[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018164123A1 - 粗大粒子を含まない窒化アルミニウム粉末 - Google Patents

粗大粒子を含まない窒化アルミニウム粉末 Download PDF

Info

Publication number
WO2018164123A1
WO2018164123A1 PCT/JP2018/008575 JP2018008575W WO2018164123A1 WO 2018164123 A1 WO2018164123 A1 WO 2018164123A1 JP 2018008575 W JP2018008575 W JP 2018008575W WO 2018164123 A1 WO2018164123 A1 WO 2018164123A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
nitride powder
powder
particle size
surface modifier
Prior art date
Application number
PCT/JP2018/008575
Other languages
English (en)
French (fr)
Inventor
喜孝 稲木
靖司 伊本
泰幸 山本
雅孝 姫野
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201880005127.9A priority Critical patent/CN110088039B/zh
Priority to EP18764716.9A priority patent/EP3594178B1/en
Priority to KR1020197019111A priority patent/KR102508160B1/ko
Priority to US16/491,904 priority patent/US11427470B2/en
Priority to JP2019504605A priority patent/JP7017556B2/ja
Publication of WO2018164123A1 publication Critical patent/WO2018164123A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0728After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to aluminum nitride containing no coarse particles. More specifically, the present invention relates to an aluminum nitride powder suitable for filling a narrow gap and producing a thin resin sheet with very few coarse particles.
  • a metal base substrate in which a heat-dissipating insulating resin layer is provided on a metal plate is increasing, and such a resin layer is filled with alumina, aluminum nitride, boron nitride or the like as a filler having high thermal conductivity.
  • high thermal conductivity fillers are being used around sealing devices, adhesives, greases, and the like around semiconductor devices, and how to efficiently release heat has become important.
  • silica is mainly used as a filler for resin sealing, and spheroidization of particles for the purpose of improving fillability and fluidity and control of particle size distribution have been regarded as important characteristics for the filler. .
  • Patent Document 1 the gap filling the sealing material has been narrowed, and coarse particles have been removed from the silica powder.
  • coarse particles are contained in the filler, clogging occurs when filling the gap, causing problems such as filling unevenness, voids, and defective molding.
  • the presence of aggregated particles may cause the fluidity to deteriorate.
  • Patent Document 2 proposes a technique for wet-classifying particles using a liquid cyclone to which an electrostatic field is applied.
  • an aluminum nitride powder in which the amount of coarse particles and aggregated particles is controlled has not been reported.
  • Patent Document 3 a boehmite film having a number of OH groups of 2 to 5 / nm 2 is formed on the surface of an aluminum nitride sintered powder, and further coated with a silane coupling agent.
  • a highly thermally conductive filler made of aluminum sintered body powder has been proposed.
  • an object of the present invention is to provide a resin composition that can be filled into a narrow gap by removing excess coarse particles (hereinafter also referred to as “coarse particles”) from an aluminum nitride powder, and a thin heat dissipation resin sheet.
  • An object of the present invention is to provide a classified high thermal conductive filler which is preferably used for realizing.
  • the cumulative volume 50% particle size D50 is 0.5 to 7.0 ⁇ m in the particle size distribution measured with a laser diffraction / scattering particle size distribution meter.
  • An aluminum nitride powder having a cumulative volume 90% particle size D90 to D50 ratio ( D90 / D50) of 1.3 to 3.5 and a BET specific surface area of 0.4 to 6.0 m 2 / g is classified by classification. It has been found that a resin composition capable of filling a narrow gap can be produced by using aluminum nitride powder with few coarse particles.
  • an aluminum nitride powder In the range of 1.3 to 3.5 and a BET specific surface area of 0.4 to 6.0 m 2 / g, an aluminum nitride powder, When a resin paste obtained by mixing 150 parts by mass of the aluminum nitride powder and 100 parts by mass of silicone oil having a kinematic viscosity at 25 ° C. of 1000 cSt is measured with a grind gauge, the upper limit particle diameter that produces linear traces is D90.
  • Aluminum nitride powder characterized by being 5 times or less.
  • the aluminum nitride powder having a carbon content of 0.001 to 0.35 mass%.
  • the surface modifier is a silane compound or a silazane compound, and the organic functional group having the largest carbon number out of the hydrolyzable group of the silane compound, or the organic compound having the largest carbon number in the silazane compound.
  • the said aluminum nitride powder whose total carbon number which a functional group has is 9 or less.
  • a resin composition comprising the aluminum nitride powder and a resin.
  • the resin composition mixed with the resin has a good filling property in a narrow gap.
  • the aluminum nitride powder of the present invention is preferable because it can be used in applications such as underfill sealing, and can exhibit a satisfactory sealing operation with little occurrence of gap failure or penetration failure.
  • the aluminum nitride powder of the present invention has a cumulative volume 50% particle size D50 in the range of 0.5 to 7.0 ⁇ m and a cumulative volume 90% particle size D90 in the particle size distribution measured with a laser diffraction / scattering particle size distribution meter.
  • the measurement with a laser diffraction / scattering particle size distribution meter will be described in more detail as follows. That is, aluminum nitride powder is dispersed in ethanol at a concentration of 1% by mass, and is dispersed by performing ultrasonic irradiation of about 200 W for 3 minutes. About this dispersion liquid, the particle size distribution of the aluminum nitride powder is measured using a laser diffraction scattering type particle size distribution meter. In the volume frequency distribution of particle size, the volume frequency is accumulated from the smaller particle size, the particle size value where the cumulative value is 50% is D50, the particle size value where 90% is D90, The maximum particle size counted as particles is taken as the maximum counted particle size.
  • the aluminum nitride powder of the present invention exhibits the above particle size within the range measured by this method, and may form an aggregate in the state before ethanol dispersion. Therefore, the aluminum nitride powder of the present invention may exist as granules which are aggregates before dispersion.
  • the aluminum nitride powder of the present invention has a D50 in the range of 0.5 to 7.0 ⁇ m.
  • An aluminum nitride powder having a D50 of less than 0.5 ⁇ m is virtually unobtainable. If it is larger than 7.0 ⁇ m, precise classification becomes difficult.
  • D50 is in the range of 0.8 to 6.0 ⁇ m.
  • the aluminum nitride powder of the present invention has a ratio of D90 and D50 in the range of 1.3 to 3.5.
  • An aluminum nitride powder having a D90 / D50 smaller than 1.3 cannot be obtained practically, and conversely, if it is larger than 3.5, it is difficult to remove coarse particles having a particle size larger than the target particle size during classification.
  • D90 / D50 is in the range of 1.5 to 2.5.
  • the greatest feature of the aluminum nitride powder of the present invention is that a resin paste obtained by mixing 150 parts by mass of the aluminum nitride powder and 100 parts by mass of silicone oil having a kinematic viscosity at 25 ° C. of 1000 cSt is obtained by grinding a particle gauge (particle size gauge). ), The upper limit particle diameter that produces linear traces or streaks is 5 times or less of D90.
  • the aluminum nitride particles of the present invention do not contain coarse particles, when used for applications such as an underfill encapsulant, an excellent effect is obtained that gap defects and poor penetration are less likely to occur.
  • the preferable upper limit particle size is 4 times or less of D90, more preferably 3 times or less, and particularly preferably 2 times or less.
  • the aluminum nitride powder of the present invention has a BET specific surface area measured by the nitrogen adsorption one-point method in the range of 0.4 to 6.0 m 2 / g. If it is less than 0.4 m 2 / g, D50 will exceed 7 ⁇ m, and conversely, a fine aluminum nitride powder exceeding 6.0 m 2 / g cannot be obtained practically.
  • the aluminum nitride powder of the present invention has an oxide film on the surface.
  • the amount of hydroxyl groups on the surface of the oxide film is preferably less than 2 / nm 2 .
  • the aluminum nitride powder of the present invention may be treated with a surface modifier.
  • the surface is modified to obtain the effect of preventing the aggregation of the powder, the effect of filling the resin as a filler, and the like.
  • the effect that manufacture becomes easy will also express.
  • the first point is an advantage of preventing aggregation of powder
  • the second point is an advantage in classification operation
  • the third point is an advantage in filling the resin as a filler.
