WO2018116770A1 - 作業車自動走行システム - Google Patents
作業車自動走行システム Download PDFInfo
- Publication number
- WO2018116770A1 WO2018116770A1 PCT/JP2017/042873 JP2017042873W WO2018116770A1 WO 2018116770 A1 WO2018116770 A1 WO 2018116770A1 JP 2017042873 W JP2017042873 W JP 2017042873W WO 2018116770 A1 WO2018116770 A1 WO 2018116770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work
- travel
- route element
- vehicle
- travel route
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims description 92
- 238000004364 calculation method Methods 0.000 claims description 64
- 230000009183 running Effects 0.000 claims description 50
- 230000008859 change Effects 0.000 claims description 22
- 230000007704 transition Effects 0.000 claims description 17
- 238000003306 harvesting Methods 0.000 description 117
- 238000004891 communication Methods 0.000 description 71
- 230000006870 function Effects 0.000 description 33
- 238000012545 processing Methods 0.000 description 19
- 238000011156 evaluation Methods 0.000 description 18
- 230000032258 transport Effects 0.000 description 17
- 241001124569 Lycaenidae Species 0.000 description 14
- 239000000446 fuel Substances 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 238000007599 discharging Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012905 input function Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 102100038968 WAP four-disulfide core domain protein 1 Human genes 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 240000002582 Oryza sativa Indica Group Species 0.000 description 1
- 240000008467 Oryza sativa Japonica Group Species 0.000 description 1
- 101001136140 Pinus strobus Putative oxygen-evolving enhancer protein 2 Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000003971 tillage Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0289—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling with means for avoiding collisions between vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D41/00—Combines, i.e. harvesters or mowers combined with threshing devices
- A01D41/12—Details of combines
- A01D41/127—Control or measuring arrangements specially adapted for combines
- A01D41/1278—Control or measuring arrangements specially adapted for combines for automatic steering
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0291—Fleet control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0291—Fleet control
- G05D1/0297—Fleet control by controlling means in a control room
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/20—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
- A01B69/007—Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
- A01B69/008—Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
Definitions
- the present invention relates to a work vehicle automatic travel system for a plurality of work vehicles that work cooperatively on a work site while exchanging data.
- the field work machine by patent document 1 is provided with the route calculation part and the driving assistance unit in order to perform field work by automatic running.
- the route calculation unit obtains the outer shape of the field from the terrain data, and calculates a travel route starting from the set travel start point and ending at the travel end point based on the outer shape and the work width of the field work machine.
- the driving support unit compares the vehicle position obtained based on the positioning data (latitude / longitude data) obtained from the GPS module with the travel route calculated by the route calculation unit, and the traveling vehicle body moves along the travel route.
- the steering mechanism is controlled to travel.
- Patent Document 1 discloses a system that automatically controls one work vehicle
- Patent Document 2 discloses a system that performs work while traveling two work vehicles in parallel.
- the travel route for performing the work of the first work vehicle and the second work vehicle is determined.
- the first work vehicle and the second work vehicle measure the position of the host vehicle and work while traveling along the travel route.
- An automatic work vehicle traveling system for a plurality of work vehicles that cooperatively travels a work place while exchanging data is an area setting that sets the work place as an outer peripheral area and a work target area inside the outer peripheral area
- a vehicle position calculation unit that calculates a vehicle position, a travel route element group that is an aggregate of a number of travel route elements that form a travel route that covers the work target area, and the outer periphery region.
- a route management unit that manages a revolving route element group that is a set of revolving route elements constituting the revolving route, and a next traveling route element that the work vehicle should travel next based on the state information, Automatic travel is executed based on a route element selection unit that sequentially selects from the travel route element group a next circuit route element to be traveled next or from the circuit route element group, and the next travel route element and the vehicle position.
- the route element selection unit includes a cooperative route element selection rule adopted when the plurality of work vehicles cooperatively travel the work target area, and one of the work vehicles is a single work vehicle. And a single route element selection rule that is employed when traveling alone in the work target area.
- the single work vehicle travels alone in the work target area, and the work vehicle other than the self vehicle performs a round trip based on the round path element or is stopped.
- the route element selection unit of the single work vehicle selects the next travel route element based on a single route element selection rule.
- a large number of travel route elements that create a travel route that covers the work target area and a revolving route element that creates a revolving route that circulates in the outer peripheral region are calculated.
- the travel route element is selected so that the work target area is cooperatively traveled by a plurality of work vehicles.
- the travel route element is selected so that the work target area is single-worked by the single work vehicle. Based on the cooperative route element selection rule, for example, when one work vehicle leaves the work travel while the work travel is performed by two work vehicles, the other work vehicle travels alone in the work target area. Will have to do.
- the cooperative route element selection rule is switched to the single route element selection rule, and the single route element selection rule is applied to the selection of the travel route element of the work vehicle that is traveling alone.
- the work vehicle that is traveling alone performs work travel in the work target area including the work vehicles that have left the work travel, so that the work on the work target area is completed without leaving an unworked area.
- the travel route element group that creates a travel route that covers the work target area includes a mesh line group and a parallel line group.
- the mesh line group is an aggregate made up of mesh lines that divide the work target area into meshes, and the intersection of the mesh lines is set as a route changeable point that allows the route of the work vehicle to be changed.
- the parallel line group is an assembly of parallel lines that divide the work target area into strips, and from one end of one travel path element to one end of another travel path element by U-turn travel in the outer peripheral area. Migration is performed.
- the route selection method in the cooperative route element selection rule and the cooperative route element selection rule differs depending on the mesh line group and the parallel line group.
- the next traveling route element is selected so that the multiple spiral traveling locus created by the plurality of spiral traveling locus by the work vehicle covers the work target area. Further, in the combination of the mesh line group and the single route element selection rule, the next travel route element is selected so that the spiral travel locus by the single work vehicle covers the work target area.
- the combination of the parallel line group and the cooperative route element selection rule when an arbitrary work vehicle stops in the outer peripheral region, depending on the position of the stopped work vehicle, it may become an obstacle to U-turn traveling of other work vehicles.
- the travel route element where the work vehicle other than the own vehicle is located and the travel route element adjacent to the travel route element are the next travel It is removed from the selection target as a route element.
- the travel route element toward the work vehicle other than the own vehicle located in the outer peripheral region is excluded from the selection target as the next travel route element.
- a work vehicle automatic travel system for a plurality of work vehicles that cooperatively travels a work site while exchanging data includes a vehicle position calculation unit that calculates the vehicle position and a travel route that covers the work target area.
- a route management unit that calculates a travel route element group that is an aggregate of a large number of travel route elements and stores the same so as to be readable, the next travel route element to be traveled next, the vehicle position, and the other vehicle
- a route element selection unit that sequentially selects from the travel route element group based on the work travel state.
- a travel route element group that is an aggregate of a number of travel route elements is calculated before work as a travel route that covers the work target area. Furthermore, since the data can be exchanged between the work vehicles, the work travel state of the other vehicle can be read from the data indicating the work travel state of the work vehicle included in the exchanged data. Each work vehicle travels along a travel route element sequentially selected from the travel route element group. At that time, each work vehicle selects a travel route element to be traveled next while considering the position of the host vehicle and the working travel state. For this reason, it is possible to perform automatic traveling in consideration of the trends of other vehicles while performing work traveling with a high degree of freedom.
- the other vehicle position relationship indicating the positional relationship between the host vehicle and the other vehicle is included in the working state of the other vehicle, and the other vehicle for calculating the other vehicle position relationship is provided.
- a positional relationship calculation unit is provided.
- the work vehicle selects a travel route element to be traveled next based on the other vehicle positional relationship indicating the positional relationship between the host vehicle and the other vehicle. Therefore, it becomes possible for the work vehicle to travel while maintaining the distance from the other vehicle within a certain range or to avoid the temporarily stopped other vehicle.
- the other vehicle position relationship calculating unit calculates a contact estimated position between the work vehicles based on the other vehicle position relationship, and the contact estimated position is calculated.
- the work vehicle with the later time passing through the estimated contact position temporarily stops.
- one of the work vehicles can be temporarily stopped before reaching a position where the host vehicle and the other vehicle come into contact with each other.
- the work vehicle having a later time passing through the estimated contact position stops, and the work vehicle having a shorter time passing through the estimated contact position passes through the estimated contact position first.
- the work vehicle can cancel or prohibit the selection of a travel route element that leads to a position where the host vehicle and another vehicle come into contact with each other.
- the work vehicle has not only the position of the own vehicle and the position of the other vehicle from the position relationship of the other vehicle, but also the travel route element and other vehicle selected by the own vehicle through mutual data exchange.
- the selected travel route element can be acquired. If there is a location where the travel route elements selected by the own vehicle and the other vehicle intersect or approach each other, that location can be extracted as a candidate contact estimated position. Furthermore, the possibility of contact between the host vehicle and the other vehicle can be accurately estimated from the current positions of the host vehicle and the other vehicle in each selected travel route element. From this, in one of the preferred embodiments of the present invention, the other vehicle position relationship calculation unit is based on the other vehicle position relationship and a travel route element on which the plurality of work vehicles are traveling, The contact estimation position is calculated.
- FIG. 1 schematically shows work travel of a work vehicle in a work vehicle automatic travel system.
- the work vehicle is a harvester 1 that performs a harvesting operation (reaping operation) for harvesting crops while traveling as a work traveling, and is a model generally called a normal combine.
- the work place that is operated by the harvester 1 is called a farm field.
- an area in which the harvester 1 travels around while performing the work along the boundary line of the farm field called hoe is set as the outer circumferential area SA.
- the inner side of the outer peripheral area SA is set as a work target area CA.
- the outer peripheral area SA is used as a moving space and a direction changing space for the harvesting machine 1 to discharge the crop and refuel.
- the harvesting machine 1 performs 3 to 4 rounds of traveling along the field boundary as the first work traveling.
- the field is worked by the work width of the harvester 1 every round, so the outer peripheral area SA has a width of about 3 to 4 times the work width of the harvester 1.
- the outer peripheral area SA is treated as an already-cut area (an already-worked area), and the work area CA is treated as an uncut area (an un-worked area).
- the work width is handled as a value obtained by subtracting the overlap amount from the cutting width.
- the work width in the present invention is defined by the type of work vehicle and the work type.
- work travel used in this application is a broad term that includes not only traveling while actually performing work, but also traveling that does not perform work for changing the direction during work. It is used in the sense of Furthermore, in this specification, the phrase “work environment of the work vehicle” can also include the state of the work vehicle, the state of the work place, a command from a person (such as a supervisor, a driver, or an administrator). State information is required by evaluating the environment. This state information includes mechanical factors such as refueling and crop discharge, environmental factors such as weather fluctuations and work site conditions, and human requests such as unexpected work interruption commands.
- the supervisor or manager may be in the work vehicle, or may be near the work vehicle or far away from the work vehicle.
- the harvester 1 includes a satellite positioning module 80 that outputs positioning data based on a GPS signal from an artificial satellite GS used in GPS (Global Positioning System).
- the harvesting machine 1 has a function of calculating the position of the vehicle that is the position coordinates of a specific location in the harvesting machine 1 from the positioning data.
- the harvester 1 has an automatic traveling function that automates the traveling harvesting operation by maneuvering the calculated own vehicle position so as to match the target traveling route. Further, when discharging the harvested product while traveling, the harvester 1 needs to approach and park around the transport vehicle CV parked at the shore. When the parking position of the transport vehicle CV is determined in advance, such approaching traveling, that is, temporary departure from work traveling in the work target area CA, and return to work traveling may also be performed automatically. Is possible.
- the travel route for leaving the work target area CA and returning to the work target area CA is generated when the outer peripheral area SA is set.
- a refueling vehicle and other work support vehicles can be parked instead of the transport vehicle CV.
- the harvesting machine 1 that has arrived at the field performs harvesting while circling along the inside of the field boundary.
- This work is called perimeter cutting and is a well-known work in harvesting work.
- traveling that repeats forward and backward movement is performed so that an uncut grain culm does not remain.
- at least the outermost circumference is performed by manual travel so that there is no leftover and does not hit the ridge.
- the remaining several laps on the inner circumference side may be automatically run by an automatic running program dedicated to peripheral cutting, or may be performed manually following the peripheral cutting on the outermost circumference.
- a polygon as simple as possible preferably a quadrilateral, is adopted so as to be convenient for the operational traveling by the automatic traveling.
- a circulation route element for circulating around the outer peripheral area SA is created.
- the traveling locus of this orbital traveling can be obtained based on the vehicle position calculated by the vehicle position calculation unit 53 from the positioning data of the satellite positioning module 80. Further, the contour data generation unit 43 generates the contour data of the field from this travel locus, in particular, the contour data of the work target area CA that is an uncut area located inside the travel locus of the orbital travel.
- the field is managed by the area setting unit 44 separately in the outer peripheral area SA and the work target area CA.
- the work travel for the work target area CA is performed by automatic travel. Therefore, the route management unit 60 manages a travel route element group that is a travel route for travel that covers the work target area CA (travel that is filled with the work width). This travel route element group is an aggregate of a number of travel route elements. The route management unit 60 calculates a travel route element group based on the outer shape data of the work area CA and stores it in a memory so that it can be read out.
- the work state evaluation part 55 which outputs the state information calculated
- the minimum unit (link) between points (nodes) that can change the travel route is a travel route element.
- a travel route generation device that generates a travel route for the harvester 1 is constructed by the outer shape data generation unit 43, the region setting unit 44, and the route management unit 60. Further, a travel route determination device that determines a travel route for the harvester 1 is constructed by the vehicle position calculation unit 53, the region setting unit 44, the route management unit 60, and the route element selection unit 63. Such a travel route generation device and a travel route determination device can be incorporated in the control system of the conventional harvester 1 capable of automatic travel. Alternatively, it is possible to construct a travel route generation device and a travel route determination device in a computer terminal, and connect the computer terminal and the control system of the harvester 1 so that data can be exchanged, thereby realizing automatic travel.
- Another vehicle positional relationship calculation unit 56 that calculates the positional relationship between the harvesting devices 1 is provided.
- the other-vehicle positional relationship calculation unit 56 is configured such that the position of one harvester 1 (own vehicle position), the position of the other harvester 1 (other vehicle position), the traveling direction of one harvester 1, and the other harvester 1 The other vehicle position relation including the traveling direction is calculated.
- This other vehicle positional relationship is one of data representing the working traveling state of the harvester 1.
- This work travel state is state information output from the work state evaluation unit 55 by evaluating the state of the harvester 1, the state of the work place, the supervisor's command, and the like. As shown in FIG.
- the other vehicle position relationship calculated by the other vehicle position relationship calculation unit 56 is sent to the work state evaluation unit 55.
- the work state evaluation unit 55 sends the work travel state of the other vehicle to the route element selection unit 63.
- FIG. 3 shows a travel route element group in which a large number of parallel dividing straight lines that divide the work area CA into strips are used as travel route elements.
- This travel route element group is a parallel travel route element in which two nodes (both end points, referred to herein as a route changeable point that can be changed) are connected by a single link. It is.
- the travel route elements are set to be arranged at equal intervals by adjusting the overlap amount of the work width. For the transition from the end point of the travel route element indicated by one straight line to the end point of the travel route element indicated by the other straight line, U-turn travel (for example, 180 ° direction change travel) is performed.
- This U-turn travel includes normal U-turn travel and switchback turn travel.
- the normal U-turn traveling is performed only by the forward movement of the harvester 1, and the traveling locus is U-shaped.
- the switchback turn travel is performed by using the forward and backward movements of the harvester 1, and the travel locus is not U-shaped.
- the harvester 1 travels in the same direction as the normal U-turn travel. Is obtained.
- a distance is required to sandwich two or more travel route elements between the route changeable point before the direction change travel and the route changeable point after the direction change travel. At shorter distances, switchback turn travel is used.
- the switchback turn travel is reverse, unlike the normal U-turn travel, there is no influence of the turning radius of the harvesting machine 1, and there are many choices of travel route elements as the transition destination.
- the switchback turn traveling basically takes time compared with the normal U-turn traveling.
- FIG. 4 shows a travel route element composed of a large number of mesh straight lines (corresponding to “mesh lines” according to the present invention) extending in the vertical and horizontal directions that divide the work target area CA into meshes. Groups are shown.
- the path can be changed at the intersections between the mesh straight lines (points where the path can be changed) and at both ends of the mesh straight lines (points where the path can be changed).
- this travel route element group constructs a route network in which the intersections and end points of the mesh straight lines serve as nodes, and the sides of each mesh partitioned by the mesh straight lines function as links, thereby enabling travel with a high degree of freedom.
- circuit route element group that is an aggregate of circuit route elements that creates a travel route for circling the outer peripheral area SA.
- the selection rule when the route element selection unit 63 sequentially selects the next travel route element that is the next travel route element to be traveled is a static rule set in advance before the work travel, and during the work travel It can be divided into dynamic rules used in real time.
- a travel route element is selected based on a predetermined basic travel pattern, for example, a travel route so as to realize a linear reciprocating travel while performing a U-turn travel as shown in FIG.
- a rule for selecting an element and a rule for selecting a travel route element so as to realize a counterclockwise spiral traveling from the outside to the inside as shown in FIG. 4 are included.
- dynamic rules are used in preference to static rules.
- the dynamic rules include the contents of state information such as the state of the harvester 1 in real time that changes from moment to moment, the state of the work site, and instructions from a supervisor (including a driver and a manager).
- the work state evaluation unit 55 takes in various primary information (work environment), the state of the harvester 1, the state of the work site, the instruction of the supervisor, and the like as input parameters, and outputs the state information.
- the primary information includes not only signals from various sensors and switches provided in the harvester 1, but also weather information, time information, external facility information such as drying facilities, and the like.
- the state information output from the work state evaluation unit 55 includes the other vehicle position relationship calculated by the other vehicle position relationship calculation unit 56. And this state information is used as a working travel state of the other vehicle.
- the route element selection unit 63 uses the cooperative route element selection rule adopted when the plurality of harvesters 1 work cooperatively in the work target area CA, and the single harvester 1 uses the work target area CA alone. And a single route element selection rule that is adopted when working.
- the single harvester 1 travels alone in the work area CA and the harvester 1 other than the own vehicle travels or is stopped based on the circuit route element, the single harvester 1
- the first route element selection unit 63 selects the previous travel route element based on the single route element selection rule.
- FIG. 5 is a side view of the harvester 1 as a work vehicle adopted in the description of this embodiment.
- the harvesting machine 1 includes a crawler type traveling machine body 11.
- a driving unit 12 is provided at the front of the traveling machine body 11.
- Behind the operation unit 12, a threshing device 13 and a crop tank 14 for storing a crop are juxtaposed in the left-right direction.
- a harvesting section 15 is provided in front of the traveling machine body 11 so that the height can be adjusted.
- a reel 17 that raises the cereal basket is provided so that the height can be adjusted.
- a conveying device 16 for conveying the harvested cereal meal is provided between the harvesting unit 15 and the threshing device 13, a conveying device 16 for conveying the harvested cereal meal is provided.
- a discharge device 18 for discharging the harvest from the harvest tank 14 is provided at the top of the harvester 1.
- a load sensor for detecting the weight of the harvested product (a stored state of the harvested product) is installed in the lower part of the harvested tank 14, and a yield meter and a taste meter are installed in and around the harvested tank 14.
- the taste meter outputs the measurement data of the moisture value and protein value of the harvest as quality data.
- the harvester 1 is provided with a satellite positioning module 80 configured as a GNSS module, a GPS module, or the like.
- a satellite antenna for receiving GPS signals and GNSS signals is attached to the upper portion of the traveling aircraft body 11.
- the satellite positioning module 80 can include an inertial navigation module incorporating a gyro acceleration sensor or a magnetic azimuth sensor to complement satellite navigation.
- a monitoring terminal (including a driver and a manager) who monitors the movement of the harvesting machine 1 is on the harvesting machine 1 and the communication terminal 4 operated by the monitoring person is brought into the harvesting machine 1. Yes.
- the communication terminal 4 may be configured to be attached to the harvester 1.
- the supervisor and the communication terminal 4 may exist outside the harvester 1.
- the harvesting machine 1 can perform automatic traveling by automatic steering and manual traveling by manual steering.
- automatic travel automatic travel in which all travel routes are determined in advance as in the past and automatic travel in which a next travel route is determined in real time based on state information are possible.
- conventional travel the former that travels with all travel routes determined in advance
- automatic travel the latter that determines the next travel route in real time
- both are handled as separate items.
- some patterns are registered in advance, or the monitoring route can be arbitrarily set by the supervisor in the communication terminal 4 or the like.
- FIG. 6 shows a control system constructed in the harvester 1 and a control system of the communication terminal 4.
- the travel route management device that manages the travel route for the harvester 1 is the first travel route management module CM1 constructed in the communication terminal 4 and the first constructed in the control unit 5 of the harvester 1. 2 travel route management module CM2.
- the communication terminal 4 includes a communication control unit 40, a touch panel 41, and the like, and has a function of a computer system and a function as a user interface for inputting conditions necessary for automatic driving realized by the control unit 5.
- the communication terminal 4 can exchange data with the management computer 100 via a wireless line or the Internet by using the communication control unit 40, and the control unit 5 of the harvester 1 by a wireless LAN, a wired LAN, or other communication method. Data exchange is possible.
- the management computer 100 is a computer system installed in a remote management center KS and functions as a cloud computer.
- the management computer 100 can store information sent from each farmer, agricultural association, or agricultural enterprise and send it out as required. In FIG.
- a work location information storage unit 101 and a work plan management unit 102 are shown to realize such a server function.
- the communication terminal 4 external data acquired from the management computer 100 or the control unit 5 of the harvester 1 through the communication control unit 40, and input data such as user instructions (conditions necessary for automatic traveling) input through the touch panel 41. Based on this, data processing is performed. The result of the data processing is displayed on the display panel unit of the touch panel 41 and can be transmitted from the communication terminal 4 to the management computer 100 and the control unit 5 of the harvester 1 through the communication control unit 40.
- the work site information storage unit 101 stores farm field information including topographic maps around the farm field, farm field attribute information (field entrances, strip directions, and the like).
- farm field information including topographic maps around the farm field, farm field attribute information (field entrances, strip directions, and the like).
- a work plan document describing work contents in a designated field is managed.
- the field information and the work plan can be downloaded to the communication terminal 4 or the control unit 5 of the harvester 1 through the operation of the supervisor or through a program that is automatically executed.
- the work plan includes various types of information (work conditions) regarding work in the field to be worked. Examples of this information (working conditions) include the following. (A) Travel pattern (linear reciprocal travel, spiral travel, zigzag travel, etc.).
- the position where the harvester 1 is parked in order to discharge the harvested product to the transport vehicle CV is the harvested discharge parking position
- the position where the harvester 1 is parked in order to replenish the fuel from the refueling vehicle is the fuel.
- This is a replenishment parking position, and in this embodiment, it is set at substantially the same position.
- the above information (a)-(e) may be input by a supervisor through the communication terminal 4 as a user interface.
- the communication terminal 4 includes an input function for instructing the start and stop of automatic traveling, an input function for whether the automatic traveling or the conventional traveling is performed as described above, a vehicle traveling including a traveling transmission device, and the like.
- An input function and the like for finely adjusting the parameter values for the work equipment device group 72 (see FIG. 6) including the device group 71 and the harvesting unit 15 are also constructed.
- the parameters of the work device group 72 those whose values can be finely adjusted include the height of the reel 17, the height of the harvesting section 15, and the like.
- the state of the communication terminal 4 can be switched to the animation display state of the automatic travel route and the customary travel route, the parameter display / fine adjustment state, and the like by an artificial switching operation.
- This animation display is an animation of the travel path of the harvesting machine 1 that travels along the automatic travel path and the custom travel path, which are travel paths in the automatic travel and custom travel where all travel routes are determined in advance, It is to display on the display panel unit of the touch panel 41. By such animation display, the driver can intuitively confirm the travel route to be traveled before traveling.
- the work site data input unit 42 inputs the field information downloaded from the management computer 100, the work plan, and information acquired from the communication terminal 4. Then, the farm field schematic diagram, the farm field entrance / exit position, and the parking position for receiving support from the work support vehicle are displayed on the touch panel 41. As a result, it is possible to support a round trip for the formation of the outer peripheral area SA performed by the driver. When data such as the farm field entrance and parking position is not included in the farm field information, the user can input through the touch panel 41.
- the outer shape data generation unit 43 uses the traveling locus data (time-series data of the host vehicle position) during the round traveling of the harvester 1 received from the control unit 5 with high accuracy in the outer shape and outer dimensions of the field and the work target area CA.
- the outer shape and outer dimensions of the are calculated.
- the region setting unit 44 sets the outer peripheral region SA and the work target region CA from the traveling locus data of the circular traveling of the harvester 1.
- the set position coordinates of the outer peripheral area SA and the work target area CA that is, the outer shape data of the outer peripheral area SA and the work target area CA are used to generate a travel route for automatic travel.
- the position coordinates of the set outer peripheral area SA and work target area CA are: It is sent to the second travel route management module CM2.
- middle split When the field is large, an operation is performed to create a split area that divides the field into a plurality of sections on the traveling route that breaks through the center. This operation is called middle split.
- the intermediate position designation can also be performed by a touch operation on the outline drawing of the work place displayed on the screen of the touch panel 41.
- the middle position setting since the middle position setting also affects the generation of the travel route element group for automatic travel, it may be automatically performed when the travel route element group is generated.
- the parking position of the harvester 1 for receiving the support of the work support vehicle such as the transport vehicle CV is arranged on the extended line of the middle area, the discharge of the harvest from all the sections is efficiently performed. Is called.
- the second travel route management module CM2 includes a route management unit 60, a route element selection unit 63, and a route setting unit 64.
- the route management unit 60 calculates the travel route element group and the round route element group and stores them in a readable manner.
- the travel route element group is an aggregate of a number of travel route elements constituting a travel route that covers the work target area CA.
- the circulation path element group is a set of circulation path elements that constitute a circulation path that circulates around the outer peripheral area SA.
- the route management unit 60 includes a mesh route element calculation unit 601, a strip route element calculation unit 602, and a U-turn route calculation unit 603 as functional units that calculate a travel route element group.
- the route element selector 63 sequentially selects the next travel route element to be traveled from the travel route element group based on various selection rules described in detail later.
- the route setting unit 64 sets the selected next travel route element as a target travel route for automatic travel.
- the mesh route element calculation unit 601 calculates a travel route element group that is a mesh straight line group (corresponding to a “mesh line group” according to the present invention) composed of mesh straight lines that mesh-divide the work target area CA as a travel route element.
- the position coordinates of the intersections and end points of the mesh straight lines can also be calculated. Since this travel route element becomes the target travel route during the automatic travel of the harvester 1, the harvester 1 can change the route from one travel route element to the other travel route element at the intersections and end points of the mesh straight lines. Is possible. That is, the intersections and end points of the mesh straight lines function as path changeable points that allow the harvester 1 to change the path.
- FIG. 7 shows an outline of the arrangement of the mesh straight line group, which is an example of the travel route element group, in the work target area CA.
- the travel route element group is calculated by the mesh route element calculation unit 601 so that the work width of the harvester 1 is a mesh interval and the work target area CA is filled with mesh straight lines.
- the work target area CA is an area inside the outer peripheral area SA formed by the 3 to 4 rounds of work width inward from the border of the field. Therefore, basically, the outer shape of the work target area CA is similar to the outer shape of the field.
- the outer peripheral area SA may be created so that the work target area CA is substantially polygonal, preferably substantially rectangular.
- the shape of the work area CA is a deformed quadrangle composed of a first side S1, a second side S2, a third side S3, and a fourth side S4.
- the mesh path element calculation unit 601 is parallel to the first side S ⁇ b> 1 from a position that is a half of the work width of the harvester 1 from the first side S ⁇ b> 1 of the work target area CA.
- the first straight line group arranged on the work target area CA with an interval corresponding to the work width of the harvester 1 is calculated.
- the work target area CA is parallel to the second side S2 and spaced from the second side S2 by a half of the work width of the harvester 1 with an interval corresponding to the work width of the harvester 1.
- the first side S1 to the fourth side S4 are reference lines for generating a straight line group as the travel route element group. If there are position coordinates of two points on a straight line, the straight line can be defined.
- each straight line as a travel route element is converted into data as a straight line defined by the position coordinates of two points of each straight line, and is determined in advance. It is stored in the memory in the specified data format.
- this data format in addition to a route number as a route identifier for identifying each travel route element, as an attribute value of each travel route element, a route type, a side of a reference outline rectangle, an unrun / existing travel Etc. are included.
- the calculation of the straight line group described above can also be applied to a polygonal work target area CA other than a rectangle. That is, assuming that the work target area CA has an N-corner shape when N is an integer of 3 or more, the travel route element group includes N straight line groups from the first straight line group to the Nth straight line group. Each straight line group includes straight lines arranged at a predetermined interval (working width) in parallel with any side of the N-gon.
- the travel route element group is also set by the route management unit 60 in the outer peripheral area SA.
- the travel route element set in the outer peripheral area SA is used when the harvester 1 travels in the outer peripheral area SA.
