[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018194182A1 - 水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置 - Google Patents

水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置 Download PDF

Info

Publication number
WO2018194182A1
WO2018194182A1 PCT/JP2018/016440 JP2018016440W WO2018194182A1 WO 2018194182 A1 WO2018194182 A1 WO 2018194182A1 JP 2018016440 W JP2018016440 W JP 2018016440W WO 2018194182 A1 WO2018194182 A1 WO 2018194182A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen gas
fuel cell
hydrogen
gas
Prior art date
Application number
PCT/JP2018/016440
Other languages
English (en)
French (fr)
Inventor
永佳 松島
亮太 小河
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2019513716A priority Critical patent/JP7164882B2/ja
Publication of WO2018194182A1 publication Critical patent/WO2018194182A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/38Separation by electrochemical methods
    • B01D59/40Separation by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing water or an aqueous solution enriched with hydrogen isotopes, a method for producing hydrogen gas with reduced hydrogen isotope concentration, and a production apparatus. More specifically, the present invention relates to a method for producing water or an aqueous solution enriched with hydrogen isotopes from water or an aqueous solution containing hydrogen isotope-containing water, a method for producing hydrogen gas with reduced hydrogen isotope concentration, and a production apparatus. In the method and apparatus for producing water or an aqueous solution enriched with hydrogen isotopes, hydrogen gas with a reduced hydrogen isotope concentration can be produced together.
  • Hydrogen isotopes of deuterium and tritium are important as raw materials for fusion reactor fuels and medical materials. Furthermore, as for the contaminated water related to the Fukushima nuclear accident, an effective method for separating tritium has not been found, and it is still the biggest concern for the treatment of contaminated water.
  • Separation and concentration techniques for deuterium and tritium, which are hydrogen isotopes include distillation using differences in boiling point, water-hydrogen sulfide exchange method (GS method) by exchange substitution with light hydrogen atoms, water electrolysis method and platinum catalyst. (CECE method) (see Non-Patent Document 1 (provided by TEPCO)).
  • Non-patent document 1 http://www.tepco.co.jp/nu/fukushima-np/roadmap/images/c130426_06-j
  • the water electrolysis method started in 1933 when G.N. Lewis et al. Continuously electrolyzed the water in the old electrolyzer to obtain a small amount of heavy water, and this method is still used industrially.
  • the Fukushima nuclear power plant needs to process a large amount of contaminated water every day, and its power consumption is enormous, making it unsuitable for large-scale production.
  • An object of this invention is to provide the new concentration technique of the water containing a hydrogen isotope.
  • the present invention is as follows. [1] A fuel cell connected in series to at least one water electrolyzer and at least two hydrogen gas streams (FCn, where n is an integer greater than or equal to 2 and connected to the water electrolyzer in the first stage) Is made into FC1, and power generation is performed independently in each fuel cell, and water electrolysis is performed in a water electrolysis apparatus, so that water or an aqueous solution containing a hydrogen isotope (hereinafter referred to as an aqueous solution AS 0 ).
  • FCn water electrolyzer and at least two hydrogen gas streams
  • a method for producing water or an aqueous solution (AS e ) having a higher hydrogen isotope content than the aqueous solution AS 0 (We1) hydrolyzing the aqueous solution AS 0 in a water electrolyzer to obtain hydrogen gas and oxygen gas; (Fc1) Hydrogen gas obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), a part of the hydrogen gas (HG 0 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ) is reacted at the negative electrode side.
  • FC1 to the positive electrode side of the ⁇ FCn is supplied oxygen gas or an oxygen-containing gas, at least partially supplied to the water electrolysis apparatus from said recovered hydrogen isotope-containing water W 1 W n, [1] The method described. [3] Wherein providing at least a portion of the recovered hydrogen isotope-containing water W 1 W n with an aqueous solution AS 0 to the water electrolysis apparatus, the method described in [1] or [2]. [4] Any one of [1] to [3], wherein the hydrogen isotope-containing water W 1 to W n is recovered from the fuel cell by being accompanied by oxygen gas or oxygen-containing gas discharged from the positive electrode side of the fuel cell. The method described in 1.
  • a fuel cell connected in series to at least one water electrolyzer and at least two hydrogen gas streams (FCn, where n is an integer greater than or equal to 2 and connected to the water electrolyzer in the first stage) Is made into FC1, and the method of producing hydrogen gas with reduced hydrogen isotope concentration, including generating electricity independently in each fuel cell and performing water electrolysis in a water electrolyzer Because (We1) water electrolysis of water or an aqueous solution containing a hydrogen isotope in a water electrolyzer to obtain hydrogen gas (HG 0 ) and oxygen gas; (Fc1h) The hydrogen gas HG 0 obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), a part of the hydrogen gas HG 0 is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ) (Fc2h) The recovered hydrogen gas HG 1 is supplied to the negative electrode side of the fuel cell 2 (FC2), a part of the hydrogen gas HG 1 is reacted at the negative electrode, and
  • Hydrogen gas circulation means is provided in the negative electrode chamber of the fuel cell adjacent to the water electrolyzer of the fuel cell connected in series from the cathode chamber of the water electrolyzer,
  • the fuel cells connected in series have hydrogen gas circulation means between the negative electrode chambers of the fuel cells sequentially connected from the fuel cells adjacent to the water electrolysis device,
  • the fuel cells connected in series have oxygen gas or oxygen-containing gas flow means between the positive electrode chambers of the fuel cells sequentially connected from the fuel cells adjacent to the water electrolysis device, and Having distribution means for recovering water generated from the fuel cell to the water electrolyzer;
  • An apparatus for producing water or aqueous solution enriched with hydrogen isotopes [14] The production apparatus according to [13], for producing hydrogen gas with a reduced isotope concentration.
  • At least one water electrolyzer and at least two fuel cells connected in series with a flow of hydrogen gas the water electrolyzer having a cathode chamber and an anode chamber, wherein the fuel cell comprises a negative electrode chamber and a positive electrode chamber, respectively.
  • Have Hydrogen gas circulation means is provided in the negative electrode chamber of the fuel cell adjacent to the water electrolyzer of the fuel cell connected in series from the cathode chamber of the water electrolyzer,
  • the fuel cells connected in series have hydrogen gas circulation means between the negative electrode chambers of the fuel cells sequentially connected from the fuel cells adjacent to the water electrolyzer.
  • the hydrogen isotope concentration of water containing hydrogen isotopes can be concentrated by combining water electrolysis and power generation by a fuel cell, the concentration efficiency is high, and power is generated by the fuel cell. Since electricity can be used for water electrolysis, power consumption of the entire system can be suppressed.
  • hydrogen gas having a reduced hydrogen isotope concentration can be produced together.
  • a method and apparatus capable of producing hydrogen gas having a reduced hydrogen isotope concentration can be provided.
  • Example 1 It is a schematic explanatory drawing of the one aspect
  • An outline of the experimental apparatus used in Example 1 is shown.
  • the experimental result of Example 1 is shown.
  • the experimental result of Example 2 is shown.
  • An outline of the experimental apparatus used in Example 3 is shown.
  • the experimental result of Example 3 is shown.
  • 6 is a schematic explanatory diagram of an oxygen forward flow type apparatus of the present invention used in Example 5.
  • FIG. FIG. 5 is a schematic explanatory diagram of an oxygen backflow type apparatus of the present invention used in Example 5.
  • the experimental result of Example 5 is shown.
  • the experimental result of Example 5 is shown.
  • the present invention uses a fuel cell connected in series to at least one water electrolyzer and at least two hydrogen gas streams, and generates power independently in each fuel cell, and the water electrolyzer in the water electrolyzer And a method for producing water or an aqueous solution (AS e ) having a hydrogen isotope content higher than that of the aqueous solution AS 0 from water or an aqueous solution containing hydrogen isotopes (hereinafter referred to as an aqueous solution AS 0 ).
  • the present invention further relates to an apparatus for producing hydrogen isotope-enriched water or an aqueous solution (hydrogen isotope-enriched water / aqueous solution), comprising at least one water electrolyzer and at least two fuel cells connected in series.
  • the water electrolysis apparatus has a cathode chamber and an anode chamber, and the fuel cell has a negative electrode chamber and a positive electrode chamber, respectively.
  • FIG. 1 A schematic diagram of one embodiment of the production apparatus of the present invention is shown in FIG.
  • the apparatus shown in FIG. 1 includes one water electrolyzer (water electrolyzer) 10 and fuel cells FC1, FC2,... FCn connected in series.
  • n is an integer of 3 or more. There is no restriction
  • FCn is shown, but there are two fuel cells, FC1 and FC2.
  • the connection mode of the fuel cells in series means that a plurality of fuel cells are connected along the flow of hydrogen gas flowing between the fuel cells. It is not meant to be connected in series by paying attention to the flow of electricity between the plurality of fuel cells. Since the plurality of fuel cells are operated under independent conditions, they are not electrically connected in series.
  • the water electrolyzer 10 has an anode and a negative electrode and a diaphragm (for example, an ion exchange membrane) installed between the anode and the negative electrode in the electrolyzer.
  • a diaphragm for example, an ion exchange membrane
  • an external power source is connected to the anode and the negative electrode.
  • the water electrolyzer there are known a polymer electrolyte water electrolyzer, an alkaline water electrolyzer and the like, but an alkaline water electrolyzer is suitable because it can generate a large amount of hydrogen gas.
  • the temperature at which the water electrolysis apparatus is operated is, for example, preferably in the range of 20 ° C to 70 ° C. However, it is not intended to be limited to this range.
  • the amount of hydrogen generated can be controlled by adjusting the amount of current.
  • a preferred current can be, for example, in the range of 0.1-100A. However, it is not intended to be limited to this range.
  • the anode chamber has a circulation means for supplying water / aqueous solution and an oxygen gas circulation means for discharging oxygen gas generated at the anode by electrolysis.
  • the cathode chamber may have hydrogen gas circulation means for discharging hydrogen gas, and the cathode chamber may have circulation means for supplying water / aqueous solution.
  • the flow means for supplying water / aqueous solution is connected to the anode chamber side.
  • the fuel cells FC1, FC2,... FCn each have a catalyst layer serving as a positive electrode and a catalyst layer serving as a negative electrode on both sides of an electrolyte, and a catalyst layer serving as a positive electrode chamber and a negative electrode outside the catalyst layer serving as a positive electrode.
  • a negative electrode chamber is provided on the outside of the substrate.
  • the type, structure, shape, and dimensions of the electrolyte, positive electrode, and negative electrode are not particularly limited.
  • the catalyst used for the catalyst layer serving as the positive electrode is preferably a material that can preferentially generate a water generation reaction between hydrogen isotope ions and oxygen compared to a water generation reaction between hydrogen ions and oxygen.
  • the catalyst used for the catalyst layer serving as the negative electrode is preferably a material capable of preferentially producing an oxidation reaction of hydrogen gas containing a hydrogen isotope as compared with an oxidation reaction of hydrogen gas.