  • the aggregation prevention will be described in more detail as follows. Aggregation is a state in which particles are strongly bonded to each other due to hydrogen bonding between surface hydroxyl groups and a coarse lump is formed. Therefore, such bonding is weakened by surface modification, and aggregation is difficult to occur.
  • the advantages of filling the resin with surface-modified aluminum nitride powder as fillers include reduced viscosity, improved filling rate and improved thermal conductivity, and improved durability and insulation reliability of the cured resin. Improvement, improvement of the mechanical strength of the cured resin and improvement of adhesive strength due to the addition of a functional group suitable for the resin. In particular, the reduction in viscosity is particularly advantageous because it can be expected to improve the permeability to narrow gaps by improving the fluidity of the filled resin composition.
  • the surface modifier may be uniformly distributed over the entire surface of the aluminum nitride particles, or an aggregate of a plurality of modifier molecules may be treated on the particle surface. Moreover, it is not necessary to treat each particle with an equal amount of the modifying molecule. There may be a difference in the amount of the modifier to be detected (for example, the amount of carbon derived from the modifier) in the analysis results of a plurality of samples randomly collected from the powder.
  • the allowable variation in the analysis results is preferably less than 40% before and after the average value of a plurality of samples. If the variation is too large, a difference in viscosity characteristics appears when the resin is filled, which is not desirable.
  • any general surface treatment agent used for fillers such as silica can be used without any particular problem.
  • a silane compound, a silazane compound, an aluminate coupling agent, a titanate coupling agent, etc. are mentioned.
  • silane compound and a silazane compound hereinafter collectively referred to as “silylating agent” and treatment with a silylating agent is referred to as “silylation” can be suitably used because surface modification without unevenness is possible.
  • the number of carbon atoms constituting the functional group other than the hydrolyzable group is preferably 9 or less.
  • the carbon number of the organic group having the maximum number of carbons is meant.
  • the silylating agent is hexylmethyldimethoxylane (C 6 H 13 Si (CH 3 ) (OCH 3 ) 2 )
  • the number of carbon atoms is counted as 6.
  • Silane compounds with a large number of carbon atoms, that is, silylating agents with long functional groups have strong organic group interactions, and the silylating agent tends to exist as a multimer, so that the entire aluminum nitride powder is treated uniformly. It is difficult to form a partly aggregated powder. When such powder is mixed with coarse particles and filled into a resin as a filler, a linear mark or streak is generated by a grind gauge, which causes gap failure or penetration failure.
  • only one type of surface modifier may be used in the treatment, or two or more types may be used in combination.
  • the silane-treated aluminum nitride powder refers to a state in which part or all of the silane compound forms a bond with the surface by dehydration condensation with the hydroxyl group of the aluminum oxide layer on the aluminum nitride surface.
  • the bonding between silane and the surface refers to a state in which a certain amount of silane remains in a powder form without being washed away even when the silane-treated powder is dispersed in an organic solvent and then solid-liquid separated.
  • some of the silanes used in the treatment do not need to be bonded, and there may be silanes that are washed away by washing.
  • silane it is not necessary for silane to form a treatment layer having a uniform thickness on the particle surface, and a portion where silane is present and a portion where silane is present may be in an island shape. Because the oxide film itself on the aluminum nitride surface is not uniform, the aluminum nitride surface may be partly exposed, the reactive hydroxyl groups of the aluminum oxide layer are not uniformly distributed for the same reason, and This is because there are at least three possibilities that silane compounds adsorbed on the surface during heating gather to form multimers, and it may be difficult to form a uniform silane-treated surface itself.
  • the hydrolyzable groups such as alkoxy groups and halogen groups of the silane compound may not all react.
  • the amount of silane remaining on the surface without being washed away by washing varies depending on the amount of silane initially brought into contact with the powder, so it is difficult to define clearly, but it is preferable that about 50 to 70% remain. A larger residual amount is desirable because the powder physical properties are stable.
  • the bonding with the surface does not require that all silane molecules are in the same bond-forming state.
  • the silane molecule may be bonded to the surface alone, or two or more silane hydrolyzable groups may be bonded to each other. Condensation forms a multimer, and the multimer may be bonded to the surface at a single point or multiple points, or a high molecular weight multimer may be adsorbed on the surface and present in a state that is difficult to wash away. is there.
  • the functional group having 9 or less carbon atoms and the functional group being a reactive functional group includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycid Xylpropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrieth Sisilane, 2-amin
  • Examples of the silane compound having 9 or less carbon atoms constituting the functional group and the functional group is an alkyl group or a fluorinated alkyl group include methyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, and ethyl.
  • silanes having 9 or less carbon atoms constituting the functional group include vinyltrichlorosilane, methyltrichlorosilane, dimethyldichlorosilane, trichloromethylsilane, ethyldimethylchlorosilane, propyldimethylchlorosilane, phenyltrichlorosilane, trifluoropropyltrisilane.
  • chlorosilanes such as chlorosilane and isopropyldiethylchlorosilane.
  • silazane compound examples include hexamethyldisilazane, tetramethyldisilazane, divinyltetramethyldisilazane, diphenyltetramethyldisilazane, bis (trifluoropropyl) tetramethyldisilazane, hexamethylcyclotrisilazane, trimethyltrivinylcyclotriazate.
  • silazane and octamethylcyclotetrasilazane examples include silazane and octamethylcyclotetrasilazane.
  • the aluminum nitride powder treated with the surface modifier contains carbon derived from the surface modifier.
  • the carbon content is preferably 0.001 to 0.35% by mass.
  • the method for producing the aluminum nitride powder of the present invention is not particularly limited, but according to the study by the present inventors, it can be suitably produced by the following method.
  • the oxide film When the oxide film is provided, it is preferably provided by heat treatment in an oxidizing atmosphere before classification.
  • the treatment with the surface modifier may be performed before classification, but is preferably performed simultaneously with classification during wet classification.
  • Raw material aluminum nitride powder As the raw material aluminum nitride powder in the production method of the present invention, a powdery material produced by a conventionally known method can be used without particular limitation. In the present invention, the aluminum nitride powder before classification and surface modification is referred to as “raw material aluminum nitride powder”. Examples of the method for producing the raw material aluminum nitride powder in the present invention include a direct nitriding method, a reductive nitriding method, and a vapor phase synthesis method.
  • the raw material aluminum nitride powder in the present invention has a cumulative volume 50% particle size D50 of 0.5 to 7.0 ⁇ m in a particle size distribution measured by a laser diffraction scattering type particle size distribution meter, and a cumulative volume 90% particle size D90.
  • the particle size distribution of the aluminum nitride powder by the above measurement method has one or two maximum values of volume frequency.
  • the frequency of the maximum value on the small particle size side is greater.
  • An aluminum nitride powder having such a particle size distribution is easier to obtain by using the reduction nitriding method. More specifically, the intended aluminum nitride powder can be obtained by using an alumina raw material having a particle size close to D50 and D90 of the produced aluminum nitride powder.
  • an aggregate in which a plurality of particles are sintered may be generated because a high temperature is applied. Such a sintered aggregate is crushed by a ball mill, a jet mill or the like as necessary.
  • the aluminum nitride powder produced by such a method is usually not so small that coarse particles exceeding 5 times D90 are not detected by measurement with a laser diffraction / scattering type particle size distribution meter, but it is not at all present, and does not exist at all. It is detected by SEM observation or the like, or is easily confirmed by measuring with a grind gauge to produce a linear mark or streak.
  • the raw material aluminum nitride of the present invention may contain up to about 5 parts by mass of impurities such as alkaline earth elements and rare earth elements derived from the raw materials or intentionally added in the synthesis method. Further, boron nitride may be contained as an upper limit of about 5 parts by mass as an anti-aggregation agent or an impurity derived from a setter. However, the amount of impurities that significantly decreases the crystallinity of aluminum nitride is not preferable because it causes a decrease in thermal conductivity.
  • the aluminum nitride content in the raw material aluminum nitride powder is preferably 90% or more, and more preferably 95% or more.
  • the raw material aluminum nitride powder used in the present invention preferably has an aluminum oxide layer on the surface in order to suppress hydrolyzability or to increase the processing efficiency of surface modification described later. Specifically, it is desirable that Al—O—Al bonds and Al—OH groups exist on the surface of the particles constituting the raw material aluminum nitride powder.