- the travel route element set in the outer peripheral area SA is given attribute values such as a departure route, a return route, and an intermediate straight travel route for U-turn travel.
- the departure route means a traveling route element group used for the harvester 1 to leave the work target area CA and enter the outer peripheral area SA.
- the return path means a travel path element group used for the harvester 1 to return from the outer peripheral area SA to the work travel in the work target area CA.
- the U-turn traveling intermediate straight path (hereinafter simply referred to as an intermediate straight traveling path) is a linear path that constitutes a part of the U-turn traveling path used for the U-turn traveling in the outer peripheral area SA. That is, the intermediate straight traveling path is a linear traveling path element group that constitutes a straight line portion that connects the turning path on the start side of the U-turn traveling and the turning path on the end side of the U-turn travel, and in the outer peripheral area SA. It is a path provided in parallel with each side of the work target area CA.
- the uncut area is smaller than the work target area CA by the swirl travel, so that the work travel is efficiently performed.
- the U-turn traveling in the work target area CA does not have to bother to move to the outer peripheral area SA, so there is no wasteful traveling and it is efficient. Therefore, when the U-turn traveling is executed in the work target area CA, the intermediate straight traveling path is translated inward to the inner peripheral side according to the position of the outer peripheral line of the uncut ground.
- the shape of the work target area CA is a deformed rectangle. Therefore, there are four sides serving as a reference for generating the mesh path element group.
- the shape of the work target area CA is a rectangle or a square, there are two sides serving as a reference for generating the mesh path element group. In this case, the structure of the mesh path element group becomes simpler.
- the route management unit 60 includes a strip route element calculation unit 602 as an optional travel route element calculation unit.
- the travel route element group calculated by the strip route element calculation unit 602 is parallel to the reference side, for example, the longest side selected from the sides constituting the outer shape of the work area CA, as shown in FIG.
- a parallel straight line group (corresponding to the “parallel line group” according to the present invention) that extends and covers the work target area CA with the work width (fills with the work width).
- the travel route element group calculated by the strip route element calculation unit 602 divides the work area CA into strips.
- the travel route element group is an aggregate of parallel straight lines (corresponding to “parallel lines” according to the present invention) sequentially connected by a U-turn travel route for the harvester 1 to travel a U-turn.
- the U-turn travel route for transition to the next selected travel route element is determined by the U-turn route calculation unit 603.
- the U-turn route calculation unit 603 calculates a U-turn travel route for connecting two travel route elements selected from the travel route element group calculated by the strip route element calculation unit 602 by U-turn travel.
- the U-turn path calculation unit 603 is based on the outer shape and outer dimension of the outer peripheral area SA, the outer shape and outer diameter of the work target area CA, the turning radius of the harvester 1, and the like.
- One intermediate straight path parallel to the outer side of the work target area CA is calculated for each area corresponding to each outer side (outer side) of the work target area CA in the outer peripheral area SA.
- the U-turn path calculation unit 603 corresponds to a start-side turning path that connects a currently traveling path element and a corresponding intermediate straight path when normal U-turn traveling and switchback turn traveling are performed. An end-side turning route that connects the intermediate straight route and the travel destination travel route element is calculated. The generation principle of the U-turn travel route will be described later.
- the control unit 5 is configured as a computer system, and includes an output processing unit 7, an input processing unit 8, and a communication processing unit 70 as input / output interfaces.
- the output processing unit 7 is connected to a vehicle travel device group 71, a work device device group 72, a notification device 73, and the like equipped in the harvester 1.
- the vehicle travel device group 71 includes steering devices that perform steering by adjusting the speeds of the left and right crawlers of the traveling vehicle body 11, and devices that are controlled for vehicle travel, such as a speed change mechanism and an engine unit (not shown). include.
- the work device group 72 includes devices constituting the harvesting unit 15, the threshing device 13, the discharge device 18, and the like.
- the notification device 73 includes a display, a lamp, and a speaker.
- the display displays various notification information such as the travel route (travel locus) that has been traveled and the travel route that is to be traveled, along with the outer shape of the field.
- the lamp and the speaker are used for notifying a passenger (driver or monitor) of caution information and warning information such as driving precautions and deviation from a target driving route in automatic steering driving.
- the communication processing unit 70 has a function of receiving data processed by the communication terminal 4 and transmitting data processed by the control unit 5. Thereby, the communication terminal 4 can function as a user interface of the control unit 5. Since the communication processing unit 70 is also used for exchanging data with the management computer 100, it has a function of handling various communication formats.
- the input processing unit 8 is connected to a satellite positioning module 80, a traveling system detection sensor group 81, a work system detection sensor group 82, an automatic / manual switching operation tool 83, and the like.
- the traveling system detection sensor group 81 includes sensors that detect a traveling state such as an engine speed and a shift state.
- the work system detection sensor group 82 includes a sensor for detecting the height position of the harvesting unit 15, a sensor for detecting the storage amount of the harvested tank 14, and the like.
- the automatic / manual switching operation tool 83 is a switch for selecting either an automatic travel mode in which the vehicle travels by automatic steering or a manual travel mode in which the vehicle travels by manual steering.
- a switch for switching between automatic traveling and conventional traveling is provided in the driving unit 12 or constructed in the communication terminal 4.
- control unit 5 includes a travel control unit 51, a work control unit 52, a host vehicle position calculation unit 53, a notification unit 54, a work state evaluation unit 55, and an other vehicle position relationship calculation unit 56.
- the own vehicle position calculation unit 53 calculates the own vehicle position based on the positioning data output from the satellite positioning module 80. Since the harvesting machine 1 is configured to be able to travel by both automatic traveling (automatic steering) and manual traveling (manual steering), the traveling control unit 51 that controls the vehicle traveling device group 71 includes an automatic traveling control unit 511. And a manual travel control unit 512 are included. The manual travel control unit 512 controls the vehicle travel device group 71 based on an operation by the driver.
- the automatic travel control unit 511 calculates an azimuth shift and a positional shift between the travel route set by the route setting unit 64 and the host vehicle position, generates an automatic steering command, and outputs the steering device via the output processing unit 7. Output to.
- the work control unit 52 gives a control signal to the work device group 72 in order to control the movement of operation devices provided in the harvesting unit 15, the threshing device 13, the discharge device 18, and the like constituting the harvester 1.
- the notification unit 54 generates a notification signal (display data or voice data) for notifying a driver or a monitor of necessary information through a notification device 73 such as a display.
- the work state evaluation unit 55 includes the state of the harvesting machine 1, the state of the work place, and a command from a person (monitor, driver, administrator, etc.) based on the detection results of various sensors and the operation results of various operation tools. Output information.
- the other vehicle positional relationship calculation unit 56 calculates the other vehicle positional relationship indicating the positional relationship between the position of the other vehicle and the other vehicle when performing a cooperative operation with a plurality of harvesting machines 1. In calculating the positional relationship of the other vehicle, the position of the own vehicle and the travel route element selected by the own vehicle and the travel route element selected by the position of the other vehicle and the other vehicle are used. Furthermore, the other vehicle positional relationship calculation unit 56 also has a function of calculating a contact estimated position between work vehicles.
- the automatic travel control unit 511 can perform not only steering control but also vehicle speed control. As described above, for example, the passenger sets the vehicle speed through the communication terminal 4 before starting work.
- the vehicle speed that can be set includes the vehicle speed during harvesting traveling, the vehicle speed during non-working turn (such as U-turn traveling), and when traveling in the outer peripheral area SA away from the work target area CA during harvesting or refueling.
- the vehicle speed is included.
- the automatic travel control unit 511 calculates the actual vehicle speed based on the positioning data obtained by the satellite positioning module 80.
- the output processing unit 7 sends a shift operation command or the like to the travel transmission device to the vehicle travel device group 71 so that the actual vehicle speed matches the set vehicle speed.
- FIG. 8 shows a travel route element group composed of 21 travel route elements represented by strips with a shortened straight line length, schematically, and a route number is assigned to the upper side of each travel route element. ing.
- the harvester 1 at the start of work travel is located in the 14th travel route element.
- the degree of separation between the travel route element where the harvesting machine 1 is located and other travel route elements is a signed integer and is given to the lower side of each route.
- the priority for the harvester 1 located on the 14th travel route element to move to the next travel route element is shown as an integer value in the lower part of the travel route element in FIG.
- the harvesting machine 1 can perform normal U-turn travel and switchback turn travel shown in FIG. 9 when moving from a travel route element that has completed travel to the next travel route element.
- the normal U-turn travel is travel that shifts to the next travel route element across at least two travel route elements.
- the switchback turn travel is travel that can shift to adjacent travel route elements across two or less travel route elements.
- the harvester 1 changes direction by about 180 ° and enters the end point of the transition destination travel path element.
- the vehicle travels straight by an appropriate distance after turning about 90 °, and then turns about 90 ° again. It becomes. That is, the normal U-turn travel is executed only by the forward travel.
- the harvester 1 enters the outer peripheral area SA from the end point of the traveling route element of the transition source, and then turns about 90 ° once and then smoothly moves about 90 ° after turning.
- the vehicle travels backward to a position where it can be entered into the travel route element, and then moves toward the end point of the travel route element at the transition destination.
- the steering control becomes complicated, but it is possible to shift to a travel route element having a short interval.
- the selection of a travel route element to be traveled next is performed by the route element selection unit 63.
- a basic priority for selecting a travel route element is set.
- the priority of the proper separation travel route element is set to the highest.
- this properly separated travel route element is a travel route element that is separated from the travel route element that is the source of the order by a predetermined distance.
- the priority is set to be lower as the distance from the travel route element that is the original order becomes smaller than the proper separation travel route element. For example, with respect to the transition to the next travel route element, normal U-turn travel with a short travel distance has a short travel time and is efficient.
- the priority of the transition to the adjacent travel route element with 8 lines is lower than that of the switchback turn travel.
- the priority for shifting to the traveling route element that is opened by one is higher than the priority for shifting to the adjacent traveling route element. This is because the switchback turn traveling to the adjacent traveling route element requires a sharp turn and is likely to damage the field.
- the transition to the next travel route element can be performed in either the left or right direction, but the transition to the left travel route element has priority over the transition to the right travel route element in accordance with conventional work conventions. The rule is adopted. Therefore, in the example of FIG. 8, the harvester 1 located on the route number: 14 selects the travel route element of the route number: 17 as the travel route element to travel next. Such priority setting is performed each time the harvester 1 enters a new travel route element.
- ⁇ Selected travel route elements that have already been selected that is, travel route elements for which work has been completed, are basically prohibited. Accordingly, as shown in FIG. 10, for example, if the route number: 11 or the route number: 17 with the priority “1” is the already-worked land (the already-cutted land), the harvester located at the route number: 14 1 selects a travel route element of route number 18 having a priority “2” as a travel route element to be traveled next.
- FIG. 11 shows an example in which the vehicle travels spirally using the travel route element calculated by the mesh route element calculation unit 601.
- the outer peripheral area SA and the work target area CA of the field shown in FIG. 11 are the same as those in FIG. 7, and the traveling route element group set in the work target area CA is also the same.
- the travel route elements having the first side S1 as the reference line are indicated by L11, L12...
- the travel route elements having the second side S2 as the reference line are indicated by L21, L22. , L3, L32,..., And L4, L42,..., And L4, L42,.
- the thick line in FIG. 11 indicates a travel route that travels in a spiral shape from the outside to the inside of the harvester 1.
- the travel route element L11 located on the outermost periphery of the work target area CA is selected as the first travel route.
- a route change of approximately 90 ° is performed at the intersection of the travel route element L11 and the travel route element L21, and the harvester 1 travels on the travel route element L21.
- a route change of approximately 70 ° is performed at the intersection of the travel route element L21 and the travel route element L31, and the harvester 1 travels on the travel route element L31.
- a route change of approximately 110 ° is performed at the intersection of the travel route element L31 and the travel route element L41, and the harvester 1 travels on the travel route element L41.
- the harvester 1 moves to the travel route element L12 at the intersection of the travel route element L12 and the travel route element L41 inside the travel route element L11.
- the harvester 1 travels in a spiral manner from the outside to the inside in the work target area CA of the field.
- the route change is performed at the intersection of the travel route elements that have the non-travel attribute and are located on the outermost periphery of the work target area CA, and the harvester 1 changes its direction. do.
- FIG. 12 shows a travel example of U-turn travel using the same travel route element group shown in FIG.
- the travel route element L11 outside the work target area CA is selected as the first travel route.
- the harvesting machine 1 enters the outer peripheral area SA beyond the end (end point) of the travel path element L11, makes a 90 ° turn along the second side S2, and further travels in parallel with the travel path element L11.
- a 90 ° turn is made again so as to enter the starting end (end point) of the element L14.
- the travel route element L11 is shifted to the travel route element L14 with two travel route elements being opened.
- the travel route element L17 extending in parallel with the travel route element L14 passes through a normal U-turn travel of 180 °.
- the harvester 1 shifts from the travel route element L17 to the travel route element L110, and further from the travel route element L110 to the travel route element L16, and finally the work travel of the entire work target area CA in the field.
- the present invention is also applicable to straight-line reciprocating travel using travel route elements calculated by the calculation unit 601.
- the linear reciprocating traveling can be realized by a traveling route element group that divides the work target area CA into strips or a traveling route element group that divides the work target area CA into a mesh shape.
- the travel route element group that divides the work area CA into a mesh shape can be used for linear reciprocating travel, spiral travel, and zigzag travel, and the travel pattern can be changed from spiral travel during the work. It is also possible to change to linear reciprocating travel.
- FIG. 13 shows a U-turn travel route that shifts from the travel route element indicated by LS0 to the travel route element indicated by LS1.
- LS0 is a travel route element in the work area CA
- LS1 is a travel path element in the work area CA.
- Linear formulas (or two points on the straight line) of the travel route elements LS0 and LS1 are recorded in the memory, and from these linear formulas, their intersections (indicated by PX in FIG. 13) and intersection angles (FIG. 13). Is represented by ⁇ ).
- a tangent circle having a radius (indicated by r in FIG. 13) that is in contact with the travel route element LS0 and the travel route element LS1 and equal to the minimum turning radius of the harvester 1 is calculated.
- An arc (a part of the contact circle) connecting the contact points (shown as PS0 and PS1 in FIG. 13) between the contact circle and the travel route elements LS0 and LS1 is a turning route.
- the distance Y to the point of contact between the intersection PX of the travel route elements LS0 and LS1 and this tangent circle, Y r / (tan ( ⁇ / 2)) Ask for. Since the minimum turning radius is substantially determined by the specifications of the harvester 1, r is a specified value. Note that r does not have to be the same value as the minimum turning radius, and it is only necessary to set a reasonable turning radius in advance by the communication terminal 4 or the like and program the turning operation to be the turning radius. In terms of travel control, the harvester 1 starts turning when it reaches the position coordinate (PS0) where the distance to the intersection is Y while traveling on the turning origin travel path element LS0, and then turns.
- PS0 position coordinate
- the turn travel is terminated.
- the turning radius of the harvester 1 may not exactly coincide with the radius r.
- FIG. 14, FIG. 15 and FIG. 16 show three specific U-turn runnings.
- the travel route element LS0 as the turning source and the travel route element LS1 as the turn destination extend in an inclined state from the outer side of the work area CA, but may extend vertically.
- the U-turn travel route in the outer periphery region SA is an extension line to the outer periphery region SA of the travel route element LS0 and the travel route element LS1, and an intermediate straight travel route that is a part (line segment) of the travel route element in the outer periphery region SA.
- two arcuate turning paths can also be generated according to the basic principle described with reference to FIG.
- a U-turn traveling route that bypasses the triangular projection can be generated in the same manner for the work area CA having the triangular projection shown in FIG.
- Intersection points of the travel route elements LS0 and LS1 and two intermediate straight travel routes that are a part (line segment) of the travel route elements in the outer peripheral area SA are obtained. The basic principle described with reference to FIG. 13 is applied to the calculation of each intersection.
- FIG. 16 shows the turning travel by the switchback turn traveling, and the harvester 1 shifts from the travel route element LS0 of the turning source to the travel route element LS1 of the turning destination.
- this switchback turn traveling a tangent circle with a radius r that contacts the intermediate straight traveling path parallel to the outer side of the work target area CA, which is a part (line segment) of the traveling path element in the outer peripheral area SA, and the traveling path element LS0. Then, a tangent circle of radius r in contact with the intermediate straight traveling route and the travel route element LS1 is calculated.
- the position coordinates of the contact point between the two contact circles and the intermediate straight path, the position coordinate of the contact point between the travel path element LS0 of the turning source and the contact circle, The position coordinates of the contact point between the travel route element LS1 and the contact circle are calculated. Thereby, the U-turn traveling route in the switchback turn traveling is generated. Note that the harvester 1 travels backward on the intermediate straight path in the switchback turn traveling.
- FIG. 17 shows an example of the direction change travel used for the route change at the intersection which is the route changeable point of the travel route element in the above-described spiral travel.
- this direction change traveling is referred to as ⁇ -turn traveling.
- the travel route in this ⁇ -turn travel ( ⁇ -turn travel route) is a kind of so-called reverse travel route, and is a travel route element (shown as LS0 in FIG. 17) and a turn destination travel path element (see FIG. 17). 17 is a path that touches the travel path element of the turning destination in the backward turning path from the intersection point indicated by LS1).
- the route management unit 60 reads out an appropriate ⁇ -turn traveling route based on the calculated intersection angle, and gives the route to the route setting unit 64.
- an automatic control program for each crossing angle is registered in the automatic travel control unit 511, and the automatic travel control unit 511 uses the appropriate automatic control program based on the crossing angle calculated by the route management unit 60. It is also possible to adopt a configuration for reading out.
- the route element selection unit 63 includes a work plan received from the management center KS, a travel pattern artificially input from the communication terminal 4 (for example, a linear reciprocating travel pattern or a spiral travel pattern), a vehicle position, and a work state. Based on the state information output from the evaluation unit 55, the travel route elements are sequentially selected. In other words, unlike the case where all the travel routes are formed in advance based only on the set travel pattern, a suitable travel route corresponding to a situation that cannot be predicted before work is formed. Become. In addition to the basic rules described above, the following route selection rules A1 to A12 are registered in advance in the route element selection unit 63, and suitable route selection is performed according to the running pattern and the state information. Rules are applied.
- the traveling system detection sensor group 81 includes a sensor that detects the absence of a supervisor who is required to board during automatic traveling, for example, a seating detection sensor provided in a seat or a seat belt wearing detection sensor. If it is, the automatic travel control can be stopped based on the signal from this sensor.
- the automatic travel control unit 511 monitors the relationship (distance) between the contour line position of the field and the vehicle position based on the positioning data. Then, the automatic travel control unit 511 controls the automatic travel so as to avoid contact between the kite and the airframe during turning in the outer peripheral area SA. Specifically, the automatic traveling is stopped and the harvester 1 is stopped, the form of turn traveling is changed (from normal U-turn traveling to switchback turn traveling or ⁇ -turn traveling), or the region is not passed. Set the travel route. Also, “The turning area is narrow. Please be careful. ”Etc. may be configured to be notified.
- the work state evaluation unit 55 sends it to the route element selection unit 63 as one of the state information.
- a discharge request (a kind of request for leaving from work traveling in the work target area CA) is issued.
- the vehicle moves away from the work traveling in the work target area CA, travels in the outer peripheral area SA, and the parking position.
- An appropriate travel route element (for example, a travel route element that becomes the shortest route) that is directed to the vehicle is provided with the attribute value of the departure route among the travel route element groups set in the outer peripheral area SA, and the work target area CA. Is selected from the travel route element group set in (1).
- a fuel replenishment request (a type of withdrawal request) is issued when the urgency of fuel shortage is evaluated based on the fuel tank remaining amount value calculated by a signal from the fuel remaining amount sensor or the like. Also in this case, as in (A3), an appropriate travel route element to the fuel supply position (for example, travel that becomes the shortest route) based on the parking position and the vehicle position, which are preset fuel supply positions. Route element) is selected.
- the travel route element that is the closest to the departure point or the travel route element that is the closest to the current position in the outer peripheral area SA is set as the travel path element that is the starting point for returning to the work target area CA.
- the route element group is selected from those given the return route attribute value and the travel route element group set in the work area CA.
- the travel route element to which the travel prohibition attribute is assigned is revived as a travel route element that can travel. If a predetermined time or more can be shortened by selecting an already-worked travel route element, the travel route element is selected. Furthermore, it is also possible to use reverse travel for traveling in the work target area CA when leaving the work target area CA.
- the timing of leaving the work travel in the work target area CA for crop discharge and fuel replenishment is determined from each margin and the travel time or travel distance to the parking position.
- the margin is a travel time or a travel distance that is predicted from the current storage amount in the crop tank 14 until it becomes full if the crop is discharged. In the case of refueling, it is the travel time or travel distance predicted from the current remaining amount in the fuel tank until the fuel is completely exhausted. For example, when passing near the parking position for discharging during automatic driving, the vehicle passes the parking position based on the margin and the time required for the discharging work, then leaves the parking position and returns to the parking position.
- FIG. 18 shows a case where the travel route element selected in the work travel resumed after leaving the work target area CA is not a continuation of the work travel before the departure.
- a linear reciprocating pattern as shown in FIGS. 3 and 12 is set in advance.
- the parking position is indicated by the symbol PP, and as a comparative example, the traveling route when the work has been smoothly performed in the straight line reciprocating traveling with the 180 ° U-turn traveling in the work target area CA is a dotted line. It is shown in The actual travel locus is indicated by a thick solid line.
- a linear travel route element and a U-turn travel route are sequentially selected (step # 01).
- a travel route from the work target area CA to the outer peripheral area SA is calculated.
- the route passes through an outer peripheral area SA where a parking position exists through a set portion of travel route elements).
- the latter route having a shorter travel distance is selected (step # 03).
- a traveling path element set in the outer peripheral area SA is translated to the leaving point as the leaving travel path element in the work target area CA after turning 90 °.
- the former route is selected. In the former separation travel, since the harvesting operation is continued during the separation travel in the work target area CA, there is an advantage in terms of work efficiency.
- the harvester 1 When the harvesting machine 1 leaves the work target area CA and leaves the work target area CA and the outer peripheral area SA and arrives at the parking position, the harvester 1 receives support from the work support vehicle. In this example, the harvest stored in the harvest tank 14 is discharged to the transport vehicle CV.
- the process returns to the travel route element. For this reason, the harvesting machine 1 selects the travel route element of the outer peripheral area SA from the parking position, travels counterclockwise, and when it reaches the end point of the target travel route element, it turns 90 ° there and turns the travel route element Enter the element and do a work run. After passing the point where the withdrawal request is generated, the harvester 1 travels non-working and travels along the next travel route element via the U-turn travel route (step # 04). Thereafter, the harvester 1 continues the linear reciprocating travel and completes the work travel in the work target area CA (step # 05).
- a travel route element for obstacle avoidance travel is selected.
- a selection rule for the purpose of avoiding the obstacle a rule for selecting a travel route element so as to be a detour route as close as possible to the obstacle, or an obstacle when entering the work target area CA after exiting the outer peripheral area SA once.
- the conventional operation is performed when the number of unworked (unrunning) traveling route elements in the unworked land, that is, the traveling route element group in the work target area CA is equal to or less than a predetermined value. It is automatically switched from running to automatic running. Further, when the harvesting machine 1 is working in the swirl traveling from outside to inside the work target area CA covered by the mesh straight line group, the area of the remaining unworked land decreases, and the unworked travel route When the number of elements falls below a predetermined value, the spiral traveling pattern is automatically switched to the linear reciprocating traveling pattern. In this case, as described above, in order to avoid unnecessary travel, the travel route element having the attribute of the intermediate straight travel route is translated from the outer peripheral area SA to the vicinity of the unworked area in the work target area CA.
- the harvesting machine 1 can be run in parallel with the row of seedlings (rows) to improve the efficiency of the harvesting operation. For this reason, in the selection of the travel route element by the route element selection unit 63, the travel route element parallel to the strip is more easily selected.
- the attitude of the aircraft is not in a position or position parallel to the strip direction at the start of work travel, even if traveling along the direction intersecting the strip direction, by traveling to make the posture parallel to the strip Configure to do work. Thereby, even a little useless driving
- FIG. 19 shows a state in which the first work vehicle that functions as the master harvester 1m and the second work vehicle that functions as the slave harvester 1s cooperate and travel on one field.
- the names of the master harvesting machine 1m and the slave harvesting machine 1s are given to each of them. Called. Note that a supervisor has boarded the master harvester 1m, and the supervisor operates the communication terminal 4 brought into the master harvester 1m.
- the terms master and slave are used, but there is no master-slave relationship, and the master harvester 1m and the slave harvester 1s are respectively based on the above-described travel route setting routine (travel route element selection rule). Set up your own route and run automatically. However, data communication is possible between the master harvester 1m and the slave harvester 1s via the respective communication processing units 70, and state information corresponding to the work travel state is exchanged.
- the communication terminal 4 not only provides the master harvester 1m with a supervisor's command and data related to the travel route, but also sends a supervisor's command to the slave harvester 1s via the communication terminal 4 and the master harvester 1m. Data on the travel route can be given.
- both the route element selectors 63 have a function of selecting the next travel route element in consideration of both the state information and both the vehicle positions.
- both harvesting machines 1 give the state information to the communication terminal 4, and the next travel route selected there You will receive an element.
- the work target area CA covered by a mesh straight line group composed of mesh straight lines divided by the work width is represented by two harvesters 1, that is, a master harvester 1 m and a slave harvester.
- the state of working with 1s is shown.
- the master harvester 1m enters the travel route element L11 from the vicinity of the lower right vertex of the deformed quadrangle indicating the work area CA, and turns left at the intersection of the travel route element L11 and the travel route element L21. Enter L21. Further, the vehicle turns left at the intersection of the travel route element L21 and the travel route element L32 and enters the travel route element L32. In this way, the master harvester 1m performs a left-handed spiral travel.
- the slave harvester 1s enters the travel route element L31 from the vicinity of the top left corner of the work target area CA, turns left at the intersection of the travel route element L31 and the travel route element L41, and enters the travel route element L41. . Further, the vehicle turns left at the intersection of the travel route element L41 and the travel route element L12 and enters the travel route element L12. In this manner, the slave harvester 1s performs a left-handed spiral travel. As is apparent from FIG. 20, cooperative control is performed such that the travel locus of the slave harvester 1s enters between the travel locus of the master harvester 1m.
- the traveling of the master harvester 1m is a spiral traveling that is spaced by a width that is the sum of the working width of the master harvester and the working width of the slave harvester 1s.
- the traveling of the slave harvester 1s is a spiral traveling that is spaced by a width that is the sum of the work width of the slave harvester and the work width of the master harvester 1m.
- the traveling trajectory of the master harvester 1m and the traveling trajectory of the slave harvester 1s create a double spiral.
- the work target area CA is defined by the outer peripheral area SA formed by the outer orbiting traveling, and therefore, the orbital traveling for forming the outer peripheral area SA first is performed between the master harvester 1m and the slave harvester 1s. Must be done by either. This circular traveling can also be performed by cooperative control of the master harvester 1m and the slave harvester 1s.
- the route element selection unit 63 adopts the cooperative route element selection rule, for example, as illustrated in FIG. 20, the work target area CA is coordinated by a plurality of harvesters 1.
- the travel route element is selected so that the work travels.
- the two traveling trajectories by the two harvesters 1 form a spiral traveling pattern that covers the work target area CA while drawing a double spiral.
- the route element selection unit 63 adopts the single route element selection rule for example, as shown in FIG. 11, the work target area CA is caused to travel by the single harvester 1.
- a travel route element is selected.
- one traveling locus by the single harvester 1 becomes a spiral traveling pattern that covers the work target area CA while drawing a spiral line.
- the travel locus shown in FIG. 20 is theoretical. Actually, the traveling locus of the master harvester 1m and the traveling route of the slave harvester 1s are corrected in accordance with the state information (including the other vehicle positional relationship and the contact estimated position) output from the work state evaluation unit 55. Also, the running trajectory is not a complete double spiral. An example of such a modified travel will be described below with reference to FIG.
- Switching from cooperative work travel to single work travel is based on the state information output from the work state evaluation unit 55 (including the position relationship with other vehicles and the estimated contact position), or the stop of one harvester 1 or the work target area CA. It is executed when leaving is confirmed.
- a transport vehicle CV that transports a harvested product harvested by the harvester 1 is parked at a position corresponding to the center outside of the first side S ⁇ b> 1 on the outside ( ⁇ ) of the field.
- region SA is set.
- 21 shows that the slave harvester 1 s leaves the travel route element in the work target area CA in the middle of the work travel, travels around the outer peripheral area SA, discharges the harvested product to the transport vehicle CV, and returns to the outer periphery again.
- a state is shown in which the vehicle travels around the area SA and returns to the travel route element in the work area CA.
- the route element selection unit 63 of the slave harvester 1s when a withdrawal request (crop output) occurs, the attribute of the departure route in the outer peripheral area SA based on the storage capacity, the travel distance to the parking position, and the like.
- a travel route element having a value and a travel route element that is a departure source to the travel route element of the departure route attribute are selected.