  • examples of such materials include noble metals such as platinum and ruthenium, transition metals such as nickel and cobalt, alloys and oxides thereof.
  • the electrolyte is preferably a material that easily allows diffusion of not only hydrogen ions but also hydrogen isotope ions in the electrolyte.
  • Examples of such a material include a proton conductive solid polymer membrane and an anion conductive solid polymer membrane.
  • the oxygen gas flow means (supply side and discharge side) are connected to the positive electrode chamber, and the hydrogen gas flow means (supply side and discharge side) are connected to the negative electrode chamber.
  • the oxygen gas circulation means is means for circulating oxygen gas or oxygen-containing gas.
  • the positive electrode chamber can further be provided with circulation means (supply side and discharge side) for supplying water / aqueous solution.
  • the water / water solution can be discharged by accompanying the oxygen-containing gas discharged from the positive electrode chamber.
  • Flow means (supply side and discharge side) for supplying water / aqueous solution provided in the fuel cell, oxygen gas flow means (supply side and discharge side), and hydrogen gas flow means (supply side and discharge side) are adjacent to each other.
  • FC1 is adjacent to the water electrolysis tank
  • the oxygen gas circulation means (supply side) of FC1 adjacent to the water electrolysis tank is connected to the anode chamber of the water electrolysis tank
  • the hydrogen gas circulation means of FC1 ( The supply side) is connected to the cathode chamber of the water electrolyzer.
  • the distribution means (discharge side) for supplying the water / aqueous solution of FC1 may be a water electrolysis tank.
  • distribution means for supplying water / aqueous solution of FCn, oxygen gas distribution means (discharge side), and hydrogen gas distribution means (discharge side) are connected to the outside of the apparatus.
  • the oxygen gas circulation means (supply side) to each fuel cell is not connected to the adjacent water electrolyzer or the oxygen gas circulation means (discharge side) of the adjacent fuel cell, and independently oxygen gas (for example, air It can also be connected to a source.
  • the hydrogen gas circulation means for connecting the fuel cells connected in series communicates between the negative electrode chambers of adjacent fuel cells.
  • the oxygen gas circulation means for connecting the fuel cells connected in series communicates between the positive electrode chambers of the adjacent fuel cells.
  • the water or aqueous solution circulation means can connect between the positive electrode chambers of the adjacent fuel cells of the fuel cells connected in series.
  • the method for producing a hydrogen isotope concentrated water / water solution of the present invention can be carried out, for example, using the apparatus of the present invention.
  • the method of the present invention will be described with reference to FIG.
  • (We1) The aqueous solution AS 0 is hydroelectrolyzed in a water electrolyzer to obtain hydrogen gas and oxygen gas.
  • (Fc1) Hydrogen gas obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), a part of the hydrogen gas (HG 0 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ) is reacted at the negative electrode side.
  • Hydrogen gas obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), a part of the hydrogen gas (HG 0 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ) is reacted at the negative electrode side.
  • W 1 hydrogen isotope-containing water
  • the aqueous solution AS 0 is hydroelectrolyzed to obtain hydrogen gas and oxygen gas, and the water or the aqueous solution AS e having a higher hydrogen isotope content than the aqueous solution AS 0 after the electrolysis is recovered.
  • the aqueous solution AS 0 can be water (aqueous solution) containing water containing deuterium (D) or tritium (T) which are hydrogen isotopes.
  • Water containing deuterium (D) which is a hydrogen isotope element contains H 2 O, HDO and / or D 2 O.
  • Water containing tritium (T) which is a hydrogen isotope element contains H 2 O, HTO and / or T 2 O.
  • the concentration of water (such as HDO and / or D 2 O, HTO and / or T 2 O) containing a hydrogen isotope element contained in the aqueous solution AS 0 is not particularly limited.
  • the hydrogen isotope element can be in the range of 0.1 to 100 atomic%. However, it is not intended to be limited to this range.
  • the aqueous solution is preferably pure water containing no electrolyte.
  • the aqueous electrolysis solution supplied with the aqueous solution AS 0 or the aqueous solution AS 0 preferably contains an electrolyte.
  • an electrolyte can be added to the aqueous solution AS n .
  • the electrolyte can be, for example, an alkaline substance from the viewpoint of having no adverse reactivity such as corrosiveness, and the alkaline substance is preferably, for example, sodium hydroxide, potassium hydroxide, or the like.
  • the aqueous solution containing the electrolyte can also be seawater. It can also be pond water. The concentration of the electrolyte can be appropriately determined in consideration of electrolysis conditions and the like.
  • the conditions for electrolysis of water in the water electrolysis apparatus are not particularly limited as long as oxygen molecules are generated at the anode and hydrogen molecules at the cathode in the water electrolysis tank.
  • water electrolysis water containing a hydrogen isotope element contained in an aqueous solution is less susceptible to electrolysis than water (H 2 O) not containing a hydrogen isotope element.
  • water containing hydrogen isotopes contained in an aqueous solution is not necessarily electrolyzed at all.
  • the ratio of light hydrogen and hydrogen isotope elements that are decomposed into oxygen molecules and hydrogen molecules in water electrolysis (denoted as H / X (X is D or T)) Although it varies depending on the apparatus and operating conditions, it exceeds 1, and is, for example, in the range of 1.5 to 5.
  • the hydrogen isotope concentration in the hydrogen gas produced by electrolysis is lower than that of the aqueous solution AS 0.
  • the hydrogen gas also contains hydrogen isotopes, and water containing deuterium (D), which is a hydrogen isotope element. in the electrolysis, in addition to H 2, HD and / In the electrolysis of water containing tritium (T) is a. Hydrogen isotopes containing D 2, in addition to H 2, containing HT and / or T 2.
  • step (fc1) a hydrogen gas HG 0 generated by water electrolysis on the negative electrode side of FC1 is supplied.
  • This hydrogen gas contains a hydrogen isotope as described above.
  • Hydrogen gas containing hydrogen isotopes reacts with oxygen on the positive electrode side in the fuel cell to produce water.
  • the reaction formula in the positive electrode and the negative electrode of the fuel cell is illustrated in FIG.
  • the reactivity with oxygen in a fuel cell varies depending on the type of hydrogen isotope, the type of fuel cell (electrode, electrolyte, etc.) and operating conditions, but in general, the hydrogen isotope X is less than light hydrogen (H). Is higher.
  • X / H is greater than 1, for example, in the range of 1.5-5.
  • the concentration of the hydrogen isotope element in the remaining hydrogen gas HG 1 is lower than the concentration of the hydrogen isotope element in HG 0 .
  • the concentration of the hydrogen isotopes contained in the water produced at the positive electrode side of the fuel cell is higher than the concentration of the hydrogen isotopes in HG 0. That is, the hydrogen isotope element is concentrated on the water side and reduced in hydrogen gas.
  • step (fc1) (fc2), except that a hydrogen gas HG 1 to FC2 is supplied, it is similar to the operation in the FC1 in step (fc1). If hydrogen gas to the negative electrode side of FC2 remains, the concentration of the hydrogen isotopes of hydrogen gas HG 2 remaining is lower than the concentration of the hydrogen isotopes in HG 1. Further, while the concentration of the hydrogen isotopes contained in the water produced at the positive electrode side of the FC2 is higher than the concentration of the hydrogen isotopes in HG 1. That is, the hydrogen isotope element is concentrated on the water side and reduced in hydrogen gas. This relationship continues to FCn in step (fc3).
  • Ratio of the amount of hydrogen gas HG 0 supplied to the negative electrode side of FC1 in step (fc1) and the amount of hydrogen gas HG 2 or HG n recovered from FC2 or FCn in (fc2) or (fc3) (HG 0 : HG 2 or HG n ) can be in the range of, for example, 100: 0-50.
  • 100: 0 means that all hydrogen gas is consumed in FCn, and more than 100: 0 means that a part of hydrogen gas is recovered in FCn.
  • the consumption of hydrogen gas in each FC can be adjusted by adjusting the power generation amount in each FC.
  • the amount of power generation is adjusted by controlling the external electric load that is set.
  • the concentration of the hydrogen isotope element contained in HG n varies depending on the concentration of the hydrogen isotope element contained in HG 0 , the number of connected fuel cells, the operating conditions of the fuel cell, and the like. , for example, 50% of the concentration of hydrogen isotopes contained in HG 0 or less, preferably to 10% or less.
  • hydrogen gas HG 2 or HG n having a hydrogen isotope content lower than hydrogen gas HG 0 can be recovered from FC 2 of (fc 2) or FC n of (fc 3), and hydrogen gas can be co-produced.
  • the ratio of the amount of hydrogen gas supplied to the negative electrode side of any fuel cell FCn-1 and the amount of hydrogen gas recovered from the negative electrode side of FCn-1 ie, hydrogen gas Is not particularly limited, but is, for example, in the range of 100: 10 to 90 (provided that when n is 3 or more and n is 2, the ratio is in the range of 100: 0 to 50). is there).
  • the consumption ratio of hydrogen gas in each FC can be set independently between FCs.
  • Oxygen gas or oxygen-containing gas is supplied to the positive electrodes of FC1 to FCn.
  • oxygen gas is also generated as described above. At least a part of the oxygen gas can be supplied to the positive electrode side of at least a part of the fuel cells.
  • the oxygen gas supplied to the positive electrode side of the fuel cell can be not only oxygen gas obtained by water electrolysis, but also oxygen gas in the air or a mixture of both.
  • a plurality of options are described as a method for supplying oxygen gas in each fuel cell, and at least one of them can be adopted.
  • oxygen gas generated by water electrolysis can be sequentially circulated from FC1 to FCn, and air can be further added to the oxygen gas.
  • the oxygen gas generated by the water electrolysis can be temporarily stored in a pool (not shown) of oxygen gas and then supplied independently to each of the fuel cells FC1 to FCn.
  • FCn fuel cell n-1
  • water containing a hydrogen isotope is generated as described above.
  • This water is recovered.
  • the recovery method is not particularly limited. For example, when unconsumed oxygen gas is supplied to the positive electrode chamber and discharged from the positive electrode chamber, it can be discharged and recovered along with the gas. At least part of the recovered hydrogen isotope-containing waters W 1 to W n depends on the concentration of the hydrogen isotopes contained therein, but when the hydrogen isotope concentration is relatively high (for example, recovered water from FC1 and FC2), hydrogen It can be joined to AS e as an isotope-enriched aqueous solution. Alternatively, if a relatively hydrogen isotope concentration is low (e.g., recovered water from FCn), it may be subjected to water electrolysis with AS 0.
  • At least part of the power for water electrolysis in the water electrolyzer can be covered by the power generated in the fuel cell.
  • the power for water electrolysis can be power other than the power generated by the fuel cell.
  • the at least two fuel cells connected in series can be, for example, three to ten fuel cells connected in series, and the number of fuel cells connected in series is 2, 3, 4, 5, Any of 6, 7, 8, 9, 10 may be used.
  • Each fuel cell may be one or more fuel cells connected in parallel.
  • Each fuel cell may be the same type of fuel cell or a different type of fuel cell.
  • the fuel cell can generate power independently.
  • hydrogen gas generated from the water electrolysis apparatus is consumed under independent operating conditions to generate power, and the hydrogen isotope element is concentrated in the water generated at the same time.
  • the enrichment effect of the hydrogen isotope element is expressed synergistically by making the fuel cell multistage.
