[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019116719A1 - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
WO2019116719A1
WO2019116719A1 PCT/JP2018/038786 JP2018038786W WO2019116719A1 WO 2019116719 A1 WO2019116719 A1 WO 2019116719A1 JP 2018038786 W JP2018038786 W JP 2018038786W WO 2019116719 A1 WO2019116719 A1 WO 2019116719A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent conductive
transparent
conductive film
resin
Prior art date
Application number
PCT/JP2018/038786
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 河野
圭祐 松本
豪彦 安藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201880075701.8A priority Critical patent/CN111372776A/en
Priority to KR1020207011404A priority patent/KR20200098484A/en
Publication of WO2019116719A1 publication Critical patent/WO2019116719A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a transparent conductive film, and more particularly to a transparent conductive film suitably used for optical applications.
  • the transparent conductive film which formed the transparent conductive layer which consists of indium tin complex oxides in a desired electrode pattern is used for optical applications, such as a touch panel.
  • Patent Document 1 a transparent resin film, a hard coat layer, an intermediate layer, and a transparent conductive layer are sequentially provided, and the intermediate layer is made of metal oxide fine particles and an active energy ray-curable resin, and is refracted.
  • a transparent conductive film having a ratio of 1.65 to 1.90 is disclosed.
  • the coloring of transmitted light and the curling property of the film are suppressed, and the pattern portion and the non-pattern portion in the transparent conductive layer can not be distinguished, thereby making the appearance as a display element It is good.
  • the transparent conductive film of Patent Document 1 has low abrasion resistance. That is, when the surface of the transparent conductive layer is rubbed, the transparent conductive layer is broken, and a part thereof peels off and falls off the intermediate layer. As a result, the conductive performance is extremely poor.
  • an adhesive layer made of a resin between the intermediate layer and the transparent conductive layer that is, on the lower surface of the transparent conductive layer.
  • the etching solution excessively etches the adhesion layer when etching the transparent conductive layer into a desired pattern (for example, an electrode pattern) with an etching solution or the like. More specifically, the adhesion layer portion in contact with the lower surface of the pattern portion of the transparent conductive layer is etched. As a result, the pattern portion is not supported by the adhesive layer, and a defect occurs in which the pattern portion is cracked. That is, it is inferior to the patterning characteristic.
  • An object of the present invention is to provide a transparent conductive film having good scratch resistance and patterning properties.
  • the present invention [1] comprises a transparent resin substrate, a hard coat layer, an optical adjustment layer, an adhesive layer, and a transparent conductive layer in this order, and the adhesive layer is a resin layer containing nanosilica particles.
  • the surface of the adhesion layer on the transparent conductive layer side includes a transparent conductive film in which the ratio of the number of silicon atoms to the number of carbon atoms is 0.50 or more.
  • the present invention [2] includes the transparent conductive film according to [1], wherein the ratio of the number of silicon atoms to the number of carbon atoms is 1.00 or more.
  • the present invention [3] includes the transparent conductive film according to [1] or [2], wherein the thickness of the adhesion layer is 10 nm or more and 100 nm or less.
  • the present invention [4] includes the transparent conductive film according to any one of [1] to [3], wherein the transparent resin substrate is a cycloolefin polymer film.
  • the transparent resin substrate, the hard coat layer, the optical adjustment layer, the adhesion layer, and the transparent conductive layer are provided in this order, and the adhesion layer is a resin containing nanosilica particles. It is a layer. Therefore, the adhesiveness of an optical adjustment layer and a transparent conductive layer can be improved, and peeling and drop-off
  • the ratio of the number of silicon atoms to the number of carbon atoms is 0.50 or more. Therefore, when etching a transparent conductive layer, the excessive etching with respect to a contact
  • FIG. 1 shows a cross-sectional view of an embodiment of the transparent conductive film of the present invention.
  • FIG. 2 shows a cross-sectional view of an embodiment in which the transparent conductive film shown in FIG. 1 is patterned.
  • FIG. 3 shows a schematic view of a bending resistance test in an example.
  • the vertical direction in the drawing is the vertical direction (thickness direction, first direction)
  • the upper side of the drawing is the upper side (one side in the thickness direction, one side in the first direction)
  • the lower side is the lower side (thickness direction).
  • the left-right direction and the depth direction in the drawing are surface directions orthogonal to the up-down direction. Specifically, it conforms to the directional arrow in each figure.
  • the transparent conductive film 1 has a film shape (including a sheet shape) having a predetermined thickness, extends in a predetermined direction (surface direction) orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface.
  • the transparent conductive film 1 is, for example, one component such as a touch panel substrate provided in an image display device, that is, it is not an image display device. That is, the transparent conductive film 1 is a component for producing an image display device etc., does not include an image display element such as an LCD module, and an antiblocking layer 2, a transparent resin substrate 3 and a hard coat layer 4 described later. And an optical adjustment layer 5, an adhesive layer 6, and a transparent conductive layer 7.
  • the component can be distributed alone and can be used industrially.
  • the transparent conductive film 1 includes a transparent resin substrate 3, an antiblocking layer 2 disposed on the lower surface (the other surface in the thickness direction) of the transparent resin substrate 3, and a transparent The hard coat layer 4 disposed on the upper surface (one surface in the thickness direction) of the resin substrate 3, the optical adjustment layer 5 disposed on the upper surface of the hard coat layer 4, and the adhesion layer disposed on the upper surface of the optical adjustment layer 5 6 and a transparent conductive layer 7 disposed on the upper surface of the adhesive layer 6. More specifically, the transparent conductive film 1 includes the antiblocking layer 2, the transparent resin substrate 3, the hard coat layer 4, the optical adjustment layer 5, the adhesion layer 6, and the transparent conductive layer 7. Prepare in order.
  • the transparent conductive film 1 preferably comprises an antiblocking layer 2, a transparent resin base 3, a hard coat layer 4, an optical adjustment layer 5, an adhesive layer 6 and a transparent conductive layer 7.
  • the anti-blocking layer 2 is the upper surface of one transparent conductive film 1 and the lower surface of the other transparent conductive film 1 disposed on the upper surface, for example, when a plurality of transparent conductive films 1 are laminated. Is a blocking resistant layer for suppressing a blocking phenomenon in which a part of any one of the transparent conductive films peels off when they are peeled off. Moreover, it is also a scratch protection layer for making it hard to produce a scratch on the upper surface (namely, upper surface of the transparent transparent conductive layer 7) of the transparent conductive film 1.
  • the antiblocking layer 2 is the lowermost layer of the transparent conductive film 1 and has a film shape (including a sheet shape).
  • the antiblocking layer 2 is disposed on the entire lower surface of the transparent resin substrate 3 so as to be in contact with the lower surface of the transparent resin substrate 3.
  • the antiblocking layer 2 is formed of an antiblocking composition.
  • the antiblocking layer 2 contains a resin and particles. That is, the antiblocking layer 2 is a resin layer containing particles.
  • a curable resin As resin, a curable resin, a thermoplastic resin (for example, polyolefin resin) etc. are mentioned, for example, Preferably, a curable resin is mentioned.
  • an active energy ray curable resin which is cured by irradiation of active energy rays (specifically, ultraviolet rays, electron beams and the like), for example, a thermosetting resin which is cured by heating and the like can be mentioned.
  • active energy ray curable resin is mentioned.
  • the active energy ray-curable resin includes, for example, a polymer having a functional group having a polymerizable carbon-carbon double bond in the molecule.
  • a functional group a vinyl group, a (meth) acryloyl group (methacryloyl group and / or an acryloyl group), etc. are mentioned, for example.
  • active energy ray curable resin examples include (meth) acrylic ultraviolet curable resins such as urethane acrylate and epoxy acrylate.
  • curable resin other than active energy ray curable resin a urethane resin, a melamine resin, an alkyd resin, a siloxane type polymer, an organic silane condensate etc. are mentioned, for example.
  • These resins can be used alone or in combination of two or more.
  • Examples of the particles include organic particles and inorganic particles.
  • Examples of organic particles include crosslinked acrylic particles such as crosslinked acrylic / styrene resin particles.
  • Examples of the inorganic particles include silica particles, for example, metal oxide particles composed of zirconium oxide, titanium oxide, zinc oxide, tin oxide or the like, for example, carbonate particles such as calcium carbonate. The particles can be used alone or in combination of two or more.
  • organic particles are mentioned, and more preferably, crosslinked acrylic particles are mentioned.
  • the average particle size (primary particle size) of the particles is, for example, 10 nm or more, preferably 100 nm or more, and for example, 5 ⁇ m or less, preferably 3 ⁇ m or less.
  • the average particle size of the particles indicates the average particle size (D 50 ) of the particle size distribution on a volume basis, and for example, a solution in which the particles are dispersed in water can be measured by light diffraction / scattering method.
  • the content ratio of the particles is, for example, 0.1 parts by mass or more, preferably 0.2 parts by mass or more, and for example, 10 parts by mass or less, preferably 5 parts by mass, with respect to 100 parts by mass of the resin. It is below.
  • the antiblocking composition may further contain known additives such as leveling agent, thixotropy agent, antistatic agent and the like.
  • the thickness of the antiblocking layer 2 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and, for example, 10 ⁇ m or less, preferably 3 ⁇ m, from the viewpoints of scratch resistance, antiblocking property, and removability. It is below.
  • the thickness of the antiblocking layer 2 can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multiphotometric system (for example, “MCPD 2000” manufactured by Otsuka Electronics Co., Ltd.).
  • the transparent resin base material 3 is a transparent base material for securing the mechanical strength of the transparent conductive film 1. That is, the transparent resin base 3 supports the transparent conductive layer 7 together with the hard coat layer 4, the optical adjustment layer 5 and the adhesion layer 6.
  • the transparent resin substrate 3 has a film shape (including a sheet shape).
  • the transparent resin substrate 3 is disposed on the entire upper surface of the antiblocking layer 2 so as to be in contact with the upper surface of the antiblocking layer 2. More specifically, the transparent resin substrate 3 is disposed between the antiblocking layer 2 and the hard coat layer 4 so as to be in contact with the upper surface of the antiblocking layer 2 and the lower surface of the hard coat layer 4 .
  • the transparent resin substrate 3 is, for example, a polymer film having transparency.
  • the material of the transparent resin substrate 3 is, for example, a polyester resin such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate etc., for example (meth) acrylic resin (acrylic resin and / or methacrylic resin) such as polymethacrylate
  • an olefin resin such as polyethylene, polypropylene, cycloolefin polymer (for example, norbornene type, cyclopentadiene type), for example, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin And polystyrene resins.
  • the transparent resin substrate 3 can be used alone or in combination of two or more.
  • the transparent resin substrate 3 is preferably a cycloolefin polymer film (COP film) from the viewpoint of high transparency and low birefringence.
  • COP film cycloolefin polymer film
  • the tensile strength at break of the transparent resin base material 3 is, for example, 10 MPa or more, preferably 30 MPa or more, and for example, 100 MPa or less, preferably 85 MPa or less. If the tensile strength at break is within the above range, the transparent resin substrate 3 can be favorably transported when adopting the transparent conductive film 1 by the roll-to-roll method, and the transparent resin substrate 3 may be cracked or the like. Damage can be suppressed.
  • the tensile strength at break can be measured in accordance with ISO 527.
  • the total light transmittance (JIS K 7375-2008) of the transparent resin substrate 3 is, for example, 80% or more, preferably 85% or more.
  • the thickness of the transparent resin substrate 3 is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, from the viewpoints of mechanical strength, hitting characteristics when the transparent conductive film 1 is used as a film for touch panel, etc. It is 300 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the thickness of the transparent resin substrate 3 can be measured, for example, using a micro gauge type thickness meter.
  • the hard coat layer 4 is a protective layer for suppressing the occurrence of scratches on the transparent resin substrate 3 when producing the transparent conductive film 1. Moreover, when laminating
  • the hard coat layer 4 has a film shape (including a sheet shape).
  • the hard coat layer 4 is disposed on the entire upper surface of the transparent resin substrate 3 so as to be in contact with the upper surface of the transparent resin substrate 3. More specifically, the hard coat layer 4 is disposed between the transparent resin base 3 and the optical adjustment layer 5 so as to be in contact with the upper surface of the transparent resin base 3 and the lower surface of the optical adjustment layer 5 There is.
  • the hard coat layer 4 is formed of a hard coat composition.
  • the hard coat composition contains a resin. That is, the hard coat layer 4 is a resin layer.
  • resin illustrated by the anti blocking composition is mentioned.
  • resin illustrated by the anti blocking composition is mentioned.
  • a curable resin more preferably, an active energy ray curable resin, and still more preferably, a (meth) acrylic ultraviolet curable resin can be mentioned.
  • the hardcoat composition can also contain particles. Thereby, the hard-coat layer 4 can be made into the anti blocking layer which has a blocking resistance characteristic. Although it does not specifically limit as a particle
  • the hard coat composition may further contain known additives such as leveling agents, thixotropy agents, antistatic agents and the like.
  • the thickness of the hard coat layer 4 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 3 ⁇ m or less, from the viewpoint of scratch resistance.
  • the thickness of the hard coat layer 4 can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multiphotometric system.
  • the optical adjustment layer 5 controls optical properties of the transparent conductive film 1 (eg, for example, in order to ensure excellent transparency of the transparent conductive film 1 while suppressing visual recognition of the wiring pattern in the transparent conductive layer 7). Layer to adjust the refractive index).
  • the optical adjustment layer 5 has a film shape (including a sheet shape), and is disposed on the entire top surface of the hard coat layer 4 so as to be in contact with the top surface of the hard coat layer 4. More specifically, the optical adjustment layer 5 is disposed between the hard coat layer 4 and the adhesion layer 6 so as to be in contact with the upper surface of the hard coat layer 4 and the lower surface of the adhesion layer 6.
  • the optical adjustment layer 5 is formed of an optical adjustment composition.
  • the optical modulating composition contains a resin, preferably containing a resin and particles. That is, the optical adjustment layer 5 is preferably a resin layer containing particles.
  • resin illustrated by the anti blocking composition is mentioned.
  • resin illustrated by the anti blocking composition is mentioned.
  • a curable resin more preferably, an active energy ray curable resin, and still more preferably, a (meth) acrylic ultraviolet curable resin can be mentioned.
  • the content ratio of the resin is, for example, 10% by mass or more, preferably 25% by mass or more, and for example, 95% by mass or less, preferably 60% by mass or less, with respect to the optical adjustment composition.
  • a suitable material can be selected according to the refractive index for which an optical adjustment layer seeks,
  • grains illustrated by the anti blocking composition are mentioned.
  • inorganic particles more preferably metal oxide particles, further preferably zirconium oxide particles (ZnO 2 ) can be mentioned.
  • the content ratio of the particles is, for example, 5% by mass or more, preferably 40% by mass or more, and for example, 90% by mass or less, preferably 75% by mass or less, with respect to the optical adjustment composition.
  • the optical adjustment composition may further contain known additives such as leveling agents, thixotropes, and antistatic agents.
  • the refractive index of the optical adjustment layer 5 is, for example, 1.40 or more, preferably 1.55 or more, and for example, 1.80 or less, preferably 1.70 or less.
  • the refractive index can be measured, for example, by an Abbe refractometer.
  • the thickness of the optical adjustment layer 5 is, for example, 5 nm or more, preferably 10 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
  • the thickness of the optical adjustment layer 5 can be calculated based on, for example, the wavelength of the interference spectrum observed using an instantaneous multiphotometric system.
  • Adhesion Layer In the adhesion layer 6, when the transparent conductive layer 7 is scratched, the transparent conductive layer 7 and the optical adjustment are performed in order to suppress peeling and detachment of part of the transparent conductive layer 7 from the transparent conductive film 1. It is a layer that adjusts (improves) the adhesion to the layer 5.
  • the adhesion layer 6 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the optical adjustment layer 5 so as to be in contact with the upper surface of the optical adjustment layer 5. More specifically, the adhesion layer 6 is disposed between the optical adjustment layer 5 and the transparent conductive layer 7 so as to be in contact with the upper surface of the optical adjustment layer 5 and the lower surface of the transparent conductive layer 7.
  • the adhesion layer 6 is formed of an adhesion composition.
  • the adhesion composition contains a resin and nanosilica particles. That is, the adhesion layer 6 is a resin layer containing nano silica particles. As a result, the adhesion layer 6 reliably adheres to both the optical adjustment layer 5 and the transparent conductive layer 7 and it is possible to suppress the detachment of these.
  • resin illustrated by the anti blocking composition is mentioned.
  • resin illustrated by the anti blocking composition is mentioned.
  • a curable resin more preferably, an active energy ray curable resin, and still more preferably, a (meth) acrylic ultraviolet curable resin can be mentioned.
  • the content ratio of the resin is, for example, 10% by mass or more, preferably 25% by mass or more, and for example, 50% by mass or less, preferably 40% by mass or less, based on the adhesion composition. If the content ratio of the resin is in the above range, it is possible to suppress the decrease in the etching rate of the transparent conductive layer 7 due to the excessive adhesion between the adhesion layer 6 and the transparent conductive layer 7.
  • the average particle size (primary particle size) of the nanosilica particles is, for example, 1 nm or more, preferably 5 nm or more, and for example, 100 nm or less, preferably 30 nm or less, more preferably 20 nm or less.
  • the average particle size of the nanosilica particles indicates the average particle size (D 50 ) of the particle size distribution based on volume, and for example, a solution in which the particles are dispersed in water can be measured by light diffraction / scattering method.
  • the content ratio of the nanosilica particles is, for example, 50% by mass or more, preferably 60% by mass or more, and for example, 90% by mass or less, preferably 75% by mass or less, with respect to the adhesion composition. If the content rate of nano silica particles is more than the above-mentioned lower limit, ratio of the number of silicon atoms in the upper surface of adhesion layer 6 can be made into a desired range, and patterning characteristics can be improved. Moreover, if the content rate of nano silica particle is below the said upper limit, it can suppress that the etching rate of the transparent conductive layer 7 falls because of the excessive adhesion of the contact layer 6 and the transparent conductive layer 7.
  • the adhesion composition may further contain known additives such as a leveling agent, a thixotropy agent, and an antistatic agent.
  • the ratio of the number of silicon atoms to the number of carbon atoms is 0.50 or more, preferably 1.00 or more, on the upper surface (the surface on the transparent conductive layer 7 side) of the adhesion layer 6. , 2.00 or less. If the ratio is equal to or more than the above lower limit, erosion of the adhesion layer 6 (particularly, the adhesion layer 6 in contact with the lower surface of the transparent conductive layer 7) by the etching solution can be suppressed at the time of etching the transparent conductive layer 7. Cracks in the patterned transparent conductive layer 7 can be suppressed. As a result, the patterning characteristics are excellent.
  • the ratio (Si / C) can be measured by X-ray photoelectron spectroscopy (electron spectroscopy for chemical analysis, ESCA). Specific conditions will be described later in the examples.