  • the aluminum oxide layer may be an oxide film layer formed by natural oxidation when storing the raw material aluminum nitride powder, or may be an oxide film layer formed by an oxidative treatment step that is intentionally performed. This oxidation treatment step may be performed in the manufacturing process of the raw material aluminum nitride powder, or may be performed as a separate step after the raw material aluminum nitride powder is manufactured.
  • an aluminum oxide layer is present on the surface.
  • An oxidation treatment process may be further added to the aluminum nitride powder obtained by the reduction nitriding method.
  • the raw material aluminum nitride powder obtained by various methods is preferably at a temperature of 400 to 1,000 ° C., more preferably at a temperature of 600 to 900 ° C., preferably 10 to 600 minutes, more preferably in an oxygen-containing atmosphere. By heating for 30 to 300 minutes, an aluminum oxide layer can be formed on the surface of the raw material aluminum nitride particles.
  • oxygen-containing atmosphere for example, oxygen, air, water vapor, carbon dioxide and the like can be used, but in the relationship with the object of the present invention, treatment in air, particularly under atmospheric pressure is preferable.
  • the oxidation treatment is performed at a high temperature exceeding 900 ° C. for a long time, a thick oxide film may be formed on the surface of the aluminum nitride, and this aluminum oxide film has a different coefficient of thermal expansion from that of the aluminum nitride core.
  • the film cannot be maintained, and the film may be cracked to expose the aluminum nitride surface of the core, which in turn causes a decrease in hydrolysis resistance. Therefore, it is better that the oxidation treatment conditions are not too strict.
  • the thickness of the aluminum oxide layer in a range that does not significantly reduce the thermal conductivity of the aluminum nitride powder is preferably about 0.005% to 0.2% of the diameter of the particles.
  • the raw material aluminum nitride powder has a surface hydroxyl group content of less than 2 / nm 2 regardless of the presence or absence of oxidation treatment.
  • the surface hydroxyl group is preferably derived from the surface aluminum oxide layer.
  • the shape of the primary particles of the raw material aluminum nitride powder in the present invention is not particularly limited, and may be any shape such as an indefinite shape, a spherical shape, a polyhedral shape, a columnar shape, a whisker shape, or a flat plate shape. Among these, for filler applications, a spherical shape with good viscosity characteristics and high reproducibility of thermal conductivity is desirable. In the classification operation, it is desirable that the aspect ratio is small because there is less possibility of mixing coarse particles. The preferred aspect ratio is 1 to 3.
  • coarse particles refer to both primary particles and higher-order aggregated particles, and if the higher-order aggregates are those that can be agglomerated by kneading with a liquid resin or dispersing in a solvent. Even apparently coarse particles are not treated as coarse particles.
  • the aluminum nitride powder of the present invention can be obtained by classifying the raw material aluminum nitride powder as described above and removing coarse particles having a certain particle size or more.
  • ⁇ Classification method> For classification, various methods such as a dry method and a wet method can be used.
  • the dry method is roughly divided into a sieve classification method and an airflow classification method.
  • Sieve classification is suitable for classification of relatively large powders, but if the particle size becomes small, the permeability is remarkably deteriorated due to aggregation of the powder and the like.
  • Airflow classification and wet classification can remove coarse particles more efficiently. When airflow classification and wet classification are compared, wet classification has fewer coarse particles remaining after classification.
  • Airflow classification is based on a method in which powder is dispersed in an airflow and divided into fine powder and coarse powder by the gravity, inertial force, centrifugal force, etc. of the particles.
  • a classifying device using inertial force and centrifugal force can be obtained by a classifying device using inertial force and centrifugal force.
  • inertial force for example, an impactor that separates fine powder and coarse powder when bending a granular material energized by an air flow by creating a swirling flow of air by providing guide vanes etc. inside the device
  • examples include a mold, a semi-free vortex centrifugal type that classifies particles by applying centrifugal force, and a Coanda type using the Coanda effect.
  • the classification device using inertial force include a cascade impactor, a viable impactor, an aero fine classifier, an eddy classifier, an elbow jet, and a hyperplex.
  • the method using centrifugal force separates fine powder and coarse powder using a spiral airflow
  • examples of the apparatus include a free vortex type and a forced vortex type.
  • Free vortex type devices include a cyclone without guide vanes, a multistage cyclone, a turboplex that uses secondary air to promote agglomeration, a dispersion separator with guide vanes to improve classification accuracy, microspin, microcut, etc. It is done.
  • the forced vortex type is a device that improves the classification accuracy by applying centrifugal force to the particles with a rotating body inside the device and creating another air flow inside the device, such as a turbo classifier or Donaserek.
  • ⁇ Wet classification operation> There are two types of wet classification: a method in which powder is dispersed in a solvent and then passed through a filter to remove coarse particles, and a fluid classification method in which coarse particles and fine particles are separated in a fluid state, but the filter classification method is accurate. And production capacity can be increased.
  • ⁇ Wet filter classification> This is a classification method in which powder is dispersed in a solvent, aggregated, and passed through a filter. Filters differ in classification point, classification accuracy, degree of clogging, etc. depending on the material, structure, and shape.
  • a membrane filter, resin mesh, metal mesh, filter paper can be used as the filter.
  • the filter may have a flat plate shape, a laminated structure, a pleated structure, or a cartridge type.
  • the object of the present invention is to remove coarse particles in the powder, and it is important in filter selection that no clogging occurs.
  • a filter having good particle permeability for example, a track etched membrane filter, a depth filter, a sieve, an electric sieve, a woven fabric mesh such as nylon or polypropylene can be preferably used as a filter having good particle permeability.
  • the filter material is preferably resin or stainless steel due to impurities, but it should be avoided that there is an elution component in contact with the dispersion medium, and it is desirable to select a suitable material according to the solvent used.
  • a coarse filter is preferably 15 to 50 times D90.
  • a fine filter a filter that is 5 times or less of D90, usually in the range of 3 to 5 times is used.
  • the liquid in which the powder is dispersed in the filter is allowed to pass, but the method of passing may be any method such as gravity, suction, pressurization, and pressure feed.
  • Forcible passage increases the risk of clogging, so it is necessary to select suitable conditions such as powder concentration, passage speed, and fineness of the filter.
  • Disperse solvent for wet classification In wet classification, it is necessary to disperse the powder in a solvent. Any solvent that can disperse the aluminum nitride powder can be used. However, the use of water should be avoided because aluminum nitride is hydrolyzable and forms strong aggregates upon drying after the classification operation.
  • the organic solvent can be used without any particular limitation unless it contains a large amount of water.
  • alcohol such as methanol, ethanol, propanol, isopropyl alcohol, butanol, ketone such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, ether such as diethyl ether, dioxane, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, tetrahydrofuran, Hexane, 2-methylpentane, heptane, cyclohexane, octane, 2,2,4-trimethylpentane, petroleum ether and other alkanes, ethyl formate, butyl formate, ethyl acetate, propyl acetate, butyl acetate and other esters, benzene, toluene, Aromatic hydrocarbons such as xylene and naphthalene can be suitably used. These solvents may be used alone or in combination of
  • alcohols are preferable, and alcohols are more preferable as solvents that dissolve the surface modifier well and have good dispersibility of the aluminum nitride powder.
  • lower alcohols such as methanol, ethanol and isopropyl alcohol are preferable because they have a low boiling point and are easily removed by evaporation.
  • the optimum amount of the solvent used is preferably from 100 to 1900 parts by weight, more preferably from 150 to 900 parts by weight, based on 100 parts by weight of the starting aluminum nitride powder.
  • the optimum amount of the solvent used is preferably from 100 to 1900 parts by weight, more preferably from 150 to 900 parts by weight, based on 100 parts by weight of the starting aluminum nitride powder.
  • Suitable devices for making the slurry highly dispersed include, for example, a disperser, a homogenizer, an ultrasonic disperser, a nanomizer, a shearing planetary mixer, an ejector, a water jet mill, a high-pressure disperser, and the like. Etc. Further, a wet ball mill, a wet vibration ball mill, a wet bead mill, etc. under mild conditions that do not change the particle size distribution can be used. However, a method in which the impact is applied more than necessary and the aluminum nitride primary particles are crushed should be avoided because it may expose the surface without the oxide film.