  • the hydrogen gas generation amount (corresponding to energy consumption) in the water electrolysis apparatus and the hydrogen gas consumption amount (corresponding to energy generation amount) in each fuel cell are It is an important factor for designing the overall energy balance.
  • the amount of energy generated in each fuel cell can be controlled independently, and the maximum hydrogen isotope enrichment effect, which is the object of the present invention, and the maximum energy efficiency can be achieved. It will be possible. Note that the amount of energy generated in each fuel cell can be adjusted by, for example, the degree of load of electrical resistance.
  • the fuel cell examples include a phosphoric acid fuel cell, a solid oxide fuel cell, a solid polymer fuel cell, an alkaline membrane fuel cell, and an alkaline fuel cell.
  • a polymer electrolyte fuel cell it is preferable because power can be generated at a temperature in the range of 20 to 90 ° C.
  • the temperature is particularly preferably in the range of 60 to 80 ° C.
  • the production apparatus of the present invention can also be used to produce hydrogen gas with a reduced isotope concentration.
  • the isotope concentration is reduced to, for example, about 1/100 times, and the hydrogen gas with the reduced isotope concentration should be used for other purposes as high-purity hydrogen. Can do.
  • the present invention is a fuel cell (FCn, where n is an integer greater than or equal to 2) connected in series to at least one water electrolyzer and at least two hydrogen gas streams.
  • Hydrogen gas having a reduced hydrogen isotope concentration including using FC1 as a connected fuel cell), generating power independently in each fuel cell, and performing water electrolysis in a water electrolyzer
  • FCn fuel cell
  • This manufacturing method is (We1) water electrolysis of water or an aqueous solution containing a hydrogen isotope in a water electrolyzer to obtain hydrogen gas (HG 0 ) and oxygen gas; (Fc1h)
  • the hydrogen gas HG 0 obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), a part of the hydrogen gas HG 0 is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 )
  • the recovered hydrogen gas HG 1 is supplied to the negative electrode side of the fuel cell 2 (FC2), a part of the hydrogen gas HG 1 is reacted at the negative electrode, and the remaining hydrogen gas (HG 2 ) is recovered at the negative electrode side.
  • the step (we1) is synonymous with the step (we1) in the method for producing hydrogen isotope concentrated water / aqueous solution.
  • the step (fc1h) may not include recovering the hydrogen isotope-containing water (W 1 ) generated on the positive electrode side and the step (fc1) in the method for producing the hydrogen isotope concentrated water / aqueous solution. Is synonymous.
  • the step (fc2h) may not include recovering the hydrogen isotope-containing water (W 2 ) generated on the positive electrode side and the step (fc2) in the method for producing the hydrogen isotope concentrated water / aqueous solution. Is synonymous.
  • the step (fc3h) may not include the step (fc3) in the method for producing the hydrogen isotope concentrated water / aqueous solution and the recovery of the hydrogen isotope-containing water (W n ) generated on the positive electrode side. Is synonymous.
  • step hydrogen gas The hydrogen gas HG n recovered in step hydrogen gas is recovered in (fc2h) HG 2 and step (fc3h) is low hydrogen isotope concentration than the hydrogen gas HG 0. This also applies to hydrogen gas HG n recovered hydrogen gas HG 2 and steps to be recovered in step (fc2) in the production method of the hydrogen isotope enriched water / aqueous (fc3).
  • the degree of reduction of the hydrogen isotope concentration in the hydrogen gases HG 2 and HG n varies depending on the hydrogen isotope concentration of the hydrogen gas HG 0 , the configuration and operating conditions of the fuel cell FCn, and can be appropriately controlled.
  • the present invention includes an apparatus for producing hydrogen gas with reduced hydrogen isotope concentration, comprising at least one water electrolyzer and at least two fuel cells connected in series.
  • the water electrolysis apparatus in this production apparatus, the hydrogen gas circulation means between the water electrolysis apparatus and the fuel cell, and the hydrogen gas circulation means between the fuel cells are the water electrolysis apparatus in the hydrogen isotope concentrated water / aqueous solution production apparatus.
  • the hydrogen gas circulation means between the water electrolyzer and the fuel cell and the hydrogen gas circulation means between the fuel cells are synonymous with each other.
  • hydrogen gas with reduced hydrogen isotopes is produced from the hydrogen gas obtained by the water electrolysis apparatus.
  • the method for producing hydrogen gas with reduced hydrogen isotope concentration can be implemented.
  • Example 1 Experimental method: 1-stage fuel cell In this experiment, alkaline water electrolysis (AWE) and polymer electrolyte fuel cell (PEFC) were used. An outline of the experimental apparatus is shown in FIG.
  • PEFC Electrode bonding film (50 ⁇ 50 mm) using a platinum catalyst (Pt supported amount: 0.52 mg / cm 2 ) was used for both positive and negative electrodes, and Nafion (NRE211) was used for the electrolyte film.
  • Hydrogen gas generated from AWE was supplied directly to the negative electrode of PEFC, and pure oxygen gas was supplied to the positive electrode from an oxygen cylinder. Power generation was performed at room temperature.
  • PEFC was connected to a variable resistor (manufactured by Kikusui Electronics Co., Ltd., PLZ164W) and adjusted so that the generated current was constant.
  • a quadrupole mass spectrometer manufactured by ULVAC, Qulee HGM202, Q-Mass
  • the sample gas was supplied to the detector at a constant pressure (10 -5 Pa) with a needle valve.
  • the detector is designed to keep the temperature at 60 ° C and the detection sensitivity does not depend on the external environment.
  • the hydrogen isotope separation coefficient ⁇ was obtained by analyzing the hydrogen gas discharged by PEFC before and after power generation with Q-Mass, and the ratio of both was obtained by equation (1). The results are shown in the figure.
  • Example 2 Concentration dependence The relationship between the separation factor of PEFC alone and the hydrogen isotope concentration (deuterium) was investigated.
  • An electrode bonding film 50 ⁇ 50 mm) using a platinum catalyst (Pt supported amount: 0.52 mg / cm 2 ) was used for both the positive electrode and the negative electrode, and Nafion (NRE211) was used for the electrolyte film.
  • a mixed gas of light hydrogen gas and deuterium gas was supplied to the negative electrode, and pure oxygen gas (80 ml min ⁇ 1 ) was supplied to the positive electrode.
  • the flow rate of light hydrogen gas (H 2 ) is fixed at 20 ml min ⁇ 1
  • the flow rate of deuterium gas (D 2 ) is adjusted with a mass flow controller
  • the D / H ratio is 10 ⁇ 5 to 10 ⁇ 3 .
  • PEFC was connected to a variable resistor (PLZ164W, manufactured by Kikusui Electronics Co., Ltd.), and was generated at room temperature so that the generated current was constant.
  • the hydrogen isotope separation factor ⁇ was obtained by analyzing the hydrogen gas discharged from the PEFC before and after power generation using Q-Mass, and the ratio between the two was obtained by equation (2). The results are shown in FIG.
  • Example 3 Experimental method: Multi-stage fuel cell
  • AWE circular nickel mesh electrodes (actual area 35 cm 2 ) were used for the anode and cathode, and ultrasonic cleaning was performed with acetone and ethanol before electrolysis.
  • a diaphragm was used between the anode and the cathode so that the gas generated at each electrode was not mixed.
  • a potassium hydroxide aqueous solution (pH 15) was used as the electrolytic solution, and deuterated water was added so that the deuterium / light hydrogen (D / H) ratio was 1: 9, and 0.6 L was filled in an acrylic electrolytic cell.
  • the water electrolyzer was circulated by a pump. Water electrolysis was operated at room temperature under a constant current of 5 A using a DC power supply.
  • PEFC uses an electrode bonding membrane (50 x 50 mm) that uses platinum catalyst (Pt loading: 0.52 mg / cm 2 ) for both positive and negative electrodes in both batteries, and Nafion (NRE211) for the electrolyte membrane. It was used. Hydrogen gas generated from AWE was supplied to the negative electrode of the first stage PEFC, and the hydrogen gas discharged from the first stage was sequentially supplied to the negative electrode of the next stage PEFC. Pure oxygen gas was supplied from the oxygen cylinder to the positive electrode of the first stage, and the oxygen gas discharged from the first stage was sequentially supplied to the positive electrode of the PEFC of the next stage. Each stage PEFC was connected to three independent variable resistors, and the generated current was adjusted to a constant value. The PEFC was set to FC1, FC2, and FC3 from the side closest to AWE, and the following three conditions were examined so that the total generated current would be 4.5A. The operating temperature was room temperature.
  • a quadrupole mass spectrometer manufactured by ULVAC, Qulee HGM202, Q-Mass
  • the sample gas was supplied to the detector at a constant pressure (10 -5 Pa) with a needle valve.
  • the detector is designed to keep the temperature at 60 ° C and the detection sensitivity does not depend on the external environment.
  • the hydrogen isotope separation factor ⁇ was obtained by analyzing the hydrogen gas discharged from the third-stage PEFC with Q-Mass, and the ratio between the two was obtained by equation (3). The results are shown in Table 1 and FIG.
  • the theoretical separation factor ⁇ of the multi-stage fuel cell was defined as follows, assuming that the separation factor for water electrolysis was ⁇ AWE , FC1, FC2, and FC3 were ⁇ FC1 , ⁇ FC2 , and ⁇ FC3 .
  • ⁇ AWE ⁇ ⁇ FC1 ⁇ ⁇ FC2 ⁇ ⁇ FC3
  • - ⁇ AFE was set to 6.0 from the results of another experiment.
  • -Fuel cell separation factor ⁇ FC1 , ⁇ FC2 , ⁇ FC3
  • Example 4 When the same amount of hydrogen was used for power generation, the following experiment was conducted to demonstrate that the greater the number of FCs, the better the separation factor and generated power.
  • KOH electrolyte (5 M, 10 at% D 2 O) was electrolyzed at 3.0 A, and the following three experiments were performed using the generated hydrogen gas.
  • the fuel cell FC is the same as that used in Example 1.
  • the results are shown in Table 2. From the results shown in Table 2, it can be seen that when the same amount of hydrogen is used for power generation, the greater the number of FCs, the greater the separation factor and power generation.
  • Example 5 Examination of the direction of oxygen gas introduction into the fuel cell Using two fuel cells FC, the difference in the separation factor due to the difference in the direction of oxygen gas introduction was measured.
  • the oxygen gas introduction direction is the oxygen forward flow type shown in FIG. 8, and hydrogen gas and oxygen gas are sequentially supplied to the fuel cell in the same direction.
  • the oxygen gas reacts in the fuel cell in order from the hydrogen gas having the high D concentration.
  • the direction shown in FIG. 9 is an oxygen reverse flow type, and hydrogen gas and oxygen gas are sequentially supplied to the fuel cell in reverse directions.
  • the oxygen reverse flow type shown in FIG. 9 the oxygen gas reacts in order from the hydrogen gas having a low D concentration. It is expected that the oxygen reverse flow type separation coefficient that can be expected to be separated to the oxygen electrode side will be improved. The following experiment was conducted to confirm this point.
  • Example 4 KOH electrolyte (5 M, 10 at% D 2 O) was electrolyzed at 3.0 A, and the generated hydrogen gas was used.
  • the fuel cell FC is the same as that used in Example 1.
  • the results are shown in FIGS. 10-1 and 10-2.
  • the measurement of Ion Current in Fig. 10-1 was performed by examining the exhaust gas discharged from the fuel cell. For this reason, a decrease in Ion Current means a decrease in the amount of hydrogen isotope D in the exhaust gas (an increase in D consumption in the fuel cell). From the results shown in FIG. 10-1, the D consumption in the fuel cell reaction increased from the oxygen forward flow to the oxygen reverse flow.
  • the present invention is useful in the field of treatment of water containing hydrogen isotopes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの直列に連結した燃料電池を用い、かつ各燃料電池において発電を行い、かつ水電気分解装置において水電気分解を行って、水素同位体含有水を含有する水または水溶液から、前記水溶液AS0よりも水素同位体含有率が高い水または水溶液を製造する方法、及び水素同位体濃度低減水素ガスを製造する方法に関する。さらに本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの直列に連結した燃料電池を含む、水素同位体が濃縮された水または水溶液の製造装置、及び水素同位体濃度低減水素ガスの製造装置に関する。水素同位体を含有する水の新たな濃縮技術が提供される。