  • the thickness of the adhesion layer 6 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 100 nm or less, preferably 50 nm or less.
  • the thickness of the adhesion layer 6 can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multiphotometric system.
  • the transparent conductive layer 7 is a conductive layer for crystallization as necessary and forming a desired pattern in a later step to form a transparent pattern portion 8 (described later).
  • the transparent conductive layer 7 is the uppermost layer of the transparent conductive film 1 and has a film shape (including a sheet shape).
  • the transparent conductive layer 7 is disposed on the entire upper surface of the adhesive layer 6 so as to be in contact with the upper surface of the adhesive layer 6.
  • the material of the transparent conductive layer 7 is, for example, at least one selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W. And metal oxides containing the following metals.
  • the metal oxide may further be doped with the metal atoms shown in the above group, as needed.
  • the transparent conductive layer 7 include indium-containing oxides such as indium tin complex oxide (ITO), and antimony-containing oxides such as antimony tin complex oxide (ATO).
  • ITO indium tin complex oxide
  • ATO antimony tin complex oxide
  • ITO indium tin complex oxide
  • ITO indium tin complex oxide
  • ITO antimony tin complex oxide
  • ITO indium tin complex oxide
  • ITO indium tin complex oxide
  • ATO antimony tin complex oxide
  • the tin oxide (SnO 2 ) content is, for example, 0 with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). .5 mass% or more, preferably 3 mass% or more, and for example, 15 mass% or less, preferably 13 mass% or less. If content of a tin oxide is more than the said minimum, durability of the transparent conductive layer 7 can be made still more favorable. If content of a tin oxide is below the said upper limit, crystal
  • ITO may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these.
  • additional component include metal elements other than In and Sn, and specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe , Pb, Ni, Nb, Cr, Ga and the like.
  • the surface resistance of the transparent conductive layer 7 is, for example, 200 ⁇ / sq or more, preferably 250 ⁇ / sq or more, and for example, 500 ⁇ / sq or less.
  • the surface resistance can be measured by the four probe method.
  • the thickness of the transparent conductive layer 7 is, for example, 10 nm or more, preferably 15 nm or more, and for example, 50 nm or less, preferably 30 nm or less.
  • the thickness of the transparent conductive layer 7 can be measured, for example, using an instantaneous multiphotometric system.
  • Transparent conductive layer 7 may be either amorphous or crystalline.
  • the transparent conductive layer is amorphous or crystalline
  • the transparent conductive layer is an ITO layer
  • hydrochloric acid concentration 5 mass%
  • washed with water and dried about 15 mm
  • the resistance between the terminals if the resistance between terminals exceeds 15 k ⁇ after immersion in water (20 ° C., concentration: 5% by mass), washing with water, and drying, the ITO layer is made amorphous and between 15 mm
  • the resistance between terminals is 10 k ⁇ or less, the ITO layer is crystalline.
  • the transparent conductive film 1 is produced by the antiblocking layer 2 on the lower surface (the other surface in the thickness direction) of the transparent resin substrate 3, and on the upper surface (the one surface in the thickness direction) , Hard coat layer 4 is provided. Then, on the upper surface of the hard coat layer 4, the optical adjustment layer 5, the adhesion layer 6, and the transparent conductive layer 7 are provided in this order. The details will be described below.
  • a known or commercially available transparent resin substrate 3 is prepared.
  • the transparent resin substrate 3 can be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like.
  • the antiblocking layer 2 is provided on the lower surface of the transparent resin substrate 3.
  • the antiblocking layer 2 is formed on the lower surface of the transparent resin substrate 3 by wet coating the antiblocking composition on the lower surface of the transparent resin substrate 3.
  • the antiblocking composition is diluted with a solvent to prepare a solution (varnish), and subsequently, the antiblocking composition solution is applied to the lower surface of the transparent resin substrate 3 and dried.
  • an organic solvent As a solvent, an organic solvent, an aqueous solvent (specifically, water) etc. are mentioned, for example, Preferably, an organic solvent is mentioned.
  • the organic solvent include alcohol compounds such as methanol, ethanol and isopropyl alcohol, ketone compounds such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ester compounds such as ethyl acetate and butyl acetate, propylene glycol monomethyl ether (PGME) And ether compounds such as aromatic compounds such as toluene and xylene.
  • PGME propylene glycol monomethyl ether
  • ether compounds such as aromatic compounds such as toluene and xylene.
  • the solid concentration in the composition solution is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 30% by mass or less, preferably 20% by mass or less.
  • the coating method can be appropriately selected according to the antiblocking composition solution and the transparent resin substrate 3.
  • Examples of the coating method include dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating method, extrusion coating method and the like.
  • the drying temperature is, for example, 50 ° C. or more, preferably 70 ° C. or more, and for example, 200 ° C. or less, preferably 100 ° C. or less.
  • the drying time is, for example, 0.5 minutes or more, preferably 1 minute or more, and for example, 60 minutes or less, preferably 20 minutes or less.
  • the antiblocking composition contains an active energy ray curable resin
  • the active energy ray curable resin is cured by irradiating an active energy ray after drying of the antiblocking composition solution.
  • thermosetting resin when an antiblocking composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
  • the hard coat layer 4 is provided on the upper surface of the transparent resin substrate 3.
  • the hard coat layer 4 is formed on the upper surface of the transparent resin substrate 3 by wet-coating the hard coat composition on the upper surface of the transparent resin substrate 3.
  • a solution (varnish) in which the hard coat composition is diluted with a solvent is prepared, and then the hard coat composition solution is applied to the upper surface of the transparent resin substrate 3 and dried.
  • the conditions such as preparation, coating and drying of the hard coat composition can be the same as the conditions such as preparation, coating and drying exemplified for the antiblocking composition.
  • the active energy ray curable resin is cured by irradiating an active energy ray after drying of the hard coat composition solution.
  • thermosetting resin when a hard-coat composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
  • the optical adjustment layer 5 is provided on the upper surface of the hard coat layer 4.
  • the optical adjustment layer 5 is formed on the upper surface of the hard coat layer 4 by wet-coating the optical adjustment composition on the upper surface of the hard coat layer 4.
  • a solution (varnish) in which the optical adjustment composition is diluted with a solvent is prepared, and subsequently, the optical adjustment composition solution is applied to the upper surface of the hard coat layer 4 and dried.
  • the conditions such as preparation, coating and drying of the optical adjustment composition can be the same as the conditions such as preparation, coating and drying exemplified for the antiblocking composition.
  • an optical adjustment composition contains active energy ray curable resin
  • active energy ray curable resin is hardened by irradiating an active energy ray after drying of an optical adjustment composition solution.
  • thermosetting resin when an optical adjustment composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
  • the adhesion layer 6 is provided on the upper surface of the optical adjustment layer 5.
  • the adhesion layer 6 is formed on the upper surface of the optical adjustment layer 5 by wet coating the adhesion composition on the upper surface of the optical adjustment layer 5.
  • a solution (varnish) obtained by diluting the adhesion composition with a solvent is prepared, and subsequently, the adhesion composition solution is applied to the upper surface of the optical adjustment layer 5 and dried.
  • the conditions such as preparation, coating and drying of the adhesive composition can be the same as the conditions such as preparation, coating and drying exemplified for the antiblocking composition.
  • the adhesion composition contains an active energy ray-curable resin
  • the active energy ray-curable resin is cured by irradiating an active energy ray after drying of the adhesion composition solution.
  • thermosetting resin when an adhesion composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
  • the transparent conductive layer 7 is provided on the upper surface of the adhesive layer 6.
  • the transparent conductive layer 7 is formed on the upper surface of the adhesive layer 6 by a dry method.
  • a dry method a vacuum evaporation method, sputtering method, ion plating method etc. are mentioned, for example.
  • a sputtering method is mentioned.
  • a thin transparent conductive layer 7 can be formed by this method.
  • the above-mentioned inorganic substance constituting the transparent conductive layer 7 is mentioned as a target material, and preferably ITO is mentioned.
  • the tin oxide concentration of ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more, and for example, 15% by mass or less, preferably, from the viewpoint of durability of the ITO layer, crystallization, etc. , 13 mass% or less.
  • the flow ratio of the reactive gas is not particularly limited, but is, for example, 0.1 flow% to 5 flow% with respect to the total flow ratio of the sputtering gas and the reactive gas.
  • the sputtering method is carried out under vacuum.
  • the atmospheric pressure at the time of sputtering is, for example, 1 Pa or less, preferably 0.7 Pa or less, from the viewpoint of suppression of a decrease in sputtering rate, discharge stability, and the like.
  • the power source used for the sputtering method may be, for example, any of a DC power source, an AC power source, an MF power source, and an RF power source, or a combination thereof.
  • the transparent conductive layer 7 of desired thickness you may set a target material, the conditions of sputtering, etc. suitably and may implement sputtering multiple times.
  • the transparent resin substrate 3 is transported by the roll-to-roll method while the transparent resin substrate 3 includes the antiblocking layer 2, the hard coat layer 4, the optical adjustment layer 5, and the adhesive layer 6.
  • the transparent conductive layer 7 may be formed, and some or all of these layers may be formed by a batch system (single wafer system). From the viewpoint of productivity, each layer is preferably formed on the transparent resin substrate 3 while being conveyed by the roll-to-roll method.
  • the transparent conductive film 1 provided with the antiblocking layer 2, the transparent resin base material 3, the hard coat layer 4, the optical adjustment layer 5, the adhesion layer 6, and the transparent conductive layer 7 in order is obtained.
  • the transparent conductive film 1 shown in FIG. 1 is a non-patterned transparent conductive film which has not been patterned.
  • the thickness of the transparent conductive film 1 obtained is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the non-patterned transparent conductive film is patterned by known etching to form the transparent conductive layer 7.
  • the pattern of the transparent conductive layer 7 is suitably determined according to the use to which the transparent conductive film 1 is applied, electrode patterns, such as stripe form, and a wiring pattern are mentioned, for example.
  • a covering portion (such as a masking tape) is disposed on the transparent conductive layer 7 so as to correspond to the pattern portion 8 and the non-pattern portion 9, and the transparent conductive layer 7 (non-patterning portion exposed from the covering portion 9) etch using an etching solution.
  • the etching solution include acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, phosphoric acid and mixed acids thereof.
  • the covering portion is removed from the upper surface of the transparent conductive layer 7 by, for example, peeling.
  • the patterning transparent conductive film 1a by which the transparent conductive layer 7 was patterned is mentioned.
  • crystal conversion treatment is performed on the transparent conductive layer 7 of the transparent conductive film 1 as necessary.
  • the heat treatment is performed on the transparent conductive film 1 under the atmosphere.
  • the heat treatment can be performed using, for example, an infrared heater, an oven, or the like.
  • the heating temperature is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 200 ° C. or less, preferably 160 ° C. or less.
  • the heating temperature is in the above range, crystal conversion can be ensured while suppressing thermal damage to the transparent resin substrate 3 and impurities generated from the transparent resin substrate 3.
  • the heating time is appropriately determined according to the heating temperature, and is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 5 hours or less, preferably 3 hours or less.
  • the transparent conductive film 1 in which the transparent conductive layer 7 is crystallized is obtained.
  • the transparent conductive film 1 is provided, for example, in an optical device.
  • an optical apparatus an image display apparatus etc. are mentioned, for example.
  • the transparent conductive film 1 is used, for example, as a touch panel substrate .
  • a type of touch panel various types such as an optical type, an ultrasonic type, an electrostatic capacity type, and a resistive film type can be mentioned, and in particular, it is suitably used for an electrostatic capacity type touch panel.
  • this transparent conductive film 1 is provided with the transparent resin base material 3, the hard-coat layer 4, the optical adjustment layer 5, the contact
  • the adhesion layer 6 is a resin layer containing nano silica particles. Therefore, the adhesion between the optical adjustment layer 5 and the transparent conductive layer 7 can be improved. Therefore, even if the upper surface of the transparent conductive film 1 is rubbed and the transparent conductive layer 7 is broken, the transparent conductive layer 7 can be maintained on the surface of the transparent conductive film 1 by the presence of the adhesive layer 6. That is, peeling and falling off of the transparent conductive layer 7 can be suppressed. As a result, it is possible to suppress a significant decrease in the conductive performance (specifically, an excessive increase in the surface resistance value) due to the loss of the transparent conductive layer 7. Therefore, it is excellent in abrasion resistance.
  • the ratio of the number of silicon atoms to the number of carbon atoms is 0.50 or more. Therefore, since silicon atoms (nanosilica particles) are sufficiently present on the upper surface of adhesion layer 6, the etching liquid etches adhesion layer 6 (especially transparent conductive layer 7) when etching transparent conductive layer 7 with the etching solution. Etching of the adhesion layer portion in contact with the lower surface of the substrate. As a result, it is possible to suppress the occurrence of cracks in the transparent conductive layer 7 caused by the loss of the adhesive layer 6 supporting the transparent conductive layer 7. Therefore, the patterning characteristic to transparent conductive layer 7 is good.
  • this transparent conductive film 1 is provided with the transparent resin base material 3 and the hard-coat layer 4 arrange
  • the transparent resin substrate 3 is a COP film.
  • the COP film is useful in that it prevents the depolarization of the polarizing plate and the film for a touch panel because the birefringence is lower than that of other resin films such as PET film and the retardation is substantially zero.
  • the COP film is soft, it is more likely to cause, for example, a defect of the transparent conductive layer 7 due to abrasion than other resin films such as a PET film.
  • the said subject by abrasion and patterning is solved especially with respect to the case where such a transparent resin base material 3 is a COP film, Furthermore, the transparent resin base material 3 It is also possible to solve the problem of poor appearance due to scratches.
  • the transparent conductive film 1 includes the antiblocking layer 2 disposed on the lower surface of the transparent resin substrate 3.
  • the antiblocking layer 2 disposed on the lower surface of the transparent resin substrate 3.
  • a layer may be provided.
  • the above-mentioned hard-coat layer 4 etc. are mentioned, for example.
  • the transparent conductive film 1 is equipped with the antiblocking layer 2 arrange
  • Example 1 As a transparent resin substrate, a norbornene resin film (COP film, thickness 40 ⁇ m, manufactured by Nippon Zeon Co., Ltd., “Zeonor film”, tensile breaking strength 76 MPa) was prepared.
  • COP film thickness 40 ⁇ m, manufactured by Nippon Zeon Co., Ltd., “Zeonor film”, tensile breaking strength 76 MPa
  • a hard coat composition solution (acrylic resin composition, manufactured by Aika Kogyo Co., Ltd., "Z-850-6L") having ultraviolet curability is applied to the upper surface of the transparent resin substrate, and dried at 80 ° C for 1 minute did. Thereafter, ultraviolet rays were irradiated with an ozone type high pressure mercury lamp to cure the hard coat composition. Thus, a hard coat layer having a thickness of 1.0 ⁇ m was formed.
  • an optical adjustment composition solution having ultraviolet curability (containing zirconia oxide particles, manufactured by Arakawa Chemical Industries, "Opster KZ6955”) is applied to the upper surface of the hard coat layer on the upper surface of the hard coat layer, and 1 at 60 ° C. Dried for a minute. Thereafter, ultraviolet light was irradiated with an ozone type high pressure mercury lamp to cure the optical control composition.
  • an optical adjustment layer having a thickness of 25 nm and a refractive index of 1.68 was formed.
  • composition solution containing 60 parts by mass of nano silica particles (average primary particle diameter: 10 nm), 40 parts by mass of acrylic resin, and a solvent (PGME) as an adhesive composition having ultraviolet curability (manufactured by Arakawa Chemical Co., Ltd.) "Opster Z7549" was prepared.
  • the adhesion composition solution was applied to the upper surface of the optical adjustment layer and dried at 60 ° C. for 1 minute. Thereafter, ultraviolet light was irradiated with an ozone type high pressure mercury lamp to cure the adhesion composition. Thereby, the adhesion layer with a thickness of 40 nm was formed.
  • an amorphous ITO layer (transparent conductive layer) having a thickness of 26 nm was formed on the upper surface of the adhesion layer by DC sputtering.
  • an ITO target consisting of a sintered body of 80% by mass of indium oxide and 20% by mass of tin oxide was sputtered under a vacuum atmosphere of atmospheric pressure 0.4 Pa into which 98% of argon gas and 2% of oxygen gas were introduced. did.
  • the surface resistance value of the transparent conductive layer was 340 ohms / square.
  • the transparent conductive film which consists of an anti blocking layer / transparent resin base material / hard-coat layer / optical adjustment layer / adhesion layer / transparent conductive layer was manufactured.
  • Example 2 A transparent conductive film was produced in the same manner as in Example 1 except that the composition of the adhesion composition was changed to the composition described in Table 1.
  • Comparative Examples 1 to 3 A transparent conductive film was produced in the same manner as in Example 1 except that the composition of the adhesion composition was changed to the composition described in Table 1.
  • Comparative example 4 A transparent conductive film was produced in the same manner as in Example 1 except that the adhesion layer was not provided.
  • Comparative example 5 A transparent conductive film was produced in the same manner as in Example 1 except that the hard coat layer was not provided.
  • the surface element of the intermediate film (anti-blocking layer / transparent resin substrate / hard coat layer / optical adjustment layer / adhesive layer) at the time of forming the adhesive layer was subjected to X-ray photoelectron spectroscopy (ESCA) on the surface of the adhesive layer. An analysis was performed.
  • ESA X-ray photoelectron spectroscopy
  • the qualitative analysis was performed by measuring by wide scan. Next, narrow scan measurement was performed on C, N, O, and Si elements to calculate an element ratio (atomic%).
  • the measurement conditions were as follows.
  • a commercially available adhesive tape (1 cm wide) is attached in the form of stripes at intervals of 1 cm on the surface of the transparent conductive layer of the transparent conductive film of each example and each comparative example, and transparent using 50 wt.
  • the conductive layer (ITO layer) was etched.
  • the pressure-sensitive adhesive tape was peeled off from the transparent conductive layer, and the surface of the exposed transparent conductive layer (pattern portion) was observed with a microscope (magnification: 20 times).
  • the transparent conductive film was cut into a width of 50 mm and a length of 100 mm, folded in two so that the antiblocking layer was on the inside, and both ends in the lengthwise direction of the film were bonded with an adhesive tape to obtain Sample 10.
  • the disc-like weight 11 (diameter 50 mm, weight 500 g) was allowed to stand on the upper surface (width 50 mm ⁇ length 50 mm) of the sample 10 for 10 seconds, and then the bent portion 12 of the sample 10 was observed (see FIG. 3).
  • the transparent conductive film of the present invention can be applied to various industrial products, and is suitably used, for example, as a touch panel substrate provided in an image display device.
  • Transparent conductive film 3 Transparent resin base 4 Hard coat layer 5 Optical adjustment layer 6 Adhesion layer 7 Transparent conductive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A transparent conductive film is provided with a transparent resin base, a hard coat layer, an optical control layer, an adhesive layer and a transparent conductive layer in this order. The adhesive layer is a resin layer containing nano silica particles, and the ratio of the number of silicon atoms to the number of carbon atoms in the transparent conductive layer-side surface of the adhesive layer is 0.50 or more.

