the recirculated exhaust gas 12 is determined.
- this mass flow rriR can also be determined directly by a sensor 29 in the exhaust gas recirculation line 28.
- ⁇ * for the mass flow ⁇ of combustion air 11 is finally determined in step 140 by subtraction. If the air mass meter 13 functions correctly, ⁇ * should be identical to rriA, except for any inaccuracies due to approximation. Is the
- FIG. 2 schematically shows an exhaust gas recirculation valve 25 which can be used in the air supply system shown in FIG.
- the valve 25 consists of a valve body 25a, which is traversed by a channel 25b.
- the channel 25b is the input side connected to the exhaust gas recirculation line 28 and the output side to the intake manifold 15.
- the channel 25b is closed by a valve plate 25d, which cooperates with a valve seat 25c.
- the valve disk can be moved via a valve rod 25e, which is displaceable with a servomotor 25f.
- the exhaust gas 12 can pass through an opening area A, which is determined by the position of the valve disk 25 d. This position is measured via a stroke measurement 25g on the valve rod 25e.
- the valve 25 is connected via an electronic connection 25h with the
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880037870.2A CN110719993B (zh) | 2017-06-07 | 2018-05-28 | 空气质量测量装置的可信度检验 |
EP18727295.0A EP3635231A1 (de) | 2017-06-07 | 2018-05-28 | Plausibilisierung eines luftmassenmessers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017209559.8 | 2017-06-07 | ||
DE102017209559.8A DE102017209559A1 (de) | 2017-06-07 | 2017-06-07 | Plausibilisierung eines Luftmassenmessers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018224342A1 true WO2018224342A1 (de) | 2018-12-13 |
Family
ID=62245327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/063876 WO2018224342A1 (de) | 2017-06-07 | 2018-05-28 | Plausibilisierung eines luftmassenmessers |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3635231A1 (zh) |
CN (1) | CN110719993B (zh) |
DE (1) | DE102017209559A1 (zh) |
WO (1) | WO2018224342A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110319463A (zh) * | 2019-08-09 | 2019-10-11 | 中山市铧禧电子科技有限公司 | 一种利用空气计算折算热负荷的系统和方法 |
CN114136409A (zh) * | 2020-09-04 | 2022-03-04 | 成都秦川物联网科技股份有限公司 | 一种真实气体流量实验系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5291803A (en) | 1991-02-14 | 1994-03-08 | Nissan Motor Co., Ltd. | Automotive vehicle controlling apparatus with failure judging facility |
DE19946874A1 (de) | 1999-09-30 | 2001-04-05 | Bosch Gmbh Robert | Diagnose von Stellgliedern und Sensoren in Verbindung mit der Gemischbildung bei Brennkraftmaschinen |
DE10115750A1 (de) * | 2001-03-20 | 2002-09-26 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung und/oder Diagnose eines einen Massenstrom beeinflussenden Steuersystems |
DE102010044164A1 (de) | 2010-11-19 | 2012-05-24 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE112011105640T5 (de) * | 2011-09-21 | 2014-08-28 | Ford Global Technologies, Llc | AGR-System mit fester Rate |
DE102014105838A1 (de) * | 2013-12-17 | 2015-06-18 | Hyundai Motor Company | Verfahren und System zur Diagnose und Korrektur eines Ladedrucksensors und eines Luftdurchflusssensors durch ein Verbrennungsdrucksignal |
WO2016089662A1 (en) * | 2014-12-04 | 2016-06-09 | Achates Power, Inc. | On-board diagnostics for an opposed-piston engine equipped with a supercharger |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3136968B2 (ja) * | 1995-10-20 | 2001-02-19 | トヨタ自動車株式会社 | 内燃機関の吸気圧力異常検出装置 |
