WO2018193686A1 - Conductive film and touch panel - Google Patents
Conductive film and touch panel Download PDFInfo
- Publication number
- WO2018193686A1 WO2018193686A1 PCT/JP2018/003563 JP2018003563W WO2018193686A1 WO 2018193686 A1 WO2018193686 A1 WO 2018193686A1 JP 2018003563 W JP2018003563 W JP 2018003563W WO 2018193686 A1 WO2018193686 A1 WO 2018193686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductive film
- intermediate layer
- transparent conductive
- mass
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/025—Electric or magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/208—Touch screens
Definitions
- the present invention relates to a conductive film and a touch panel including the same.
- an image display device includes a film for a touch panel on which a transparent conductive layer made of indium tin composite oxide (ITO) or the like is formed.
- a transparent conductive layer made of indium tin composite oxide (ITO) or the like is formed.
- ITO indium tin composite oxide
- a conductive film in which a copper layer is further provided on the surface of the ITO layer has been proposed in order to achieve a narrow frame by forming a lead-out wiring at the outer edge of the touch input area.
- Such a conductive film is manufactured, for example, by sequentially laminating a transparent conductor layer and a copper layer on one side of a film base material by a sputtering method and winding up in a roll shape.
- the metal layer is strongly distorted, so that the metal layer distorts the transparent conductive layer in the surface direction.
- the adhesion layer is provided between the transparent conductive layer and the transparent base material, there arises a problem that the metal layer and the transparent conductive layer are peeled off from the transparent base material. That is, the adhesiveness between the transparent conductive layer and the transparent substrate is insufficient only by providing a general adhesive layer between the transparent conductive layer and the transparent substrate.
- the transparent conductive layer is formed in a predetermined wiring pattern, it is necessary to form a conductive film so that the wiring pattern cannot be visually recognized.
- the wiring pattern may be visually recognized due to the influence of the refractive index and the like.
- the transparent conductive layer is required to have excellent conductivity. That is, it is required to reduce the surface resistance value of the transparent conductive layer. However, the adhesion layer adjacent to the transparent conductive layer is affected, and the surface resistance value of the transparent conductive layer may not be reduced.
- the present invention provides a conductive film and a touch panel in which the conductivity of the transparent conductive layer is good and the adhesion between the metal layer and the transparent substrate is improved while suppressing the visual recognition of the wiring pattern of the transparent conductive layer. There is to do.
- the present invention [1] includes a transparent substrate, an intermediate layer, a transparent conductive layer, and a metal layer in this order, the metal layer has a thickness of 100 nm to 400 nm, and the intermediate layer has a refractive index of 1.60. 1.70 or less, the intermediate layer contains an inorganic particle component containing silica particles and inorganic particles other than silica particles, and the content ratio of the inorganic particle component in the intermediate layer is 40.0% by mass or more
- the electroconductive film which is 66.0 mass% or less is included.
- This invention [2] contains the electroconductive film as described in [1] whose thickness of the said intermediate
- This invention [3] contains the electroconductive film as described in [1] or [2] whose content rate of the said inorganic particle component in the said intermediate
- middle layer is 50.0 mass% or more and 60.0 mass% or less. It is out.
- the present invention [4] includes the conductive film according to any one of [1] to [3], wherein the intermediate layer is a resin layer containing the inorganic particle component.
- the present invention [5] includes the conductive film according to any one of [1] to [4], wherein the inorganic particles other than the silica particles are zirconium oxide.
- the present invention [6] includes the conductive film according to any one of [1] to [5], wherein the metal layer contains at least one of copper, nickel, chromium, iron, and titanium. Yes.
- the present invention includes the conductive film according to any one of [1] to [6], in which both the transparent conductive layer and the metal layer are patterned.
- the present invention includes the conductive film according to any one of [1] to [7] wound in a roll shape.
- the present invention [9] includes a touch panel including the conductive film according to any one of [1] to [8].
- the conductive film and touch panel of the present invention have good adhesion between the metal layer and the transparent substrate. Moreover, visual recognition of the wiring pattern of a transparent conductive layer can be suppressed. Moreover, the electroconductivity of a transparent conductive layer is favorable.
- FIG. 1 shows a side sectional view of an embodiment of the conductive film of the present invention.
- FIG. 2 shows a side sectional view of a patterned conductive film formed from the conductive film shown in FIG.
- FIG. 3 shows a side cross-sectional view of another embodiment of the conductive film of the present invention (a form without a hard coat layer).
- FIG. 4 shows the sectional side view of other embodiment (form which does not provide a hard-coat layer) of the patterning electroconductive film of this invention.
- the vertical direction of the paper is the vertical direction (thickness direction, first direction)
- the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction)
- the lower side of the paper is the lower side (thickness direction).
- the left and right direction on the paper is the left and right direction (the second direction, the width direction, and the direction perpendicular to the vertical direction)
- the left side of the paper is the left side (second side in the second direction)
- the right side of the paper is the right side (the other side in the second direction).
- the paper thickness direction is the front-rear direction (the direction orthogonal to both the third direction, the up-down direction, and the left-right direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (first 3 direction other side).
- Other figures are the same as those in FIG.
- the conductive film 1 which is 1st Embodiment of the conductive film of this invention is a film shape (a sheet
- the film shape is defined as a thin plate shape having a flat upper surface and a flat lower surface (hereinafter the same).
- the conductive film 1 is a component such as a base material for a touch panel provided in the image display device, that is, it is not an image display device. That is, the conductive film 1 is a part for producing an image display device and the like, does not include an image display element such as an LCD module, and includes a transparent base material 2, a hard coat layer 3, an intermediate layer 4, and a transparent conductive material, which will be described later.
- the device is composed of the layer 5 and the metal layer 6, and is a device that can be distributed industrially and used industrially.
- the conductive film 1 includes a transparent substrate 2, a hard coat layer 3, an intermediate layer 4, a transparent conductive layer 5, and a metal layer 6 in this order. More specifically, the conductive film 1 includes a transparent substrate 2, a hard coat layer 3 disposed on the upper surface (one surface) of the transparent substrate 2, and an intermediate layer disposed on the upper surface of the hard coat layer 3. 4, a transparent conductive layer 5 disposed on the upper surface of the intermediate layer 4, and a metal layer 6 disposed on the upper surface of the transparent conductive layer 5.
- the conductive film 1 is preferably composed of a transparent substrate 2, a hard coat layer 3, an intermediate layer 4, a transparent conductive layer 5, and a metal layer 6.
- each layer will be described in detail.
- the transparent substrate 2 is a substrate that ensures the mechanical strength of the conductive film 1.
- the transparent substrate 2 supports the transparent conductive layer 5 and the metal layer 6 together with the hard coat layer 3 and the intermediate layer 4.
- the transparent substrate 2 is, for example, a polymer film having transparency.
- the material of the polymer film include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, for example, (meth) acrylic resins (acrylic resin and / or methacrylic resin) such as polymethacrylate, Olefin resins such as polyethylene, polypropylene, cycloolefin polymer (COP), for example, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, polystyrene resin, norbornene resin, etc. It is done.
- the polymer film can be used alone or in combination of two or more.
- polyester resins and olefin resins are preferable, and PET and COP are more preferable.
- the thickness of the transparent base material 2 is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, from the viewpoint of mechanical strength, scratch resistance, and spot characteristics when the conductive film 1 is used as a touch panel film. For example, it is 300 ⁇ m or less, preferably 150 ⁇ m or less.
- the thickness of the transparent substrate 2 can be measured using, for example, a film thickness meter (digital dial gauge).
- the easily bonding layer, the adhesive bond layer, the separator, etc. may be provided in the upper surface and / or lower surface of the transparent base material 2 as needed.
- the hard coat layer 3 is an abrasion protective layer for making it difficult to cause scratches on the surface of the conductive film 1 (that is, the upper surface of the metal layer 6) when a plurality of conductive films 1 are laminated. . Moreover, it can also be set as the antiblocking layer for providing the conductive film 1 with blocking resistance.
- the hard coat layer 3 has a film shape, and is disposed, for example, on the entire upper surface of the transparent substrate 2 so as to be in contact with the upper surface of the transparent substrate 2. More specifically, the hard coat layer 3 is disposed between the transparent substrate 2 and the intermediate layer 4 so as to be in contact with the upper surface of the transparent substrate 2 and the lower surface of the intermediate layer 4.
- the hard coat layer 3 is formed from, for example, a hard coat composition.
- the hard coat composition contains a resin component, and preferably comprises a resin component.
- the resin component examples include a curable resin and a thermoplastic resin (for example, a polyolefin resin), and preferably a curable resin.
- the curable resin examples include an active energy ray-curable resin that is cured by irradiation with active energy rays (specifically, ultraviolet rays, electron beams, etc.), for example, a thermosetting resin that is cured by heating, and the like.
- active energy ray curable resin is used.
- Examples of the active energy ray-curable resin include a polymer having a functional group having a polymerizable carbon-carbon double bond in the molecule.
- Examples of such a functional group include a vinyl group and a (meth) acryloyl group (methacryloyl group and / or acryloyl group).
- active energy ray curable resin examples include (meth) acrylic ultraviolet curable resins such as urethane acrylate and epoxy acrylate.
- examples of the curable resin other than the active energy ray curable resin include urethane resin, melamine resin, alkyd resin, siloxane polymer, and organic silane condensate.
- resin components can be used alone or in combination of two or more.
- the resin component may contain a resin additive such as a polymerization initiator.
- polymerization initiator examples include radical polymerization initiators such as a photopolymerization initiator and a thermal polymerization initiator. These polymerization initiators can be used alone or in combination of two or more.
- photopolymerization initiator examples include benzoin ether compounds, acetophenone compounds, ⁇ -ketol compounds, aromatic sulfonyl chloride compounds, photoactive oxime compounds, benzoin compounds, benzyl compounds, benzophenone compounds, thioxanthone compounds, ⁇ -aminoketone compounds, and the like. Can be mentioned.
- thermal polymerization initiator examples include organic peroxides and azo compounds.
- the hard coat composition can contain particles.
- Examples of the particles include inorganic particles and organic particles.
- Examples of the inorganic particles include silica particles, for example, metal oxide particles made of zirconium oxide, titanium oxide, zinc oxide, tin oxide, and the like, for example, carbonate particles such as calcium carbonate.
- Examples of the organic particles include crosslinked acrylic resin particles. The particles can be used alone or in combination of two or more.
- the hard coat composition may further contain known additives such as a leveling agent, a thixotropic agent, and an antistatic agent.
- the thickness of the hard coat layer 3 is, for example, 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less. .
- the thickness of the hard coat layer 3 can be measured using, for example, a film thickness meter (digital dial gauge).
- Intermediate layer 4 improves the adhesion between the metal layer 6 side (especially the transparent conductive layer 5) and the transparent base material 2 side (particularly the hard coat layer 3) of the conductive film 1, and the conductive film 1 1 is an adhesion layer for suppressing delamination inside.
- an optical adjustment layer that adjusts optical properties (for example, refractive index) of the conductive film 1 in order to ensure excellent transparency of the conductive film 1 while suppressing the visual recognition of the wiring pattern of the transparent conductive layer 5. But there is.
- the intermediate layer 4 has a film shape and is disposed, for example, on the entire upper surface of the hard coat layer 3 so as to be in contact with the upper surface of the hard coat layer 3. More specifically, the intermediate layer 4 is disposed between the hard coat layer 3 and the transparent conductive layer 5 so as to be in contact with the upper surface of the hard coat layer 3 and the lower surface of the transparent conductive layer 5.
- the intermediate layer 4 is formed from an intermediate layer composition.
- the intermediate layer composition preferably contains an inorganic particle component and a resin component, and more preferably comprises an inorganic particle component and a resin component. That is, the intermediate layer 4 is preferably a resin layer containing an inorganic particle component, and more preferably a resin layer composed of an inorganic particle component and a resin component.
- the resin component examples include the same resins as those used in the hard coat composition.
- the resins can be used alone or in combination of two or more.
- a curable resin more preferably an active energy ray curable resin is used.
- the content ratio of the resin component is, for example, 34.0% by mass or more, preferably 40.0% by mass or more, for example, 60.0% by mass or less, preferably, based on the intermediate layer composition. It is 50.0 mass% or less, More preferably, it is 45.0 mass% or less.
- the inorganic particle component contains silica particles and inorganic particles other than silica particles (hereinafter also referred to as second inorganic particles).
- the second inorganic particles preferably include inorganic particles having a refractive index higher than that of silica particles (for example, a refractive index of 2.00 or more).
- silica particles for example, a refractive index of 2.00 or more
- Zirconium oxide particles are preferable from the viewpoint of adhesion and suppression of visual recognition of the wiring pattern.
- the inorganic particle component preferably contains silica particles and metal oxide particles, more preferably contains silica (SiO 2 ) particles and zirconium oxide (ZnO 2 ) particles, and more preferably silica particles and zirconium oxide. Consists of particles.
- the content ratio of the silica particles in the inorganic particle component is, for example, 1.0% by mass or more, preferably 3.0% by mass or more, more preferably 5.0% by mass or more, and for example, 50.0%. % By mass or less, preferably 20.0% by mass or less, more preferably 15.0% by mass or less.
- the adhesion can be further improved.
- the surface resistance value of the transparent conductive layer 5 can be further reduced.
- the content ratio of the second inorganic particles in the inorganic particle component is, for example, 50.0% by mass or more, preferably 80.0% by mass or more, more preferably 85.0% by mass or more. 0.0 mass% or less, preferably 97.0 mass% or less, and more preferably 95.0 mass% or less. If the content ratio of the second inorganic particles is within the above range, the refractive index of the intermediate layer 4 can be improved, and the refractive index of the intermediate layer 4 can be easily adjusted to a range of 1.60 or more and 1.70 or less. . As a result, the visual recognition of the wiring pattern of the transparent conductive layer 5 can be further suppressed.
- the average particle diameter of the silica particles is, for example, 1 nm or more, preferably 5 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
- the average particle size of the second inorganic particles is, for example, 10 nm or more, preferably 20 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
- the average particle diameter of the particles indicates the average particle diameter (D 50 ) of the particle size distribution on a volume basis.
- D 50 average particle diameter of the particle size distribution on a volume basis.
- a solution in which particles are dispersed in water can be measured by a light diffraction / scattering method.
- the content ratio of the inorganic particle component is 40.0% by mass or more and 66.0% by mass or less with respect to the intermediate layer composition (and thus the intermediate layer 4). Preferably, it is 50.0% by mass or more, more preferably 55.0% by mass or more, and preferably 60.0% by mass or less.
- the content rate of an inorganic particle component exceeds the said upper limit, adhesiveness will fall or the surface resistance value of the transparent conductive layer 5 will become high.
- the content rate of an inorganic particle component is less than the said minimum, the wiring pattern of the transparent conductive layer 5 will become easy to visually recognize.
- the refractive index of the intermediate layer 4 is 1.60 or more and 1.70 or less. Preferably, it is 1.62 or more, and preferably 1.68 or less. If the refractive index of the intermediate layer 4 is within the above range, the visual recognition of the wiring pattern of the transparent conductive layer 5 can be suppressed.
- the refractive index can be measured, for example, with an Abbe refractometer at a wavelength of 589 nm.
- the thickness of the intermediate layer 4 is, for example, 10 nm or more, preferably 30 nm or more, and for example, 300 nm or less, preferably 150 nm or less. If the thickness of the intermediate layer 4 is within the above range, the visual recognition of the wiring pattern of the transparent conductive layer 5 can be further suppressed.
- the thickness of the intermediate layer 4 can be measured, for example, by observing a cross section of the conductive film 1 using a transmission electron microscope.
- Transparent conductive layer 5 is formed in a wiring pattern (patterned transparent conductive layer 5A to be described later) in a later step, for example, transparent for forming a wiring pattern (for example, electrode wiring) in a touch input region of a touch panel. This is a conductive layer.
- the intermediate layer 4 has a film shape and is disposed, for example, on the entire upper surface of the intermediate layer 4 so as to be in contact with the upper surface of the intermediate layer 4. More specifically, the transparent conductive layer 5 is disposed between the intermediate layer 4 and the metal layer 6 so as to be in contact with the upper surface of the intermediate layer 4 and the lower surface of the metal layer 6.
- the material of the transparent conductive layer 5 is, for example, at least one selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. And metal oxides containing these metals. If necessary, the metal oxide may be further doped with a metal atom shown in the above group.
- Examples of the material of the transparent conductive layer 5 include indium-containing oxides such as indium tin composite oxide (ITO), for example, antimony-containing oxides such as antimony tin composite oxide (ATO), and preferably indium The containing oxide, more preferably, ITO is used.
- ITO indium tin composite oxide
- ATO antimony-containing oxides
- ITO indium tin composite oxide
- the tin oxide (SnO 2 ) content is, for example, 0.5% by mass or more, preferably with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). Is 3% by mass or more, and for example, 15% by mass or less, preferably 13% by mass or less.
- the durability of the ITO layer can be further improved.
- crystal conversion of the ITO layer can be facilitated, and the stability of transparency and specific resistance can be improved.
- ITO in this specification may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these.
- additional component include metal elements other than In and Sn. Specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe , Pb, Ni, Nb, Cr, Ga and the like.
- the thickness of the transparent conductive layer 5 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 50 nm or less, preferably 30 nm or less.
- the thickness of the transparent conductive layer 5 can be measured, for example, by observing a cross section of the conductive film 1 using a transmission electron microscope.
- the transparent conductive layer 5 may be either crystalline or amorphous, or may be a mixture of crystalline and amorphous.
- the transparent conductive layer 5 is preferably made of a crystalline material, more specifically, a crystalline ITO layer. Thereby, the transparency of the transparent conductive layer 5 can be improved, and the surface resistance value of the transparent conductive layer 5 can be further reduced.
- the transparent conductive layer 5 is crystalline.
- the transparent conductive layer 5 is an ITO layer, it is immersed in hydrochloric acid (concentration 5% by mass) at 20 ° C. for 15 minutes, washed and dried, and about 15 mm. It can be determined by measuring the resistance between terminals.