Description

水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置
 本発明は、水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置に関する。より詳しくは、水素同位体含有水を含有する水または水溶液から、水素同位体が濃縮された水または水溶液を製造する方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置に関する。水素同位体が濃縮された水または水溶液の製造方法及び装置では、水素同位体濃度が低減された水素ガスを併産することも可能である。
関連出願の相互参照
 本出願は、2017年4月21日出願の日本特願2017-084386号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 重水素やトリチウムの水素同位体は、核融合炉燃料の原料や医療材料として重要である。さらに福島原発事故に関わる汚染水は、トリチウムの効果的な分離方法が見つからず、今でも汚染水処理の最大の懸案事項となっている。
 水素同位体である重水素やトリチウムの分離濃縮技術としては、沸点の違いを利用した蒸留法、軽水素原子と交換置換による水-硫化水素交換法(GS法)、水電解法と白金触媒を使った化学交換法を組み合わせた(CECE法)などある(非特許文献1(東電提供資料)参照)。
非特許文献1:http://www.tepco.co.jp/nu/fukushima-np/roadmap/images/c130426_06-j
 中でも、水電解法は1933年にG.N.ルイスらが古い電解槽の水を連続的に電解して少量の重水を得たのに始まり、現在でも工業的にこの方法が採用されている。しかし福島原発では毎日大量の汚染水を処理する必要があり、その電力消費量は膨大となり、大規模生産には適していない。
 そこで電力消費の少ない革新的な電解法を提案することが、大規模な水素同位体を必要とする原子力産業や、さらには福島汚染水の問題解決に求められている。本発明は、水素同位体を含有する水の新たな濃縮技術を提供することを目的とする。
 本発明は、以下の通りである。
[1]
 少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行って、水素同位体を含有する水または水溶液(以下、水溶液AS)から、前記水溶液ASよりも水素同位体含有率が高い水または水溶液(AS)を製造する方法であって、
 (we1)水電気分解装置において水溶液ASを水電気分解して水素ガス及び酸素ガスを得ること、
 (fc1)前記電気分解で得られる水素ガスを燃料電池1(FC1)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること、
 (fc2)回収した水素ガス(HG)を燃料電池2(FC2)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること、
 (fc3)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること(nは、3以上の整数)、
 (we2)前記水電気分解装置から、電気分解後の、前記水溶液ASよりも水素同位体含有率が高い水または水溶液ASを回収すること、を含む、前記方法。
[2]
 FC1~FCnの正極側には、酸素ガスまたは酸素含有ガスが供給され、前記回収した水素同位体含有水WからWの少なくとも一部は前記水電気分解装置に供給する、[1]に記載の方法。
[3]
 前記回収した水素同位体含有水WからWの少なくとも一部を前記水電気分解装置に水溶液ASと共に供給する、[1]または[2]に記載の方法。
[4]
 水素同位体含有水WからWの燃料電池からの回収は、燃料電池の正極側から排出される酸素ガスまたは酸素含有ガスに同伴させることで行う、[1]~[3]のいずれかに記載の方法。
[5]
 前記水電気分解で得られる酸素ガスの少なくとも一部を、少なくとも一部の燃料電池の正極側に供給することを含む、[1]~[4]のいずれかに記載の方法。
[6]
 前記水電気分解で得られる酸素ガスの少なくとも一部は、FCnの正極側に供給され、FCnの正極側から排出される酸素ガスまたは酸素含有ガスは燃料電池n-1(FCn-1)の正極側に供給され、順次、FC1まで、排出された酸素ガスまたは酸素含有ガスの次の燃料電池への供給が繰り返される[5]に記載の方法。
[7]
 前記工程(fc2)のFC2又は工程(fc3)のFCnから前記水素同位体含有率が水素ガスHGより低い水素ガスHGまたはHGを回収して水素ガスを併産することを含む(ただし、nは2以上の整数)、[1]~[6]のいずれかに記載の方法。
[8]
 少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行うことを含む、水素同位体濃度が低減された水素ガスを製造する方法であって、
 (we1)水電気分解装置において水素同位体を含有する水または水溶液を水電気分解して水素ガス(HG)及び酸素ガスを得ること、
 (fc1h)前記電気分解で得られる水素ガスHGを燃料電池1(FC1)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
 (fc2h)回収した水素ガスHGを燃料電池2(FC2)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
 (fc3h)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)を回収して(nは、3以上の整数)、
水素ガスHGよりも水素同位体濃度が低い水素ガスHGまたはHGを得ること、
を含む、前記方法。
[9]
 前記工程(fc1)においてFC1の負極側に供給される水素ガスの量と、前記工程(fc2)においてFC2又は前記工程(fc3)においてFCnから回収される水素ガスの量の比は、100:0~50の範囲である、[1]~[8]のいずれかに記載の方法。
[10]
 前記水電気分解装置における水電気分解用の電力の少なくとも一部は、前記燃料電池において発電された電力により賄われる、[1]~[9]のいずれかに記載の方法。
[11]
 少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、[1]~[10]のいずれかに記載の方法。
[12]
 前記水溶液ASが、純水、アルカリ水溶液又は海水である、[1]~[11]のいずれかに記載の方法。
[13]
 少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結した燃料電池を含み、前記水電気分解装置は陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有し、
前記水電気分解装置の陰極室から前記直列に連結した燃料電池の前記水電気分解装置に隣接する燃料電池の負極室に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の負極室間に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の正極室間に酸素ガスまたは酸素含有ガス流通手段を有し、かつ、
上記燃料電池より生成した水を上記水電気分解装置へ回収する流通手段を有する、
水素同位体が濃縮された水または水溶液の製造装置。
[14]
 同位体濃度が低減された水素ガスを併産するための、[13]に記載の製造装置。
[15]
 少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結した燃料電池を含み、前記水電気分解装置は陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有し、
前記水電気分解装置の陰極室から前記直列に連結した燃料電池の前記水電気分解装置に隣接する燃料電池の負極室に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の負極室間に水素ガス流通手段を有る、
水電気分解装置で得られた水素ガスより水素同位体が低減された水素ガスの製造装置。
[16]
 少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、[13]~[15]のいずれかに記載の製造装置。
[17]
 前記燃料電池は、固体高分子形燃料電池である、[13]~[16]のいずれかに記載の製造装置。
[18]
 前記水電気分解装置は、隣接する燃料電池と連結した酸素ガスまたは酸素含有ガス流通手段を有する、[13]~[17]のいずれかに記載の製造装置。
 本発明の製造方法及び装置においては、水電解及び燃料電池による発電を組み合わせて、水素同位体を含む水の水素同位体濃度を濃縮することができ、濃縮効率は高く、かつ燃料電池により発電された電気を水電解に利用することができることからシステム全体としての電力消費を抑制することができる。本発明においては、水素同位体濃度が低減された水素ガスを併産することも可能である。さらに、本発明の別の態様では、水素同位体濃度が低減された水素ガスを製造することができる方法及び装置を提供することもできる。
 