  • a disperser, a homogenizer, and an ultrasonic disperser are preferable. In addition, reducing the concentration of the powder dispersed in the solvent is also effective for facilitating filter classification.
  • the removal method of a solvent is not specifically limited, For example, the following three methods are mentioned.
  • the first is an evaporation to dryness method in which all the solvent is removed by drying.
  • the second is a method that is performed in two steps, a step of roughly drying the solvent and a drying step of completely removing the solvent thereafter.
  • the third is a method that is performed in two steps, a step of separating a solid component and a liquid component, and a drying step of completely removing the solvent thereafter.
  • the first method can be used as long as it is a heating device capable of evaporating and removing the solvent from the slurry containing aluminum nitride powder.
  • a conical dryer, drum dryer, V-type dryer, vibration dryer, rocking mixer, nauta A mixer, a ribocorn, a vacuum granulator, a vacuum emulsifier, and other stirring type vacuum dryers can be preferably used. Details of the process up to the final drying will be described in the section of the drying process below.
  • the second method can use an apparatus that volatilizes the solvent from the slurry.
  • an apparatus that volatilizes the solvent from the slurry.
  • Specific examples include a rotary evaporator, a thin film dryer, a spray dryer, a drum dryer, a disk dryer, and a fluidized bed dryer.
  • the third method is a filtration method, and any device that separates the slurry into a solid component and a liquid component can be suitably used.
  • a suction filtration device a centrifugal filter, a decanter, a gina centrifuge, a pressure filter, a filter press, and a filtration drying device that can carry out filtration and drying with a single unit. What is necessary is just to select suitably the material of the filter medium to be used, the reserved particle diameter, the conditions for separation, etc. according to the method used and the collection rate.
  • the first method that can remove all the solvents in one step is preferable in terms of cost.
  • the amount of the surface modifier on the particle surface is less likely to be uneven compared to the third filtration method.
  • the solvent is removed by the first method, it can be considered that the entire amount of the surface modifier used is adsorbed on the surface of the aluminum nitride.
  • the solvent used is completely removed in the final dried product.
  • the final dried product refers to a mass reduction rate of the classified aluminum nitride powder immediately after drying, that is, a mass reduction rate of less than 0.5% when dried at 120 ° C. in the atmosphere.
  • the atmosphere of the drying process is preferably in an inert gas or dry air under reduced pressure.
  • the inert gas is desirable under reduced pressure with little influence of environmental moisture, and more preferably under reduced pressure.
  • additional heat treatment may be added to the final dried product obtained after the drying step.
  • the additional heating in the case of adding the surface modifier has an effect of promoting the reaction between the modifier and the aluminum nitride surface, and the modifier is hardly detached from the surface.
  • the storage stability of the classified aluminum nitride powder can be increased by reducing the hydrolyzable residue of the surface modifier by heating.
  • the additional heating temperature is higher than the temperature of the drying process performed in the previous process.
  • the specific temperature is preferably 70 to 150 ° C, more preferably 80 to 120 ° C. If it is less than 70 degreeC, the effect of additional heating is small.
  • the temperature exceeds 150 ° C., when the surface modifier is added, the particles easily aggregate due to condensation between the surface modifiers.
  • Additional heating devices include ventilation dryer, convection dryer, vacuum dryer, conical dryer, drum dryer, V dryer, vibration dryer, rocking mixer, nauta mixer, ribocorn, vacuum granulator, vacuum emulsifier
  • a stirring type vacuum drying apparatus can be preferably used.
  • the atmosphere for additional heating is preferably in an inert gas or dry air under reduced pressure.
  • the inert gas is desirable under reduced pressure with little influence of environmental moisture, and more preferably under reduced pressure.
  • the wet-classified aluminum nitride powder of the present invention is obtained by drying (including additional heating) as described above, but the obtained aluminum nitride powder may be in a state of being strongly aggregated. Specifically, a powder composed of primary particles and agglomerates of primary particles but mostly composed of aggregated particles is poor in operability as a powder as it is, and is not sufficiently dispersed when kneaded with a resin. Since there is a fear, crushing treatment is performed as necessary.
  • the atmosphere for the crushing treatment is preferably in air or in an inert gas. Further, the humidity of the atmosphere is preferably not too high, specifically, the humidity is less than 70%, more preferably less than 55%.
  • the crushing apparatus examples include dry crushing apparatuses such as a stone mill type grinder, a rakai machine, a cutter mill, a hammer mill, and a pin mill.
  • a stone mill type grinder that can crush aggregates in a short time and has less crushing unevenness is preferable.
  • coarse particles may be removed with a vibration sieve or the like.
  • a stone mill good results are obtained when the rotational speed is 500 to 3000 rpm and the distance between the upper and lower grinding stones is 30 to 200 times the average particle diameter d50 (unit: ⁇ m) of the aluminum nitride powder. It is easy to obtain and preferable.
  • the diameter of the grindstone is appropriately determined according to the amount of the first aluminum nitride powder to be crushed.
  • the powder classified by the above operation is an aluminum nitride powder from which coarse particles have been removed, and the cumulative volume 50% particle size D50 in the particle size distribution measured with a laser diffraction scattering type particle size distribution meter is 0.5-7.
  • a resin paste obtained by mixing 150 parts by mass of the aluminum nitride powder and 100 parts by mass of silicone oil having a kinematic viscosity at 25 ° C. of 1000 cSt was measured with a grind gauge, Or the upper limit particle diameter which produces a streak is 5 times or less of D90.
  • the aluminum nitride powder of the present invention may be further treated with a surface modifier.
  • the fluid classification method can be expected to improve the dispersibility in a solvent due to the effect of preventing aggregation, and improve the recovery rate of fine powder and the accuracy of cut points. If the classification method uses a filter or the like, the filter clogging reduction effect due to the aggregate can be expected, and the filter replacement frequency can be reduced. Since the surface modifier is easily adsorbed on the surface of the aluminum nitride particles having a high specific surface area in the fluid, the effect can be expected only by coexisting in the fluid.
  • the treatment with the surface modifier of aluminum nitride is preferably carried out before passing through the filter in the wet classification.
  • the treatment with the surface modifier may be performed in advance separately from the wet classification, or the treatment with the surface modifier may be performed at the same time when the slurry for the wet classification is prepared.
  • the treatment can be performed by either dry surface treatment or wet surface treatment.
  • the dry surface treatment is a method of dry mixing without using a large amount of solvent when mixing the aluminum nitride powder and the surface modifier (Method A-1).
  • the surface modifier is gasified and mixed with the powder, the liquid surface modifier is sprayed or added dropwise and mixed with the powder, and the surface modifier is diluted with a small amount of organic solvent to obtain a liquid.
  • the method include increasing the amount and further spraying or dropping.
  • the gasification method can be applied to the case of processing a volatile low molecular weight silane compound or silazane compound.
  • the last dilution method is to avoid the amount of the surface modifier being too small to uniformly disperse throughout the powder, but if too much organic solvent is used for dilution, the liquid content of the whole powder The amount becomes high and causes lumps and aggregation. When diluting, it is desirable to dilute about 5 to 50 times by weight. In any case, in the dry method, it is important to distribute the surface modifier uniformly throughout the powder.
  • the heating temperature at the time of mixing is preferably about 20 to 150 ° C, particularly about 40 to 130 ° C.
  • the mixing time at room temperature is provided before the heating is started, the reaction is performed after the surface modifier has spread throughout, and a uniform treated powder is easily obtained.
  • silane compound When a silane compound is used as the surface modifier to be used, one that has been hydrolyzed with an acid or base in advance can also be used.
  • the acid / base used for hydrolysis especially basic substances, alters the surface of aluminum nitride and should be avoided.
  • a general mixing and stirring device can be used, and examples thereof include a planetary mixing device, a Henschel mixer, a super mixer, a V-type mixer, a drum mixer, a double cone mixer, and a rocking mixer. It is desirable that these devices have a heating function. By heating with stirring, the number of surface modification steps is reduced. In addition, since the powder tends to agglomerate during dry mixing, it is desirable that the mixing device has a mechanism for breaking the agglomeration once generated, such as a crushing blade or a chopper. In addition, during the mixing operation, the powder not only adheres, but depending on the stirring mechanism, the powder may be pressed against the mixing vessel wall to form a thick adhesion layer.