- the ITO layer is assumed to be crystalline when the resistance between terminals of 15 mm is 10 k ⁇ or less after immersion, washing and drying in hydrochloric acid (20 ° C., concentration: 5 mass%).
- the surface resistance value of the transparent conductive layer 5 is, for example, less than 100 ⁇ / ⁇ , preferably 80 ⁇ / ⁇ or less, more preferably 75 ⁇ / ⁇ or less, and for example, 10 ⁇ / ⁇ . ⁇ or more.
- the surface resistance value can be measured by a four-terminal method in accordance with, for example, JIS K 7194 (1994).
- Metal layer The metal layer 6 is formed in a wiring pattern (patterned metal layer 6A, which will be described later) in a later step, and for example, a wiring pattern (for example, an outer peripheral edge) on the outer side (outer periphery) of the touch input area of the touch panel (for example, , A conductive metal layer for forming a routing wiring).
- the metal layer 6 is the uppermost layer of the conductive film 1 and has a film shape, and is disposed on the entire upper surface of the transparent conductive layer 5 so as to be in contact with the upper surface of the transparent conductive layer 5.
- Examples of the material of the metal layer 6 include metals such as copper, nickel, chromium, iron, titanium, or alloys thereof. From the viewpoint of conductivity, copper is preferably used.
- the surface of the metal layer 6 may be oxidized.
- the metal layer 6 when the metal layer 6 is a copper layer, the metal layer 6 may be a copper layer including copper oxide on part or all of the surface.
- the thickness of the metal layer 6 is 100 nm or more and 400 nm or less. Preferably, it is 150 nm or more, and preferably 300 nm or less.
- the thickness of the metal layer 6 is less than the lower limit, the surface resistance value of the metal layer 6 increases and the conductivity decreases. For this reason, it is difficult to form a narrow and long wiring pattern (frame portion routing wiring) in response to an increase in the size of the touch panel.
- the thickness of the metal layer 6 exceeds the said upper limit, the improvement of electroconductivity will be saturated and it will become disadvantageous in terms of cost. In addition, it is difficult to reduce the thickness of the frame portion.
- the thickness of the metal layer 6 can be measured, for example, by observing a cross section of the conductive film 1 using a transmission electron microscope.
- the hard coat layer 3, the intermediate layer 4, the transparent conductive layer 5, and the metal layer 6 are formed on one surface of the transparent substrate 2.
- the hard coat layer 3 is provided on the top surface of the transparent base material 2.
- the intermediate layer 4 is provided, the transparent conductive layer 5 is then provided on the upper surface of the intermediate layer 4, the metal layer 6 is then provided on the upper surface of the transparent conductive layer 5, and the conductive film 1 is wound up by a take-up roll. Details will be described below.
- a long transparent substrate 2 wound around a delivery roll is prepared, and the transparent substrate 2 is conveyed so as to be wound around a winding roll.
- the transparent base material 2 can be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like.
- the hard coat layer 3 is provided on the upper surface of the transparent substrate 2.
- the hard coat layer 3 is formed on the upper surface of the transparent substrate 2 by wet-coating the hard coat composition on the upper surface of the transparent substrate 2.
- a hard coat composition coating solution obtained by diluting the hard coat composition with a solvent is prepared, and then the coating solution is applied to the upper surface of the transparent substrate 2 and dried.
- the solvent examples include an organic solvent and an aqueous solvent (specifically, water), and an organic solvent is preferable.
- organic solvent include alcohol compounds such as methanol, ethanol, and isopropyl alcohol; ketone compounds such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester compounds such as ethyl acetate and butyl acetate; and propylene glycol monomethyl ether.
- the ether compound include aromatic compounds such as toluene and xylene. These solvents can be used alone or in combination of two or more. Preferably, an ester compound and an ether compound are used.
- the solid content concentration in the coating solution is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 30% by mass or less, preferably 20% by mass or less.
- Application method can be appropriately selected depending on the application liquid and the transparent substrate 2. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and inkjet.
- the drying temperature is, for example, 50 ° C. or more, preferably 60 ° C. or more, for example, 200 ° C. or less, preferably 150 ° C. or less.
- the drying time is, for example, 0.5 minutes or more, preferably 1 minute or more, for example, 60 minutes or less, preferably 20 minutes or less.
- the hard coat composition contains an active energy ray curable resin
- the active energy ray curable resin is cured by irradiating the active energy ray after the coating liquid is dried.
- thermosetting resin when a hard-coat composition contains a thermosetting resin, a thermosetting resin can be thermoset by this drying process with the drying of a solvent.
- the intermediate layer 4 is provided on the upper surface of the hard coat layer 3.
- the intermediate layer 4 is formed on the upper surface of the hard coat layer 3 by wet coating the intermediate layer composition on the upper surface of the hard coat layer 3.
- an intermediate layer composition coating solution obtained by diluting the intermediate layer composition with a solvent is prepared as necessary, and then the coating solution is applied to the upper surface of the hard coat layer 3 and dried.
- the conditions such as preparation, application and drying of the intermediate layer composition are the same as the conditions such as preparation, application and drying exemplified in the hard coat composition.
- the active energy ray-curable resin is cured by irradiating the active energy ray after the coating liquid is dried.
- thermosetting resin when the intermediate layer composition contains a thermosetting resin, the thermosetting resin can be thermoset together with drying of the solvent by this drying step.
- the transparent conductive layer 5 is provided on the upper surface of the intermediate layer 4.
- the transparent conductive layer 5 is formed on the upper surface of the intermediate layer 4 by a dry method.
- the dry method examples include a vacuum deposition method, a sputtering method, and an ion plating method.
- a sputtering method is used.
- the transparent conductive layer 5 which is a thin film and has a uniform thickness can be formed.
- a target and an adherend transparent substrate 2 on which an intermediate layer 4 and a hard coat layer 3 are laminated
- gas is supplied by supplying a gas and applying a voltage from a power source. Ions are accelerated to irradiate the target, the target material is ejected from the target surface, and the target material is laminated on the adherend surface.
- Examples of the sputtering method include a bipolar sputtering method, an ECR (electron cyclotron resonance) sputtering method, a magnetron sputtering method, and an ion beam sputtering method.
- a magnetron sputtering method is preferable.
- examples of the target material include the above-described metal oxides constituting the transparent conductive layer 5, and preferably ITO.
- the tin oxide concentration of ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more, and, for example, 15% by mass or less, preferably from the viewpoint of durability and crystallization of the ITO layer. 13 mass% or less.
- the gas examples include an inert gas such as Ar.
- reactive gas such as oxygen gas, can be used together as needed.
- the flow rate ratio (sccm) of the reactive gas is not particularly limited.
- the flow rate ratio of the sputtering gas and the reactive gas is, for example, 0.1 flow% or more and 5 flow% or less. It is.
- the atmospheric pressure during sputtering is, for example, 1 Pa or less, preferably 0.1 Pa or more and 0.7 Pa or less, from the viewpoint of suppressing a decrease in sputtering rate, discharge stability, or the like.
- the power source may be, for example, any of a DC power source, an AC power source, an MF power source, and an RF power source, or a combination thereof.
- the metal layer 6 is provided on the upper surface of the transparent conductive layer 5.
- the metal layer 6 is formed on the upper surface of the transparent conductive layer 5 by a dry method.
- Examples of the dry method include the same ones as described above for the formation of the transparent conductive layer 5, and preferably a sputtering method. By this method, the metal layer 6 having a uniform thickness can be formed even if it is a thick film.
- the conditions of the sputtering method in the metal layer 6 may be the same as the conditions exemplified in the formation of the transparent conductive layer 5.
- the above-mentioned metal etc. which comprise the metal layer 6 are mentioned, Preferably, copper is mentioned.
- the obtained long conductive film 1 is wound up on a winding roll.
- a crystal conversion treatment can be performed on the transparent conductive layer 5 of the conductive film 1 as necessary.
- the crystallization conversion treatment may be performed on the obtained conductive film 1, and the conductive film 1 (intermediate laminate, that is, transparent substrate 2 / hard coat) before the metal layer 6 is laminated. (Layer 3 / intermediate layer 4 / transparent conductive layer 5).
- heat treatment is performed on the conductive film 1 or the intermediate laminate in the atmosphere.
- the heat treatment can be performed using, for example, an infrared heater or an oven.
- the heating temperature is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, and for example, 200 ° C. or lower, preferably 160 ° C. or lower.
- the heating time is appropriately determined according to the heating temperature, and is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 5 hours or less, preferably 3 hours or less.
- the conductive film 1 provided with the crystallized transparent conductive layer 5 is obtained.
- the hard coat layer 3, the intermediate layer 4, the transparent conductive layer 5, and the metal layer 6 may be continuously formed without being wound and wound on a take-up roll after the metal layer 6 is formed.
- the transparent conductive layer 5 and / or the metal layer 6 may be patterned into a stripe pattern or the like by using a known etching method before or after the crystal conversion treatment.
- the transparent conductive layer 5 and the metal layer 6 are etched, they may be etched at the same time or separately, but preferably, the transparent conductive layer 5 and the metal layer 6 are formed in separate patterns. These are separately etched from the viewpoint that they can be reliably formed.
- the metal layer 6 (particularly, the center in plan view) is formed so that a desired wiring pattern (for example, lead wiring) is formed at a peripheral end portion (for example, a region corresponding to the lead wiring) of the metal layer 6 in plan view. Part) is removed by etching.
- the transparent conductive layer 5 exposed from the metal layer 6 is removed by etching so that a desired wiring pattern (for example, a wiring pattern in the touch input region) is formed.
- the patterning conductive material including the transparent substrate 2, the hard coat layer 3, the intermediate layer 4, the patterning transparent conductive layer 5A, and the patterning metal layer 6A. 1A is obtained.
- the patterned metal layer 6A forms a frame portion having a frame shape in plan view, and the patterned transparent conductive layer 5A forms a predetermined wiring pattern in the patterned metal layer 6A.
- Touch panel The conductive film 1 is used for the base material for touch panels with which an image display apparatus is equipped, for example.
- Examples of the form of the touch panel include various types such as a capacitive type and a resistive film type, and are particularly suitably used for a capacitive type touch panel.
- the patterned conductive film 1A is used as a touch panel by placing it on a protective substrate such as protective glass.
- the conductive film 1 is, for example, an electrophoresis method, a twist ball method, a thermal rewritable method, an optical writing liquid crystal method, a polymer dispersion type liquid crystal method, a guest / host liquid crystal method, a toner display method, a chromism method, an electric field deposition. It can also be suitably used for flexible display elements such as a method.
- This conductive film 1 includes a transparent substrate 2, an intermediate layer 4, a transparent conductive layer 5 and a metal layer 6 in this order, and the thickness of the metal layer 6 is not less than 100 nm and not more than 400 nm. For this reason, the conductivity (low surface resistance value) of the metal layer 6 can be improved. As a result, a narrow and long wiring pattern (leading wiring) can be reliably formed on the frame portion (end portion) of the touch panel. Therefore, even if the touch panel is enlarged, the frame can be narrowed.
- the refractive index of the intermediate layer 4 is 1.60 or more and 1.70 or less, the intermediate layer 4 contains an inorganic particle component containing silica particles and second inorganic particles, and the inorganic particle component in the intermediate layer 4 A content rate is 40.0 mass% or more and 66.0 mass% or less.
- the adhesion between the metal layer 6 and the transparent substrate 2 is good.
- the adhesiveness of the interface between the transparent conductive layer 5 and the intermediate layer 4 is good, and the cohesive failure can be suppressed between them, so that the separation between the metal layer 6 and the transparent substrate 2 can be suppressed.
- the transparent conductive layer 5 is formed in a wiring pattern (for example, a pattern in a touch input area of a touch panel; the patterned transparent conductive layer 5A), the visual recognition of the wiring pattern can be suppressed.
- the conductivity of the transparent conductive layer 5 is good, it has excellent touch responsiveness even when the touch panel is enlarged.
- the wiring pattern of the transparent conductive layer 5 may be easily visually recognized due to the optical effect of the adhesive layer.
- the transparent conductive layer 5 since the transparent conductive layer 5 is adjacent to the adhesion layer, it affects the crystallization of the transparent conductive layer 5 and thus the resistance reduction, and the crystallization of the transparent conductive layer is hindered, and the surface resistance value does not decrease. Cases arise.
- the intermediate layer 4 having the specific configuration is arranged between the hard coat layer 3 and the transparent conductive layer 5. Therefore, it is possible to improve the adhesiveness, suppress the visual recognition of the wiring pattern, and further reduce the surface resistance value without inhibiting the crystallization of the transparent conductive layer 5.
- the conductive film 1 includes the hard coat layer 3.
- the conductive film 1 may not include the hard coat layer 3. That is, the conductive film 1 shown in FIG. 3 includes a transparent substrate 2, an intermediate layer 4, a transparent conductive layer 5, and a metal layer 6.
- the patterned conductive film 1 ⁇ / b> A includes the hard coat layer 3.
- the conductive film 1 does not include the hard coat layer 3. Also good. That is, the conductive film 1 shown in FIG. 4 includes a transparent substrate 2, an intermediate layer 4, a patterned transparent conductive layer 5A, and a patterned metal layer 6A.
- the lower surface of the transparent base material 2 is exposed.
- the hard coat layer 3 and the intermediate layer 4 are further provided on the lower surface of the transparent base material 2. All or part of the transparent conductive layer 5 and the metal layer 6 may be provided.
- Example 1 A cycloolefin polymer film (COP film, manufactured by Nippon Zeon Co., Ltd., “Zeonor ZF16”) having a thickness of 100 ⁇ m was prepared as a long transparent substrate.
- COP film manufactured by Nippon Zeon Co., Ltd., “Zeonor ZF16”
- a hard coat composition solution was prepared by mixing 100 parts by weight of an ultraviolet curable acrylic resin (manufactured by DIC, “ELS888”), 2 parts by weight of a photopolymerization initiator (manufactured by BASF, “Irgacure 184”) and 160 parts by weight of ethyl acetate. Prepared. The hard coat composition solution was applied to the upper surface of the COP film, dried at 80 ° C. for 1 minute, and then irradiated with ultraviolet rays. Thereby, a hard coat layer having a thickness of 2 ⁇ m was formed on the upper surface of the COP film.
- an ultraviolet curable acrylic resin manufactured by DIC, “ELS888”
- a photopolymerization initiator manufactured by BASF, “Irgacure 184
- An intermediate layer composition solution was prepared by mixing 700 parts by mass of propylene glycol monomethyl ether with 100 parts by mass of an inorganic particle-containing resin solution (manufactured by JSR, “KZ6954”).
- the intermediate layer composition solution was applied to the upper surface of the hard coat layer, dried at 60 ° C. for 1 minute, and then irradiated with ultraviolet rays. Thereby, an intermediate layer having a thickness of 100 nm was formed on the upper surface of the hard coat layer.
- the solid content of the inorganic particle-containing resin solution (manufactured by JSR, “KZ6954”) was 62.5% by mass of the inorganic particle component and 37.5% by mass of the resin component.
- the inorganic particle components were 19% by mass of silica particles (average particle size 10 nm) and 81% by mass of zirconium oxide particles (average particle size 25 nm).
- the laminate of COP film / hard coat layer / intermediate layer was put into a take-up type sputtering apparatus, and an ITO layer (amorphous) having a thickness of 30 nm was formed on the upper surface of the intermediate layer.
- an ITO target made of a sintered body of 97% by mass indium oxide and 3% by mass tin oxide was used in a vacuum atmosphere at a pressure of 0.4 Pa into which argon gas 98% and oxygen gas 2% were introduced. Then, sputtering was performed on the intermediate layer.
- the laminate of COP film / hard coat layer / intermediate layer / ITO layer (amorphous) was put into a take-up type sputtering apparatus, and a copper layer having a thickness of 200 nm was formed on the upper surface of the ITO layer.
- sputtering was performed on the ITO layer using an ITO target made of oxygen-free copper in a vacuum atmosphere at a pressure of 0.4 Pa into which argon gas was introduced.
- Example 1 the roll-shaped conductive film of Example 1 was produced.
- Example 2 In forming the intermediate layer, two types of Opstar KZ series (“KZ6954” and “KZ6956”) manufactured by JSR are appropriately mixed so that the intermediate layer has the formulation shown in Table 1.
- a conductive film was produced in the same manner as in Example 1 except that the solution was prepared.
- inorganic particles sica particles and / or zirconium oxide particles contained in “SR017” manufactured by OPSR KZ series, OPSTAR Z series manufactured by JSR and Arakawa Chemical Industries, Ltd. used in each example and each comparative example. ) Types were substantially the same.
- Example 5 In the formation of the intermediate layer, two types of OPSTAR KZ series (“KZ6954” 25 manufactured by JSR Co., Ltd.) are used so that the intermediate layer has the formulation shown in Table 1 and the refractive index is 1.60. % By mass: 100 parts by mass of “KZ6956” (75% by mass), two types of organic resin-containing solutions (17 parts by mass of “Biscoat 300” manufactured by Osaka Organic Chemical Industry Co., Ltd.) and “KAYARAD BNP-1 manufactured by Nippon Kayaku Co., Ltd. 18 parts by mass) was mixed to prepare an inorganic particle resin solution, and a conductive film was produced in the same manner as in Example 1.
- Example 6 In the formation of the intermediate layer, 66 parts by mass of “OPSTAR Z7414” manufactured by JSR Co., Ltd., and Arakawa so that the intermediate layer has the formulation shown in Table 1 and the refractive index is 1.70.
- a conductive film was produced in the same manner as in Example 1 except that 34 parts by mass of “RA017” manufactured by Chemical Industry Co., Ltd. was mixed to prepare an inorganic particle resin solution.
- Comparative Example 6 A conductive film was produced in the same manner as in Comparative Example 1 except that the thickness of the copper layer was changed to 50 nm.
- the layer having a thickness of less than 1.0 ⁇ m was measured by observing a cross section of the conductive film using a transmission electron microscope (“H-7650” manufactured by Hitachi, Ltd.). A layer having a thickness of 1.0 ⁇ m or more was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock). The results are shown in Table 1.