- the travel route element set in the region where the parking position is set in the outer peripheral region SA and the travel route element L41 currently traveling are selected, and the travel route element L41 and the travel route element are selected.
- the intersection with L12 is the departure point.
- the slave harvester 1s that has advanced to the outer peripheral area SA travels to the parking position along the travel path element (leaving path) in the outer peripheral area SA, and discharges the harvested product to the transport vehicle CV at the parking position.
- Such data indicating that the slave harvester 1s has left the work area CA is included in the state information output from the work state evaluation unit 55 and is currently selected and currently selected by the slave harvester 1s. It is determined from the travel route element, the current position of the master harvester 1m, and the currently selected travel route element.
- the master harvester 1m continues the work travel in the work target area CA while the slave harvester 1s leaves the work travel in the work target area CA and discharges the harvested product.
- the master harvester 1m originally planned to select the travel route element L13 at the intersection of the travel route element L42 and the travel route element L13 during the travel of the travel route element L42.
- the travel route element L12 is uncut (unrun).
- the route element selection unit 63 of the master harvester 1m cancels the cooperative route element selection rule and adopts the single route element selection rule.
- the route element selection unit 63 of the master harvester 1m selects the travel route element L12 instead of the travel route element L13. That is, the master harvester 1m travels to the intersection of the travel route element L42 and the travel route element L12, turns left there, and travels on the travel route element L12.
- the path element selection unit 63 of the slave harvester 1s displays the current position and automatic travel speed of the slave harvester 1s and the attributes of the travel path element in the work target area CA (unrunning). / Already traveling), the current position of the master harvester 1m, the automatic traveling speed, and the like, the traveling route element to be returned is selected.
- the travel route element L43 which is the unworked travel route element located on the outermost side, is selected.
- the slave harvester 1s travels counterclockwise along the travel route element having the return route attribute from the parking position, and enters the travel route element L43 from the left end of the travel route element L43.
- the route element selection unit 63 of the slave harvester 1s selects the travel route element L43
- the information is transmitted as state information to the master harvester 1m.
- the route element selection unit 63 of the master harvester 1m cancels the single route element selection rule and adopts the cooperative route element selection rule.
- the route element selection unit 63 of the master harvester 1m has selected the travel route up to the travel route element L33, the travel route element L44 adjacent to the inside of the travel route element L43 is selected as the next travel route element. To do.
- the other vehicle positional relationship calculation unit 56 determines the master harvester 1m near the intersection of the travel route element L33 and the travel route element L44 on which the master harvester 1m and the slave harvester 1s are traveling (selected). And the slave harvester 1s are estimated to contact each other. Thereby, the other vehicle positional relationship calculation unit 56 calculates the vicinity of the intersection as the estimated contact position. Therefore, the other vehicle positional relationship calculation unit 56 calculates a passing time difference between the intersection of the master harvester 1m and the slave harvester 1s at the intersection, and the passing time difference is equal to or less than a predetermined value (master harvester 1m and slave harvester 1s).
- the automatic traveling control unit 511 is instructed to temporarily stop the harvesting machine 1 (here, the master harvesting machine 1m) having a slower passage time to avoid collision. After the slave harvester 1s passes the intersection, the master harvester 1m starts automatic traveling again. As described above, the master harvester 1m and the slave harvester 1s exchange information such as the vehicle position and the selected travel route element with each other, so that the collision avoidance action and the delay avoidance action can be executed.
- Such collision avoidance behavior and delay avoidance behavior are also executed in linear reciprocation as shown in FIGS. At that time, switching from the cooperative route element selection rule to the single route element selection rule and vice versa are also performed.
- the parallel straight line group consisting of straight lines parallel to each other is indicated by L01, L02,... L10, L01-L04 are already-worked travel path elements, and L05-L10 Is an unworked travel route element.
- the master harvester 1m travels in the outer peripheral area SA in order to go to the parking position indicated by the two-dot chain line.
- the slave harvester 1s In order to avoid contact with the master harvester 1m, the slave harvester 1s is temporarily stopped at the lower end of the work target area CA, specifically at the lower end of the travel route element L04, as a collision avoidance action.
- the master harvester 1m crossing in front of the slave harvester 1s is stopped at the parking position. 22 and 23, the route element selection unit 63 of the slave harvester 1s adopts a single route element selection rule.
- the route element selection unit 63 of the master harvester 1m employs a leaving route element selection rule for selecting a round route element.
- the slave harvester 1s enters the outer peripheral area SA in order to move from the travel route element L04 to the travel route element L07 by U-turn travel, it collides with the master harvester 1m.
- the route element selection unit 63 of the slave harvester 1s takes into account the travel route of the master harvester 1m and starts from the travel route element L05-L10. The travel route element to be transferred is selected, and the slave harvester 1s resumes automatic travel.
- the slave harvester 1s it is possible for the slave harvester 1s to continue the work while the master harvester 1m is performing the discharge work or the like at the parking position.
- An example is shown in FIG.
- the route element selection unit 63 of the slave harvester 1s normally selects the three-lane ahead travel route element L07 having the travel route element priority “1” as the travel destination travel route element.
- the travel route element L07 is prohibited from traveling as in the example of FIG. Therefore, the travel route element L08 having the next highest priority is selected.
- the travel route from the travel route element L04 to the travel route element L08 includes a route that travels backward through the current travel route element L04 that has already traveled (shown by a solid line in FIG. 23), and the lower end of the travel route element L04.
- a plurality of routes such as a route (indicated by a dotted line in FIG. 23) that advances clockwise from the vehicle to the outer peripheral area SA is calculated, and the most efficient route, for example, the shortest route (in this embodiment, the solid line) Route) is selected.
- the following can be understood from the working mode shown in FIG. 22 and FIG. That is, in the cooperative route element selection rule, the travel route element where the harvester 1 other than the own vehicle is located and the travel route element adjacent to the travel route element are excluded from the selection targets as the next travel route element. Further, according to the single route element selection rule, the travel route element toward the harvesting machine 1 other than the own vehicle located in the outer peripheral region is excluded from the selection target as the next travel route element.
- each route element selection unit 63 can receive the work plan received from the management center KS or the communication terminal 4 from the work plan. Automatically input travel patterns (for example, a linear reciprocating travel pattern and a spiral travel pattern), the vehicle position, state information output from each work state evaluation unit 55, and a selection rule registered in advance. Based on this, the travel route elements are sequentially selected.
- rules (B1) to (B11) which are rules other than the above-described (A1) to (A12) and are specific when a plurality of harvesters 1 work in cooperation, are listed.
- (B1) A plurality of harvesting machines 1 that work and cooperate to travel automatically with the same traveling pattern. For example, when a linear reciprocating traveling pattern is set for one harvesting machine 1, a linear reciprocating traveling pattern is also set for the other harvesting machine 1.
- the plurality of harvesters 1 travel from the traveling route element group parallel to the polygonal side indicating the outer shape of the work target area CA. Prohibit selection of elements at the same time.
- FIG. 24 is an explanatory view showing the middle of the middle division process in which a band-shaped middle area CC is formed at the center of the work area CA and the work area CA is divided into two sections CA1 and CA2.
- 25 is an explanatory diagram showing the state after the end of the middle split process.
- the master harvester 1m forms the middle area CC. While the master harvester 1m is performing the middle split, the slave harvester 1s performs a work travel in the section CA2, for example, in a linear reciprocating travel pattern. Prior to this work travel, a travel route element group for the section CA2 is generated. At that time, in the section CA2, selecting a travel route element corresponding to one work width at a position closest to the middle area CC is prohibited until the middle process is completed. Thereby, contact with master harvester 1m and slave harvester 1s can be avoided.
- the master harvester 1m is controlled to travel like a single operation using the travel path element group calculated for the section CA1, and the slave harvester 1s is calculated for the section CA2.
- travel control is performed like a single work travel.
- one of the harvesters 1 completes the work first, it enters the section where the work remains, and cooperative control between the harvester 1 and the other harvester 1 is started.
- the harvester 1 that has finished work in the section in charge automatically travels toward the section in charge of the other harvester 1 in order to support the work of the other harvester 1.
- the field is divided in a grid pattern as shown in FIG.
- This middle splitting can be performed by the master harvester 1m and the slave harvester 1s.
- the work by the master harvester 1m and the work by the slave harvester 1s are distributed to the sections formed by the lattice-shaped division, and the work traveling by the single harvester 1 is performed in each section.
- the travel route element is selected on the condition that the distance between the master harvester 1m and the slave harvester 1s is not more than a predetermined value. This is because if the slave harvester 1s is too far from the master harvester 1m, it becomes difficult for the supervisor who is on the master harvester 1m to monitor the work traveling of the slave harvester 1s and to communicate state information with each other.
- the harvester 1 that has finished the work in the section in charge is directed to the section in charge of the other harvester 1 in order to support the work of the other harvester 1.
- Automatic traveling may be performed, or automatic traveling may be performed so as to go to the next section in charge of the own vehicle.
- the parking position of the transport vehicle CV and the parking position of the refueling vehicle are outside the outer peripheral area SA, so that depending on the section in which the vehicle is traveling, the travel route for crop discharge and refueling becomes long. Travel time is wasted. For this reason, a travel route element and a circuit route element are selected so as to carry out a work travel in a section serving as a passage during the forward travel to the parking position and the return travel from the parking position.
- a parameter acquisition unit 45 and a parameter adjustment command generation unit 46 are constructed in the communication terminal 4 shown in FIG.
- the parameter acquisition unit 45 acquires device parameters set by the master harvester 1m and the slave harvester 1s. Thereby, the set values of the device parameters of the master harvester 1m and the slave harvester 1s can be displayed on the display panel unit of the touch panel 41 of the communication terminal 4.
- the supervisor boarding the master harvester 1m inputs the device parameter adjustment amount for adjusting the device parameters of the master harvester 1m and the slave harvester 1s through the touch panel 41.
- the parameter adjustment command generator 46 generates a parameter adjustment command for adjusting the corresponding device parameter based on the input device parameter adjustment amount, and transmits the parameter adjustment command to the master harvester 1m and the slave harvester 1s.
- the control unit 5 of the master harvester 1m and the slave harvester 1s includes a communication processing unit 70, and the communication terminal 4 includes a communication control unit 40.
- the adjustment of the device parameters of the master harvester 1m may be performed directly by the supervisor using various operating tools equipped on the master harvester 1m.
- the equipment parameters are divided into travel equipment parameters and work equipment parameters.
- the travel equipment parameters include vehicle speed and engine speed.
- the work equipment parameters include the height of the harvesting unit 15 and the height of the reel 17.
- the other vehicle positional relationship calculation unit 56 has a function of calculating the current position and actual vehicle speed of the harvester 1 based on the positioning data obtained by the satellite positioning module 80.
- the actual vehicle speed based on the positioning data of the preceding harvester 1 in the same direction is compared with the actual vehicle speed based on the positioning data of the succeeding harvester 1, and if there is a difference in vehicle speed
- the vehicle speed is adjusted so that the vehicle speed of the subsequent harvesting machine 1 matches the vehicle speed of the preceding harvesting machine 1. Thereby, the abnormal approach and contact resulting from the difference in the vehicle speed of the preceding harvester 1 and the subsequent harvester 1 are avoided.
- the other route is changed from the cooperative route element selection rule to the single route element selection rule.
- the harvesting machine 1 can carry out work traveling up to the working machine 1.
- the route is switched to the cooperative route element selection rule or the single route element selection rule with a reduced number.
- the work travel can be performed up to the work machine 1 from which the remaining harvesting machine 1 is detached.
- the communication processing unit 70 of the harvesting machine 1 and the communication control unit 40 of the communication terminal 4 can be provided with a communication call function for sending a call or mail with a registered mobile communication terminal such as a mobile phone.
- a communication call function for sending a call or mail with a registered mobile communication terminal such as a mobile phone.
- a communication call function for sending a call or mail with a registered mobile communication terminal such as a mobile phone.
- the first outermost portion of the work target area CA is first started when the working traveling is started in order to avoid the situation where the heel is broken as described above.
- the outer peripheral area SA is expanded to the inner peripheral side by automatically traveling at least one round. Even if the width of the outer circumferential area SA formed by the previous round running is insufficient for the U-turn running, the U-turn running is performed without any problem by expanding the outer circumferential area SA to the inner circumferential side in this way. It becomes possible.
- the harvester 1 is parked at a specified parking position for the purpose of discharging the harvest to a work support vehicle parked around the field, the harvester 1 is placed at the parking position for efficient work.
- the pre-circular traveling for creating the outer peripheral area SA is usually performed in a plurality of rounds in a spiral shape. Since the outermost round travel route is complicated and varies from field to field, artificial steering is employed. Subsequent round driving is performed by automatic steering or artificial steering. As shown in FIG. 28, when the parking position PP and the U-turn path group UL overlap, while the harvester 1 is parked at the parking position PP, another harvesting is performed by the harvester 1. It is assumed that the U-turn traveling of the aircraft 1 is obstructed. Therefore, it is desirable to perform the above-mentioned additional round trip when the parking position PP and the U-turn route group UL overlap when the advance round trip is completed.
- the travel route for the additional circular traveling can be calculated based on the traveling locus of the harvester 1 in the previous circular traveling, the outer shape data of the work target area CA, and the like. Therefore, the additional round traveling can be performed by automatic steering.
- working is demonstrated using FIG. ⁇ Step # 01>
- the field is divided into an outer peripheral area SA where the harvesting operation is finished and a work target area CA where a harvesting operation will be performed from now on by the advance traveling around.
- Step # 02 of FIG. 28 a plurality of round trip route elements (thick lines in FIG. 28) constituting a rectangular round trip route are calculated.
- This round travel route element includes a leftmost travel route element Ls and a rightmost travel route element Le in the travel route element calculated for the straight-line reciprocating travel.
- the travel route element Ls and the travel route element Le are both linear.
- the traveling route element Ls and the traveling route element Le are opposite sides.
- the circuit travel route elements are the travel route element Ls, the travel route element Le, the travel route element Ls that connects the top ends of the travel route element Ls and the travel route element Le, the travel route element Ls, and the travel route. And a travel route element connecting the lower ends of the element Le.
- the work target area CA is reduced by the work width corresponding to the number of laps in the additional round trip, so that the work target area CA is reduced between the leftmost travel route element Ls and the rightmost travel route element Le. Move inward.
- a work travel route based on a linear reciprocating travel pattern is determined, and the new work target area CA Automatic work travel is started.
- the parking position PP may not overlap the U-turn path group UL, and the parking position PP may not face the U-turn path group UL.
- the parking position PP may be located facing the leftmost travel route element Ls. In this case, since the linear reciprocating travel in which the travel route element Ls is first selected is performed, the area around the parking position is expanded, and thus the above additional traveling is no longer executed. Alternatively, only about one additional round of traveling may be performed.
- the above additional round traveling may be automatically performed.
- a linear reciprocating travel pattern is set as the travel pattern and the parking position PP is set at a position facing the U-turn path group UL, a plurality of laps (3 to 4 laps) immediately after the start of the work travel Degree) additional laps are automatically performed.
- work area CA is reduced and a large space is secured on the inner periphery side of parking position PP. Therefore, even if one harvesting machine 1 is stopped at the parking position PP, the other harvesting machines 1 can make a U-turn on the inner circumference side of the parking position PP with a margin, It can pass the circumference side.
- the parking position PP for work on the support vehicle such as the transport vehicle CV is provided in the region where the U-turn traveling is performed in the outer peripheral region SA.
- the harvesting machine 1 different from the harvesting machine 1 that is stopped for the discharge work or the like stops and waits until the end of the discharge work or the like, or travels around the parking position PP.
- the element was configured to be selected.
- automatic traveling work traveling
- the harvesting machine 1 may be configured to automatically travel around the outer periphery of the work target area CA several times.
- the work width of the master harvester 1m as the first work vehicle and the slave harvester 1s as the second work vehicle are the same, and setting and selection of the travel route element explained.
- two examples are used to explain how the travel route elements are set and selected when the work width of the master harvester 1m and the work width of the slave harvester 1s are different.
- the work width of the master harvester 1m will be described as the first work width
- the work width of the slave harvester 1s will be described as the second work width.
- the first work width is set to “6” and the second work width is set to “4”.
- FIG. 29 shows an example in which a linear reciprocating traveling pattern is set.
- the route management unit 60 is an aggregate of a large number of travel route elements that cover the work target area CA with a reference width that is the greatest common divisor or approximate largest common divisor of the first work width and the second work width. A certain travel route element group is calculated. Since the first work width is “6” and the second work width is “4”, the reference width is “2”.
- numbers from 01 to 20 are assigned to the travel route elements as route numbers.
- the route element selection unit 63 has a first route element selection unit 631 having a function of selecting a travel route element of the master harvester 1m and a function of selecting a travel route element of the slave harvester 1s.
- the second route element selection unit 632 has a second route element selection unit 632.
- the first route element selection unit 631 has an area that is an integral multiple of the first work width or the second work width (can be non-running or already running), or the first working width of the first working width.
- the next travel route element is selected from the travel route element group that has not traveled so as to leave the total area of the integer multiple and the integral multiple of the second work width (whether the travel is already performed or can be traveled).
- the selected next travel route element is given to the route setting unit 64 of the master harvester 1m.
- the second path element selection unit 632 may include a first work width or an area that is an integer multiple of the second work width (can be non-running or already running), or an integer multiple of the first work width and the second work width.
- the next travel route element is selected from the travel route element group that has not traveled so as to leave a total area (which can be either non-running or already traveled).
- the work target area CA includes The untraveled area having a width that is an integral multiple of the first work width or the second work width will remain. However, in the end, there is a possibility that an unworked area having a narrow width less than the second work width may remain. However, such an unworked area remaining at the end of the master harvester 1m or the slave harvester 1s. Worked on either.
- FIG. 30 shows an example in which a spiral traveling pattern is set.
- a travel route element group is set in the work target area CA by a vertical straight line group and a horizontal straight line group whose vertical and horizontal intervals are the first work width.
- the travel route elements belonging to the horizontal straight line group are given symbols X1 to X9 as their route numbers, and the travel route elements belonging to the vertical straight line group are given symbols Y1 to Y9 as their route numbers. It has been.
- FIG. 30 shows a spiral traveling pattern in which the master harvester 1m and the slave harvester 1s draw a counterclockwise double spiral from the outside to the inside. It is assumed that the master harvester 1m starts from the travel route element of the route number Y1, and the slave harvester 1s starts from the travel route element of the route number X1.
- the route element selection unit 63 is divided into a first route element selection unit 631 and a second route element selection unit 632 in this case as well.
- the master harvester 1m first travels on the travel route element of the route number Y1 first selected by the first route element selection unit 631.
- the second route for the slave harvester 1s having a second work width smaller than the first work width is used.
- the position coordinate of the travel route element of the route number X1 first selected by the route element selection unit 632 is corrected in order to fill the difference between the first work width and the second work width. That is, the travel route element of the route number X1 is corrected to the outside by 0.5 times the difference between the first work width and the second work width (hereinafter, this difference is referred to as the width difference) (FIG. 30).
- the route numbers Y2, X8, and Y8, which are the next travel route elements selected along with the travel of the slave harvester 1s, are also corrected (FIG. 30, # 02, # 03, and # 04).
- the master harvester 1m travels on the travel route elements of the route numbers X1 and Y9 from the original route number Y1 (FIG. 30, # 03 and # 04), but the travel route element of the route number X2 to be selected next. Since the slave harvester 1s is traveling outside, position correction is performed by the width difference (# 04 in FIG. 30).
- the slave harvester 1s When the travel route element of the route number X3 is selected for the slave harvester 1s, the slave harvester 1s has already traveled the travel route element of the route number X1 located outside the route number X3. The position is corrected by 1.5 times the width difference (# 05 in FIG. 30). In this way, after that, the difference between the first work width and the second work width is calculated in accordance with the number of travel route elements traveled by the slave harvester 1s sequentially outside the selected travel route element. In order to kill, the position of the selected travel route element is corrected (FIG. 30, # 06). Here, the position correction of the travel route element is performed by the route management unit 60, but can also be performed by the first route element selection unit 631 and the second route element selection unit 632.
- the first route element selection unit 631 and the second route element selection unit 632 are built in the control unit 5 of the master harvester 1m.
- the second path element selection unit 632 can also be constructed in the slave harvester 1s.
- the slave harvester 1s receives the data indicating the travel route element group, and the first route element selection unit 631 and the second route element selection unit 632 exchange the travel route elements selected by themselves, The next travel route element is selected, and necessary position coordinate correction is performed.
- the route management unit 60, the first route element selection unit 631, and the second route element selection unit 632 are all constructed in the communication terminal 4, and the selected travel route element is sent from the communication terminal 4 to the route setting unit 64. Configuration is also possible.
- each functional unit can be further divided or a plurality of functional units can be integrated.
- the function part was distributed to the control unit 5 as the upper control device, the communication terminal 4, and the management computer 100, the distribution of the function unit is also an example, and each function unit is assigned to an arbitrary upper control device. It is also possible to distribute them. If the upper control devices are connected so that data can be exchanged, they can be distributed to different upper control devices. For example, all the functions of the communication terminal 4 can be built in the master harvester 1m.
- the other vehicle positional relationship calculation unit 56 is constructed in the control unit of the harvester 1, but may be constructed in the communication terminal 4. In this case, information such as the current position of each harvester 1 and the travel route element that is currently traveling (selected) is transmitted from the harvester 1 to the communication terminal 4. Conversely, the other vehicle position relationship calculated by the other vehicle position relationship calculation unit 56 is sent to the work state evaluation unit 55 of each work vehicle 1. Furthermore, in the control function block diagram shown in FIG. 6, the work place data input unit 42, the outer shape data generation unit 43, and the region setting unit 44 are constructed in the communication terminal 4 as the first travel route management module CM ⁇ b> 1. .
- the route management unit 60, the route element selection unit 63, and the route setting unit 64 are constructed in the control unit 5 of the harvester 1 as the second travel route management module CM2.
- the route management unit 60 may be included in the first travel route management module CM1.
- the outer shape data generation unit 43 and the region setting unit 44 may be included in the second travel route management module CM2.
- All of the first travel route management module CM1 may be constructed in the control unit 5, or all of the second travel route management module CM2 may be constructed in the communication terminal 4. It is more convenient to construct the communication terminal 4 that can take out as many control function units as possible regarding the travel route management because the degree of freedom of maintenance and the like is increased.
- the distribution of the function units is limited by the data processing capabilities of the communication terminal 4 and the control unit 5 and the communication speed between the communication terminal 4 and the control unit 5.
- the travel route calculated and set in the present invention is used as a target travel route for automatic travel, but can also be used as a target travel route for manual travel. That is, the present invention can be applied not only to automatic travel but also to manual travel, and of course, operation in which automatic travel and manual travel are mixed is also possible.
- the field information sent from the management center KS includes a topographic map around the field in the first place, and the outer shape and outer dimensions of the field are determined by orbiting along the boundary of the field.
- the field information does not include the topographical map around the field, at least the topographical map of the field, and may be configured such that the outer shape and the external dimensions of the field are calculated only by the orbital running.
- the field information and work plan written from the management center KS, and items input through the communication terminal 4 are not limited to those described above, and can be changed without departing from the spirit of the present invention. It is.
- the strip path element calculation unit 602 is provided separately from the mesh path element calculation unit 601, and the strip path element calculation unit 602 performs the work target area.
- a travel route element group that is a group of parallel straight lines covering CA is calculated.
- linear reciprocating travel may be realized using a travel route element that is a mesh-like straight line group calculated by the mesh route element calculation unit 601.
- the parameters of the vehicle traveling device group 71 and the work device group 72 of the slave harvester 1s are changed based on the visual result of the supervisor.
- An example is shown. However, it is configured so that images (moving images and still images taken at regular intervals) captured by cameras mounted on the master harvester 1m and the slave harvester 1s are displayed on a monitor or the like mounted on the master harvester 1m. Then, the supervisor may look at this video, determine the work status of the slave harvester 1s, and change the parameters of the vehicle travel device group 71 and the work device group 72. Alternatively, the parameter of the slave harvester 1s may be changed in conjunction with the change of the parameter of the master harvester 1m.
- FIG. 3 as an example of the travel route element group, a travel route element group having a number of parallel division straight lines that divide the work target area CA into strips as travel route elements is shown.
- the present invention is not limited to this.
- the travel route element group shown in FIG. 31 uses curved parallel lines as travel route elements.
- the “parallel lines” according to the present invention may be curved.
- the “parallel line group” according to the present invention may include curved parallel lines.
- FIG. 4 as an example of the travel route element group, a travel route element group including a large number of mesh straight lines extending in the vertical and horizontal directions that divide the work target area CA into meshes is shown.
- the “mesh line” according to the present invention may not be a straight line.
- the horizontal mesh line on the paper surface is a straight line
- the vertical mesh line on the paper surface is curved.
- both the horizontal mesh lines and the vertical mesh lines on the paper surface are curved.
- the mesh line may be curved.
- the mesh line group may include a curved mesh line.
- the linear reciprocating traveling is performed by repeating the traveling along the linear traveling route element and the U-turn traveling.
- the present invention is not limited to this, and is configured to perform reciprocating by repeating traveling along a curved traveling path element as shown in FIGS. 31 to 33 and U-turn traveling. May be.
- the harvester 1 performs the perimeter cutting at the beginning of the harvesting operation in the field.
- the perimeter cutting is an operation of harvesting while circling along the inside of the boundary line of the field.
- the region setting unit 44 sets the region on the outer periphery side of the field around which the harvester 1 circulates as the outer periphery region SA, and sets the inside of the outer periphery region SA as the work target region CA.
- the present invention is not limited to this. That is, the surrounding cutting by the harvester 1 is not an essential work in the present invention.
- the area setting unit 44 may be configured to set the work target area CA without setting the outer peripheral area SA.
- the area setting unit 44 may be configured to set the work target area CA in accordance with an operation input by a supervisor via the communication terminal 4.
- the automatic working vehicle traveling system of the present invention is not limited to the harvesting machine 1 that is an ordinary combine as a working vehicle.