  • the mixing container wall surface is provided with an adhesion prevention measure such as a fluororesin coat, a mechanism for removing adhered powder such as a knocker, and a scraping mechanism with a special stirring blade.
  • an adhesion prevention measure such as a fluororesin coat, a mechanism for removing adhered powder such as a knocker, and a scraping mechanism with a special stirring blade.
  • the wet surface treatment refers to a method using a solvent when mixing the aluminum nitride powder and the surface modifier.
  • a case where the wet surface modification-treated powder is subjected to classification operation (Method A-2) and a case where classification operation is performed simultaneously with the surface modification treatment (Method B) ).
  • Method A-2 involves adding a surface modifier to the solvent, dispersing the raw aluminum nitride powder in the solvent, heating, removing the solvent, and heat drying as necessary.
  • the heating performed as needed is for the purpose of promoting the reaction between the surface modifier and the aluminum nitride surface.
  • the heating temperature is preferably about 50 to 120 ° C., and the time is preferably about 60 to 300 minutes.
  • the surface modifier-treated aluminum nitride powder thus obtained is subjected to a classification operation.
  • the dispersion medium, dispersion method, and solvent removal / drying method used in (Method A-2) are the same as those described in the description of the wet classification operation in producing the aluminum nitride powder of the present invention.
  • the third method is a method in which surface modification treatment and classification operation are performed simultaneously (Method B).
  • Method B In preparing a slurry by dispersing raw aluminum nitride powder in a solvent for use in a wet classification operation, the surface modifier is dissolved in an organic solvent in advance, or the raw aluminum nitride powder in an organic solvent At the same time, a surface modifier is added to make a slurry in which the surface modifier and raw material aluminum nitride powder coexist in an organic solvent. After the slurry is subjected to a classification operation, the solvent is removed to improve the surface. A treated classified powder can be obtained.
  • heating is performed for the purpose of promoting the reaction between the surface modifier and the aluminum nitride surface, as in (Method A-2). It is preferable to carry out. This heating can be performed before or after the wet classification operation.
  • Method B is preferable in that the number of steps is reduced and the cost is reduced.
  • a surface modifier that generates ammonia such as a silazane compound
  • the method (A-1) or ( The method A-2) is preferred because it requires less alteration of aluminum nitride.
  • ⁇ Amount of surface modifier> In the reaction between the aluminum nitride powder and the silane compound of the surface modifier, it is not necessary that all reactive groups of silane such as alkoxy groups are bonded to aluminum nitride as described above. However, since the hydroxyl group generated by the reaction of such a reactive group with water may break the bond between the formed silane and the aluminum nitride particles, it is not preferable to add excess silane. Therefore, the amount of silane is preferably adjusted according to the surface hydroxyl group amount of aluminum nitride that reacts with silane.
  • the optimum amount of the silane compound is 0.2 to 3.8% by weight, although the optimum amount varies depending on the particle size and specific surface area of the powder.
  • silazane compounds such as hexamethyldisilazane have a low boiling point and react with the surface hydroxyl groups in a one-to-one relationship. If an excessive amount is added, it can be removed by heating and vacuuming. However, since silazane compounds generate ammonia, care must be taken that the amount of contact with aluminum nitride, which is weak in alkaline conditions, does not become excessive. When the aluminum nitride is 100 parts by weight, the amount of the silazane compound is desirably 0.8 parts by weight or less per 1 m 2 / g of the aluminum nitride specific surface area.
  • the aluminum nitride powder obtained by the method of the present invention can be suitably used as a heat dissipation composite material by mixing it with a resin.
  • thermoplastic resins examples include both thermoplastic resins and thermosetting resins.
  • thermoplastic resin examples include polyethylene, polypropylene, ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyacetal, and fluororesin.
  • thermosetting resin examples include an epoxy resin, an acrylic resin, a urethane resin,
  • Examples of the use of the heat-dissipating composite material produced by using the classified aluminum nitride powder obtained by the method of the present invention include heat generation from semiconductor components mounted on, for example, home appliances, automobiles, and notebook personal computers.
  • the material of the heat radiating member for radiating efficiently can be mentioned. Specific examples of these include heat dissipating grease, heat dissipating gel, heat dissipating sheet, phase change sheet, and adhesive.
  • the composite material can also be used as an insulating layer used for, for example, a metal base substrate, a printed circuit board, a flexible substrate, and the like; a semiconductor sealant, an underfill, a housing, a heat radiation fin, and the like.
  • the various physical property measuring methods in the present invention are as follows.
  • particle size distribution The particle size distribution of a liquid in which aluminum nitride powder is dispersed in ethanol at a concentration of 1% by mass and dispersed by performing ultrasonic irradiation of about 200 W for 3 minutes is measured using a laser diffraction scattering type particle size distribution meter.
  • the volume frequency distribution of particle size the volume frequency is accumulated from the smaller particle size, the particle size value where the cumulative value is 50% is D50, the particle size value where 90% is D90, The maximum particle size counted as particles is taken as the maximum counted particle size.
  • the BET specific surface area of the aluminum nitride powder was determined by the BET method (nitrogen adsorption one-point method) using a specific surface area measuring device (manufactured by Shimadzu Corporation: Flowsorb 2-2300 type). For the measurement, 2 g of aluminum nitride powder was used, and the one that had been previously dried at 100 ° C. for 1 hour in a nitrogen gas flow was used for the measurement.
  • Carbon analysis The carbon content of the aluminum nitride powder was measured with a carbon analyzer (for example, EMIA-110 manufactured by Horiba, Ltd.). The powder was burned in an oxygen stream at 1350 ° C. until no carbon dioxide gas was generated, and the carbon content of each powder was determined from the amount of carbon dioxide generated. From the following formula, the carbon content derived from the surface modified layer of the classified aluminum nitride powder was calculated.
  • a carbon analyzer for example, EMIA-110 manufactured by Horiba, Ltd.
  • Carbon content (mass%) derived from the surface modified layer (AB) ⁇ 100 / C
  • the operation was repeated three times to obtain a paste in which the powder was dispersed.
  • the paste was placed on the grain gauge, the scraper was applied vertically, and the linear traces when sliding on the groove were observed (see FIG. 2).
  • Viscosity evaluation In order to evaluate the characteristics of the aluminum nitride powder as a filler, the viscosity of a resin composition obtained by kneading the aluminum nitride powder and a liquid resin was measured. When coarse particles such as agglomerated particles are reduced by classification, the fluidity of the resin composition is improved and the effect of lowering the viscosity is expected.
  • a rotational viscometer RVDV-II + CP ⁇ 12 mm, using a cone plate with an angle of 3 degrees
  • the pastes mixed under the mixing conditions 1 to 3 were each kneaded and scraped for 3 minutes with an automatic cracking machine three times to obtain a paste in which the powder was dispersed.
  • the viscosity of the obtained paste was measured at 30 ° C. Viscosity measurement was carried out by changing the shear rate.
  • the plots of viscosity against shear rate are shown in FIGS. There is a case where there is no plot on the high shear rate side, because it was not possible to measure at high torque. Further, as representative values of the viscosity measurement results, values at a shear rate of 5 s ⁇ 1 are shown in Tables 1 to 3.
  • ⁇ Raw material aluminum nitride> -A1 H No. manufactured by Tokuyama Corporation 1 grade powder.
  • D50 1.6 ⁇ m
  • D90 3.8 ⁇ m
  • maximum count particle size 9.3 ⁇ m
  • D90 / D50 2.4
  • surface hydroxyl group amount 1.4 / nm 2 2.3
  • A2 obtained by pulverizing E grade powder manufactured by Tokuyama Corporation with a jet mill. The powder was ground using EMJ-0Q manufactured by Earth Technica Co., Ltd., pulverized at an air pressure of 0.8 MPa, and collected in a bag filter.
  • A4 obtained by synthesis by the method described in JP-A-2014-201474.
  • A5 obtained by synthesis by the method described in Japanese Patent No. 6038886.
  • D90 / D50 1.6, surface hydroxyl group amount 1.6 / nm 2 , specific surface area 1.7 m 2 / g)
  • A6 obtained by synthesis by the method described in Japanese Patent No. 6038886.