Description

透明導電性フィルムTransparent conductive film
 本発明は、透明導電性フィルム、詳しくは、光学用途に好適に用いられる透明導電性フィルムに関する。 The present invention relates to a transparent conductive film, and more particularly to a transparent conductive film suitably used for optical applications.
 従来、インジウムスズ複合酸化物からなる透明導電層を所望の電極パターンに形成した透明導電性フィルムが、タッチパネルなどの光学用途に用いられる。 Conventionally, the transparent conductive film which formed the transparent conductive layer which consists of indium tin complex oxides in a desired electrode pattern is used for optical applications, such as a touch panel.
 例えば、特許文献1には、透明樹脂フィルムと、ハードコート層と、中間層と、透明導電層とを順に備え、中間層が、金属酸化物微粒子と活性エネルギー線硬化型樹脂とからなり、屈折率が1.65~1.90である透明導電性フィルムが開示されている。下記特許文献1の透明導電性フィルムでは、透過光の着色とフィルムのカール性とが抑制され、透明導電層におけるパターン部と非パターン部との識別ができないようにして、表示素子としての見栄えを良好にしている。 For example, in Patent Document 1, a transparent resin film, a hard coat layer, an intermediate layer, and a transparent conductive layer are sequentially provided, and the intermediate layer is made of metal oxide fine particles and an active energy ray-curable resin, and is refracted. A transparent conductive film having a ratio of 1.65 to 1.90 is disclosed. In the transparent conductive film of Patent Document 1 below, the coloring of transmitted light and the curling property of the film are suppressed, and the pattern portion and the non-pattern portion in the transparent conductive layer can not be distinguished, thereby making the appearance as a display element It is good.
特開2017-62609号公報JP, 2017-62609, A
 しかし、上記特許文献1の透明導電性フィルムでは、耐擦傷性が低い。すなわち、透明導電層の表面が擦れると、透明導電層が割れてしまい、その一部が、中間層から剥離および脱落する。その結果、導電性能が著しく劣る。 However, the transparent conductive film of Patent Document 1 has low abrasion resistance. That is, when the surface of the transparent conductive layer is rubbed, the transparent conductive layer is broken, and a part thereof peels off and falls off the intermediate layer. As a result, the conductive performance is extremely poor.
 そこで、透明導電層の剥離を抑制するために、中間層と透明導電層との間に(すなわち、透明導電層の下面に)、樹脂からなる密着層を設けることが検討される。 Therefore, in order to suppress peeling of the transparent conductive layer, it is considered to provide an adhesive layer made of a resin between the intermediate layer and the transparent conductive layer (that is, on the lower surface of the transparent conductive layer).
 しかし、透明導電層の下面に密着層を設けた場合、透明導電層をエッチング液などで所望のパターン(例えば、電極パターン)にエッチングする際に、エッチング液が、密着層を過度にエッチングする。より具体的には、透明導電層のパターン部の下面と接触する密着層部分を、エッチングする。その結果、パターン部が密着層によって支持されなくなり、パターン部にクラックが発生する不具合が生じる。すなわち、パターニング特性に劣る。 However, when the adhesion layer is provided on the lower surface of the transparent conductive layer, the etching solution excessively etches the adhesion layer when etching the transparent conductive layer into a desired pattern (for example, an electrode pattern) with an etching solution or the like. More specifically, the adhesion layer portion in contact with the lower surface of the pattern portion of the transparent conductive layer is etched. As a result, the pattern portion is not supported by the adhesive layer, and a defect occurs in which the pattern portion is cracked. That is, it is inferior to the patterning characteristic.
 本発明は、耐擦傷性およびパターニング特性が良好である透明導電性フィルムを提供することにある。 An object of the present invention is to provide a transparent conductive film having good scratch resistance and patterning properties.
 本発明[1]は、透明樹脂基材と、ハードコート層と、光学調整層と、密着層と、透明導電層とをこの順に備え、前記密着層は、ナノシリカ粒子を含有する樹脂層であり、前記密着層の前記透明導電層側の表面において、炭素原子数に対するケイ素原子数の比が、0.50以上である、透明導電性フィルムを含む。 The present invention [1] comprises a transparent resin substrate, a hard coat layer, an optical adjustment layer, an adhesive layer, and a transparent conductive layer in this order, and the adhesive layer is a resin layer containing nanosilica particles. The surface of the adhesion layer on the transparent conductive layer side includes a transparent conductive film in which the ratio of the number of silicon atoms to the number of carbon atoms is 0.50 or more.
 本発明[2]は、前記炭素原子数に対するケイ素原子数の比が、1.00以上である、[1]に記載の透明導電性フィルムを含む。 The present invention [2] includes the transparent conductive film according to [1], wherein the ratio of the number of silicon atoms to the number of carbon atoms is 1.00 or more.
 本発明[3]は、前記密着層の厚みが、10nm以上、100nm以下である、[1]または[2]に記載の透明導電性フィルムを含む。 The present invention [3] includes the transparent conductive film according to [1] or [2], wherein the thickness of the adhesion layer is 10 nm or more and 100 nm or less.
 本発明[4]は、前記透明樹脂基材が、シクロオレフィンポリマーフィルムである、[1]~[3]のいずれか一項に記載の透明導電性フィルムを含む。 The present invention [4] includes the transparent conductive film according to any one of [1] to [3], wherein the transparent resin substrate is a cycloolefin polymer film.
 本発明の透明導電性フィルムによれば、透明樹脂基材と、ハードコート層と、光学調整層と、密着層と、透明導電層とをこの順に備え、密着層は、ナノシリカ粒子を含有する樹脂層である。そのため、光学調整層と透明導電層との密着性を向上させることができ、透明導電層の剥離および脱落を抑制することができる。したがって、耐擦傷性に優れる。 According to the transparent conductive film of the present invention, the transparent resin substrate, the hard coat layer, the optical adjustment layer, the adhesion layer, and the transparent conductive layer are provided in this order, and the adhesion layer is a resin containing nanosilica particles. It is a layer. Therefore, the adhesiveness of an optical adjustment layer and a transparent conductive layer can be improved, and peeling and drop-off | omission of a transparent conductive layer can be suppressed. Therefore, it is excellent in abrasion resistance.
 また、密着層の透明導電層側の表面において、炭素原子数に対するケイ素原子数の比が、0.50以上である。そのため、透明導電層をエッチングする際に、密着層に対する過度のエッチングを抑制することができ、透明導電層のクラックを抑制することができる。したがって、透明導電層に対するパターニング特性が良好である。 In addition, on the surface of the adhesion layer on the transparent conductive layer side, the ratio of the number of silicon atoms to the number of carbon atoms is 0.50 or more. Therefore, when etching a transparent conductive layer, the excessive etching with respect to a contact | glue layer can be suppressed, and the crack of a transparent conductive layer can be suppressed. Therefore, the patterning characteristic to the transparent conductive layer is good.
図1は、本発明の透明導電性フィルムの一実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of an embodiment of the transparent conductive film of the present invention. 図2は、図1に示す透明導電性フィルムがパターニングされている態様の断面図を示す。FIG. 2 shows a cross-sectional view of an embodiment in which the transparent conductive film shown in FIG. 1 is patterned. 図3は、実施例における耐屈曲性試験の模式図を示す。FIG. 3 shows a schematic view of a bending resistance test in an example.
 <一実施形態>
 図1~図2を参照して、本発明の透明導電性フィルムの一実施形態を説明する。
<One embodiment>
One embodiment of the transparent conductive film of the present invention will be described with reference to FIGS.
 図1において、紙面上下方向は、上下方向(厚み方向、第1方向)であって、紙面上側が、上側(厚み方向一方側、第1方向一方側)、紙面下側が、下側(厚み方向他方側、第1方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。具体的には、各図の方向矢印に準拠する。 In FIG. 1, the vertical direction in the drawing is the vertical direction (thickness direction, first direction), and the upper side of the drawing is the upper side (one side in the thickness direction, one side in the first direction), and the lower side is the lower side (thickness direction). The other side, the other side in the first direction). Further, the left-right direction and the depth direction in the drawing are surface directions orthogonal to the up-down direction. Specifically, it conforms to the directional arrow in each figure.
 1.透明導電性フィルム
 透明導電性フィルム1は、所定の厚みを有するフィルム形状(シート形状を含む)を有し、厚み方向と直交する所定方向(面方向)に延び、平坦な上面および平坦な下面を有する。透明導電性フィルム1は、例えば、画像表示装置に備えられるタッチパネル用基材などの一部品であり、つまり、画像表示装置ではない。すなわち、透明導電性フィルム1は、画像表示装置などを作製するための部品であり、LCDモジュールなどの画像表示素子を含まず、後述するアンチブロッキング層2と透明樹脂基材3とハードコート層4と光学調整層5と密着層6と透明導電層7とを含み、部品単独で流通し、産業上利用可能なデバイスである。
1. Transparent Conductive Film The transparent conductive film 1 has a film shape (including a sheet shape) having a predetermined thickness, extends in a predetermined direction (surface direction) orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface. Have. The transparent conductive film 1 is, for example, one component such as a touch panel substrate provided in an image display device, that is, it is not an image display device. That is, the transparent conductive film 1 is a component for producing an image display device etc., does not include an image display element such as an LCD module, and an antiblocking layer 2, a transparent resin substrate 3 and a hard coat layer 4 described later. And an optical adjustment layer 5, an adhesive layer 6, and a transparent conductive layer 7. The component can be distributed alone and can be used industrially.
 具体的には、図1に示すように、透明導電性フィルム1は、透明樹脂基材3と、透明樹脂基材3の下面(厚み方向他方面)に配置されるアンチブロッキング層2と、透明樹脂基材3の上面(厚み方向一方面)に配置されるハードコート層4と、ハードコート層4の上面に配置される光学調整層5と、光学調整層5の上面に配置される密着層6と、密着層6の上面に配置される透明導電層7を備える。より具体的には、透明導電性フィルム1は、アンチブロッキング層2と、透明樹脂基材3と、ハードコート層4と、光学調整層5と、密着層6と、透明導電層7とをこの順に備える。透明導電性フィルム1は、好ましくは、アンチブロッキング層2と透明樹脂基材3とハードコート層4と光学調整層5と密着層6と透明導電層7からなる。 Specifically, as shown in FIG. 1, the transparent conductive film 1 includes a transparent resin substrate 3, an antiblocking layer 2 disposed on the lower surface (the other surface in the thickness direction) of the transparent resin substrate 3, and a transparent The hard coat layer 4 disposed on the upper surface (one surface in the thickness direction) of the resin substrate 3, the optical adjustment layer 5 disposed on the upper surface of the hard coat layer 4, and the adhesion layer disposed on the upper surface of the optical adjustment layer 5 6 and a transparent conductive layer 7 disposed on the upper surface of the adhesive layer 6. More specifically, the transparent conductive film 1 includes the antiblocking layer 2, the transparent resin substrate 3, the hard coat layer 4, the optical adjustment layer 5, the adhesion layer 6, and the transparent conductive layer 7. Prepare in order. The transparent conductive film 1 preferably comprises an antiblocking layer 2, a transparent resin base 3, a hard coat layer 4, an optical adjustment layer 5, an adhesive layer 6 and a transparent conductive layer 7.
 2.アンチブロッキング層
 アンチブロッキング層2は、複数の透明導電性フィルム1を積層した場合などに、一の透明導電性フィルム1の上面と、その上面に配置される他の透明導電性フィルム1の下面とが密着してしまい、これらを引き剥がす際にいずれか一方の透明導電性フィルムの一部が剥離するブロッキング現象を抑制するための耐ブロッキング層である。また、透明導電性フィルム1の上面(すなわち、透明透明導電層7の上面)に擦り傷を生じにくくするための擦傷保護層でもある。
2. Anti-blocking layer The anti-blocking layer 2 is the upper surface of one transparent conductive film 1 and the lower surface of the other transparent conductive film 1 disposed on the upper surface, for example, when a plurality of transparent conductive films 1 are laminated. Is a blocking resistant layer for suppressing a blocking phenomenon in which a part of any one of the transparent conductive films peels off when they are peeled off. Moreover, it is also a scratch protection layer for making it hard to produce a scratch on the upper surface (namely, upper surface of the transparent transparent conductive layer 7) of the transparent conductive film 1.
 アンチブロッキング層2は、透明導電性フィルム1の最下層であって、フィルム形状(シート形状を含む)を有している。アンチブロッキング層2は、透明樹脂基材3の下面全面に、透明樹脂基材3の下面と接触するように配置されている。 The antiblocking layer 2 is the lowermost layer of the transparent conductive film 1 and has a film shape (including a sheet shape). The antiblocking layer 2 is disposed on the entire lower surface of the transparent resin substrate 3 so as to be in contact with the lower surface of the transparent resin substrate 3.
 アンチブロッキング層2は、アンチブロッキング組成物から形成されている。アンチブロッキング層2は、樹脂および粒子を含有する。すなわち、アンチブロッキング層2は、粒子を含有する樹脂層である。 The antiblocking layer 2 is formed of an antiblocking composition. The antiblocking layer 2 contains a resin and particles. That is, the antiblocking layer 2 is a resin layer containing particles.
 樹脂としては、例えば、硬化性樹脂、熱可塑性樹脂(例えば、ポリオレフィン樹脂)などが挙げられ、好ましくは、硬化性樹脂が挙げられる。 As resin, a curable resin, a thermoplastic resin (for example, polyolefin resin) etc. are mentioned, for example, Preferably, a curable resin is mentioned.
 硬化性樹脂としては、例えば、活性エネルギー線(具体的には、紫外線、電子線など)の照射により硬化する活性エネルギー線硬化性樹脂、例えば、加熱により硬化する熱硬化性樹脂などが挙げられ、好ましくは、活性エネルギー線硬化性樹脂が挙げられる。 As the curable resin, for example, an active energy ray curable resin which is cured by irradiation of active energy rays (specifically, ultraviolet rays, electron beams and the like), for example, a thermosetting resin which is cured by heating and the like can be mentioned. Preferably, an active energy ray curable resin is mentioned.
 活性エネルギー線硬化性樹脂は、例えば、分子中に重合性炭素-炭素二重結合を有する官能基を有するポリマーが挙げられる。そのような官能基としては、例えば、ビニル基、(メタ)アクリロイル基(メタクリロイル基および/またはアクリロイル基)などが挙げられる。 The active energy ray-curable resin includes, for example, a polymer having a functional group having a polymerizable carbon-carbon double bond in the molecule. As such a functional group, a vinyl group, a (meth) acryloyl group (methacryloyl group and / or an acryloyl group), etc. are mentioned, for example.
 活性エネルギー線硬化性樹脂としては、具体的には、例えば、ウレタンアクリレート、エポキシアクリレートなどの(メタ)アクリル系紫外線硬化性樹脂が挙げられる。 Specific examples of the active energy ray curable resin include (meth) acrylic ultraviolet curable resins such as urethane acrylate and epoxy acrylate.
 また、活性エネルギー線硬化性樹脂以外の硬化性樹脂としては、例えば、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物などが挙げられる。 Moreover, as curable resin other than active energy ray curable resin, a urethane resin, a melamine resin, an alkyd resin, a siloxane type polymer, an organic silane condensate etc. are mentioned, for example.
 これら樹脂は、単独使用または2種以上併用することができる。 These resins can be used alone or in combination of two or more.
 粒子としては、有機粒子、無機粒子などが挙げられる。有機粒子としては、例えば、架橋アクリル・スチレン樹脂粒子などの架橋アクリル系粒子などが挙げられる。無機粒子としては、例えば、シリカ粒子、例えば、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化スズなどからなる金属酸化物粒子、例えば、炭酸カルシウムなどの炭酸塩粒子などが挙げられる。粒子は、単独使用または2種以上併用することができる。 Examples of the particles include organic particles and inorganic particles. Examples of organic particles include crosslinked acrylic particles such as crosslinked acrylic / styrene resin particles. Examples of the inorganic particles include silica particles, for example, metal oxide particles composed of zirconium oxide, titanium oxide, zinc oxide, tin oxide or the like, for example, carbonate particles such as calcium carbonate. The particles can be used alone or in combination of two or more.
 好ましくは、有機粒子が挙げられ、より好ましくは、架橋アクリル系粒子が挙げられる。 Preferably, organic particles are mentioned, and more preferably, crosslinked acrylic particles are mentioned.
 粒子の平均粒子径(一次粒子径)は、例えば、10nm以上、好ましくは、100nm以上であり、また、例えば、5μm以下、好ましくは、3μm以下である。 The average particle size (primary particle size) of the particles is, for example, 10 nm or more, preferably 100 nm or more, and for example, 5 μm or less, preferably 3 μm or less.
 粒子の平均粒子径は、体積基準による粒度分布の平均粒子径(D50)を示し、例えば、粒子を水中に分散させた溶液を、光回折・散乱法により測定することができる。 The average particle size of the particles indicates the average particle size (D 50 ) of the particle size distribution on a volume basis, and for example, a solution in which the particles are dispersed in water can be measured by light diffraction / scattering method.