- the refractive index at a wavelength of 589 nm was measured using an Abbe refractometer (manufactured by Atago Co., Ltd.).
- the peeling area of the copper layer was 10% or more and less than 40% 2: The peeling area of the copper layer was 40% or more and less than 60% 1: The peeling area of the copper layer was 60% or more and less than 80% 0: The peeled area of the copper layer was 80% or more.
- a dry film resist having a predetermined pattern was placed on the ITO layer in the center in plan view excluding the frame of the conductive film, and after etching only the ITO layer, the resist was removed. Thereby, an ITO layer corresponding to the wiring pattern was patterned in the center in plan view (see FIG. 2).
- the wiring pattern of the obtained patterning conductive film was visually observed from an oblique 45 degree direction under an LED light source.
- the conductive film (COP film / hard coat layer / intermediate layer / ITO layer (amorphous) laminate) immediately before forming the copper layer is air-circulated by a roll-to-roll method.
- the ITO layer was put into an oven and heat-treated at 140 ° C. for 60 minutes to crystallize the ITO layer.
- a sample COP film / hard coat layer / intermediate layer / crystalline ITO layer laminate for surface resistance measurement was obtained.
- the surface resistance value of the crystalline ITO layer of each sample was measured by a four-terminal method according to JIS K 7194 (1994). The results are shown in Table 1.
- the conductive film and touch panel of the present invention can be applied to various industrial products, and are suitably used for image display devices, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
A conductive film comprising a transparent base material, an intermediate layer, a transparent conductive layer, and a metal layer in the stated order. The thickness of the metal layer is 100-400 nm. The refractive index of the intermediate layer is 1.60-1.70. The intermediate layer contains silica particles and an inorganic particle component containing inorganic particles other than the silica particles. The content ratio of the inorganic particle component in the intermediate layer is 40.0-66.0% by mass.
Description
本発明は、導電性フィルム、および、それを備えるタッチパネルに関する。
The present invention relates to a conductive film and a touch panel including the same.
従来から、画像表示装置は、インジウムスズ複合酸化物(ITO)などからなる透明導電層が形成されたタッチパネル用フィルムを備えることが知られている。近年、このような透明導電性フィルムにおいて、タッチ入力領域の外縁部に引き回り配線を形成して狭額縁化を達成するために、ITO層の表面にさらに、銅層を設ける導電性フィルムが提案されている(例えば、特許文献1参照)。
Conventionally, it is known that an image display device includes a film for a touch panel on which a transparent conductive layer made of indium tin composite oxide (ITO) or the like is formed. In recent years, in such transparent conductive film, a conductive film in which a copper layer is further provided on the surface of the ITO layer has been proposed in order to achieve a narrow frame by forming a lead-out wiring at the outer edge of the touch input area. (For example, refer to Patent Document 1).
このような導電性フィルムは、例えば、フィルム基材の一方の側に、透明導電体層と銅層とをスパッタリング法により順次積層し、ロール状に巻き取ることにより、製造されている。
Such a conductive film is manufactured, for example, by sequentially laminating a transparent conductor layer and a copper layer on one side of a film base material by a sputtering method and winding up in a roll shape.
ところで、透明導電層は、透明基材から剥離しやすいため、透明導電層と透明基材との間に、密着層を設けることが検討されている。
By the way, since a transparent conductive layer is easy to peel from a transparent base material, providing an adhesion layer between a transparent conductive layer and a transparent base material is examined.
その一方で、タッチパネルの大型化に伴い、その額縁部分に、幅狭で長尺な引き回し配線を形成する必要があり、金属層の導電性を高めることが要求されている。そのため、金属層の表面抵抗値の低減が検討され、具体的には、金属層を100nm以上の膜厚にすることが検討されている。
On the other hand, along with the increase in the size of the touch panel, it is necessary to form a narrow and long lead wiring in the frame portion, and it is required to increase the conductivity of the metal layer. Therefore, reduction of the surface resistance value of the metal layer has been studied. Specifically, it has been studied to make the metal layer have a thickness of 100 nm or more.
しかしながら、厚膜の金属層を透明導電層の上にスパッタリング法により形成し、ロール状に巻き取ると、金属層の歪みが強くなるため、金属層が透明導電層を面方向に歪ませる。その結果、透明導電層と透明基材との間に密着層が設けられていても、金属層および透明導電層は、透明基材から剥離するという不具合が生じる。すなわち、一般的な密着層を透明導電層と透明基材との間に設けるだけでは、透明導電層と透明基材との間の密着性が不十分である。
However, when a thick metal layer is formed on the transparent conductive layer by sputtering and wound into a roll, the metal layer is strongly distorted, so that the metal layer distorts the transparent conductive layer in the surface direction. As a result, even if the adhesion layer is provided between the transparent conductive layer and the transparent base material, there arises a problem that the metal layer and the transparent conductive layer are peeled off from the transparent base material. That is, the adhesiveness between the transparent conductive layer and the transparent substrate is insufficient only by providing a general adhesive layer between the transparent conductive layer and the transparent substrate.
また、透明導電層を所定の配線パターンに形成した場合に、配線パターンが視認できないように導電性フィルムを形成する必要が生じる。しかしながら、密着性を向上させるために密着層を設けると、その屈折率などの影響によって、配線パターンが視認される場合が生じる。
Further, when the transparent conductive layer is formed in a predetermined wiring pattern, it is necessary to form a conductive film so that the wiring pattern cannot be visually recognized. However, when an adhesion layer is provided in order to improve adhesion, the wiring pattern may be visually recognized due to the influence of the refractive index and the like.
さらに、透明導電層は、導電性に優れることが要求される。すなわち、透明導電層の表面抵抗値を低減することが要求される。しかしながら、透明導電層に隣接する密着層が影響して、透明導電層の表面抵抗値が低減されない場合が生じる。
Furthermore, the transparent conductive layer is required to have excellent conductivity. That is, it is required to reduce the surface resistance value of the transparent conductive layer. However, the adhesion layer adjacent to the transparent conductive layer is affected, and the surface resistance value of the transparent conductive layer may not be reduced.
本発明は、透明導電層の導電性が良好であり、かつ、透明導電層の配線パターンの視認を抑制しつつ、金属層と透明基材との密着性が向上した導電性フィルムおよびタッチパネルを提供することにある。
The present invention provides a conductive film and a touch panel in which the conductivity of the transparent conductive layer is good and the adhesion between the metal layer and the transparent substrate is improved while suppressing the visual recognition of the wiring pattern of the transparent conductive layer. There is to do.
本発明[1]は、透明基材、中間層、透明導電層および金属層をこの順に備え、前記金属層の厚みが、100nm以上400nm以下であり、前記中間層の屈折率が、1.60以上1.70以下であり、前記中間層が、シリカ粒子およびシリカ粒子以外の無機粒子を含む無機粒子成分を含有し、前記中間層における前記無機粒子成分の含有割合が、40.0質量%以上66.0質量%以下である、導電性フィルムを含んでいる。
The present invention [1] includes a transparent substrate, an intermediate layer, a transparent conductive layer, and a metal layer in this order, the metal layer has a thickness of 100 nm to 400 nm, and the intermediate layer has a refractive index of 1.60. 1.70 or less, the intermediate layer contains an inorganic particle component containing silica particles and inorganic particles other than silica particles, and the content ratio of the inorganic particle component in the intermediate layer is 40.0% by mass or more The electroconductive film which is 66.0 mass% or less is included.
本発明[2]は、前記中間層の厚みが、30nm以上150nm以下である、[1]に記載の導電性フィルムを含んでいる。
This invention [2] contains the electroconductive film as described in [1] whose thickness of the said intermediate | middle layer is 30 nm or more and 150 nm or less.
本発明[3]は、前記中間層における前記無機粒子成分の含有割合が、50.0質量%以上60.0質量%以下である、[1]または[2]に記載の導電性フィルムを含んでいる。
This invention [3] contains the electroconductive film as described in [1] or [2] whose content rate of the said inorganic particle component in the said intermediate | middle layer is 50.0 mass% or more and 60.0 mass% or less. It is out.
本発明[4]は、前記中間層が、前記無機粒子成分を含有する樹脂層である、[1]~[3]のいずれか一項に記載の導電性フィルムを含んでいる。
The present invention [4] includes the conductive film according to any one of [1] to [3], wherein the intermediate layer is a resin layer containing the inorganic particle component.
本発明[5]は、前記シリカ粒子以外の無機粒子が、酸化ジルコニウムである、[1]~[4]のいずれか一項に記載の導電性フィルムを含んでいる。
[5] The present invention [5] includes the conductive film according to any one of [1] to [4], wherein the inorganic particles other than the silica particles are zirconium oxide.
本発明[6]は、前記金属層が、銅、ニッケル、クロム、鉄およびチタンの少なくとも1種を含有する、[1]~[5]のいずれか一項に記載の導電性フィルムを含んでいる。
The present invention [6] includes the conductive film according to any one of [1] to [5], wherein the metal layer contains at least one of copper, nickel, chromium, iron, and titanium. Yes.
本発明[7]は、前記透明導電層および前記金属層の両方が、パターニングされている、[1]~[6]のいずれか一項に記載の導電性フィルムを含んでいる。
[7] The present invention [7] includes the conductive film according to any one of [1] to [6], in which both the transparent conductive layer and the metal layer are patterned.
本発明[8]は、ロール状に巻回されている、[1]~[7]のいずれか一項に記載の導電性フィルムを含んでいる。
[8] The present invention [8] includes the conductive film according to any one of [1] to [7] wound in a roll shape.
本発明[9]は、[1]~[8]のいずれか一項に記載の導電性フィルムを備える、タッチパネルを含んでいる。
The present invention [9] includes a touch panel including the conductive film according to any one of [1] to [8].
本発明の導電性フィルムおよびタッチパネルは、金属層と透明基材との密着性が良好である。また、透明導電層の配線パターンの視認を抑制できる。また、透明導電層の導電性が良好である。
The conductive film and touch panel of the present invention have good adhesion between the metal layer and the transparent substrate. Moreover, visual recognition of the wiring pattern of a transparent conductive layer can be suppressed. Moreover, the electroconductivity of a transparent conductive layer is favorable.
本発明の実施の形態について、図を参照しながら以下に説明する。図1において、紙面上下方向は、上下方向(厚み方向、第1方向)であって、紙面上側が、上側(第1方向一方側、厚み方向一方側)、紙面下側が、下側(厚み方向他方側、第1方向他方側)である。また、紙面左右方向は、左右方向(第2方向、幅方向、上下方向と直交する方向)であって、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。また、紙面紙厚方向は、前後方向(第3方向、上下方向および左右方向の両方と直交する方向)であって、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。他の図も、図1と同様である。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the vertical direction of the paper is the vertical direction (thickness direction, first direction), the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction), and the lower side of the paper is the lower side (thickness direction). The other side, the other side in the first direction). The left and right direction on the paper is the left and right direction (the second direction, the width direction, and the direction perpendicular to the vertical direction), the left side of the paper is the left side (second side in the second direction), and the right side of the paper is the right side (the other side in the second direction). ). The paper thickness direction is the front-rear direction (the direction orthogonal to both the third direction, the up-down direction, and the left-right direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (first 3 direction other side). Other figures are the same as those in FIG.
<第1実施形態>
1.導電性フィルム
本発明の導電性フィルムの第1実施形態である導電性フィルム1は、例えば、図1に示すように、面方向に延び、所定の厚みを有するフィルム形状(シート形状を含む)を有する。フィルム形状とは、平坦な上面および平坦な下面を有する薄板形状として定義される(以下、同様)。 <First Embodiment>
1. Conductive film Theconductive film 1 which is 1st Embodiment of the conductive film of this invention is a film shape (a sheet | seat shape is included) which extends in a surface direction and has predetermined thickness, for example, as shown in FIG. Have. The film shape is defined as a thin plate shape having a flat upper surface and a flat lower surface (hereinafter the same).
1.導電性フィルム
本発明の導電性フィルムの第1実施形態である導電性フィルム1は、例えば、図1に示すように、面方向に延び、所定の厚みを有するフィルム形状(シート形状を含む)を有する。フィルム形状とは、平坦な上面および平坦な下面を有する薄板形状として定義される(以下、同様)。 <First Embodiment>
1. Conductive film The
導電性フィルム1は、例えば、画像表示装置に備えられるタッチパネル用基材などの一部品であり、つまり、画像表示装置ではない。すなわち、導電性フィルム1は、画像表示装置などを作製するための部品であり、LCDモジュールなどの画像表示素子を含まず、後述する透明基材2とハードコート層3と中間層4と透明導電層5と金属層6とからなり、部品単独で流通し、産業上利用可能なデバイスである。
The conductive film 1 is a component such as a base material for a touch panel provided in the image display device, that is, it is not an image display device. That is, the conductive film 1 is a part for producing an image display device and the like, does not include an image display element such as an LCD module, and includes a transparent base material 2, a hard coat layer 3, an intermediate layer 4, and a transparent conductive material, which will be described later. The device is composed of the layer 5 and the metal layer 6, and is a device that can be distributed industrially and used industrially.
具体的には、図1に示すように、導電性フィルム1は、透明基材2と、ハードコート層3と、中間層4と、透明導電層5と、金属層6とを順に備える。より具体的には、導電性フィルム1は、透明基材2と、透明基材2の上面(一方面)に配置されるハードコート層3と、ハードコート層3の上面に配置される中間層4と、中間層4の上面に配置される透明導電層5と、透明導電層5の上面に配置される金属層6とを備える。導電性フィルム1は、好ましくは、透明基材2と、ハードコート層3と、中間層4と、透明導電層5と、金属層6とからなる。以下、各層について詳述する。
Specifically, as shown in FIG. 1, the conductive film 1 includes a transparent substrate 2, a hard coat layer 3, an intermediate layer 4, a transparent conductive layer 5, and a metal layer 6 in this order. More specifically, the conductive film 1 includes a transparent substrate 2, a hard coat layer 3 disposed on the upper surface (one surface) of the transparent substrate 2, and an intermediate layer disposed on the upper surface of the hard coat layer 3. 4, a transparent conductive layer 5 disposed on the upper surface of the intermediate layer 4, and a metal layer 6 disposed on the upper surface of the transparent conductive layer 5. The conductive film 1 is preferably composed of a transparent substrate 2, a hard coat layer 3, an intermediate layer 4, a transparent conductive layer 5, and a metal layer 6. Hereinafter, each layer will be described in detail.
2.透明基材
透明基材2は、導電性フィルム1の機械強度を確保する基材である。透明基材2は、透明導電層5および金属層6を、ハードコート層3および中間層4とともに、支持している。 2. Transparent substrate Thetransparent substrate 2 is a substrate that ensures the mechanical strength of the conductive film 1. The transparent substrate 2 supports the transparent conductive layer 5 and the metal layer 6 together with the hard coat layer 3 and the intermediate layer 4.
透明基材2は、導電性フィルム1の機械強度を確保する基材である。透明基材2は、透明導電層5および金属層6を、ハードコート層3および中間層4とともに、支持している。 2. Transparent substrate The
透明基材2は、例えば、透明性を有する高分子フィルムである。高分子フィルムの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(COP)などのオレフィン樹脂、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂、ノルボルネン樹脂などが挙げられる。高分子フィルムは、単独使用または2種以上併用することができる。
The transparent substrate 2 is, for example, a polymer film having transparency. Examples of the material of the polymer film include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, for example, (meth) acrylic resins (acrylic resin and / or methacrylic resin) such as polymethacrylate, Olefin resins such as polyethylene, polypropylene, cycloolefin polymer (COP), for example, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, polystyrene resin, norbornene resin, etc. It is done. The polymer film can be used alone or in combination of two or more.
透明性、耐熱性、機械的強度などの観点から、好ましくは、ポリエステル樹脂、オレフィン樹脂が挙げられ、より好ましくは、PET、COPが挙げられる。
From the viewpoints of transparency, heat resistance, mechanical strength, etc., polyester resins and olefin resins are preferable, and PET and COP are more preferable.
透明基材2の厚みは、機械的強度、耐擦傷性、導電性フィルム1をタッチパネル用フィルムとした際の打点特性などの観点から、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、300μm以下、好ましくは、150μm以下である。
The thickness of the transparent base material 2 is, for example, 2 μm or more, preferably 20 μm or more, from the viewpoint of mechanical strength, scratch resistance, and spot characteristics when the conductive film 1 is used as a touch panel film. For example, it is 300 μm or less, preferably 150 μm or less.
透明基材2の厚みは、例えば、膜厚計(デジタルダイアルゲージ)を用いて測定することができる。
The thickness of the transparent substrate 2 can be measured using, for example, a film thickness meter (digital dial gauge).
なお、透明基材2の上面および/または下面には、必要に応じて、易接着層、接着剤層、セパレータなどが設けられていてもよい。
In addition, the easily bonding layer, the adhesive bond layer, the separator, etc. may be provided in the upper surface and / or lower surface of the transparent base material 2 as needed.
3.ハードコート層
ハードコート層3は、複数の導電性フィルム1を積層した場合などに、導電性フィルム1の表面(すなわち、金属層6の上面)に擦り傷を生じにくくするための擦傷保護層である。また、導電性フィルム1に耐ブロッキング性を付与するためのアンチブロッキング層とすることもできる。 3. Hard Coat Layer Thehard coat layer 3 is an abrasion protective layer for making it difficult to cause scratches on the surface of the conductive film 1 (that is, the upper surface of the metal layer 6) when a plurality of conductive films 1 are laminated. . Moreover, it can also be set as the antiblocking layer for providing the conductive film 1 with blocking resistance.