  • D50 6.0 ⁇ m
  • D90 12.2 ⁇ m
  • maximum count particle size 26.2 ⁇ m
  • D90 / D50 2.0
  • surface hydroxyl group content 1.3 pieces / nm 2 , specific surface area 0.6 m 2 / g.
  • Example 1 1167 g of IPA was put in a 2 L poly beaker, and further 500 g of raw material aluminum nitride powder A1 was added and stirred with a stirring blade. The obtained suspension was passed through a nylon filter having a pore diameter of 20 ⁇ m to remove coarse particles. Thereafter, IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain a wet-classified aluminum nitride powder, but the dried powder was not easily broken by hand. Was included. Table 2 shows the results of the coarse grain evaluation by the grain gauge.
  • Example 2 An aluminum nitride powder subjected to wet classification was obtained by the same operation as in Example 1 except that a nylon filter having a pore size of 15 ⁇ m was used, but the dried powder contained a lump that was not easily crushed by hand. Table 2 shows the results of the coarse grain evaluation by the grain gauge.
  • Example 3 Except for the use of a nylon filter with a pore size of 10 ⁇ m, wet classification was performed in the same manner as in Example 1. As a result, clogging of the filter occurred in the middle, but then the suspension was changed by replacing the filter with a new one three times. All were able to pass through the filter. The filter was replaced as soon as clogging occurred, and the cake deposited on the filter was discarded. A rotary evaporator was applied to the suspension that passed through the filter, and IPA was removed by evaporation. Subsequently, vacuum-classified aluminum nitride powder was obtained by vacuum drying at 80 ° C., but the dried powder contained a lump that could not be easily broken by hand. Table 2 shows the result of coarse particle evaluation by a particle gauge and the result of viscosity measurement.
  • Example 4 1167 g of IPA was put in a 2 L poly beaker, and 500 g of raw material aluminum nitride powder A3 was added, followed by stirring with a stirring blade. The obtained suspension was passed through a nylon filter having a pore size of 10 ⁇ m to remove coarse particles. Thereafter, IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain a wet-classified aluminum nitride powder, but the dried powder was not easily broken by hand. Was included. Table 2 shows the result of coarse particle evaluation by a particle gauge and the result of viscosity measurement.
  • Example 5 1167 g of IPA was put in a 2 L poly beaker, and 500 g of raw material aluminum nitride powder A4 was added, followed by stirring with a stirring blade. The obtained suspension was passed through a nylon filter having a pore size of 10 ⁇ m to remove coarse particles. Thereafter, IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain a wet-classified aluminum nitride powder, but the dried powder was not easily broken by hand. Was included. Table 2 shows the result of coarse particle evaluation by a particle gauge and the result of viscosity measurement.
  • Example 6 1167 g of IPA was put in a 2 L poly beaker, and 500 g of raw material aluminum nitride powder A6 was further added, followed by stirring with a stirring blade. The obtained suspension was passed through a nylon filter having a pore size of 30 ⁇ m to remove coarse particles. Thereafter, IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain a wet-classified aluminum nitride powder, but the dried powder was not easily broken by hand. Was included. Table 2 shows the result of coarse particle evaluation by a particle gauge and the result of viscosity measurement.
  • Example 7 2.36 g of surface modifier GPS and 1167 g of IPA were put in a 2 L poly beaker, and after confirming that the surface modifier was dissolved, 500 g of raw material aluminum nitride powder A1 was added to the IPA solution and stirred with a stirring blade. did. The obtained suspension was passed through a nylon filter having a pore size of 10 ⁇ m to remove coarse particles. Thereafter, IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain a wet-classified and surface-modified aluminum nitride powder. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after cleaning, the results of coarse particle evaluation by a particle gauge, and the results of viscosity measurement.
  • Example 8 Except for using 0.12 g of the surface modifier GPS, wet-classified and surface-modified aluminum nitride powder was obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 9 Except for using 0.59 g of the surface modifier GPS, wet-classified and surface-modified aluminum nitride powder was obtained by the same operation as in Example 7. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 10 Except for using 1.18 g of the surface modifier GPS, wet-classified and surface-modified aluminum nitride powder was obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 11 An aluminum nitride powder that was wet-classified and surface-modified by the same operation as in Example 7 was obtained except that 3.55 g of the surface modifier GPS was used. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 12 An aluminum nitride powder that was wet-classified and surface-modified in the same manner as in Example 7 except that 5.32 g of the surface modifier GPS was used. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 13 An aluminum nitride powder that was wet-classified and surface-modified by the same operation as in Example 7 was used except that a nylon filter having a pore size of 7 ⁇ m was used. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 14 An aluminum nitride powder which was wet-classified and surface-modified by the same operation as in Example 7 except that A2 was used as the raw material aluminum nitride powder. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 15 An aluminum nitride powder that was wet-classified and surface-modified by the same operation as in Example 7 except that A3 was used as the raw material aluminum nitride powder. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 16 An aluminum nitride powder that was wet-classified and surface-modified by the same operation as in Example 7 except that A4 was used as the raw material aluminum nitride powder. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 17 An aluminum nitride powder which was wet-classified and surface-modified by the same operation as in Example 7 except that A4 was used as the raw material aluminum nitride powder and a nylon filter having a pore size of 7 ⁇ m was used. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 18 An aluminum nitride powder which was wet-classified and surface-modified by the same operation as in Example 7 was obtained except that A5 was used as the raw material aluminum nitride powder and a nylon filter having a pore size of 20 ⁇ m was used. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 19 Except that A6 was used as the raw material aluminum nitride powder and a nylon filter having a pore size of 30 ⁇ m was used, an aluminum nitride powder subjected to wet classification and surface modification was obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 2 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Example 20 Except for using 2.20 g of GPMS as a surface modifier, wet classification and surface-modified aluminum nitride powder were obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 21 Except that 2.46 g of ECHS was used as the surface modifier, wet-classified and surface-modified aluminum nitride powder was obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 22 Except for using 2.48 g of MPS as the surface modifier, wet-classified and surface-modified aluminum nitride powder was obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 23 Except for using 2.22 g of AEPS as the surface modifier, wet classification and surface-modified aluminum nitride powder were obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 24 Except for using 1.98 g of PMS as a surface modifier, wet classification was performed in the same manner as in Example 7, and a surface-modified aluminum nitride powder was obtained. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 25 An aluminum nitride powder that was wet-classified and surface-modified by the same operation as in Example 7, except that 1.48 g of VMS was used as the surface modifier. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 26 An aluminum nitride powder that was wet-classified and surface-modified by the same operation as in Example 7 except that 1.36 g of MMS was used as the surface modifier. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 27 Except for using 1.20 g of DMDS as a surface modifier, wet-classified and surface-modified aluminum nitride powder was obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 28 Except for using 1.64 g of PRMS as a surface modifier, wet classification and surface-modified aluminum nitride powder were obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 29 Except that 2.48 g of HES was used as the surface modifier, wet classification and surface modified aluminum nitride powder were obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 30 Except for using 2.77 g of OES as the surface modifier, wet-classified and surface-modified aluminum nitride powder was obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, the results of coarse particle evaluation using a particle gauge, and the results of viscosity measurement.
  • Example 31 Except for using 2.55 g of PAPS as the surface modifier, wet classification and surface-modified aluminum nitride powder were obtained in the same manner as in Example 7. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, the results of coarse particle evaluation using a particle gauge, and the results of viscosity measurement.
  • Example 32 2.36 g of surface modifier GPS and 1167 g of IPA were put in a 2 L poly beaker, and after confirming that the surface modifier was dissolved, 500 g of raw material aluminum nitride powder A1 was added to the IPA solution and stirred with a stirring blade. did. Thereafter, IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. The obtained surface modified powder was put into a 2 L poly beaker, and 1167 g of IPA was further added to form a suspension. The suspension stirred with a stirring blade was passed through a nylon filter having a pore diameter of 7 ⁇ m to remove coarse particles.
  • IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain a wet-classified and surface-modified aluminum nitride powder.
  • the dry powder was easily crushed by hand.
  • Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 33 Except that 2.77 g of OES was used as the surface modifier, wet classification was performed in the same manner as in Example 32, and surface-modified aluminum nitride powder was obtained. The dry powder was easily crushed by hand. Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Example 34 500 g of raw aluminum nitride powder A1 was placed in a 2 L stainless steel sealed container, and evacuation and nitrogen introduction were repeated three times to remove oxygen contained in the powder. Thereafter, 7.50 g of HMDS was introduced into the sealed container from the treatment agent introduction tube. The container was heated at 150 ° C. for 3 hours while stirring the inside with a stirring blade, and further evacuated at 150 ° C. for 3 hours. The obtained surface modified powder was put into a 2 L poly beaker, and 1167 g of IPA was further added to form a suspension. The suspension stirred with a stirring blade was passed through a nylon filter having a pore diameter of 7 ⁇ m to remove coarse particles.
  • IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain a wet-classified and surface-modified aluminum nitride powder.
  • the dry powder was easily crushed by hand.
  • Table 3 shows the carbon content derived from the surface modifier before and after cleaning, and the results of coarse particle evaluation by a particle gauge.
  • Comparative Example 8 2.36 g of surface modifier GPS and 1167 g of IPA were put in a 2 L poly beaker, and after confirming that the surface modifier was dissolved, 500 g of raw material aluminum nitride powder A1 was added to the IPA solution and stirred with a stirring blade. did. IPA was removed from the suspension by evaporation using a rotary evaporator, followed by vacuum drying at 80 ° C. to obtain surface-modified aluminum nitride powder. The dry powder was easily crushed by hand. Table 4 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Comparative Example 9 A surface-modified aluminum nitride powder was obtained in the same manner as in Comparative Example 8, except that 2.77 g of OES was used as the surface modifier. The dry powder was easily crushed by hand. Table 4 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Comparative Example 10 Except that 2.63 g of DMS was used as the surface modifier, wet-classified and surface-modified aluminum nitride powder was obtained in the same manner as in Example 4. The dry powder was easily crushed by hand. Table 4 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Comparative Example 11 Except that 3.47 g of HDMS was used as a surface modifier, wet classification was performed in the same manner as in Example 4, and a surface-modified aluminum nitride powder was obtained. The dry powder was easily crushed by hand. Table 4 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.
  • Comparative Example 12 Except for using 3.75 g of ODMS as the surface modifier, wet classification and surface-modified aluminum nitride powder were obtained in the same manner as in Example 4. The dry powder was easily crushed by hand. Table 4 shows the carbon content derived from the surface modifier before and after the cleaning, and the results of coarse particle evaluation using a particle gauge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

粗粒の少ない窒化アルミニウム粉末を提供する。さらに、樹脂親和性が高く耐湿性の高い樹脂組成物が得られる窒化アルミニウム粉末を提供する。 レーザー回折散乱型粒度分布計で測定される粒度分布において体積平均粒子径D50が0.5~7.0μmであり、D90/D50比が1.3~3.5であり、BET比表面積が0.4~6.0m2/gの窒化アルミニウム粉末であって、D90の5倍を超える粒径の粗粒を分級除去した窒化アルミニウム粉末。このような窒化アルミニウム粉末と樹脂とから得た樹脂ペーストをグラインドゲージで測定すると、筋を生じる上限粒径がD90の5倍以下となる。さらに分級された窒化アルミニウム粉末が表面改質されていることにより樹脂への充填性が高く樹脂組成物の耐湿性と絶縁性が良好な窒化アルミニウム粉末が得られる。

Description

粗大粒子を含まない窒化アルミニウム粉末
 本発明は粗大粒子を含まない窒化アルミニウムに関する。詳しくは、粗大粒子が極めて少なく狭ギャップへの充填や薄い樹脂シート作製に好適な窒化アルミニウム粉末に関する。
 近年、電子部品の小型化と高性能化への要求から、半導体デバイスの高集積化が進み、同時にデバイスから発生する熱を効率的に逃がすための放熱材料の使用量が拡大しており、さらに材料の放熱性能の向上が求められている。半導体素子の発生する熱をヒートシンクや筺体等に逃がす経路には様々な放熱材料が用いられる。部品を実装する基板には、熱伝導性の高い窒化アルミニウムや窒化ケイ素などのセラミック基板が用いられるケースが増えている。また金属板に放熱性の絶縁樹脂層を設けたメタルベース基板の使用も増加しており、そうした樹脂層には熱伝導率の高いフィラーとしてアルミナ、窒化アルミニウム、窒化ホウ素などが充填される。他にも半導体デバイス周りでは封止材や接着剤、グリースなどにも高熱伝導性のフィラーが使用されつつあり、いかに効率的に熱を逃がすかが重要となってきている。
 従来、樹脂封止用フィラーにはシリカが主に使用されており、フィラーへの特性としては、充填性と流動性向上を目的とした粒子の球状化、粒度分布の制御が重要視されてきた。近年は半導体デバイスの小型化、高集積化に伴い、封止材料を充填する隙間の狭窄化が進んでおり、シリカ粉末からの粗粒除去が行われている(特許文献1)。フィラー中に粗大粒子が含まれると、隙間へ充填する際に、詰まりが発生して充填ムラやボイド、成形不良の発生などの問題が発生する。また凝集粒子の存在は、流動性を悪化させる原因になることもある。一方封止材でも放熱性への要求が高まっており、高熱伝導性フィラーにも、粗粒カットの必要性が高まると予想される。特許文献2では静電場を印加した液体サイクロンにより粒子を湿式分級する技術が提案されている。しかしながら、粗大粒子や凝集粒子の量がコントロールされた窒化アルミニウム粉末は報告されていなかった。