- the present invention can also be applied to other harvesting machines 1 such as a cultivator, a tractor equipped with a working device such as a tillage device, and a paddy field working machine.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Soil Sciences (AREA)
- Mechanical Engineering (AREA)
- Guiding Agricultural Machines (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
作業車自動走行システムは、状態情報に基づいて、作業車が次に走行すべき次走行経路要素を走行経路要素群と周回経路要素群とから順次選択する経路要素選択部を備えている。経路要素選択部は、複数の作業車によって作業対象領域CAを協調的に作業走行する際に採用される協調経路要素選択ルールと、作業車の内の1台が単独作業車として作業対象領域CAを単独作業走行する際に採用される単独経路要素選択ルールとを備えている。単独作業車が作業対象領域CAを単独作業走行し、自車以外の作業車が周回経路要素に基づく周回走行を行っているか、または停車している場合には、単独経路要素選択ルールに基づいて次走行経路要素が選択される。
Description
本発明は、データ交換しながら作業地を協調的に作業走行する複数の作業車のための作業車自動走行システムに関する。
特許文献1による圃場作業機は、自動走行によって圃場作業を行うために、経路算出部と運転支援ユニットとを備えている。経路算出部は、地形データから圃場の外形を求め、この外形と圃場作業機の作業幅とに基づいて、設定された走行開始地点から始まって走行終了地点で終わる走行経路を算出する。運転支援ユニットは、GPSモジュールから得られる測位データ(緯度経度データ)に基づいて求められた自車位置と、経路算出部によって算出された走行経路とを比較し、走行機体が走行経路に沿って走行するように操舵機構を制御する。
特許文献1には、1台の作業車を自動走行制御するシステムが開示されているが、特許文献2には、2台の作業車を併走走行させながら作業を行うシステムが開示されている。このシステムでは、圃場を特定した後、第一作業車に対する第二作業車の位置関係が設定されると、第一作業車と第二作業車の作業を行うための走行経路が決定される。走行経路が決定されると、第一作業車と第二作業車とは、自車の位置を測位して、走行経路に沿って走行しながら作業を行う。
[1]上述の背景技術に対応する課題のうちの1つは、以下の通りである。
作業地を複数の作業車が作業走行すれば、作業時間が短縮される。これを実現するため、特許文献2に開示されているような自動走行システムでは、第一作業車に対する第二作業車の作業配置位置が前もって設定され、この2台の作業車が原則的に、設定された作業配置位置を維持しながら作業走行する。しかしながら、第一作業車と第二作業車との一方だけが事情によって作業走行から離脱することは考慮されていない。第一作業車と第二作業車との一方だけが離脱した場合、残った作業車も作業走行を離脱するか、あるいは、残った作業車だけが予め与えられている自己の走行経路に沿って作業走行することになる。実際の作業走行では、広大な圃場を作業走行している間に、燃料補給や収穫物の排出などの機械的要因や天候の変動や作業地状態などの環境的要因などが発生し、予め設定された作業走行からの離脱が少なからず生じる。
作業地を複数の作業車が作業走行すれば、作業時間が短縮される。これを実現するため、特許文献2に開示されているような自動走行システムでは、第一作業車に対する第二作業車の作業配置位置が前もって設定され、この2台の作業車が原則的に、設定された作業配置位置を維持しながら作業走行する。しかしながら、第一作業車と第二作業車との一方だけが事情によって作業走行から離脱することは考慮されていない。第一作業車と第二作業車との一方だけが離脱した場合、残った作業車も作業走行を離脱するか、あるいは、残った作業車だけが予め与えられている自己の走行経路に沿って作業走行することになる。実際の作業走行では、広大な圃場を作業走行している間に、燃料補給や収穫物の排出などの機械的要因や天候の変動や作業地状態などの環境的要因などが発生し、予め設定された作業走行からの離脱が少なからず生じる。
このような実情に鑑み、複数の作業車による作業地の協調的な作業走行において、作業車の走行作業からの離脱に適切に対処できる作業車自動走行システムが要望されている。
[2]上述の背景技術に対応する課題のうちのもう1つは、以下の通りである。
作業地を1台の作業車が作業走行する場合、他の作業車と衝突する危険性はない。さらに、作業地を複数台の作業車が作業走行する場合でも、特許文献2に開示されているような自動走行システムでは、第一作業車に対する第二作業車の作業配置位置が前もって設定され、この2台の作業車が原則的に、設定された作業配置位置を維持しながら作業走行する。このため、第一作業車と第二作業車とが設定された走行経路から離脱しない限り、第一作業車と第二作業車との間の異常接近や衝突の危険性は低い。しかしながら、前もって設定された作業配置位置を維持することは、複数台の作業車による作業走行の自由度が限定される。このため、作業環境に応じた、融通性のある作業走行は不可能である。しかしながら、実際の作業走行では、広大な圃場を走行している間に、燃料補給や収穫物の排出などの機械的要因や天候の変動や作業地状態などの環境的要因などに起因する作業車の作業環境変動により、予め設定された走行経路からの離脱、作業途中での走行経路の変更などが必要となることが少なくない。
作業地を1台の作業車が作業走行する場合、他の作業車と衝突する危険性はない。さらに、作業地を複数台の作業車が作業走行する場合でも、特許文献2に開示されているような自動走行システムでは、第一作業車に対する第二作業車の作業配置位置が前もって設定され、この2台の作業車が原則的に、設定された作業配置位置を維持しながら作業走行する。このため、第一作業車と第二作業車とが設定された走行経路から離脱しない限り、第一作業車と第二作業車との間の異常接近や衝突の危険性は低い。しかしながら、前もって設定された作業配置位置を維持することは、複数台の作業車による作業走行の自由度が限定される。このため、作業環境に応じた、融通性のある作業走行は不可能である。しかしながら、実際の作業走行では、広大な圃場を走行している間に、燃料補給や収穫物の排出などの機械的要因や天候の変動や作業地状態などの環境的要因などに起因する作業車の作業環境変動により、予め設定された走行経路からの離脱、作業途中での走行経路の変更などが必要となることが少なくない。
このような実情に鑑み、作業環境の変動に対処することが可能な作業車自動走行システムが、要望されている。複数台の作業車が投入される場合には、各作業車の作業走行の自由度を高くしながらも、作業車同士の異常接近や接触を未然に防ぐこと重要である。
[1]課題[1]に対応する解決手段は、以下の通りである。
データ交換しながら作業地を協調的に作業走行する複数の作業車のための作業車自動走行システムは、前記作業地を外周領域と前記外周領域の内側である作業対象領域とに設定する領域設定部と、自車位置を算出する自車位置算出部と、前記作業対象領域を網羅する走行経路を構成する多数の走行経路要素の集合体である走行経路要素群と、前記外周領域を周回する周回経路を構成する周回経路要素の集合体である周回経路要素群とを読み出し可能に管理する経路管理部と、状態情報に基づいて、前記作業車が次に走行すべき次走行経路要素を前記走行経路要素群から、または次に走行すべき次周回経路要素を前記周回経路要素群から順次選択する経路要素選択部と、前記次走行経路要素と前記自車位置とに基づいて自動走行を実行する自動走行制御部とを備えている。さらに、前記経路要素選択部は、前記複数の作業車によって前記作業対象領域を協調的に作業走行する際に採用される協調経路要素選択ルールと、前記作業車の内の1台が単独作業車として前記作業対象領域を単独作業走行する際に採用される単独経路要素選択ルールとを備えている。この作業車自動走行システムでは、前記単独作業車が前記作業対象領域を単独作業走行するとともに、自車以外の前記作業車が前記周回経路要素に基づく周回走行を行っているか、または停車している場合には、前記単独作業車の前記経路要素選択部は、単独経路要素選択ルールに基づいて前記次走行経路要素を選択する。
データ交換しながら作業地を協調的に作業走行する複数の作業車のための作業車自動走行システムは、前記作業地を外周領域と前記外周領域の内側である作業対象領域とに設定する領域設定部と、自車位置を算出する自車位置算出部と、前記作業対象領域を網羅する走行経路を構成する多数の走行経路要素の集合体である走行経路要素群と、前記外周領域を周回する周回経路を構成する周回経路要素の集合体である周回経路要素群とを読み出し可能に管理する経路管理部と、状態情報に基づいて、前記作業車が次に走行すべき次走行経路要素を前記走行経路要素群から、または次に走行すべき次周回経路要素を前記周回経路要素群から順次選択する経路要素選択部と、前記次走行経路要素と前記自車位置とに基づいて自動走行を実行する自動走行制御部とを備えている。さらに、前記経路要素選択部は、前記複数の作業車によって前記作業対象領域を協調的に作業走行する際に採用される協調経路要素選択ルールと、前記作業車の内の1台が単独作業車として前記作業対象領域を単独作業走行する際に採用される単独経路要素選択ルールとを備えている。この作業車自動走行システムでは、前記単独作業車が前記作業対象領域を単独作業走行するとともに、自車以外の前記作業車が前記周回経路要素に基づく周回走行を行っているか、または停車している場合には、前記単独作業車の前記経路要素選択部は、単独経路要素選択ルールに基づいて前記次走行経路要素を選択する。
この構成によれば、まずは、作業対象領域を網羅する走行経路を作り出す多数の走行経路要素と、外周領域を周回する周回経路を作り出す周回経路要素とが算出される。協調経路要素選択ルールでは、複数の作業車によって作業対象領域が協調的に作業走行されるように、走行経路要素が選択される。単独経路要素選択ルールでは、単独作業車によって作業対象領域が単独作業走行されるように走行経路要素が選択される。協調経路要素選択ルールに基づいて、例えば2台の作業車による作業走行が行われている途中で、一方の作業車が作業走行を離脱すると、他方の作業車が単独で作業対象領域を作業走行しなければならないことになる。この場合には、協調経路要素選択ルールから単独経路要素選択ルールに切り換わり、単独作業走行している作業車の走行経路要素の選択に、単独経路要素選択ルールが適用される。これにより、単独作業走行している作業車は、作業走行を離脱した作業車の分も含めて作業対象領域を作業走行するので、未作業領域を残すことなく、作業対象領域に対する作業が完了する。
作業対象領域を網羅する走行経路を作り出す走行経路要素群には、メッシュ線群と平行線群とがある。メッシュ線群は、作業対象領域をメッシュ分割するメッシュ線からなる集合体であり、メッシュ線同士の交点が、作業車の経路変更を許す経路変更可能点として設定される。平行線群は、作業対象領域を短冊状に分割する互いに平行な平行線からなる集合体であり、外周領域におけるUターン走行により、1つの走行経路要素の一端から他の走行経路要素の一端への移行が実行される。メッシュ線群と平行線群とによって、協調経路要素選択ルールと協調経路要素選択ルールとにおける経路選択の仕方が異なる。メッシュ線群と協調経路要素選択ルールとの組み合わせでは、作業車による複数の渦巻き状走行軌跡によって作り出される多重渦巻き状走行軌跡が作業対象領域を網羅するように、次走行経路要素が選択される。また、メッシュ線群と単独経路要素選択ルールとの組み合わせでは、単独作業車による渦巻き状走行軌跡が作業対象領域を網羅するように、次走行経路要素が選択される。これにより、複数台の作業による作業走行から単独の作業車による作業走行に移行しても、未作業領域を残すことなく、スムーズに作業対象領域に対する作業が行われる。
また、平行線群と協調経路要素選択ルールとの組み合わせでは、任意の作業車が外周領域に停車した場合、停車した作業車の位置によっては、他の作業車のUターン走行の障害となる。このことを考慮して、平行線群と協調経路要素選択ルールとの組み合わせでは、自車以外の作業車が位置している走行経路要素及び当該走行経路要素に隣接する走行経路要素は、次走行経路要素としての選択対象から外される。また、平行線群と単独経路要素選択ルールとの組み合わせでは、外周領域に位置している自車以外の作業車に向かう走行経路要素は、次走行経路要素としての選択対象から外される。これにより、協調作業走行している複数の作業車の内の1台が他の作業車のUターン走行の障害となる外周領域の位置に停車していても、例外処理的に走行経路要素の選択を変更することで、待ち時間の少ない作業走行が実現する。
[2]課題[2]に対応する解決手段は、以下の通りである。
データ交換しながら作業地を協調的に作業走行する複数の作業車のための作業車自動走行システムは、自車位置を算出する自車位置算出部と、作業対象領域を網羅する走行経路を構成する多数の走行経路要素の集合体である走行経路要素群を算出して、読み出し可能に格納する経路管理部と、次に走行すべき次走行経路要素を、前記自車位置と、他車の作業走行状態とに基づいて、順次前記走行経路要素群から選択する経路要素選択部とを備えている。
データ交換しながら作業地を協調的に作業走行する複数の作業車のための作業車自動走行システムは、自車位置を算出する自車位置算出部と、作業対象領域を網羅する走行経路を構成する多数の走行経路要素の集合体である走行経路要素群を算出して、読み出し可能に格納する経路管理部と、次に走行すべき次走行経路要素を、前記自車位置と、他車の作業走行状態とに基づいて、順次前記走行経路要素群から選択する経路要素選択部とを備えている。
この構成によれば、作業対象領域を網羅する走行経路として、多数の走行経路要素の集合体である走行経路要素群が作業前に算出される。さらに、作業車間でデータ交換可能であるので、交換されたデータに含まれている作業車の作業走行状態を示すデータから、他車の作業走行状態を読み出すことができる。各作業車は、走行経路要素群から順次選択された走行経路要素に沿って作業走行する。その際、各作業車は、自車の位置と作業走行状態とを考慮しながら、次に走行すべき走行経路要素を選択する。このため、自由度の高い作業走行を実行しながらも、他車の動向を考慮した自動走行が可能となる。
本発明の好適な実施形態の1つでは、前記他車の作業走行状態に、自車と他車との位置関係を示す他車位置関係が含まれ、前記他車位置関係を算出する他車位置関係算出部が備えられている。この構成では、作業車は、自車と他車との位置関係を示す他車位置関係に基づいて、次に走行すべき走行経路要素を選択する。したがって、作業車が、他車との距離を一定範囲以上に維持しながら走行することや、一時的に停止した他車を回避しながら走行することが可能となる。
さらに、本発明の好適な実施形態の1つでは、前記他車位置関係算出部は、前記他車位置関係に基づいて前記作業車同士の接触推定位置を算出し、前記接触推定位置が算出された場合、前記接触推定位置を通過する時間が遅い方の作業車が一時停車する。このように構成された作業車自動走行システムでは、自車と他車とが接触する位置に達する前に、いずれか一方の作業車は一時的に停車することができる。その際、接触推定位置を通過する時間が遅い方の作業車が停止し、接触推定位置を通過する時間が早い方の作業車が先に接触推定位置を通過する。これにより、作業車の停車時間が短くなる利点が得られる。さらには、作業車は、自車と他車とが接触する位置に導く走行経路要素の選択を取消し、または禁止することができる。
この作業車自動走行システムでは、作業車は、他車位置関係から自車の位置や他車の位置だけでなく、相互のデータ交換を通じて、自車が選択している走行経路要素、他車が選択している走行経路要素を取得することができる。自車と他車とが選択している走行経路要素が交差または接近する箇所があれば、その箇所が接触推定位置の候補として抽出することができる。さらに、各選択している走行経路要素における自車と他車との現在位置から、自車と他車との接触可能性を正確に推定することができる。このことから、本発明の好適な実施形態の1つでは、前記他車位置関係算出部は、前記他車位置関係と、前記複数の作業車が走行している走行経路要素とに基づいて、前記接触推定位置を算出するように構成されている。
〔自動走行の概要〕
図1には、作業車自動走行システムにおける作業車の作業走行が模式的に示されている。この実施形態では、作業車は、作業走行として、走行しながら農作物を収穫する収穫作業(刈取作業)を行う収穫機1であり、一般に普通型コンバインと呼ばれている機種である。収穫機1によって作業走行される作業地は圃場と呼ばれる。圃場における収穫作業では、収穫機1が畦と呼ばれる圃場の境界線に沿って作業を行いながら周回走行した領域が外周領域SAとして設定される。外周領域SAの内側は作業対象領域CAとして設定される。外周領域SAは、収穫機1が収穫物の排出や燃料補給を行うための移動用スペース及び方向転換用スペース等として利用される。外周領域SAの確保のため、収穫機1は、最初の作業走行として、圃場の境界線に沿って3~4周の周回走行を行う。周回走行では、一周毎に収穫機1の作業幅分だけ、圃場が作業されることになるので、外周領域SAは収穫機1の作業幅の3~4倍程度の幅を有する。このことから、特別に注記しない限り、外周領域SAは既刈地(既作業地)として扱われ、作業対象領域CAは未刈地(未作業地)として扱われる。なお、この実施形態では、作業幅は、刈取り幅にオーバーラップ量を減算した値として取り扱われる。しかしながら、作業幅の概念は、作業車の種類によって異なる。本発明での作業幅は、作業車の種類や作業種類によって規定されるものである。
図1には、作業車自動走行システムにおける作業車の作業走行が模式的に示されている。この実施形態では、作業車は、作業走行として、走行しながら農作物を収穫する収穫作業(刈取作業)を行う収穫機1であり、一般に普通型コンバインと呼ばれている機種である。収穫機1によって作業走行される作業地は圃場と呼ばれる。圃場における収穫作業では、収穫機1が畦と呼ばれる圃場の境界線に沿って作業を行いながら周回走行した領域が外周領域SAとして設定される。外周領域SAの内側は作業対象領域CAとして設定される。外周領域SAは、収穫機1が収穫物の排出や燃料補給を行うための移動用スペース及び方向転換用スペース等として利用される。外周領域SAの確保のため、収穫機1は、最初の作業走行として、圃場の境界線に沿って3~4周の周回走行を行う。周回走行では、一周毎に収穫機1の作業幅分だけ、圃場が作業されることになるので、外周領域SAは収穫機1の作業幅の3~4倍程度の幅を有する。このことから、特別に注記しない限り、外周領域SAは既刈地(既作業地)として扱われ、作業対象領域CAは未刈地(未作業地)として扱われる。なお、この実施形態では、作業幅は、刈取り幅にオーバーラップ量を減算した値として取り扱われる。しかしながら、作業幅の概念は、作業車の種類によって異なる。本発明での作業幅は、作業車の種類や作業種類によって規定されるものである。
なお、この出願で用いられている「作業走行」という語句は、実際に作業を行いながら走行していることだけでなく、作業時における方向転換のための作業を行わない走行なども含めた広義の意味で用いられている。
さらに、本明細書では、作業車の作業環境という語句には、作業車の状態、作業地の状態、人(監視者、運転者、管理者など)による指令なども含めることができ、この作業環境を評価することで状態情報が求められる。この状態情報には、燃料補給や収穫物の排出などの機械的要因や天候の変動や作業地状態などの環境的要因、さらには、不測の作業中断指令などの人的要求が含まれる。また、複数台の作業車が協調しながら作業走行する場合には、他車の状態情報が、他車の作業走行状態として取り扱われ、自車と他車との位置関係を示す他車位置関係等も、他車の作業走行状態に含まれる。なお、監視者や管理者は、作業車に乗り込んでいてもよいし、作業車の近くに、あるいは作業車から遠く離れていてもよい。
さらに、本明細書では、作業車の作業環境という語句には、作業車の状態、作業地の状態、人(監視者、運転者、管理者など)による指令なども含めることができ、この作業環境を評価することで状態情報が求められる。この状態情報には、燃料補給や収穫物の排出などの機械的要因や天候の変動や作業地状態などの環境的要因、さらには、不測の作業中断指令などの人的要求が含まれる。また、複数台の作業車が協調しながら作業走行する場合には、他車の状態情報が、他車の作業走行状態として取り扱われ、自車と他車との位置関係を示す他車位置関係等も、他車の作業走行状態に含まれる。なお、監視者や管理者は、作業車に乗り込んでいてもよいし、作業車の近くに、あるいは作業車から遠く離れていてもよい。
収穫機1は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号に基づいて測位データを出力する衛星測位モジュール80を備えている。収穫機1は、測位データから、収穫機1における特定箇所の位置座標である自車位置を算出する機能を有する。収穫機1は、算出された自車位置を目標となる走行経路に合わせるように操縦することで走行収穫作業を自動化する自動走行機能を有している。また、収穫機1は、走行しながら収穫した収穫物を排出する際には、畦際に駐車している運搬車CVの周辺に接近して、駐車する必要がある。運搬車CVの駐車位置が予め決められている場合には、このような接近走行、つまり作業対象領域CAにおける作業走行からの一時的な離脱、及び作業走行への復帰も自動走行で行うことも可能である。この作業対象領域CAからの離脱及び作業対象領域CAへの復帰のための走行経路は、外周領域SAが設定された時点で生成される。なお、運搬車CVの代わりに燃料補給車やその他の作業支援車も駐車可能である。
〔作業車自動走行システムの基本的な流れ〕
本発明の作業車自動走行システムに組み込まれた収穫機1が、収穫作業を自動走行で行うためには、走行の目標となる走行経路を生成し、その走行経路を管理する走行経路管理装置が必要となる。この走行経路管理装置の基本的な構成と、この走行経路管理装置を用いた自動走行制御の基本的な流れとを、図2を用いて説明する。
本発明の作業車自動走行システムに組み込まれた収穫機1が、収穫作業を自動走行で行うためには、走行の目標となる走行経路を生成し、その走行経路を管理する走行経路管理装置が必要となる。この走行経路管理装置の基本的な構成と、この走行経路管理装置を用いた自動走行制御の基本的な流れとを、図2を用いて説明する。
圃場に到着した収穫機1は、圃場の境界線の内側に沿って周回しながら収穫を行う。この作業は周囲刈りと呼ばれ、収穫作業ではよく知られた作業である。その際、コーナ領域では、未刈穀稈が残らないように前進と後進とを繰り返す走行が行われる。本形態では、少なくとも最外周一周は、刈り残しがないように、かつ、畦にぶつからないように、手動走行によって行われる。内周側の残りの数周は、周囲刈り専用の自動走行プログラムによって自動走行しても良く、また、最外周の周囲刈りに引き続いて手動走行によって行っても良い。このような周回走行の走行軌跡内側に残される作業対象領域CAの形状としては、自動走行による作業走行にとって都合が良いように、できるだけ簡単な多角形、好ましくは四角形が採用される。この内側の周囲刈りによって得られる走行軌跡の位置データに基づいて、外周領域SAを周回するための周回経路要素が作成される。
さらに、この周回走行の走行軌跡は、自車位置算出部53が衛星測位モジュール80の測位データから算出した自車位置に基づいて得ることができる。さらに、この走行軌跡から圃場の外形データ、特に周回走行の走行軌跡内側に位置する未刈地である作業対象領域CAの外形データが、外形データ生成部43によって生成される。圃場は、領域設定部44により外周領域SAと作業対象領域CAとに分けて管理される。
作業対象領域CAに対する作業走行は、自動走行によって実施される。このため、作業対象領域CAを網羅する走行(作業幅で埋め尽くす走行)のための走行経路である走行経路要素群が経路管理部60によって管理される。この走行経路要素群は、多数の走行経路要素の集合体である。経路管理部60は、作業対象領域CAの外形データに基づいて走行経路要素群を算出し、読み出し可能にメモリに格納しておく。
この作業車自動走行システムでは、作業対象領域CAでの作業走行の前に、予め全走行経路が決定されているのではなく、走行途中で、作業車の作業環境等の事情に応じて走行経路の変更が可能である。このため、収穫機1の状態、作業地の状態、監視者の指令などを評価して求められる状態情報を出力する作業状態評価部55が備えられている。なお、走行経路の変更が可能な点(ノード)と点(ノード)の間の最小単位(リンク)が走行経路要素である。指定された場所から自動走行が開始されると、次に走行すべき次走行経路要素が、順次、経路要素選択部63によって、走行経路要素群から選択される。自動走行制御部511は、選択された走行経路要素と自車位置とに基づいて、車体が当該走行経路要素に沿うように自動走行データを生成して、自動走行を実行する。
図2では、外形データ生成部43と、領域設定部44と、経路管理部60とによって、収穫機1のための走行経路を生成する走行経路生成装置が構築されている。また、自車位置算出部53、領域設定部44と、経路管理部60と、経路要素選択部63とによって、収穫機1のための走行経路を決定する走行経路決定装置が構築されている。このような走行経路生成装置や走行経路決定装置は、従来の自動走行可能な収穫機1の制御系に組み込むことが可能である。あるいは、走行経路生成装置や走行経路決定装置をコンピュータ端末に構築し、当該コンピュータ端末と収穫機1の制御系とをデータ交換可能に接続して、自動走行を実現することも可能である。
協調的に作業走行する複数台の収穫機1が、この作業車自動走行システムに組み込まれる場合、収穫機1同士の位置関係を算出する他車位置関係算出部56が備えられる。他車位置関係算出部56は、一方の収穫機1の位置(自車位置)、他方の収穫機1の位置(他車位置)、一方の収穫機1の進行方向、他方の収穫機1の進行方向などを含む他車位置関係を算出する。この他車位置関係は、収穫機1の作業走行状態を表すデータの1つである。この作業走行状態は、収穫機1の状態、作業地の状態、監視者の指令などを評価することで、作業状態評価部55から出力される状態情報のことである。図2に示すように、他車位置関係算出部56によって算出された他車位置関係は作業状態評価部55に送られる。複数台の収穫機が協調的に作業走行する際には、作業状態評価部55は、他車の作業走行状態を経路要素選択部63に送る。
〔走行経路要素群の概要〕
走行経路要素群の一例として、図3には、作業対象領域CAを短冊状に分割する多数の平行分割直線を走行経路要素とする走行経路要素群が示されている。この走行経路要素群は2つのノード(両端点であって、ここで経路変更可能である経路変更可能点と称する)を1本のリンクで連結した直線状の走行経路要素を平行に並べたものである。走行経路要素は、作業幅のオーバーラップ量を調整することにより、等間隔を開けて並ぶように設定される。1つの直線で示される走行経路要素の端点から他の直線で示される走行経路要素の端点への移行には、Uターン走行(例えば180°の方向転換走行)が行われる。このような平行な走行経路要素をUターン走行によって繋ぎながら自動走行することを、以降は、『直線往復走行』と称する。このUターン走行には、ノーマルUターン走行と、スイッチバックターン走行とが含まれる。ノーマルUターン走行は、収穫機1の前進だけで行われ、その走行軌跡はU字状となる。スイッチバックターン走行は、収穫機1の前進と後進とを用いて行われ、その走行軌跡はU字状とはならないが、結果的には、収穫機1はノーマルUターン走行と同じ方向転換走行が得られる。ノーマルUターン走行を行うためには、方向転換走行前の経路変更可能点と方向転換走行後の経路変更可能点との間に2本以上の走行経路要素を挟む距離が必要となる。それより短い距離では、スイッチバックターン走行が用いられる。つまり、スイッチバックターン走行は、ノーマルUターン走行と異なって後進を行うため、収穫機1の旋回半径の影響がなく、移行先となる走行経路要素の選択肢が多い。しかし、スイッチバックターン走行では前後進の切替えが行われるため、スイッチバックターン走行は、基本的には、ノーマルUターン走行と比べて時間がかかる。
走行経路要素群の一例として、図3には、作業対象領域CAを短冊状に分割する多数の平行分割直線を走行経路要素とする走行経路要素群が示されている。この走行経路要素群は2つのノード(両端点であって、ここで経路変更可能である経路変更可能点と称する)を1本のリンクで連結した直線状の走行経路要素を平行に並べたものである。走行経路要素は、作業幅のオーバーラップ量を調整することにより、等間隔を開けて並ぶように設定される。1つの直線で示される走行経路要素の端点から他の直線で示される走行経路要素の端点への移行には、Uターン走行(例えば180°の方向転換走行)が行われる。このような平行な走行経路要素をUターン走行によって繋ぎながら自動走行することを、以降は、『直線往復走行』と称する。このUターン走行には、ノーマルUターン走行と、スイッチバックターン走行とが含まれる。ノーマルUターン走行は、収穫機1の前進だけで行われ、その走行軌跡はU字状となる。スイッチバックターン走行は、収穫機1の前進と後進とを用いて行われ、その走行軌跡はU字状とはならないが、結果的には、収穫機1はノーマルUターン走行と同じ方向転換走行が得られる。ノーマルUターン走行を行うためには、方向転換走行前の経路変更可能点と方向転換走行後の経路変更可能点との間に2本以上の走行経路要素を挟む距離が必要となる。それより短い距離では、スイッチバックターン走行が用いられる。つまり、スイッチバックターン走行は、ノーマルUターン走行と異なって後進を行うため、収穫機1の旋回半径の影響がなく、移行先となる走行経路要素の選択肢が多い。しかし、スイッチバックターン走行では前後進の切替えが行われるため、スイッチバックターン走行は、基本的には、ノーマルUターン走行と比べて時間がかかる。
走行経路要素群の他の例として、図4には、作業対象領域CAをメッシュ分割する、縦横方向に延びた多数のメッシュ直線(本発明に係る「メッシュ線」に相当)からなる走行経路要素群が示されている。メッシュ直線同士の交点(経路変更可能点)及びメッシュ直線の両端点(経路変更可能点)において、経路変更が可能である。つまり、この走行経路要素群は、メッシュ直線の交点及び端点をノードとし、メッシュ直線によって区画された各メッシュの辺がリンクとして機能する経路網を構築し、自由度の高い走行を可能にする。上述した直線往復走行だけでなく、例えば、図4に示すような外から内に向かう『渦巻き走行』や、『ジグザグ走行』も可能であり、さらに、作業途中において、渦巻き走行から直線往復走行に変更することも可能である。なお、外周領域SAを周回するための走行経路を作り出すのが、周回経路要素の集合体である周回経路要素群である。
〔走行経路要素を選択する際の考え方〕