ハードコート層3は、複数の導電性フィルム1を積層した場合などに、導電性フィルム1の表面(すなわち、金属層6の上面)に擦り傷を生じにくくするための擦傷保護層である。また、導電性フィルム1に耐ブロッキング性を付与するためのアンチブロッキング層とすることもできる。 3. Hard Coat Layer The
ハードコート層3は、フィルム形状を有しており、例えば、透明基材2の上面全面に、透明基材2の上面と接触するように、配置されている。より具体的には、ハードコート層3は、透明基材2と中間層4との間に、透明基材2の上面および中間層4の下面と接触するように、配置されている。
The hard coat layer 3 has a film shape, and is disposed, for example, on the entire upper surface of the transparent substrate 2 so as to be in contact with the upper surface of the transparent substrate 2. More specifically, the hard coat layer 3 is disposed between the transparent substrate 2 and the intermediate layer 4 so as to be in contact with the upper surface of the transparent substrate 2 and the lower surface of the intermediate layer 4.
ハードコート層3は、例えば、ハードコート組成物から形成される。ハードコート組成物は、樹脂成分を含有し、好ましくは、樹脂成分からなる。
The hard coat layer 3 is formed from, for example, a hard coat composition. The hard coat composition contains a resin component, and preferably comprises a resin component.
樹脂成分としては、例えば、硬化性樹脂、熱可塑性樹脂(例えば、ポリオレフィン樹脂)などが挙げられ、好ましくは、硬化性樹脂が挙げられる。
Examples of the resin component include a curable resin and a thermoplastic resin (for example, a polyolefin resin), and preferably a curable resin.
硬化性樹脂としては、例えば、活性エネルギー線(具体的には、紫外線、電子線など)の照射により硬化する活性エネルギー線硬化性樹脂、例えば、加熱により硬化する熱硬化性樹脂などが挙げられ、好ましくは、活性エネルギー線硬化性樹脂が挙げられる。
Examples of the curable resin include an active energy ray-curable resin that is cured by irradiation with active energy rays (specifically, ultraviolet rays, electron beams, etc.), for example, a thermosetting resin that is cured by heating, and the like. Preferably, an active energy ray curable resin is used.
活性エネルギー線硬化性樹脂は、例えば、分子中に重合性炭素-炭素二重結合を有する官能基を有するポリマーが挙げられる。そのような官能基としては、例えば、ビニル基、(メタ)アクリロイル基(メタクリロイル基および/またはアクリロイル基)などが挙げられる。
Examples of the active energy ray-curable resin include a polymer having a functional group having a polymerizable carbon-carbon double bond in the molecule. Examples of such a functional group include a vinyl group and a (meth) acryloyl group (methacryloyl group and / or acryloyl group).
活性エネルギー線硬化性樹脂としては、具体的には、例えば、ウレタンアクリレート、エポキシアクリレートなどの(メタ)アクリル系紫外線硬化性樹脂が挙げられる。
Specific examples of the active energy ray curable resin include (meth) acrylic ultraviolet curable resins such as urethane acrylate and epoxy acrylate.
また、活性エネルギー線硬化性樹脂以外の硬化性樹脂としては、例えば、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物などが挙げられる。
Also, examples of the curable resin other than the active energy ray curable resin include urethane resin, melamine resin, alkyd resin, siloxane polymer, and organic silane condensate.
これら樹脂成分は、単独使用または2種以上併用することができる。
These resin components can be used alone or in combination of two or more.
樹脂成分には、重合開始剤などの樹脂添加剤が含有されていてもよい。
The resin component may contain a resin additive such as a polymerization initiator.
重合開始剤としては、例えば、光重合開始剤、熱重合開始剤などのラジカル重合開始剤が挙げられる。これら重合開始剤は、単独使用または2種以上併用することができる。
Examples of the polymerization initiator include radical polymerization initiators such as a photopolymerization initiator and a thermal polymerization initiator. These polymerization initiators can be used alone or in combination of two or more.
光重合開始剤としては、例えば、ベンゾインエーテル化合物、アセトフェノン化合物、α-ケトール化合物、芳香族スルホニルクロリド化合物、光活性オキシム化合物、ベンゾイン化合物、ベンジル化合物、ベンゾフェノン化合物、チオキサントン化合物、α-アミノケトン化合物などが挙げられる。
Examples of the photopolymerization initiator include benzoin ether compounds, acetophenone compounds, α-ketol compounds, aromatic sulfonyl chloride compounds, photoactive oxime compounds, benzoin compounds, benzyl compounds, benzophenone compounds, thioxanthone compounds, α-aminoketone compounds, and the like. Can be mentioned.
熱重合開始剤としては、例えば、有機過酸化物、アゾ化合物などが挙げられる。
Examples of the thermal polymerization initiator include organic peroxides and azo compounds.
ハードコート組成物は、粒子を含有することができる。
The hard coat composition can contain particles.
粒子としては、無機粒子、有機粒子などが挙げられる。無機粒子としては、例えば、シリカ粒子、例えば、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化スズなどからなる金属酸化物粒子、例えば、炭酸カルシウムなどの炭酸塩粒子などが挙げられる。有機粒子としては、例えば、架橋アクリル樹脂粒子などが挙げられる。粒子は、単独使用または2種以上併用することができる。
Examples of the particles include inorganic particles and organic particles. Examples of the inorganic particles include silica particles, for example, metal oxide particles made of zirconium oxide, titanium oxide, zinc oxide, tin oxide, and the like, for example, carbonate particles such as calcium carbonate. Examples of the organic particles include crosslinked acrylic resin particles. The particles can be used alone or in combination of two or more.
ハードコート組成物には、さらに、レベリング剤、チクソトロピー剤、帯電防止剤などの公知の添加剤を含有することができる。
The hard coat composition may further contain known additives such as a leveling agent, a thixotropic agent, and an antistatic agent.
ハードコート層3の厚みは、例えば、0.5μm以上、好ましくは、1.0μm以上であり、また、例えば、10μm以下、好ましくは、3.0μm以下、より好ましくは、2.0μm以下である。ハードコート層3の厚みは、例えば、膜厚計(デジタルダイアルゲージ)を用いて測定することができる。
The thickness of the hard coat layer 3 is, for example, 0.5 μm or more, preferably 1.0 μm or more, and for example, 10 μm or less, preferably 3.0 μm or less, more preferably 2.0 μm or less. . The thickness of the hard coat layer 3 can be measured using, for example, a film thickness meter (digital dial gauge).
4.中間層
中間層4は、導電性フィルム1の金属層6側(特に、透明導電層5)と透明基材2側(特に、ハードコート層3)との密着性を向上させて、導電性フィルム1内部の層間剥離を抑制するための密着層である。また、透明導電層5の配線パターンの視認を抑制しつつ、導電性フィルム1に優れた透明性を確保するために、導電性フィルム1の光学物性(例えば、屈折率)を調整する光学調整層でもある。 4). Intermediate layer Theintermediate layer 4 improves the adhesion between the metal layer 6 side (especially the transparent conductive layer 5) and the transparent base material 2 side (particularly the hard coat layer 3) of the conductive film 1, and the conductive film 1 1 is an adhesion layer for suppressing delamination inside. In addition, an optical adjustment layer that adjusts optical properties (for example, refractive index) of the conductive film 1 in order to ensure excellent transparency of the conductive film 1 while suppressing the visual recognition of the wiring pattern of the transparent conductive layer 5. But there is.
中間層4は、導電性フィルム1の金属層6側(特に、透明導電層5)と透明基材2側(特に、ハードコート層3)との密着性を向上させて、導電性フィルム1内部の層間剥離を抑制するための密着層である。また、透明導電層5の配線パターンの視認を抑制しつつ、導電性フィルム1に優れた透明性を確保するために、導電性フィルム1の光学物性(例えば、屈折率)を調整する光学調整層でもある。 4). Intermediate layer The
中間層4は、フィルム形状を有しており、例えば、ハードコート層3の上面全面に、ハードコート層3の上面と接触するように、配置されている。より具体的には、中間層4は、ハードコート層3と透明導電層5との間に、ハードコート層3の上面および透明導電層5の下面と接触するように、配置されている。
The intermediate layer 4 has a film shape and is disposed, for example, on the entire upper surface of the hard coat layer 3 so as to be in contact with the upper surface of the hard coat layer 3. More specifically, the intermediate layer 4 is disposed between the hard coat layer 3 and the transparent conductive layer 5 so as to be in contact with the upper surface of the hard coat layer 3 and the lower surface of the transparent conductive layer 5.
中間層4は、中間層組成物から形成される。中間層組成物は、好ましくは、無機粒子成分および樹脂成分を含有し、より好ましくは、無機粒子成分および樹脂成分からなる。すなわち、中間層4は、好ましくは、無機粒子成分を含有する樹脂層であり、より好ましくは、無機粒子成分および樹脂成分からなる樹脂層である。
The intermediate layer 4 is formed from an intermediate layer composition. The intermediate layer composition preferably contains an inorganic particle component and a resin component, and more preferably comprises an inorganic particle component and a resin component. That is, the intermediate layer 4 is preferably a resin layer containing an inorganic particle component, and more preferably a resin layer composed of an inorganic particle component and a resin component.
樹脂成分としては、例えば、ハードコート組成物で用いる樹脂と同一の樹脂が挙げられる。樹脂は、単独使用または2種以上併用することができる。好ましくは、硬化性樹脂、より好ましくは、活性エネルギー線硬化性樹脂が挙げられる。
Examples of the resin component include the same resins as those used in the hard coat composition. The resins can be used alone or in combination of two or more. Preferably, a curable resin, more preferably an active energy ray curable resin is used.
樹脂成分の含有割合は、中間層組成物に対して、例えば、34.0質量%以上、好ましくは、40.0質量%以上であり、また、例えば、60.0質量%以下、好ましくは、50.0質量%以下、より好ましくは、45.0質量%以下である。
The content ratio of the resin component is, for example, 34.0% by mass or more, preferably 40.0% by mass or more, for example, 60.0% by mass or less, preferably, based on the intermediate layer composition. It is 50.0 mass% or less, More preferably, it is 45.0 mass% or less.
無機粒子成分は、シリカ粒子と、シリカ粒子以外の無機粒子(以下、第2無機粒子とも称する)とを含有する。
The inorganic particle component contains silica particles and inorganic particles other than silica particles (hereinafter also referred to as second inorganic particles).
第2無機粒子としては、好ましくは、シリカ粒子よりも屈折率が高い無機粒子(例えば、屈折率が2.00以上)が挙げられ、具体的には、酸化ジルコニウム粒子、酸化チタン粒子、酸化亜鉛粒子などの金属酸化物粒子が挙げられる。密着性、配線パターンの視認抑制の観点から、好ましくは、酸化ジルコニウム粒子が挙げられる。これらの第2無機粒子は、単独使用または2種以上併用することができる。
The second inorganic particles preferably include inorganic particles having a refractive index higher than that of silica particles (for example, a refractive index of 2.00 or more). Specifically, zirconium oxide particles, titanium oxide particles, zinc oxide Examples thereof include metal oxide particles such as particles. Zirconium oxide particles are preferable from the viewpoint of adhesion and suppression of visual recognition of the wiring pattern. These second inorganic particles can be used alone or in combination of two or more.
無機粒子成分は、好ましくは、シリカ粒子および金属酸化物粒子を含有し、より好ましくは、シリカ(SiO2)粒子および酸化ジルコニウム(ZnO2)粒子を含有し、さらに好ましくは、シリカ粒子および酸化ジルコニウム粒子からなる。
The inorganic particle component preferably contains silica particles and metal oxide particles, more preferably contains silica (SiO 2 ) particles and zirconium oxide (ZnO 2 ) particles, and more preferably silica particles and zirconium oxide. Consists of particles.
無機粒子成分におけるシリカ粒子の含有割合は、例えば、1.0質量%以上、好ましくは、3.0質量%以上、より好ましくは、5.0質量%以上であり、また、例えば、50.0質量%以下、好ましくは、20.0質量%以下、さらに好ましくは、15.0質量%以下である。シリカ粒子の含有割合が上記範囲内であれば、密着性をより一層良好にできる。また、透明導電層5の表面抵抗値をより一層低減させることができる。
The content ratio of the silica particles in the inorganic particle component is, for example, 1.0% by mass or more, preferably 3.0% by mass or more, more preferably 5.0% by mass or more, and for example, 50.0%. % By mass or less, preferably 20.0% by mass or less, more preferably 15.0% by mass or less. When the content ratio of the silica particles is within the above range, the adhesion can be further improved. Moreover, the surface resistance value of the transparent conductive layer 5 can be further reduced.
無機粒子成分における第2無機粒子の含有割合は、例えば、50.0質量%以上、好ましくは、80.0質量%以上、より好ましくは、85.0質量%以上であり、また、例えば、99.0質量%以下、好ましくは、97.0質量%以下、さらに好ましくは、95.0質量%以下である。第2無機粒子の含有割合が上記範囲内であれば、中間層4の屈折率を向上させることができ、中間層4の屈折率を1.60以上1.70以下の範囲に調整し易くできる。その結果、透明導電層5の配線パターンの視認をより一層抑制することができる。
The content ratio of the second inorganic particles in the inorganic particle component is, for example, 50.0% by mass or more, preferably 80.0% by mass or more, more preferably 85.0% by mass or more. 0.0 mass% or less, preferably 97.0 mass% or less, and more preferably 95.0 mass% or less. If the content ratio of the second inorganic particles is within the above range, the refractive index of the intermediate layer 4 can be improved, and the refractive index of the intermediate layer 4 can be easily adjusted to a range of 1.60 or more and 1.70 or less. . As a result, the visual recognition of the wiring pattern of the transparent conductive layer 5 can be further suppressed.
シリカ粒子の平均粒子径は、例えば、1nm以上、好ましくは、5nm以上であり、また、例えば、100nm以下、好ましくは、50nm以下である。
The average particle diameter of the silica particles is, for example, 1 nm or more, preferably 5 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
第2無機粒子の平均粒子径は、例えば、10nm以上、好ましくは、20nm以上であり、また、例えば、100nm以下、好ましくは、50nm以下である。
The average particle size of the second inorganic particles is, for example, 10 nm or more, preferably 20 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
粒子の平均粒子径は、体積基準による粒度分布の平均粒子径(D50)を示し、例えば、粒子を水中に分散させた溶液を、光回折・散乱法により測定することができる。
The average particle diameter of the particles indicates the average particle diameter (D 50 ) of the particle size distribution on a volume basis. For example, a solution in which particles are dispersed in water can be measured by a light diffraction / scattering method.
無機粒子成分の含有割合は、中間層組成物(ひいては、中間層4)に対して、40.0質量%以上、66.0質量%以下である。好ましくは、50.0質量%以上、より好ましくは、55.0質量%以上であり、また、好ましくは、60.0質量%以下である。無機粒子成分の含有割合が上記上限を上回ると、密着性が低下したり、透明導電層5の表面抵抗値が高くなる。また、無機粒子成分の含有割合が上記下限を下回ると、透明導電層5の配線パターンが視認され易くなる。
The content ratio of the inorganic particle component is 40.0% by mass or more and 66.0% by mass or less with respect to the intermediate layer composition (and thus the intermediate layer 4). Preferably, it is 50.0% by mass or more, more preferably 55.0% by mass or more, and preferably 60.0% by mass or less. When the content rate of an inorganic particle component exceeds the said upper limit, adhesiveness will fall or the surface resistance value of the transparent conductive layer 5 will become high. Moreover, when the content rate of an inorganic particle component is less than the said minimum, the wiring pattern of the transparent conductive layer 5 will become easy to visually recognize.
中間層4の屈折率は、1.60以上、1.70以下である。好ましくは、1.62以上であり、また、好ましくは、1.68以下である。中間層4の屈折率が上記範囲内であれば、透明導電層5の配線パターンの視認を抑制することができる。
The refractive index of the intermediate layer 4 is 1.60 or more and 1.70 or less. Preferably, it is 1.62 or more, and preferably 1.68 or less. If the refractive index of the intermediate layer 4 is within the above range, the visual recognition of the wiring pattern of the transparent conductive layer 5 can be suppressed.
屈折率は、例えば、アッベ屈折率計により、波長589nmの条件で測定することができる。
The refractive index can be measured, for example, with an Abbe refractometer at a wavelength of 589 nm.
中間層4の厚みは、例えば、10nm以上、好ましくは、30nm以上であり、また、例えば、300nm以下、好ましくは、150nm以下である。中間層4の厚みが上記範囲内であれば、透明導電層5の配線パターンの視認をより一層抑制することができる。
The thickness of the intermediate layer 4 is, for example, 10 nm or more, preferably 30 nm or more, and for example, 300 nm or less, preferably 150 nm or less. If the thickness of the intermediate layer 4 is within the above range, the visual recognition of the wiring pattern of the transparent conductive layer 5 can be further suppressed.
中間層4の厚みは、例えば、透過型電子顕微鏡を用いて、導電性フィルム1の断面を観察することにより測定することができる。
The thickness of the intermediate layer 4 can be measured, for example, by observing a cross section of the conductive film 1 using a transmission electron microscope.
5.透明導電層
透明導電層5は、後工程で配線パターン(後述するパターニング透明導電層5A)に形成して、例えば、タッチパネルのタッチ入力領域における配線パターン(例えば、電極配線)を形成するための透明な導電層である。 5). Transparent conductive layer The transparentconductive layer 5 is formed in a wiring pattern (patterned transparent conductive layer 5A to be described later) in a later step, for example, transparent for forming a wiring pattern (for example, electrode wiring) in a touch input region of a touch panel. This is a conductive layer.
透明導電層5は、後工程で配線パターン(後述するパターニング透明導電層5A)に形成して、例えば、タッチパネルのタッチ入力領域における配線パターン(例えば、電極配線)を形成するための透明な導電層である。 5). Transparent conductive layer The transparent
中間層4は、フィルム形状を有しており、例えば、中間層4の上面全面に、中間層4の上面と接触するように、配置されている。より具体的には、透明導電層5は、中間層4と金属層6との間に、中間層4の上面および金属層6の下面と接触するように、配置されている。
The intermediate layer 4 has a film shape and is disposed, for example, on the entire upper surface of the intermediate layer 4 so as to be in contact with the upper surface of the intermediate layer 4. More specifically, the transparent conductive layer 5 is disposed between the intermediate layer 4 and the metal layer 6 so as to be in contact with the upper surface of the intermediate layer 4 and the lower surface of the metal layer 6.
