[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018105568A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2018105568A1
WO2018105568A1 PCT/JP2017/043522 JP2017043522W WO2018105568A1 WO 2018105568 A1 WO2018105568 A1 WO 2018105568A1 JP 2017043522 W JP2017043522 W JP 2017043522W WO 2018105568 A1 WO2018105568 A1 WO 2018105568A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
characteristic
muscle
depression
main
Prior art date
Application number
PCT/JP2017/043522
Other languages
English (en)
French (fr)
Inventor
翔 藪中
雅年 ▲高▼山
雄策 武田
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016237321A external-priority patent/JP6278100B1/ja
Priority claimed from JP2016237320A external-priority patent/JP6304513B1/ja
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201780075478.2A priority Critical patent/CN110062842B/zh
Priority to EP17879404.6A priority patent/EP3536936B1/en
Priority to US16/467,329 priority patent/US11505065B2/en
Publication of WO2018105568A1 publication Critical patent/WO2018105568A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • B60K2026/023Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics with electrical means to generate counter force or torque

Definitions

  • the present disclosure relates to a vehicle control device that can control a reaction force value of an accelerator pedal in accordance with a driver's muscle activity.
  • the accelerator pedal and the output control device such as the throttle valve and the fuel injection device are not connected by a cable.
  • the reaction force value is given to the driver.
  • the driver Since the accelerator pedal depression amount and the reaction force value are set to have a substantially proportional relationship, the driver generally recognizes the accelerator pedal depression amount based on the reaction force value given from the accelerator pedal. It is. Therefore, there has been proposed a reaction force control device that guides the driver to depress the accelerator pedal in accordance with the driver's preference and driving environment by changing the reaction force value of the accelerator pedal.
  • the vehicle driving operation assisting device of Patent Document 1 dynamically generates a driving intention sequence of a plurality of virtual drivers in a past predetermined time interval including the present time, and the driving operation amount of the virtual driver for each driving intention sequence. Estimate the actual driver's driving intention by calculating the driving operation amount series approximation degree that represents the degree of series approximation between the actual driving amount of the driver and the actual driving amount, and comparing multiple driving operation amount series approximation degrees The actual driver's state is estimated based on the estimated driving intention.
  • the accelerator pedal control device for a vehicle disclosed in Patent Document 2 includes a reaction force setting means having a three-dimensional map defined by a depression amount of an accelerator pedal, a depression speed of the accelerator pedal, and a reaction force value given to a driver, and an accelerator pedal.
  • the reaction force setting means sets the reaction force characteristics so that the accelerator pedal reaction force value is smaller when the depression speed is slow than when the depression speed is slow. is doing.
  • Accelerator pedal depression and retraction by the driver can be regarded as ankle joint flexion and dorsiflexion from the viewpoint of muscle activity.
  • the operation of the accelerator pedal by the ankle joint mainly involves the anterior tibial muscle t, the soleus s and the gastrocnemius g.
  • the anterior tibial muscle t is a single joint muscle (one joint muscle) that performs dorsiflexion movement of the ankle joint
  • the soleus s is a single joint muscle that performs plantar flexion movement of the ankle joint
  • the gastrocnemius g is a bi-articular muscle that performs ankle plantar flexion motion and knee joint flexion motion.
  • the single-joint muscles depend on the mechanical force ratio, have anti-gravity properties that lift the body against gravity, and the bi-articular muscles suppress mechanical energy consumption And, it has a propulsive property that controls the direction of external force, that is, the so-called body is propelled and moved in a specific direction.
  • skeletal muscle Since skeletal muscle has viscoelastic properties as mechanical properties, it can be represented by a two-element model consisting of a series elastic element and a contraction element, and the elastic modulus of the series elastic element increases as the muscle tension increases. It is known that the relationship is such that the contraction element load and speed are hyperbolic, and that the overall muscle stiffness is linear with muscle activity.
  • the accelerator pedal control device of Patent Document 2 can determine the driver's driving intention using the accelerator pedal depression speed as a parameter, and can set a reaction force characteristic suitable for the driving intention.
  • the driving situation changes even if the correlation (hereinafter referred to as FS characteristics) between the accelerator pedal reaction force and the amount of depression appropriate for the driver is set at a specific depression speed.
  • FS characteristics the correlation between the accelerator pedal reaction force and the amount of depression appropriate for the driver is set at a specific depression speed.
  • the FS characteristic suitable for the driver is not necessarily obtained.
  • This disclosure is intended to provide a vehicle control device or the like that allows a driver to perceive a sufficient operational feeling regardless of the depression speed of an accelerator pedal.
  • a vehicle control device includes a stepping amount detection unit that detects a stepping amount of an accelerator pedal, a stepping speed detection unit that detects a stepping speed of the accelerator pedal, the stepping amount detection unit, and the stepping amount Based on the detection result of the speed detection unit, a reaction force setting unit that sets a value of the reaction force of the accelerator pedal, and based on the result set by the reaction force setting unit, controls the mechanism of the accelerator pedal, A reaction force generation unit that generates the set reaction force, and the reaction force setting unit has a correlation with a depression amount of the accelerator pedal from a depression start to a depression end of the accelerator pedal.
  • Divided into The reaction force setting unit is configured to set the maximum value of the accelerator pedal in the main forward characteristic excluding both the start start and step end areas of the forward characteristic. Until the predetermined ratio is reached with respect to the depression amount, the degree of increase in the reaction force value becomes relatively smaller as the depression amount increases, and after reaching the predetermined ratio, the depression amount decreases.
  • the value of the reaction force with respect to the stepping amount is set so that the degree of increase in the reaction force value increases relatively as the value increases. In the reverse characteristics, the reaction force decreases as the stepping amount decreases.
  • the reaction force value is set so that the value decreases.
  • FIG. 1 is a block diagram of a vehicle control device according to a first embodiment. It is the schematic of an accelerator pedal and a reaction force control mechanism. It is a figure which shows a three-dimensional map. It is a figure explaining the FS characteristic of a three-dimensional map, Comprising: The graph of the FS characteristic at the time of low depression speed is shown. It is a figure explaining the FS characteristic of a three-dimensional map, Comprising: The graph of the FS characteristic at the time of high depression speed is shown. It is a figure explaining PF characteristic, Comprising: The graph of PF characteristic at the time of low depression speed is shown. It is a figure explaining PF characteristic, Comprising: The graph of PF characteristic at the time of high depression speed is shown.
  • FIG. 10 is a diagram illustrating a three-dimensional map according to a third embodiment. 6 is a graph for explaining a PF characteristic at a low depression speed. 5 is a graph for explaining a PF characteristic at a high depression speed. It is explanatory drawing of the skeletal muscle at the time of accelerator pedal operation.
  • the following description exemplifies a configuration in which the configuration of the present disclosure is applied to a vehicle control device, and does not limit the present disclosure, its application, or its use.
  • Example 1 will be described with reference to FIGS.
  • the vehicle control device 1 is configured to be able to impart operation linearity to the driver regardless of the stepping speed by controlling the reaction force value of the accelerator pedal 3 in accordance with the driver's muscle activity.
  • the control device 1 includes an ECU (Electronic Control Unit) 2.
  • the ECU 2 is an electronic control unit including a CPU, a ROM, a RAM, and the like, and performs various arithmetic processes by loading an application program stored in the ROM into the RAM and executing it by the CPU.
  • the ECU 2 includes a depression amount sensor 4 that detects a depression or depression operation amount (hereinafter referred to as a depression amount) S of the accelerator pedal 3, and a depression speed sensor 5 that detects a depression speed V of the accelerator pedal 3 (depression speed detection unit). ), A speed sensor 6 for detecting the traveling speed of the vehicle, a yaw rate sensor 7 for detecting the yaw rate acting on the vehicle, an acceleration sensor 8 for detecting the traveling acceleration of the vehicle, and a seat position for detecting the seat position of the driver.
  • the sensor 9 (seat position detection unit), the vehicle traveling unit 10, the reaction force control mechanism 11, the navigation system 12 and the like are electrically connected.
  • the accelerator pedal 3 is held so as to be rotatable with respect to the vehicle body, and an intention to increase or decrease the engine output by the driver is input by the stepping operation.
  • the depression amount sensor 4 is provided on the accelerator pedal 3 or the rotary shaft 31 and detects a depression stroke of the accelerator pedal 3, that is, a so-called depression amount S from the rotation amount.
  • the depression amount S of the accelerator pedal 3 detected by the depression amount sensor 4 is output to the ECU 2. Note that when the pedaling force due to the driver's stepping is not applied, the accelerator pedal 3 is biased by the return spring 32 connected to the accelerator pedal 3 so as to return to the initial position where the stepping amount S is zero.
  • the depression speed sensor 5 is provided on the rotating shaft 31 of the accelerator pedal 3 and detects the depression speed V of the accelerator pedal 3 from the rotation speed.
  • the depression speed V of the accelerator pedal 3 detected by the depression speed sensor 5 is output to the ECU 2.
  • the seat position sensor 9 detects the vertical distance from the center position of the seat cushion to the floor panel as the seat height T (T1, T2, T3) (see FIGS. 8 to 10).
  • the seat position sensor 9 detects the distance in the front-rear (horizontal) direction from the rear end position of the slide rail to the center position of the seat cushion as the slide amount L (L1, L2, L3) (FIG. 11). To FIG. 13).
  • the seat height T and the slide amount L detected by the seat position sensor 9 are output to the ECU 2.
  • the speed sensor 6, the yaw rate sensor 7, and the acceleration sensor 8 output the detection results to the ECU 2.
  • the vehicle travel unit 10 is a drive mechanism or a steering mechanism for executing travel control of the vehicle.
  • the vehicle traveling unit 10 includes an engine control unit, a steering actuator, a brake actuator, a shift actuator (all not shown), and the like.
  • the vehicle traveling unit 10 executes vehicle traveling control based on an output signal from the ECU 2.
  • the reaction force control mechanism 11 includes first and second friction members 41 and 42, an electromagnetic actuator 43, and the like.
  • the first friction member 41 is fixed to one end portion of the rotating shaft 31, and the second friction member 42 is disposed so as to face the first friction member 41.
  • the second friction member 42 is held so as to be non-rotatable and relatively movable in the axial direction with respect to a holding shaft 44 disposed on an extension of the axis of the rotation shaft 31.
  • the actuator 43 is configured to change the relative positional relationship between the first and second friction members 41 and 42 between the pressed state and the separated state, and to adjust the pressing force at the time of pressing.
  • the navigation system 12 is a system that provides vehicle route guidance.
  • the navigation system 12 is electrically connected with a GPS receiver 13 for detecting the current position of the vehicle.
  • the GPS receiver 13 detects the current position of the vehicle by receiving signals from a plurality of GPS satellites.
  • the navigation system 12 includes a map database that stores road map data and a traffic rule database that stores traffic rule data.
  • the navigation system 12 performs route guidance to the driver using the current position data of the vehicle, the road map data in the map database, and the traffic rule data in the traffic rule database by the GPS receiver 13.
  • the navigation system 12 outputs the vehicle current position data, road map data, and traffic rule data to the ECU 2.
  • the ECU 2 includes a travel control unit 21, a storage unit 22, a muscle activity estimation unit 23, a reaction force setting unit 24, and the like.
  • the travel control unit 21 controls the output of the engine based on the depression amount S of the accelerator pedal 3 and the vehicle speed detected by the speed sensor 6, and sets the transmission gear ratio based on the vehicle travel state and the engine operating state. It is configured to be selectable.
  • the engine output decelerated by the transmission is transmitted to the drive wheels via a drive shaft (not shown).
  • the storage unit 22 is a three-dimensional stipulated by a depression amount S of the accelerator pedal 3 by the driver, a depression speed V, and a reaction force F corresponding to a physical reaction force value acting on the driver from the accelerator pedal 3.
  • a map M is stored in advance.
  • the three-dimensional map M includes an S axis (vertical axis) corresponding to the depression amount S (Sa to Sd) of the accelerator pedal 3 and a V axis (horizontal axis) corresponding to the depression speed V of the accelerator pedal 3.
  • S axis vertical axis
  • V axis horizontal axis
  • F axis horizontal axis
  • the basic characteristics of the three-dimensional map M are formed for a standard driver, and a predetermined operation of the accelerator pedal 3 by the driver, so-called stepping-in and step-back operations (bottom flexion and dorsiflexion of ankle joint).
  • Biarticular muscles for example, gastrocnemius muscle
  • monoarticular muscles for example, anterior tibial muscle and soleus muscle
  • a predetermined balance range for example, the contribution rate of the biarticular muscle is 40% or more and less than 60%
  • the stepping side characteristic is the initial forward characteristic from the stepping start corresponding to the stepping start region to the initial stepping amount Sa.
  • FA (FAa) and main characteristic FB (FBa to FBf) from the initial depression amount Sa to the maximum depression amount Sb are configured.
  • the step-back characteristics include a main recovery characteristic FC (FCa to FCf) from the maximum stepping amount Sb to the initial stepping amount Sa, and an end return characteristic FD (from the initial stepping amount Sa corresponding to the stepping end region to the stepping end) FDa).
  • the depression amount S (Sa to Sd), reaction force F (Fa to Ff), characteristics FA (FAa), FB (FBa to FBf), FC (FCa to FCf), FD