経路要素選択部63が、順次、次に走行すべき走行経路要素である次走行経路要素を選択する際の選択ルールは、作業走行の前に予め設定される静的ルールと、作業走行中にリアルタイムで利用される動的ルールとに分けることができる。静的ルールには、予め決められた基本的な走行パターンに基づいて走行経路要素を選択すること、例えば、図3に示すようなUターン走行を行いながら直線往復走行を実現するように走行経路要素を選択するルールや、図4に示すような外から内に向かう反時計回りの渦巻き走行を実現するように走行経路要素を選択するルールなどが含まれる。動的ルールは、原則、静的ルールに優先して用いられる。動的ルールには、時々刻々と変化するリアルタイムでの収穫機1の状態、作業地の状態、監視者(運転者や管理者も含む)の指令などの状態情報の内容が含まれる。作業状態評価部55は、入力パラメータとして種々の一次情報(作業環境)や、収穫機1の状態、作業地の状態、監視者の指令などを取り込み、状態情報を出力する。なお、この一次情報には、収穫機1に設けられている各種センサやスイッチからの信号だけでなく、天候情報や時刻情報や乾燥施設などの外部施設情報なども含まれている。さらに、複数台の収穫機1で協調作業を行う場合には、作業状態評価部55から出力される状態情報には、他車位置関係算出部56によって算出される他車位置関係も含まれる。そして、この状態情報が、他車の作業走行状態として用いられる。
経路要素選択部63が、順次、次に走行すべき走行経路要素である次走行経路要素を選択する際の選択ルールは、作業走行の前に予め設定される静的ルールと、作業走行中にリアルタイムで利用される動的ルールとに分けることができる。静的ルールには、予め決められた基本的な走行パターンに基づいて走行経路要素を選択すること、例えば、図3に示すようなUターン走行を行いながら直線往復走行を実現するように走行経路要素を選択するルールや、図4に示すような外から内に向かう反時計回りの渦巻き走行を実現するように走行経路要素を選択するルールなどが含まれる。動的ルールは、原則、静的ルールに優先して用いられる。動的ルールには、時々刻々と変化するリアルタイムでの収穫機1の状態、作業地の状態、監視者(運転者や管理者も含む)の指令などの状態情報の内容が含まれる。作業状態評価部55は、入力パラメータとして種々の一次情報(作業環境)や、収穫機1の状態、作業地の状態、監視者の指令などを取り込み、状態情報を出力する。なお、この一次情報には、収穫機1に設けられている各種センサやスイッチからの信号だけでなく、天候情報や時刻情報や乾燥施設などの外部施設情報なども含まれている。さらに、複数台の収穫機1で協調作業を行う場合には、作業状態評価部55から出力される状態情報には、他車位置関係算出部56によって算出される他車位置関係も含まれる。そして、この状態情報が、他車の作業走行状態として用いられる。
さらに、経路要素選択部63は、複数の収穫機1によって作業対象領域CAを協調的に作業走行する際に採用される協調経路要素選択ルールと、単独の収穫機1が作業対象領域CAを単独作業走行する際に採用される単独経路要素選択ルールとを備えている。単独の収穫機1が作業対象領域CAを単独作業走行するともに、自車以外の収穫機1が周回経路要素に基づく周回走行を行っているか、または停車している場合には、単独の収穫機1の経路要素選択部63は、単独経路要素選択ルールに基づいて前次走行経路要素を選択する。
〔収穫機の概要〕
図5は、この実施の形態での説明に採用されている作業車としての収穫機1の側面図である。この収穫機1は、クローラ式の走行機体11を備えている。走行機体11の前部には、運転部12が設けられている。運転部12の後方には、脱穀装置13及び収穫物を貯留する収穫物タンク14が、左右方向に並設されている。また、走行機体11の前方には、収穫部15が高さ調整可能に設けられている。収穫部15の上方には、穀稈を起こすリール17が高さ調節可能に設けられている。収穫部15と脱穀装置13との間には刈取穀稈を搬送する搬送装置16が設けられている。また、収穫機1の上部には、収穫物タンク14から収穫物を排出する排出装置18が設けられている。収穫物タンク14の下部に収穫物の重量(収穫物の貯留状態)を検出するロードセンサが装備され、収穫物タンク14の内部や周辺に、収量計や食味計が装備されている。食味計からは、品質データとして収穫物の水分値とタンパク値の測定データが出力される。収穫機1には、GNSSモジュールやGPSモジュールなどとして構成される衛星測位モジュール80が設けられている。衛星測位モジュール80の構成要素として、GPS信号やGNSS信号を受信するための衛星用アンテナが走行機体11の上部に取り付けられている。なお、衛星測位モジュール80には、衛星航法を補完するために、ジャイロ加速度センサや磁気方位センサを組み込んだ慣性航法モジュールを含めることができる。
図5は、この実施の形態での説明に採用されている作業車としての収穫機1の側面図である。この収穫機1は、クローラ式の走行機体11を備えている。走行機体11の前部には、運転部12が設けられている。運転部12の後方には、脱穀装置13及び収穫物を貯留する収穫物タンク14が、左右方向に並設されている。また、走行機体11の前方には、収穫部15が高さ調整可能に設けられている。収穫部15の上方には、穀稈を起こすリール17が高さ調節可能に設けられている。収穫部15と脱穀装置13との間には刈取穀稈を搬送する搬送装置16が設けられている。また、収穫機1の上部には、収穫物タンク14から収穫物を排出する排出装置18が設けられている。収穫物タンク14の下部に収穫物の重量(収穫物の貯留状態)を検出するロードセンサが装備され、収穫物タンク14の内部や周辺に、収量計や食味計が装備されている。食味計からは、品質データとして収穫物の水分値とタンパク値の測定データが出力される。収穫機1には、GNSSモジュールやGPSモジュールなどとして構成される衛星測位モジュール80が設けられている。衛星測位モジュール80の構成要素として、GPS信号やGNSS信号を受信するための衛星用アンテナが走行機体11の上部に取り付けられている。なお、衛星測位モジュール80には、衛星航法を補完するために、ジャイロ加速度センサや磁気方位センサを組み込んだ慣性航法モジュールを含めることができる。
図5では、収穫機1の動きを監視する監視者(運転者や管理者も含む)が当該収穫機1に搭乗し、かつ、監視者が操作する通信端末4が収穫機1に持ち込まれている。ただし、通信端末4は収穫機1に取り付けられている構成であってもよい。さらに、監視者及び通信端末4は、収穫機1の機外に存在していてもよい。
収穫機1は、自動操舵による自動走行と、手動操舵による手動走行とが可能である。また、自動走行としては、従来のように予め全走行経路を決めて走行する自動走行と、状態情報に基づいてリアルタイムに次の走行経路を決めていく自動走行と、が可能である。本出願においては、予め全走行経路を決めて走行する前者を慣行走行と称するとともに、リアルタイムに次の走行経路を決めていく後者を自動走行と称して、両者を別物として取り扱う。慣行走行の経路は、例えば、予めいくつかのパターンを登録するか、あるいは、通信端末4等において監視者が任意に設定できるように構成する。
〔自動走行の機能制御ブロックについて〕
図6には、この収穫機1に構築されている制御系と、通信端末4の制御系とが示されている。この実施形態では、収穫機1のための走行経路を管理する走行経路管理装置は、通信端末4に構築された第1走行経路管理モジュールCM1と、収穫機1の制御ユニット5に構築された第2走行経路管理モジュールCM2とから構成されている。
図6には、この収穫機1に構築されている制御系と、通信端末4の制御系とが示されている。この実施形態では、収穫機1のための走行経路を管理する走行経路管理装置は、通信端末4に構築された第1走行経路管理モジュールCM1と、収穫機1の制御ユニット5に構築された第2走行経路管理モジュールCM2とから構成されている。
通信端末4は、通信制御部40やタッチパネル41等を備えており、コンピュータシステムの機能や、制御ユニット5によって実現される自動走行に必要な条件を入力するユーザー・インターフェイスとしての機能を有する。通信端末4は、通信制御部40を用いることで、無線回線やインターネットを介して管理コンピュータ100とデータ交換可能であるとともに、無線LANや有線LANあるいはその他の通信方式によって収穫機1の制御ユニット5とデータ交換可能である。管理コンピュータ100は、遠隔地の管理センタKSに設置されたコンピュータシステムであり、クラウドコンピュータとして機能している。管理コンピュータ100は、各農家や農業組合や農業企業体から送られてくる情報を格納して、要求に応じて送り出すことができる。図6では、そのようなサーバ機能を実現するものとして、作業地情報格納部101と作業計画管理部102とが示されている。通信端末4では、通信制御部40を通じて管理コンピュータ100や収穫機1の制御ユニット5から取得した外部データ、及び、タッチパネル41を通じて入力されたユーザ指示(自動走行に必要な条件)等の入力データに基づいて、データ処理が行われる。そして、このデータ処理の結果は、タッチパネル41の表示パネル部に表示されるとともに、通信端末4から通信制御部40を通じて管理コンピュータ100や収穫機1の制御ユニット5に送信可能である。
作業地情報格納部101には、圃場周辺の地形図や圃場の属性情報(圃場の出入口、条方向等)などを含む圃場情報が格納されている。管理コンピュータ100の作業計画管理部102では、指定された圃場での作業内容を記述した作業計画書が管理されている。監視者の操作を通じて、あるいは自動的に実行されるプログラムを通じて、圃場情報及び作業計画書は、通信端末4や収穫機1の制御ユニット5にダウンロード可能である。作業計画書には、作業対象となる圃場における作業に関して、各種の情報(作業条件)が含まれている。この情報(作業条件)としては、例えば、以下のものが挙げられる。
(a)走行パターン(直線往復走行、渦巻き走行、ジグザグ走行等)。
(b)運搬車CVの支援車の駐車位置や収穫物排出等のための収穫機1の駐車位置。
(c)作業形態(一台の収穫機1による作業、複数台の収穫機1による作業)。
(d)いわゆる中割ライン。
(e)収穫対象となる作物種(稲(ジャポニカ米、インディカ米)、麦、大豆、菜種、そば等)に応じた車速や脱穀装置13の回転速度の値等。
特に(e)の情報から、作物種に応じた走行機器パラメータの設定や収穫機器パラメータの設定が自動的に実行されるので、設定ミスが回避される。
(a)走行パターン(直線往復走行、渦巻き走行、ジグザグ走行等)。
(b)運搬車CVの支援車の駐車位置や収穫物排出等のための収穫機1の駐車位置。
(c)作業形態(一台の収穫機1による作業、複数台の収穫機1による作業)。
(d)いわゆる中割ライン。
(e)収穫対象となる作物種(稲(ジャポニカ米、インディカ米)、麦、大豆、菜種、そば等)に応じた車速や脱穀装置13の回転速度の値等。
特に(e)の情報から、作物種に応じた走行機器パラメータの設定や収穫機器パラメータの設定が自動的に実行されるので、設定ミスが回避される。
なお、収穫物を運搬車CVに排出するために収穫機1が駐車する位置が収穫物排出用駐車位置であり、燃料補給車から燃料を補給されるために収穫機1が駐車する位置が燃料補給用駐車位置であり、この実施形態では、実質的に同じ位置に設定される。
上記の情報(a)-(e)は、ユーザー・インターフェイスとしての通信端末4を通じて監視者によって入力されても良い。通信端末4には、自動走行の開始や停止を指示する入力機能や、上述したように、自動走行と慣行走行とのいずれで作業走行するかの入力機能や、走行変速装置等を含む車両走行機器群71や収穫部15等を含む作業装置機器群72(図6参照)に対するパラメータの値を微調整する入力機能等も構築されている。作業装置機器群72のパラメータのうち、値が微調整できるものとしては、リール17の高さや、収穫部15の高さ等が挙げられる。
通信端末4の状態は、人為的な切り替え操作により、自動走行経路や慣行走行経路のアニメーション表示状態、上記パラメータ表示/微調整状態等に切り替え可能である。なお、このアニメーション表示とは、予め全走行経路が決められている自動走行や慣行走行における走行経路である自動走行経路や慣行走行経路に沿って走行する収穫機1の走行軌跡をアニメーション化して、タッチパネル41の表示パネル部に表示することである。このようなアニメーション表示により、運転者は、走行前に、これから走行する走行経路を直感的に確認することができる。
作業地データ入力部42は、管理コンピュータ100からダウンロードされた圃場情報や作業計画書や通信端末4から取得した情報を入力する。そして、圃場情報に含まれている圃場概略図や圃場出入口の位置や作業支援車から支援を受けるための駐車位置がタッチパネル41に表示される。これにより、運転者によって行われる外周領域SAの形成のための周回走行を支援することができる。圃場出入口や駐車位置などのデータが圃場情報に含まれていない場合は、ユーザがタッチパネル41を通じて入力することができる。外形データ生成部43は、制御ユニット5から受け取った収穫機1の周回走行時の走行軌跡データ(自車位置の時系列データ)から、精度のよい圃場の外形状及び外形寸法と作業対象領域CAの外形状及び外形寸法とを算出する。領域設定部44は、収穫機1の周回走行の走行軌跡データから外周領域SAと作業対象領域CAを設定する。設定された外周領域SA及び作業対象領域CAの位置座標、つまり外周領域SA及び作業対象領域CAの外形データは、自動走行のための走行経路の生成に用いられる。この実施形態では、走行経路の生成は、収穫機1の制御ユニット5に構築された第2走行経路管理モジュールCM2で行われるので、設定された外周領域SA及び作業対象領域CAの位置座標は、第2走行経路管理モジュールCM2に送られる。
圃場が大きい場合には、中央突破の走行経路で圃場を複数の区画に区分けする中割り領域を作り出す作業が行われる。この作業は中割りと呼ばれる。この中割り位置指定も、タッチパネル41の画面に表示された作業地の外形図に対するタッチ操作で行うことができる。もちろん、中割りの位置設定は、自動走行のための走行経路要素群の生成にも影響するので、走行経路要素群の生成時に自動的に行ってもよい。その際、中割り領域の延長線上に運搬車CVなどの作業支援車の支援を受けるための収穫機1の駐車位置が配置されると、全区画からの収穫物排出の走行が効率的に行われる。
第2走行経路管理モジュールCM2には、経路管理部60と、経路要素選択部63と、経路設定部64とが備えられている。経路管理部60は、走行経路要素群及び周回経路要素群を算出して、読み出し可能に格納する。走行経路要素群は、作業対象領域CAを網羅する走行経路を構成する多数の走行経路要素の集合体である。周回経路要素群は、外周領域SAを周回する周回経路を構成する周回経路要素の集合体である。走行経路要素群を算出する機能部として、この経路管理部60には、メッシュ経路要素算出部601と短冊経路要素算出部602とUターン経路算出部603とが含まれている。経路要素選択部63は、後で詳しく説明する種々の選択ルールに基づいて、次に走行すべき次走行経路要素を順次前記走行経路要素群から選択する。経路設定部64は、選択された次走行経路要素を、自動走行のための目標走行経路として設定する。
メッシュ経路要素算出部601は、走行経路要素として、作業対象領域CAをメッシュ分割するメッシュ直線からなるメッシュ直線群(本発明に係る「メッシュ線群」に相当)である走行経路要素群を算出し、そのメッシュ直線同士の交点及び端点の位置座標も算出することができる。この走行経路要素が収穫機1の自動走行時の目標走行経路となるので、収穫機1はメッシュ直線同士の交点及び端点で、一方の走行経路要素から他方の走行経路要素へ経路変更することが可能である。つまり、メッシュ直線同士の交点及び端点が収穫機1の経路変更を許す経路変更可能点として機能する。
図7に、走行経路要素群の一例であるメッシュ直線群の作業対象領域CAへの配置の概略が示されている。メッシュ経路要素算出部601によって、収穫機1の作業幅をメッシュ間隔として、作業対象領域CAをメッシュ直線で埋め尽くすように走行経路要素群が算出される。作業対象領域CAは、上述したように、圃場の境界から内側に向かって作業幅で3~4周の周回走行によって形成された外周領域SAの内側の領域である。そのため、基本的には、作業対象領域CAの外形は、圃場の外形と相似することになる。しかし、メッシュ直線の算出を容易にするため、作業対象領域CAがほぼ多角形、好ましくはほぼ四角形になるように、外周領域SAを作り出す場合もある。図7では、作業対象領域CAの形状は、第1辺S1と第2辺S2と第3辺S3と第4辺S4とからなる変形四角形である。
メッシュ経路要素算出部601は、図7に示されているように、作業対象領域CAの第1辺S1から収穫機1の作業幅の半分の距離をあけた位置から、第1辺S1に平行であるとともに、収穫機1の作業幅分の間隔をあけて作業対象領域CAの上に並ぶ第1直線群を算出する。同様に、第2辺S2から収穫機1の作業幅の半分の距離をあけた位置から、第2辺S2に平行であるとともに、収穫機1の作業幅分の間隔をあけて作業対象領域CAの上に並ぶ第2直線群、第3辺S3から収穫機1の作業幅の半分の距離をあけた位置から、第3辺S3に平行であるとともに、収穫機1の作業幅分の間隔をあけて作業対象領域CAの上に並ぶ第3直線群、第4辺S4から収穫機1の作業幅の半分の距離をあけた位置から、第4辺S4に平行であるとともに、収穫機1の作業幅分の間隔をあけて作業対象領域CAの上に並ぶ第4直線群を算出する。このように第1辺S1から第4辺S4が、走行経路要素群としての直線群を生成する基準線となっている。直線上の2点の位置座標があればその直線を定義することができるので、走行経路要素である各直線は、各直線の2点の位置座標で規定される直線としてデータ化され、予め定められたデータフォーマットでメモリに格納される。このデータフォーマットには、各走行経路要素を識別するための経路識別子としての経路番号のほか、各走行経路要素の属性値として、経路種、基準となった外形四角形の辺、未走行/既走行などが含まれている。
もちろん、四角形以外の多角形の作業対象領域CAにおいても、上述した直線群の算出を適用することができる。すなわち、作業対象領域CAがNを3以上の整数とした際のN角形状とすると、走行経路要素群は、第1直線群から第N直線群までのN個の直線群からなる。各直線群は、このN角形のいずれかの辺に平行に所定間隔(作業幅)で並んだ直線を含むことになる。
なお、外周領域SAにおいても、経路管理部60によって走行経路要素群が設定されている。外周領域SAにおいて設定された走行経路要素は、収穫機1が外周領域SAを走行する際に用いられる。外周領域SAにおいて設定された走行経路要素には、離脱経路、復帰経路、Uターン走行用中間直進経路などの属性値が与えられる。離脱経路は、収穫機1が作業対象領域CAを離脱して外周領域SAに入るために用いられる走行経路要素群を意味する。復帰経路は、収穫機1が外周領域SAから作業対象領域CAでの作業走行に復帰するために用いられる走行経路要素群を意味する。Uターン走行用中間直進経路(以下単に中間直進経路と略称する)は、外周領域SAでのUターン走行に用いられるUターン走行経路の一部を構成する直線状の経路である。即ち、中間直進経路は、Uターン走行の開始側の旋回経路とUターン走行の終了側の旋回経路とを接続する直線部分を構成する直線状の走行経路要素群であって、外周領域SAにおいて作業対象領域CAの各辺に平行に設けられた経路である。また、当初は渦巻き走行を行い、途中で直線往復走行に切り換えて作業走行を行う場合、渦巻き走行によって、未刈地は、全辺において作業対象領域CAよりも小さくなるため、効率良く作業走行を行うには、作業対象領域CA内でUターン走行をする方が、わざわざ外周領域SAにまで移動しなくても良いため、無駄な走行がなく、効率的である。そこで、作業対象領域CAでUターン走行が実行される場合には、中間直進経路は、未刈地の外周ラインの位置に応じて、内周側へ平行移動される。
図7では、作業対象領域CAの形状が変形四角形である。そのため、メッシュ経路要素群の生成の基準となる辺は4つである。ここで、作業対象領域CAの形状が長方形または正方形である場合、メッシュ経路要素群の生成の基準となる辺は2つとなる。この場合、メッシュ経路要素群の構造はより簡単となる。
この実施形態では、経路管理部60に、オプションの走行経路要素算出部として短冊経路要素算出部602が備えられている。この短冊経路要素算出部602によって算出される走行経路要素群は、図3に示されているように、作業対象領域CAの外形を構成する辺から選ばれた基準辺、例えば最長辺に平行に延びるとともに、作業幅で作業対象領域CAを網羅する(作業幅で埋め尽くす)平行直線群(本発明に係る「平行線群」に相当)である。短冊経路要素算出部602で算出された走行経路要素群は、作業対象領域CAを短冊状に分割する。さらに、走行経路要素群は、収穫機1がUターン走行するためのUターン走行経路によって順次接続されていく平行直線(本発明に係る「平行線」に相当)の集合体である。つまり、平行直線である1つの走行経路要素の走行が終了すれば、次に選択された走行経路要素への移行ためのUターン走行経路がUターン経路算出部603によって決定される。
Uターン経路算出部603は、短冊経路要素算出部602によって算出される走行経路要素群から選択された2つの走行経路要素をUターン走行で接続するためのUターン走行経路を算出する。Uターン経路算出部603は、外周領域SA等が設定されたら、外周領域SAの外形状及び外形寸法と作業対象領域CAの外形状及び外径寸法と収穫機1の旋回半径等に基づいて、外周領域SAのうち、作業対象領域CAの外周の各辺(外辺)に対応する領域毎に、作業対象領域CAの外辺に平行な一つの中間直進経路を算出する。また、Uターン経路算出部603は、ノーマルUターン走行及びスイッチバックターン走行が行われるに際して、現在走行している走行経路要素と対応する中間直進経路とを結ぶ開始側の旋回経路と、対応する中間直進経路と移行先の走行経路要素とを結ぶ終了側の旋回経路と、を算出する。なお、Uターン走行経路の生成原理については後述する。
図6に示すように、第2走行経路管理モジュールCM2を構築している収穫機1の制御ユニット5には、作業走行を行うために、種々の機能が構築されている。制御ユニット5はコンピュータシステムとして構成されており、入出力インタフェースとして、出力処理部7、入力処理部8、通信処理部70が備えられている。出力処理部7は、収穫機1に装備されている車両走行機器群71、作業装置機器群72、報知デバイス73などと接続している。車両走行機器群71には、走行機体11の左右のクローラの速度を調整して操舵を行う操舵機器をはじめ、図示されていないが変速機構やエンジンユニットなど車両走行のために制御される機器が含まれている。作業装置機器群72には、収穫部15、脱穀装置13、排出装置18などを構成する機器が含まれている。報知デバイス73には、ディスプレイやランプやスピーカが含まれている。特に、ディスプレイには、圃場の外形とともに、走行済の走行経路(走行軌跡)やこれから走行すべき走行経路など、種々の報知情報が表示される。ランプやスピーカは、走行注意事項や自動操舵走行での目標走行経路からの外れなど、注意情報や警告情報を搭乗者(運転者や監視者)に報知するために用いられる。
通信処理部70は、通信端末4で処理されたデータを受け取るとともに、制御ユニット5で処理されたデータの送信を行う機能を有する。これにより、通信端末4は、制御ユニット5のユーザー・インターフェイスとして機能することができる。通信処理部70は、さらに、管理コンピュータ100との間でのデータ交換を行うためにも用いられるので、種々の通信フォーマットを取り扱う機能を有する。
入力処理部8は、衛星測位モジュール80、走行系検出センサ群81、作業系検出センサ群82、自動/手動切替操作具83などと接続している。走行系検出センサ群81には、エンジン回転数や変速状態などの走行状態を検出するセンサが含まれている。作業系検出センサ群82には、収穫部15の高さ位置を検出するセンサや収穫物タンク14の貯留量を検出するセンサなどが含まれている。自動/手動切替操作具83は、自動操舵で走行する自動走行モードと手動操舵で走行する手動走行モードとのいずれかを選択するスイッチである。また、自動走行と慣行走行とを切替えるスイッチが、運転部12に備えられているか、あるいは、通信端末4に構築されている。
さらに、制御ユニット5には、走行制御部51、作業制御部52、自車位置算出部53、報知部54、作業状態評価部55、他車位置関係算出部56が備えられている。自車位置算出部53は、衛星測位モジュール80から出力される測位データに基づいて、自車位置を算出する。この収穫機1が自動走行(自動操舵)と手動走行(手動操舵)の両方で走行可能に構成されているため、車両走行機器群71を制御する走行制御部51には、自動走行制御部511と手動走行制御部512とが含まれている。手動走行制御部512は、運転者による操作に基づいて車両走行機器群71を制御する。自動走行制御部511は、経路設定部64で設定された走行経路と自車位置との間の方位ずれ及び位置ずれを算出し、自動操舵指令を生成し、出力処理部7を介して操舵機器に出力する。作業制御部52は、収穫機1を構成する収穫部15、脱穀装置13、排出装置18などに設けられている動作機器の動きを制御するために、作業装置機器群72に制御信号を与える。報知部54は、ディスプレイなどの報知デバイス73を通じて運転者や監視者に必要な情報を報知するための報知信号(表示データや音声データ)を生成する。作業状態評価部55は、各種センサの検出結果や各種操作具の操作結果などから、収穫機1の状態、作業地の状態、人(監視者、運転者、管理者など)による指令を含む状態情報を出力する。他車位置関係算出部56は、複数台の収穫機1で協調作業を行う場合に、他車の位置自車と他車との位置関係を示す他車位置関係を算出する。この他車位置関係の算出には、自車の位置や自車が選択している走行経路要素、及び他車の位置や他車が選択している走行経路要素が用いられる。さらに、他車位置関係算出部56は、作業車同士の接触推定位置を算出する機能も有する。
自動走行制御部511は、操舵制御だけではなく、車速制御も可能である。車速については、上述したように、例えば、搭乗者が、作業開始前に通信端末4を通じて設定する。設定可能な車速には、収穫走行時の車速、非作業旋回(Uターン走行など)時の車速、収穫物排出時や燃料補給時の作業対象領域CAから離脱して外周領域SAを走行する際の車速などが含まれる。自動走行制御部511は、衛星測位モジュール80によって得られた測位データに基づいて実車速を算出する。出力処理部7は、実車速が設定された車速に合うように、走行変速装置への変速操作指令等を車両走行機器群71に送る。
〔自動走行の経路について〕
作業車自動走行システムにおける自動走行の例を、直線往復走行を行う例と、渦巻き走行を行う例とに分けて説明する。
作業車自動走行システムにおける自動走行の例を、直線往復走行を行う例と、渦巻き走行を行う例とに分けて説明する。
まず、短冊経路要素算出部602によって算出された走行経路要素群を用いて直線往復走行する例について説明する。図8には、模式化によって、直線長さを短くした短冊で表された21本の走行経路要素からなる走行経路要素群が示されており、各走行経路要素の上側に経路番号が付与されている。作業走行開始時の収穫機1は、14番の走行経路要素に位置している。収穫機1が位置している走行経路要素と、他の走行経路要素との離間度が符号付き整数で、各経路の下側に付与されている。14番の走行経路要素に位置している収穫機1が、次の走行経路要素に移行するための優先度が、図8において、走行経路要素の下部に整数値で示されている。値が小さいほど優先度が高く、優先的に選択される。この収穫機1は、走行完了した走行経路要素から次の走行経路要素へ移行する際に、図9に示すノーマルUターン走行と、スイッチバックターン走行と、が可能である。ここで、ノーマルUターン走行は、少なくとも2つの走行経路要素を挟んで次の走行経路要素に移行する走行である。また、スイッチバックターン走行は、2つ以下の走行経路要素を挟んで、つまり隣接する走行経路要素へ移行することができる走行である。ノーマルUターン走行において、収穫機1は、移行元の走行経路要素の端点から外周領域SAに入ると、約180°の方向転換を行い、移行先の走行経路要素の端点に入る。なお、移行元の走行経路要素と移行先の走行経路要素との間隔が大きい場合は、約90°の旋回の後、相応な距離の直進が行われ、再び約90°の旋回が行われることとなる。つまり、ノーマルUターン走行は、前進走行のみで実行される。これに対して、スイッチバックターン走行において、収穫機1は、移行元の走行経路要素の端点から外周領域SAに入ると、一旦約90°旋回した後、約90°旋回でスムーズに移行先の走行経路要素に入れる位置まで後進してから、移行先の走行経路要素の端点に向かう。これにより、操舵制御は複雑になるが、互いの間隔が短い走行経路要素への移行も可能である。
次に走行すべき走行経路要素の選択は、経路要素選択部63によって行われる。この実施形態では、走行経路要素の選択の基本的な優先度が設定される。この基本的な優先度においては、適正離間走行経路要素の優先度が最も高く設定される。なお、この適正離間走行経路要素とは、順番元になる走行経路要素から所定距離だけ離れている走行経路要素のことである。また、この適正離間走行経路要素に比べて順番元になる走行経路要素から離れるほど、優先度は低くなるように設定される。例えば、次の走行経路要素への移行に関しては、走行距離の短いノーマルUターン走行が走行時間も短く、効率が良い。したがって、2本あけた左右両隣りの走行経路要素の優先度が最も高く設定される(優先度=「1」)。そして、収穫機1から見て、それらの走行経路要素よりも遠くに位置する走行経路要素については、収穫機1からの距離が遠いほど、ノーマルUターン走行の走行時間が長くなる。従って、収穫機1からの距離が遠いほど、優先度が低く設定される(優先度=「2」,「3」,・・・)。つまり、優先度の数値は優先順位を示している。ただし、8本あけた隣りの走行経路要素への移行においては、ノーマルUターン走行の走行時間が長くなり、スイッチバックターン走行より効率が悪くなる。従って、8本あけた隣りの走行経路要素への移行の優先度は、スイッチバックターン走行より低くなる。また、スイッチバックターン走行では、隣の走行経路要素へ移行する優先度より、1本あけた走行経路要素へ移行する優先度の方が高くなっている。これは隣の走行経路要素へのスイッチバックターン走行は、急旋回が必要となり、圃場を荒らす可能性が高いからである。なお、次の走行経路要素への移行は、左右いずれの方向も可能であるが、従来の作業の慣習にしたがって、左側の走行経路要素への移行が右側の走行経路要素への移行に優先するというルールが採用される。したがって、図8の例では、経路番号:14に位置する収穫機1は、次に走行する走行経路要素として、経路番号:17の走行経路要素を選択する。このような優先度の設定が、収穫機1が新しい走行経路要素に入るごとに行われる。
既に選択された走行経路要素、即ち、作業が完了している走行経路要素は、原則的に選択禁止とされる。したがって、図10で示すように、例えば、優先度が「1」である経路番号:11や経路番号:17が既作業地(既刈地)であれば、経路番号:14に位置する収穫機1は、次に走行する走行経路要素として、優先度が「2」である経路番号:18の走行経路要素を選択する。
図11には、メッシュ経路要素算出部601によって算出された走行経路要素を用いて渦巻き走行する例が示されている。図11で示された圃場の外周領域SAと作業対象領域CAは図7のものと同一であり、作業対象領域CAに設定された走行経路要素群も同じである。ここでは説明のために、第1辺S1を基準線とする走行経路要素をL11、L12・・・で示し、第2辺S2を基準線とする走行経路要素をL21、L22・・・で示し、第3辺S3を基準線とする走行経路要素をL31、L32・・・で示し、第4辺S4を基準線とする走行経路要素をL41、L42・・・で示している。