本発明の装置の一態様の概略説明図である。 本発明の方法の説明図である。 実施例1で用いた実験装置の概要を示す。 実施例1の実験結果を示す。 実施例2の実験結果を示す。 実施例3で用いた実験装置の概要を示す。 実施例3の実験結果を示す。 実施例5で用いた酸素順流型の本発明の装置の概略説明図である。 実施例5で用いた酸素逆流型の本発明の装置の概略説明図である。 実施例5の実験結果を示す。 実施例5の実験結果を示す。
<水素同位体濃縮水/水溶液の製造方法>
 本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行って、水素同位体を含有する水または水溶液(以下、水溶液AS)から、前記水溶液ASよりも水素同位体含有率が高い水または水溶液(AS)を製造する方法に関する。
<水素同位体濃縮水/水溶液の製造装置>
 さらに本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの直列に連結した燃料電池を含む、水素同位体が濃縮された水または水溶液(水素同位体濃縮水/水溶液)の製造装置に関する。前記水電気分解装置は、陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有する。
 本発明の製造装置の一態様の概略図を図1に示す。
 図1に示す装置は、1つの水電気分解装置(水電解槽)10及び直列に連結した燃料電池FC1、FC2、・・・FCnを含む。nは3以上の整数である。nの上限に制限はなく、例えば、10以下の整数であることができる。尚、図1においては、FCnが示されているが、燃料電池はFC1及びFC2の2つの場合もある。燃料電池の連結様式が直列とは、燃料電池の間を流通する水素ガスの流れに沿って、複数の燃料電池が連結されることを意味する。複数の燃料電池の間の電気の流れに注目して直列に連結される意味ではない。複数の燃料電池は独立の条件で運転されるため電気的に直列に連結されることはない。
 水電解槽10は、図示はされていないが、電解槽内に陽極及び負極並びに陽極及び負極の間に設置された隔膜(例えば、イオン交換膜)を有する。水電解槽を構成する陽極、負極及び隔膜(例えば、イオン交換膜)の種類、構造、形状及び寸法などには特に制限はない。陽極及び負極には、図示しないが、外部電源が接続する。
 水電気分解装置としては、固体高分子型水電気分解装置、アルカリ型水電気分解装置等が知られているが、多量の水素ガスを発生できる点からアルカリ型水電気分解装置が適している。水電気分解装置を稼働させる際の温度は、例えば、20℃~70℃の範囲が適している。但し、この範囲に限定される意図ではない。電気分解においては、電流量を調整して水素の発生量を制御することができる。好ましい電流は、例えば、0.1~100Aの範囲であることができる。但し、この範囲に限定される意図ではない。なお、水電気分解装置は複数の装置を合わせて使用してもよい。
 陽極室には、水/水溶液を供給する流通手段及び電気分解により陽極で発生する酸素ガスを排出するための酸素ガス流通手段を有する。陰極室には、水素ガスを排出するための水素ガス流通手段を有し、陰極室には、水/水溶液を供給する流通手段を有することもできる。但し、図1に示す装置は、水/水溶液を供給する流通手段は陽極室側に接続する。
 燃料電池FC1、FC2、・・・FCnは、電解質を挟んで両側に正極となる触媒層と負極となる触媒層とを有し、正極となる触媒層の外側に正極室、負極となる触媒層の外側に負極室を有する。電解質、正極及び負極の種類、構造、形状、寸法は、それぞれ特に制限はない。但し、正極となる触媒層に用いられる触媒は、水素イオンと酸素との水生成反応に比べて、水素同位体イオンと酸素との水生成反応を優先的に生じ得る材料であることが好ましい。そのような材料としては、白金やルテニウム等の貴金属、ニッケルやコバルト等の遷移金属およびその合金や酸化物等を挙げることができる。負極となる触媒層に用いられる触媒は、水素ガスの酸化反応に比べて、水素同位体を含む水素ガスの酸化反応を優先的に生じ得る材料であることが好ましい。そのような材料としては、白金やルテニウム等の貴金属、ニッケルやコバルト等の遷移金属およびその合金や酸化物等を挙げることができる。
 電解質は、水素イオンのみならず、水素同位体イオンの電解質内の拡散を容易に許容する材料であることが好ましい。そのような材料としては、プロトン導電性固体高分子膜やアニオン導電性固体高分子膜等を挙げることができる。
 正極室には、酸素ガス流通手段(供給側及び排出側)が接続され、負極室には、水素ガス流通手段(供給側及び排出側)が接続される。但し、本明細書においては、酸素ガス流通手段は、酸素ガス又は酸素含有ガスを流通させるための手段である。正極室には、図示していないが、水/水溶液を供給する流通手段(供給側及び排出側)をさらに設けることもできる。尚、水/水溶液の排出は、正極室から排出される酸素含有ガスに同伴させて行うこともできる。燃料電池に設けられた水/水溶液を供給する流通手段(供給側及び排出側)、酸素ガス流通手段(供給側及び排出側)、及び水素ガス流通手段(供給側及び排出側)は、それぞれ隣接する燃料電池、水電解槽又は外部と接続することができる。図1においては、FC1が水電解槽と隣接しており、水電解槽に隣接するFC1の酸素ガス流通手段(供給側)は水電解槽の陽極室と接続し、FC1の水素ガス流通手段(供給側)が水電解槽の陰極室と接続する。FC1の水/水溶液を供給する流通手段(排出側)は、水電解槽とすることもできる。
 一方、FCnの水/水溶液を供給する流通手段(供給側)、酸素ガス流通手段(排出側)、及び水素ガス流通手段(排出側)が装置の外部と接続する。但し、各燃料電池への酸素ガス流通手段(供給側)は、隣接する水電解槽または隣接する燃料電池の酸素ガス流通手段(排出側)と接続せず、独立に、酸素ガス(例えば、空気)供給源と接続することもできる。
 直列に連結した燃料電池の間を接続する水素ガス流通手段は、隣接する燃料電池の負極室間を連絡する。直列に連結した燃料電池を接続する酸素ガス流通手段は、隣接する燃料電池の正極室間を連絡する。また、水または水溶液流通手段が、直列に連結した燃料電池の隣接する燃料電池の正極室間を接続するもできる。
 本発明の水素同位体濃縮水/水溶液の製造方法は、例えば、上記本発明の装置を用いて実施することができる。本発明の方法を、図2を参照して説明する。
 (we1)水電気分解装置において水溶液ASを水電気分解して水素ガス及び酸素ガスを得る。
 (fc1)前記電気分解で得られる水素ガスを燃料電池1(FC1)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収する。
 (fc2)回収した水素ガス(HG)を燃料電池2(FC2)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収する。
 (fc3)燃料電池2の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収する(nは、3以上の整数)。
 (we2)前記水電気分解装置から、電気分解後の、前記水溶液ASよりも水素同位体含有率が高い水または水溶液ASを回収する。
 水電気分解装置において水溶液ASを水電気分解して水素ガス及び酸素ガスを得るとともに、電気分解後の、前記水溶液ASよりも水素同位体含有率が高い水または水溶液ASを回収する。
 水溶液ASは、水素同位体元素である重水素(D)又はトリチウム(T)を含む水を含有する水(水溶液)であることができる。水素同位体元素である重水素(D)を含む水は、HO、HDO及び/又はDOを含有する。水素同位体元素であるトリチウム(T)を含む水は、HO、HTO及び/又はTOを含有する。水溶液AS中に含まれる水素同位体元素を含む水の(HDO及び/又はDO、HTO及び/又はTOなど)の濃度は、特に制限はない。例えば、水素同位体元素が0.1~100atomic%の範囲であることができる。但し、この範囲に限定される意図ではない。
 燃料電池の運転に関しては、固体高分子型水電気分解装置の場合、水溶液は電解質を含まない純水であることが好ましい。
 また、アルカリ型水電気分解装置の場合は、アルカリイオンの存在が必要であり、電解質を含む水であってよい。むしろ、電気抵抗を考慮すると、水溶液AS又は水溶液ASが供給される水電気分解の電解液は電解質を含有することが好ましい。水溶液ASが純水である場合には、水溶液ASに電解質を添加することができる。電解質は、腐食性等の不都合な反応性を有さないという観点から、例えば、アルカリ物質であることができ、アルカリ物質は、例えば、水酸化ナトリウム、水酸化カリウム等であることが好ましい。電解質を含む水溶液は、海水であることもできる。また、ため池水であることもできる。電解質の濃度は、電解の条件等を考慮して適宜決定できる。
 水電気分解装置における水の電気分解の条件は特に制限はなく、水電解槽中の陽極で酸素分子、陰極で水素分子が生成する条件であればよい。水電気分解においては、水溶液に含まれる水素同位体元素を含む水は、水素同位体元素を含まない水(HO)に比べて電気分解されにくい。しかし、水溶液に含まれる水素同位体元素を含む水が全く電気分解されない訳ではない。水電気分解において酸素分子と水素分子に分解される、軽水素と水素同位体元素との割合(H/Xと表記する(XはDまたはT)は、水素同位体元素の種類や電気分解の装置や運転条件により変動するが、1を超え、例えば、1.5~5の範囲である。H/Xが大きい程、電気分解における水素同位体の濃縮効果は高くなる。H/Xが2以上、好ましくは3以上で電気分解をすることが好ましい。電気分解後の水溶液中には水溶液ASよりも高い濃度の水素同位体が含まれ、即ち、水素同位体が濃縮される。一方、電気分解により生成する水素ガス中の水素同位体濃度は、水溶液ASよりも低くなる。しかし、水素ガスにも水素同位体は含まれ、水素同位体元素である重水素(D)を含む水の電解においては、H以外に、HD及び/又はDを含有する。水素同位体元素であるトリチウム(T)を含む水の電解においては、H以外に、HT及び/又はTを含有する。
 工程(fc1)においては、FC1の負極側に水電気分解で生成した水素ガスHGが供給される。この水素ガスには上記のように、水素同位体は含まれる。水素同位体を含む水素ガスは燃料電池において正極側の酸素と反応し水が生成する。燃料電池の正極及び負極における反応式は、図2に例示する。燃料電池における酸素との反応性は、水素同位体元素の種類や燃料電池種類(電極及び電解質等)や運転条件により変動するが、一般に、軽水素(H)に比べて水素同位体元素Xの方が高い。例えば、反応性をX/Hと表示すると(XはDまたはT)は、X/Hは1を超え、例えば、1.5~5の範囲である。その結果、負極側に水素ガスが残存する場合、残存する水素ガスHG中の水素同位体元素の濃度は、HG中の水素同位体元素の濃度より低くなる。一方、燃料電池の正極側で生成する水に含まれる水素同位体元素の濃度は、HG中の水素同位体元素の濃度より高くなる。即ち、水素同位体元素は、水側に濃縮され、水素ガス中で低減する。
 工程(fc1)の次の工程である(fc2)においては、FC2に水素ガスHGが供給されること以外、工程(fc1)におけるFC1における操作と同様である。FC2の負極側に水素ガスが残存する場合、残存する水素ガスHG中の水素同位体元素の濃度は、HG中の水素同位体元素の濃度より低くなる。また、一方、FC2の正極側で生成する水に含まれる水素同位体元素の濃度は、HG中の水素同位体元素の濃度より高くなる。即ち、水素同位体元素は、水側に濃縮され、水素ガス中で低減する。この関係は、工程(fc3)においけるFCnまで続く。
 工程(fc1)におけるFC1の負極側に供給される水素ガスHGの量と、(fc2)又は(fc3)においてFC2またはFCnから回収される水素ガスHG又はHGの量の比(HG:HG又はHG)は、例えば、100:0~50の範囲であることができる。100:0は、FCnにおいて全ての水素ガスが消費されることを意味し、100:0超は、FCnにおいて水素ガスの一部が回収されることを意味する。各FCにおける水素ガスの消費は、各FCにおける発電量を調整することで調整できる。発電量の調整は、設定される電気的な外部負荷のコントロールによる。100:0超である場合、HGに含まれる水素同位体元素の濃度は、HGに含まれる水素同位体元素の濃度、接続される燃料電池の個数や燃料電池の運転条件等により異なるが、例えば、HGに含まれる水素同位体元素の濃度の50%以下、好ましくは10%以下とすることができる。例えば、(fc2)のFC2又は(fc3)のFCnから水素同位体含有率が水素ガスHGより低い水素ガスHGまたはHGを回収して水素ガスを併産することができる。
 (fc1)~(fc3)において、任意の燃料電池FCn-1の負極側に供給される水素ガスの量と、FCn-1の負極側から回収される水素ガスの量の比(即ち、水素ガスの消費比率)は、特に制限はないが、例えば、100:10~90の範囲である(但し、nは3以上であり、nが2の場合、前記比は100:0~50の範囲である)。各FCにおける水素ガスの消費比率は、FC間で独立に設定することができる。
 FC1~FCnの正極側には、酸素ガスまたは酸素含有ガスが供給される。一方、水電気分解においては、上述のように酸素ガスも生成する。この酸素ガスの少なくとも一部は、少なくとも一部の燃料電池の正極側に供給することができる。燃料電池の正極側に供給する酸素ガスは、水電気分解で得られる酸素ガスのみならず、空気中の酸素ガスであることや、両者の混合物であることもできる。図2の説明図においては、各燃料電池における酸素ガスの供給方法は、複数のオプションが記載されており、このなかの少なくとも一つを採用することができる。例えば、水電気分解で生成した酸素ガスをFC1からFCnに順次流通することもできるし、この酸素ガスにさらに空気を追加することもできる。あるいは、水電気分解で生成した酸素ガスは、酸素ガスのプール(図示せず)に一時保存し、そこからFC1からFCnの各燃料電池に独立に供給することもできる。
 例えば、水電気分解で得られる酸素ガスの少なくとも一部は、FCnの正極側に供給され、FCnの正極側から排出される酸素ガスまたは酸素含有ガスは燃料電池n-1(FCn-1)の正極側に供給され、順次、FC1まで、排出された酸素ガスまたは酸素含有ガスの次の燃料電池への供給が繰り返される。
 各燃料電池の正極側においては、上記のように水素同位体を含む水が生成する。この水は、回収される。回収方法には特に制限はないが、例えば、正極室に供給され、未消費の酸素ガスが正極室から排出される際にガスに同伴して排出、回収することができる。回収した水素同位体含有水WからWの少なくとも一部は、含まれる水素同位体の濃度によるが、水素同位体濃度が比較的高い場合(例えば、FC1やFC2からの回収水)、水素同位体濃縮水溶液としてASに合流されることができる。あるいは、比較的水素同位体濃度が低い場合(例えば、FCnからの回収水)、ASと共に水電気分解に供することもできる。