  • the following description will be made using the stepping amount S, the reaction force F, the characteristics FA, FB, FC, and FD as symbols representing (FDa).
  • the “initial depression amount Sa” can be set to a ratio within the range of 2.5% to 5.0% with respect to the maximum depression amount of the accelerator pedal 3, for example.
  • the initial forward characteristic FA is set so as to increase in a linear shape with an increase in the stepping amount S
  • the main forward characteristic FB increases with an increase in the stepping amount S.
  • it is set so as to protrude downward.
  • the main characteristic FB has a relatively small increase in the value of the reaction force F in the section up to the predetermined depression amount S, and an increase in the value of the reaction force F in the section exceeding the predetermined depression amount S.
  • the relationship between the stepping amount S and the reaction force F is set so as to be relatively large.
  • the “predetermined stepping amount S” is set to a ratio within a range of 40% to 60% (in this embodiment, 50% as an example) with respect to the total stepping amount in the main forward characteristic FB, for example. can do.
  • the reverse characteristic FC is set so as to decrease in a linear shape in accordance with a decrease in the stepping amount S, and the final recovery characteristic FD is set so as to decrease in a linear shape with a decreasing tendency larger than that of the main recovery characteristic FC. .
  • the reaction force perception amount P (sensory strength) perceived as a driver's sense is proportional to the logarithm of the reaction force F (stimulus strength) (Weber-Fechner's law).
  • the value and tendency of the reaction force F can be obtained based on the reaction force perception amount P including
  • K klog (F) + K (1) K is an integral constant.
  • the reaction force perception amount P As shown in FIG. 6, by setting the correlation characteristic between the reaction force perception amount P and the reaction force F (hereinafter referred to as PF characteristic) to an upward convex logarithmic function shape,
  • the reaction force perception amount P having the linear continuity shown can be perceived (experienced). Therefore, as shown in FIG. 4, in the FS characteristic at a low depression speed, the main characteristic FB corresponding to the position of the maximum depression amount Sb and the reaction force Fb from the position of the initial depression amount Sa and the reaction force Fa is A downward convex exponential function shape obtained by inverting the upward convex logarithmic function shape shown in FIG. 6 is set.
  • This main forward characteristic FB is such that the rate of change in the tangential angle of the main forward characteristic FB becomes smaller as it approaches an intermediate step amount Sc (reaction force Fc) that is an intermediate point between the initial step amount Sa and the maximum step amount Sb. Is set.
  • the three-dimensional map M is set so that the nonlinear degree of the main forward characteristic FB decreases as the depression speed V of the accelerator pedal 3 increases.
  • the PF characteristic in the high depression speed region has a smaller rate of change of the tangential angle on the PF characteristic than the PF characteristic in the low depression speed region shown in FIG.
  • the upper convex logarithmic function shape is set. Therefore, as shown in FIG. 5, in the FS characteristic at a high depression speed, the main characteristic FBa corresponding to the position of the maximum depression amount Sb and the reaction force Fe from the position of the initial depression amount Sa and the reaction force Fd is: A downward convex exponential function shape having a smaller change rate of the tangent angle than the main forward characteristic FB shown in FIG. 4 is set.
  • the main forward characteristic FBa is tangent to the main forward characteristic FBa as the main forward characteristic FBa approaches the intermediate stepping amount Sc (reaction force Ff) that is an intermediate point between the initial stepping amount Sa and the maximum stepping amount Sb.
  • the angle change rate is set to be small.
  • the degree of nonlinearity may be adjusted using the reciprocal of the radius of curvature in the specific region instead of the rate of change of the tangential angle described above.
  • the muscle activity estimation unit 23 is configured to estimate the contribution rate of the biarticular muscle to the operation of the accelerator pedal 3 based on the posture state of the driver.
  • the biarticular muscle is more energy efficient than the single joint muscle, and has the characteristics of high operating speed. Therefore, when operating the accelerator pedal 3, if the driver's driving posture is a posture where the contribution rate of the biarticular muscle is small, by increasing the reaction force F of the accelerator pedal 3, the skeletal muscle around the ankle joint is increased. Among them, the activity ratio of the biarticular muscle is increased, and the contribution rate to the muscle activity of the biarticular muscle is increased when the driver depresses the accelerator pedal 3 and moves back.
  • the muscle activity estimation unit 23 determines the posture state of the driver using the seat position detected by the seat position sensor 9 as a parameter.
  • the knee angle ⁇ 2 of the driver is larger than the knee angle ⁇ 1, so the biarticular muscle at the knee angle ⁇ 2 Is greater than the contribution rate of the biarticular muscle at the knee angle ⁇ 1.
  • the knee angle ⁇ 3 of the driver is larger than the knee angle ⁇ 2, and thus the biarticular muscle at the knee angle ⁇ 3. Is greater than the contribution rate of the biarticular muscle at the knee angle ⁇ 2.
  • the knee angle ⁇ 5 is larger than the knee angle ⁇ 4.
  • the contribution rate of the muscles increases more than the contribution rate of the biarticular muscles at the knee angle ⁇ 4.
  • the muscular activity estimation unit 23 increases the contribution rate of the biarticular muscle, and the addition value T + L is greater than or equal to the threshold A and the threshold B When (A ⁇ B) or less, it is estimated that the contribution rate of the biarticular muscle is medium, and when the added value T + L is larger than the threshold value B, the contribution rate of the biarticular muscle is small.
  • thresholds A and B are obtained in advance by experiments or the like based on human joint viscoelastic characteristics.
  • the muscle activity estimation unit 23 determines that the main muscles of the lower limbs in the human body to be the active body based on the running state during driving, specifically, the depression speed V at the initial depression of the accelerator pedal 3 are the single joint muscles. It is configured to estimate which of the joint muscles.
  • a biarticular muscle having a high operating speed and a large operating force is suitable for the main muscle, and medium acceleration (for example, the stepping speed V is suddenly accelerated).
  • medium acceleration for example, the stepping speed V is suddenly accelerated.
  • slow acceleration for example, the stepping speed V is smaller than the medium acceleration.
  • an acceleration operation of 3 seconds or more a single-joint muscle with high operation accuracy of the stepping-in and step-back operations is suitable for the main muscle.
  • the accelerator pedal 3 when the accelerator pedal 3 is operated, if a sudden acceleration operation is detected, the main muscle that should be the active body of the biarticular muscle, and if the middle acceleration operation is detected, the single joint muscle and the biarticular muscle cooperate. When a slow acceleration operation is detected, the single joint muscle is estimated as the main active muscle that should be the active body.
  • the muscle activity estimating unit 23 determines the driving situation based on the stepping speed V detected by the stepping speed sensor 5 and the operation time of the accelerator pedal 3.
  • the reaction force setting unit 24 is configured to correct the reaction force F in the main characteristic FB based on the contribution rate to the muscle activity of the biarticular muscle estimated by the muscle activity estimation unit 23.
  • the reaction force setting unit 24 sets each posture correction coefficient K1 for correcting the reaction force F of the main characteristic FB according to the estimated contribution rate of the biarticular muscle.
  • the posture correction coefficient K1 is set to zero so as to maintain the basic characteristics, and the contribution rate of the biarticular muscle Is set to K1a (0 ⁇ K1a) so as to increase the reaction force F in order to increase the contribution rate of the biarticular muscle, and when the contribution rate of the biarticular muscle is small, In order to further increase the contribution rate of the joint muscles, the posture correction coefficient K1 is set to K1b having a value larger than K1a.
  • the reaction force setting unit 24 is configured to correct the reaction force F of the main travel characteristic FB based on the main muscle estimated by the muscle activity estimation unit 23.
  • the reaction force setting unit 24 sets a main characteristic correction coefficient K2 for correcting the reaction force F of the main characteristic FB according to the estimated main muscle to be the active subject.
  • the main forward characteristic correction coefficient K2 when the stepping speed V is 0 or less, the main forward characteristic correction coefficient K2 is set to zero so that the basic characteristic is maintained.
  • the reaction force F of the main forward characteristic FB is set.
  • the main operation characteristic correction coefficient K2 is set to K2a (K2a ⁇ 0) so that the main muscle of the previous operation (stepping operation) is biarticular and the stepping speed V is medium acceleration
  • the reaction force F is
  • the main characteristic correction coefficient K2 is set to K2b (K2a ⁇ K2b ⁇ 0) so as to decrease
  • the main muscle of the previous operation (stepping operation) is a single joint muscle and the stepping speed V is medium acceleration
  • the reaction force F The main characteristic correction coefficient K2 is set to K2c (0 ⁇ Kc) so as to increase, and when the stepping speed V is sudden acceleration, the main characteristic correction coefficient K2 is set to be larger than K2c so as to further increase the reaction force F.
  • a large value K2d is set.
  • the main characteristic correction coefficient K2a makes the reaction force F of the main characteristic FB in the basic characteristic the contribution of the single joint muscle.
  • the coefficient is corrected to a predetermined reaction force F having a rate of approximately 60% or more.
  • Main force characteristic correction coefficients K2b and K2c are predetermined values within the range where the contribution rate of the biarticular muscle is within the balance range (the contribution rate of the biarticular muscle is 40% or more and less than 60%). Is a coefficient to be corrected to the reaction force F.
  • the main characteristic correction coefficient K2d is set so that the contribution rate of the biarticular muscle is larger than approximately 60% corresponding to the upper limit value of the balance range.
  • the main characteristic correction coefficients K2a to K2d are not necessarily set based on the upper limit value and the lower limit value of the balance range, and may be arbitrarily set based on the design conditions.
  • the reaction force setting unit 24 corrects the initial forward characteristic FA and the final return characteristic FD in a region smaller than the initial stepping amount Sa in the direction in which the reaction force is increased by a predetermined amount when a sudden acceleration operation is performed when the vehicle starts.
  • Initial characteristics initial forward characteristics FAa and final return characteristics FDa are calculated, and initial characteristic correction is performed based on these initial characteristics.
  • the reaction force setting unit 24 corrects the entire FS characteristic for the main forward characteristic FB and the main return characteristic FC in the direction of increasing the reaction force based on the following equation (2). Yes.
  • Fx (1 + ⁇ ⁇ K1 + ⁇ ⁇ K2) ⁇ F (2)
  • Fx is a corrected reaction force value, and ⁇ and ⁇ are coefficients.
  • the reaction force setting unit 24 corrects the FS characteristic according to the driving condition based on the following equation (3) when the initial forward characteristic correction is not performed (except when sudden acceleration starts).
  • Fx F + ( ⁇ ⁇ K1 + ⁇ ⁇ K2) ⁇ S (3) ⁇ and ⁇ are coefficients.
  • the reaction force setting unit 24 outputs a command signal related to the reaction force F based on the corrected FS characteristic to the reaction force control mechanism 11.
  • the corrected reaction force Fx is calculated based on the equation (2) (S9), and the process proceeds to S10.
  • reaction force control mechanism 11 is operated based on the FS characteristic reflecting the corrected reaction force Fx, and the process returns.
  • the process proceeds to S7. As a result of the determination in S12, if the vehicle does not travel in the area corresponding to the main travel characteristic FB, the process returns.
  • the posture correction coefficient calculation processing step first, it is determined whether or not the added value T + L obtained by adding the seat height T and the slide amount L is equal to or greater than the threshold A (S21).
  • the main characteristic correction coefficient calculation processing step first, it is determined whether or not the depression speed V of the accelerator pedal 3 is greater than zero (there is a depression operation) (S31).
  • K2a is substituted for the main characteristic correction coefficient K2 (S33), and the process ends.
  • the main characteristic correction coefficient K2 is set to K2c in order to correct from a single joint dominant state or a balanced state to a state within the balance range. Is substituted (S37), and the process ends.
  • the main forward characteristic FB having a downward convex shape is displayed in a line shape parallel to the main recovery characteristic FC for convenience, and the FS characteristic is modeled. It shows.
  • the main muscle to be active is a biarticular muscle.
  • the initial characteristics are corrected to the forward characteristics FAb and the final recovery characteristics FDb, and the main characteristics FB and main recovery characteristics FC are similarly corrected to the main characteristics FBb and main recovery characteristics FCb shifted upward.
  • the reaction force F of the main movement characteristic FB is converted to the main movement characteristic consisting of a reaction force Fx having a biarticular muscle contribution ratio of 60% or more. Correction to FBb.
  • the offset amount is further increased.
  • the active muscle to be active is a biarticular muscle.
  • the characteristic FBc is corrected from the depression amount Sd so that the inclination angle is larger and the reaction force value is higher than the main forward characteristic FB.
  • the main recovery characteristic FCc is also corrected in the same manner as the main forward characteristic FBc.
  • the reaction force F of the main advance characteristic FB is corrected to the main advance characteristic FBc composed of the reaction force Fx having a contribution rate of the biarticular muscle of 60% or more.
  • the increasing tendency of the inclination angle and the reaction force value from the point of the depression amount Sd is further expanded.
  • the main characteristic FBd is the stepping-in characteristic.
  • the amount Sd is corrected so that the inclination angle is smaller than the main forward characteristic FB and the reaction force value is lowered.
  • the main recovery characteristic FCd is also corrected in the same manner as the main forward characteristic FBd.
  • the reaction force F of the main advance characteristic FB is corrected to a main advance characteristic FBd composed of a reaction force Fx having a biarticular muscle contribution rate of less than 40%.
  • the decreasing tendency of the inclination angle and the reaction force value from the state of the depression amount Sd is reduced.