図11の太線は、収穫機1の外側から内側に向かって渦巻き状に走行する走行経路を示している。作業対象領域CAの最外周に位置する走行経路要素L11が最初の走行経路として選択される。走行経路要素L11と走行経路要素L21との交点でほぼ90°の経路変更が行われ、収穫機1は走行経路要素L21を走行する。さらに、走行経路要素L21と走行経路要素L31との交点でほぼ70°の経路変更が行われ、収穫機1は走行経路要素L31を走行する。走行経路要素L31と走行経路要素L41との交点でほぼ110°の経路変更が行われ、収穫機1は走行経路要素L41を走行する。次に、収穫機1は、走行経路要素L11の内側の走行経路要素L12と走行経路要素L41との交点で走行経路要素L12に移行する。このような走行経路要素の選択を繰り返すことで、収穫機1は、圃場の作業対象領域CAを外から内への渦巻き状に作業走行する。このように、渦巻き走行パターンが設定されている場合、未走行の属性を有するとともに作業対象領域CAの最外周に位置する走行経路要素同士の交点で経路変更が行われ、収穫機1は方向転換をする。
図12には、図11で示された同じ走行経路要素群を利用したUターン走行の走行例が示されている。まず、作業対象領域CAの外側の走行経路要素L11が最初の走行経路として選択される。収穫機1は、走行経路要素L11の終端(端点)を超えて、外周領域SAに入り、第2辺S2に沿うように90°ターンを行い、さらに、走行経路要素L11と平行に延びる走行経路要素L14の始端(端点)に進入するように再び90°ターンを行う。結果的には、180°のノーマルUターン走行を経て、走行経路要素L11から、2本分の走行経路要素をあけて走行経路要素L14に移行する。さらに、走行経路要素L14を走行して、外周領域SAに入ると、180°のノーマルUターン走行を経て、走行経路要素L14と平行に延びる走行経路要素L17に移行する。このようにして、収穫機1は、走行経路要素L17から走行経路要素L110に、さらに走行経路要素L110から走行経路要素L16に移行して、最終的に、圃場の作業対象領域CA全体の作業走行を完了する。以上の説明から明らかなように、図8と図9と図10とを用いて説明された、短冊経路要素算出部602による走行経路要素群を用いた直線往復走行の例は、このメッシュ経路要素算出部601によって算出された走行経路要素を用いた直線往復走行にも適用可能である。
このように、直線往復走行は、作業対象領域CAを短冊状に分割する走行経路要素群であっても、作業対象領域CAをメッシュ状に分割する走行経路要素群であっても実現可能である。言い換えると、作業対象領域CAをメッシュ状に分割する走行経路要素群であれば、直線往復走行にも渦巻き走行にもジグザグ走行にも用いることができ、また、作業途中で走行パターンを渦巻き走行から直線往復走行に変更することも可能である。
〔Uターン走行経路の生成原理〕
図13を用いて、Uターン経路算出部603がUターン走行経路を生成する基本原理を説明する。図13では、LS0で示された旋回元の走行経路要素からLS1で示された旋回先の走行経路要素に移行するUターン走行経路が示されている。通常の走行では、LS0が作業対象領域CAにおける走行経路要素であれば、LS1が外周領域SAでの走行経路要素(=中間直進経路)となり、逆に、LS1が作業対象領域CAにおける走行経路要素であれば、LS0が外周領域SAでの走行経路要素(=中間直進経路)となるのが一般的である。走行経路要素LS0とLS1との直線式(または直線上の2点)がメモリに記録されており、これらの直線式からその交点(図13ではPXで示されている)及び交差角(図13ではθで示されている)が算出される。次に、走行経路要素LS0及び走行経路要素LS1に接するとともに、収穫機1の最小旋回半径と等しい半径(図13ではrで示されている)の接円が算出される。この接円と走行経路要素LS0及びLS1との接点(図13ではPS0,PS1で示されている)を結ぶ円弧(接円の一部)が、旋回経路となる。そこで、走行経路要素LS0とLS1との交点PXと、この接円と、の接点までの距離Yを、
Y=r/(tan(θ/2))
で求める。最小旋回半径が収穫機1の仕様により実質的に決まっているため、rは規定値である。なお、rは、最小旋回半径と同一の値でなくても良く、無理のない旋回半径を予め通信端末4等によって設定し、その旋回半径となるような旋回操作をプログラミングしてあれば良い。走行制御的には、収穫機1は、旋回元の走行経路要素LS0を走行中に、交点までの距離がYである位置座標(PS0)に到達すると、旋回走行を開始し、次いで、旋回走行中に収穫機1の方位と旋回先の走行経路要素LS1の方位との差が許容値に収まれば旋回走行を終了する。その際、収穫機1の旋回半径は正確に半径rに一致しなくてもよい。旋回先の走行経路要素LS1との距離及び方位差に基づいて操舵制御されることで、収穫機1は旋回先の走行経路要素LS1に移行することができる。
図13を用いて、Uターン経路算出部603がUターン走行経路を生成する基本原理を説明する。図13では、LS0で示された旋回元の走行経路要素からLS1で示された旋回先の走行経路要素に移行するUターン走行経路が示されている。通常の走行では、LS0が作業対象領域CAにおける走行経路要素であれば、LS1が外周領域SAでの走行経路要素(=中間直進経路)となり、逆に、LS1が作業対象領域CAにおける走行経路要素であれば、LS0が外周領域SAでの走行経路要素(=中間直進経路)となるのが一般的である。走行経路要素LS0とLS1との直線式(または直線上の2点)がメモリに記録されており、これらの直線式からその交点(図13ではPXで示されている)及び交差角(図13ではθで示されている)が算出される。次に、走行経路要素LS0及び走行経路要素LS1に接するとともに、収穫機1の最小旋回半径と等しい半径(図13ではrで示されている)の接円が算出される。この接円と走行経路要素LS0及びLS1との接点(図13ではPS0,PS1で示されている)を結ぶ円弧(接円の一部)が、旋回経路となる。そこで、走行経路要素LS0とLS1との交点PXと、この接円と、の接点までの距離Yを、
Y=r/(tan(θ/2))
で求める。最小旋回半径が収穫機1の仕様により実質的に決まっているため、rは規定値である。なお、rは、最小旋回半径と同一の値でなくても良く、無理のない旋回半径を予め通信端末4等によって設定し、その旋回半径となるような旋回操作をプログラミングしてあれば良い。走行制御的には、収穫機1は、旋回元の走行経路要素LS0を走行中に、交点までの距離がYである位置座標(PS0)に到達すると、旋回走行を開始し、次いで、旋回走行中に収穫機1の方位と旋回先の走行経路要素LS1の方位との差が許容値に収まれば旋回走行を終了する。その際、収穫機1の旋回半径は正確に半径rに一致しなくてもよい。旋回先の走行経路要素LS1との距離及び方位差に基づいて操舵制御されることで、収穫機1は旋回先の走行経路要素LS1に移行することができる。
図14、図15、図16に、具体的な3つのUターン走行が示されている。図14では、旋回元の走行経路要素LS0及び旋回先の走行経路要素LS1が作業対象領域CAの外辺から傾斜状態に延びているが、鉛直に延びていても良い。ここでは、外周領域SAにおけるUターン走行経路は、走行経路要素LS0及び走行経路要素LS1の外周領域SAへの延長線、外周領域SAの走行経路要素の一部(線分)である中間直進経路と、2つの円弧状の旋回経路とからなる。このUターン走行経路も、図13を用いて説明された基本原理に準じて、生成することができる。中間直進経路と旋回元の走行経路要素LS0との交差角θ1及び交点PX1、この中間直進経路と旋回先の走行経路要素LS1との交差角θ2及び交点PX2が算出される。さらには、旋回元の走行経路要素LS0と中間直進経路とに接する半径r(=収穫機1の旋回半径)の接円の接点PS10,PS11の位置座標、及び、中間直進経路と旋回先の走行経路要素LS1とに接する半径rの接円の接点PS20,PS21の位置座標が算出される。これらの接点PS10,PS20にて、収穫機1は旋回を開始することなる。同様に、図15で示された、三角形状の突起を形成した作業対象領域CAに対して、その三角形状の突起を迂回するようなUターン走行経路も同様に生成することができる。走行経路要素LS0及びLS1と、外周領域SAの走行経路要素の一部(線分)である2つの中間直進経路との交点が求められる。それぞれの交点の算出には、図13を用いて説明された基本原理が適用される。
図16には、スイッチバックターン走行による旋回走行が示されており、収穫機1は、旋回元の走行経路要素LS0から旋回先の走行経路要素LS1に移行する。このスイッチバックターン走行においては、外周領域SAの走行経路要素の一部(線分)である作業対象領域CAの外辺に平行な中間直進経路と走行経路要素LS0とに接する半径rの接円と、当該中間直進経路と走行経路要素LS1とに接する半径rの接円とが算出される。図13を用いて説明された基本原理に準じて、この2つの接円と中間直進経路との接点の位置座標、旋回元の走行経路要素LS0と接円との接点の位置座標、旋回先の走行経路要素LS1と接円との接点の位置座標が算定される。これにより、スイッチバックターン走行におけるUターン走行経路が生成される。なお、スイッチバックターン走行における中間直進経路では、収穫機1は後進走行する。
〔渦巻き走行における方向転換走行について〕
図17には、上述した渦巻き走行において、走行経路要素の経路変更可能点である交点での経路変更に用いられる方向転換走行の一例が示されている。以降、この方向転換走行をαターン走行と称する。このαターン走行における走行経路(αターン走行経路)は、いわゆる切り返し走行経路の一種であり、走行元の走行経路要素(図17ではLS0で示されている)と旋回先の走行経路要素(図17ではLS1で示されている)の交点から、前進での旋回経路を経て、後進での旋回経路で旋回先の走行経路要素に接する経路である。αターン走行経路は基準化されているので、走行元の走行経路要素と旋回先の走行経路要素との交差角に応じて生成されたαターン走行経路が予め登録されている。したがって、経路管理部60は、算出された交差角に基づいて適正なαターン走行経路を読み出し、経路設定部64に与える。この構成に代えて、交差角毎の自動制御プログラムを自動走行制御部511に登録しておき、経路管理部60によって算出された交差角に基づいて、自動走行制御部511が適正な自動制御プログラムを読み出すような構成を採用してもよい。
図17には、上述した渦巻き走行において、走行経路要素の経路変更可能点である交点での経路変更に用いられる方向転換走行の一例が示されている。以降、この方向転換走行をαターン走行と称する。このαターン走行における走行経路(αターン走行経路)は、いわゆる切り返し走行経路の一種であり、走行元の走行経路要素(図17ではLS0で示されている)と旋回先の走行経路要素(図17ではLS1で示されている)の交点から、前進での旋回経路を経て、後進での旋回経路で旋回先の走行経路要素に接する経路である。αターン走行経路は基準化されているので、走行元の走行経路要素と旋回先の走行経路要素との交差角に応じて生成されたαターン走行経路が予め登録されている。したがって、経路管理部60は、算出された交差角に基づいて適正なαターン走行経路を読み出し、経路設定部64に与える。この構成に代えて、交差角毎の自動制御プログラムを自動走行制御部511に登録しておき、経路管理部60によって算出された交差角に基づいて、自動走行制御部511が適正な自動制御プログラムを読み出すような構成を採用してもよい。
〔経路選択のルール〕
経路要素選択部63は、管理センタKSから受け取った作業計画書や通信端末4から人為的に入力された走行パターン(例えば、直線往復走行パターンや渦巻き走行パターン)と、自車位置と、作業状態評価部55から出力される状態情報とに基づいて、走行経路要素を順次選択する。即ち、設定された走行パターンのみを基準にして事前に全走行経路を形成してしまう場合とは異なって、作業前には予測し得ない事態に対応した好適な走行経路が形成されることになる。また、経路要素選択部63には、上述した基本的なルール以外に、以下のような経路選択ルールA1からA12が予め登録されており、走行パターンと状態情報とに応じて、好適な経路選択ルールが適用される。
経路要素選択部63は、管理センタKSから受け取った作業計画書や通信端末4から人為的に入力された走行パターン(例えば、直線往復走行パターンや渦巻き走行パターン)と、自車位置と、作業状態評価部55から出力される状態情報とに基づいて、走行経路要素を順次選択する。即ち、設定された走行パターンのみを基準にして事前に全走行経路を形成してしまう場合とは異なって、作業前には予測し得ない事態に対応した好適な走行経路が形成されることになる。また、経路要素選択部63には、上述した基本的なルール以外に、以下のような経路選択ルールA1からA12が予め登録されており、走行パターンと状態情報とに応じて、好適な経路選択ルールが適用される。
(A1)監視者(搭乗者)による操作により、自動走行から手動走行への移行が要求された場合、手動走行の準備が完了した後、経路要素選択部63による走行経路要素の選択が停止される。そのような操作には、自動/手動切替操作具83の操作、制動操作具の操作(特に急停車操作)、操舵操作具(ステアリングレバーなど)による所定操舵角以上の操作、などが含まれる。さらに、走行系検出センサ群81に、自動走行時に搭乗することが要求される監視者の不在を検出するセンサ、例えば、座席に設けられた着座検出センサやシートベルトの着装検出センサ、が含まれている場合、このセンサからの信号に基づいて、自動走行制御を停止させることができる。つまり、監視者の不在が検知されると、自動走行制御の開始、あるいは収穫機1の走行自体が、停止される。また、操舵操作具における所定操舵角より小さな操舵角の操作であって、微小な操舵角の操作が行われた際には、自動走行制御を停止させることなしに、走行方向の微調整だけを行うような構成を採用してもよい。
(A2)自動走行制御部511は、圃場の外形ライン位置と測位データに基づく自車位置との関係(距離)を監視している。そして、自動走行制御部511は、外周領域SAにおける旋回時に、畦と機体との接触を回避するように自動走行を制御する。具体的には、自動走行を停止して収穫機1を停車させたり、ターン走行の形態を変更(ノーマルUターン走行からスイッチバックターン走行やαターン走行に変更)したり、その領域を通過しない走行経路設定を行ったりする。また、『旋回エリアが狭くなっています。御注意下さい。』等といった報知を行うように構成してあっても良い。
(A3)収穫物タンク14の収穫物の貯留量が満杯または満杯近くになって、収穫物排出が必要な場合、作業状態評価部55から経路要素選択部63へ、状態情報の1つとして、排出要求(作業対象領域CAでの作業走行からの離脱要求の一種)が出される。この場合、畦際の運搬車CVへの排出作業を行うための駐車位置と自車位置とに基づいて、作業対象領域CAでの作業走行から離脱し、外周領域SAを走行して該駐車位置に向かう、適正な走行経路要素(例えば、最短経路となる走行経路要素)が、外周領域SAに設定された走行経路要素群のうち離脱経路の属性値が与えられたものと、作業対象領域CAに設定された走行経路要素群とから選択される。
(A4)燃料残量センサからの信号等によって算出される燃料タンクの残量値に基づいて、燃料切れの切迫が評価された場合、燃料補給要求(離脱要求の一種)が出される。この場合も、(A3)と同様に、予め設定されている燃料補給位置である駐車位置と自車位置とに基づいて、燃料補給位置への適正な走行経路要素(例えば、最短経路となる走行経路要素)が選択される。
(A5)作業対象領域CAでの作業走行から離脱して、外周領域SAに入った場合、再び作業対象領域CAに復帰する必要がある。この作業対象領域CAへの復帰の始点となる走行経路要素として、離脱点に最も近い走行経路要素、あるいは、外周領域SAにおける現在位置から最も近い走行経路要素が、外周領域SAに設定された走行経路要素群のうち復帰経路の属性値が与えられたものと、作業対象領域CAに設定された走行経路要素群とから選択される。
(A6)収穫物排出や燃料補給のため、作業対象領域CAでの作業走行から離脱して、再び作業対象領域CAに戻る走行経路を決定する際、作業対象領域CAにおける既作業(既走行)となって走行禁止の属性が付与された走行経路要素を、走行可能な走行経路要素として復活させる。既作業の走行経路要素を選択することで所定以上の時間短縮が可能な場合には、当該走行経路要素が選択される。さらに、作業対象領域CAから離脱する際の作業対象領域CAにおける走行には後進を用いることも可能である。
(A7)収穫物排出や燃料補給のため、作業対象領域CAでの作業走行から離脱するタイミングは、それぞれの余裕度と駐車位置までの走行時間または走行距離とから決定される。余裕度は、ここでは、収穫物排出であれば、収穫物タンク14における現状の貯留量から満杯になるまでに予測される走行時間または走行距離である。燃料補給であれば、燃料タンクにおける現状の残量から完全に燃料切れになるまでに予測される走行時間または走行距離である。例えば、自動走行中に排出用の駐車位置の近くを通過する際に、余裕度や排出作業に要する時間等に基づいて、駐車位置を通り過ぎて、満杯になってから離脱して駐車位置に戻ってくる場合と、駐車位置の近くを通るついでに排出も行う場合とで、いずれが、最終的に効率的な走行であるか(総作業時間が短いとか総走行距離が短いとか)を判定する。あまりにも少ない量のときに排出作業を行うと、全体として排出回数が増えてしまい、効率的ではないし、ほぼ満杯なのであれば、ついでに排出してしまう方が効率的である。
(A8)図18には、作業対象領域CAから離脱後に再開される作業走行で選択される走行経路要素が、離脱前の作業走行の続きではないケースが示されている。このケースでは、図3、図12で示されたような直線往復走行パターンが予め設定されている。図18では、駐車位置は符号PPで示されており、かつ、比較例として、作業対象領域CAを180°のUターン走行を伴う直線往復走行で順調に作業走行しきった場合の走行経路が点線で示されている。実際の走行軌跡は太実線で示されている。作業走行の進行に伴って、順次、直線状の走行経路要素とUターン走行経路とが選択される(ステップ#01)。
作業走行の途中で(ステップ#02)、離脱要求が発生すると、作業対象領域CAから外周領域SAに進む走行経路が算出される。この地点では、現在走行中の走行経路要素に沿ってそのまま直進して外周領域SAに出る経路と、現在走行中の走行経路要素から90°旋回し、既刈地(=既走行の属性を持つ走行経路要素の集合部分)を通過して駐車位置が存在する外周領域SAに出る経路とが考えられる。ここでは、より走行距離が短い後者の経路が選択される(ステップ#03)。この後者の離脱走行では、90°旋回後の作業対象領域CAでの離脱走行経路要素として、外周領域SAに設定されている走行経路要素を離脱点まで平行移動させたものが用いられる。但し、時間的な余裕を持って離脱要求がなされるのであれば、前者の経路が選択される。この前者の離脱走行では、作業対象領域CAでの離脱走行中において、収穫作業が続行されるので、作業効率の点で利点がある。
収穫機1は、作業対象領域CAでの作業走行から離脱して、作業対象領域CA及び外周領域SAを離脱走行して駐車位置に到着すると、作業支援車から支援を受ける。この例では、収穫物タンク14に貯留された収穫物が、運搬車CVに排出される。
収穫物の排出が完了すると、作業走行に復帰するため、離脱要求が発生した地点に戻る必要がある。図18の例では、離脱要求が発生した時に走行していた走行経路要素に未作業部分が残されているので、当該走行経路要素に戻る。このため、収穫機1は、駐車位置から外周領域SAの走行経路要素を選択して、左回りに走行し、目的とする走行経路要素の端点に達すると、そこで90°旋回して当該走行経路要素に入り、作業走行を行う。離脱要求が発生した地点を過ぎれば、収穫機1は非作業で走行し、Uターン走行経路を経て、次の走行経路要素を作業走行する(ステップ#04)。以後は、収穫機1は直線往復走行を続行し、この作業対象領域CAでの作業走行を完了する(ステップ#05)。
(A9)入力されている作業地データに圃場内の走行障害物の位置が含まれている場合、あるいは収穫機1に障害物位置検出装置が装備されている場合、障害物の位置と自車位置とに基づいて、障害物回避走行のための走行経路要素が選択される。この障害物回避目的の選択ルールとして、障害物にできるだけ近接した迂回経路となるように走行経路要素を選択するルールや、一旦外周領域SAに出てから作業対象領域CAに入る際に障害物の存在しない直線経路を取ることができる走行経路要素を選択するルールがある。
(A10)図4、図11で示されるような渦巻き走行パターンが設定されている場合に、選択対象となる走行経路要素の長さが短くなると、自動的に、渦巻き走行パターンから直線往復走行パターンに変更される。面積が狭くなった場合は、前後進を行うαターン走行を含む渦巻き走行は非効率的になりがちだからである。
(A11)慣行走行で走行している場合において、未作業地、つまり作業対象領域CAにおける走行経路要素群における未作業(未走行)の走行経路要素の数が所定値以下になった場合、慣行走行から自動走行に自動的に切り替えられる。また、収穫機1が、メッシュ直線群で網羅された作業対象領域CAを外から内への渦巻き走行で作業している場合、残された未作業地の面積が少なくなって、未作業走行経路要素の数が所定値以下になった場合、渦巻き走行パターンから直線往復走行パターンに自動的に切り替えられる。この場合では、上述したように、無駄な走行を避けるために、中間直進経路の属性を持つ走行経路要素が、外周領域SAから作業対象領域CAの未作業地付近まで平行移動される。
(A12)稲作や麦作などの圃場では、苗の作付け列である条(畝)に平行に収穫機1を走行させることにより、収穫作業の効率を向上させることができる。このため、経路要素選択部63による走行経路要素の選択において、条に平行な走行経路要素ほど選択されやすくする。ただし、作業走行開始時に、機体の姿勢が条方向に平行な姿勢や位置でない場合には、条方向と交差する方向に沿った走行であっても、条に平行な姿勢とするための走行によって作業を行うように構成する。これにより、少しでも無駄な走行(非作業走行)を減らし、早く作業を終えられる。
〔協調走行制御〕
次に、複数の作業車が投入される作業車自動走行システムによる作業走行について説明する。ここでは、理解のしやすさのために、2台の収穫機1による作業走行(自動走行)を説明する。図19には、マスタ収穫機1mとして機能する第1作業車と、スレーブ収穫機1sとして機能する第2作業車とが協調して、1つの圃場を作業走行する様子が示されている。2台の収穫機1を区別するために、それぞれに対してマスタ収穫機1mとスレーブ収穫機1sいう名称が与えられているが、区別して説明する必要がない場合には、単に収穫機1と称する。なお、マスタ収穫機1mには、監視者が乗り込んでおり、監視者は、マスタ収穫機1mに持ち込まれた通信端末4を操作する。便宜的に、マスタ及びスレーブという用語を使用したが、これらに主従関係はなく、マスタ収穫機1m及びスレーブ収穫機1sは、上述した走行経路設定ルーチン(走行経路要素の選択ルール)に基づいてそれぞれ独自にルート設定して自動走行を行う。ただし、マスタ収穫機1mとスレーブ収穫機1sとの間はそれぞれの通信処理部70を介してデータ通信可能であり、作業走行状態に相当する状態情報の交換を行う。通信端末4は、マスタ収穫機1mに監視者の指令や走行経路に関するデータなどを与えるだけでなく、通信端末4とマスタ収穫機1mとを介して、スレーブ収穫機1sにも監視者の指令や走行経路に関するデータを与えることができる。例えば、スレーブ収穫機1sの作業状態評価部55から出力された状態情報はマスタ収穫機1mにも転送され、マスタ収穫機1mの作業状態評価部55から出力された状態情報はスレーブ収穫機1sにも転送される。したがって、双方の経路要素選択部63は、双方の状態情報と双方の自車位置とを考慮して次走行経路要素を選択する機能を有する。また、通信端末4に、経路管理部60と経路要素選択部63とが構築されている場合には、双方の収穫機1が、状態情報を通信端末4に与え、そこで選択された次走行経路要素を受け取ることになる。
次に、複数の作業車が投入される作業車自動走行システムによる作業走行について説明する。ここでは、理解のしやすさのために、2台の収穫機1による作業走行(自動走行)を説明する。図19には、マスタ収穫機1mとして機能する第1作業車と、スレーブ収穫機1sとして機能する第2作業車とが協調して、1つの圃場を作業走行する様子が示されている。2台の収穫機1を区別するために、それぞれに対してマスタ収穫機1mとスレーブ収穫機1sいう名称が与えられているが、区別して説明する必要がない場合には、単に収穫機1と称する。なお、マスタ収穫機1mには、監視者が乗り込んでおり、監視者は、マスタ収穫機1mに持ち込まれた通信端末4を操作する。便宜的に、マスタ及びスレーブという用語を使用したが、これらに主従関係はなく、マスタ収穫機1m及びスレーブ収穫機1sは、上述した走行経路設定ルーチン(走行経路要素の選択ルール)に基づいてそれぞれ独自にルート設定して自動走行を行う。ただし、マスタ収穫機1mとスレーブ収穫機1sとの間はそれぞれの通信処理部70を介してデータ通信可能であり、作業走行状態に相当する状態情報の交換を行う。通信端末4は、マスタ収穫機1mに監視者の指令や走行経路に関するデータなどを与えるだけでなく、通信端末4とマスタ収穫機1mとを介して、スレーブ収穫機1sにも監視者の指令や走行経路に関するデータを与えることができる。例えば、スレーブ収穫機1sの作業状態評価部55から出力された状態情報はマスタ収穫機1mにも転送され、マスタ収穫機1mの作業状態評価部55から出力された状態情報はスレーブ収穫機1sにも転送される。したがって、双方の経路要素選択部63は、双方の状態情報と双方の自車位置とを考慮して次走行経路要素を選択する機能を有する。また、通信端末4に、経路管理部60と経路要素選択部63とが構築されている場合には、双方の収穫機1が、状態情報を通信端末4に与え、そこで選択された次走行経路要素を受け取ることになる。
図20には、図7と同様に、作業幅でメッシュ分割するメッシュ直線からなるメッシュ直線群で網羅された作業対象領域CAを2台の収穫機1によって、つまりマスタ収穫機1mとスレーブ収穫機1sとによって作業する様子が示されている。ここでは、マスタ収穫機1mは、作業対象領域CAを示す変形四角形の右下の頂点付近から走行経路要素L11に入り、走行経路要素L11と走行経路要素L21との交点で左旋回して走行経路要素L21に入る。さらに、走行経路要素L21と走行経路要素L32との交点で左旋回して走行経路要素L32に入る。このようにして、マスタ収穫機1mは、左旋回の渦巻き走行を行う。これに対して、スレーブ収穫機1sは、作業対象領域CAの左上の頂点付近から走行経路要素L31に入り、走行経路要素L31と走行経路要素L41との交点で左旋回して走行経路要素L41に入る。さらに、走行経路要素L41と走行経路要素L12との交点で左旋回して走行経路要素L12に入る。このようにして、スレーブ収穫機1sは、左旋回の渦巻き走行を行う。図20から明らかなように、マスタ収穫機1mの走行軌跡の間にスレーブ収穫機1sの走行軌跡が入り込むような協調制御が行われる。従って、マスタ収穫機1mの走行は、自己の作業幅とスレーブ収穫機1sの作業幅とを合わせた幅だけ間隔をあけた渦巻き走行となる。また、スレーブ収穫機1sの走行は、自己の作業幅とマスタ収穫機1mの作業幅とを合わせた幅だけ間隔をあけた渦巻き走行となる。マスタ収穫機1mの走行軌跡とスレーブ収穫機1sの走行軌跡とは、2重渦巻きを作り出している。
なお、作業対象領域CAは、外側の周回走行によって形成される外周領域SAによって規定されるので、最初に外周領域SAを形成するための周回走行を、マスタ収穫機1mとスレーブ収穫機1sとのいずれかによって行う必要がある。この周回走行も、マスタ収穫機1mとスレーブ収穫機1sとの協調制御で行うことも可能である。
このように、経路要素選択部63が協調経路要素選択ルールを採用している場合には、例えば、図20に示されているように、複数の収穫機1によって、作業対象領域CAが協調的に作業走行されるように走行経路要素が選択される。その結果、図20の例では、2台の収穫機1による2つの走行軌跡が二重渦巻き線を描きながら作業対象領域CAを網羅する渦巻き走行パターンとなる。また経路要素選択部63が単独経路要素選択ルールを採用している場合には、例えば、図11に示されているように、単独の収穫機1によって、作業対象領域CAが作業走行されるように走行経路要素が選択される。その結果、図11の例では、単独の収穫機1による1つの走行軌跡が渦巻き線を描きながら作業対象領域CAを網羅する渦巻き走行パターンとなる。
次に、協調経路要素選択ルールによる2台の収穫機1での協調作業走行から、単独経路要素選択ルールによる単独の収穫機1での単独作業走行への切り替わりが、図21を用いて説明される。このような協調作業走行から単独作業走行への切り替わりは、1台の収穫機1が停止または作業対象領域CAから離脱した際に発生する。
尚、図20で示された走行軌跡は理論的なものである。実際には、作業状態評価部55から出力される状態情報(他車位置関係及び接触推定位置を含む)に対応して、マスタ収穫機1mの走行軌跡とスレーブ収穫機1sの走行経路は修正され、その走行軌跡も、完全な2重渦巻きにはならない。そのような修正走行の一例が、図21を用いて以下に説明される。
協調作業走行から単独作業走行への切り替わりは、作業状態評価部55から出力される状態情報(他車位置関係及び接触推定位置を含む)から、1台の収穫機1の停止または作業対象領域CAから離脱が確認されると実行される。図21では、圃場の外側(畦)において、第1辺S1の中央外側に対応する位置に、収穫機1によって収穫された収穫物を搬送する運搬車CVが駐車している。そして、外周領域SAにおける運搬車CVに隣り合う位置に、運搬車CVへの収穫物排出作業のために収穫機1が駐車される駐車位置が設定されている。図21は、スレーブ収穫機1sが、作業走行の途中で、作業対象領域CAでの走行経路要素から離脱して、外周領域SAを周回走行し、収穫物を運搬車CVに排出し、再び外周領域SAを周回走行し、作業対象領域CAでの走行経路要素に復帰する様子を示している。
まず、スレーブ収穫機1sの経路要素選択部63は、離脱要求(収穫物排出)が発生すると、貯留量の余裕と、駐車位置までの走行距離等に基づいて、外周領域SAにおける離脱経路の属性値を持つ走行経路要素と、その離脱経路属性の走行経路要素への離脱元となる走行経路要素と、を選択する。本形態では、外周領域SAのうち駐車位置が設定された領域に設定されている走行経路要素と、現在走行している走行経路要素L41とが選択されており、走行経路要素L41と走行経路要素L12との交点が離脱点となっている。外周領域SAに進んだスレーブ収穫機1sは、外周領域SAの走行経路要素(離脱経路)に沿って駐車位置まで走行し、駐車位置にて運搬車CVに収穫物を排出する。このようなスレーブ収穫機1sの作業対象領域CAからの離脱を示すデータは、作業状態評価部55から出力される状態情報に含まれている、スレーブ収穫機1sの現在位置及び現在選択している走行経路要素と、マスタ収穫機1mの現在位置及び現在選択している走行経路要素とから判定される。
マスタ収穫機1mは、スレーブ収穫機1sが作業対象領域CAでの作業走行を離脱して収穫物の排出を行っている間も、作業対象領域CAでの作業走行を継続する。但し、マスタ収穫機1mは、走行経路要素L42の走行中において、本来なら走行経路要素L42と走行経路要素L13との交点で走行経路要素L13を選択する予定であった。しかし、スレーブ収穫機1sの離脱によって、スレーブ収穫機1sによる走行経路要素L12の走行がキャンセルされたので、走行経路要素L12は未刈地(未走行)となっている。このため、マスタ収穫機1mの経路要素選択部63は、協調経路要素選択ルールを取り消し、単独経路要素選択ルールを採用する。その結果、マスタ収穫機1mの経路要素選択部63は、走行経路要素L13に代えて走行経路要素L12を選択する。つまり、マスタ収穫機1mは、走行経路要素L42と走行経路要素L12との交点まで走行して、そこで左折して、走行経路要素L12を走行する。