透明導電層5の材料としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子をドープしていてもよい。
The material of the transparent conductive layer 5 is, for example, at least one selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. And metal oxides containing these metals. If necessary, the metal oxide may be further doped with a metal atom shown in the above group.
透明導電層5の材料は、例えば、インジウムスズ複合酸化物(ITO)などのインジウム含有酸化物、例えば、アンチモンスズ複合酸化物(ATO)などのアンチモン含有酸化物などが挙げられ、好ましくは、インジウム含有酸化物、より好ましくは、ITOが挙げられる。
Examples of the material of the transparent conductive layer 5 include indium-containing oxides such as indium tin composite oxide (ITO), for example, antimony-containing oxides such as antimony tin composite oxide (ATO), and preferably indium The containing oxide, more preferably, ITO is used.
透明導電層5の材料としてITOを用いる場合、酸化スズ(SnO2)含有量は、酸化スズおよび酸化インジウム(In2O3)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上であり、また、例えば、15質量%以下、好ましくは、13質量%以下である。酸化スズの含有量を上記下限以上とすることにより、ITO層の耐久性をより一層良好にすることができる。酸化スズの含有量を上記上限以下とすることにより、ITO層の結晶転化を容易にし、透明性や比抵抗の安定性を向上させることができる。
When ITO is used as the material of the transparent conductive layer 5, the tin oxide (SnO 2 ) content is, for example, 0.5% by mass or more, preferably with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). Is 3% by mass or more, and for example, 15% by mass or less, preferably 13% by mass or less. By setting the content of tin oxide to the above lower limit or more, the durability of the ITO layer can be further improved. By making the content of tin oxide not more than the above upper limit, crystal conversion of the ITO layer can be facilitated, and the stability of transparency and specific resistance can be improved.
本明細書中における「ITO」とは、少なくともインジウム(In)とスズ(Sn)とを含む複合酸化物であればよく、これら以外の追加成分を含んでもよい。追加成分としては、例えば、In、Sn以外の金属元素が挙げられ、具体的には、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaなどが挙げられる。
“ITO” in this specification may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these. Examples of the additional component include metal elements other than In and Sn. Specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe , Pb, Ni, Nb, Cr, Ga and the like.
透明導電層5の厚みは、例えば、10nm以上、好ましくは、20nm以上であり、また、例えば、50nm以下、好ましくは、30nm以下である。
The thickness of the transparent conductive layer 5 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 50 nm or less, preferably 30 nm or less.
透明導電層5の厚みは、例えば、透過型電子顕微鏡を用いて、導電性フィルム1の断面を観察することにより測定することができる。
The thickness of the transparent conductive layer 5 can be measured, for example, by observing a cross section of the conductive film 1 using a transmission electron microscope.
透明導電層5は、結晶質および非晶質のいずれであってもよく、また、結晶質および非晶質の混合体であってもよい。透明導電層5は、好ましくは、結晶質からなり、より具体的には、結晶質ITO層である。これにより、透明導電層5の透明性を向上させることができ、また、透明導電層5の表面抵抗値をより一層低減させることができる。
The transparent conductive layer 5 may be either crystalline or amorphous, or may be a mixture of crystalline and amorphous. The transparent conductive layer 5 is preferably made of a crystalline material, more specifically, a crystalline ITO layer. Thereby, the transparency of the transparent conductive layer 5 can be improved, and the surface resistance value of the transparent conductive layer 5 can be further reduced.
透明導電層5が結晶質であることは、例えば、透明導電層5がITO層である場合は、20℃の塩酸(濃度5質量%)に15分間浸漬した後、水洗・乾燥し、15mm程度の間の端子間抵抗を測定することで判断できる。本明細書においては、塩酸(20℃、濃度:5質量%)への浸漬・水洗・乾燥後に、15mm間の端子間抵抗が10kΩ以下である場合、ITO層が結晶質であるものとする。
The transparent conductive layer 5 is crystalline. For example, when the transparent conductive layer 5 is an ITO layer, it is immersed in hydrochloric acid (concentration 5% by mass) at 20 ° C. for 15 minutes, washed and dried, and about 15 mm. It can be determined by measuring the resistance between terminals. In this specification, the ITO layer is assumed to be crystalline when the resistance between terminals of 15 mm is 10 kΩ or less after immersion, washing and drying in hydrochloric acid (20 ° C., concentration: 5 mass%).
透明導電層5(特に、結晶質ITO層)の表面抵抗値は、例えば、100Ω/□未満、好ましくは、80Ω/□以下、より好ましくは、75Ω/□以下であり、また、例えば、10Ω/□以上である。表面抵抗値は、例えば、JIS K 7194(1994年)に準拠して、4端子法により測定することができる。
The surface resistance value of the transparent conductive layer 5 (particularly, the crystalline ITO layer) is, for example, less than 100Ω / □, preferably 80Ω / □ or less, more preferably 75Ω / □ or less, and for example, 10Ω / □. □ or more. The surface resistance value can be measured by a four-terminal method in accordance with, for example, JIS K 7194 (1994).
6.金属層
金属層6は、後工程で配線パターン(後述するパターニング金属層6A)に形成して、例えば、タッチパネルのタッチ入力領域の外側(外周)の外縁部(外周縁部)における配線パターン(例えば、引き回し配線)を形成するための導電性の金属層である。 6). Metal layer The metal layer 6 is formed in a wiring pattern (patternedmetal layer 6A, which will be described later) in a later step, and for example, a wiring pattern (for example, an outer peripheral edge) on the outer side (outer periphery) of the touch input area of the touch panel (for example, , A conductive metal layer for forming a routing wiring).
金属層6は、後工程で配線パターン(後述するパターニング金属層6A)に形成して、例えば、タッチパネルのタッチ入力領域の外側(外周)の外縁部(外周縁部)における配線パターン(例えば、引き回し配線)を形成するための導電性の金属層である。 6). Metal layer The metal layer 6 is formed in a wiring pattern (patterned
金属層6は、導電性フィルム1の最上層であって、フィルム形状を有しており、透明導電層5の上面全面に、透明導電層5の上面と接触するように、配置されている。
The metal layer 6 is the uppermost layer of the conductive film 1 and has a film shape, and is disposed on the entire upper surface of the transparent conductive layer 5 so as to be in contact with the upper surface of the transparent conductive layer 5.
金属層6の材料としては、例えば、銅、ニッケル、クロム、鉄、チタン、または、それらの合金などの金属が挙げられる。導電性などの観点から、好ましくは、銅が挙げられる。
Examples of the material of the metal layer 6 include metals such as copper, nickel, chromium, iron, titanium, or alloys thereof. From the viewpoint of conductivity, copper is preferably used.
なお、金属層6が、銅などの酸化が生じやすい材料である場合、その金属層6の表面は酸化されていてもよい。具体的には、金属層6が、銅層である場合は、金属層6は、表面の一部または全部に酸化銅を備える銅層であってもよい。
When the metal layer 6 is a material that easily oxidizes, such as copper, the surface of the metal layer 6 may be oxidized. Specifically, when the metal layer 6 is a copper layer, the metal layer 6 may be a copper layer including copper oxide on part or all of the surface.
金属層6の厚みは、100nm以上、400nm以下である。好ましくは、150nm以上であり、また、好ましくは、300nm以下である。金属層6の厚みが上記下限を下回ると、金属層6の表面抵抗値が高くなり、導電性が低下する。そのため、タッチパネルの大型化に対応して、幅狭で長尺な配線パターン(額縁部の引き回し配線)を形成することが困難となる。また、金属層6の厚みが上記上限を上回ると、導電性の向上が飽和し、コストの点で不利となる。また、額縁部の薄膜化が困難となる。
The thickness of the metal layer 6 is 100 nm or more and 400 nm or less. Preferably, it is 150 nm or more, and preferably 300 nm or less. When the thickness of the metal layer 6 is less than the lower limit, the surface resistance value of the metal layer 6 increases and the conductivity decreases. For this reason, it is difficult to form a narrow and long wiring pattern (frame portion routing wiring) in response to an increase in the size of the touch panel. Moreover, when the thickness of the metal layer 6 exceeds the said upper limit, the improvement of electroconductivity will be saturated and it will become disadvantageous in terms of cost. In addition, it is difficult to reduce the thickness of the frame portion.
金属層6の厚みは、例えば、透過型電子顕微鏡を用いて、導電性フィルム1の断面を観察することにより測定することができる。
The thickness of the metal layer 6 can be measured, for example, by observing a cross section of the conductive film 1 using a transmission electron microscope.
7.導電性フィルムの製造方法
導電性フィルム1を製造するには、例えば、ロールトゥロール工程において、透明基材2の一方面に、ハードコート層3、中間層4、透明導電層5および金属層6を順に設ける。すなわち、長手方向に長尺な透明基材2を送出ロールから送出して搬送方向下流側に搬送しながら、透明基材2の上面にハードコート層3を設け、次いで、ハードコート層3の上面に中間層4を設け、次いで、中間層4の上面に透明導電層5を設け、次いで、透明導電層5の上面に金属層6を設け、巻取ロールにて導電性フィルム1を巻き取る。以下、詳述する。 7). Production method of conductive film To produce theconductive film 1, for example, in a roll-to-roll process, the hard coat layer 3, the intermediate layer 4, the transparent conductive layer 5, and the metal layer 6 are formed on one surface of the transparent substrate 2. Are provided in order. That is, while the transparent base material 2 that is long in the longitudinal direction is fed from the feed roll and transported downstream in the transport direction, the hard coat layer 3 is provided on the top surface of the transparent base material 2. The intermediate layer 4 is provided, the transparent conductive layer 5 is then provided on the upper surface of the intermediate layer 4, the metal layer 6 is then provided on the upper surface of the transparent conductive layer 5, and the conductive film 1 is wound up by a take-up roll. Details will be described below.
導電性フィルム1を製造するには、例えば、ロールトゥロール工程において、透明基材2の一方面に、ハードコート層3、中間層4、透明導電層5および金属層6を順に設ける。すなわち、長手方向に長尺な透明基材2を送出ロールから送出して搬送方向下流側に搬送しながら、透明基材2の上面にハードコート層3を設け、次いで、ハードコート層3の上面に中間層4を設け、次いで、中間層4の上面に透明導電層5を設け、次いで、透明導電層5の上面に金属層6を設け、巻取ロールにて導電性フィルム1を巻き取る。以下、詳述する。 7). Production method of conductive film To produce the
まず、送出ロールに巻回された長尺な透明基材2を用意し、巻取ロールに巻回されるように透明基材2を搬送する。
First, a long transparent substrate 2 wound around a delivery roll is prepared, and the transparent substrate 2 is conveyed so as to be wound around a winding roll.
その後、必要に応じて、透明基材2とハードコート層3との密着性の観点から、透明基材2の表面に、例えば、スパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を実施することができる。また、溶剤洗浄、超音波洗浄などにより透明基材2を除塵、清浄化することができる。
Then, from the viewpoint of adhesion between the transparent base material 2 and the hard coat layer 3, for example, sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, Etching such as oxidation or undercoating can be performed. Moreover, the transparent base material 2 can be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like.
次いで、透明基材2の上面にハードコート層3を設ける。例えば、透明基材2の上面にハードコート組成物を湿式塗工することにより、透明基材2の上面にハードコート層3を形成する。
Next, the hard coat layer 3 is provided on the upper surface of the transparent substrate 2. For example, the hard coat layer 3 is formed on the upper surface of the transparent substrate 2 by wet-coating the hard coat composition on the upper surface of the transparent substrate 2.
具体的には、例えば、ハードコート組成物を溶媒で希釈したハードコート組成物塗布液を調製し、続いて、その塗布液を透明基材2の上面に塗布し、乾燥する。
Specifically, for example, a hard coat composition coating solution obtained by diluting the hard coat composition with a solvent is prepared, and then the coating solution is applied to the upper surface of the transparent substrate 2 and dried.
溶媒としては、例えば、有機溶媒、水系溶媒(具体的には、水)などが挙げられ、好ましくは、有機溶媒が挙げられる。有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコールなどのアルコール化合物、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン化合物、例えば、酢酸エチル、酢酸ブチルなどのエステル化合物、プロピレングリコールモノメチルエーテルなどのエーテル化合物、例えば、トルエン、キシレンなどの芳香族化合物などが挙げられる。これら溶媒は、単独使用または2種以上併用することができる。好ましくは、エステル化合物、エーテル化合物が挙げられる。
Examples of the solvent include an organic solvent and an aqueous solvent (specifically, water), and an organic solvent is preferable. Examples of the organic solvent include alcohol compounds such as methanol, ethanol, and isopropyl alcohol; ketone compounds such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester compounds such as ethyl acetate and butyl acetate; and propylene glycol monomethyl ether. Examples of the ether compound include aromatic compounds such as toluene and xylene. These solvents can be used alone or in combination of two or more. Preferably, an ester compound and an ether compound are used.
塗布液における固形分濃度は、例えば、1質量%以上、好ましくは、10質量%以上であり、また、例えば、30質量%以下、好ましくは、20質量%以下である。
The solid content concentration in the coating solution is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 30% by mass or less, preferably 20% by mass or less.
塗布方法としては塗布液および透明基材2に応じて適宜選択することができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、インクジェット法などが挙げられる。
Application method can be appropriately selected depending on the application liquid and the transparent substrate 2. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and inkjet.
乾燥温度は、例えば、50℃以上、好ましくは、60℃以上であり、例えば、200℃以下、好ましくは、150℃以下である。
The drying temperature is, for example, 50 ° C. or more, preferably 60 ° C. or more, for example, 200 ° C. or less, preferably 150 ° C. or less.
乾燥時間は、例えば、0.5分以上、好ましくは、1分以上であり、例えば、60分以下、好ましくは、20分以下である。
The drying time is, for example, 0.5 minutes or more, preferably 1 minute or more, for example, 60 minutes or less, preferably 20 minutes or less.
その後、ハードコート組成物が活性エネルギー線硬化性樹脂を含有する場合は、塗布液の乾燥後に、活性エネルギー線を照射することにより、活性エネルギー線硬化性樹脂を硬化させる。
Thereafter, when the hard coat composition contains an active energy ray curable resin, the active energy ray curable resin is cured by irradiating the active energy ray after the coating liquid is dried.
なお、ハードコート組成物が、熱硬化性樹脂を含有する場合は、この乾燥工程により、溶媒の乾燥とともに、熱硬化性樹脂を熱硬化することができる。
In addition, when a hard-coat composition contains a thermosetting resin, a thermosetting resin can be thermoset by this drying process with the drying of a solvent.
次いで、ハードコート層3の上面に中間層4を設ける。例えば、ハードコート層3の上面に中間層組成物を湿式塗工することにより、ハードコート層3の上面に中間層4を形成する。
Next, the intermediate layer 4 is provided on the upper surface of the hard coat layer 3. For example, the intermediate layer 4 is formed on the upper surface of the hard coat layer 3 by wet coating the intermediate layer composition on the upper surface of the hard coat layer 3.
具体的には、例えば、必要に応じて中間層組成物を溶媒で希釈した中間層組成物塗布液を調製し、続いて、その塗布液をハードコート層3の上面に塗布し、乾燥する。
Specifically, for example, an intermediate layer composition coating solution obtained by diluting the intermediate layer composition with a solvent is prepared as necessary, and then the coating solution is applied to the upper surface of the hard coat layer 3 and dried.
中間層組成物の調製、塗布、乾燥などの条件は、ハードコート組成物で例示した調製、塗布、乾燥などの条件と同一のものが挙げられる。
The conditions such as preparation, application and drying of the intermediate layer composition are the same as the conditions such as preparation, application and drying exemplified in the hard coat composition.
その後、中間層組成物が活性エネルギー線硬化性樹脂を含有する場合は、塗布液の乾燥後に、活性エネルギー線を照射することにより、活性エネルギー線硬化性樹脂を硬化させる。
Thereafter, when the intermediate layer composition contains the active energy ray-curable resin, the active energy ray-curable resin is cured by irradiating the active energy ray after the coating liquid is dried.
また、中間層組成物が、熱硬化性樹脂を含有する場合は、この乾燥工程により、溶媒の乾燥とともに、熱硬化性樹脂を熱硬化することができる。
In addition, when the intermediate layer composition contains a thermosetting resin, the thermosetting resin can be thermoset together with drying of the solvent by this drying step.
次いで、中間層4の上面に透明導電層5を設ける。例えば、乾式方法により、中間層4の上面に透明導電層5を形成する。
Next, the transparent conductive layer 5 is provided on the upper surface of the intermediate layer 4. For example, the transparent conductive layer 5 is formed on the upper surface of the intermediate layer 4 by a dry method.
乾式方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。好ましくは、スパッタリング法が挙げられる。この方法により、薄膜であり、かつ、厚みが均一である透明導電層5を形成することができる。
Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method. Preferably, a sputtering method is used. By this method, the transparent conductive layer 5 which is a thin film and has a uniform thickness can be formed.
スパッタリング法は、真空チャンバー内にターゲットおよび被着体(中間層4およびハードコート層3が積層された透明基材2)を対向配置し、ガスを供給するとともに電源から電圧を印加することによりガスイオンを加速しターゲットに照射させて、ターゲット表面からターゲット材料をはじき出して、そのターゲット材料を被着体表面に積層させる。
In the sputtering method, a target and an adherend (transparent substrate 2 on which an intermediate layer 4 and a hard coat layer 3 are laminated) are arranged oppositely in a vacuum chamber, and gas is supplied by supplying a gas and applying a voltage from a power source. Ions are accelerated to irradiate the target, the target material is ejected from the target surface, and the target material is laminated on the adherend surface.
スパッタリング法としては、例えば、2極スパッタリング法、ECR(電子サイクロトロン共鳴)スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法などが挙げられる。好ましくは、マグネトロンスパッタリング法が挙げられる。
Examples of the sputtering method include a bipolar sputtering method, an ECR (electron cyclotron resonance) sputtering method, a magnetron sputtering method, and an ion beam sputtering method. A magnetron sputtering method is preferable.