  • correction is performed to smoothly connect the end of the forward characteristic FB (the area immediately before the stepping amount Sd) and the start end of the corrected main forward characteristic FBc (the area immediately after the stepping amount Sd).
  • the main travel characteristic FBe is corrected so that the inclination angle (tangential angle) is smaller than the main travel characteristic FB from the depression amount Sd.
  • the main recovery characteristic FCe is corrected in the same manner as the main forward characteristic FBe. Further, in the case of a posture state where the estimated contribution rate to the muscle activity of the biarticular muscle is low, the tendency of the inclination angle to decrease from the state of the depression amount Sd is reduced.
  • the main travel characteristic FBf is corrected from the depression amount Sd so that the inclination angle is larger than the main travel characteristic FB.
  • the main recovery characteristic FCf is also corrected in the same manner as the main forward characteristic FBf.
  • the upper limit value and the lower limit value are adjusted so that the reaction force Fx after the correction including the posture correction is within the balance range.
  • the control device 1 since the main forward characteristic FB is set in a downward convex shape in the three-dimensional map M, the FS characteristic having linear continuity of the reaction force perception amount P in the main forward characteristic FB. Can be set. In other words, the control device 1 reaches a predetermined ratio (for example, a predetermined ratio in the range of 2.5% to 5.0%) with respect to the maximum depression amount of the accelerator pedal 3 in the three-dimensional map M. Until the step amount s increases, the degree of increase of the reaction force F becomes relatively small as the stepping amount s increases. After reaching the predetermined ratio, the degree of increase of the reaction force F value increases as the stepping amount s increases.
  • the main characteristic FB value of the reaction force F
  • the reaction force setting unit 24 changes the value of the reaction force F exponentially according to the depression amount S of the accelerator pedal 3 in the main forward characteristic FB, so regardless of the depression speed V of the accelerator pedal 3. Operation linearity can be imparted to the driver.
  • the main characteristic FB of the FS characteristic can be set based on the human perceptual characteristic, for example, Weber-Fechner's law. Linearity can be reliably imparted.
  • the reaction force setting unit 24 reduces the nonlinear degree of the main forward characteristic FB as the depression speed V of the accelerator pedal 3 increases. According to this configuration, the driver is operated regardless of the stepping speed V by strongly giving linear continuity to the driver in the low stepping speed region where the stimulus recognition ability is higher than the high stepping speed region where the stimulus recognition ability is low. Linearity can be experienced sensorially and empirically.
  • the reaction force setting unit 24 reduces the rate of change of the tangential angle of the main forward characteristic FB as the depression amount S of the accelerator pedal 3 is closer to the intermediate depression amount Sc, so that the accelerator pedal reaction force characteristic adapted to human joint viscoelastic characteristics Can be set.
  • the muscle activity estimation part 23 which estimates whether the main muscle of the lower limb of the human body which should be an active body based on a driving
  • the reaction force setting unit 24 estimates that the main muscle to be the active subject is a single joint muscle
  • the reaction force setting unit 24 corrects the main force characteristic FB in the reaction force decreasing direction
  • the main force muscle is estimated to be a biarticular muscle.
  • the main forward characteristic FB is corrected in the reaction force increasing direction. According to this, when it is estimated that the main active muscle to be the active subject is a single joint muscle, the contribution rate of the single joint muscle is higher than the contribution rate of the biarticular muscle through the reaction force F of the accelerator pedal 3.
  • the contribution rate of the biarticular muscle is higher than the contribution rate of the single joint muscle through the reaction force F of the accelerator pedal 3. can do.
  • reaction force setting unit 24 corrects the entire main characteristic FB in an offset manner, the contribution rate of skeletal muscle can be adjusted with a simple configuration in terms of control processing.
  • a depression speed sensor 5 that detects the depression speed V of the accelerator pedal 3 is provided, and the muscle activity estimation unit 23 estimates the main muscle based on the depression speed V at the initial depression of the accelerator pedal 3 detected by the depression speed sensor 5. Therefore, the contribution rate of the skeletal muscle can be adjusted following the change of the driving situation.
  • the three-dimensional map M of the first embodiment decreases the nonlinear degree of the main travel characteristic FB as the depression speed V of the accelerator pedal 3 increases, whereas the three-dimensional map MA of the second embodiment displays the depression speed of the accelerator pedal 3.
  • the stepping-side characteristic includes the initial forward characteristic FAg (FAh) from the stepping start corresponding to the stepping start region to the initial stepping amount Sa, and the initial stepping amount Sa.
  • the main forward characteristic FBg (FBh) To the maximum depression amount Sb, the main forward characteristic FBg (FBh).
  • the step-return characteristics include a main recovery characteristic FCg (FCh) from the maximum stepping amount Sb to the initial stepping amount Sa, and a final return characteristic FDg (FDh) from the initial stepping amount Sa corresponding to the stepping end region to the end of stepping back. And is composed of.
  • the three-dimensional map MA is configured such that the nonlinear degree of the main travel characteristic FB increases as the depression speed V of the accelerator pedal 3 increases.
  • the main forward characteristic FBh at the high stepping speed is set to a downward convex exponential function shape having a larger change rate of the tangent angle than the main forward characteristic FBg at the low stepping speed.
  • FIG. 23 the three-dimensional map MB according to the third embodiment will be described with reference to FIGS. 23, 24, and 25.
  • FIG. 23 is a diagrammatic representation of the three-dimensional map MB according to the third embodiment.
  • the three-dimensional map M according to the first embodiment is set so that the rate of change in the tangent angle of the main travel characteristic FB becomes smaller as the intermediate step amount Sc, which is an intermediate point between the initial step amount Sa and the maximum step amount Sb, is approached.
  • the three-dimensional map MB of the third embodiment is configured to deviate from the intermediate depression amount Sc when the change rate of the tangential angle of the main forward characteristic FBi (FBj) is the smallest.
  • the three-dimensional map MB includes an FS characteristic having a low stepping speed composed of characteristics Fa, FBi, FCi, and FD, and an FS having a high stepping speed composed of characteristics FAa, FBj, FCj, and FDa. With characteristics.
  • the three-dimensional map MB is configured such that the nonlinear degree of the main forward characteristic FBi decreases as the depression speed V of the accelerator pedal 3 increases.
  • the driver can perceive the reaction force perception amount P having linear continuity indicated by a broken line.
  • the rate of change of the tangential angle when the reaction force F at the end of stepping is assumed to be constant. It has a characteristic of moving from the intermediate depression amount Sc when the state becomes small.
  • the driver in the case of a driver whose bottom of the PF characteristic is larger than that of the driver of the first embodiment, it becomes smaller than the intermediate stepping amount Sc when the change rate of the tangential angle of the main forward characteristic FBi is the smallest. Set to As a result, the driver can experience uniform operation linearity regardless of individual differences among drivers.
  • the main muscle is estimated according to the predicted driving situation. 4]
  • the example in which the entire FS characteristic is corrected in the direction of increasing the reaction force in an offset manner at the time of sudden acceleration start is described. However, even if only the initial forward characteristic and the final backward characteristic are increased, good.
  • Examples 1 to 3 the example in which the acceleration states are classified into four types of slow acceleration, medium acceleration after biarticular muscle main action, medium acceleration after single joint muscle main action, and sudden acceleration has been described. Three or less classifications may be used, and five or more classifications or linear correction according to the acceleration value may be performed.
  • a vehicle control device includes a stepping amount detection unit that detects a stepping amount of an accelerator pedal, a stepping speed detection unit that detects a stepping speed of the accelerator pedal, the stepping amount detection unit, and the stepping amount Based on the detection result of the speed detection unit, a reaction force setting unit that sets a value of the reaction force of the accelerator pedal, and based on the result set by the reaction force setting unit, controls the mechanism of the accelerator pedal, A reaction force generation unit that generates the set reaction force, and the reaction force setting unit has a correlation with a depression amount of the accelerator pedal from a depression start to a depression end of the accelerator pedal.
  • Divided into The reaction force setting unit sets the reaction force value, and the reaction force setting unit has a maximum depression included in the accelerator pedal in the forward characteristic excluding both the start and end areas of the forward characteristic.
  • the reaction force value with respect to the stepping amount is set so that the degree of increase in the reaction force value becomes relatively larger as the reaction force value is increased.
  • the reaction force value is decreased as the stepping amount decreases.
  • the reaction force value is set so as to decrease.
  • the degree of increase in the reaction force increases as the amount of depression increases until the reaction force value in the main forward characteristic reaches a predetermined ratio with respect to the maximum amount of depression included in the accelerator pedal. After reaching a predetermined ratio, the degree of increase in the reaction force value becomes relatively larger as the stepping amount increases. It is possible to set an accelerator pedal reaction force characteristic (FS characteristic) having the characteristics.
  • FS characteristic accelerator pedal reaction force characteristic
  • the operation linearity can be given to the driver regardless of the depression speed of the accelerator pedal.
  • the vehicle control device is the above aspect, further including a storage unit in which a control map that defines the correlation in each of the forward characteristic and the backward characteristic is stored in advance,
  • the reaction force setting unit sets the value of the reaction force with reference to the control map stored in the storage unit, and the control map shows the correlation in the forward characteristic on the horizontal axis. It is defined by taking the amount of depression and taking the value of the reaction force on the vertical axis, and in the control map, the correlation in the forward characteristic is set to an exponential function shape.
  • the main characteristic of the accelerator pedal reaction force characteristic can be set based on the human perceptual characteristic, and the operation linearity can be surely given to the driver.
  • the vehicle control device is the above-described aspect, wherein the reaction force setting unit decreases the nonlinear degree of the main drive characteristic as the depression speed of the accelerator pedal increases.
  • linear continuity is strongly given to the driver in the low stepping speed region where the stimulus recognition ability is higher than that in the high stepping speed region where the stimulus recognition ability is low, so that the operation linearity is given to the driver regardless of the stepping amount.
  • the vehicle control device is the above aspect, wherein the reaction force setting unit decreases the rate of change of the tangent angle of the main drive characteristic as the accelerator pedal depression amount becomes an intermediate value side. To do.
  • the vehicle control apparatus is the above-described aspect, and estimates whether the main muscle of the lower limb of the human body to be an active subject is a monoarticular muscle or a biarticular muscle based on a driving situation.
  • a muscle activity estimation unit; and the reaction force setting unit corrects the correlation in the main movement characteristic or the reaction force value of the main movement characteristic based on the main muscle estimated by the muscle activity estimation unit. .
  • the muscle activity estimator for estimating whether the main muscle of the lower limb of the human body to be the active subject is a monoarticular muscle or a biarticular muscle based on the driving situation.
  • the reaction force setting unit corrects the inclination angle of the main forward characteristic or the reaction force value of the main forward characteristic excluding the step start and step end regions based on the main muscle estimated by the muscle activity estimation unit, so it is suitable for driving situations
  • a skeletal muscle having performance can be appropriately used as a main muscle, and the operability of a driver's accelerator pedal can be improved.
  • the vehicle control device is the above aspect, wherein the reaction force setting unit is configured to perform the main characteristic when the main muscle that should be the active subject is estimated to be a single joint muscle. Is corrected in the reaction force decreasing direction, and when the main muscle is estimated to be a biarticular muscle, the main characteristic is corrected in the reaction force increasing direction.
  • the contribution ratio of the single joint muscle is made higher than the contribution ratio of the biarticular muscle through the reaction force of the accelerator pedal.
  • the contribution rate of the biarticular muscle can be made higher than the contribution rate of the single joint muscle through the reaction force of the accelerator pedal. it can.
  • the vehicle control device is the above aspect, wherein the reaction force setting unit smoothly connects the end of the main characteristic before correction and the start of the main characteristic after correction. Thus, the correction is performed.
  • the correction is made so that the end of the main characteristic before correction and the start of the main characteristic after correction are smoothly connected, so that it is difficult for the driver to feel uncomfortable with the characteristic change. can do.
  • the vehicle control device is the above aspect, wherein the reaction force setting unit corrects the value of the reaction force in an offset manner as a whole in the main characteristic.
  • the control apparatus for a vehicle is the above aspect, wherein the muscle activity estimation unit is configured to determine whether the main muscle is based on an initial depression speed of an accelerator pedal detected by the depression speed detection unit. It is estimated whether it is a monoarticular muscle or the biarticular muscle.
  • the vehicle control device can provide the driver with operation linearity regardless of the accelerator pedal depression speed, and perceives the driver with a sufficient sense of operation. Can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