 水電気分解装置における水電気分解用の電力の少なくとも一部は、燃料電池において発電された電力により賄うことができる。但し、水電気分解用の電力は、燃料電池により発電された電力以外の電力であることもできる。
 少なくとも2つの直列に連結した燃料電池は、例えば、3~10個の燃料電池を直列に連結したものであることができ、直列に連結する燃料電池の数は、2、3、4、5、6、7、8、9、10個の何れであってもよい。また、各燃料電池には、並列に接続された1以上の燃料電池であっても良い。また、各燃料電池は、同じ種類の燃料電池であっても異なる種類の燃料電池であってもよい。
 本発明において、燃料電池は独立に発電できることを特徴とする。各燃料電池において、水電気分解装置から発生した水素ガスを独立した運転条件にて消費して発電し、同時に発生する水に水素同位体元素が濃縮させることになる。ここで、水素同位体元素の濃縮効果は、燃料電池を多段とすることにより相乗的に発現する。一方で、本発明の装置において、水電気分解装置における水素ガスの発生量(エネルギーの消費量に相当する)、各燃料電池における水素ガスの消費量(エネルギーの発生量に相当する)は、装置全体のエネルギー収支を設計するための重要な因子となる。本発明においては、各燃料電池におけるエネルギーの発生量を独立に制御することができ、本発明の目的である水素同位体元素の濃縮効果の最大と、エネルギー効率の最大を合わせて達成することができることになる。なお、各燃料電池におけるエネルギーの発生量は、例えば、電気抵抗の負荷の程度により調整することができる。
 燃料電池としては、例えば、リン酸型燃料電池、固体酸化物型燃料電池、固体高分子型燃料電池、アルカリ膜型燃料電池やアルカリ型燃料電池などを挙げることができる。例えば、固体高分子形燃料電池を用いる場合には、20~90℃の範囲の温度で発電できるので好しい。固体高分子形燃料電池を用いる場合には、特に、60~80℃の範囲の温度であることが好ましい。
 本発明の製造装置は、同位体濃度が低減された水素ガスを併産するために用いることもできる。例えば、燃料電池を三段直列に連結すると、同位体濃度は例えば、1/100倍程度にまで低減され、同位体濃度が低減された水素ガスは、高純度水素として他の用途に使用することができる。
<水素同位体濃度低減水素ガスの製造方法>
 本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行うことを含む、水素同位体濃度が低減された水素ガスを製造する方法を包含する。この製造方法は、
 (we1)水電気分解装置において水素同位体を含有する水または水溶液を水電気分解して水素ガス(HG)及び酸素ガスを得ること、
 (fc1h)前記電気分解で得られる水素ガスHGを燃料電池1(FC1)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
 (fc2h)回収した水素ガスHGを燃料電池2(FC2)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
 (fc3h)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)を回収して(nは、3以上の整数)、
水素ガスHGよりも水素同位体濃度が低い水素ガスHGまたはHGを得ることを含む。
工程(we1)は、水素同位体濃縮水/水溶液の製造方法における工程(we1)は、同義である。
工程(fc1h)は、水素同位体濃縮水/水溶液の製造方法における工程(fc1)と、正極側で生成する水素同位体含有水(W)を回収することを含まなくてもよいこと以外は、同義である。
工程(fc2h)は、水素同位体濃縮水/水溶液の製造方法における工程(fc2)と、正極側で生成する水素同位体含有水(W)を回収することを含まなくてもよいこと以外は、同義である。
工程(fc3h)は、水素同位体濃縮水/水溶液の製造方法における工程(fc3)と、正極側で生成する水素同位体含有水(W)を回収することを含まなくてもよいこと以外は、同義である。
尚、工程(fc2h)で回収される水素ガスHG及び工程(fc3h)で回収される水素ガスHGは水素ガスHGよりも水素同位体濃度が低い。この点は水素同位体濃縮水/水溶液の製造方法における工程(fc2)で回収される水素ガスHG及び工程(fc3)で回収される水素ガスHGも同様である。
水素ガスHG及びHGにおける水素同位体濃度の低減の度合は、水素ガスHGの水素同位体濃度及び燃料電池FCnの構成や運転条件等により変動し、適宜制御することが可能である。
<水素同位体濃度低減水素ガス製造装置>
 本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの直列に連結した燃料電池を含む、水素同位体濃度が低減された水素ガスの製造装置を包含する。
この製造装置における水電気分解装置、水電気分解装置と燃料電池の間の水素ガス流通手段、及び燃料電池間の水素ガス流通手段は、水素同位体濃縮水/水溶液の製造装置における水電気分解装置、水電気分解装置と燃料電池の間の水素ガス流通手段、及び燃料電池間の水素ガス流通手段とそれぞれ同義である。
本発明の水素同位体濃度低減水素ガス製造装置を用いて、水電気分解装置で得られた水素ガスより水素同位体が低減された水素ガスが製造される。この装置では、前記の水素同位体濃度低減水素ガスの製造方法を実施できる。
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。
実施例1
実験方法:1段燃料電池
 本実験では、アルカリ型水電解(AWE)と固体高分子型燃料電池(PEFC)を用いた。実験装置の概要を図3に示す。
 AWEでは、陽極および陰極に円形状のニッケルメッシュ電極(実面積35cm2)を用い、電解前にアセトンおよびエタノールにて超音波洗浄を行った。陽極および陰極の間には隔膜を使用し、個々の電極で発生したガスが混ざらないようにした。電解液には水酸化カリウム水溶液(pH 15)を用い、重水素/軽水素(D/H)比が1:9となるよう重水(D2O)を添加し、アクリル製の電解槽に0.6L充填させた。電解中はポンプにて水電解槽内を循環させた。水電解は直流電源装置を用いて電流を1~5Aまで変化させ、一定電流・室温の条件下で運転させた。
 PEFCでは、正極・負極両電極に白金触媒(Pt担持量:0.52 mg/cm2)を使用した電極接合膜(50×50 mm)を用い、電解質膜にはNafion(NRE211)を使用した。AWEから発生した水素ガスを直接PEFCの負極に供給し、正極には酸素ボンベから純酸素ガスを供給した。室温にて発電を行った。PEFCは可変抵抗器(菊水電子工業社製、PLZ164W)に接続し、発電電流が一定になるように調整した。
 分離係数測定は、四重極質量分析計(ULVAC社製, Qulee HGM202, Q-Mass)を用いた。試料ガスはニードルバルブにて圧力を一定(10-5Pa)にし、検出器に供給した。検出器部分は温度を60℃に保ち、検出感度が外部環境に依存しない設計とした。水素同位体分離係数αは、PEFCで排出される発電前後の水素ガスをQ-Massにて分析し、両者の割合を式(1)にて求めた。結果を図に示す。
Figure JPOXMLDOC01-appb-M000001
実施例2
実験方法:濃度依存性
 PEFC単体での分離係数と水素同位体濃度(重水素)との関係を調べた。正極・負極両電極に白金触媒(Pt担持量:0.52 mg/cm2)を使用した電極接合膜(50×50 mm)を用い、電解質膜にはNafion(NRE211)を使用した。負極には軽水素ガスと重水素ガスの混合ガスを、正極には純酸素ガス(80 ml min-1)を供給した。このとき、軽水素ガス(H)流量を20ml min-1に固定し、重水素ガス(D2)の流量をマスフロー制御装置にて調整しD/H比を10-5~10-3とした。PEFCは可変抵抗器(菊水電子工業社製、PLZ164W)に接続し、発電電流が一定になるように室温にて発電させた。
 分離係数測定は、Q-Massを用いた。試料ガスはニードルバルブにて圧力を一定(10-5Pa)とし、検出器に供給した。検出器部分は温度を60℃に保ち、検出感度が外部環境に依存しない設計とした。水素同位体分離係数αは、発電前後でPEFCから排出される水素ガスをQ-Massにて分析し、両者の割合を式(2)にて求めた。結果を図5に示す。
Figure JPOXMLDOC01-appb-M000002
実施例3
実験方法:多段燃料電池
 多段式燃料電池のモデルとして、1段のAWEと3段のPEFCからなる装置を作り検証実験を行った。実験装置の概要を図6に示す。
 AWEでは、陽極および陰極に円形状のニッケルメッシュ電極(実面積35cm2)を用い、電解前にアセトンおよびエタノールにて超音波洗浄を行った。陽極および陰極の間には隔膜を使用し、個々の電極で発生したガスが混ざらないようにした。電解液には水酸化カリウム水溶液(pH 15)を用い、重水素/軽水素(D/H)比が1:9となるよう重水を添加し、アクリル製の電解槽に0.6L充填させた。電解中はポンプにて水電解槽内を循環させた。水電解は直流電源装置を用いて電流を5Aの一定電流とし、室温条件下で運転させた。
 PEFCでは、いずれの電池においても正極・負極両電極に白金触媒(Pt担持量 : 0.52 mg/cm2)を使用した電極接合膜(50×50 mm)を用い、電解質膜にはNafion(NRE211)を使用した。AWEから発生した水素ガスを一段目のPEFCの負極に供給し、一段目から排出された水素ガスは次段のPEFCの負極に逐次供給した。酸素ボンベから純酸素ガスを一段目の正極に供給し、一段目から排出された酸素ガスは次段のPEFCの正極に逐次供給した。各段のPEFCは独立した3つの可変抵抗器にそれぞれ接続し、発電電流が一定値になるよう調整した。PEFCをAWEに近い方からFC1、FC2、FC3とし、発電電流の総和が4.5Aになるよう以下の3条件について調べた。なお、作動温度は室温とした。
(i)FC1= 1.2 A, FC2 = 0.6 A, FC3 = 1.7 A
(最後のPEFCの水素利用率が最大)
(ii)FC1= 2.7 A, FC2 = 1.2 A, FC3 = 0.6 A
(最初のPEFCの水素利用率が最大)
(iii)FC1= 1.5 A, FC2 = 1.5 A, FC3 = 1.5 A
(何れのPEFCの水素利用率も等しい)
 分離係数測定は、四重極質量分析計(ULVAC社製, Qulee HGM202, Q-Mass)を用いた。試料ガスはニードルバルブにて圧力を一定(10-5Pa)にし、検出器に供給した。検出器部分は温度を60℃に保ち、検出感度が外部環境に依存しない設計とした。水素同位体分離係数αは、3段目のPEFCで排出される水素ガスをQ-Massにて分析し、両者の割合を式(3)にて求めた。結果を表1及び図7に示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 多段燃料電池の理論分離係数αは、水電解の分離係数をαAWE、FC1、FC2、FC3の分離係数をαFC1、αFC2、αFC3として、次のように定義した。
α=αAWE×αFC1×αFC2×αFC3
 尚、αの計算においては、下記の条件を用いた。
 ・αAFEは別の実験結果より6.0とした。
 ・燃料電池の分離係数αFC1、αFC2、αFC3
 1段燃料電池の結果より、αは水素利用率Uに比例するとし、α=3.1×U+0.93の近似式を利用。(図4のグラフ中の点線に相当。)
 さらに濃度依存性を考慮するため、流入ガス中のD/H比をXとし、α=20.075×X0.188の近似式を利用(図5のグラフの点線に相当)。
 濃度依存性結果から、濃度低下によるαの減少率は同程度であると仮定し、補正項としてαFC1、αFC2、αFC3に(20.075×X0.188)/(20.075×(1/540)0.188)を掛ける。但し、1/540は水電解後のガス中のD/H比、Xは燃料利用率の近似式から得たαから逆算した燃料電池流入前のD/H比である。
 この条件で得られた前記(ii)の条件における燃料電池の分離係数αFC1は2.16、αFC2は1.78、αFC3は1.53であり、これらにαAWE 6.0を乗じた値が表1に示した理論分離係数α=35.30=6.0×2.16×1.78×1.53である。
実施例4
 同量の水素を発電に用いる場合、FCの数が多い程、分離係数・発電電力ともに優位になることを実証するために以下の実験を行った。
 KOH電解液 (5 M, 10 at%D2O)を3.0 Aで電解し、発生させた水素ガスを用いて、以下の3通りの実験を行った。燃料電池FCは実施例1で用いたものと同様である。結果を表2に示す。表2に示す結果から、同量の水素を発電に用いる場合、FCの数が多い程、分離係数・発電電力ともに優位になることがわかる。
(1)燃料電池FCを1機用いて1.8 Aの電流量に設定して発電
(2)燃料電池FCを2機並列に用いて、それぞれ0.9 Aずつ発電(合計1.8 A)
(3)燃料電池FCを3機並列に用いて、それぞれ0.6 Aずつ発電(合計1.8 A)
Figure JPOXMLDOC01-appb-T000005
実施例5
燃料電池への酸素ガスの導入方向の検討
 燃料電池FCを2機用いて、酸素ガスの導入方向の違いによる分離係数の違いを測定した。酸素ガスの導入方向は、図8に示す方向が酸素順流型であり、水素ガスと酸素ガスが同じ向きに順次燃料電池に供給される。図8に示す酸素順流型では酸素ガスが、D濃度の高い水素ガスから順に燃料電池において反応する。図9に示す方向が酸素逆流型であり、水素ガスと酸素ガスが逆向きに順次燃料電池に供給される。図9に示す酸素逆流型では、酸素ガスが、D濃度の低い水素ガスから順に反応する。酸素極側への分離も期待できる酸素逆流型の分離係数がよくなることが予想される。この点を確認するために以下の実験を行った。
 実施例4と同様にKOH電解液 (5 M, 10 at%D2O)を3.0 Aで電解し、発生させた水素ガスを用いた。燃料電池FCは実施例1で用いたものと同様である。結果を図10-1及び図10-2に示す。図10-1のIon Currentの測定は、燃料電池から排出される排ガスを調べることで実施した。このためIon Currentの減少は、排ガス中の水素同位体Dの量の減少(燃料電池におけるD消費の増大)を意味する。図10-1の結果から、酸素順流から酸素逆流になることで、燃料電池反応におけるD消費が増えたこと、即ち、酸素逆流型では、質量数3(m=3) の水素同位体を含む水素ガス(HD)と質量数4(m=4)の水素同位体を含む水素ガス(D)が、酸素順流型よりもより多く燃料電池で消費されたことが分かる。さらに図10-2の結果から、酸素逆流型の方が、分離係数が15%程度よくなることが分かる。
 本発明は、水素同位体を含有する水の処理分野に有用である。