スパッタリング法を採用する場合、ターゲット材料としては、透明導電層5を構成する上述の金属酸化物などが挙げられ、好ましくは、ITOが挙げられる。ITOの酸化スズ濃度は、ITO層の耐久性、結晶化などの観点から、例えば、0.5質量%以上、好ましくは、3質量%以上であり、また、例えば、15質量%以下、好ましくは、13質量%以下である。
When employing the sputtering method, examples of the target material include the above-described metal oxides constituting the transparent conductive layer 5, and preferably ITO. The tin oxide concentration of ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more, and, for example, 15% by mass or less, preferably from the viewpoint of durability and crystallization of the ITO layer. 13 mass% or less.
ガスとしては、例えば、Arなどの不活性ガスが挙げられる。また、必要に応じて、酸素ガスなどの反応性ガスを併用することができる。反応性ガスを併用する場合において、反応性ガスの流量比(sccm)は特に限定しないが、スパッタガスおよび反応性ガスの合計流量比に対して、例えば、0.1流量%以上5流量%以下である。
Examples of the gas include an inert gas such as Ar. Moreover, reactive gas, such as oxygen gas, can be used together as needed. When the reactive gas is used in combination, the flow rate ratio (sccm) of the reactive gas is not particularly limited. For example, the flow rate ratio of the sputtering gas and the reactive gas is, for example, 0.1 flow% or more and 5 flow% or less. It is.
スパッタリング時の気圧は、スパッタリングレートの低下抑制、放電安定性などの観点から、例えば、1Pa以下であり、好ましくは、0.1Pa以上0.7Pa以下である。
The atmospheric pressure during sputtering is, for example, 1 Pa or less, preferably 0.1 Pa or more and 0.7 Pa or less, from the viewpoint of suppressing a decrease in sputtering rate, discharge stability, or the like.
電源は、例えば、DC電源、AC電源、MF電源およびRF電源のいずれであってもよく、また、これらの組み合わせであってもよい。
The power source may be, for example, any of a DC power source, an AC power source, an MF power source, and an RF power source, or a combination thereof.
次いで、透明導電層5の上面に金属層6を設ける。例えば、乾式方法により、透明導電層5の上面に金属層6を形成する。
Next, the metal layer 6 is provided on the upper surface of the transparent conductive layer 5. For example, the metal layer 6 is formed on the upper surface of the transparent conductive layer 5 by a dry method.
乾式方法としては、透明導電層5の形成で上述したものと同様のものが挙げられ、好ましくは、スパッタリング法が挙げられる。この方法により、厚膜であっても、均一な厚みを有する金属層6を形成することができる。
Examples of the dry method include the same ones as described above for the formation of the transparent conductive layer 5, and preferably a sputtering method. By this method, the metal layer 6 having a uniform thickness can be formed even if it is a thick film.
金属層6におけるスパッタリング法の条件も、透明導電層5の形成で例示した条件と同一のものが挙げられる。
The conditions of the sputtering method in the metal layer 6 may be the same as the conditions exemplified in the formation of the transparent conductive layer 5.
なお、ターゲット材料しては、金属層6を構成する上述の金属などが挙げられ、好ましくは、銅が挙げられる。
In addition, as a target material, the above-mentioned metal etc. which comprise the metal layer 6 are mentioned, Preferably, copper is mentioned.
次いで、得られた長尺な導電性フィルム1を、巻取ロールに巻き取る。
Next, the obtained long conductive film 1 is wound up on a winding roll.
その結果、ロール状に巻回された導電性フィルム1が得られる。
As a result, the conductive film 1 wound into a roll is obtained.
なお、必要に応じて、導電性フィルム1の透明導電層5に対して、結晶転化処理を実施することができる。結晶化転化処理は、得られた導電性フィルム1に対して実施してもよく、また、金属層6を積層する前の導電性フィルム1(中間積層体、すなわち、透明基材2/ハードコート層3/中間層4/透明導電層5の積層体)に対して実施していもよい。
In addition, a crystal conversion treatment can be performed on the transparent conductive layer 5 of the conductive film 1 as necessary. The crystallization conversion treatment may be performed on the obtained conductive film 1, and the conductive film 1 (intermediate laminate, that is, transparent substrate 2 / hard coat) before the metal layer 6 is laminated. (Layer 3 / intermediate layer 4 / transparent conductive layer 5).
具体的には、導電性フィルム1または中間積層体に大気下で加熱処理を実施する。
Specifically, heat treatment is performed on the conductive film 1 or the intermediate laminate in the atmosphere.
加熱処理は、例えば、赤外線ヒーター、オーブンなどを用いて実施することができる。
The heat treatment can be performed using, for example, an infrared heater or an oven.
加熱温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、160℃以下である。加熱温度を上記範囲内とすることにより、透明基材2の熱損傷および透明基材2から発生する不純物を抑制しつつ、結晶転化を確実にすることができる。
The heating temperature is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, and for example, 200 ° C. or lower, preferably 160 ° C. or lower. By setting the heating temperature within the above range, crystal conversion can be ensured while suppressing thermal damage of the transparent substrate 2 and impurities generated from the transparent substrate 2.
加熱時間は、加熱温度に応じて適宜決定されるが、例えば、10分以上、好ましくは、30分以上であり、また、例えば、5時間以下、好ましくは、3時間以下である。
The heating time is appropriately determined according to the heating temperature, and is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 5 hours or less, preferably 3 hours or less.
これにより、結晶化された透明導電層5を備える導電性フィルム1が得られる。
Thereby, the conductive film 1 provided with the crystallized transparent conductive layer 5 is obtained.
なお、上記工程において、各層の形成ごとに巻取ロールに巻回してもよい。また、ハードコート層3、中間層4、透明導電層5および金属層6の形成まで巻回せずに連続的に実施して、金属層6の形成後に巻取ロールに巻回してもよい。
In addition, in the said process, you may wind around a winding roll for every formation of each layer. Alternatively, the hard coat layer 3, the intermediate layer 4, the transparent conductive layer 5, and the metal layer 6 may be continuously formed without being wound and wound on a take-up roll after the metal layer 6 is formed.
なお、必要に応じて、結晶転化処理の前または後において、公知のエッチング手法を用いて、透明導電層5および/または金属層6をストライプ状などの配線パターンにパターニングしてもよい。
If necessary, the transparent conductive layer 5 and / or the metal layer 6 may be patterned into a stripe pattern or the like by using a known etching method before or after the crystal conversion treatment.
透明導電層5および金属層6をエッチングする場合、これらを同時にエッチングしてもよく、また、別々にエッチングしてもよいが、好ましくは、透明導電層5および金属層6をそれぞれ別々のパターンに確実に形成できる観点から、これらを別々にエッチングする。
When the transparent conductive layer 5 and the metal layer 6 are etched, they may be etched at the same time or separately, but preferably, the transparent conductive layer 5 and the metal layer 6 are formed in separate patterns. These are separately etched from the viewpoint that they can be reliably formed.
例えば、まず、金属層6の平面視周端部(例えば、引き回し配線に相当する領域)に所望の配線パターン(例えば、引き回し配線)が形成されるように、金属層6(特に、平面視中央部)をエッチングにより除去する。次いで、金属層6から露出した透明導電層5(特に、平面視中央部)を、所望の配線パターン(例えば、タッチ入力領域における配線パターン)が形成されるように、エッチングにより除去する。
For example, first, the metal layer 6 (particularly, the center in plan view) is formed so that a desired wiring pattern (for example, lead wiring) is formed at a peripheral end portion (for example, a region corresponding to the lead wiring) of the metal layer 6 in plan view. Part) is removed by etching. Next, the transparent conductive layer 5 exposed from the metal layer 6 (particularly the central portion in plan view) is removed by etching so that a desired wiring pattern (for example, a wiring pattern in the touch input region) is formed.
これにより、図2に示すように、導電性フィルム1の一実施形態として、透明基材2、ハードコート層3、中間層4、パターニング透明導電層5A、および、パターニング金属層6Aを備えるパターニング導電性フィルム1Aが得られる。
Thereby, as shown in FIG. 2, as one embodiment of the conductive film 1, the patterning conductive material including the transparent substrate 2, the hard coat layer 3, the intermediate layer 4, the patterning transparent conductive layer 5A, and the patterning metal layer 6A. 1A is obtained.
なお、パターニング金属層6Aは、平面視枠形状の額縁部を形成し、パターニング透明導電層5Aは、パターニング金属層6A内において、所定の配線パターンを形成する。
The patterned metal layer 6A forms a frame portion having a frame shape in plan view, and the patterned transparent conductive layer 5A forms a predetermined wiring pattern in the patterned metal layer 6A.
8.タッチパネル
導電性フィルム1は、例えば、画像表示装置に備えられるタッチパネル用基材に用いられる。タッチパネルの形式としては、例えば、静電容量方式、抵抗膜方式などの各種方式が挙げられ、特に静電容量方式のタッチパネルに好適に用いられる。具体的には、例えば、パターニング導電性フィルム1Aを保護ガラスなどの保護基材に配置することにより、タッチパネルとして用いる。 8). Touch panel Theconductive film 1 is used for the base material for touch panels with which an image display apparatus is equipped, for example. Examples of the form of the touch panel include various types such as a capacitive type and a resistive film type, and are particularly suitably used for a capacitive type touch panel. Specifically, for example, the patterned conductive film 1A is used as a touch panel by placing it on a protective substrate such as protective glass.
導電性フィルム1は、例えば、画像表示装置に備えられるタッチパネル用基材に用いられる。タッチパネルの形式としては、例えば、静電容量方式、抵抗膜方式などの各種方式が挙げられ、特に静電容量方式のタッチパネルに好適に用いられる。具体的には、例えば、パターニング導電性フィルム1Aを保護ガラスなどの保護基材に配置することにより、タッチパネルとして用いる。 8). Touch panel The
また、導電性フィルム1は、例えば、電気泳動方式、ツイストボール方式、サーマル・リライタブル方式、光書き込み液晶方式、高分子分散型液晶方式、ゲスト・ホスト液晶方式、トナー表示方式、クロミズム方式、電界析出方式などのフレキシブル表示素子にも好適に利用できる。
In addition, the conductive film 1 is, for example, an electrophoresis method, a twist ball method, a thermal rewritable method, an optical writing liquid crystal method, a polymer dispersion type liquid crystal method, a guest / host liquid crystal method, a toner display method, a chromism method, an electric field deposition. It can also be suitably used for flexible display elements such as a method.
9.作用効果
そして、この導電性フィルム1は、透明基材2、中間層4、透明導電層5および金属層6をこの順に備え、金属層6の厚みが、100nm以上400nm以下である。このため、金属層6の導電性(低い表面抵抗値)を良好にすることができる。その結果、タッチパネルの額縁部分(端部)に、幅狭で長尺な配線パターン(引き回し配線)を確実に形成できる。したがって、タッチパネルが大型化しても、狭額縁化を図ることができる。 9. Action and Effect Thisconductive film 1 includes a transparent substrate 2, an intermediate layer 4, a transparent conductive layer 5 and a metal layer 6 in this order, and the thickness of the metal layer 6 is not less than 100 nm and not more than 400 nm. For this reason, the conductivity (low surface resistance value) of the metal layer 6 can be improved. As a result, a narrow and long wiring pattern (leading wiring) can be reliably formed on the frame portion (end portion) of the touch panel. Therefore, even if the touch panel is enlarged, the frame can be narrowed.
そして、この導電性フィルム1は、透明基材2、中間層4、透明導電層5および金属層6をこの順に備え、金属層6の厚みが、100nm以上400nm以下である。このため、金属層6の導電性(低い表面抵抗値)を良好にすることができる。その結果、タッチパネルの額縁部分(端部)に、幅狭で長尺な配線パターン(引き回し配線)を確実に形成できる。したがって、タッチパネルが大型化しても、狭額縁化を図ることができる。 9. Action and Effect This
また、中間層4の屈折率が、1.60以上1.70以下であり、中間層4が、シリカ粒子および第2無機粒子を含む無機粒子成分を含有し、中間層4における無機粒子成分の含有割合が、40.0質量%以上66.0質量%以下である。
The refractive index of the intermediate layer 4 is 1.60 or more and 1.70 or less, the intermediate layer 4 contains an inorganic particle component containing silica particles and second inorganic particles, and the inorganic particle component in the intermediate layer 4 A content rate is 40.0 mass% or more and 66.0 mass% or less.
このため、厚膜の金属層6(すなわち、低い表面抵抗値)を備える導電性フィルム1において、金属層6と透明基材2との密着性が良好である。特に、透明導電層5と中間層4との界面の密着性が良好であり、これらの間で凝集破壊を抑制できるため、金属層6と透明基材2との分離を抑制できる。また、透明導電層5を配線パターン(例えば、タッチパネルのタッチ入力領域におけるパターン;パターニング透明導電層5A)に形成したときに、その配線パターンの視認を抑制できる。さらに、透明導電層5の導電性が良好であるため、タッチパネルを大型化した際にも優れたタッチ応答性を備える。
For this reason, in the conductive film 1 provided with the thick metal layer 6 (that is, a low surface resistance value), the adhesion between the metal layer 6 and the transparent substrate 2 is good. In particular, the adhesiveness of the interface between the transparent conductive layer 5 and the intermediate layer 4 is good, and the cohesive failure can be suppressed between them, so that the separation between the metal layer 6 and the transparent substrate 2 can be suppressed. Further, when the transparent conductive layer 5 is formed in a wiring pattern (for example, a pattern in a touch input area of a touch panel; the patterned transparent conductive layer 5A), the visual recognition of the wiring pattern can be suppressed. Furthermore, since the conductivity of the transparent conductive layer 5 is good, it has excellent touch responsiveness even when the touch panel is enlarged.
なお、従来では、透明導電層5と透明基材2との間に、密着層を設けると、密着層による光学的な影響で、透明導電層5の配線パターンが視認され易くなる場合が生じる。また、透明導電層5は、密着層と隣接するために、透明導電層5の結晶化、ひいては、低抵抗化に影響を及ぼし、透明導電層の結晶化が阻害され、表面抵抗値が低減しない場合が生じる。
In addition, conventionally, when an adhesive layer is provided between the transparent conductive layer 5 and the transparent substrate 2, the wiring pattern of the transparent conductive layer 5 may be easily visually recognized due to the optical effect of the adhesive layer. In addition, since the transparent conductive layer 5 is adjacent to the adhesion layer, it affects the crystallization of the transparent conductive layer 5 and thus the resistance reduction, and the crystallization of the transparent conductive layer is hindered, and the surface resistance value does not decrease. Cases arise.
これに対し、本発明の導電性フィルム1では、上記特定構成の中間層4が、ハードコート層3と透明導電層5との間に配置されている。そのため、これらの密着性を向上させると同時に、配線パターンの視認を抑制し、さらには、透明導電層5の結晶化を阻害せずに、表面抵抗値を低下させることができる。
On the other hand, in the conductive film 1 of the present invention, the intermediate layer 4 having the specific configuration is arranged between the hard coat layer 3 and the transparent conductive layer 5. Therefore, it is possible to improve the adhesiveness, suppress the visual recognition of the wiring pattern, and further reduce the surface resistance value without inhibiting the crystallization of the transparent conductive layer 5.
<変形例>
図1に示す実施形態では、導電性フィルム1は、ハードコート層3を備えているが、例えば、図3に示すように、導電性フィルム1は、ハードコート層3を備えなくてもよい。すなわち、図3に示す導電性フィルム1は、透明基材2と、中間層4と、透明導電層5と、金属層6とからなる。 <Modification>
In the embodiment illustrated in FIG. 1, theconductive film 1 includes the hard coat layer 3. However, for example, as illustrated in FIG. 3, the conductive film 1 may not include the hard coat layer 3. That is, the conductive film 1 shown in FIG. 3 includes a transparent substrate 2, an intermediate layer 4, a transparent conductive layer 5, and a metal layer 6.
図1に示す実施形態では、導電性フィルム1は、ハードコート層3を備えているが、例えば、図3に示すように、導電性フィルム1は、ハードコート層3を備えなくてもよい。すなわち、図3に示す導電性フィルム1は、透明基材2と、中間層4と、透明導電層5と、金属層6とからなる。 <Modification>
In the embodiment illustrated in FIG. 1, the
また、図2に示す実施形態では、パターニング導電性フィルム1Aは、ハードコート層3を備えているが、例えば、図4に示すように、導電性フィルム1は、ハードコート層3を備えなくてもよい。すなわち、図4に示す導電性フィルム1は、透明基材2と、中間層4と、パターニング透明導電層5Aと、パターニング金属層6Aとからなる。
In the embodiment shown in FIG. 2, the patterned conductive film 1 </ b> A includes the hard coat layer 3. For example, as shown in FIG. 4, the conductive film 1 does not include the hard coat layer 3. Also good. That is, the conductive film 1 shown in FIG. 4 includes a transparent substrate 2, an intermediate layer 4, a patterned transparent conductive layer 5A, and a patterned metal layer 6A.
この実施形態においても、図1および図2に示す実施形態と同様の作用効果を奏する。好ましくは、耐擦傷性の観点から、図1および図3に示す実施形態が挙げられる。
Also in this embodiment, the same operational effects as the embodiment shown in FIGS. 1 and 2 are obtained. Preferably, from the viewpoint of scratch resistance, the embodiments shown in FIGS. 1 and 3 may be mentioned.
また、図1および図2に示す実施形態は、透明基材2の下面が露出されているが、例えば、図示しないが、透明基材2の下面に、さらに、ハードコート層3、中間層4、透明導電層5および金属層6の全部または一部を備えていてもよい。
In the embodiment shown in FIGS. 1 and 2, the lower surface of the transparent base material 2 is exposed. For example, although not shown, the hard coat layer 3 and the intermediate layer 4 are further provided on the lower surface of the transparent base material 2. All or part of the transparent conductive layer 5 and the metal layer 6 may be provided.
この実施形態においても、図1および図2に示す実施形態と同様の作用効果を奏する。
Also in this embodiment, the same operational effects as the embodiment shown in FIGS. 1 and 2 are obtained.