車両用制御装置は、踏込量検出部と、踏込速度検出部と、反力設定部と、反力生成部と、を備える。反力設定部は、往特性と復特性とに分けて反力の値を設定し、往特性の内、踏込開始及び踏込終了の両領域を除く主往特性において、アクセルペダルが備える最大踏込量に対して所定の割合に到達するまでは、踏込量が増加するほど反力の値の増加度合が相対的に小さくなり、所定の割合に到達した後は、踏込量が増加するほど反力の値の増加度合が相対的に大きくなる、ように踏込量に対する反力の値を設定し、復特性においては、踏込量が減少するほど前記反力の値が減少するように前記反力の値を設定する。

Description

車両用制御装置
 本開示は、運転者の筋活動に応じてアクセルペダルの反力値を制御可能な車両用制御装置に関する。
 従来より、ドライブ・バイ・ワイヤ式エンジンを搭載した車両の場合、アクセルペダルとスロットルバルブや燃料噴射装置等の出力制御機器とがケーブルによって接続されていないため、電動式アクチュエータによって踏込量に応じた反力値を運転者に付与している。
 アクセルペダルの踏込量と反力値とは、概ね比例関係を有するように設定されているため、運転者はアクセルペダルから付与される反力値によってアクセルペダルの踏込量を認識することが一般的である。それ故、アクセルペダルの反力値を変化させることにより、運転者の好みや走行環境に応じて運転者によるアクセルペダルの踏込操作を誘導するような反力制御装置が提案されている。
 特許文献1の車両用運転操作補助装置は、現時点を含む過去の所定時間区間における複数の仮想運転者の運転意図系列を動的に生成し、運転意図系列毎に、仮想運転者の運転操作量と実際の運転者の運転操作量との系列的な近似度合を表す運転操作量系列近似度合を算出すると共に複数の運転操作量系列近似度合を比較することにより実際の運転者の運転意図を推定し、推定した運転意図に基づいて実際の運転者の状態を推定している。
 アクセルペダルの踏込操作の場合、運転者が車線変更を意図してから運転者の運転意図が車線変更であると推定されるまでの経過時間が長い程、アクセルペダルの反力指令値を速やかに低下させている。
 また、本出願人によって人間の知覚特性を考慮したアクセルペダルの反力特性を設定する技術も提案されている。
 特許文献2の車両のアクセルペダル制御装置は、アクセルペダルの踏込量とアクセルペダルの踏込速度と運転者に付与される反力値によって規定された三次元マップを有する反力設定手段と、アクセルペダルの踏込速度を検出する踏込速度検出手段とを備え、反力設定手段は、踏込速度が速いとき、踏込速度が遅いときに比べてアクセルペダルの反力値が小さくなるように反力特性を設定している。
 これにより、運転者の負担と違和感を軽減しつつ、走行環境や運転意思に適合した反力特性を設定することができる。
 運転者によるアクセルペダルの踏込及び踏戻動作は、筋活動の観点から、足関節の底屈及び背屈運動と見做すことができる。
 図26に示すように、足関節によるアクセルペダルの操作には、主に、前脛骨筋t、ヒラメ筋s及び腓腹筋g等が関与している。
 前脛骨筋tは、足関節の背屈運動を行う単関節筋(一関節筋)であり、ヒラメ筋sは、足関節の底屈運動を行う単関節筋である。腓腹筋gは、足関節の底屈運動と膝関節の屈曲運動を行う二関節筋である。これらの骨格筋のうち、単関節筋は、機械的な力比に依存し、重力に抗して体を持ち上げる抗重力性を有し、また、二関節筋は、機械的なエネルギー消費を抑制し、外力の方向制御、所謂体を特定の方向に推進移動させる推進性を有している。
 骨格筋は、力学特性として粘弾性特性を有しているため、直列弾性要素と収縮要素からなる二要素モデルによって表すことができ、直列弾性要素の弾性係数は筋張力の増加に伴って増加する関係になること、収縮要素の負荷と速度とは双曲線の関係になること、筋全体のスティフネスは筋活動と線形関係になること等が知られている。
特許第5293784号公報 特開2016-000581号公報
 特許文献2のアクセルペダル制御装置は、アクセルペダルの踏込速度をパラメータとして運転者の運転意思を判定し、この運転意思に適合した反力特性を設定することができる。
 しかし、特許文献2の技術では、運転者の運転意思に適合したアクセルペダルの反力値を得ることはできるものの、実際に運転者がアクセルペダルを操作する操作量(運転者に付与される物理的な反力値)と運転者が感覚として感じるアクセルペダルからの反力知覚量との間において乖離を生じる虞がある。
 高速運動のときは低速運動のときに比べて脳による情報解析処理量が多くなるため、人間の知覚特性上、動作速度が遅い程反力等の刺激に対する認識能力が高い。また、高速運動のときは低速運動のときに比べて瞬間的な筋活動量が大きくなり刺激への感度が向上するため、人間の知覚特性上、動作速度が速い程反力等の刺激に対する弁別能力が高い。
 それ故、車両運転時、特定の踏込速度において、運転者に適したアクセルペダルの反力値と踏込量との相関関係(以下、F-S特性という)を設定しても、運転状況が変化し、踏込速度が変化した場合、必ずしも運転者に適したF-S特性にならない可能性がある。
 即ち、アクセルペダル操作に係る反力知覚量の線形連続性、所謂操作リニアリティを踏込速度に拘らず確保することについては、何れの特許文献においても検討が成されていないため、運転者が感覚的に十分なアクセルペダルの操作感を得ることができない。
 本開示は、アクセルペダルの踏込速度に拘らず運転者が感覚的に十分な操作感を知覚することができる車両用制御装置等を提供することを目的とする。
 本開示の一態様に係る車両用制御装置は、アクセルペダルの踏込量を検出する踏込量検出部と、前記アクセルペダルの踏込速度を検出する踏込速度検出部と、前記踏込量検出部及び前記踏込速度検出部での検出結果に基づき、前記アクセルペダルの反力の値を設定する反力設定部と、前記反力設定部で設定された結果に基づき、前記アクセルペダルの機構を制御し、前記設定された前記反力を発生させる反力生成部と、を備え、前記反力設定部は、前記アクセルペダルの踏込開始から踏込終了までの、前記アクセルペダルの踏込量との相関関係を有する前記反力の値の特性である往特性と、前記アクセルペダルの踏戻開始から踏戻終了までの、前記アクセルペダルの踏込量との相関関係を有する前記反力の値の特性である復特性と、に分けて、前記反力の値を設定するものであり、且つ、前記反力設定部は、前記往特性の内、踏込開始及び踏込終了の両領域を除く主往特性においては、前記アクセルペダルが備える最大踏込量に対して所定の割合に到達するまでは、前記踏込量が増加するほど前記反力の値の増加度合が相対的に小さくなり、前記所定の割合に到達した後は、前記踏込量が増加するほど前記反力の値の増加度合が相対的に大きくなる、ように前記踏込量に対する前記反力の値を設定し、前記復特性においては、前記踏込量が減少するほど前記反力の値が減少するように前記反力の値を設定する。
実施例1に係る車両用制御装置のブロック図である。 アクセルペダルと反力制御機構の概略図である。 三次元マップを示す図である。 三次元マップのF-S特性を説明する図であって、低踏込速度のときのF-S特性のグラフを示している。 三次元マップのF-S特性を説明する図であって、高踏込速度のときのF-S特性のグラフを示している。 P-F特性を説明する図であって、低踏込速度のときのP-F特性のグラフを示している。 P-F特性を説明する図であって、高踏込速度のときのP-F特性のグラフを示している。 運転者の膝角度とシートの高さ位置との関係を説明する図であって、シートが高位置に設定された状態を示している。 運転者の膝角度とシートの高さ位置との関係を説明する図であって、シートが中位置に設定された状態を示している。 運転者の膝角度とシートの高さ位置との関係を説明する図であって、シートが低位置に設定された状態を示している。 運転者の膝角度とシートのスライド位置との関係を説明する図であって、シートが前側位置に設定された状態を示している。 運転者の膝角度とシートのスライド位置との関係を説明する図であって、シートが中間位置に設定された状態を示している。 運転者の膝角度とシートのスライド位置との関係を説明する図であって、シートが後側位置に設定された状態を示している。 制御装置の処理手順を示すフローチャートである。 姿勢補正係数演算の処理手順を示すフローチャートである。 主往特性補正係数演算の処理手順を示すフローチャートである。 発進且つ急加速操作時におけるF-S特性のグラフである。 急加速操作時におけるF-S特性のグラフである。 緩加速操作時におけるF-S特性のグラフである。 前操作(踏込操作)の主働筋が二関節筋で且つ中加速操作時におけるF-S特性のグラフである。 前操作(踏込操作)の主働筋が単関節筋で且つ中加速操作時におけるF-S特性のグラフである。 実施例2に係る三次元マップを示す図である。 実施例3に係る三次元マップを示す図である。 低踏込速度のときのP-F特性を説明するグラフである。 高踏込速度のときのP-F特性を説明するグラフである。 アクセルペダル操作時における骨格筋の説明図である。
 以下、実施形態を図面に基づいて詳細に説明する。
 以下の説明は、本開示の構成を車両の制御装置に適用したものを例示したものであり、本開示、その適用物、或いは、その用途を制限するものではない。
 以下、実施例1について図1~図21に基づいて説明する。
 車両用制御装置1は、運転者の筋活動に応じてアクセルペダル3の反力値を制御することにより、運転者に踏込速度に拘らず操作リニアリティを付与可能に構成されている。
 図1に示すように、制御装置1は、ECU(Electronic Control Unit)2を備えている。ECU2は、CPU、ROM、RAM等からなる電子制御ユニットであり、ROMに記憶されているアプリケーションプログラムをRAMにロードし、CPUで実行することにより各種演算処理を行っている。
 ECU2は、アクセルペダル3の踏込又は踏戻操作量(以下、踏込量と略す)Sを検出する踏込量センサ4と、アクセルペダル3の踏込速度Vを検出する踏込速度センサ5(踏込速度検出部)と、車両の走行速度を検出する速度センサ6と、車両に作用するヨーレートを検出するヨーレートセンサ7と、車両の走行加速度を検出する加速度センサ8と、運転者のシートポジションを検出するシート位置センサ9(シート位置検出部)と、車両走行部10と、反力制御機構11と、ナビゲーションシステム12等に電気的に接続されている。
 図2に示すように、アクセルペダル3は、車体に対して回動可能に保持され、その踏込操作によって運転者によるエンジン出力の増減意図が入力される。
 踏込量センサ4は、アクセルペダル3又は回転軸31に設けられ、その回動量からアクセルペダル3の踏込ストローク、所謂踏込量Sを検出する。踏込量センサ4で検出されたアクセルペダル3の踏込量Sは、ECU2に出力される。尚、運転者の踏込みによる踏力が作用しない場合、アクセルペダル3は、アクセルペダル3に連結されたリターンスプリング32によって踏込量Sが零である初期位置に戻るように付勢されている。
 踏込速度センサ5は、アクセルペダル3の回転軸31に設けられ、その回転速度からアクセルペダル3の踏込速度Vを検出する。踏込速度センサ5で検出されたアクセルペダル3の踏込速度Vは、ECU2に出力される。
 シート位置センサ9は、シートクッションの中心位置からフロアパネルまでの上下(鉛直)方向の離隔距離をシート高さT(T1,T2,T3)として検出している(図8~図10参照)。また、このシート位置センサ9は、スライドレールの後端位置からシートクッションの中心位置までの前後(水平)方向の離隔距離をスライド量L(L1,L2,L3)として検出している(図11~図13参照)。シート位置センサ9で検出されたシート高さT及びスライド量Lは、ECU2に出力される。
 速度センサ6、ヨーレートセンサ7、加速度センサ8は、各々の検出結果をECU2に出力している。
 車両走行部10は、車両の走行制御を実行するための駆動機構や操舵機構である。
 この車両走行部10は、エンジン制御部、ステアリングアクチュエータ、ブレーキアクチュエータ、及びシフトアクチュエータ(何れも図示略)等によって構成されている。
 車両走行部10は、ECU2からの出力信号に基づいて車両の走行制御を実行している。
 図2に示すように、反力制御機構11は、第1,第2摩擦部材41,42と、電磁式アクチュエータ43等を備えている。
 第1摩擦部材41は回動軸31の一端部に固着され、第2摩擦部材42が第1摩擦部材41に臨む状態で配設されている。第2摩擦部材42は、回動軸31の軸心延長上に配設された保持軸44に対して、回転不能且つ軸心方向に相対移動可能に保持されている。