Claims (18)

  1.  少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行って、水素同位体を含有する水または水溶液(以下、水溶液AS)から、前記水溶液ASよりも水素同位体含有率が高い水または水溶液(AS)を製造する方法であって、
     (we1)水電気分解装置において水溶液ASを水電気分解して水素ガス及び酸素ガスを得ること、
     (fc1)前記電気分解で得られる水素ガスを燃料電池1(FC1)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること、
     (fc2)回収した水素ガス(HG)を燃料電池2(FC2)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること、
     (fc3)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること(nは、3以上の整数)、
     (we2)前記水電気分解装置から、電気分解後の、前記水溶液ASよりも水素同位体含有率が高い水または水溶液ASを回収すること、を含む、前記方法。
  2.  FC1~FCnの正極側には、酸素ガスまたは酸素含有ガスが供給され、前記回収した水素同位体含有水WからWの少なくとも一部は前記水電気分解装置に供給する、請求項1に記載の方法。
  3.  前記回収した水素同位体含有水WからWの少なくとも一部を前記水電気分解装置に水溶液ASと共に供給する、請求項1または2に記載の方法。
  4.  水素同位体含有水WからWの燃料電池からの回収は、燃料電池の正極側から排出される酸素ガスまたは酸素含有ガスに同伴させることで行う、請求項1~3のいずれかに記載の方法。
  5.  前記水電気分解で得られる酸素ガスの少なくとも一部を、少なくとも一部の燃料電池の正極側に供給することを含む、請求項1~4のいずれかに記載の方法。
  6.  前記水電気分解で得られる酸素ガスの少なくとも一部は、FCnの正極側に供給され、FCnの正極側から排出される酸素ガスまたは酸素含有ガスは燃料電池n-1(FCn-1)の正極側に供給され、順次、FC1まで、排出された酸素ガスまたは酸素含有ガスの次の燃料電池への供給が繰り返される請求項5に記載の方法。
  7.  前記工程(fc2)のFC2又は工程(fc3)のFCnから前記水素同位体含有率が水素ガスHGより低い水素ガスHGまたはHGを回収して水素ガスを併産することを含む(ただし、nは2以上の整数)、請求項1~6のいずれかに記載の方法。
  8.  少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行うことを含む、水素同位体濃度が低減された水素ガスを製造する方法であって、
     (we1)水電気分解装置において水素同位体を含有する水または水溶液を水電気分解して水素ガス(HG)及び酸素ガスを得ること、
     (fc1h)前記電気分解で得られる水素ガスHGを燃料電池1(FC1)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
     (fc2h)回収した水素ガスHGを燃料電池2(FC2)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
     (fc3h)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)を回収して(nは、3以上の整数)、
    水素ガスHGよりも水素同位体濃度が低い水素ガスHGまたはHGを得ること、
    を含む、前記方法。
  9.  前記工程(fc1)においてFC1の負極側に供給される水素ガスの量と、前記工程(fc2)においてFC2又は前記工程(fc3)においてFCnから回収される水素ガスの量の比は、100:0~50の範囲である、請求項1~8のいずれかに記載の方法。
  10.  前記水電気分解装置における水電気分解用の電力の少なくとも一部は、前記燃料電池において発電された電力により賄われる、請求項1~9のいずれかに記載の方法。
  11.  少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、請求項1~10のいずれかに記載の方法。
  12.  前記水溶液ASが、純水、アルカリ水溶液又は海水である、請求項1~11のいずれかに記載の方法。
  13.  少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結した燃料電池を含み、前記水電気分解装置は陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有し、
    前記水電気分解装置の陰極室から前記直列に連結した燃料電池の前記水電気分解装置に隣接する燃料電池の負極室に水素ガス流通手段を有し、
    前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の負極室間に水素ガス流通手段を有し、
    前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の正極室間に酸素ガスまたは酸素含有ガス流通手段を有し、かつ、
    上記燃料電池より生成した水を上記水電気分解装置へ回収する流通手段を有する、
    水素同位体が濃縮された水または水溶液の製造装置。
  14.  同位体濃度が低減された水素ガスを併産するための、請求項12に記載の製造装置。
  15.  少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結した燃料電池を含み、前記水電気分解装置は陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有し、
    前記水電気分解装置の陰極室から前記直列に連結した燃料電池の前記水電気分解装置に隣接する燃料電池の負極室に水素ガス流通手段を有し、
    前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の負極室間に水素ガス流通手段を有る、
    水電気分解装置で得られた水素ガスより水素同位体が低減された水素ガスの製造装置。
  16.  少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、請求項13~15のいずれかに記載の製造装置。
  17.  前記燃料電池は、固体高分子形燃料電池である、請求項13~16のいずれかに記載の製造装置。
  18.  前記水電気分解装置は、隣接する燃料電池と連結した酸素ガスまたは酸素含有ガス流通手段を有する、請求項13~17のいずれかに記載の製造装置。
     