以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to an Example and a comparative example at all. Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. The upper limit value (numerical value defined as “less than” or “less than”) or lower limit value (number defined as “greater than” or “exceeded”) may be substituted. it can.
(実施例1)
長尺な透明基材として、厚み100μmのシクロオレフィンポリマーフィルム(COPフィルム、日本ゼオン社製、「ゼオノアZF16」)を用意した。 Example 1
A cycloolefin polymer film (COP film, manufactured by Nippon Zeon Co., Ltd., “Zeonor ZF16”) having a thickness of 100 μm was prepared as a long transparent substrate.
長尺な透明基材として、厚み100μmのシクロオレフィンポリマーフィルム(COPフィルム、日本ゼオン社製、「ゼオノアZF16」)を用意した。 Example 1
A cycloolefin polymer film (COP film, manufactured by Nippon Zeon Co., Ltd., “Zeonor ZF16”) having a thickness of 100 μm was prepared as a long transparent substrate.
紫外線硬化型アクリル樹脂(DIC社製、「ELS888」)100質量部および光重合開始剤(BASF社製、「Irgacure184」)2質量部および酢酸エチル160質量を混合して、ハードコート組成物溶液を調製した。COPフィルムの上面に、ハードコート組成物溶液を塗布して、80℃1分間の条件で乾燥させて、紫外線を照射した。これにより、厚み2μmのハードコート層をCOPフィルムの上面に形成した。
A hard coat composition solution was prepared by mixing 100 parts by weight of an ultraviolet curable acrylic resin (manufactured by DIC, “ELS888”), 2 parts by weight of a photopolymerization initiator (manufactured by BASF, “Irgacure 184”) and 160 parts by weight of ethyl acetate. Prepared. The hard coat composition solution was applied to the upper surface of the COP film, dried at 80 ° C. for 1 minute, and then irradiated with ultraviolet rays. Thereby, a hard coat layer having a thickness of 2 μm was formed on the upper surface of the COP film.
無機粒子含有樹脂溶液(JSR社製、「KZ6954」)100質量部に、プロピレングリコールモノメチルエーテル700質量部を混合して、中間層組成物溶液を調製した。ハードコート層の上面に、中間層組成物溶液を塗布して、60℃1分間の条件で乾燥させて、紫外線を照射した。これにより、厚み100nmの中間層をハードコート層の上面に形成した。
An intermediate layer composition solution was prepared by mixing 700 parts by mass of propylene glycol monomethyl ether with 100 parts by mass of an inorganic particle-containing resin solution (manufactured by JSR, “KZ6954”). The intermediate layer composition solution was applied to the upper surface of the hard coat layer, dried at 60 ° C. for 1 minute, and then irradiated with ultraviolet rays. Thereby, an intermediate layer having a thickness of 100 nm was formed on the upper surface of the hard coat layer.
なお、無機粒子含有樹脂溶液(JSR社製、「KZ6954」)の固形分は、無機粒子成分62.5質量%および樹脂成分37.5質量%であった。また、無機粒子成分は、シリカ粒子(平均粒子径10nm)19質量%および酸化ジルコニウム粒子(平均粒子径25nm)81質量%であった。
The solid content of the inorganic particle-containing resin solution (manufactured by JSR, “KZ6954”) was 62.5% by mass of the inorganic particle component and 37.5% by mass of the resin component. In addition, the inorganic particle components were 19% by mass of silica particles (average particle size 10 nm) and 81% by mass of zirconium oxide particles (average particle size 25 nm).
次いで、COPフィルム/ハードコート層/中間層の積層体を、巻き取り式スパッタリング装置に投入して、中間層の上面に、厚みが30nmのITO層(非晶質)を形成した。具体的には、アルゴンガス98%および酸素ガス2%を導入した気圧0.4Paの真空雰囲気下で、97質量%の酸化インジウムおよび3質量%の酸化スズの焼結体からなるITOターゲットを用いて、中間層に対してスパッタリングを実施した。
Next, the laminate of COP film / hard coat layer / intermediate layer was put into a take-up type sputtering apparatus, and an ITO layer (amorphous) having a thickness of 30 nm was formed on the upper surface of the intermediate layer. Specifically, an ITO target made of a sintered body of 97% by mass indium oxide and 3% by mass tin oxide was used in a vacuum atmosphere at a pressure of 0.4 Pa into which argon gas 98% and oxygen gas 2% were introduced. Then, sputtering was performed on the intermediate layer.
次いで、COPフィルム/ハードコート層/中間層/ITO層(非晶質)の積層体を、巻き取り式スパッタリング装置に投入して、ITO層の上面に、厚みが200nmの銅層を形成した。具体的には、アルゴンガスを導入した気圧0.4Paの真空雰囲気下で、無酸素銅からなるITOターゲットを用いて、ITO層に対してスパッタリングを実施した。
Subsequently, the laminate of COP film / hard coat layer / intermediate layer / ITO layer (amorphous) was put into a take-up type sputtering apparatus, and a copper layer having a thickness of 200 nm was formed on the upper surface of the ITO layer. Specifically, sputtering was performed on the ITO layer using an ITO target made of oxygen-free copper in a vacuum atmosphere at a pressure of 0.4 Pa into which argon gas was introduced.
これにより、実施例1のロール状の導電性フィルムを作製した。
Thereby, the roll-shaped conductive film of Example 1 was produced.
(実施例2~4)
中間層の形成において、中間層の処方が表1に記載の処方となるように、2種類のJSR社製のオプスターKZシリーズ(「KZ6954」および「KZ6956」)を適宜混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Examples 2 to 4)
In forming the intermediate layer, two types of Opstar KZ series (“KZ6954” and “KZ6956”) manufactured by JSR are appropriately mixed so that the intermediate layer has the formulation shown in Table 1. A conductive film was produced in the same manner as in Example 1 except that the solution was prepared.
中間層の形成において、中間層の処方が表1に記載の処方となるように、2種類のJSR社製のオプスターKZシリーズ(「KZ6954」および「KZ6956」)を適宜混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Examples 2 to 4)
In forming the intermediate layer, two types of Opstar KZ series (“KZ6954” and “KZ6956”) manufactured by JSR are appropriately mixed so that the intermediate layer has the formulation shown in Table 1. A conductive film was produced in the same manner as in Example 1 except that the solution was prepared.
なお、各実施例および各比較例で用いたJSR社製のオプスターKZシリーズ、オプスターZシリーズ、および、荒川化学工業社製の「RA017」に含有される無機粒子(シリカ粒子および/または酸化ジルコニウム粒子)の種類は、略同一であった。
In addition, inorganic particles (silica particles and / or zirconium oxide particles) contained in “SR017” manufactured by OPSR KZ series, OPSTAR Z series manufactured by JSR and Arakawa Chemical Industries, Ltd. used in each example and each comparative example. ) Types were substantially the same.
(実施例5)
中間層の形成において、中間層の処方が表1に記載の処方となるように、かつ、屈折率が1.60となるように、2種類のJSR社製のオプスターKZシリーズ(「KZ6954」25質量%:「KZ6956」75質量%)100質量部、および、2種類の有機樹脂含有溶液(大阪有機化学工業社製「ビスコート300」17質量部、および、日本化薬社製「KAYARAD BNP-1」18質量部)を混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Example 5)
In the formation of the intermediate layer, two types of OPSTAR KZ series (“KZ6954” 25 manufactured by JSR Co., Ltd.) are used so that the intermediate layer has the formulation shown in Table 1 and the refractive index is 1.60. % By mass: 100 parts by mass of “KZ6956” (75% by mass), two types of organic resin-containing solutions (17 parts by mass of “Biscoat 300” manufactured by Osaka Organic Chemical Industry Co., Ltd.) and “KAYARAD BNP-1 manufactured by Nippon Kayaku Co., Ltd. 18 parts by mass) was mixed to prepare an inorganic particle resin solution, and a conductive film was produced in the same manner as in Example 1.
中間層の形成において、中間層の処方が表1に記載の処方となるように、かつ、屈折率が1.60となるように、2種類のJSR社製のオプスターKZシリーズ(「KZ6954」25質量%:「KZ6956」75質量%)100質量部、および、2種類の有機樹脂含有溶液(大阪有機化学工業社製「ビスコート300」17質量部、および、日本化薬社製「KAYARAD BNP-1」18質量部)を混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Example 5)
In the formation of the intermediate layer, two types of OPSTAR KZ series (“KZ6954” 25 manufactured by JSR Co., Ltd.) are used so that the intermediate layer has the formulation shown in Table 1 and the refractive index is 1.60. % By mass: 100 parts by mass of “KZ6956” (75% by mass), two types of organic resin-containing solutions (17 parts by mass of “Biscoat 300” manufactured by Osaka Organic Chemical Industry Co., Ltd.) and “KAYARAD BNP-1 manufactured by Nippon Kayaku Co., Ltd. 18 parts by mass) was mixed to prepare an inorganic particle resin solution, and a conductive film was produced in the same manner as in Example 1.
(実施例6)
中間層の形成において、中間層の処方が表1に記載の処方となるように、かつ、屈折率が1.70となるように、JSR社製の「オプスターZ7414」66質量部、および、荒川化学工業社製の「RA017」34質量部を混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Example 6)
In the formation of the intermediate layer, 66 parts by mass of “OPSTAR Z7414” manufactured by JSR Co., Ltd., and Arakawa so that the intermediate layer has the formulation shown in Table 1 and the refractive index is 1.70. A conductive film was produced in the same manner as in Example 1 except that 34 parts by mass of “RA017” manufactured by Chemical Industry Co., Ltd. was mixed to prepare an inorganic particle resin solution.
中間層の形成において、中間層の処方が表1に記載の処方となるように、かつ、屈折率が1.70となるように、JSR社製の「オプスターZ7414」66質量部、および、荒川化学工業社製の「RA017」34質量部を混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Example 6)
In the formation of the intermediate layer, 66 parts by mass of “OPSTAR Z7414” manufactured by JSR Co., Ltd., and Arakawa so that the intermediate layer has the formulation shown in Table 1 and the refractive index is 1.70. A conductive film was produced in the same manner as in Example 1 except that 34 parts by mass of “RA017” manufactured by Chemical Industry Co., Ltd. was mixed to prepare an inorganic particle resin solution.
(比較例1~5)
中間層の形成において、中間層の処方が表1に記載の処方となるように、JSR社製のオプスターKZシリーズ(「KZ6953」、「KZ6954」、「KZ6956」)またはオプスターZシリーズ(「Z7549」)を適宜混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Comparative Examples 1 to 5)
In the formation of the intermediate layer, the Opstar KZ series (“KZ6953”, “KZ6954”, “KZ6956”) or the Opster Z series (“Z7549”) manufactured by JSR Co., Ltd. is used so that the prescription of the intermediate layer becomes the prescription described in Table 1. ) Were mixed as appropriate to prepare an inorganic particle resin solution, and a conductive film was produced in the same manner as in Example 1.
中間層の形成において、中間層の処方が表1に記載の処方となるように、JSR社製のオプスターKZシリーズ(「KZ6953」、「KZ6954」、「KZ6956」)またはオプスターZシリーズ(「Z7549」)を適宜混合して、無機粒子樹脂溶液を調製した以外は、実施例1と同様にして、導電性フィルムを作製した。 (Comparative Examples 1 to 5)
In the formation of the intermediate layer, the Opstar KZ series (“KZ6953”, “KZ6954”, “KZ6956”) or the Opster Z series (“Z7549”) manufactured by JSR Co., Ltd. is used so that the prescription of the intermediate layer becomes the prescription described in Table 1. ) Were mixed as appropriate to prepare an inorganic particle resin solution, and a conductive film was produced in the same manner as in Example 1.
(比較例6)
銅層の厚みを50nmに変更した以外は、比較例1と同様にして、導電性フィルムを作製した。 (Comparative Example 6)
A conductive film was produced in the same manner as in Comparative Example 1 except that the thickness of the copper layer was changed to 50 nm.
銅層の厚みを50nmに変更した以外は、比較例1と同様にして、導電性フィルムを作製した。 (Comparative Example 6)
A conductive film was produced in the same manner as in Comparative Example 1 except that the thickness of the copper layer was changed to 50 nm.
(各層の厚み)
厚みが1.0μm未満の層は、透過型電子顕微鏡(日立製作所社製、「H-7650」)を用いて、導電性フィルムの断面を観察して測定した。厚みが1.0μm以上の層は、膜厚計(Peacock社製 デジタルダイアルゲージDG-205)を用いて測定した。その結果を表1に示す。 (Thickness of each layer)
The layer having a thickness of less than 1.0 μm was measured by observing a cross section of the conductive film using a transmission electron microscope (“H-7650” manufactured by Hitachi, Ltd.). A layer having a thickness of 1.0 μm or more was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock). The results are shown in Table 1.
厚みが1.0μm未満の層は、透過型電子顕微鏡(日立製作所社製、「H-7650」)を用いて、導電性フィルムの断面を観察して測定した。厚みが1.0μm以上の層は、膜厚計(Peacock社製 デジタルダイアルゲージDG-205)を用いて測定した。その結果を表1に示す。 (Thickness of each layer)
The layer having a thickness of less than 1.0 μm was measured by observing a cross section of the conductive film using a transmission electron microscope (“H-7650” manufactured by Hitachi, Ltd.). A layer having a thickness of 1.0 μm or more was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock). The results are shown in Table 1.
(屈折率)
アッベ屈折率計(アタゴ社製)を用いて、波長589nmにおける屈折率を測定した。 (Refractive index)
The refractive index at a wavelength of 589 nm was measured using an Abbe refractometer (manufactured by Atago Co., Ltd.).
アッベ屈折率計(アタゴ社製)を用いて、波長589nmにおける屈折率を測定した。 (Refractive index)
The refractive index at a wavelength of 589 nm was measured using an Abbe refractometer (manufactured by Atago Co., Ltd.).
(密着性)
各実施例および各比較例で得られた導電性フィルムの銅層の表面に対して、1mm角のマス目が100個(10行×10列)形成するように、カッターナイフを用いて碁盤目状に切り目を入れた。次いで、切り目を入れた銅層表面に、粘着テープ(積水化学工業社製、商品名「セロテープ(登録商標)No.252」)を貼り付けた後、剥離する工程を2回繰り返した。このときの銅層表面の表面を目視で観察して、密着性を以下のように評価した。その結果を表1に示す。
5 : 銅層の剥離が全く見られなかった(剥離面積が1%未満)
4 : 碁盤目の切り目周辺に、欠けが見られる程度であった(剥離面積が1%以上10%未満)。
3 : 銅層の剥離面積が10%以上40%未満であった
2 : 銅層の剥離面積が40%以上60%未満であった
1 : 銅層の剥離面積が60%以上80%未満であった
0 : 銅層の剥離面積が80%以上であった
なお、上記では、ITO層が非晶質である導電性フィルムにおいて、銅層の密着性を測定したが、銅層の密着性については、ITO層が結晶層である場合においても、同様の測定結果が得られる。 (Adhesion)
Using a cutter knife, a grid pattern is formed so that 100 squares of 1 mm square (10 rows × 10 columns) are formed on the surface of the copper layer of the conductive film obtained in each Example and each Comparative Example. A cut was made. Next, after the adhesive tape (made by Sekisui Chemical Co., Ltd., trade name “Cello Tape (registered trademark) No. 252”) was applied to the cut copper surface, the peeling process was repeated twice. The surface of the copper layer surface at this time was observed visually, and adhesiveness was evaluated as follows. The results are shown in Table 1.
5: No peeling of copper layer was observed (peeling area was less than 1%)
4: Chips were observed around the grid cuts (peeling area was 1% or more and less than 10%).
3: The peeling area of the copper layer was 10% or more and less than 40% 2: The peeling area of the copper layer was 40% or more and less than 60% 1: The peeling area of the copper layer was 60% or more and less than 80% 0: The peeled area of the copper layer was 80% or more. In the above, in the conductive film in which the ITO layer is amorphous, the adhesion of the copper layer was measured. In the case where the ITO layer is a crystal layer, the same measurement result can be obtained.
各実施例および各比較例で得られた導電性フィルムの銅層の表面に対して、1mm角のマス目が100個(10行×10列)形成するように、カッターナイフを用いて碁盤目状に切り目を入れた。次いで、切り目を入れた銅層表面に、粘着テープ(積水化学工業社製、商品名「セロテープ(登録商標)No.252」)を貼り付けた後、剥離する工程を2回繰り返した。このときの銅層表面の表面を目視で観察して、密着性を以下のように評価した。その結果を表1に示す。
5 : 銅層の剥離が全く見られなかった(剥離面積が1%未満)
4 : 碁盤目の切り目周辺に、欠けが見られる程度であった(剥離面積が1%以上10%未満)。
3 : 銅層の剥離面積が10%以上40%未満であった
2 : 銅層の剥離面積が40%以上60%未満であった
1 : 銅層の剥離面積が60%以上80%未満であった
0 : 銅層の剥離面積が80%以上であった
なお、上記では、ITO層が非晶質である導電性フィルムにおいて、銅層の密着性を測定したが、銅層の密着性については、ITO層が結晶層である場合においても、同様の測定結果が得られる。 (Adhesion)
Using a cutter knife, a grid pattern is formed so that 100 squares of 1 mm square (10 rows × 10 columns) are formed on the surface of the copper layer of the conductive film obtained in each Example and each Comparative Example. A cut was made. Next, after the adhesive tape (made by Sekisui Chemical Co., Ltd., trade name “Cello Tape (registered trademark) No. 252”) was applied to the cut copper surface, the peeling process was repeated twice. The surface of the copper layer surface at this time was observed visually, and adhesiveness was evaluated as follows. The results are shown in Table 1.
5: No peeling of copper layer was observed (peeling area was less than 1%)
4: Chips were observed around the grid cuts (peeling area was 1% or more and less than 10%).