スレーブ収穫機1sが収穫物排出を終えると、スレーブ収穫機1sの経路要素選択部63は、スレーブ収穫機1sの現在位置及び自動走行速度と、作業対象領域CAにおける走行経路要素の属性(未走行/既走行)と、マスタ収穫機1mの現在位置及び自動走行速度と等に基づいて、復帰するべき走行経路要素を選択する。本形態では、最も外側に位置する未作業走行経路要素である走行経路要素L43が選択されている。スレーブ収穫機1sは、駐車位置から、外周領域SAを、復帰経路の属性を有する走行経路要素に沿って左回りに走行して、走行経路要素L43の左端から走行経路要素L43に入る。スレーブ収穫機1sの経路要素選択部63が走行経路要素L43を選択すると、その情報が、状態情報としてマスタ収穫機1mに送信される。これにより、マスタ収穫機1mの経路要素選択部63は、単独経路要素選択ルールを取り消し、協調経路要素選択ルールを採用する。その結果、マスタ収穫機1mの経路要素選択部63は、走行経路要素L33まで走行経路を選択していたとすると、次の走行経路要素として、走行経路要素L43の内側隣の走行経路要素L44を選択する。その際、他車位置関係算出部56は、マスタ収穫機1m及びスレーブ収穫機1sが走行している(選択している)走行経路要素L33と走行経路要素L44との交点付近でマスタ収穫機1mとスレーブ収穫機1sとが接触することを推定する。これにより、他車位置関係算出部56は、当該交点付近を接触推定位置として算出する。そこで、他車位置関係算出部56は、当該交点のマスタ収穫機1mとスレーブ収穫機1sとの当該交点付近の通過時間差を算出し、その通過時間差が所定値以下(マスタ収穫機1mとスレーブ収穫機1sとの接触が推定される)なら、通過時間が遅い方の収穫機1(ここではマスタ収穫機1m)が衝突回避のため一時停車するように自動走行制御部511に指令する。スレーブ収穫機1sが当該交点を通過した後に、マスタ収穫機1mが再び自動走行を開始する。このようにマスタ収穫機1mとスレーブ収穫機1sとが、互いに自車位置や選択した走行経路要素などの情報を交換しているので、衝突回避行動や遅延回避行動を実行することができる。
このような衝突回避行動や遅延回避行動は、図22及び図23で示すように、直線往復走行においても実行される。また、その際は、協調経路要素選択ルールから単独経路要素選択ルールへの切り替わり、及びその逆の切り替わりも実行される。なお、図22及び図23では、互いに平行な直線からなる平行直線群は、L01、L02、・・・L10で示されており、L01-L04が既作業の走行経路要素であり、L05-L10が未作業の走行経路要素である。図22では、マスタ収穫機1mが二点鎖線で示されている駐車位置に向かうために外周領域SAを走行している。スレーブ収穫機1sは、マスタ収穫機1mとの接触を回避するために、衝突回避行動として、作業対象領域CAの下端で、詳しくは走行経路要素L04の下端で一時停止している。図23では、スレーブ収穫機1sの前を横切ったマスタ収穫機1mは、駐車位置で停車している。また、図22及び図23の作業走行状態では、スレーブ収穫機1sの経路要素選択部63は、単独経路要素選択ルールを採用している。マスタ収穫機1mの経路要素選択部63は、周回経路要素を選択する離脱経路要素選択ルールを採用している。図23において、スレーブ収穫機1sが走行経路要素L04からUターン走行で走行経路要素L07に移行するために外周領域SAに進入すると、マスタ収穫機1mと衝突する。駐車位置にマスタ収穫機1mが駐車した場合、走行経路要素L05、L06、L07を用いた作業対象領域CAへの進入や作業対象領域CAからの離脱は不可能となるので、走行経路要素L05、L06、L07は一時的に走行禁止(選択禁止)となる。マスタ収穫機1mが排出作業を終え、駐車位置から移動すると、スレーブ収穫機1sの経路要素選択部63が、マスタ収穫機1mの走行経路を加味して、走行経路要素L05-L10から、次に移行すべき走行経路要素を選択し、スレーブ収穫機1sは自動走行を再開する。
また、駐車位置にてマスタ収穫機1mが排出作業等を行っている間にも、スレーブ収穫機1sが作業を続けることも可能である。その例を図23に示してある。このケースでは、スレーブ収穫機1sの経路要素選択部63は、通常であれば、走行経路要素優先度が「1」である3レーン先の走行経路要素L07を、移行先の走行経路要素として選択するが、走行経路要素L07は、図22の例と同様に走行禁止となっている。そこで、次に優先度が高い走行経路要素L08が選択される。走行経路要素L04から走行経路要素L08への移動経路としては、既走行となった現在の走行経路要素L04を後進する経路(図23で実線で示されている)や、走行経路要素L04の下端から右回りで前進して外周領域SAに出る経路(図23で点線で示されている)等の複数の経路が算出され、最も効率の良い経路、例えば最短となる経路(この形態では実線の経路)が選択される。
図22と図23とに示された作業走行形態から、以下のことが理解される。つまり、協調経路要素選択ルールでは、自車以外の収穫機1が位置している走行経路要素及び当該走行経路要素に隣接する走行経路要素は、次走行経路要素としての選択対象から外される。また、単独経路要素選択ルールでは、外周領域に位置している自車以外の収穫機1に向かう前記走行経路要素は、次走行経路要素としての選択対象から外される。
上述したように、複数台の収穫機1が協調して、1つの圃場の作業走行する場合でも、それぞれの経路要素選択部63は、管理センタKSから受け取った作業計画書や通信端末4から人為的に入力された走行パターン(例えば、直線往復走行パターンや渦巻き走行パターン)と、自車位置と、それぞれの作業状態評価部55から出力される状態情報と、予め登録されている選択ルールとに基づいて、走行経路要素を順次選択していく。以下に、上述した(A1)-(A12)以外のルールであって、複数台の収穫機1が協調して作業走行する場合に特有な選択ルール(B1)から(B11)を列挙する。
(B1)協調して作業走行する複数の収穫機1は、同じ走行パターンで自動走行する。例えば、一方の収穫機1に直線往復走行パターンが設定されている場合は、他方の収穫機1にも直線往復走行パターンが設定される。
(B2)渦巻き走行パターンが設定されている場合に、一方の収穫機1が作業対象領域CAでの作業走行から離脱して外周領域SAに入ると、他方の収穫機1は、より外側の走行経路要素を選択する。その結果、離脱した収穫機1の走行予定経路を残しておくのではなく、離脱した収穫機1が走行する予定の走行経路要素を先取りする。
(B3)渦巻き走行パターンが設定されている場合に、離脱した収穫機1が再び作業対象領域CAでの作業走行に復帰するに際しては、作業走行中の収穫機1から遠く、かつ、未作業の属性を持つ走行経路要素を選択する。
(B4)渦巻き走行パターンが設定されている場合に、選択対象となる走行経路要素の長さが短くなると、1台のみの収穫機1で作業走行を実行し、残りの収穫機1は作業走行から離脱する。
(B5)渦巻き走行パターンが設定されている場合、衝突危険性を回避するため、複数の収穫機1が、作業対象領域CAの外形を示す多角形の辺に平行な走行経路要素群から走行経路要素を同時に選択することを禁止する。
(B6)直線往復走行パターンが設定されている場合、いずれかの収穫機1がUターン走行しているときは、他の収穫機1は、外周領域SAのうちUターン走行が実行されている領域に進入しないように自動走行制御される。
(B7)直線往復走行パターンが設定されている場合、次の走行経路要素としては、他の収穫機1が次に走行予定の走行経路要素または現在走行している走行経路要素から少なくとも2つ以上離れた位置にある走行経路要素が選択される。
(B8)収穫物排出や燃料補給のため、作業対象領域CAでの作業走行から離脱するタイミングの決定、及び、走行経路要素の選択は、余裕度と駐車位置までの走行時間とだけでなく、複数の収穫機1が同時に離脱しないことを条件に加えて行われる。
(B9)マスタ収穫機1mにて慣行走行が設定されている場合、スレーブ収穫機1sは、マスタ収穫機1mに追従する自動走行を行う。
(B10)マスタ収穫機1mの収穫物タンク14の容量とスレーブ収穫機1sの収穫物タンク14の容量とが異なる場合に、同時またはほぼ同時に排出要求が出されると、容量が少ない収穫機1が先に排出作業を行う。排出できない収穫機1の排出待機時間(非作業時間)が短くなり、圃場の収穫作業を少しでも早く終了できる。
(B11)1つの圃場が相当広い場合は、1つの圃場を中割りによって複数の区画に区分けし、各区画に1台の収穫機1を投入する。図24は、作業対象領域CAの中央に帯状の中割り領域CCを形成して、作業対象領域CAを2つの区画CA1とCA2とに区分けする中割り過程の途中を示す説明図であり、図25は、中割り過程の終了後を示す説明図である。この実施形態では、マスタ収穫機1mが中割り領域CCを形成する。マスタ収穫機1mが中割りを行っている間、スレーブ収穫機1sは、区画CA2で、例えば直線往復走行パターンで作業走行を行う。この作業走行に先立って、区画CA2のための走行経路要素群が生成される。その際、区画CA2において、中割り領域CCに最も近い位置の作業幅一本分に対応する走行経路要素を選択することは、中割り過程が終了するまで禁止される。これにより、マスタ収穫機1mとスレーブ収穫機1sとの接触を回避することができる。
中割り過程が終了すると、マスタ収穫機1mは区画CA1のために算出された走行経路要素群を用いて、単独作業走行のように走行制御され、スレーブ収穫機1sは区画CA2のために算出された走行経路要素群を用いて、単独作業走行のように走行制御される。どちらかの収穫機1が先に作業を完了した場合、作業が残っている区画に入って、当該収穫機1と他の収穫機1との協調制御が開始される。担当する区画での作業が終了した収穫機1は、他の収穫機1の作業のサポートをするために、他の収穫機1の担当区画に向かうように自動走行する。
圃場の規模がさらに大きい場合には、図26に示すように、圃場が格子状に中割りされる。この中割りは、マスタ収穫機1mとスレーブ収穫機1sとで行うことができる。格子状の中割りで形成された区画にマスタ収穫機1mによる作業とスレーブ収穫機1sによる作業とが振り分けられ、それぞれの区画において、単独の収穫機1による作業走行が実施される。但し、マスタ収穫機1mとスレーブ収穫機1sとの距離が所定値以上に離れないという条件で、走行経路要素が選択される。これは、スレーブ収穫機1sがマスタ収穫機1mから離れ過ぎると、マスタ収穫機1mに搭乗している監視者によるスレーブ収穫機1sの作業走行の監視や、互いの状態情報の交信が困難になるためである。図26のような形態の場合は、担当する区画での作業が終了した収穫機1は、他の収穫機1の作業のサポートをするために、他の収穫機1の担当区画に向かうように自動走行しても良いし、自車の担当である次の区画に向かうように自動走行しても良い。
運搬車CVの駐車位置や、燃料補給車の駐車位置は、外周領域SAの外側となるので、作業走行している区画によっては、収穫物排出や燃料補給のための走行経路が長くなり、その走行時間が無駄となる。このため、駐車位置への往き走行及び駐車位置からの戻り走行の際に、通り道となる区画の作業走行を実施するような走行経路要素と周回経路要素が選択される。
〔協調自動走行時における作業装置機器群等のパラメータの微調整について〕
マスタ収穫機1mとスレーブ収穫機1sとが協調して作業走行する場合、通常マスタ収穫機1mには、監視者が搭乗している。そのため、監視者は、マスタ収穫機1mについては、必要に応じて、通信端末4を通じて、自動走行制御における車両走行機器群71や作業装置機器群72に対するパラメータの値を微調整できる。マスタ収穫機1mの車両走行機器群71や作業装置機器群72に対するパラメータの値を、スレーブ収穫機1sにおいても実現するため、図27に示すように、マスタ収穫機1mからスレーブ収穫機1sのパラメータを調整できる構成を採用することができる。ただし、通信端末4は、スレーブ収穫機1sにも備えられていても何ら問題はない。なぜならば、スレーブ収穫機1sも、単独自動走行をする場合も、マスタ収穫機1mとして使用される場合もあるからである。
マスタ収穫機1mとスレーブ収穫機1sとが協調して作業走行する場合、通常マスタ収穫機1mには、監視者が搭乗している。そのため、監視者は、マスタ収穫機1mについては、必要に応じて、通信端末4を通じて、自動走行制御における車両走行機器群71や作業装置機器群72に対するパラメータの値を微調整できる。マスタ収穫機1mの車両走行機器群71や作業装置機器群72に対するパラメータの値を、スレーブ収穫機1sにおいても実現するため、図27に示すように、マスタ収穫機1mからスレーブ収穫機1sのパラメータを調整できる構成を採用することができる。ただし、通信端末4は、スレーブ収穫機1sにも備えられていても何ら問題はない。なぜならば、スレーブ収穫機1sも、単独自動走行をする場合も、マスタ収穫機1mとして使用される場合もあるからである。
図27に示された通信端末4には、パラメータ取得部45と、パラメータ調整指令生成部46とが構築されている。パラメータ取得部45は、マスタ収穫機1mとスレーブ収穫機1sとで設定されている機器パラメータを取得する。これにより、通信端末4のタッチパネル41の表示パネル部にマスタ収穫機1m及びスレーブ収穫機1sの機器パラメータの設定値を表示させることができる。マスタ収穫機1mに搭乗している監視者は、タッチパネル41を通じて、マスタ収穫機1m及びスレーブ収穫機1sの機器パラメータを調整するための機器パラメータ調整量を入力する。パラメータ調整指令生成部46は、入力された機器パラメータ調整量に基づいて、対応する機器パラメータを調整するパラメータ調整指令を生成して、マスタ収穫機1m及びスレーブ収穫機1sに送信する。このような通信のための通信インタフェースとして、マスタ収穫機1m及びスレーブ収穫機1sの制御ユニット5には通信処理部70が備えられており、通信端末4には通信制御部40が備えられている。マスタ収穫機1mの機器パラメータの調整に関しては、監視者がマスタ収穫機1mに装備されている各種操作具を用いて、直接行ってもよい。機器パラメータは、走行機器パラメータと作業機器パラメータとに分けられる。走行機器パラメータには、車速とエンジン回転数とが含まれる。また、作業機器パラメータには、収穫部15の高さやリール17の高さが含まれている。
上述したように、他車位置関係算出部56は、衛星測位モジュール80によって得られた測位データに基づいて収穫機1の現在位置及び実車速を算出する機能を有する。協調自動走行において、この機能を利用し、同一方向で先行する収穫機1の測位データに基づく実車速と、後続の収穫機1の測位データに基づく実車速とを比較し、車速差があれば、後続の収穫機1の車速が先行する収穫機1の車速と一致するように、車速調整が行われる。これにより、先行する収穫機1と後続の収穫機1との車速の違いに起因する異常接近や接触が回避される。
上述したように、2台の収穫機1で協調作業走行している途中で、一方の収穫機1が離脱しても、協調経路要素選択ルールから単独経路要素選択ルールに切り換わることで、他方の収穫機1が一方作業機1の分まで作業走行を行うことができる。同様に、3台以上の収穫機1で協調作業走行している途中で、少なくとも1台の収穫機1離脱しても、台数を減じた協調経路要素選択ルールまたは単独経路要素選択ルールに切り換わることで、残っている収穫機1が離脱した作業機1の分まで作業走行を行うことができる。
収穫機1の通信処理部70や通信端末4の通信制御部40に、登録されている携帯電話などの携帯通信端末と通話やメールを送る通信通話機能を備えることができる。そのような通信通話機能が備えられている場合、収穫物の貯留量が所定量を超えると、収穫物の排出先となる運搬車CVの運転者に、収穫物排出を行う旨の通話(人工音声)またはメールが送出される。同様に、燃料残量が所定量以下になると、燃料補給車の運転者に、燃料補給を依頼する旨の通話(人工音声)またはメールが送出される。
〔別の実施形態〕
(1)上述の実施形態では、事前の周回走行によって、直線往復走行におけるUターン走行にとっても、渦巻き走行におけるαターン走行にとっても十分な広さのスペースが確保されることを前提に自動走行の説明をした。しかし、一般的には、Uターン走行に要するスペースは、αターン走行に要するスペースよりも広い。そのため、事前の周回走行により形成されるスペースは、Uターン走行にとって十分でないことが有り得る。例えば、図28に示すように、1台の収穫機1によって作業を行っている際に、Uターン走行をするときに、畦にデバイダ等が接触して、畦を崩してしまう虞がある。そこで、走行パターンとして直線往復走行パターンが設定された場合には、前述のように畦を崩してしまう事態を回避するべく、作業走行が開始されたら、先ずは、作業対象領域CAの最外周部分において、少なくとも一周を自動で作業走行することにより、外周領域SAを内周側に拡張する。事前の周回走行によって形成された外周領域SAの幅がUターン走行にとって不十分であったとしても、このように、外周領域SAを内周側に拡張することによって、問題なくUターン走行を行うことが可能となる。また、圃場の周囲に停車された作業支援車への収穫物排出等のために収穫機1を規定の駐車位置に停車させる際は、効率良い作業のために、収穫機1を駐車位置に、ある程度正確に、かつ、支援作業に好適な姿勢(向き)で停車させる必要がある。これは、自動走行であろうが手動走行であろうが同じである。作業対象領域CAの外周ラインうちUターン走行が行われる側の外周ラインは直線往復走行によっては変動しないため、外周領域SAが狭いと、収穫機1が未作業地である作業対象領域CAに突入して農作物などに損傷を与えたり、畦に接触して畦を崩してしまったりする可能性がある。このため、直線往復走行による作業対象領域CAの走行作業を開始する前に、追加的な周回走行(追加周回走行)を行うことが好適である。このような追加周回走行は、監視者の指示によって行われてもよいし、自動的に行われてもよい。なお、上述したように、外周領域SAを作り出す事前の周回走行は、通常複数周、渦巻き状に行われる。一番外側の周回走行経路は、走行経路が複雑で、圃場毎に異なるので、人為操舵が採用される。それ以降の周回走行は、自動操舵または人為操舵で行われる。また、図28に示すように、駐車位置PPとUターン経路群ULとが重複している場合、収穫機1が駐車位置PPに駐車している間は、その収穫機1により、別の収穫機1のUターン走行が阻害されてしまう事態が想定される。そのため、事前の周回走行が完了した時点で、駐車位置PPとUターン経路群ULとが重複している場合は、上述の追加周回走行を行うことが望ましい。
(1)上述の実施形態では、事前の周回走行によって、直線往復走行におけるUターン走行にとっても、渦巻き走行におけるαターン走行にとっても十分な広さのスペースが確保されることを前提に自動走行の説明をした。しかし、一般的には、Uターン走行に要するスペースは、αターン走行に要するスペースよりも広い。そのため、事前の周回走行により形成されるスペースは、Uターン走行にとって十分でないことが有り得る。例えば、図28に示すように、1台の収穫機1によって作業を行っている際に、Uターン走行をするときに、畦にデバイダ等が接触して、畦を崩してしまう虞がある。そこで、走行パターンとして直線往復走行パターンが設定された場合には、前述のように畦を崩してしまう事態を回避するべく、作業走行が開始されたら、先ずは、作業対象領域CAの最外周部分において、少なくとも一周を自動で作業走行することにより、外周領域SAを内周側に拡張する。事前の周回走行によって形成された外周領域SAの幅がUターン走行にとって不十分であったとしても、このように、外周領域SAを内周側に拡張することによって、問題なくUターン走行を行うことが可能となる。また、圃場の周囲に停車された作業支援車への収穫物排出等のために収穫機1を規定の駐車位置に停車させる際は、効率良い作業のために、収穫機1を駐車位置に、ある程度正確に、かつ、支援作業に好適な姿勢(向き)で停車させる必要がある。これは、自動走行であろうが手動走行であろうが同じである。作業対象領域CAの外周ラインうちUターン走行が行われる側の外周ラインは直線往復走行によっては変動しないため、外周領域SAが狭いと、収穫機1が未作業地である作業対象領域CAに突入して農作物などに損傷を与えたり、畦に接触して畦を崩してしまったりする可能性がある。このため、直線往復走行による作業対象領域CAの走行作業を開始する前に、追加的な周回走行(追加周回走行)を行うことが好適である。このような追加周回走行は、監視者の指示によって行われてもよいし、自動的に行われてもよい。なお、上述したように、外周領域SAを作り出す事前の周回走行は、通常複数周、渦巻き状に行われる。一番外側の周回走行経路は、走行経路が複雑で、圃場毎に異なるので、人為操舵が採用される。それ以降の周回走行は、自動操舵または人為操舵で行われる。また、図28に示すように、駐車位置PPとUターン経路群ULとが重複している場合、収穫機1が駐車位置PPに駐車している間は、その収穫機1により、別の収穫機1のUターン走行が阻害されてしまう事態が想定される。そのため、事前の周回走行が完了した時点で、駐車位置PPとUターン経路群ULとが重複している場合は、上述の追加周回走行を行うことが望ましい。
追加周回走行のための走行経路は、事前の周回走行における収穫機1の走行軌跡や、作業対象領域CAの外形データ等に基づいて算出することができる。従って、追加周回走行は、自動操舵によって行うことが可能である。以下に、図28を用いて、自動走行での追加周回走行の流れの一例を説明する。
<ステップ#01>
事前の周回走行によって、圃場は、収穫作業が終わった外周領域SAと、これから収穫作業が行われる作業対象領域CAとに区分けされる。事前の周回走行後においては、図28のステップ#01に示すように、駐車位置PPとUターン経路群ULとが外周領域SAにおいて重複している。そして、外周領域SAにおけるUターン経路群ULが設定されている部分の幅は、直線往復走行だけでは拡張されることはない。したがって、この部分の幅を拡張するために、自動的に、あるいは監視者の指示に基づいて、図28のステップ#02で示す追加周回走行が実行される。
<ステップ#02>
この追加周回走行では、矩形状の周回走行経路を構成する複数の周回走行経路要素(図28で太線)が算出される。この周回走行経路要素には、直線往復走行のために算出された走行経路要素における左端の走行経路要素Lsと右端の走行経路要素Leとが含まれる。なお、走行経路要素Ls及び走行経路要素Leは、いずれも直線状である。また、矩形状の周回走行経路において、走行経路要素Lsと走行経路要素Leとは対辺となる。また、ここでは、周回走行経路要素は、走行経路要素Lsと、走行経路要素Leと、走行経路要素Ls及び走行経路要素Leの上端同士を接続する走行経路要素と、走行経路要素Ls及び走行経路要素Leの下端同士を接続する走行経路要素と、である。自動走行が開始されると、この追加的な周回走行経路に適合する周回走行経路要素が経路要素選択部63によって選択され、自動走行(周回走行での作業走行)が実行される。
<ステップ#03>
図28のステップ#03で示すように、この追加周回走行により、外周領域SAが拡大される。これにより、駐車位置PPと未作業地との間に、少なくとも収穫機1の作業幅に相当する幅を有するスペースが新たに形成される。次いで、作業対象領域CAが、この追加周回走行での周回数の作業幅分だけ縮小されたことにより、左端の走行経路要素Lsと右端の走行経路要素Leとは、作業対象領域CAが縮小された分だけ内側に移動する。そして、移動された走行経路要素Ls及び走行経路要素Leを対辺とする矩形である新たな作業対象領域CAに対して、直線往復走行パターンによる作業走行経路が決定され、新たな作業対象領域CAの自動作業走行が開始される。
<ステップ#01>
事前の周回走行によって、圃場は、収穫作業が終わった外周領域SAと、これから収穫作業が行われる作業対象領域CAとに区分けされる。事前の周回走行後においては、図28のステップ#01に示すように、駐車位置PPとUターン経路群ULとが外周領域SAにおいて重複している。そして、外周領域SAにおけるUターン経路群ULが設定されている部分の幅は、直線往復走行だけでは拡張されることはない。したがって、この部分の幅を拡張するために、自動的に、あるいは監視者の指示に基づいて、図28のステップ#02で示す追加周回走行が実行される。
<ステップ#02>
この追加周回走行では、矩形状の周回走行経路を構成する複数の周回走行経路要素(図28で太線)が算出される。この周回走行経路要素には、直線往復走行のために算出された走行経路要素における左端の走行経路要素Lsと右端の走行経路要素Leとが含まれる。なお、走行経路要素Ls及び走行経路要素Leは、いずれも直線状である。また、矩形状の周回走行経路において、走行経路要素Lsと走行経路要素Leとは対辺となる。また、ここでは、周回走行経路要素は、走行経路要素Lsと、走行経路要素Leと、走行経路要素Ls及び走行経路要素Leの上端同士を接続する走行経路要素と、走行経路要素Ls及び走行経路要素Leの下端同士を接続する走行経路要素と、である。自動走行が開始されると、この追加的な周回走行経路に適合する周回走行経路要素が経路要素選択部63によって選択され、自動走行(周回走行での作業走行)が実行される。
<ステップ#03>
図28のステップ#03で示すように、この追加周回走行により、外周領域SAが拡大される。これにより、駐車位置PPと未作業地との間に、少なくとも収穫機1の作業幅に相当する幅を有するスペースが新たに形成される。次いで、作業対象領域CAが、この追加周回走行での周回数の作業幅分だけ縮小されたことにより、左端の走行経路要素Lsと右端の走行経路要素Leとは、作業対象領域CAが縮小された分だけ内側に移動する。そして、移動された走行経路要素Ls及び走行経路要素Leを対辺とする矩形である新たな作業対象領域CAに対して、直線往復走行パターンによる作業走行経路が決定され、新たな作業対象領域CAの自動作業走行が開始される。
なお、図28のステップ#01において、駐車位置PPがUターン経路群ULに重複しておらず、かつ、駐車位置PPがUターン経路群ULに向かい合っていない場合がある。例えば、駐車位置PPが、左端の走行経路要素Lsに向き合って位置する場合がある。この場合は、走行経路要素Lsが最初に選択される直線往復走行が行われることで、駐車位置の周辺領域が拡大されていくので、上述の追加周回走行は、もはや実行されない。あるいは、1周程度の追加周回走行だけが行われても良い。
また、複数台の収穫機1によって協調的に作業走行するような場合にも、上述の追加周回走行が自動的に行われるように構成されていても良い。協調作業の場合、走行パターンとして直線往復走行パターンが設定されると共に、駐車位置PPがUターン経路群ULに向かい合う位置に設定されると、作業走行開始後すぐに、複数周(3~4周程度)分の追加周回走行が自動的に行われる。これにより、作業対象領域CAが縮小され、駐車位置PPの内周側に広いスペースが確保される。したがって、一台の収穫機1が駐車位置PPに停車していても、他の収穫機1は、余裕を持って、駐車位置PPの内周側でUターンすることや、駐車位置PPの内周側を通過することができる。
(2)上述の実施形態では、直線往復走行パターンが設定されている場合に、外周領域SAにおいてUターン走行が行われる領域に、運搬車CV等の支援車への作業のための駐車位置PPが設定されていると、排出作業等のために停車している収穫機1とは別の収穫機1は、排出作業等の終了まで停止して待機したり、駐車位置PPを迂回する走行経路要素が選択されたりするように構成されていた。しかし、このような場合に、駐車位置PPよりも内周側にUターン走行を行うのに十分なスペースを確保するために、自動走行(作業走行)が開始されると、1台または複数台の収穫機1が自動で作業対象領域CAの外周部を何周か周回走行するように構成してあっても良い。
(3)上述した実施形態では、第1作業車であるマスタ収穫機1mと第2作業車であるスレーブ収穫機1sとの作業幅が同じであると見なして、走行経路要素の設定及び選択について説明した。ここでは、マスタ収穫機1mの作業幅とスレーブ収穫機1sとの作業幅とが異なる場合に、どのように走行経路要素の設定及び選択がなされるかについて、2つの例を挙げて説明する。マスタ収穫機1mの作業幅を第1作業幅とし、スレーブ収穫機1sの作業幅を第2作業幅として説明する。理解しやすいように、具体的に、第1作業幅を「6」とし、第2作業幅を「4」としている。
(3-1)図29には、直線往復走行パターンが設定されている場合の例が示されている。このケースでは、経路管理部60は、第1作業幅と第2作業幅の最大公約数または近似最大公約数である基準幅で、作業対象領域CAを網羅する多数の走行経路要素の集合体である走行経路要素群を算出する。第1作業幅が「6」、第2作業幅が「4」であるから、基準幅は「2」となる。図29では、走行経路要素を識別するため、01から20までの数を、経路番号として各走行経路要素に付してある。
経路番号17の走行経路要素からマスタ収穫機1mが出発し、経路番号12の走行経路要素からスレーブ収穫機1sが出発するものとする。経路要素選択部63は、図6に示すように、マスタ収穫機1mの走行経路要素を選択する機能を有する第1経路要素選択部631と、スレーブ収穫機1sの走行経路要素を選択する機能を有する第2経路要素選択部632とに分けられている。経路要素選択部63がマスタ収穫機1mの制御ユニット5に構築されている場合、第2経路要素選択部632によって選択された次走行経路要素は、マスタ収穫機1mの通信処理部70とスレーブ収穫機1sの通信処理部70とを介してスレーブ収穫機1sの経路設定部64に与えられる。なお、作業幅の中心または収穫機1の中心と走行経路要素とは必ずしも一致しなくてもよく、偏差があれば、その偏差を考慮した自動走行制御が行われる。
図29に示されているように、第1経路要素選択部631は、第1作業幅または第2作業幅の整数倍の領域(未走行でも既走行でも可)、あるいは、第1作業幅の整数倍と第2作業幅の整数倍との合計の領域(未走行でも既走行でも可)を残すように、未走行となっている走行経路要素群から、次の走行経路要素を選択する。選択された次走行経路要素は、マスタ収穫機1mの経路設定部64に与えられる。同様に、第2経路要素選択部632は、第1作業幅または第2作業幅の整数倍の領域(未走行でも既走行でも可)、あるいは、第1作業幅の整数倍と第2作業幅の整数倍との合計の領域(未走行でも既走行でも可)を残すように、未走行となっている走行経路要素群から、次の走行経路要素を選択する。
つまり、第1経路要素選択部631または第2経路要素選択部632によって与えられた次走行経路要素に沿ってマスタ収穫機1mまたはスレーブ収穫機1sが自動走行した後には、作業対象領域CAには、第1作業幅または第2作業幅の整数倍の幅を有する未走行の領域が残され続けることとなる。しかし、最終的には、第2作業幅未満の狭い幅を有する未作業領域が残る可能性があるが、そのような最後に残った未作業領域は、マスタ収穫機1mまたはスレーブ収穫機1sのいずれかで作業走行される。
(3-2)図30には、渦巻き走行パターンが設定されている場合の例が示されている。このケースでは、作業対象領域CAに、縦横の間隔が第1作業幅である縦直線群と横直線群とで走行経路要素群が設定される。横直線群に属する走行経路要素には、その経路番号として、X1からX9の記号が与えられており、縦直線群に属する走行経路要素には、その経路番号として、Y1からY9の記号が与えられている。
図30は、マスタ収穫機1mとスレーブ収穫機1sとが外から内にかけて左回りの二重渦巻き線を描くような渦巻き走行パターンが設定されている。経路番号Y1の走行経路要素からマスタ収穫機1mが出発し、経路番号X1の走行経路要素からスレーブ収穫機1sが出発するものとする。経路要素選択部63は、このケースでも、第1経路要素選択部631と第2経路要素選択部632とに分けられている。