 粒子の含有割合は、樹脂100質量部に対して、例えば、0.1質量部以上、好ましくは、0.2質量部以上であり、また、例えば、10質量部以下、好ましくは、5質量部以下である。 The content ratio of the particles is, for example, 0.1 parts by mass or more, preferably 0.2 parts by mass or more, and for example, 10 parts by mass or less, preferably 5 parts by mass, with respect to 100 parts by mass of the resin. It is below.
 アンチブロッキング組成物には、さらに、レベリング剤、チクソトロピー剤、帯電防止剤などの公知の添加剤を含有することができる。 The antiblocking composition may further contain known additives such as leveling agent, thixotropy agent, antistatic agent and the like.
 アンチブロッキング層2の厚みは、耐擦傷性、アンチブロッキング性、剥離性の観点から、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、3μm以下である。アンチブロッキング層2の厚みは、例えば、瞬間マルチ測光システム(例えば、大塚電子社製、「MCPD2000」)を用いて観測される干渉スペクトルの波長に基づいて算出することができる。 The thickness of the antiblocking layer 2 is, for example, 0.1 μm or more, preferably 0.5 μm or more, and, for example, 10 μm or less, preferably 3 μm, from the viewpoints of scratch resistance, antiblocking property, and removability. It is below. The thickness of the antiblocking layer 2 can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multiphotometric system (for example, “MCPD 2000” manufactured by Otsuka Electronics Co., Ltd.).
 3.透明樹脂基材
 透明樹脂基材3は、透明導電性フィルム1の機械強度を確保するための透明な基材である。すなわち、透明樹脂基材3は、透明導電層7を、ハードコート層4、光学調整層5および密着層6とともに支持している。
3. Transparent Resin Base Material The transparent resin base material 3 is a transparent base material for securing the mechanical strength of the transparent conductive film 1. That is, the transparent resin base 3 supports the transparent conductive layer 7 together with the hard coat layer 4, the optical adjustment layer 5 and the adhesion layer 6.
 透明樹脂基材3は、フィルム形状(シート形状を含む)を有している。透明樹脂基材3は、アンチブロッキング層2の上面全面に、アンチブロッキング層2の上面に接触するように、配置されている。より具体的には、透明樹脂基材3は、アンチブロッキング層2とハードコート層4との間に、アンチブロッキング層2の上面およびハードコート層4の下面に接触するように、配置されている。 The transparent resin substrate 3 has a film shape (including a sheet shape). The transparent resin substrate 3 is disposed on the entire upper surface of the antiblocking layer 2 so as to be in contact with the upper surface of the antiblocking layer 2. More specifically, the transparent resin substrate 3 is disposed between the antiblocking layer 2 and the hard coat layer 4 so as to be in contact with the upper surface of the antiblocking layer 2 and the lower surface of the hard coat layer 4 .
 透明樹脂基材3は、例えば、透明性を有する高分子フィルムである。透明樹脂基材3の材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(例えば、ノルボルネン系、シクロペンタジエン系)などのオレフィン樹脂、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂などが挙げられる。透明樹脂基材3は、単独使用または2種以上併用することができる。 The transparent resin substrate 3 is, for example, a polymer film having transparency. The material of the transparent resin substrate 3 is, for example, a polyester resin such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate etc., for example (meth) acrylic resin (acrylic resin and / or methacrylic resin) such as polymethacrylate For example, an olefin resin such as polyethylene, polypropylene, cycloolefin polymer (for example, norbornene type, cyclopentadiene type), for example, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin And polystyrene resins. The transparent resin substrate 3 can be used alone or in combination of two or more.
 透明樹脂基材3は、透明性が高く、複屈折率が低い観点から、好ましくは、シクロオレフィンポリマーフィルム(COPフィルム)が挙げられる。 The transparent resin substrate 3 is preferably a cycloolefin polymer film (COP film) from the viewpoint of high transparency and low birefringence.
 透明樹脂基材3の引張破断強度は、例えば、10MPa以上、好ましくは、30MPa以上であり、また、例えば、100MPa以下、好ましくは、85MPa以下である。引張破断強度が上記範囲内であれば、ロールトゥロール方式により透明導電性フィルム1を採用する際に、透明樹脂基材3を良好に搬送することができ、透明樹脂基材3においてクラックなどの破損を抑制することができる。 The tensile strength at break of the transparent resin base material 3 is, for example, 10 MPa or more, preferably 30 MPa or more, and for example, 100 MPa or less, preferably 85 MPa or less. If the tensile strength at break is within the above range, the transparent resin substrate 3 can be favorably transported when adopting the transparent conductive film 1 by the roll-to-roll method, and the transparent resin substrate 3 may be cracked or the like. Damage can be suppressed.
 引張破断強度は、ISO 527に準拠して測定することができる。 The tensile strength at break can be measured in accordance with ISO 527.
 透明樹脂基材3の全光線透過率(JIS K 7375-2008)は、例えば、80%以上、好ましくは、85%以上である。 The total light transmittance (JIS K 7375-2008) of the transparent resin substrate 3 is, for example, 80% or more, preferably 85% or more.
 透明樹脂基材3の厚みは、機械的強度、透明導電性フィルム1をタッチパネル用フィルムとした際の打点特性などの観点から、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、300μm以下、好ましくは、150μm以下、より好ましくは、50μm以下である。透明樹脂基材3の厚みは、例えば、マイクロゲージ式厚み計を用いて測定することができる。 The thickness of the transparent resin substrate 3 is, for example, 2 μm or more, preferably 20 μm or more, from the viewpoints of mechanical strength, hitting characteristics when the transparent conductive film 1 is used as a film for touch panel, etc. It is 300 μm or less, preferably 150 μm or less, more preferably 50 μm or less. The thickness of the transparent resin substrate 3 can be measured, for example, using a micro gauge type thickness meter.
 4.ハードコート層
 ハードコート層4は、透明導電性フィルム1を製造する際に、透明樹脂基材3に傷が発生することを抑制するための保護層である。また、複数の透明導電性フィルム1を積層した場合に、透明導電層7に擦り傷が発生することを抑制するための耐擦傷層である。さらに、耐屈曲性を付与するための層でもある。
4. Hard Coat Layer The hard coat layer 4 is a protective layer for suppressing the occurrence of scratches on the transparent resin substrate 3 when producing the transparent conductive film 1. Moreover, when laminating | stacking the several transparent conductive film 1, it is an abrasion-resistant layer for suppressing that abrasion generate | occur | produces in the transparent conductive layer 7. As shown in FIG. Furthermore, it is also a layer for imparting bending resistance.
 ハードコート層4は、フィルム形状(シート形状を含む)を有している。ハードコート層4は、透明樹脂基材3の上面全面に、透明樹脂基材3の上面に接触するように、配置されている。より具体的には、ハードコート層4は、透明樹脂基材3と光学調整層5との間に、透明樹脂基材3の上面および光学調整層5の下面に接触するように、配置されている。 The hard coat layer 4 has a film shape (including a sheet shape). The hard coat layer 4 is disposed on the entire upper surface of the transparent resin substrate 3 so as to be in contact with the upper surface of the transparent resin substrate 3. More specifically, the hard coat layer 4 is disposed between the transparent resin base 3 and the optical adjustment layer 5 so as to be in contact with the upper surface of the transparent resin base 3 and the lower surface of the optical adjustment layer 5 There is.
 ハードコート層4は、ハードコート組成物から形成されている。ハードコート組成物は、樹脂を含有している。すなわち、ハードコート層4は、樹脂層である。 The hard coat layer 4 is formed of a hard coat composition. The hard coat composition contains a resin. That is, the hard coat layer 4 is a resin layer.
 樹脂としては特に限定されないが、例えば、アンチブロッキング組成物で例示した樹脂が挙げられる。好ましくは、硬化性樹脂、より好ましくは、活性エネルギー線硬化性樹脂、さらに好ましくは、(メタ)アクリル系紫外線硬化性樹脂が挙げられる。 Although it does not specifically limit as resin, For example, resin illustrated by the anti blocking composition is mentioned. Preferably, a curable resin, more preferably, an active energy ray curable resin, and still more preferably, a (meth) acrylic ultraviolet curable resin can be mentioned.
 ハードコート組成物は、粒子を含有することもできる。これにより、ハードコート層4を、耐ブロッキング特性を有するアンチブロッキング層とすることができる。粒子としては特に限定されないが、アンチブロッキング組成物で例示した粒子が挙げられる。 The hardcoat composition can also contain particles. Thereby, the hard-coat layer 4 can be made into the anti blocking layer which has a blocking resistance characteristic. Although it does not specifically limit as a particle | grain, The particle | grains illustrated by the anti blocking composition are mentioned.
 ハードコート組成物には、さらに、レベリング剤、チクソトロピー剤、帯電防止剤などの公知の添加剤を含有することができる。 The hard coat composition may further contain known additives such as leveling agents, thixotropy agents, antistatic agents and the like.
 ハードコート層4の厚みは、耐擦傷性の観点から、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、3μm以下である。ハードコート層4の厚みは、例えば、瞬間マルチ測光システムを用いて観測される干渉スペクトルの波長に基づいて算出することができる。 The thickness of the hard coat layer 4 is, for example, 0.1 μm or more, preferably 0.5 μm or more, and for example, 10 μm or less, preferably 3 μm or less, from the viewpoint of scratch resistance. The thickness of the hard coat layer 4 can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multiphotometric system.
 5.光学調整層
 光学調整層5は、透明導電層7における配線パターンの視認を抑制しつつ、透明導電性フィルム1に優れた透明性を確保するために、透明導電性フィルム1の光学物性(例えば、屈折率)を調整する層である。
5. Optical Adjustment Layer The optical adjustment layer 5 controls optical properties of the transparent conductive film 1 (eg, for example, in order to ensure excellent transparency of the transparent conductive film 1 while suppressing visual recognition of the wiring pattern in the transparent conductive layer 7). Layer to adjust the refractive index).
 光学調整層5は、フィルム形状(シート形状を含む)を有しており、ハードコート層4の上面全面に、ハードコート層4の上面に接触するように、配置されている。より具体的には、光学調整層5は、ハードコート層4と密着層6との間に、ハードコート層4の上面および密着層6の下面に接触するように、配置されている。 The optical adjustment layer 5 has a film shape (including a sheet shape), and is disposed on the entire top surface of the hard coat layer 4 so as to be in contact with the top surface of the hard coat layer 4. More specifically, the optical adjustment layer 5 is disposed between the hard coat layer 4 and the adhesion layer 6 so as to be in contact with the upper surface of the hard coat layer 4 and the lower surface of the adhesion layer 6.
 光学調整層5は、光学調整組成物から形成されている。光学調整組成物は、樹脂を含有し、好ましくは、樹脂および粒子を含有する。すなわち、光学調整層5は、好ましくは、粒子を含有する樹脂層である。 The optical adjustment layer 5 is formed of an optical adjustment composition. The optical modulating composition contains a resin, preferably containing a resin and particles. That is, the optical adjustment layer 5 is preferably a resin layer containing particles.
 樹脂としては特に限定されないが、例えば、アンチブロッキング組成物で例示した樹脂が挙げられる。好ましくは、硬化性樹脂、より好ましくは、活性エネルギー線硬化性樹脂、さらに好ましくは、(メタ)アクリル系紫外線硬化性樹脂が挙げられる。 Although it does not specifically limit as resin, For example, resin illustrated by the anti blocking composition is mentioned. Preferably, a curable resin, more preferably, an active energy ray curable resin, and still more preferably, a (meth) acrylic ultraviolet curable resin can be mentioned.
 樹脂の含有割合は、光学調整組成物に対して、例えば、10質量%以上、好ましくは、25質量%以上であり、また、例えば、95質量%以下、好ましくは、60質量%以下である。 The content ratio of the resin is, for example, 10% by mass or more, preferably 25% by mass or more, and for example, 95% by mass or less, preferably 60% by mass or less, with respect to the optical adjustment composition.
 粒子としては、光学調整層の求める屈折率に応じて好適な材料を選択することができ、例えば、アンチブロッキング組成物で例示した粒子が挙げられる。屈折率の観点から、好ましくは、無機粒子、より好ましくは、金属酸化物粒子、さらに好ましくは、酸化ジルコニウム粒子(ZnO)が挙げられる。 As a particle | grain, a suitable material can be selected according to the refractive index for which an optical adjustment layer seeks, For example, the particle | grains illustrated by the anti blocking composition are mentioned. From the viewpoint of the refractive index, preferably inorganic particles, more preferably metal oxide particles, further preferably zirconium oxide particles (ZnO 2 ) can be mentioned.
 粒子の含有割合は、光学調整組成物に対して、例えば、5質量%以上、好ましくは、40質量%以上であり、また、例えば、90質量%以下、好ましくは、75質量%以下である。 The content ratio of the particles is, for example, 5% by mass or more, preferably 40% by mass or more, and for example, 90% by mass or less, preferably 75% by mass or less, with respect to the optical adjustment composition.
 光学調整組成物には、さらに、レベリング剤、チクソトロピー剤、帯電防止剤などの公知の添加剤を含有することができる。 The optical adjustment composition may further contain known additives such as leveling agents, thixotropes, and antistatic agents.
 光学調整層5の屈折率は、例えば、1.40以上、好ましくは、1.55以上であり、また、例えば、1.80以下、好ましくは、1.70以下である。屈折率は、例えば、アッベ屈折率計により測定することができる。 The refractive index of the optical adjustment layer 5 is, for example, 1.40 or more, preferably 1.55 or more, and for example, 1.80 or less, preferably 1.70 or less. The refractive index can be measured, for example, by an Abbe refractometer.
 光学調整層5の厚みは、例えば、5nm以上、好ましくは、10nm以上であり、また、例えば、100nm以下、好ましくは、50nm以下である。光学調整層5の厚みは、例えば、瞬間マルチ測光システムを用いて観測される干渉スペクトルの波長に基づいて算出することができる。 The thickness of the optical adjustment layer 5 is, for example, 5 nm or more, preferably 10 nm or more, and for example, 100 nm or less, preferably 50 nm or less. The thickness of the optical adjustment layer 5 can be calculated based on, for example, the wavelength of the interference spectrum observed using an instantaneous multiphotometric system.
 6.密着層
 密着層6は、透明導電層7が擦傷された際に、透明導電層7の一部が透明導電性フィルム1から剥離および脱落することを抑制するために、透明導電層7と光学調整層5との密着性を調整(向上)する層である。
6. Adhesion Layer In the adhesion layer 6, when the transparent conductive layer 7 is scratched, the transparent conductive layer 7 and the optical adjustment are performed in order to suppress peeling and detachment of part of the transparent conductive layer 7 from the transparent conductive film 1. It is a layer that adjusts (improves) the adhesion to the layer 5.
 密着層6は、フィルム形状(シート形状を含む)を有しており、光学調整層5の上面全面に、光学調整層5の上面に接触するように、配置されている。より具体的には、密着層6は、光学調整層5と透明導電層7との間に、光学調整層5の上面および透明導電層7の下面に接触するように、配置されている。 The adhesion layer 6 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the optical adjustment layer 5 so as to be in contact with the upper surface of the optical adjustment layer 5. More specifically, the adhesion layer 6 is disposed between the optical adjustment layer 5 and the transparent conductive layer 7 so as to be in contact with the upper surface of the optical adjustment layer 5 and the lower surface of the transparent conductive layer 7.
 密着層6は、密着組成物から形成されている。密着組成物は、樹脂およびナノシリカ粒子を含有する。すなわち、密着層6は、ナノシリカ粒子を含有する樹脂層である。これにより、光学調整層5と透明導電層7との両方に密着層6が確実に密着し、これらの脱落を抑制することができる。 The adhesion layer 6 is formed of an adhesion composition. The adhesion composition contains a resin and nanosilica particles. That is, the adhesion layer 6 is a resin layer containing nano silica particles. As a result, the adhesion layer 6 reliably adheres to both the optical adjustment layer 5 and the transparent conductive layer 7 and it is possible to suppress the detachment of these.
 樹脂としては特に限定されないが、例えば、アンチブロッキング組成物で例示した樹脂が挙げられる。好ましくは、硬化性樹脂、より好ましくは、活性エネルギー線硬化性樹脂、さらに好ましくは、(メタ)アクリル系紫外線硬化性樹脂が挙げられる。 Although it does not specifically limit as resin, For example, resin illustrated by the anti blocking composition is mentioned. Preferably, a curable resin, more preferably, an active energy ray curable resin, and still more preferably, a (meth) acrylic ultraviolet curable resin can be mentioned.
 樹脂の含有割合は、密着組成物に対して、例えば、10質量%以上、好ましくは、25質量%以上であり、また、例えば、50質量%以下、好ましくは、40質量%以下である。樹脂の含有割合が上記範囲とあれば、密着層6と透明導電層7との過度の密着性のため透明導電層7のエッチング速度が低下することを抑制することができる。 The content ratio of the resin is, for example, 10% by mass or more, preferably 25% by mass or more, and for example, 50% by mass or less, preferably 40% by mass or less, based on the adhesion composition. If the content ratio of the resin is in the above range, it is possible to suppress the decrease in the etching rate of the transparent conductive layer 7 due to the excessive adhesion between the adhesion layer 6 and the transparent conductive layer 7.