JP2004176644A (ja) * | 2002-11-28 | 2004-06-24 | Denso Corp | 内燃機関の気筒別吸入空気量検出装置 |
US6850833B1 (en) * | 2003-11-03 | 2005-02-01 | Cummins, Inc. | System for diagnosing delta pressure sensor operation |
JP4348616B2 (ja) * | 2004-01-15 | 2009-10-21 | スズキ株式会社 | 吸入空気量検出装置の故障診断装置 |
DE102004033845A1 (de) * | 2004-07-13 | 2006-02-09 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Abgasrückführung |
DE102005010785A1 (de) * | 2005-03-01 | 2006-09-07 | Daimlerchrysler Ag | Verfahren zur Korrektur eines Luftmassenmessfehlers bei einem Verbrennungsmotor eines Kraftfahrzeuges |
DE102005025884A1 (de) * | 2005-06-06 | 2006-12-07 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Korrektur eines Signals eines Sensors |
DE602005021375D1 (de) * | 2005-11-30 | 2010-07-01 | Delphi Tech Holding Sarl | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
EP2058493A1 (en) * | 2007-11-12 | 2009-05-13 | Iveco Motorenforschung AG | A diagnostic method for a vehicle engine apparatus, provided with sensors |
US8521354B2 (en) * | 2008-08-12 | 2013-08-27 | Southwest Research Institute | Diagnosis of sensor failure in airflow-based engine control system |
DE102009018526B4 (de) * | 2009-04-24 | 2015-03-05 | Pierburg Gmbh | Abgasrückführsystem für einen Verbrennungsmotor |
US8224559B2 (en) * | 2010-01-21 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to monitor a mass airflow metering device in an internal combustion engine |
DE102010002849B4 (de) * | 2010-03-15 | 2021-04-29 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Ermittlung eines Modellierungswertes für einen Druck in einem Motorsystem mit einem Verbrennungsmotor und ein Computerprogrammprodukt |
CN104454168B (zh) * | 2014-12-26 | 2017-02-22 | 长城汽车股份有限公司 | 发动机缸内温度预测装置、预测方法、发动机及车辆 |
US9689335B2 (en) * | 2015-04-27 | 2017-06-27 | Caterpillar Inc. | Engine mass air flow calculation method and system |
CN105091956A (zh) * | 2015-04-29 | 2015-11-25 | 潍柴动力股份有限公司 | 发动机进气流量测量装置及发动机系统 |
-
2017
- 2017-06-07 DE DE102017209559.8A patent/DE102017209559A1/de active Pending
-
2018
- 2018-05-28 CN CN201880037870.2A patent/CN110719993B/zh active Active
- 2018-05-28 WO PCT/EP2018/063876 patent/WO2018224342A1/de unknown
- 2018-05-28 EP EP18727295.0A patent/EP3635231A1/de not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5291803A (en) | 1991-02-14 | 1994-03-08 | Nissan Motor Co., Ltd. | Automotive vehicle controlling apparatus with failure judging facility |
DE19946874A1 (de) | 1999-09-30 | 2001-04-05 | Bosch Gmbh Robert | Diagnose von Stellgliedern und Sensoren in Verbindung mit der Gemischbildung bei Brennkraftmaschinen |
DE10115750A1 (de) * | 2001-03-20 | 2002-09-26 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung und/oder Diagnose eines einen Massenstrom beeinflussenden Steuersystems |
DE102010044164A1 (de) | 2010-11-19 | 2012-05-24 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE112011105640T5 (de) * | 2011-09-21 | 2014-08-28 | Ford Global Technologies, Llc | AGR-System mit fester Rate |
DE102014105838A1 (de) * | 2013-12-17 | 2015-06-18 | Hyundai Motor Company | Verfahren und System zur Diagnose und Korrektur eines Ladedrucksensors und eines Luftdurchflusssensors durch ein Verbrennungsdrucksignal |
WO2016089662A1 (en) * | 2014-12-04 | 2016-06-09 | Achates Power, Inc. | On-board diagnostics for an opposed-piston engine equipped with a supercharger |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110319463A (zh) * | 2019-08-09 | 2019-10-11 | 中山市铧禧电子科技有限公司 | 一种利用空气计算折算热负荷的系统和方法 |