PCT/JP2018/016440 2017-04-21 2018-04-23 水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置 WO2018194182A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513716A JP7164882B2 (ja) 2017-04-21 2018-04-23 水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017084386 2017-04-21
JP2017-084386 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018194182A1 true WO2018194182A1 (ja) 2018-10-25

Family

ID=63855824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016440 WO2018194182A1 (ja) 2017-04-21 2018-04-23 水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置

Country Status (2)

Country Link
JP (1) JP7164882B2 (ja)
WO (1) WO2018194182A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449498A (en) * 1977-09-27 1979-04-18 Mitsubishi Heavy Ind Ltd Separation device of hydrogen isotope
JPH117974A (ja) * 1997-06-18 1999-01-12 Mitsubishi Electric Corp 中、大容量燃料電池発電装置
JP2004337843A (ja) * 2003-04-25 2004-12-02 Showa Denko Kk 水素同位体水の濃縮方法及び装置
JP2007193951A (ja) * 2006-01-17 2007-08-02 Mitsubishi Heavy Ind Ltd 燃料電池及びその運転方法
JP2015187552A (ja) * 2014-03-26 2015-10-29 三菱重工環境・化学エンジニアリング株式会社 放射性物質処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158499A (ja) 2011-02-01 2012-08-23 Fc Kaihatsu Kk 重水素低減水製造方法および装置
JP6745092B2 (ja) 2015-06-17 2020-08-26 デノラ・ペルメレック株式会社 アルカリ水電解装置とアルカリ燃料電池を利用した水処理システム及び該水処理システムを用いた水処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449498A (en) * 1977-09-27 1979-04-18 Mitsubishi Heavy Ind Ltd Separation device of hydrogen isotope
JPH117974A (ja) * 1997-06-18 1999-01-12 Mitsubishi Electric Corp 中、大容量燃料電池発電装置
JP2004337843A (ja) * 2003-04-25 2004-12-02 Showa Denko Kk 水素同位体水の濃縮方法及び装置
JP2007193951A (ja) * 2006-01-17 2007-08-02 Mitsubishi Heavy Ind Ltd 燃料電池及びその運転方法
JP2015187552A (ja) * 2014-03-26 2015-10-29 三菱重工環境・化学エンジニアリング株式会社 放射性物質処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUSHIMA, H. ET AL.: "A novel deuterium separation system by the combination of water electrolysis and fuel cell", ENERGY, vol. 30, 2005, pages 2413 - 2423, XP025263267, DOI: doi:10.1016/j.energy.2004.11.013 *

Also Published As

Publication number Publication date
JP7164882B2 (ja) 2022-11-02
JPWO2018194182A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
US6994929B2 (en) Electrochemical hydrogen compressor for electrochemical cell system and method for controlling
JP5422083B2 (ja) ノンフローレドックス電池
EP3017089B1 (en) Hydrogen system and method of operation
JP2015029921A (ja) 重水の電解濃縮方法
KR101451630B1 (ko) 이산화탄소 환원방법 및 이를 이용한 이산화탄소 환원장치
WO2016204233A1 (ja) アルカリ水電解装置とアルカリ燃料電池を利用した水処理システム
KR101468782B1 (ko) 이산화탄소 환원방법 및 이를 이용한 무격막형 이산화탄소 환원장치
WO2020038383A1 (zh) 液流电池电解液的纯化方法和纯化装置
CN114402095B (zh) 错流式水电解
WO2018194182A1 (ja) 水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置
US20220288532A1 (en) Hydrogen isotope concentrating apparatus
TW201321310A (zh) 產生殺生物劑之方法
JP2015223574A (ja) トリチウム回収用三室型電解槽及びトリチウム回収システム
JPS62182292A (ja) Hciの隔膜電解法
US9537167B2 (en) Methods and apparatus of an anode/cathode (A/C) junction fuel cell with solid electrolyte
Matsushima et al. Deuterium isotope separation by polymer electrolyte fuel cells connected in series
RU2548442C1 (ru) Способ получения обедненной дейтерием воды
JPS6038174B2 (ja) 水素同位体の分離装置
CN212077164U (zh) 一种电能补给型电化学反应器
US20170073826A1 (en) Solar-powered single-compartment multi-purpose electrochemical reactor
KR101320328B1 (ko) 독립운전 수소펌프 시스템
TWI652229B (zh) 富氫水生成裝置及其方法
JP2007059196A (ja) 発電システム
CN104862732A (zh) 由含氧气体电化学生成臭氧的方法及设备
KR20220121658A (ko) 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787151

Country of ref document: EP

Kind code of ref document: A1