 ナノシリカ粒子の平均粒子径(一次粒子径)は、例えば、1nm以上、好ましくは、5nm以上であり、また、例えば、100nm以下、好ましくは、30nm以下、より好ましくは、20nm以下である。 The average particle size (primary particle size) of the nanosilica particles is, for example, 1 nm or more, preferably 5 nm or more, and for example, 100 nm or less, preferably 30 nm or less, more preferably 20 nm or less.
 ナノシリカ粒子の平均粒子径は、体積基準による粒度分布の平均粒子径(D50)を示し、例えば、粒子を水中に分散させた溶液を、光回折・散乱法により測定することができる。 The average particle size of the nanosilica particles indicates the average particle size (D 50 ) of the particle size distribution based on volume, and for example, a solution in which the particles are dispersed in water can be measured by light diffraction / scattering method.
 ナノシリカ粒子の含有割合は、密着組成物に対して、例えば、50質量%以上、好ましくは、60質量%以上であり、また、例えば、90質量%以下、好ましくは、75質量%以下である。ナノシリカ粒子の含有割合が上記下限以上であれば、密着層6の上面におけるケイ素原子数の比を所望の範囲にすることができ、パターニング特性を向上させることができる。また、ナノシリカ粒子の含有割合が上記上限以下であれば、密着層6と透明導電層7との過度の密着性のため透明導電層7のエッチング速度が低下することを抑制することができる。 The content ratio of the nanosilica particles is, for example, 50% by mass or more, preferably 60% by mass or more, and for example, 90% by mass or less, preferably 75% by mass or less, with respect to the adhesion composition. If the content rate of nano silica particles is more than the above-mentioned lower limit, ratio of the number of silicon atoms in the upper surface of adhesion layer 6 can be made into a desired range, and patterning characteristics can be improved. Moreover, if the content rate of nano silica particle is below the said upper limit, it can suppress that the etching rate of the transparent conductive layer 7 falls because of the excessive adhesion of the contact layer 6 and the transparent conductive layer 7.
 密着組成物には、さらに、レベリング剤、チクソトロピー剤、帯電防止剤などの公知の添加剤を含有することができる。 The adhesion composition may further contain known additives such as a leveling agent, a thixotropy agent, and an antistatic agent.
 密着層6の上面(透明導電層7側の表面)において、炭素原子数に対するケイ素原子数の比(Si/C)が、0.50以上、好ましくは、1.00以上であり、また、例えば、2.00以下である。上記比が上記下限以上であれば、透明導電層7のエッチング時において、エッチング液による密着層6(特に、透明導電層7の下面に接触する密着層6)の浸食を抑制することができ、パターニングされた透明導電層7のクラックを抑制することができる。その結果、パターニング特性に優れる。 The ratio of the number of silicon atoms to the number of carbon atoms (Si / C) is 0.50 or more, preferably 1.00 or more, on the upper surface (the surface on the transparent conductive layer 7 side) of the adhesion layer 6. , 2.00 or less. If the ratio is equal to or more than the above lower limit, erosion of the adhesion layer 6 (particularly, the adhesion layer 6 in contact with the lower surface of the transparent conductive layer 7) by the etching solution can be suppressed at the time of etching the transparent conductive layer 7. Cracks in the patterned transparent conductive layer 7 can be suppressed. As a result, the patterning characteristics are excellent.
 上記比(Si/C)は、X線光電子分光法(化学分析用電子分光法、ESCA)により測定することができる。具体的な条件は、実施例にて後述する。 The ratio (Si / C) can be measured by X-ray photoelectron spectroscopy (electron spectroscopy for chemical analysis, ESCA). Specific conditions will be described later in the examples.
 密着層6の厚みは、例えば、10nm以上、好ましくは、20nm以上であり、また、例えば、100nm以下、好ましくは、50nm以下である。密着層6の厚みは、例えば、瞬間マルチ測光システムを用いて観測される干渉スペクトルの波長に基づいて算出することができる。 The thickness of the adhesion layer 6 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 100 nm or less, preferably 50 nm or less. The thickness of the adhesion layer 6 can be calculated, for example, based on the wavelength of the interference spectrum observed using an instantaneous multiphotometric system.
 7.透明導電層
 透明導電層7は、必要に応じて結晶化し、後工程で所望のパターンに形成して、透明なパターン部8(後述)を形成するための導電層である。
7. Transparent Conductive Layer The transparent conductive layer 7 is a conductive layer for crystallization as necessary and forming a desired pattern in a later step to form a transparent pattern portion 8 (described later).
 透明導電層7は、透明導電性フィルム1の最上層であって、フィルム形状(シート形状を含む)を有している。透明導電層7は、密着層6の上面全面に、密着層6の上面に接触するように、配置されている。 The transparent conductive layer 7 is the uppermost layer of the transparent conductive film 1 and has a film shape (including a sheet shape). The transparent conductive layer 7 is disposed on the entire upper surface of the adhesive layer 6 so as to be in contact with the upper surface of the adhesive layer 6.
 透明導電層7の材料としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子をドープしていてもよい。 The material of the transparent conductive layer 7 is, for example, at least one selected from the group consisting of In, Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W. And metal oxides containing the following metals. The metal oxide may further be doped with the metal atoms shown in the above group, as needed.
 透明導電層7としては、具体的には、例えば、インジウムスズ複合酸化物(ITO)などのインジウム含有酸化物、例えば、アンチモンスズ複合酸化物(ATO)などのアンチモン含有酸化物などが挙げられ、好ましくは、インジウム含有酸化物、より好ましくは、ITOが挙げられる。 Specific examples of the transparent conductive layer 7 include indium-containing oxides such as indium tin complex oxide (ITO), and antimony-containing oxides such as antimony tin complex oxide (ATO). Preferably, indium-containing oxides, more preferably ITO can be mentioned.
 透明導電層7がITO層などのインジウムスズ複合酸化物層である場合、酸化スズ(SnO)含有量は、酸化スズおよび酸化インジウム(In)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上であり、また、例えば、15質量%以下、好ましくは、13質量%以下である。酸化スズの含有量が上記下限以上であれば、透明導電層7の耐久性をより一層良好にすることができる。酸化スズの含有量が上記上限以下であれば、透明導電層7の結晶転化を容易にし、透明性や表面抵抗の安定性を向上させることができる。 When the transparent conductive layer 7 is an indium tin complex oxide layer such as an ITO layer, the tin oxide (SnO 2 ) content is, for example, 0 with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). .5 mass% or more, preferably 3 mass% or more, and for example, 15 mass% or less, preferably 13 mass% or less. If content of a tin oxide is more than the said minimum, durability of the transparent conductive layer 7 can be made still more favorable. If content of a tin oxide is below the said upper limit, crystal | crystallization conversion of the transparent conductive layer 7 can be made easy, and stability of transparency and surface resistance can be improved.
 本明細書中における「ITO」とは、少なくともインジウム(In)とスズ(Sn)とを含む複合酸化物であればよく、これら以外の追加成分を含んでもよい。追加成分としては、例えば、In、Sn以外の金属元素が挙げられ、具体的には、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaなどが挙げられる。 In the present specification, “ITO” may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these. Examples of the additional component include metal elements other than In and Sn, and specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe , Pb, Ni, Nb, Cr, Ga and the like.
 透明導電層7の表面抵抗は、例えば、200Ω/□以上、好ましくは、250Ω/□以上であり、また、例えば、500Ω/□以下である。表面抵抗は、4端子法により測定することができる。 The surface resistance of the transparent conductive layer 7 is, for example, 200 Ω / sq or more, preferably 250 Ω / sq or more, and for example, 500 Ω / sq or less. The surface resistance can be measured by the four probe method.
 透明導電層7の厚みは、例えば、10nm以上、好ましくは、15nm以上であり、また、例えば、50nm以下、好ましくは、30nm以下である。透明導電層7の厚みは、例えば、瞬間マルチ測光システムを用いて測定することができる。 The thickness of the transparent conductive layer 7 is, for example, 10 nm or more, preferably 15 nm or more, and for example, 50 nm or less, preferably 30 nm or less. The thickness of the transparent conductive layer 7 can be measured, for example, using an instantaneous multiphotometric system.
 透明導電層7は、非晶質または結晶質のいずれであってもよい。 Transparent conductive layer 7 may be either amorphous or crystalline.
 透明導電層が非結晶質か結晶質かは、例えば、透明導電層がITO層である場合は、20℃の塩酸(濃度5質量%)に15分間浸漬した後、水洗・乾燥し、15mm程度の間の端子間抵抗を測定することで判断できる。本明細書においては、塩酸(20℃、濃度:5質量%)への浸漬・水洗・乾燥後に、15mm間の端子間抵抗が10kΩを超過する場合、ITO層が非晶質とし、15mm間の端子間抵抗が10kΩ以下である場合、ITO層が結晶質とする。 If the transparent conductive layer is amorphous or crystalline, for example, if the transparent conductive layer is an ITO layer, it is immersed in hydrochloric acid (concentration 5 mass%) at 20 ° C. for 15 minutes, then washed with water and dried, about 15 mm Can be determined by measuring the resistance between the terminals. In this specification, if the resistance between terminals exceeds 15 kΩ after immersion in water (20 ° C., concentration: 5% by mass), washing with water, and drying, the ITO layer is made amorphous and between 15 mm When the resistance between terminals is 10 kΩ or less, the ITO layer is crystalline.
 7.透明導電性フィルムの製造方法
 次いで、透明導電性フィルム1を製造する方法を説明する。透明導電性フィルム1を製造するには、例えば、透明樹脂基材3の下面(厚み方向他方面)に、アンチブロッキング層2を設ける一方、透明樹脂基材3の上面(厚み方向一方面)に、ハードコート層4を設ける。次いで、ハードコート層4の上面に、光学調整層5、密着層6および透明導電層7をこの順に設ける。以下、詳述する。
7. Method of Producing Transparent Conductive Film Next, a method of producing the transparent conductive film 1 will be described. In order to produce the transparent conductive film 1, for example, the antiblocking layer 2 is provided on the lower surface (the other surface in the thickness direction) of the transparent resin substrate 3, and on the upper surface (the one surface in the thickness direction) , Hard coat layer 4 is provided. Then, on the upper surface of the hard coat layer 4, the optical adjustment layer 5, the adhesion layer 6, and the transparent conductive layer 7 are provided in this order. The details will be described below.
 まず、公知または市販の透明樹脂基材3を用意する。 First, a known or commercially available transparent resin substrate 3 is prepared.
 その後、必要に応じて、透明樹脂基材3と、アンチブロッキング層2またはハードコート層4との密着性の観点から、透明樹脂基材3の下面または上面に、例えば、スパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を実施することができる。また、溶剤洗浄、超音波洗浄などにより透明樹脂基材3を除塵、清浄化することができる。 Then, from the viewpoint of adhesion between the transparent resin substrate 3 and the antiblocking layer 2 or the hard coat layer 4, for example, sputtering, corona discharge, or flame on the lower surface or the upper surface of the transparent resin substrate 3. It is possible to carry out etching treatment such as ultraviolet irradiation, electron beam irradiation, chemical formation, oxidation, etc. In addition, the transparent resin substrate 3 can be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like.
 次いで、透明樹脂基材3の下面に、アンチブロッキング層2を設ける。例えば、透明樹脂基材3の下面にアンチブロッキング組成物を湿式塗工することにより、透明樹脂基材3の下面にアンチブロッキング層2を形成する。 Next, the antiblocking layer 2 is provided on the lower surface of the transparent resin substrate 3. For example, the antiblocking layer 2 is formed on the lower surface of the transparent resin substrate 3 by wet coating the antiblocking composition on the lower surface of the transparent resin substrate 3.
 具体的には、例えば、アンチブロッキング組成物を溶媒で希釈した溶液(ワニス)を調製し、続いて、アンチブロッキング組成物溶液を透明樹脂基材3の下面に塗布して、乾燥する。 Specifically, for example, the antiblocking composition is diluted with a solvent to prepare a solution (varnish), and subsequently, the antiblocking composition solution is applied to the lower surface of the transparent resin substrate 3 and dried.
 溶媒としては、例えば、有機溶媒、水系溶媒(具体的には、水)などが挙げられ、好ましくは、有機溶媒が挙げられる。有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコールなどのアルコール化合物、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン化合物、例えば、酢酸エチル、酢酸ブチルなどのエステル化合物、プロピレングリコールモノメチルエーテル(PGME)などのエーテル化合物、例えば、トルエン、キシレンなどの芳香族化合物などが挙げられる。これら溶媒は、単独使用または2種以上併用することができる。 As a solvent, an organic solvent, an aqueous solvent (specifically, water) etc. are mentioned, for example, Preferably, an organic solvent is mentioned. Examples of the organic solvent include alcohol compounds such as methanol, ethanol and isopropyl alcohol, ketone compounds such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ester compounds such as ethyl acetate and butyl acetate, propylene glycol monomethyl ether (PGME) And ether compounds such as aromatic compounds such as toluene and xylene. These solvents can be used alone or in combination of two or more.
 組成物溶液における固形分濃度は、例えば、1質量%以上、好ましくは、10質量%以上であり、また、例えば、30質量%以下、好ましくは、20質量%以下である。 The solid concentration in the composition solution is, for example, 1% by mass or more, preferably 10% by mass or more, and for example, 30% by mass or less, preferably 20% by mass or less.
 塗布方法は、アンチブロッキング組成物溶液および透明樹脂基材3に応じて適宜選択することができる。塗布方法としては、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法などが挙げられる。 The coating method can be appropriately selected according to the antiblocking composition solution and the transparent resin substrate 3. Examples of the coating method include dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating method, extrusion coating method and the like.
 乾燥温度は、例えば、50℃以上、好ましくは、70℃以上であり、例えば、200℃以下、好ましくは、100℃以下である。 The drying temperature is, for example, 50 ° C. or more, preferably 70 ° C. or more, and for example, 200 ° C. or less, preferably 100 ° C. or less.
 乾燥時間は、例えば、0.5分以上、好ましくは、1分以上であり、例えば、60分以下、好ましくは、20分以下である。 The drying time is, for example, 0.5 minutes or more, preferably 1 minute or more, and for example, 60 minutes or less, preferably 20 minutes or less.
 その後、アンチブロッキング組成物が活性エネルギー線硬化性樹脂を含有する場合は、アンチブロッキング組成物溶液の乾燥後に、活性エネルギー線を照射することにより、活性エネルギー線硬化性樹脂を硬化させる。 Thereafter, when the antiblocking composition contains an active energy ray curable resin, the active energy ray curable resin is cured by irradiating an active energy ray after drying of the antiblocking composition solution.
 なお、アンチブロッキング組成物が熱硬化性樹脂を含有する場合は、この乾燥工程により、溶媒の乾燥とともに、熱硬化性樹脂を熱硬化することができる。 In addition, when an antiblocking composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
 その一方、透明樹脂基材3の上面に、ハードコート層4を設ける。例えば、透明樹脂基材3の上面にハードコート組成物を湿式塗工することにより、透明樹脂基材3の上面にハードコート層4を形成する。 On the other hand, the hard coat layer 4 is provided on the upper surface of the transparent resin substrate 3. For example, the hard coat layer 4 is formed on the upper surface of the transparent resin substrate 3 by wet-coating the hard coat composition on the upper surface of the transparent resin substrate 3.
 具体的には、例えば、ハードコート組成物を溶媒で希釈した溶液(ワニス)を調製し、続いて、ハードコート組成物溶液を透明樹脂基材3の上面に塗布して、乾燥する。 Specifically, for example, a solution (varnish) in which the hard coat composition is diluted with a solvent is prepared, and then the hard coat composition solution is applied to the upper surface of the transparent resin substrate 3 and dried.
 ハードコート組成物の調製、塗布、乾燥などの条件は、アンチブロッキング組成物で例示した調製、塗布、乾燥などの条件と同様にすることができる。 The conditions such as preparation, coating and drying of the hard coat composition can be the same as the conditions such as preparation, coating and drying exemplified for the antiblocking composition.
 また、ハードコート組成物が活性エネルギー線硬化性樹脂を含有する場合は、ハードコート組成物溶液の乾燥後に、活性エネルギー線を照射することにより、活性エネルギー線硬化性樹脂を硬化させる。 When the hard coat composition contains an active energy ray curable resin, the active energy ray curable resin is cured by irradiating an active energy ray after drying of the hard coat composition solution.
 なお、ハードコート組成物が熱硬化性樹脂を含有する場合は、この乾燥工程により、溶媒の乾燥とともに、熱硬化性樹脂を熱硬化することができる。 In addition, when a hard-coat composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