CN110319463B (zh) * | 2019-08-09 | 2024-03-19 | 中山市铧禧电子科技有限公司 | 一种利用空气计算折算热负荷的系统和方法 |
CN114136409A (zh) * | 2020-09-04 | 2022-03-04 | 成都秦川物联网科技股份有限公司 | 一种真实气体流量实验系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3635231A1 (de) | 2020-04-15 |
CN110719993B (zh) | 2023-02-28 |
DE102017209559A1 (de) | 2018-12-13 |
CN110719993A (zh) | 2020-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015200432B4 (de) | Verbrennungskraftmaschinen-EGR-Flussraten-Schätzvorrichtung und Verbrennungskraftmaschinen-Steuervorrichtung | |
DE102015211808B4 (de) | Steuervorrichtung für Verbrennungskraftmaschine | |
DE102014213631B4 (de) | Steuervorrichtung für Verbrennungskraftmaschinen in einem Turbolader | |
DE10362028B4 (de) | Verfahren zur Bestimmung einer Frischgasmenge | |
DE19740916A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
EP3308007A1 (de) | Luftfüllungsbestimmung, motorsteuergerät und verbrennungskraftmaschine | |
DE102004036064A1 (de) | Diagnoseverfahren zur Erkennung von Fehlern bei der Ladedruckregelung eines Abgasturboladers eines Verbrennungsmotors | |
DE102016205680A1 (de) | Verfahren und Vorrichtung zum Bestimmen eines Frischluftmassenstroms in einen Verbrennungsmotor | |
DE102019209028A1 (de) | Steuervorrichtung für Verbrennungsmotor | |
WO2018224342A1 (de) | Plausibilisierung eines luftmassenmessers | |
DE10102914C1 (de) | Verfahren zum Ermitteln eines Schätzwertes eines Massenstroms in den Ansaugtrakt einer Brennkraftmaschine | |
EP2447516A1 (de) | Verfahren zur Bestimmung eines Drucks am Ausgang einer Abgasanlage | |
DE102010002849B4 (de) | Verfahren und Vorrichtung zur Ermittlung eines Modellierungswertes für einen Druck in einem Motorsystem mit einem Verbrennungsmotor und ein Computerprogrammprodukt | |
EP1934452B1 (de) | Vorrichtung zur druckbasierten lasterfassung | |
DE10054199A1 (de) | Verfahren zum Überprüfen der Funktionsfähigkeit eines Luftmassenmessers | |
DE102012004556B4 (de) | Verfahren und Vorrichtung zum Bestimmen eines Verbrennungsluftmassenstroms | |
EP3662152A1 (de) | Verfahren zum bestimmen eines grundladedrucks eines gasführungssystems einer verbrennungskraftmaschine und motorsteuerung zum durchführen eines solchen verfahrens | |
DE10335399B4 (de) | Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit mit einem Verbrennungsmotor | |
DE102018207708A1 (de) | Verfahren und Vorrichtung zum Betreiben eines aufgeladenen Verbrennungsmotors | |
DE102009037272A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
DE102007012340B3 (de) | Verfahren zum Ermitteln und Einregeln des Luftmassenstroms im Saugrohr eines Verbrennungsmotors sowie zugehöriges Steuergerät | |
WO2017157580A1 (de) | Verfahren und steuervorrichtung zum bestimmen einer menge einer füllungskomponente in einem zylinder einer verbrennungskraftmaschine | |
EP1411227B1 (de) | Verfahren und Vorrichtung zur Ermittlung eines durch ein Stellelement eingestellten Massenstroms durch eine Massenstromleitung einer Brennkraftmaschine | |
DE102018209507A1 (de) | Verfahren und Vorrichtung zur Überwachung von mindestens zwei Luftmassensensoren einer Brennkraftmaschine | |
EP1411233B1 (de) | Verfahren und Vorrichtung zur Überwachung eines durch ein Stellelement eingestellten Massenstroms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18727295 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018727295 Country of ref document: EP Effective date: 20200107 |