3: The peeling area of the copper layer was 10% or more and less than 40% 2: The peeling area of the copper layer was 40% or more and less than 60% 1: The peeling area of the copper layer was 60% or more and less than 80% 0: The peeled area of the copper layer was 80% or more. In the above, in the conductive film in which the ITO layer is amorphous, the adhesion of the copper layer was measured. In the case where the ITO layer is a crystal layer, the same measurement result can be obtained.
(配線パターンの視認性)
各実施例および各比較例で得られたロール状の導電性フィルムを10cm×10cmに切り取り、その導電性フィルムの金属層上に、所定パターンのドライフィルムレジストを配置し、金属層のみをエッチングした後、レジストを除去した。これにより、周端縁のみに、額縁の引き回り配線に相当する金属層をパターニングした。 (Visibility of wiring pattern)
The roll-like conductive film obtained in each Example and each Comparative Example was cut to 10 cm × 10 cm, a dry film resist having a predetermined pattern was disposed on the metal layer of the conductive film, and only the metal layer was etched. Thereafter, the resist was removed. As a result, a metal layer corresponding to the frame routing wiring was patterned only on the peripheral edge.
各実施例および各比較例で得られたロール状の導電性フィルムを10cm×10cmに切り取り、その導電性フィルムの金属層上に、所定パターンのドライフィルムレジストを配置し、金属層のみをエッチングした後、レジストを除去した。これにより、周端縁のみに、額縁の引き回り配線に相当する金属層をパターニングした。 (Visibility of wiring pattern)
The roll-like conductive film obtained in each Example and each Comparative Example was cut to 10 cm × 10 cm, a dry film resist having a predetermined pattern was disposed on the metal layer of the conductive film, and only the metal layer was etched. Thereafter, the resist was removed. As a result, a metal layer corresponding to the frame routing wiring was patterned only on the peripheral edge.
次いで、導電性フィルムの額縁を除く平面視中央のITO層に、所定パターンのドライフィルムレジストを配置し、ITO層のみをエッチングした後、レジストを除去した。これにより、平面視中央に、配線パターンに相当するITO層をパターニングした(図2参照)。
Next, a dry film resist having a predetermined pattern was placed on the ITO layer in the center in plan view excluding the frame of the conductive film, and after etching only the ITO layer, the resist was removed. Thereby, an ITO layer corresponding to the wiring pattern was patterned in the center in plan view (see FIG. 2).
得られたパターニング導電性フィルムの配線パターンを、LED光源下で、斜め45度方向から目視した。
The wiring pattern of the obtained patterning conductive film was visually observed from an oblique 45 degree direction under an LED light source.
配線パターンを確認されなかった場合を○と評価し、配線パターンが僅かに確認された場合を△と評価し、配線パターンが明確に確認された場合を×と評価した。その結果を表1に示す。
The case where the wiring pattern was not confirmed was evaluated as ◯, the case where the wiring pattern was slightly confirmed was evaluated as △, and the case where the wiring pattern was clearly confirmed was evaluated as ×. The results are shown in Table 1.
(ITO層の表面抵抗値)
各実施例および各比較例において、銅層を形成する直前の導電性フィルム(COPフィルム/ハードコート層/中間層/ITO層(非晶質)の積層体)をロールトゥロール方式で空気循環式オーブンに投入し、140℃で60分間の条件で加熱処理を実施して、ITO層を結晶化させた。これにより、表面抵抗値測定用のサンプル(COPフィルム/ハードコート層/中間層/結晶質ITO層の積層体)を得た。 (Surface resistance value of ITO layer)
In each example and each comparative example, the conductive film (COP film / hard coat layer / intermediate layer / ITO layer (amorphous) laminate) immediately before forming the copper layer is air-circulated by a roll-to-roll method. The ITO layer was put into an oven and heat-treated at 140 ° C. for 60 minutes to crystallize the ITO layer. As a result, a sample (COP film / hard coat layer / intermediate layer / crystalline ITO layer laminate) for surface resistance measurement was obtained.
各実施例および各比較例において、銅層を形成する直前の導電性フィルム(COPフィルム/ハードコート層/中間層/ITO層(非晶質)の積層体)をロールトゥロール方式で空気循環式オーブンに投入し、140℃で60分間の条件で加熱処理を実施して、ITO層を結晶化させた。これにより、表面抵抗値測定用のサンプル(COPフィルム/ハードコート層/中間層/結晶質ITO層の積層体)を得た。 (Surface resistance value of ITO layer)
In each example and each comparative example, the conductive film (COP film / hard coat layer / intermediate layer / ITO layer (amorphous) laminate) immediately before forming the copper layer is air-circulated by a roll-to-roll method. The ITO layer was put into an oven and heat-treated at 140 ° C. for 60 minutes to crystallize the ITO layer. As a result, a sample (COP film / hard coat layer / intermediate layer / crystalline ITO layer laminate) for surface resistance measurement was obtained.
各サンプルの結晶質ITO層の表面抵抗値を、JIS K 7194(1994年)に準じて、4端子法により測定した。その結果を表1に示す。
The surface resistance value of the crystalline ITO layer of each sample was measured by a four-terminal method according to JIS K 7194 (1994). The results are shown in Table 1.
(銅層の表面抵抗値)
各実施例および各比較例で得られたロール状の導電性フィルムの銅層の表面抵抗値を、4端子法により測定したところ、比較例6の導電性フィルムの表面抵抗値(0.6Ω/□)は、各実施例および比較例1~5の導電性フィルムの表面抵抗値(0.1Ω/□)よりも明らかに高い値を示した。 (Surface resistance value of copper layer)
When the surface resistance value of the copper layer of the roll-shaped conductive film obtained in each Example and each Comparative Example was measured by the four-terminal method, the surface resistance value of the conductive film of Comparative Example 6 (0.6Ω / □) was clearly higher than the surface resistance value (0.1 Ω / □) of the conductive films of Examples and Comparative Examples 1 to 5.
各実施例および各比較例で得られたロール状の導電性フィルムの銅層の表面抵抗値を、4端子法により測定したところ、比較例6の導電性フィルムの表面抵抗値(0.6Ω/□)は、各実施例および比較例1~5の導電性フィルムの表面抵抗値(0.1Ω/□)よりも明らかに高い値を示した。 (Surface resistance value of copper layer)
When the surface resistance value of the copper layer of the roll-shaped conductive film obtained in each Example and each Comparative Example was measured by the four-terminal method, the surface resistance value of the conductive film of Comparative Example 6 (0.6Ω / □) was clearly higher than the surface resistance value (0.1 Ω / □) of the conductive films of Examples and Comparative Examples 1 to 5.
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
本発明の導電性フィルムおよびタッチパネルは、各種の工業製品に適用することができ、例えば、画像表示装置などに好適に用いられる。
The conductive film and touch panel of the present invention can be applied to various industrial products, and are suitably used for image display devices, for example.
1 導電性フィルム
2 透明基材
4 中間層
5 透明導電層
6 金属層 DESCRIPTION OFSYMBOLS 1 Conductive film 2 Transparent base material 4 Intermediate layer 5 Transparent conductive layer 6 Metal layer
2 透明基材
4 中間層
5 透明導電層
6 金属層 DESCRIPTION OF
Claims (9)
- 透明基材、中間層、透明導電層および金属層をこの順に備え、
前記金属層の厚みが、100nm以上400nm以下であり、
前記中間層の屈折率が、1.60以上1.70以下であり、
前記中間層が、シリカ粒子およびシリカ粒子以外の無機粒子を含む無機粒子成分を含有し、
前記中間層における前記無機粒子成分の含有割合が、40.0質量%以上66.0質量%以下であることを特徴とする、導電性フィルム。 A transparent substrate, an intermediate layer, a transparent conductive layer and a metal layer are provided in this order,
The metal layer has a thickness of 100 nm to 400 nm,
The refractive index of the intermediate layer is 1.60 or more and 1.70 or less,
The intermediate layer contains an inorganic particle component including inorganic particles other than silica particles and silica particles,
The conductive film, wherein the content ratio of the inorganic particle component in the intermediate layer is 40.0 mass% or more and 66.0 mass% or less. - 前記中間層の厚みが、30nm以上150nm以下であることを特徴とする、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the thickness of the intermediate layer is 30 nm or more and 150 nm or less.
- 前記中間層における前記無機粒子成分の含有割合が、50.0質量%以上60.0質量%以下であることを特徴とする、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the content ratio of the inorganic particle component in the intermediate layer is 50.0 mass% or more and 60.0 mass% or less.
- 前記中間層が、前記無機粒子成分を含有する樹脂層であることを特徴とする、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the intermediate layer is a resin layer containing the inorganic particle component.
- 前記シリカ粒子以外の無機粒子が、酸化ジルコニウムであることを特徴とする、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the inorganic particles other than the silica particles are zirconium oxide.
- 前記金属層が、銅、ニッケル、クロム、鉄およびチタンの少なくとも1種を含有することを特徴とする、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the metal layer contains at least one of copper, nickel, chromium, iron and titanium.
- 前記透明導電層および前記金属層の両方が、パターニングされていることを特徴とする、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein both the transparent conductive layer and the metal layer are patterned.
- ロール状に巻回されていることを特徴とする、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the conductive film is wound in a roll shape.
- 請求項1に記載の導電性フィルムを備えることを特徴とする、タッチパネル。 A touch panel comprising the conductive film according to claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227037761A KR20220153659A (en) | 2017-04-19 | 2018-02-02 | Conductive film and touch panel |
CN201880025865.XA CN110537231B (en) | 2017-04-19 | 2018-02-02 | Conductive film and touch panel |
KR1020197027311A KR102667935B1 (en) | 2017-04-19 | 2018-02-02 | Conductive film and touch panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017082735A JP6953170B2 (en) | 2017-04-19 | 2017-04-19 | Conductive film and touch panel |
JP2017-082735 | 2017-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193686A1 true WO2018193686A1 (en) | 2018-10-25 |
Family
ID=63856233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003563 WO2018193686A1 (en) | 2017-04-19 | 2018-02-02 | Conductive film and touch panel |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6953170B2 (en) |
KR (2) | KR102667935B1 (en) |
CN (1) | CN110537231B (en) |
TW (1) | TWI754720B (en) |
WO (1) | WO2018193686A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111554431A (en) * | 2019-02-12 | 2020-08-18 | 日东电工株式会社 | Conductive film and touch panel |
WO2020262283A1 (en) * | 2019-06-27 | 2020-12-30 | 日東電工株式会社 | Transparent electrically-conductive film |
JP2021034204A (en) * | 2019-08-22 | 2021-03-01 | 日東電工株式会社 | Transparent conductive film |
WO2021134603A1 (en) * | 2019-12-31 | 2021-07-08 | 南昌欧菲显示科技有限公司 | Transparent conductive thin film, touch sensor and touch screen |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7114446B2 (en) * | 2018-11-28 | 2022-08-08 | 日東電工株式会社 | Conductive film and patterning method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167914A (en) * | 2010-02-18 | 2011-09-01 | Toyobo Co Ltd | Laminated film and transparent conductive laminated film using the same, transparent conductive laminated sheet and touch panel |
JP2013107349A (en) * | 2011-11-24 | 2013-06-06 | Nitto Denko Corp | Transparent conductive film |
JP2014209333A (en) * | 2013-03-26 | 2014-11-06 | Jsr株式会社 | Laminated body and composition for forming index matching layer |
JP2015075886A (en) * | 2013-10-08 | 2015-04-20 | 大日本印刷株式会社 | Laminate and touch panel sensor |
CN104966551A (en) * | 2015-05-30 | 2015-10-07 | 汕头万顺包装材料股份有限公司 | ITO conductive film with copper-plated surface |
WO2017104573A1 (en) * | 2015-12-16 | 2017-06-22 | 日東電工株式会社 | Metal layer–laminated transparent conductive film, and touch sensor using same |
JP2017139061A (en) * | 2016-02-01 | 2017-08-10 | 日東電工株式会社 | Transparent conductive film |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI290328B (en) * | 2002-05-23 | 2007-11-21 | Nof Corp | Transparent conductive laminated film and touch panel |
CN1319890C (en) * | 2002-11-15 | 2007-06-06 | 琳得科株式会社 | Light transmitting hard coat film for use in touch panels |
KR101046897B1 (en) * | 2004-10-06 | 2011-07-06 | 닛토덴코 가부시키가이샤 | transparent conductive film and touch panel |
EP1847386B1 (en) * | 2005-02-07 | 2013-10-23 | Teijin Dupont Films Japan Limited | Conductive multilayer film |
JP4419146B2 (en) * | 2005-06-13 | 2010-02-24 | 日東電工株式会社 | Transparent conductive laminate |
JP4871846B2 (en) * | 2006-11-24 | 2012-02-08 | グンゼ株式会社 | Film with transparent conductive film for touch panel and touch panel using the same |
KR101370188B1 (en) * | 2009-10-19 | 2014-03-05 | 도요보 가부시키가이샤 | Electrically conductive transparent film, and touch panel comprising same |
KR20120038194A (en) * | 2010-10-13 | 2012-04-23 | 삼성전기주식회사 | Conductive film and manufacturing method |
CN103687720B (en) * | 2011-08-11 | 2015-09-16 | 东丽株式会社 | The manufacture method of duplexer, transparent conductive laminate, touch panel and duplexer |
JP5826656B2 (en) | 2012-02-06 | 2015-12-02 | 日東電工株式会社 | Method for producing conductive film roll |
JP5932097B2 (en) * | 2014-04-17 | 2016-06-08 | 日東電工株式会社 | Transparent conductive film |
JP6512804B2 (en) * | 2014-12-05 | 2019-05-15 | 日東電工株式会社 | Transparent conductive film laminate and use thereof |
JP6628974B2 (en) * | 2015-03-30 | 2020-01-15 | リンテック株式会社 | Transparent conductive film |
JP6611471B2 (en) * | 2015-05-27 | 2019-11-27 | 日東電工株式会社 | Transparent conductive film |
JP2016225270A (en) * | 2015-05-27 | 2016-12-28 | 日東電工株式会社 | Transparent conductive film |
JP2017068509A (en) * | 2015-09-29 | 2017-04-06 | 日東電工株式会社 | Transparent conductive film and unevenness suppression method thereof |
-
2017
- 2017-04-19 JP JP2017082735A patent/JP6953170B2/en active Active
-
2018
- 2018-02-02 WO PCT/JP2018/003563 patent/WO2018193686A1/en active Application Filing
- 2018-02-02 KR KR1020197027311A patent/KR102667935B1/en active IP Right Grant
- 2018-02-02 KR KR1020227037761A patent/KR20220153659A/en not_active Application Discontinuation
- 2018-02-02 CN CN201880025865.XA patent/CN110537231B/en active Active
- 2018-02-08 TW TW107104442A patent/TWI754720B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167914A (en) * | 2010-02-18 | 2011-09-01 | Toyobo Co Ltd | Laminated film and transparent conductive laminated film using the same, transparent conductive laminated sheet and touch panel |
JP2013107349A (en) * | 2011-11-24 | 2013-06-06 | Nitto Denko Corp | Transparent conductive film |
JP2014209333A (en) * | 2013-03-26 | 2014-11-06 | Jsr株式会社 | Laminated body and composition for forming index matching layer |
JP2015075886A (en) * | 2013-10-08 | 2015-04-20 | 大日本印刷株式会社 | Laminate and touch panel sensor |
CN104966551A (en) * | 2015-05-30 | 2015-10-07 | 汕头万顺包装材料股份有限公司 | ITO conductive film with copper-plated surface |
WO2017104573A1 (en) * | 2015-12-16 | 2017-06-22 | 日東電工株式会社 | Metal layer–laminated transparent conductive film, and touch sensor using same |
JP2017139061A (en) * | 2016-02-01 | 2017-08-10 | 日東電工株式会社 | Transparent conductive film |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111554431A (en) * | 2019-02-12 | 2020-08-18 | 日东电工株式会社 | Conductive film and touch panel |
WO2020262283A1 (en) * | 2019-06-27 | 2020-12-30 | 日東電工株式会社 | Transparent electrically-conductive film |
CN114007857A (en) * | 2019-06-27 | 2022-02-01 | 日东电工株式会社 | Transparent conductive film |
JP2021034204A (en) * | 2019-08-22 | 2021-03-01 | 日東電工株式会社 | Transparent conductive film |
WO2021134603A1 (en) * | 2019-12-31 | 2021-07-08 | 南昌欧菲显示科技有限公司 | Transparent conductive thin film, touch sensor and touch screen |
Also Published As
Publication number | Publication date |
---|---|
KR20220153659A (en) | 2022-11-18 |
JP2018181722A (en) | 2018-11-15 |
TW201838807A (en) | 2018-11-01 |
KR102667935B1 (en) | 2024-05-29 |
CN110537231B (en) | 2021-06-08 |
KR20190141127A (en) | 2019-12-23 |
JP6953170B2 (en) | 2021-10-27 |
CN110537231A (en) | 2019-12-03 |
TWI754720B (en) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018193686A1 (en) | Conductive film and touch panel | |
JP6654865B2 (en) | Amorphous transparent conductive film, crystalline transparent conductive film and method for producing the same | |
WO2016088809A1 (en) | Transparent conductive film laminate and use therefor | |
JP6611471B2 (en) | Transparent conductive film | |
KR102715194B1 (en) | Method for producing conductive film | |
JP6923415B2 (en) | Transparent conductive film and transparent conductive film laminate | |
JP7323293B2 (en) | Conductive film and touch panel | |
JP2016134320A (en) | Transparent conductive body and touch panel | |
CN110636943B (en) | Transparent conductive film and image display device | |
JP6892751B2 (en) | Double-sided conductive film | |
WO2019116719A1 (en) | Transparent conductive film | |
JP7141237B2 (en) | HARD COAT FILM, TRANSPARENT CONDUCTIVE FILM, TRANSPARENT CONDUCTIVE FILM LAMINATE AND IMAGE DISPLAY DEVICE | |
JP7054651B2 (en) | Underlayer film, transparent conductive film, transparent conductive film laminate and image display device | |
KR20200051475A (en) | Conductive film and touch panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18788074 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197027311 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18788074 Country of ref document: EP Kind code of ref document: A1 |