 次いで、ハードコート層4の上面に、光学調整層5を設ける。例えば、ハードコート層4の上面に光学調整組成物を湿式塗工することにより、ハードコート層4の上面に光学調整層5を形成する。 Next, the optical adjustment layer 5 is provided on the upper surface of the hard coat layer 4. For example, the optical adjustment layer 5 is formed on the upper surface of the hard coat layer 4 by wet-coating the optical adjustment composition on the upper surface of the hard coat layer 4.
 具体的には、例えば、光学調整組成物を溶媒で希釈した溶液(ワニス)を調製し、続いて、光学調整組成物溶液をハードコート層4の上面に塗布して、乾燥する。 Specifically, for example, a solution (varnish) in which the optical adjustment composition is diluted with a solvent is prepared, and subsequently, the optical adjustment composition solution is applied to the upper surface of the hard coat layer 4 and dried.
 光学調整組成物の調製、塗布、乾燥などの条件は、アンチブロッキング組成物で例示した調製、塗布、乾燥などの条件と同様にすることができる。 The conditions such as preparation, coating and drying of the optical adjustment composition can be the same as the conditions such as preparation, coating and drying exemplified for the antiblocking composition.
 また、光学調整組成物が活性エネルギー線硬化性樹脂を含有する場合は、光学調整組成物溶液の乾燥後に、活性エネルギー線を照射することにより、活性エネルギー線硬化性樹脂を硬化させる。 Moreover, when an optical adjustment composition contains active energy ray curable resin, active energy ray curable resin is hardened by irradiating an active energy ray after drying of an optical adjustment composition solution.
 なお、光学調整組成物が熱硬化性樹脂を含有する場合は、この乾燥工程により、溶媒の乾燥とともに、熱硬化性樹脂を熱硬化することができる。 In addition, when an optical adjustment composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
 次いで、光学調整層5の上面に、密着層6を設ける。例えば、光学調整層5の上面に密着組成物を湿式塗工することにより、光学調整層5の上面に密着層6を形成する。 Next, the adhesion layer 6 is provided on the upper surface of the optical adjustment layer 5. For example, the adhesion layer 6 is formed on the upper surface of the optical adjustment layer 5 by wet coating the adhesion composition on the upper surface of the optical adjustment layer 5.
 具体的には、例えば、密着組成物を溶媒で希釈した溶液(ワニス)を調製し、続いて、密着組成物溶液を光学調整層5の上面に塗布して、乾燥する。 Specifically, for example, a solution (varnish) obtained by diluting the adhesion composition with a solvent is prepared, and subsequently, the adhesion composition solution is applied to the upper surface of the optical adjustment layer 5 and dried.
 密着組成物の調製、塗布、乾燥などの条件は、アンチブロッキング組成物で例示した調製、塗布、乾燥などの条件と同様にすることができる。 The conditions such as preparation, coating and drying of the adhesive composition can be the same as the conditions such as preparation, coating and drying exemplified for the antiblocking composition.
 また、密着組成物が活性エネルギー線硬化性樹脂を含有する場合は、密着組成物溶液の乾燥後に、活性エネルギー線を照射することにより、活性エネルギー線硬化性樹脂を硬化させる。 When the adhesion composition contains an active energy ray-curable resin, the active energy ray-curable resin is cured by irradiating an active energy ray after drying of the adhesion composition solution.
 なお、密着組成物が熱硬化性樹脂を含有する場合は、この乾燥工程により、溶媒の乾燥とともに、熱硬化性樹脂を熱硬化することができる。 In addition, when an adhesion composition contains a thermosetting resin, a thermosetting resin can be thermosetted with drying of a solvent by this drying process.
 次いで、密着層6の上面に、透明導電層7を設ける。例えば、乾式方法により、密着層6の上面に透明導電層7を形成する。 Next, the transparent conductive layer 7 is provided on the upper surface of the adhesive layer 6. For example, the transparent conductive layer 7 is formed on the upper surface of the adhesive layer 6 by a dry method.
 乾式方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。好ましくは、スパッタリング法が挙げられる。この方法によって薄膜の透明導電層7を形成することができる。 As a dry method, a vacuum evaporation method, sputtering method, ion plating method etc. are mentioned, for example. Preferably, a sputtering method is mentioned. A thin transparent conductive layer 7 can be formed by this method.
 スパッタリング法を採用する場合、ターゲット材としては、透明導電層7を構成する上述の無機物が挙げられ、好ましくは、ITOが挙げられる。ITOの酸化スズ濃度は、ITO層の耐久性、結晶化などの観点から、例えば、0.5質量%以上、好ましくは、3質量%以上であり、また、例えば、15質量%以下、好ましくは、13質量%以下である。 When the sputtering method is employed, the above-mentioned inorganic substance constituting the transparent conductive layer 7 is mentioned as a target material, and preferably ITO is mentioned. The tin oxide concentration of ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more, and for example, 15% by mass or less, preferably, from the viewpoint of durability of the ITO layer, crystallization, etc. , 13 mass% or less.
 スパッタガスとしては、例えば、Arなどの不活性ガスが挙げられる。また、必要に応じて、酸素ガスなどの反応性ガスを併用することができる。反応性ガスを併用する場合において、反応性ガスの流量比は特に限定しないが、スパッタガスおよび反応性ガスの合計流量比に対して、例えば、0.1流量%以上5流量%以下である。 As sputtering gas, inert gas, such as Ar, is mentioned, for example. Moreover, reactive gases, such as oxygen gas, can be used together as needed. When the reactive gas is used in combination, the flow ratio of the reactive gas is not particularly limited, but is, for example, 0.1 flow% to 5 flow% with respect to the total flow ratio of the sputtering gas and the reactive gas.
 スパッタリング法は、真空下で実施される。具体的には、スパッタリング時の気圧は、スパッタリングレートの低下抑制、放電安定性などの観点から、例えば、1Pa以下、好ましくは、0.7Pa以下である。 The sputtering method is carried out under vacuum. Specifically, the atmospheric pressure at the time of sputtering is, for example, 1 Pa or less, preferably 0.7 Pa or less, from the viewpoint of suppression of a decrease in sputtering rate, discharge stability, and the like.
 スパッタリング法に用いる電源は、例えば、DC電源、AC電源、MF電源およびRF電源のいずれであってもよく、また、これらの組み合わせであってもよい。 The power source used for the sputtering method may be, for example, any of a DC power source, an AC power source, an MF power source, and an RF power source, or a combination thereof.
 また、所望厚みの透明導電層7を形成するために、ターゲット材やスパッタリングの条件などを適宜設定して複数回スパッタリングを実施してもよい。 Moreover, in order to form the transparent conductive layer 7 of desired thickness, you may set a target material, the conditions of sputtering, etc. suitably and may implement sputtering multiple times.
 また、上記製造方法では、ロールトゥロール方式にて、透明樹脂基材3を搬送させながら、その透明樹脂基材3に、アンチブロッキング層2、ハードコート層4、光学調整層5、密着層6および透明導電層7を形成してもよく、また、これらの層の一部または全部をバッチ方式(枚葉方式)にて形成してもよい。生産性の観点から、好ましくは、ロールトゥロール方式にて、透明樹脂基材3を搬送させながら、透明樹脂基材3に各層を形成する。 In the above manufacturing method, the transparent resin substrate 3 is transported by the roll-to-roll method while the transparent resin substrate 3 includes the antiblocking layer 2, the hard coat layer 4, the optical adjustment layer 5, and the adhesive layer 6. And the transparent conductive layer 7 may be formed, and some or all of these layers may be formed by a batch system (single wafer system). From the viewpoint of productivity, each layer is preferably formed on the transparent resin substrate 3 while being conveyed by the roll-to-roll method.
 これにより、図1に示すように、アンチブロッキング層2、透明樹脂基材3、ハードコート層4、光学調整層5、密着層6および透明導電層7を順に備える透明導電性フィルム1が得られる。図1に示す透明導電性フィルム1は、パターニング処理がされていない非パターニング透明導電性フィルムである。 Thereby, as shown in FIG. 1, the transparent conductive film 1 provided with the antiblocking layer 2, the transparent resin base material 3, the hard coat layer 4, the optical adjustment layer 5, the adhesion layer 6, and the transparent conductive layer 7 in order is obtained. . The transparent conductive film 1 shown in FIG. 1 is a non-patterned transparent conductive film which has not been patterned.
 得られる透明導電性フィルム1の厚みは、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、300μm以下、好ましくは、100μm以下、より好ましくは、50μm以下である。 The thickness of the transparent conductive film 1 obtained is, for example, 2 μm or more, preferably 20 μm or more, and for example, 300 μm or less, preferably 100 μm or less, more preferably 50 μm or less.
 次いで、必要に応じて、非パターニング透明導電性フィルムを、公知のエッチングによって、透明導電層7をパターニングする。 Then, as necessary, the non-patterned transparent conductive film is patterned by known etching to form the transparent conductive layer 7.
 透明導電層7のパターンは、透明導電性フィルム1が適用される用途に応じて適宜決定されるが、例えば、ストライプ状などの電極パターンや配線パターンが挙げられる。 Although the pattern of the transparent conductive layer 7 is suitably determined according to the use to which the transparent conductive film 1 is applied, electrode patterns, such as stripe form, and a wiring pattern are mentioned, for example.
 エッチングは、例えば、パターン部8および非パターン部9に対応するように、被覆部(マスキングテープなど)を透明導電層7の上に配置し、被覆部から露出する透明導電層7(非パターン部9)を、エッチング液を用いてエッチングする。エッチング液としては、例えば、塩酸、硫酸、硝酸、酢酸、蓚酸、リン酸およびこれらの混酸などの酸が挙げられる。その後、被覆部を、透明導電層7の上面から、例えば、剥離などによって、除去する。 In the etching, for example, a covering portion (such as a masking tape) is disposed on the transparent conductive layer 7 so as to correspond to the pattern portion 8 and the non-pattern portion 9, and the transparent conductive layer 7 (non-patterning portion exposed from the covering portion 9) etch using an etching solution. Examples of the etching solution include acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, phosphoric acid and mixed acids thereof. Thereafter, the covering portion is removed from the upper surface of the transparent conductive layer 7 by, for example, peeling.
 これにより、図2に示すように、透明導電層7がパターニングされたパターニング透明導電性フィルム1aが挙げられる。 Thereby, as shown in FIG. 2, the patterning transparent conductive film 1a by which the transparent conductive layer 7 was patterned is mentioned.
 なお、必要に応じて、エッチングの前または後に、透明導電性フィルム1の透明導電層7に対して、結晶転化処理を実施する。 In addition, before or after the etching, crystal conversion treatment is performed on the transparent conductive layer 7 of the transparent conductive film 1 as necessary.
 具体的には、透明導電性フィルム1に大気下で加熱処理を実施する。 Specifically, the heat treatment is performed on the transparent conductive film 1 under the atmosphere.
 加熱処理は、例えば、赤外線ヒーター、オーブンなどを用いて実施することができる。 The heat treatment can be performed using, for example, an infrared heater, an oven, or the like.
 加熱温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、160℃以下である。加熱温度を上記範囲内であると、透明樹脂基材3の熱損傷および透明樹脂基材3から発生する不純物を抑制しつつ、結晶転化を確実にすることができる。 The heating temperature is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 200 ° C. or less, preferably 160 ° C. or less. When the heating temperature is in the above range, crystal conversion can be ensured while suppressing thermal damage to the transparent resin substrate 3 and impurities generated from the transparent resin substrate 3.
 加熱時間は、加熱温度に応じて適宜決定されるが、例えば、10分以上、好ましくは、30分以上であり、また、例えば、5時間以下、好ましくは、3時間以下である。 The heating time is appropriately determined according to the heating temperature, and is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 5 hours or less, preferably 3 hours or less.
 これにより、透明導電層7が結晶化された透明導電性フィルム1が得られる。 Thereby, the transparent conductive film 1 in which the transparent conductive layer 7 is crystallized is obtained.
 透明導電性フィルム1は、例えば、光学装置に備えられる。光学装置としては、例えば、画像表示装置などが挙げられる。透明導電性フィルム1を画像表示装置(具体的には、LCDモジュールなどの画像表示素子を有する画像表示装置)に備える場合には、透明導電性フィルム1は、例えば、タッチパネル用基材として用いられる。タッチパネルの形式としては、光学方式、超音波方式、静電容量方式、抵抗膜方式などの各種方式が挙げられ、特に静電容量方式のタッチパネルに好適に用いられる。 The transparent conductive film 1 is provided, for example, in an optical device. As an optical apparatus, an image display apparatus etc. are mentioned, for example. When the transparent conductive film 1 is provided in an image display device (specifically, an image display device having an image display element such as an LCD module), the transparent conductive film 1 is used, for example, as a touch panel substrate . As a type of touch panel, various types such as an optical type, an ultrasonic type, an electrostatic capacity type, and a resistive film type can be mentioned, and in particular, it is suitably used for an electrostatic capacity type touch panel.
 そして、この透明導電性フィルム1は、透明樹脂基材3と、ハードコート層4と、光学調整層5と、密着層6と、透明導電層7とをこの順に備える。密着層6は、ナノシリカ粒子を含有する樹脂層である。そのため、光学調整層5と透明導電層7との密着性を向上させることができる。よって、透明導電性フィルム1の上面が擦れて、透明導電層7割れた場合であっても、透明導電層7は、密着層6の存在により透明導電性フィルム1表面に維持することができる。すなわち、透明導電層7の剥離および脱落を抑制することができる。その結果、透明導電層7の欠損による導電性能の著しい低下(具体的には、表面抵抗値の過度の上昇)を抑制できる。したがって、耐擦傷性に優れる。 And this transparent conductive film 1 is provided with the transparent resin base material 3, the hard-coat layer 4, the optical adjustment layer 5, the contact | adherence layer 6, and the transparent conductive layer 7 in this order. The adhesion layer 6 is a resin layer containing nano silica particles. Therefore, the adhesion between the optical adjustment layer 5 and the transparent conductive layer 7 can be improved. Therefore, even if the upper surface of the transparent conductive film 1 is rubbed and the transparent conductive layer 7 is broken, the transparent conductive layer 7 can be maintained on the surface of the transparent conductive film 1 by the presence of the adhesive layer 6. That is, peeling and falling off of the transparent conductive layer 7 can be suppressed. As a result, it is possible to suppress a significant decrease in the conductive performance (specifically, an excessive increase in the surface resistance value) due to the loss of the transparent conductive layer 7. Therefore, it is excellent in abrasion resistance.
 また、密着層6の上面において、炭素原子数に対するケイ素原子数の比(Si/C)が、0.50以上である。そのため、ケイ素原子(ナノシリカ粒子)が密着層6の上面に十分に存在するため、透明導電層7をエッチング液でエッチングする際に、エッチング液が、密着層6のエッチング(特に、透明導電層7の下面と接触する密着層部分のエッチング)を抑制することができる。その結果、透明導電層7を支持する密着層6の欠損に起因する透明導電層7のクラックの発生を抑制することができる。したがって、透明導電層7に対するパターニング特性が良好である。 Further, on the upper surface of the adhesion layer 6, the ratio of the number of silicon atoms to the number of carbon atoms (Si / C) is 0.50 or more. Therefore, since silicon atoms (nanosilica particles) are sufficiently present on the upper surface of adhesion layer 6, the etching liquid etches adhesion layer 6 (especially transparent conductive layer 7) when etching transparent conductive layer 7 with the etching solution. Etching of the adhesion layer portion in contact with the lower surface of the substrate. As a result, it is possible to suppress the occurrence of cracks in the transparent conductive layer 7 caused by the loss of the adhesive layer 6 supporting the transparent conductive layer 7. Therefore, the patterning characteristic to transparent conductive layer 7 is good.
 また、この透明導電性フィルム1は、透明樹脂基材3と、その上面に配置されるハードコート層4とを備える。このため、透明樹脂基材3は、ハードコート層4によって確実に保護されている。そのため、透明樹脂基材3(特に、柔らかい基材であるCOPフィルム)の上側に、透明導電層7を乾式法(特にスパッタリング法)によって形成した際に、透明樹脂基材3に対する傷の発生を抑制することができる。したがって、透明導電性フィルム1の外観を良好にすることができる。さらに、ハードコート層4を備えるため、折り曲げ時の破損や破断を抑制でき、耐屈曲性に優れる。 Moreover, this transparent conductive film 1 is provided with the transparent resin base material 3 and the hard-coat layer 4 arrange | positioned on the upper surface. Therefore, the transparent resin substrate 3 is reliably protected by the hard coat layer 4. Therefore, when the transparent conductive layer 7 is formed on the upper side of the transparent resin substrate 3 (particularly, the COP film which is a soft substrate) by a dry method (particularly, sputtering method), generation of scratches on the transparent resin substrate 3 is It can be suppressed. Therefore, the appearance of the transparent conductive film 1 can be improved. Furthermore, since the hard coat layer 4 is provided, breakage and breakage at the time of bending can be suppressed, and the bending resistance is excellent.