図30に示すように、マスタ収穫機1mは、まず、第1経路要素選択部631によって最初に選択された経路番号Y1の走行経路要素を走行する。しかしながら、図30で示された走行経路要素群は、当初第1作業幅を間隔として算出されているので、第1作業幅より狭い第2作業幅を有するスレーブ収穫機1sのために、第2経路要素選択部632によって最初に選択された経路番号X1の走行経路要素は、第1作業幅と第2作業幅の違いを埋めるために、その位置座標が修正される。つまり、第1作業幅と第2作業幅との差(以降、この差を幅差と称する)の0.5倍分だけ、経路番号X1の走行経路要素は外側寄りに修正される(図30、#01)。同様に、スレーブ収穫機1sの走行にともなって選択された次走行経路要素である経路番号Y2、X8、Y8も修正される(図30、#02と#03と#04)。マスタ収穫機1mは、当初通りの経路番号Y1から経路番号X9、Y9の走行経路要素を走行する(図30、#03と#04)が、その次に選択される経路番号X2の走行経路要素は、その外側をスレーブ収穫機1sが走行しているので幅差だけ位置修正が行われる(図30、#04)。スレーブ収穫機1sのために、経路番号X3の走行経路要素を選択された際には、経路番号X3の外側に位置する経路番号X1の走行経路要素をスレーブ収穫機1sが既に走行しているので、幅差の1.5倍分だけ、位置修正が行われる(図30、#05)。このようにして、あとは、順次、選択された走行経路要素の外側にスレーブ収穫機1sが走行した走行経路要素が存在する数に応じて第1作業幅と第2作業幅との差を相殺すべく、選択された走行経路要素の位置修正が行われる(図30、#06)。走行経路要素の位置修正は、ここでは、経路管理部60によって行われるが、第1経路要素選択部631と第2経路要素選択部632とによって行われることも可能である。
図29と図30とを用いた走行例では、第1経路要素選択部631と第2経路要素選択部632とが、マスタ収穫機1mの制御ユニット5に構築されていると仮定している。しかしながら、第2経路要素選択部632がスレーブ収穫機1sに構築されることも可能である。その際は、スレーブ収穫機1sが走行経路要素群を示すデータを受け取り、第1経路要素選択部631と第2経路要素選択部632とが、それぞれが選択した走行経路要素を交換しながら、自己の次走行経路要素を選択し、必要な位置座標修正を行うとよい。また、経路管理部60、第1経路要素選択部631、第2経路要素選択部632を全て、通信端末4に構築し、通信端末4から、選択された走行経路要素を経路設定部64に送る構成も可能である。
(4)上述の実施形態において図6に基づいて説明した制御機能ブロックはあくまでも一例に過ぎず、各機能部をさらに分割することや複数の機能部を統合することも可能である。また、機能部は、上部制御装置としての制御ユニット5と通信端末4と管理コンピュータ100とに振り分けられたが、この機能部の振り分けも一例であり、各機能部は、任意の上部制御装置に振り分けることも可能である。上部制御装置同士でデータ交換可能につながっていれば、別の上部制御装置に振り分けること可能である。例えば、通信端末4の機能の全てをマスタ収穫機1mに構築することも可能である。また、図6で示された制御機能ブロック図では、他車位置関係算出部56は、収穫機1の制御ユニットに構築されていたが、通信端末4に構築してもよい。この場合、通信端末4には、各収穫機1の現在位置、現在走行している(選択している)走行経路要素などの情報が各収穫機1から送られる。逆に、他車位置関係算出部56によって算出された他車位置関係は各作業車1の作業状態評価部55に送られる。さらに、図6で示された制御機能ブロック図では、作業地データ入力部42、外形データ生成部43、領域設定部44が、第1走行経路管理モジュールCM1として、通信端末4に構築されている。さらに、経路管理部60、経路要素選択部63、経路設定部64が、第2走行経路管理モジュールCM2として、収穫機1の制御ユニット5に構築されている。これに代えて、経路管理部60が第1走行経路管理モジュールCM1に含まれてもよい。また、外形データ生成部43や領域設定部44が、第2走行経路管理モジュールCM2に含まれてもよい。第1走行経路管理モジュールCM1の全てを制御ユニット5に構築してもよいし、第2走行経路管理モジュールCM2の全てを通信端末4に構築してもよい。走行経路管理に関するできるだけ多くの制御機能部を持ち出し可能な通信端末4に構築した方が、メンテナンス等の自由度が高くなり、好都合である。この機能部の振り分けは、通信端末4及び制御ユニット5のデータ処理能力や、通信端末4と制御ユニット5との間の通信速度によって制限される。
(5)本発明で算定され、設定される走行経路は、自動走行の目標走行経路として用いられるが、手動走行の目標走行経路として用いることも可能である。つまり、本発明は、自動走行のみならず手動走行にも適用可能であり、もちろん、自動走行と手動走行とを混在させた運用も可能である。
(6)上述の実施形態では、管理センタKSから送られてくる圃場情報に、そもそも圃場周辺の地形図が含まれており、圃場の境界に沿った周回走行によって、圃場の外形状及び外形寸法の精度を向上させる例を示した。しかし、圃場情報には圃場周辺の地形図、少なくとも圃場の地形図が含まれておらず、周回走行によって初めて、圃場の外形状及び外形寸法が算定されるように構成してあっても良い。また、管理センタKSから送られてくる圃場情報や作業計画書の内容や、通信端末4を通じて入力される項目は、上述した形態のものに限られず、本発明の趣旨を逸脱しない範囲で変更可能である。
(7)上述の実施形態では、図6に示されているように、メッシュ経路要素算出部601とは別に、短冊経路要素算出部602が備えられ、短冊経路要素算出部602によって、作業対象領域CAを網羅する平行直線群である走行経路要素群が算出される例を示した。しかし、短冊経路要素算出部602を備えずに、メッシュ経路要素算出部601によって算出されたメッシュ状の直線群である走行経路要素を用いて、直線往復走行を実現しても良い。
(8)上述の実施形態では、協調走行制御が行われている際に、監視者の目視結果に基づいて、スレーブ収穫機1sの車両走行機器群71や作業装置機器群72のパラメータを変更する例を示した。しかし、マスタ収穫機1mやスレーブ収穫機1sに搭載されたカメラによって撮影された映像(動画や一定間隔で撮影される静止画)がマスタ収穫機1mに搭載されたモニタ等に映し出されるように構成し、監視者がこの映像を見て、スレーブ収穫機1sの作業状況を判断し、車両走行機器群71や作業装置機器群72のパラメータを変更しても良い。あるいは、マスタ収穫機1mのパラメータが変更されるのに連動して、スレーブ収穫機1sのパラメータが変更されるように構成しても良い。
(9)上述の実施形態では、協調して作業走行する複数の収穫機1は、同じ走行パターンで自動走行するように構成した例を示したが、異なる走行パターンで自動走行するように構成することも可能である。
(10)上述の実施形態では、2台の収穫機1によって協調自動走行を行う例を示したが、3台以上の収穫機1による協調自動走行も同様の作業車自動走行システム及び走行経路管理装置によって実現可能である。
(11)図3では、走行経路要素群の一例として、作業対象領域CAを短冊状に分割する多数の平行分割直線を走行経路要素とする走行経路要素群が示されている。しかしながら、本発明はこれに限定されない。例えば、図31に示す走行経路要素群は、湾曲した平行線を走行経路要素としている。このように、本発明に係る「平行線」は湾曲していても良い。また、本発明に係る「平行線群」には、湾曲した平行線が含まれていても良い。
(12)図4では、走行経路要素群の一例として、作業対象領域CAをメッシュ分割する、縦横方向に延びた多数のメッシュ直線からなる走行経路要素群が示されている。しかしながら、本発明はこれに限定されない。即ち、本発明に係る「メッシュ線」は、直線でなくても良い。例えば、図32に示す走行経路要素群では、紙面における横方向のメッシュ線は直線であり、紙面における縦方向のメッシュ線は湾曲している。また、図33に示す走行経路要素群では、紙面における横方向のメッシュ線及び縦方向のメッシュ線は、いずれも湾曲している。このように、メッシュ線は湾曲していても良い。また、メッシュ線群には、湾曲したメッシュ線が含まれていても良い。
(13)上述の実施形態では、直線状の走行経路要素に沿った走行と、Uターン走行と、を繰り返すことにより、直線往復走行が行われる。しかしながら、本発明はこれに限定されず、図31から図33に示すような湾曲した走行経路要素に沿った走行と、Uターン走行と、を繰り返すことにより、往復走行が行われるように構成されていても良い。
(14)上述の実施形態では、圃場における収穫作業の最初に、収穫機1が周囲刈りを行う。尚、周囲刈りとは、圃場の境界線の内側に沿って周回しながら収穫を行う作業のことである。そして、この周囲刈りの後、領域設定部44は、収穫機1が周回した圃場の外周側の領域を外周領域SAとして設定するとともに、外周領域SAの内側を作業対象領域CAとして設定する。しかしながら、本発明はこれに限定されない。即ち、収穫機1による周囲刈りは本発明において必須の作業ではない。そして、領域設定部44は、外周領域SAを設定することなく、作業対象領域CAを設定するように構成されていても良い。例えば、領域設定部44は、通信端末4を介した監視者による操作入力に応じて作業対象領域CAを設定するように構成されていても良い。
本発明の作業車自動走行システムは、作業車として普通型コンバインである収穫機1以外にも、作業地を自動作業しながら走行することができる作業車であれば、自脱型コンバインやトウモロコシ収穫機など他の収穫機1や、耕耘装置などの作業装置を取り付けたトラクタ、水田作業機等にも適用可能である。
1 :収穫機(作業車)
1m :マスタ収穫機
1s :スレーブ収穫機
4 :通信端末
5 :制御ユニット
41 :タッチパネル
42 :作業地データ入力部
43 :外形データ生成部
44 :領域設定部
50 :通信処理部
51 :走行制御部
511 :自動走行制御部
512 :手動走行制御部
52 :作業制御部
53 :自車位置算出部
55 :作業状態評価部
56 :他車位置関係算出部
60 :経路管理部
63 :経路要素選択部
64 :経路設定部
70 :通信処理部
80 :衛星測位モジュール
SA :外周領域
CA :作業対象領域
1m :マスタ収穫機
1s :スレーブ収穫機
4 :通信端末
5 :制御ユニット
41 :タッチパネル
42 :作業地データ入力部
43 :外形データ生成部
44 :領域設定部
50 :通信処理部
51 :走行制御部
511 :自動走行制御部
512 :手動走行制御部
52 :作業制御部
53 :自車位置算出部
55 :作業状態評価部
56 :他車位置関係算出部
60 :経路管理部
63 :経路要素選択部
64 :経路設定部
70 :通信処理部
80 :衛星測位モジュール
SA :外周領域
CA :作業対象領域
Claims (7)
- データ交換しながら作業地を協調的に作業走行する複数の作業車のための作業車自動走行システムであって、
前記作業地を外周領域と前記外周領域の内側である作業対象領域とに設定する領域設定部と、
自車位置を算出する自車位置算出部と、
前記作業対象領域を網羅する走行経路を構成する多数の走行経路要素の集合体である走行経路要素群と、前記外周領域を周回する周回経路を構成する周回経路要素の集合体である周回経路要素群とを読み出し可能に管理する経路管理部と、
状態情報に基づいて、前記作業車が次に走行すべき次走行経路要素を前記走行経路要素群から、または次に走行すべき次周回経路要素を前記周回経路要素群から順次選択する経路要素選択部と、
前記次走行経路要素と前記自車位置とに基づいて自動走行を実行する自動走行制御部と、を備え、
前記経路要素選択部は、前記複数の作業車によって前記作業対象領域を協調的に作業走行する際に採用される協調経路要素選択ルールと、前記作業車の内の1台が単独作業車として前記作業対象領域を単独作業走行する際に採用される単独経路要素選択ルールとを備え、
前記単独作業車が前記作業対象領域を単独作業走行するとともに、自車以外の前記作業車が前記周回経路要素に基づく周回走行を行っているか、または停車している場合には、前記単独作業車の前記経路要素選択部は、単独経路要素選択ルールに基づいて前記次走行経路要素を選択する作業車自動走行システム。 - 前記走行経路要素群は、前記作業対象領域をメッシュ分割するメッシュ線からなるメッシュ線群であり、
前記メッシュ線同士の交点が、前記作業車の経路変更を許す経路変更可能点として設定され、
前記協調経路要素選択ルールでは、前記作業車による複数の渦巻き状走行軌跡によって作り出される多重渦巻き状走行軌跡が前記作業対象領域を網羅するように、前記次走行経路要素が選択され、
前記単独経路要素選択ルールでは、前記単独作業車による前記渦巻き状走行軌跡が前記作業対象領域を網羅するように、前記次走行経路要素が選択される請求項1に記載の作業車自動走行システム。 - 前記走行経路要素群は、前記作業対象領域を短冊状に分割する互いに平行な平行線からなる平行線群であり、
前記作業車のUターン走行により、1つの走行経路要素の一端から他の走行経路要素の一端への移行が実行され、
前記協調経路要素選択ルールでは、自車以外の前記作業車が位置している前記走行経路要素及び当該走行経路要素に隣接する前記走行経路要素は、前記次走行経路要素としての選択対象から外され、
前記単独経路要素選択ルールでは、前記外周領域に位置している自車以外の前記作業車に向かう前記走行経路要素は、前記次走行経路要素としての選択対象から外される請求項1に記載の作業車自動走行システム。 - データ交換しながら作業地を協調的に作業走行する複数の作業車のための作業車自動走行システムであって、
自車位置を算出する自車位置算出部と、
作業対象領域を網羅する走行経路を構成する多数の走行経路要素の集合体である走行経路要素群を算出して、読み出し可能に格納する経路管理部と、
次に走行すべき次走行経路要素を、前記自車位置と、他車の作業走行状態とに基づいて、順次前記走行経路要素群から選択する経路要素選択部と、を備えた作業車自動走行システム。 - 前記他車の作業走行状態に、自車と他車との位置関係を示す他車位置関係が含まれ、
前記他車位置関係を算出する他車位置関係算出部が備えられている請求項4に記載の作業車自動走行システム。 - 前記他車位置関係算出部は、前記他車位置関係に基づいて前記作業車同士の接触推定位置を算出し、
前記接触推定位置が算出された場合、前記接触推定位置を通過する時間が遅い方の作業車が一時停車する請求項5に記載の作業車自動走行システム。 - 前記他車位置関係算出部は、前記他車位置関係と、前記複数の作業車が走行している走行経路要素とに基づいて、前記接触推定位置を算出する請求項6に記載の作業車自動走行システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/466,056 US11300976B2 (en) | 2016-12-19 | 2017-11-29 | Work vehicle automatic traveling system |
EP17882393.6A EP3557360B1 (en) | 2016-12-19 | 2017-11-29 | Work vehicle automatic traveling system |
CN201780071289.8A CN109964190B (zh) | 2016-12-19 | 2017-11-29 | 作业车自动行驶系统 |
KR1020197013041A KR102452919B1 (ko) | 2016-12-19 | 2017-11-29 | 작업차 자동 주행 시스템 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016245803 | 2016-12-19 | ||
JP2016245801A JP6789800B2 (ja) | 2016-12-19 | 2016-12-19 | 作業車自動走行システム |
JP2016-245801 | 2016-12-19 | ||
JP2016-245803 | 2016-12-19 | ||
JP2017221342A JP7076195B2 (ja) | 2016-12-19 | 2017-11-16 | 作業車自動走行システム |
JP2017-221342 | 2017-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116770A1 true WO2018116770A1 (ja) | 2018-06-28 |
Family
ID=62626414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/042873 WO2018116770A1 (ja) | 2016-12-19 | 2017-11-29 | 作業車自動走行システム |
Country Status (2)
Country | Link |
---|---|
US (1) | US11300976B2 (ja) |
WO (1) | WO2018116770A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3103674A1 (fr) | 2019-12-03 | 2021-06-04 | Agreenculture | Procédé de commande par un superviseur d'au moins un robot agricole autonome comportant des moyens de géolocalisation |
US11212954B2 (en) * | 2019-05-08 | 2022-01-04 | Deere & Company | Apparatus and methods for field operations based on historical field operation data |
EP3918894A4 (en) * | 2019-01-31 | 2022-10-26 | Yanmar Power Technology Co., Ltd. | AUTONOMOUS MOVEMENT SYSTEM FOR WORK VEHICLE |
EP3955078A4 (en) * | 2019-04-09 | 2022-12-21 | FJ Dynamics Technology Co., Ltd | ROUTE PLANNING SYSTEM FOR MULTIPLE AUTOMATIC HARVESTERS AND METHOD THEREOF |
CN115700421A (zh) * | 2022-10-26 | 2023-02-07 | 江西蓝天路之友环卫设备科技有限公司 | 一种无人驾驶自动规划环保清扫方法 |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10795351B2 (en) * | 2016-07-19 | 2020-10-06 | Raven Industries, Inc. | System and method for autonomous control of agricultural machinery and equipment |
JP6908510B2 (ja) * | 2017-12-07 | 2021-07-28 | ヤンマーパワーテクノロジー株式会社 | 走行経路設定装置 |
US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
JP7116432B2 (ja) * | 2019-01-29 | 2022-08-10 | ヤンマーパワーテクノロジー株式会社 | 自律走行システム |
JP7236887B2 (ja) * | 2019-03-14 | 2023-03-10 | ヤンマーパワーテクノロジー株式会社 | 経路生成システム |
JP7444547B2 (ja) * | 2019-04-03 | 2024-03-06 | 株式会社小松製作所 | 作業現場の管理システム及び作業現場の管理方法 |
US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
CN113835425A (zh) * | 2020-06-23 | 2021-12-24 | 中强光电股份有限公司 | 路径规划方法 |
US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
US11871697B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Crop moisture map generation and control system |
US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
CN112435498B (zh) * | 2020-11-23 | 2021-09-14 | 合肥工业大学 | 一种基于方向性诱导的城市路网最短路径获取方法 |
US12127500B2 (en) | 2021-01-27 | 2024-10-29 | Deere & Company | Machine control using a map with regime zones |
US11622495B2 (en) * | 2021-06-01 | 2023-04-11 | Gint Co., Ltd. | Method of automatically combining farm vehicle and work machine and farm vehicle |
US20230316927A1 (en) * | 2021-10-08 | 2023-10-05 | Gatik Ai Inc. | Method and system for operation of fleet vehicles |
US12085955B2 (en) | 2021-10-19 | 2024-09-10 | Deere & Company | Methods, apparatus, and articles of manufacture to select track paths for one or more vehicles in a field |
KR20230100618A (ko) * | 2021-12-28 | 2023-07-05 | 얀마 홀딩스 주식회사 | 자동 주행 방법, 작업 차량, 및 자동 주행 시스템 |
US20230205215A1 (en) * | 2021-12-29 | 2023-06-29 | Caterpillar Paving Products Inc. | Compaction pattern adjustments for automated compaction |
US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09120313A (ja) * | 1995-10-24 | 1997-05-06 | Kubota Corp | 作業車の誘導制御装置 |
JP2015112071A (ja) | 2013-12-12 | 2015-06-22 | 株式会社クボタ | 圃場作業機 |
JP2016093125A (ja) | 2014-11-13 | 2016-05-26 | ヤンマー株式会社 | 走行経路設定装置 |
JP2016170580A (ja) * | 2015-03-12 | 2016-09-23 | 株式会社シンテックホズミ | 搬送車システム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8209075B2 (en) * | 2007-07-31 | 2012-06-26 | Deere & Company | Method and system for generating end turns |
US8738238B2 (en) | 2009-11-12 | 2014-05-27 | Deere & Company | Coordination of vehicle movement in a field |
US9527211B2 (en) * | 2013-05-10 | 2016-12-27 | Cnh Industrial America Llc | Control architecture for multi-robot system |
US9188986B2 (en) | 2013-10-01 | 2015-11-17 | Jaybridge Robotics, Inc. | Computer-implemented method and system for dynamically positioning a vehicle relative to another vehicle in motion for on-the-fly offloading operations |
CN105980948B (zh) | 2014-02-06 | 2019-12-31 | 洋马株式会社 | 自主行驶作业车辆的行驶路径的设定方法 |
KR102340161B1 (ko) * | 2014-02-06 | 2021-12-15 | 얀마 파워 테크놀로지 가부시키가이샤 | 병주 작업 시스템 |
JP6219790B2 (ja) | 2014-07-29 | 2017-10-25 | 株式会社クボタ | 作業車協調システム |
AU2015347784A1 (en) | 2014-11-13 | 2017-06-22 | Yanmar Co., Ltd. | Operation terminal |
GB201421527D0 (en) * | 2014-12-04 | 2015-01-21 | Agco Int Gmbh | Automated agriculture system |
-
2017
- 2017-11-29 WO PCT/JP2017/042873 patent/WO2018116770A1/ja active Application Filing
- 2017-11-29 US US16/466,056 patent/US11300976B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09120313A (ja) * | 1995-10-24 | 1997-05-06 | Kubota Corp | 作業車の誘導制御装置 |
JP2015112071A (ja) | 2013-12-12 | 2015-06-22 | 株式会社クボタ | 圃場作業機 |
JP2016093125A (ja) | 2014-11-13 | 2016-05-26 | ヤンマー株式会社 | 走行経路設定装置 |
JP2016170580A (ja) * | 2015-03-12 | 2016-09-23 | 株式会社シンテックホズミ | 搬送車システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3557360A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3918894A4 (en) * | 2019-01-31 | 2022-10-26 | Yanmar Power Technology Co., Ltd. | AUTONOMOUS MOVEMENT SYSTEM FOR WORK VEHICLE |
EP3955078A4 (en) * | 2019-04-09 | 2022-12-21 | FJ Dynamics Technology Co., Ltd | ROUTE PLANNING SYSTEM FOR MULTIPLE AUTOMATIC HARVESTERS AND METHOD THEREOF |
US11212954B2 (en) * | 2019-05-08 | 2022-01-04 | Deere & Company | Apparatus and methods for field operations based on historical field operation data |
US11825761B2 (en) | 2019-05-08 | 2023-11-28 | Deere & Company | Apparatus and methods for field operations based on historical field operation data |
FR3103674A1 (fr) | 2019-12-03 | 2021-06-04 | Agreenculture | Procédé de commande par un superviseur d'au moins un robot agricole autonome comportant des moyens de géolocalisation |
CN115700421A (zh) * | 2022-10-26 | 2023-02-07 | 江西蓝天路之友环卫设备科技有限公司 | 一种无人驾驶自动规划环保清扫方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200064863A1 (en) | 2020-02-27 |
US11300976B2 (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018116770A1 (ja) | 作業車自動走行システム | |
JP6936356B2 (ja) | 作業車自動走行システム | |
WO2018116772A1 (ja) | 作業車自動走行システム | |
WO2018101351A1 (ja) | 走行経路管理システム及び走行経路決定装置 | |
WO2018042853A1 (ja) | 作業車自動走行システム、走行経路管理装置、走行経路生成装置、走行経路決定装置 | |
JP6832828B2 (ja) | 走行経路決定装置 | |
JP6673786B2 (ja) | 作業車自動走行システム及び走行経路管理装置 | |
JP2020127405A5 (ja) | ||
JP6920958B2 (ja) | 走行経路生成装置 | |
JP6793625B2 (ja) | 走行経路管理システム | |
JP6920970B2 (ja) | 走行経路決定装置 | |
JP6689738B2 (ja) | 作業車自動走行システム | |
KR102452919B1 (ko) | 작업차 자동 주행 시스템 | |
JP6842907B2 (ja) | 作業車自動走行システム | |
JP6920969B2 (ja) | 走行経路管理システム | |
KR20190091262A (ko) | 주행 경로 관리 시스템 및 주행 경로 결정 장치 | |
JP6982116B2 (ja) | 作業車自動走行システム及び走行経路管理装置 | |
JP6789800B2 (ja) | 作業車自動走行システム | |
JP6891097B2 (ja) | 走行経路決定装置 | |
JP2018099112A5 (ja) | ||
JP2021035381A (ja) | 作業車自動走行システム | |
JP2022028836A5 (ja) | ||
JP2020110158A5 (ja) | ||
JP6673813B2 (ja) | 走行経路管理システム | |
WO2018116771A1 (ja) | 走行経路決定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882393 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197013041 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017882393 Country of ref document: EP |