 アクチュエータ43は、第1,第2摩擦部材41,42を圧接状態と離隔状態との間において相対位置関係を変更し、圧接時における圧接力を調整可能に構成されている。
 ナビゲーションシステム12は、車両の経路案内を行うシステムである。
 図1に示すように、ナビゲーションシステム12には、車両の現在位置を検出するためのGPS受信部13が電気的に接続されている。GPS受信部13は、複数のGPS衛星からの信号を受信することで車両の現在位置を検出する。
 また、ナビゲーションシステム12は、道路地図データを記憶した地図データベースと、交通規則データを記憶した交通規則データベースとを備えている。
 ナビゲーションシステム12は、GPS受信部13による車両の現在位置データ、地図データベースの道路地図データ及び交通規則データベースの交通規則データを利用して運転者に目的地までの経路案内を行う。
 これにより、ナビゲーションシステム12は、車両の現在位置データ、道路地図データ、及び交通規則データをECU2に出力する。
 次に、ECU2について説明する。
 図1に示すように、ECU2は、走行制御部21と、記憶部22と、筋活動推定部23と、反力設定部24等を備えている。
 走行制御部21は、アクセルペダル3の踏込量Sと速度センサ6によって検出された車速に基づいてエンジンの出力を制御すると共に車両走行状態とエンジンの運転状態とに基づいて変速機の変速比を選択可能に構成されている。
 変速機で減速されたエンジンの出力はドライブシャフト(図示略)を介して駆動輪に伝達される。
 記憶部22は、運転者によるアクセルペダル3の踏込量Sと踏込速度Vとアクセルペダル3から運転者に作用する物理的な反力値に相当している反力Fとによって規定された三次元マップMを予め格納している。
 図3に示すように、三次元マップMは、アクセルペダル3の踏込量S(Sa~Sd)に相当するS軸(縦軸)と、アクセルペダル3の踏込速度Vに相当するV軸(横軸)と、アクセルペダル3を介して運転者に付与される反力F(Fa~Ff)に相当するF軸(高さ軸)との3軸によって立体状に形成されている。
 この三次元マップMの基本特性は、標準的な運転者を対象として形成され、この運転者による所定のアクセルペダル3の操作、所謂踏込及び踏戻動作(足関節の底屈及び背屈運動)において、二関節筋(例えば、腓腹筋等)と単関節筋(例えば、前脛骨筋やヒラメ筋等)とが所定のバランス範囲(例えば、二関節筋の寄与率が40%以上且つ60%未満)内で動作されることを前提条件として設定されている。尚、バランス範囲の数値は、予め実験等により求めている。
 三次元マップMにおける反力Fと踏込量Sとの相関特性(以下、F-S特性という)において、踏込側特性は、踏込開始領域に相当する踏込開始から初期踏込量Saまでの初期往特性FA(FAa)と初期踏込量Saから最大踏込量Sbまでの主往特性FB(FBa~FBf)とによって構成されている。また、踏戻側特性は、最大踏込量Sbから初期踏込量Saまでの主復特性FC(FCa~FCf)と踏込終了領域に相当する初期踏込量Saから踏戻終了までの終期復特性FD(FDa)とによって構成されている。
 尚、特段の説明がない場合、便宜上、踏込量S(Sa~Sd)、反力F(Fa~Ff)、特性FA(FAa),FB(FBa~FBf),FC(FCa~FCf),FD(FDa)を夫々代表する符号として踏込量S、反力F、特性FA,FB,FC,FDを用いて以下の説明を行う。
 また、上記において「初期踏込量Sa」は、例えば、アクセルペダル3の最大踏込量に対して、2.5%~5.0%の範囲内の割合に設定することができる。
 図3及び図4に示すように、初期往特性FAは、踏込量Sの増加に応じて線形状に増加するように設定され、主往特性FBは、踏込量Sの増加に応じて増加すると共に下方に向かって突出するように設定されている。換言すると、主往特性FBは、所定の踏込量Sまでの区間では反力Fの値の増加度合が相対的に小さく、所定の踏込量Sを超える区間では反力Fの値の増加度合が相対的に大きくなるように、踏込量Sと反力Fとの関係が設定されている。
 なお、上記において「所定の踏込量S」は、例えば、主往特性FBにおける全踏込量に対して、40%~60%(本実施形態では、一例として50%)の範囲内の割合に設定することができる。
 復特性FCは、踏込量Sの減少に応じて線形状に減少するように設定され、終期復特性FDは、主復特性FCよりも大きい減少傾向で線形状に減少するように設定されている。
 運転者の感覚として知覚される反力知覚量P(感覚強さ)は反力F(刺激強さ)の対数に比例する(Weber-Fechnerの法則)ため、次式(1)によって所定の傾向を備えた反力知覚量Pに基づいて反力Fの値や傾向を求めることができる。
 P=klog(F)+K     …(1)
 尚、Kは積分定数である。
 図6に示すように、反力知覚量Pと反力Fとの相関特性(以下、P-F特性という)を上方凸状の対数関数形状に設定することにより、運転者に対して破線で示す線形連続性を有する反力知覚量Pを知覚(体感)させることができる。それ故、図4に示すように、低踏込速度におけるF-S特性において、初期踏込量Sa且つ反力Faの位置から最大踏込量Sb且つ反力Fbの位置に相当する主往特性FBは、図6に示す上方凸状の対数関数形状を反転させた下方凸状の指数関数形状に設定されている。
 この主往特性FBは、初期踏込量Saと最大踏込量Sbの中間点である中間踏込量Sc(反力Fc)に接近する程、主往特性FBの接線角度の変化率が小さくなるように設定されている。
 また、三次元マップMは、アクセルペダル3の踏込速度Vが大きい程主往特性FBの非線形度合いが小さくなるように設定されている。
 図7に示すように、高踏込速度領域のP-F特性は、図6に示す低踏込速度領域のP-F特性に比べてP-F特性上の接線角度の変化率が小さくなるように形成された上方凸状の対数関数形状に設定されている。それ故、図5に示すように、高踏込速度におけるF-S特性において、初期踏込量Sa且つ反力Fdの位置から最大踏込量Sb且つ反力Feの位置に相当する主往特性FBaは、図4に示す主往特性FBよりも接線角度の変化率が小さい下方凸状の指数関数形状に設定されている。
 これは、刺激認識能力が低い高踏込速度領域よりも刺激認識能力が高い低踏込速度領域において、運転者に線形連続性を強く知覚させることにより、運転者に踏込速度Vに拘らず操作リニアリティを感覚的及び経験的に体感させるためである。
 また、主往特性FBaは、主往特性FBと同様に、初期踏込量Saと最大踏込量Sbの中間点である中間踏込量Sc(反力Ff)に接近する程、主往特性FBaの接線角度の変化率が小さくなるように設定されている。
 尚、前述した接線角度の変化率に代えて、特定領域における曲率半径の逆数を用いて非線形度合を調整しても良い。
 次に、筋活動推定部23について説明する。
 筋活動推定部23は、運転者の姿勢状況に基づいてアクセルペダル3の操作に対する二関節筋の寄与率を推定するように構成されている。
 二関節筋は、単関節筋に比べてエネルギー効率が高く、また、動作速度も速い特性を有している。そこで、アクセルペダル3を操作する際、運転者の運転姿勢が、二関節筋の寄与率が小さくなる姿勢状況の場合、アクセルペダル3の反力Fを高めることにより、足関節周りの骨格筋のうち二関節筋の活動比率を高め、運転者によるアクセルペダル3の踏込及び踏戻動作において二関節筋の筋活動に対する寄与率を高くしている。
 この筋活動推定部23は、運転者の姿勢状況をシート位置センサ9によって検出されたシートポジションをパラメータとして判定している。
 図8に示すように、運転者によって調節されたシート高さTがT1の場合、運転者の膝が屈曲されて膝の角度θ1が小さくなるため、足関節の屈曲及び背屈運動における二関節筋の寄与率が減少する(単関節筋の寄与率が増加する)。
 図9に示すように、運転者によって調節されたシート高さTがT2(T2<T1)の場合、運転者の膝の角度θ2が膝角度θ1よりも大きいため、膝角度θ2における二関節筋の寄与率は、膝角度θ1における二関節筋の寄与率よりも増加する。
 図10に示すように、運転者によって調節されたシート高さTがT3(T3<T2)の場合、運転者の膝の角度θ3が膝角度θ2よりも大きいため、膝角度θ3における二関節筋の寄与率は、膝角度θ2における二関節筋の寄与率よりも増加する。
 これにより、シート高さTが低い程、二関節筋の寄与率の増加を推定している。
 図11に示すように、運転者によって調節されたスライド量LがL1(女性や体格が小柄)の場合、運転者の膝角度θ4が小さくなるため、足関節の屈曲及び背屈運動における二関節筋の寄与率が減少する。
 図12に示すように、運転者によって調節されたスライド量LがL2(体格が標準)(L2<L1)の場合、膝角度θ5が膝角度θ4よりも大きくなるため、膝角度θ5における二関節筋の寄与率は、膝角度θ4における二関節筋の寄与率よりも増加する。
 図13に示すように、運転者によって調節されたスライド量LがL3(体格が大柄)(L3<L2)の場合、膝角度θ6が膝角度θ5よりも大きくなるため、膝角度θ6における二関節筋の寄与率は、膝角度θ5における二関節筋の寄与率よりも増加する。
 これにより、スライド量Lが短い程、二関節筋の寄与率の増加を推定している。
 筋活動推定部23は、シート高さTとスライド量Lを加算した加算値T+Lが閾値Aよりも小さいとき、二関節筋の寄与率が大になり、加算値T+Lが閾値A以上且つ閾値B(A<B)以下のとき、二関節筋の寄与率が中になり、加算値T+Lが閾値Bよりも大きいとき、二関節筋の寄与率が小になることを夫々推定している。
 尚、閾値A,Bは、人間の関節粘弾性特性に基づいて予め実験等により求めている。
 また、筋活動推定部23は、運転中の走行状況、具体的には、アクセルペダル3の踏込初期の踏込速度Vに基づいて活動主体とすべき人体における下肢の主働筋が単関節筋と二関節筋の何れであるか推定するように構成されている。
 急加速(例えば、踏込速度Vが大きい1sec未満の加速操作)のとき、動作速度が速く且つ操作力が大きい二関節筋が主働筋に適しており、中加速(例えば、踏込速度Vが急加速よりも小さく且つ1~3secの加速操作)のとき、単関節筋と二関節筋のバランスがとれた状態(バランス範囲)が適しており、緩加速(例えば、踏込速度Vが中加速よりも小さく且つ3sec以上の加速操作)のとき、踏込及び踏戻動作の操作精度が高い単関節筋が主働筋に適している。そこで、アクセルペダル3を操作する際、急加速操作が検出された場合、二関節筋を活動主体とすべき主働筋、中加速操作が検出された場合、単関節筋と二関節筋が協働すべき状況、緩加速操作が検出された場合、単関節筋を活動主体とすべき主働筋として推定している。
 この筋活動推定部23は、運転状況を踏込速度センサ5によって検出された踏込速度V及びアクセルペダル3の操作時間によって判定している。
 次に、反力設定部24について説明する。
 反力設定部24は、主往特性FBにおける反力Fを筋活動推定部23によって推定された二関節筋の筋活動に対する寄与率に基づき補正するように構成されている。
 この反力設定部24は、推定された二関節筋の寄与率に応じて主往特性FBの反力Fを補正するための姿勢補正係数K1を夫々設定している。
 本実施例では、二関節筋の寄与率が大のとき、二関節筋が十分活動しているため、基本特性を維持するように姿勢補正係数K1を零に設定し、二関節筋の寄与率が中のとき、二関節筋の寄与率を高めるため、反力Fを増加するように姿勢補正係数K1をK1a(0<K1a)に設定し、二関節筋の寄与率が小のとき、二関節筋の寄与率を更に高めるため、姿勢補正係数K1をK1aよりも大きい値のK1bに設定している。
 反力設定部24は、主往特性FBの反力Fを筋活動推定部23によって推定された主働筋に基づき補正するように構成されている。
 この反力設定部24は、推定された活動主体とすべき主働筋に応じて主往特性FBの反力Fを補正するための主往特性補正係数K2を夫々設定している。
 本実施例では、踏込速度Vが0以下のとき、基本特性を維持するように主往特性補正係数K2を零に設定し、踏込速度Vが緩加速のとき、主往特性FBの反力Fを減少するように主往特性補正係数K2をK2a(K2a<0)に設定し、前操作(踏込操作)の主働筋が二関節筋で且つ踏込速度Vが中加速のとき、反力Fを減少するように主往特性補正係数K2をK2b(K2a<K2b<0)に設定し、前操作(踏込操作)の主働筋が単関節筋で且つ踏込速度Vが中加速のとき、反力Fを増加するように主往特性補正係数K2をK2c(0<Kc)に設定し、踏込速度Vが急加速のとき、反力Fを更に増加するように主往特性補正係数K2をK2cよりも大きい値のK2dに設定している。