 また、この透明導電性フィルム1では、好ましくは、透明樹脂基材3が、COPフィルムである。COPフィルムは、PETフィルムなどの他の樹脂フィルムよりも複屈折率が低く、位相差が実質的にゼロであるため、偏光板とタッチパネル用フィルムとの偏光解消を防止する点で、有用である。しかし、COPフィルムは、柔らかいため、PETフィルムなどの他の樹脂フィルムよりも、特に、擦傷による透明導電層7の欠損などが生じ易い。そして、この透明導電性フィルム1によれば、特に、このような透明樹脂基材3がCOPフィルムである場合に対して、擦傷およびパターニングによる上記課題を解決し、さらには、透明樹脂基材3の傷による外観不良の課題も解決することができる。 In addition, in the transparent conductive film 1, preferably, the transparent resin substrate 3 is a COP film. The COP film is useful in that it prevents the depolarization of the polarizing plate and the film for a touch panel because the birefringence is lower than that of other resin films such as PET film and the retardation is substantially zero. . However, since the COP film is soft, it is more likely to cause, for example, a defect of the transparent conductive layer 7 due to abrasion than other resin films such as a PET film. And according to this transparent conductive film 1, the said subject by abrasion and patterning is solved especially with respect to the case where such a transparent resin base material 3 is a COP film, Furthermore, the transparent resin base material 3 It is also possible to solve the problem of poor appearance due to scratches.
 <変形例>
 一実施形態では、透明導電性フィルム1は、透明樹脂基材3の下面に配置されるアンチブロッキング層2を備えているが、例えば、図示しないが、アンチブロッキング層2の代わりに、他の機能層を備えていてもよい。機能層としては、例えば、上記したハードコート層4などが挙げられる。
<Modification>
In one embodiment, the transparent conductive film 1 includes the antiblocking layer 2 disposed on the lower surface of the transparent resin substrate 3. For example, although not shown, other functions may be used instead of the antiblocking layer 2. A layer may be provided. As a functional layer, the above-mentioned hard-coat layer 4 etc. are mentioned, for example.
 また、一実施形態では、透明導電性フィルム1は、透明樹脂基材3の下面に配置されるアンチブロッキング層2を備えているが、例えば、図示しないが、アンチブロッキング層2を備えなくてもよい。すなわち、透明導電性フィルム1は、透明樹脂基材3とハードコート層4と光学調整層5と密着層6と透明導電層7とのみを備えていてもよい。 Moreover, although the transparent conductive film 1 is equipped with the antiblocking layer 2 arrange | positioned on the lower surface of the transparent resin base material 3 in one embodiment, although not shown in figure, even if it does not comprise the antiblocking layer 2, for example. Good. That is, the transparent conductive film 1 may include only the transparent resin substrate 3, the hard coat layer 4, the optical adjustment layer 5, the adhesive layer 6, and the transparent conductive layer 7.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples. The present invention is not limited to the examples and comparative examples. In addition, specific numerical values such as mixing ratios (content ratios), physical property values, parameters, etc. used in the following description are the mixing ratios corresponding to those described in the above-mentioned “embodiments for carrying out the invention” Substitutes the upper limit (numerical value defined as "below", "less than") or lower limit (numerical value defined as "above", "excess"), etc. of the corresponding description such as content ratio), physical property value, and parameters be able to.
  実施例1
 透明樹脂基材として、ノルボルネン系樹脂フィルム(COPフィルム、厚み40μm、日本ゼオン社製、「ゼオノアフィルム」、引張破断強度76MPa)を用意した。
Example 1
As a transparent resin substrate, a norbornene resin film (COP film, thickness 40 μm, manufactured by Nippon Zeon Co., Ltd., “Zeonor film”, tensile breaking strength 76 MPa) was prepared.
 紫外線硬化性を有する樹脂組成物溶液(ウレタンアクリレート系樹脂組成物、DIC社製の「ユニディックELS-888」80質量%および「ユニディックRS-605」20質量%の混合)100質量部、および、架橋アクリル粒子(平均粒子径1.8μm、綜研化学社製、「MX-180TA」)0.4質量部を混合して、アンチブロッキング組成物溶液を調製した。透明樹脂基材の下面に、アンチブロッキング組成物溶液を塗布し、80℃で1分間乾燥した。その後、オゾンタイプ高圧水銀ランプにて紫外線を照射して、アンチブロッキング組成物を硬化させた。これにより、厚み1.0μmのアンチブロッキング層を形成した。 100 parts by mass of a resin composition solution having a UV-curing property (a mixture of 80% by mass of "U-DIC ELS-888" manufactured by DIC, and 20% by mass of "U-Unid RS-605" manufactured by DIC) And 0.4 parts by mass of crosslinked acrylic particles (average particle diameter: 1.8 μm, manufactured by Soken Chemical & Engineering Co., Ltd., “MX-180TA”) were mixed to prepare an antiblocking composition solution. The lower surface of the transparent resin substrate was coated with the antiblocking composition solution and dried at 80 ° C. for 1 minute. Thereafter, the antiblocking composition was cured by irradiating ultraviolet light with an ozone type high pressure mercury lamp. Thus, an antiblocking layer having a thickness of 1.0 μm was formed.
 一方、透明樹脂基材の上面に、紫外線硬化性を有するハードコート組成物溶液(アクリル系樹脂組成物、アイカ工業社製、「Z-850-6L」)を塗布し、80℃で1分間乾燥した。その後、オゾンタイプ高圧水銀ランプにて紫外線を照射して、ハードコート組成物を硬化させた。これにより、厚み1.0μmのハードコート層を形成した。 On the other hand, a hard coat composition solution (acrylic resin composition, manufactured by Aika Kogyo Co., Ltd., "Z-850-6L") having ultraviolet curability is applied to the upper surface of the transparent resin substrate, and dried at 80 ° C for 1 minute did. Thereafter, ultraviolet rays were irradiated with an ozone type high pressure mercury lamp to cure the hard coat composition. Thus, a hard coat layer having a thickness of 1.0 μm was formed.
 次いで、ハードコート層の上面に、紫外線硬化性を有する光学調整組成物溶液(酸化ジルコニア粒子含有、荒川化学工業社製、「オプスターKZ6955」)をハードコート層の上面に塗布し、60℃で1分間乾燥した。その後、オゾンタイプ高圧水銀ランプにて紫外線を照射して、光学調整組成物を硬化させた。これにより、厚み25nm、屈折率1.68の光学調整層を形成した。 Next, an optical adjustment composition solution having ultraviolet curability (containing zirconia oxide particles, manufactured by Arakawa Chemical Industries, "Opster KZ6955") is applied to the upper surface of the hard coat layer on the upper surface of the hard coat layer, and 1 at 60 ° C. Dried for a minute. Thereafter, ultraviolet light was irradiated with an ozone type high pressure mercury lamp to cure the optical control composition. Thus, an optical adjustment layer having a thickness of 25 nm and a refractive index of 1.68 was formed.
 次いで、紫外線硬化性を有する密着組成物として、ナノシリカ粒子(平均一次粒子径10nm)60質量部、アクリル系樹脂40質量部、および、溶媒(PGME)を含有する組成物溶液(荒川化学工業社製の「オプスターZ7549」)を用意した。光学調整層の上面に、密着組成物溶液を塗布し、60℃で1分間乾燥した。その後、オゾンタイプ高圧水銀ランプにて紫外線を照射して、密着組成物を硬化させた。これにより、厚み40nmの密着層を形成した。 Next, a composition solution containing 60 parts by mass of nano silica particles (average primary particle diameter: 10 nm), 40 parts by mass of acrylic resin, and a solvent (PGME) as an adhesive composition having ultraviolet curability (manufactured by Arakawa Chemical Co., Ltd.) "Opster Z7549" was prepared. The adhesion composition solution was applied to the upper surface of the optical adjustment layer and dried at 60 ° C. for 1 minute. Thereafter, ultraviolet light was irradiated with an ozone type high pressure mercury lamp to cure the adhesion composition. Thereby, the adhesion layer with a thickness of 40 nm was formed.
 次いで、密着層の上面に、DCスパッタリングにより、厚みが26nmである非晶質のITO層(透明導電層)を形成した。具体的には、アルゴンガス98%および酸素ガス2%を導入した気圧0.4Paの真空雰囲気下で、80質量%の酸化インジウムおよび20質量%の酸化スズの焼結体からなるITOターゲットをスパッタリングした。なお、透明導電層の表面抵抗値は、340Ω/□であった。 Next, an amorphous ITO layer (transparent conductive layer) having a thickness of 26 nm was formed on the upper surface of the adhesion layer by DC sputtering. Specifically, an ITO target consisting of a sintered body of 80% by mass of indium oxide and 20% by mass of tin oxide was sputtered under a vacuum atmosphere of atmospheric pressure 0.4 Pa into which 98% of argon gas and 2% of oxygen gas were introduced. did. In addition, the surface resistance value of the transparent conductive layer was 340 ohms / square.
 これにより、アンチブロッキング層/透明樹脂基材/ハードコート層/光学調整層/密着層/透明導電層からなる透明導電性フィルムを製造した。 Thereby, the transparent conductive film which consists of an anti blocking layer / transparent resin base material / hard-coat layer / optical adjustment layer / adhesion layer / transparent conductive layer was manufactured.
 実施例2
 密着組成物の組成を表1に記載の組成に変更した以外は、実施例1と同様にして、透明導電性フィルムを製造した。
Example 2
A transparent conductive film was produced in the same manner as in Example 1 except that the composition of the adhesion composition was changed to the composition described in Table 1.
 比較例1~3
 密着組成物の組成を表1に記載の組成に変更した以外は、実施例1と同様にして、透明導電性フィルムを製造した。
Comparative Examples 1 to 3
A transparent conductive film was produced in the same manner as in Example 1 except that the composition of the adhesion composition was changed to the composition described in Table 1.
 比較例4
 密着層を設けなかった以外は、実施例1と同様にして、透明導電性フィルムを製造した。
Comparative example 4
A transparent conductive film was produced in the same manner as in Example 1 except that the adhesion layer was not provided.
 比較例5
 ハードコート層を設けなかった以外は、実施例1と同様にして、透明導電性フィルムを作製した。
Comparative example 5
A transparent conductive film was produced in the same manner as in Example 1 except that the hard coat layer was not provided.
 (密着層の元素割合の測定)
 密着層を形成した時点の中間フィルム(アンチブロッキング層/透明樹脂基材/ハードコート層/光学調整層/密着層)の密着層表面に対して、X線光電子分光法(ESCA)により、表面元素分析を実施した。
(Measurement of element ratio of adhesion layer)
The surface element of the intermediate film (anti-blocking layer / transparent resin substrate / hard coat layer / optical adjustment layer / adhesive layer) at the time of forming the adhesive layer was subjected to X-ray photoelectron spectroscopy (ESCA) on the surface of the adhesive layer. An analysis was performed.
 具体的には、中間フィルムの密着層に、Arイオンエッチングによるクリーニング(SiO換算約:1nm)を実施した後、ワイドスキャンにより測定することにより、定性分析を実施した。次いで、C、N、O、Si元素に対してナロースキャン測定を実施し、元素比率(atomic%)を算出した。測定条件は、下記の通りとした。 Specifically, after the cleaning (by SiO 2 conversion: about 1 nm) by Ar ion etching was performed on the adhesion layer of the intermediate film, the qualitative analysis was performed by measuring by wide scan. Next, narrow scan measurement was performed on C, N, O, and Si elements to calculate an element ratio (atomic%). The measurement conditions were as follows.
 装置:ULVAC-PHI社製、「Quantum 2000」
 X線源:モノクロAl Kα
 X線設定:100μmφ(15kV、25W)
 光電子取り出し角:45度
 中和条件:中和銃とArイオン銃(中和モード)の併用
 Arイオン銃の加速電圧:1kV
 Arイオン銃のラスターサイズ:2mm×2mm
 Arイオン銃のエッチング速度:SiO換算で約2nm/分
 C元素およびSi元素の含有割合(atomic%)、これらの比を表1に示す。
Device: ULVAC-PHI, "Quantum 2000"
X-ray source: Monochrome Al K α
X-ray setting: 100 μmφ (15 kV, 25 W)
Photoelectron take-off angle: 45 degrees Neutralization condition: Combination of neutralization gun and Ar ion gun (neutralization mode) Acceleration voltage of Ar ion gun: 1 kV
Raster size of Ar ion gun: 2 mm x 2 mm
Etching rate of Ar ion gun: about 2 nm / min in terms of SiO 2 The content ratio (atomic%) of the C element and the Si element, and the ratio thereof are shown in Table 1.
 (耐擦傷性)
 各実施例および各比較例の透明導電性フィルムの透明導電層表面に、産業用ワイパー(CONTEC社製、「Anticon、Gold Sorb」)を、φ11mmの範囲で400gの荷重となるように押し当て、長さ10cmの間を20回摺動させた。その後、摺動方向と直交する直交方向を測定するように、4探針式プローブを透明導電層に配置し、摺動後の透明導電性フィルムの表面抵抗値R20を測定した。また、摺動前の当該場所の表面抵抗値をRとした。
(Abrasion resistant)
An industrial wiper ("CONTEC, Inc.," Anticon, Gold Sorb ") is pressed against the surface of the transparent conductive layer of the transparent conductive film of each example and each comparative example to a load of 400 g in the range of φ11 mm. The slide was made 20 times between 10 cm in length. Then, to measure the orthogonal direction orthogonal to the sliding direction, arranged 4 Saguharishiki probe the transparent conductive layer was measured surface resistance value R 20 of the transparent conductive film after sliding. Moreover, the surface resistance value of the said location before sliding was set to R0 .
 表面抵抗値の変化率R20/Rが、1.20未満である場合を〇と評価し、1.20以上である場合を×と評価した。結果を表1に示す。 The case where the change rate R 20 / R 0 of the surface resistance value was less than 1.20 was evaluated as 〇, and the case where it was 1.20 or more was evaluated as x. The results are shown in Table 1.
 (パターニング特性)
 各実施例および各比較例の透明導電性フィルムの透明導電層表面に、1cmの間隔で市販の粘着テープ(幅1cm)をストライプ状に貼着し、50℃の10wt%塩酸を用いて、透明導電層(ITO層)をエッチングした。次いで、粘着テープを透明導電層から剥離して、その露出した透明導電層(パターン部)の表面を顕微鏡(倍率:20倍)にて、観察した。
(Patterning characteristics)
A commercially available adhesive tape (1 cm wide) is attached in the form of stripes at intervals of 1 cm on the surface of the transparent conductive layer of the transparent conductive film of each example and each comparative example, and transparent using 50 wt. The conductive layer (ITO layer) was etched. Next, the pressure-sensitive adhesive tape was peeled off from the transparent conductive layer, and the surface of the exposed transparent conductive layer (pattern portion) was observed with a microscope (magnification: 20 times).
 透明導電層の表面においてクラックの発生が確認されなかった場合を〇と評価し、クラックの発生が確認された場合を×と評価した。結果を表1に示す。 The case where the occurrence of a crack was not confirmed on the surface of the transparent conductive layer was evaluated as 〇, and the case where the occurrence of a crack was confirmed was evaluated as x. The results are shown in Table 1.
 (外観)
 各実施例および各比較例の透明導電性フィルムを肉眼にて観察した。
(appearance)
The transparent conductive films of Examples and Comparative Examples were observed with the naked eye.
 透明導電性フィルムにおいて、製造時による傷が確認されなかった場合を〇と評価し、傷が確認された場合を×と評価した。結果を表1に示す。 In the case of a transparent conductive film, the case where no flaw was found at the time of production was evaluated as 〇, and the case where a flaw was confirmed was evaluated as x. The results are shown in Table 1.
 (耐屈曲性)
 透明導電性フィルムを幅50mm×長さ100mmに切断し、アンチブロッキング層が内側となるように二つ折りにし、フィルムの長さ方向両端部を粘着テープで貼り合わせて、サンプル10とした。
(Flexibility)
The transparent conductive film was cut into a width of 50 mm and a length of 100 mm, folded in two so that the antiblocking layer was on the inside, and both ends in the lengthwise direction of the film were bonded with an adhesive tape to obtain Sample 10.
 サンプル10の上面(幅50mm×長さ50mm)に、円盤状おもり11(直径50mm、重さ500g)を10秒間静置した後、サンプル10の折り曲げ部12を観察した(図3参照)。 The disc-like weight 11 (diameter 50 mm, weight 500 g) was allowed to stand on the upper surface (width 50 mm × length 50 mm) of the sample 10 for 10 seconds, and then the bent portion 12 of the sample 10 was observed (see FIG. 3).
 折り曲げ部に破断が生じなかった場合を〇と評価し、折り曲げ部に破断が生じて、フィルムが分裂した場合を×と評価した。結果を表1に示す。 The case where breakage did not occur in the bent portion was evaluated as 、, and the breakage occurred in the bent portion, and the case where the film was split was evaluated as x. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当事者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention is provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the invention that are apparent to those skilled in the art are within the scope of the following claims.
本発明の透明導電性フィルムは、各種の工業製品に適用することができ、例えば、画像表示装置に備えられるタッチパネル用基材などに好適に用いられる。 The transparent conductive film of the present invention can be applied to various industrial products, and is suitably used, for example, as a touch panel substrate provided in an image display device.
1 透明導電性フィルム
3 透明樹脂基材
4 ハードコート層
5 光学調整層
6 密着層
7 透明導電層
1 Transparent conductive film 3 Transparent resin base 4 Hard coat layer 5 Optical adjustment layer 6 Adhesion layer 7 Transparent conductive layer

Claims (4)

  1.  透明樹脂基材と、ハードコート層と、光学調整層と、密着層と、透明導電層とをこの順に備え、
     前記密着層は、ナノシリカ粒子を含有する樹脂層であり、
     前記密着層の前記透明導電層側の表面において、炭素原子数に対するケイ素原子数の比が、0.50以上であることを特徴とする、透明導電性フィルム。
    A transparent resin substrate, a hard coat layer, an optical adjustment layer, an adhesive layer, and a transparent conductive layer in this order,
    The adhesion layer is a resin layer containing nano silica particles,
    The transparent conductive film, wherein the ratio of the number of silicon atoms to the number of carbon atoms is 0.50 or more on the surface on the transparent conductive layer side of the adhesive layer.
  2.  前記炭素原子数に対するケイ素原子数の比が、1.00以上であることを特徴とする、
    請求項1に記載の透明導電性フィルム。
    The ratio of the number of silicon atoms to the number of carbon atoms is 1.00 or more,
    The transparent conductive film according to claim 1.
  3.  前記密着層の厚みが、10nm以上、100nm以下であることを特徴とする、請求項1または2に記載の透明導電性フィルム。 The thickness of the said contact | glue layer is 10 nm or more and 100 nm or less, The transparent conductive film of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記透明樹脂基材が、シクロオレフィンポリマーフィルムであることを特徴とする、請求項1または2に記載の透明導電性フィルム。 The said transparent resin base material is a cycloolefin polymer film, The transparent conductive film of Claim 1 or 2 characterized by the above-mentioned.
PCT/JP2018/038786 2017-12-15 2018-10-18 Transparent conductive film WO2019116719A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880075701.8A CN111372776A (en) 2017-12-15 2018-10-18 Transparent conductive film
KR1020207011404A KR20200098484A (en) 2017-12-15 2018-10-18 Transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240492 2017-12-15
JP2017240492A JP2019107785A (en) 2017-12-15 2017-12-15 Transparent conductive film

Publications (1)

Publication Number Publication Date
WO2019116719A1 true WO2019116719A1 (en) 2019-06-20

Family

ID=66820189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038786 WO2019116719A1 (en) 2017-12-15 2018-10-18 Transparent conductive film

Country Status (5)

Country Link
JP (1) JP2019107785A (en)
KR (1) KR20200098484A (en)
CN (1) CN111372776A (en)
TW (1) TW201930085A (en)
WO (1) WO2019116719A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458926B2 (en) * 2020-07-28 2024-04-01 日東電工株式会社 Transparent Conductive Film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107557A (en) * 2013-12-03 2015-06-11 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2016124124A (en) * 2014-12-26 2016-07-11 出光興産株式会社 Tone correction film
JP2016187911A (en) * 2015-03-30 2016-11-04 リンテック株式会社 Transparent conductive film
JP2016224511A (en) * 2015-05-27 2016-12-28 日東電工株式会社 Transparent conductive film
JP2017024267A (en) * 2015-07-22 2017-02-02 日東電工株式会社 Laminate and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062609A (en) * 2015-09-24 2017-03-30 日東電工株式会社 Transparent conductive film and touch panel including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107557A (en) * 2013-12-03 2015-06-11 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2016124124A (en) * 2014-12-26 2016-07-11 出光興産株式会社 Tone correction film
JP2016187911A (en) * 2015-03-30 2016-11-04 リンテック株式会社 Transparent conductive film
JP2016224511A (en) * 2015-05-27 2016-12-28 日東電工株式会社 Transparent conductive film
JP2017024267A (en) * 2015-07-22 2017-02-02 日東電工株式会社 Laminate and method for producing the same

Also Published As

Publication number Publication date
JP2019107785A (en) 2019-07-04
TW201930085A (en) 2019-08-01
KR20200098484A (en) 2020-08-20
CN111372776A (en) 2020-07-03

Similar Documents

Publication Publication Date Title
TWI765869B (en) Amorphous transparent conductive film, crystalline transparent conductive film and method for producing the same
TWI754720B (en) Conductive film and touch panel
KR20180048801A (en) A transparent conductive film, and a touch panel
KR102558619B1 (en) Transparent conductive film
JP6923415B2 (en) Transparent conductive film and transparent conductive film laminate
WO2019116719A1 (en) Transparent conductive film
WO2019082581A1 (en) Transparent conductive film
JP2020108941A (en) Transparent conductive film laminate
KR102715194B1 (en) Method for producing conductive film
JP7323293B2 (en) Conductive film and touch panel
CN110415863B (en) Hard coat film, transparent conductive film laminate, and image display device
CN110619972B (en) Film with base layer, transparent conductive film laminate, and image display device
JP7466269B2 (en) Transparent conductive film and crystalline transparent conductive film
JP2020075364A (en) Electrically conductive film and touch panel
TW202042255A (en) Light transmissive conductive film capable of etching a light transmissive conductive layer in a short time

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888907

Country of ref document: EP

Kind code of ref document: A1