 主往特性補正係数K2aは、二関節筋の寄与率を前述したバランス範囲の下限値に相当する略40%未満にするため、基本特性における主往特性FBの反力Fを単関節筋の寄与率が略60%以上の所定の反力Fに補正する係数である。主往特性補正係数K2b,K2cは、基本特性における主往特性FBの反力Fを二関節筋の寄与率がバランス範囲(二関節筋の寄与率が40%以上且つ60%未満)内の所定の反力Fに補正する係数である。主往特性補正係数K2dは、二関節筋の寄与率をバランス範囲の上限値に相当する略60%よりも大きくするため、基本特性における主往特性FBの反力Fを二関節筋の寄与率が略60%以上の所定の反力Fに補正する係数である。主往特性補正係数K2a~K2dは、必ずしもバランス範囲の上限値及び下限値に基づき設定する必要は無く、設計条件に基づき任意に設定しても良い。
 また、反力設定部24は、車両発進時、急加速操作が行われた場合、初期踏込量Saよりも小さい領域の初期往特性FA及び終期復特性FDを所定量反力増加方向に補正した初期特性(初期往特性FAa及び終期復特性FDa)を演算し、この初期特性に基づいて初期特性補正を行っている。
 この反力設定部24は、初期特性補正を行う場合、次式(2)に基づき、主往特性FB及び主復特性FCについてF-S特性全体をオフセット的に反力増加方向に補正している。
 Fx=(1+α×K1+β×K2)×F     …(2)
 Fxは補正後の反力値、α,βは係数である。
 反力設定部24は、初期往特性補正を行わない(急加速発進時以外)場合、次式(3)に基づき、運転状況に応じてF-S特性を補正している。
 Fx=F+(γ×K1+δ×K2)×S     …(3)
 γ,δは係数である。
 この反力設定部24は、反力制御機構11に補正されたF-S特性に基づく反力Fに関する指令信号を出力する。
 次に、図14~図16のフローチャートに基づいて、制御装置1の制御処理手順について説明する。
 尚、Si(i=1,2…)は、各処理のためのステップを示す。
 図14のフローチャートに示すように、まず、S1にて、イグニッション(Ig)がオン操作されたか否か判定する。
 S1の判定の結果、イグニッションがオン操作された場合、各種センサ4~9及びナビゲーションシステム12から入力された情報を読み込み(S2)、S3に移行する。
 S3では、車両が発進時か否か判定する。
 S3の判定の結果、車両が発進時の場合、姿勢補正係数K1を演算し(S4)、S5に移行する。
 S5では、運転者が急加速操作による発進を行ったか否か判定する。
 S5の判定の結果、運転者が急加速操作を行った場合、初期往特性FA及び終期復特性FDについて初期特性を演算し(S6)、S7に移行する。
 S7では、主往特性補正係数K2を演算し、S8に移行する。
 S8では、初期特性補正の有無を判定する。
 S8の判定の結果、初期特性補正された場合、式(2)に基づき補正後の反力Fxを演算し(S9)、S10に移行する。
 S10では、補正後の反力Fxを反映させたF-S特性に基づいて反力制御機構11を作動させて、リターンする。
 S8の判定の結果、初期特性補正されていない場合、式(3)に基づき補正後の反力Fxを演算し(S11)、S10に移行する。
 S5の判定の結果、運転者が急加速操作を行なっていない場合、S7に移行する。
 S3の判定の結果、車両が発進時ではない場合、S12に移行し、主往特性FBに相当する領域を走行しているか否か判定する。
 S12の判定の結果、主往特性FBに相当する領域を走行している場合、S7に移行する。S12の判定の結果、主往特性FBに相当する領域を走行していない場合、リターンする。
 次に、S4の姿勢補正係数演算処理ステップについて説明する。
 図15のフローチャートに示すように、姿勢補正係数演算処理ステップでは、まず、シート高さTとスライド量Lを加算した加算値T+Lが閾値A以上か否か判定する(S21)。
 S21の判定の結果、加算値T+Lが閾値A以上の場合、S22に移行し、加算値T+Lが閾値B以下か否か判定する。
 S22の判定の結果、加算値T+Lが閾値B以下の場合、二関節筋の筋活動に対する寄与率が低い姿勢状況であるため、姿勢補正係数K1にK1aを代入して(S23)、終了する。
 S22の判定の結果、加算値T+Lが閾値Bよりも大きい場合、二関節筋の筋活動に対する寄与率が更に低い姿勢状況であるため、姿勢補正係数K1にK1bを代入して(S24)、終了する。
 S21の判定の結果、加算値T+Lが閾値A未満の場合、二関節筋の筋活動に対する寄与率が高い姿勢状況であるため、姿勢補正係数K1に零(0)を代入して(S24)、終了する。
 次に、S7の主往特性補正係数演算処理ステップについて説明する。
 図16のフローチャートに示すように、主往特性補正係数演算処理ステップでは、まず、アクセルペダル3の踏込速度Vが零よりも大きい(踏込操作有り)か否か判定する(S31)。
 S31の判定の結果、アクセルペダル3の踏込速度Vが零よりも大きい場合、S32に移行し、緩加速か否か判定する。
 S32の判定の結果、緩加速の場合、動作の操作精度を高めるため、主往特性補正係数K2にK2aを代入して(S33)、終了する。
 S32の判定の結果、緩加速ではない場合、S34に移行し、中加速か否か判定する。
 S34の判定の結果、中加速の場合、S35に移行し、前操作(踏込操作)の主働筋が二関節筋であるか否か判定する。
 S35の判定の結果、前操作(踏込操作)の主働筋が二関節筋である場合、二関節筋主動の状態からバランス範囲内の状態に補正するため、主往特性補正係数K2にK2bを代入して(S36)、終了する。
 S35の判定の結果、前操作(踏込操作)の主働筋が二関節筋ではない場合、単関節優位の状態又はバランス状態からバランス範囲内の状態に補正するため、主往特性補正係数K2にK2cを代入して(S37)、終了する。
 S34の判定の結果、中加速ではない場合、急加速であるため、動作速度を速く且つ操作力を大きくするために主往特性補正係数K2にK2dを代入して(S37)、終了する。
 S31の判定の結果、アクセルペダル3の踏込速度Vが零以下の場合、主往特性補正係数K2に零を代入して(S39)、終了する。
 図17~図21に基づき、各操作時のF-S特性を具体的に説明する。
 尚、図17~図21では、理解の容易化を図るため、下方凸状である主往特性FBを便宜的に主復特性FCに平行な線形状に表示し、F-S特性をモデル化して示している。
 図17に示すように、発進且つ急加速操作時、活動すべき主働筋が二関節筋であると推定されるため、初期往特性FA及び終期復特性FDは、各々が上方に移行された初期往特性FAb及び終期復特性FDbに初期特性補正され、主往特性FB及び主復特性FCも同様に上方に移行された主往特性FBb及び主復特性FCbに補正されている。これにより、補正前のF-S特性全体を上方にオフセット的に移行させることにより、主往特性FBの反力Fを二関節筋の寄与率が60%以上の反力Fxからなる主往特性FBbに補正している。また、推定された二関節筋の筋活動に対する寄与率が低い姿勢状況の場合、オフセット量が更に増加される。
 図18に示すように、踏込量Sdの状態から急加速操作(例えば、高速道路の本線合流や割り込み等)した時、活動すべき主働筋が二関節筋であると推定されるため、主往特性FBcは踏込量Sdから主往特性FBよりも傾斜角度が大きく且つ反力値が高くなるように補正されている。主復特性FCcも主往特性FBcと同様に補正されている。これにより、主往特性FBの反力Fを二関節筋の寄与率が60%以上の反力Fxからなる主往特性FBcに補正している。また、推定された二関節筋の筋活動に対する寄与率が低い姿勢状況の場合、更に踏込量Sdの地点からの傾斜角度及び反力値の増加傾向が拡大される。
 図19に示すように、踏込量Sdの状態から緩加速操作(例えば、平坦路走行等)した時、活動すべき主働筋が単関節筋であると推定されるため、主往特性FBdは踏込量Sdから主往特性FBよりも傾斜角度が小さく且つ反力値が低くなるように補正されている。
 主復特性FCdも主往特性FBdと同様に補正されている。これにより、主往特性FBの反力Fを二関節筋の寄与率が40%未満の反力Fxからなる主往特性FBdに補正している。また、推定された二関節筋の筋活動に対する寄与率が低い姿勢状況の場合、踏込量Sdの状態からの傾斜角度及び反力値の減少傾向が縮小される。
 補正前の主往特性FBと補正後の主往特性FBc(主往特性FBd)の傾斜角度の差が所定の閾値以上の場合、運転者が特性変更に伴う違和感を感じるため、補正前の主往特性FBの終端(踏込量Sdの直前領域)と補正後の主往特性FBcの始端(踏込量Sdの直後領域)を滑らかに接続する補正を行っている。
 図20に示すように、主働筋が二関節筋である操作中に中加速操作(例えば、高速道路の加速車線から平坦路に移行等)した時、二関節筋と単関節筋の協働状態が適していると推定されるため、主往特性FBeは踏込量Sdから主往特性FBよりも傾斜角度(接線角度)が小さくなるように補正されている。主復特性FCeも主往特性FBeと同様に補正されている。また、推定された二関節筋の筋活動に対する寄与率が低い姿勢状況の場合、踏込量Sdの状態からの傾斜角度の減少傾向が縮小される。
 図21に示すように、主働筋が単関節筋である操作中に中加速操作(平坦路から高速道路の加速車線に移行等)した時、二関節筋と単関節筋の協働状態が適していると推定されるため、主往特性FBfは踏込量Sdから主往特性FBよりも傾斜角度が大きくなるように補正されている。主復特性FCfも主往特性FBfと同様に補正されている。また、推定された二関節筋の筋活動に対する寄与率が低い姿勢状況の場合、踏込量Sdの状態からの傾斜角度の増加傾向が拡大される。尚、中加速操作の場合、姿勢補正を含めて補正完了後の反力Fxがバランス範囲内に収まるように上限値及び下限値が調整されている。
 次に、上記車両用制御装置1の作用、効果について説明する。
 本制御装置1によれば、三次元マップMは、主往特性FBを下方凸状に設定されているため、主往特性FBにおいて反力知覚量Pの線形連続性を備えたF-S特性を設定することができる。換言すると、本制御装置1では、三次元マップMにおいて、アクセルペダル3が備える最大踏込量に対して所定の割合(例えば、2.5%~5.0%の範囲内の所定割合)に到達するまでは、踏込量sが増加するほど反力Fの値の増加度合が相対的に小さくなり、所定の割合に到達した後は、踏込量sが増加するほど反力Fの値の増加度合が相対的に大きくなる、ように主往特性FB(反力Fの値)を設定している。このように、反力設定部24が、主往特性FBにおけるアクセルペダル3の踏込量Sに応じて指数関数的に反力Fの値を変更するので、アクセルペダル3の踏込速度Vに拘らず操作リニアリティを運転者に付与することができる。
 三次元マップMは指数関数形状に設定されているため、F-S特性の主往特性FBを人間の知覚特性、例えば、Weber-Fechnerの法則に基づいて設定することができ、運転者に操作リニアリティを確実に付与することができる。
 反力設定部24は、アクセルペダル3の踏込速度Vが大きい程主往特性FBの非線形度合いを小さくしている。この構成によれば、刺激認識能力が低い高踏込速度領域よりも刺激認識能力が高い低踏込速度領域において運転者に線形連続性を強く付与することにより、踏込速度Vに拘らず運転者に操作リニアリティを感覚的及び経験的に体感させることができる。
 反力設定部24は、アクセルペダル3の踏込量Sが中間踏込量Sc側程主往特性FBの接線角度の変化率を小さくするため、人間の関節粘弾性特性に適合したアクセルペダル反力特性を設定することができる。
 また、本制御装置1によれば、運転状況に基づいて活動主体とすべき人体の下肢の主働筋が単関節筋と二関節筋の何れであるか推定する筋活動推定部23を備えているため、実際の運転状況において運転者の操作性の観点から活動主体とすべき主働筋を推定することができる。反力設定部24が、主往特性FBの傾斜角度又は主往特性FBの反力Fを筋活動推定部3によって推定された主働筋に基づき補正するため、運転状況に適した性能を備える骨格筋を適宜主働筋にすることができ、運転者のアクセルペダル3の操作性を向上することができる。
 反力設定部24は、活動主体とすべき主働筋が単関節筋であると推定されたとき、主往特性FBを反力減少方向に補正し、主働筋が二関節筋であると推定されたとき、主往特性FBを反力増加方向に補正している。これによれば、活動主体とすべき主働筋が単関節筋であると推定されたとき、アクセルペダル3の反力Fを介して単関節筋の寄与率を二関節筋の寄与率よりも高くすることができ、活動主体とすべき主働筋が二関節筋であると推定されたとき、アクセルペダル3の反力Fを介して二関節筋の寄与率を単関節筋の寄与率よりも高くすることができる。
 反力設定部24は、主往特性FB全体をオフセット的に補正しているため、制御処理上、簡単な構成で、骨格筋の寄与率を調整することができる。
 アクセルペダル3の踏込速度Vを検出する踏込速度センサ5を備え、筋活動推定部23は、踏込速度センサ5によって検出されたアクセルペダル3の踏込初期の踏込速度Vに基づいて主働筋を推定するため、運転状況の変化に追従して、骨格筋の寄与率を調整することができる。
 次に、実施例2に係る三次元マップMAについて図22に基づいて説明する。
 実施例1の三次元マップMは、アクセルペダル3の踏込速度Vが大きい程主往特性FBの非線形度合いを小さくするのに対し、実施例2の三次元マップMAは、アクセルペダル3の踏込速度Vが大きい程主往特性FBの非線形度合いを大きくしている。
 尚、実施例1と同様の構成要素については、同一の符号を付している。
 図22に示すように、三次元マップMAにおけるF-S特性において、踏込側特性は、踏込開始領域に相当する踏込開始から初期踏込量Saまでの初期往特性FAg(FAh)と初期踏込量Saから最大踏込量Sbまでの主往特性FBg(FBh)とによって構成されている。また、踏戻側特性は、最大踏込量Sbから初期踏込量Saまでの主復特性FCg(FCh)と踏込終了領域に相当する初期踏込量Saから踏戻終了までの終期復特性FDg(FDh)とによって構成されている。
 三次元マップMAは、アクセルペダル3の踏込速度Vが大きい程主往特性FBの非線形度合いが大きくなるように構成されている。
 高踏込速度における主往特性FBhは、低踏込速度における主往特性FBgよりも接線角度の変化率が大きい下方凸状の指数関数形状に設定されている。
 これにより、筋活動量が大きい為に刺激認識能力が高い低踏込速度領域よりも刺激認識能力が低い高踏込速度領域において運転者に線形連続性を強く知覚させることにより、踏込速度Vに拘らず運転者に一様な操作リニアリティを体感させることができる。
 次に、実施例3に係る三次元マップMBについて図23,図24,及び図25に基づいて説明する。
 実施例1の三次元マップMは、初期踏込量Saと最大踏込量Sbの中間点である中間踏込量Scに接近する程、主往特性FBの接線角度の変化率が小さくなるように設定されているのに対し、実施例3の三次元マップMBは、主往特性FBi(FBj)の接線角度の変化率が最も小さくなる状態のときに中間踏込量Scからずれるように構成されている。
 図23に示すように、三次元マップMBは、特性Fa,FBi,FCi,FDからなる低踏込速度のF-S特性と、特性FAa,FBj,FCj,FDaからなる高踏込速度のF-S特性とを備えている。この三次元マップMBは、アクセルペダル3の踏込速度Vが大きい程主往特性FBiの非線形度合いが小さくなるように構成されている。
 前述したように、P-F特性を上方凸状の対数関数形状に設定することにより、運転者に対して破線で示す線形連続性を有する反力知覚量Pを知覚させることができる。
 ここで、運転者の個人差(例えば、体格や踏力の強さ等)によって前述した対数関数の底が異なることから、踏込終了時の反力Fが一定になるとした場合、接線角度の変化率が小さくなる状態のときに中間踏込量Scから移動する特性を有している。
 図24及び図25に示すように、実施例1の運転者よりもP-F特性の底が小さい運転者の場合、主往特性FBiの接線角度の変化率が最も小さくなる状態のときに中間踏込量Scよりも大きくなるように設定されている。
 また、実施例1の運転者よりもP-F特性の底が大きい運転者の場合、主往特性FBiの接線角度の変化率が最も小さくなる状態のときに中間踏込量Scよりも小さくなるように設定される。これにより、運転者の個人差に拘らず運転者に一様な操作リニアリティを体感させることができる。
 次に、実施例1~3の各形態を部分的に変更した変形例について説明する。
1〕実施例1~3においては、アクチュエータと摩擦部材とにより構成した反力制御機構を用いた例を説明したが、反力モータを備えたアクセルバイワイヤ機構を用いても良い。
2〕実施例1~3においては、主往特性が指数関数状、主復特性が線形状に形成された例を説明したが、主復特性を主往特性に平行な指数関数状に形成しても良い。
3〕実施例1~3においては、運転状況を踏込速度センサで検出する例を説明したが、ナビゲーションシステムの現在位置データ、道路地図データ及び交通規則データに基づき運転状況を予測しても良い。この場合、予測された運転状況に応じて主働筋を推定する。
4〕実施例1~3においては、急加速発進時、F-S特性全体をオフセット的に反力増加方向に補正した例を説明したが、初期往特性と終期復特性のみ増加補正しても良い。
 また、初期往特性と終期復特性のみ増加補正すると共に、踏込量中盤まで二関節筋優位になるよう補正し、中盤以降単関節筋優位になるよう補正することも可能である。
5〕実施例1~3においては、緩加速、二関節筋主働後の中加速、単関節筋主働後の中加速、急加速の4通りに加速状態を分類した例を説明したが、3通り以下の分類でも良く、5通り以上の分類や、加速値に応じたリニアな補正を行うことも可能である。
 また、運転状況に応じて傾斜角度及び反力値を増加又は減少する例を説明したが、何れか一方のみ補正しても良い。
6〕その他、当業者であれば、本開示の趣旨を逸脱することなく、実施例1~3の各形態に種々の変更を付加した形態や各実施形態を組み合わせた形態で実施可能であり、本開示はそのような変更形態も包含するものである。
 [本開示のまとめ]
 本開示の一態様に係る車両用制御装置は、アクセルペダルの踏込量を検出する踏込量検出部と、前記アクセルペダルの踏込速度を検出する踏込速度検出部と、前記踏込量検出部及び前記踏込速度検出部での検出結果に基づき、前記アクセルペダルの反力の値を設定する反力設定部と、前記反力設定部で設定された結果に基づき、前記アクセルペダルの機構を制御し、前記設定された前記反力を発生させる反力生成部と、を備え、前記反力設定部は、前記アクセルペダルの踏込開始から踏込終了までの、前記アクセルペダルの踏込量との相関関係を有する前記反力の値の特性である往特性と、前記アクセルペダルの踏戻開始から踏戻終了までの、前記アクセルペダルの踏込量との相関関係を有する前記反力の値の特性である復特性と、に分けて、前記反力の値を設定するものであり、且つ、前記反力設定部は、前記往特性の内、踏込開始及び踏込終了の両領域を除く主往特性においては、前記アクセルペダルが備える最大踏込量に対して所定の割合に到達するまでは、前記踏込量が増加するほど前記反力の値の増加度合が相対的に小さくなり、前記所定の割合に到達した後は、前記踏込量が増加するほど前記反力の値の増加度合が相対的に大きくなる、ように前記踏込量に対する前記反力の値を設定し、前記復特性においては、前記踏込量が減少するほど前記反力の値が減少するように前記反力の値を設定する。
 この車両用制御装置では、主往特性における上記反力の値を、アクセルペダルが備える最大踏込量に対して所定の割合に到達するまでは、踏込量が増加するほど反力の値の増加度合が相対的に小さくなり、所定の割合に到達した後は、踏込量が増加するほど前記反力の値の増加度合が相対的に大きくなる、ように設定するので、反力知覚量の線形連続性を備えたアクセルペダル反力特性(F-S特性)を設定することができる。
 よって、上記態様に係る車両用制御装置では、主往特性をアクセルペダルの踏込量に応じて変更するため、アクセルペダルの踏込速度に拘らず、操作リニアリティを運転者に付与することができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、前記往特性及び前記復特性のそれぞれにおける前記相関関係を規定する制御マップが予め格納されてなる記憶部を更に備え、前記反力設定部は、前記記憶部に格納された前記制御マップを参照して前記反力の値を設定するものであり、前記制御マップは、前記往特性における前記相関関係が、横軸に前記踏込量をとり、縦軸に前記反力の値をとって規定されており、前記制御マップにおいて、前記往特性における前記相関関係は、指数関数形状に設定されている。
 この構成によれば、アクセルペダル反力特性の主往特性を人間の知覚特性に基づいて設定することができ、運転者に操作リニアリティを確実に付与することができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、前記反力設定部は、前記アクセルペダルの踏込速度が大きい程、前記主往特性の非線形度合いを小さくする。
 この構成によれば、刺激認識能力が低い高踏込速度領域よりも刺激認識能力が高い低踏込速度領域において運転者に線形連続性を強く付与することにより、踏込量に拘らず運転者に操作リニアリティを感覚的及び経験的に体感させることができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、前記反力設定部は、前記アクセルペダルの踏込量が中間値側程、前記主往特性の接線角度の変化率を小さくする。
 この構成によれば、人間の関節粘弾性特性に適合したアクセルペダル反力特性を設定することができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、運転状況に基づいて活動主体とすべき人体の下肢の主働筋が単関節筋と二関節筋の何れであるか推定する筋活動推定部を更に備え、前記反力設定部は、前記主往特性における前記相関関係又は主往特性の前記反力の値を、前記筋活動推定部によって推定された主働筋に基づき補正する。
 この構成によれば、運転状況に基づいて活動主体とすべき人体の下肢の主働筋が単関節筋と二関節筋の何れであるか推定する筋活動推定部を備えているため、実際の運転状況において運転者の操作性の観点から活動主体とすべき主働筋を推定することができる。反力設定部が、踏込開始及び踏込終了領域を除く主往特性の傾斜角度又は主往特性の反力値を筋活動推定部によって推定された主働筋に基づき補正するため、運転状況に適した性能を備える骨格筋を適宜主働筋にすることができ、運転者のアクセルペダルの操作性を向上することができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、前記反力設定部は、前記活動主体とすべき主働筋が単関節筋であると推定されたとき、前記主往特性を反力減少方向に補正し、主働筋が二関節筋であると推定されたとき、前記主往特性を反力増加方向に補正する。
 この構成によれば、活動主体とすべき主働筋が単関節筋であると推定されたとき、アクセルペダルの反力を介して単関節筋の寄与率を二関節筋の寄与率よりも高くすることができ、活動主体とすべき主働筋が二関節筋であると推定されたとき、アクセルペダルの反力を介して二関節筋の寄与率を単関節筋の寄与率よりも高くすることができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、前記反力設定部は、補正前の主往特性の終端と補正後の主往特性の始端とが滑らかに接続されるように、前記補正を行う。
 この構成によれば、補正前の主往特性の終端と補正後の主往特性の始端とが滑らかに接続されるように補正するので、運転者に対して特性変更に伴う違和感を感じさせ難くすることができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、前記反力設定部は、前記反力の値を、前記主往特性における全体でオフセット的に補正する。
 この構成によれば、補正前の主往特性の終端と補正後の主往特性の始端とが制御処理上、簡単な構成で、骨格筋の寄与率を調整することができる。
 本開示の別態様に係る車両用制御装置は、上記態様であって、前記筋活動推定部は、前記踏込速度検出部によって検出されたアクセルペダルの踏込初期の踏込速度に基づいて主働筋が前記単関節筋と前記二関節筋の何れであるかを推定する。
 この構成によれば、運転状況の変化に追従して、骨格筋の寄与率を調整することができる。
 以上のように、本開示の各態様に係る車両用制御装置は、アクセルペダルの踏込速度に拘らず運転者に操作リニアリティを付与することができ、運転者に感覚的に十分な操作感を知覚させることができる。

Claims (9)

  1.  車両用制御装置において、
     アクセルペダルの踏込量を検出する踏込量検出部と、
     前記アクセルペダルの踏込速度を検出する踏込速度検出部と、
     前記踏込量検出部及び前記踏込速度検出部での検出結果に基づき、前記アクセルペダルの反力の値を設定する反力設定部と、
     前記反力設定部で設定された結果に基づき、前記アクセルペダルの機構を制御し、前記設定された前記反力を発生させる反力生成部と、
    を備え、
     前記反力設定部は、
     前記アクセルペダルの踏込開始から踏込終了までの、前記アクセルペダルの踏込量との相関関係を有する前記反力の値の特性である往特性と、
     前記アクセルペダルの踏戻開始から踏戻終了までの、前記アクセルペダルの踏込量との相関関係を有する前記反力の値の特性である復特性と、
    に分けて、前記反力の値を設定するものであり、
     且つ、
     前記反力設定部は、
     前記往特性の内、踏込開始及び踏込終了の両領域を除く主往特性においては、前記アクセルペダルが備える最大踏込量に対して所定の割合に到達するまでは、前記踏込量が増加するほど前記反力の値の増加度合が相対的に小さくなり、前記所定の割合に到達した後は、前記踏込量が増加するほど前記反力の値の増加度合が相対的に大きくなる、ように前記踏込量に対する前記反力の値を設定し、
     前記復特性においては、前記踏込量が減少するほど前記反力の値が減少するように前記反力の値を設定する、
     ことを特徴とする車両用制御装置。
  2.  前記往特性及び前記復特性のそれぞれにおける前記相関関係を規定する制御マップが予め格納されてなる記憶部を更に備え、
     前記反力設定部は、前記記憶部に格納された前記制御マップを参照して前記反力の値を設定するものであり、
     前記制御マップは、前記往特性における前記相関関係が、横軸に前記踏込量をとり、縦軸に前記反力の値をとって規定されており、
     前記制御マップにおいて、前記往特性における前記相関関係は、指数関数形状に設定されている、
     ことを特徴とする請求項1に記載の車両用制御装置。
  3.  前記反力設定部は、前記アクセルペダルの踏込速度が大きい程、前記主往特性の非線形度合いを小さくする、
     ことを特徴とする請求項2に記載の車両用制御装置。
  4.  前記反力設定部は、前記アクセルペダルの踏込量が中間値側程、前記主往特性の接線角度の変化率を小さくする、
     ことを特徴とする請求項1~3の何れか1項に記載の車両用制御装置。
  5.  運転状況に基づいて活動主体とすべき人体の下肢の主働筋が単関節筋と二関節筋の何れであるか推定する筋活動推定部を更に備え、
     前記反力設定部は、前記主往特性における前記相関関係又は主往特性の前記反力の値を、前記筋活動推定部によって推定された主働筋に基づき補正する、
     ことを特徴とする請求項1に記載の車両用制御装置。
  6.  前記反力設定部は、前記活動主体とすべき主働筋が単関節筋であると推定されたとき、前記主往特性を反力減少方向に補正し、主働筋が二関節筋であると推定されたとき、前記主往特性を反力増加方向に補正する、
     ことを特徴とする請求項5に記載の車両用制御装置。
  7.  前記反力設定部は、補正前の主往特性の終端と補正後の主往特性の始端とが滑らかに接続されるように、前記補正を行う、
     ことを特徴とする請求項5又は6に記載の車両用制御装置。
  8.  前記反力設定部は、前記反力の値を、前記主往特性における全体でオフセット的に補正する、
     ことを特徴とする請求項5又は6に記載の車両用制御装置。
  9.  前記筋活動推定部は、前記踏込速度検出部によって検出されたアクセルペダルの踏込初期の踏込速度に基づいて主働筋が前記単関節筋と前記二関節筋の何れであるかを推定する、
     ことを特徴とする請求項5~7の何れか1項に記載の車両用制御装置。
PCT/JP2017/043522 2016-12-07 2017-12-04 車両用制御装置 WO2018105568A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780075478.2A CN110062842B (zh) 2016-12-07 2017-12-04 车辆用控制装置
EP17879404.6A EP3536936B1 (en) 2016-12-07 2017-12-04 Vehicle control device
US16/467,329 US11505065B2 (en) 2016-12-07 2017-12-04 Vehicle control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016237321A JP6278100B1 (ja) 2016-12-07 2016-12-07 車両用制御装置
JP2016-237320 2016-12-07
JP2016237320A JP6304513B1 (ja) 2016-12-07 2016-12-07 車両用制御装置
JP2016-237321 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105568A1 true WO2018105568A1 (ja) 2018-06-14

Family

ID=62492270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043522 WO2018105568A1 (ja) 2016-12-07 2017-12-04 車両用制御装置

Country Status (4)

Country Link
US (1) US11505065B2 (ja)
EP (1) EP3536936B1 (ja)
CN (1) CN110062842B (ja)
WO (1) WO2018105568A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018122044A1 (de) 2018-09-10 2020-03-12 Faurecia Autositze Gmbh Kraftfahrzeugsitz

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285306A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 操作入力装置
JP2009041544A (ja) * 2007-08-10 2009-02-26 Toyota Motor Corp 操作補助装置および駆動力制御装置
JP2013006485A (ja) * 2011-06-23 2013-01-10 Nissan Motor Co Ltd 走行支援装置及び走行支援方法
JP5293784B2 (ja) 2011-08-10 2013-09-18 日産自動車株式会社 操作補助方法、操作補助装置、制御プログラム、および車両
JP2016000581A (ja) 2014-06-12 2016-01-07 マツダ株式会社 車両のアクセルペダル制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873876B2 (ja) * 2002-12-06 2007-01-31 日産自動車株式会社 車両用運転操作補助装置およびその装置を備えた車両
JP5278162B2 (ja) * 2008-07-31 2013-09-04 日産自動車株式会社 アクセルペダル踏力制御装置
JP5326805B2 (ja) * 2008-07-31 2013-10-30 日産自動車株式会社 アクセルペダル踏力制御装置
KR101431943B1 (ko) * 2010-02-24 2014-08-19 닛산 지도우샤 가부시키가이샤 액셀러레이터 페달 답력 제어 장치
CA2921950C (en) * 2013-08-22 2020-06-02 Honda Motor Co., Ltd. Accelerator pedal reaction force control device
FR3021260B1 (fr) * 2014-05-20 2016-05-13 Peugeot Citroen Automobiles Sa Dispositif de commande de l'acceleration d'un vehicule, a amortissement variable pour alerter le conducteur d'une phase de roue libre
DE102015216756A1 (de) * 2015-09-02 2017-03-02 Borgward Trademark Holdings Gmbh Verfahren und Vorrichtung zum Bestimmen eineserforderlichen Drehmoments eines Kraftfahrzeugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285306A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 操作入力装置
JP2009041544A (ja) * 2007-08-10 2009-02-26 Toyota Motor Corp 操作補助装置および駆動力制御装置
JP2013006485A (ja) * 2011-06-23 2013-01-10 Nissan Motor Co Ltd 走行支援装置及び走行支援方法
JP5293784B2 (ja) 2011-08-10 2013-09-18 日産自動車株式会社 操作補助方法、操作補助装置、制御プログラム、および車両
JP2016000581A (ja) 2014-06-12 2016-01-07 マツダ株式会社 車両のアクセルペダル制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3536936A4

Also Published As

Publication number Publication date
EP3536936A4 (en) 2019-12-18
US11505065B2 (en) 2022-11-22
EP3536936A1 (en) 2019-09-11
EP3536936B1 (en) 2021-04-14
US20200062116A1 (en) 2020-02-27
CN110062842A (zh) 2019-07-26
CN110062842B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
US11072349B2 (en) Method, apparatus and computer program for producing and transmitting a piece of driver information
CN108473143B (zh) 用于至少部分自动化驾驶的方法和装置
JP4532181B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP5200926B2 (ja) 運転支援装置
US8370025B2 (en) Steering apparatus, steering method, and computer readable storage medium
US8036781B2 (en) Driving operation assisting system, method and vehicle incorporating the system
EP2752346B1 (en) Vehicle control device
CN104260725A (zh) 一种含有驾驶员模型的智能驾驶系统
JP6274024B2 (ja) 車両のアクセルペダル制御装置
CN109466629B (zh) 确定动力转向系统的辅助转矩的方法
JP4941659B2 (ja) 車両用操作反力制御装置
Wang et al. Adaptive driver-automation shared steering control via forearm surface electromyography measurement
WO2018105568A1 (ja) 車両用制御装置
JP6304513B1 (ja) 車両用制御装置
JP6846735B2 (ja) 車両用制御装置
JP3443846B2 (ja) 運転感覚制御装置
CN107415929A (zh) 车辆的控制装置
JP6278100B1 (ja) 車両用制御装置
JP2005174218A (ja) 車両用運転支援装置
JP4631931B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP6011358B2 (ja) 車線維持支援装置
JP6528806B2 (ja) 車両用制御装置
JP2008138595A (ja) 車両制御装置
JP4169028B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP6823292B2 (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017879404

Country of ref document: EP

Effective date: 20190708