 他方、特許文献3では窒化アルミニウム焼結体粉末の表面にOH基の数が2~5個/nmとなるようなベーマイト皮膜を形成させ、さらにシランカップリング剤で被覆してなる表面被覆窒化アルミニウム焼結体粉末からなる高熱伝導性フィラーが提案されている。
特開2015-86120号公報 特開2011-125801号公報 特開2002-53736号公報
 従って、本発明の目的は、窒化アルミニウム粉末から余分な粗大粒子(以下「粗粒」とも呼称する)を除去することにより、狭い隙間にも充填可能な樹脂組成物や、薄膜の放熱樹脂シートを実現するために好適に用いられる分級された高熱伝導性フィラーを提供することにある。
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、レーザー回折散乱型粒度分布計で測定される粒度分布において累積体積50%粒径D50が0.5~7.0μmであり、累積体積90%粒径D90とD50の比(=D90/D50)が1.3~3.5であり且つBET比表面積が0.4~6.0m/gの窒化アルミニウム粉末は分級により粗粒が少ない窒化アルミニウム粉末とすることにより、狭い隙間への充填が可能な樹脂組成物を作製可能とすることを見出した。
 具体的な本発明は、以下に記載のものである。
 [1]
 レーザー回折散乱型粒度分布計で測定される粒度分布において累積体積50%粒径D50が0.5~7.0μmの範囲にあり、累積体積90%粒径D90とD50の比(=D90/D50)が1.3~3.5の範囲にあり且つBET比表面積が0.4~6.0m/gの窒化アルミニウム粉末であって、
 該窒化アルミニウム粉末150質量部と、25℃での動粘度が1000cStのシリコーンオイル100質量部を混合して得た樹脂ペーストをグラインドゲージで測定したとき、線状痕を生じる上限粒径がD90の5倍以下であることを特徴とする窒化アルミニウム粉末。
 [2]
 酸化被膜表面の水酸基量が2個/nm未満である上記窒化アルミニウム粉末。
 [3]
 さらに窒化アルミニウムが表面改質剤により処理されている前記窒化アルミニウム粉末。
 [4]
 炭素含有量が0.001~0.35質量%である前記窒化アルミニウム粉末。
 [5]
 表面改質剤がシラン化合物またはシラザン化合物であり、該シラン化合物の加水分解性基を除いたうちの炭素数の一番大きな有機官能基、あるいはシラザン化合物の有するうちの炭素数の一番大きな有機官能基が有する総炭素数が9以下である前記窒化アルミニウム粉末。
 [6]
 前記窒化アルミニウム粉末と樹脂とを含有する樹脂組成物。
 本発明の分級された窒化アルミニウム粉末は、粗粒が少ないため樹脂と混合した樹脂組成物を狭い隙間への充填性が良好である。
 従って、本発明の窒化アルミニウム粉末は、アンダーフィル封止等の用途に用いた際に、ギャップ不良や浸透不良の発現が少なく良好な封止操作が可能となり、好適である。
レーザー回折散乱型粒度分布計により測定した、原料窒化アルミニウム粉末の頻度体積(%)と粒径の関係である。 グラインドゲージの概略側面図による、操作方法を図解した説明図である。 図2の方法を実施した後にグラインドゲージ上に表われた線状痕を示す説明図である。図の左側の0~100の数字の単位はマイクロメートルである。 実施例3及び比較例1で得た窒化アルミニウム粉末と、液状エポキシ樹脂を混合して得た樹脂組成物の、各シェアレートに対応する粘度である。 実施例7,実施例31及び比較例1で得た窒化アルミニウム粉末と液状エポキシ樹脂を混合して得た樹脂組成物の、各シェアレートに対応する粘度である。 実施例4及び比較例3で得た窒化アルミニウム粉末と液状エポキシ樹脂を混合して得た樹脂組成物の、各シェアレートに対応する粘度である。 実施例5及び比較例4で得た窒化アルミニウム粉末と液状エポキシ樹脂を混合して得た樹脂組成物の、各シェアレートに対応する粘度である。 実施例6及び比較例6で得た窒化アルミニウム粉末と液状エポキシ樹脂を混合して得た樹脂組成物の、各シェアレートに対応する粘度である。 実施例30及び比較例1で得た窒化アルミニウム粉末とシリコーンオイルを混合して得た樹脂組成物の、各シェアレートに対応する粘度である。
 本発明の窒化アルミニウム粉末は、レーザー回折散乱型粒度分布計で測定される粒度分布において累積体積50%粒径D50が0.5~7.0μmの範囲にあり且つ累積体積90%粒径D90とD50の比(=D90/D50)が1.3~3.5の範囲にある。
 レーザー回折散乱型粒度分布計での測定を、より詳細に述べると以下の通りである。即ち、窒化アルミニウム粉末をエタノール中に1質量%濃度で分散し、200W程度の超音波照射を3分間行うことにより分散させる。これの分散液について、レーザー回折散乱型粒度分布計を用いて窒化アルミニウム粉末の粒度分布を測定する。粒径の体積頻度分布において、粒径が小さい方から体積頻度を累積して、累積値が50%となるところの粒径の値をD50、90%となるところの粒径の値をD90、粒子としてカウントされた最大の粒径を最大カウント粒径とする。
 本発明の窒化アルミニウム粉末は、この方法で測定される範囲で上記粒径を示すものであり、エタノール分散前の状態では凝集体を形成していてもかまわない。従って、本発明の窒化アルミニウム粉末は、分散前には凝集体である顆粒として存在することもある。
 本発明の窒化アルミニウム粉末は、D50が0.5~7.0μmの範囲にある。D50が0.5μmよりも小さい窒化アルミニウム粉末は事実上得ることができない。また7.0μmより大きいと精密な分級が困難となる。好ましくはD50が0.8~6.0μmの範囲にある。
 また本発明の窒化アルミニウム粉末は、D90とD50の比が1.3~3.5の範囲にある。D90/D50が1.3よりも小さい窒化アルミニウム粉末は事実上得ることができず、逆に3.5よりも大きいと分級時に目的の粒径以上の粗粒を除去するのが難しくなるという問題がある。好ましくはD90/D50が1.5~2.5の範囲にある。
 本発明の窒化アルミニウム粉末の有する最大の特徴は、該窒化アルミニウム粉末150質量部と、25℃での動粘度が1000cStのシリコーンオイル100質量部を混合して得た樹脂ペーストをグラインドゲージ(粒度ゲージ)で測定したとき、線状痕または筋を生じる上限粒径がD90の5倍以下である点にある。
 即ち、本発明の窒化アルミニウム粒子は粗粒を含有しないため、アンダーフィル封止材等の用途に使用した際、ギャップ不良や浸透不良が発生しにくいという優れた効果を生じる。
 レーザー回折散乱型粒度分布計などを用いた粒度分布測定では、ある一定量以上含まれる粒子しかカウントされないため、実際に存在する粒子でも、粒度分布上には現れないことが普通である。そのため、従来公知の窒化アルミニウム粉末にも、レーザー回折散乱型粒度分布計を用いた測定では、D90の5倍を超える微量の粗粒子が捕えられないこともあるが、グラインドゲージによる測定により極微量の粗粒でも線状痕または筋を生じて捕えることが可能となる。このような微量の粗粒であっても、実際に窒化アルミニウム粉末をフィラーとして使用した際には問題発生の原因となる。
 本発明において、好ましい上限粒径はD90の4倍以下であり、より好ましくは3倍以下であり、特に好ましくは2倍以下である。
 本発明の窒化アルミニウム粉末は、窒素吸着1点法で測定したBET比表面積が0.4~6.0m/gの範囲にある。0.4m/g未満だとD50が7μmを超えることとなり、逆に6.0m/gを超える微細な窒化アルミニウム粉末は、事実上得ることができない。
 本発明の窒化アルミニウム粉末は、表面に酸化被膜を有する。この該酸化被膜表面の水酸基量は2個/nm未満であることが好ましい。このような酸化被膜を有することにより窒化アルミニウムの加水分解性が抑えられるという利点がある。酸化被膜を有さないと、水酸基量は極めて小さくなる。一方、酸化被膜を設けることにより、合成条件および合成後の保存条件によっては、酸化アルミニウムの一部が加水分解して水酸化アルミニウムとなり易く、水酸基量が多く存在する場合がある。しかしながら、このように部分的に加水分解が進行した状態は、その後も加水分解が進行しやすい不安定な状況にあり、水分子が吸着しやすい状態でもあるため、品質安定上好ましくない。また、水酸化アルミニウムの形成は熱伝導性の低下原因ともなる。従って、酸化被膜を設けつつも加水分解はできるだけ避け、表面水酸基量は2個/nm未満である状態が、高い熱伝導性を発揮できる状態として好ましい状態である。水酸基量は1.7個/nm以下がより好ましい。
 本発明の窒化アルミニウム粉末は、表面改質剤により処理されていてもよい。表面改質剤による処理により、表面が改質され粉末の凝集防止の効果やフィラーとして樹脂に充填した際の効果等が得られる。また、後述する製造方法において、湿式分級前に表面改質剤で処理しておくと、製造が容易になるという効果も発現する。
 表面改質の利点は3点ある。1点目は粉末の凝集防止の利点、2点目は分級操作上の利点であり、3点目はフィラーとして樹脂に充填する際の利点である。
 凝集防止をより詳しく説明すると以下のようである。凝集は表面水酸基同士の水素結合などが原因となり粒子同士が強く結び付いて、粗大な塊状物を形成した状態であるので、表面改質によりそうした結びつきが弱くなり凝集しにくくなる。
 また表面改質された窒化アルミニウム粉末をフィラーとして樹脂に充填した際の利点としては、粘度の低減、充填率の向上と熱伝導性の向上、樹脂硬化物の湿中耐久性や絶縁信頼性の向上、樹脂に適した官能基の付与による樹脂硬化物の機械的強度の向上や接着強度の向上などが挙げられる。特に粘度の低減は、充填した樹脂組成物の流動性向上により、狭い隙間への浸透性が良くなることが期待でき特に有利である。
 表面改質剤は窒化アルミニウム粒子の表面全体に均一に分布していても良いし、粒子表面に複数の改質剤分子の集合体が処理されていてもよい。また、粒子それぞれに改質分子が等量ずつ処理されていなくてもよい。粉末からランダムに採取した複数サンプルの分析結果において、検出される改質剤の量(たとえば改質剤由来の炭素量)に差があっても構わない。許容される分析結果のバラつきは、複数のサンプルの平均値の前後40%未満が望ましい。バラつきが大き過ぎると、樹脂に充填した際に粘度特性に差が出ることになり望ましくない。
 表面改質剤としては、窒化アルミニウムもしくは表面酸化膜と化学結合を形成する表面改質剤が望ましい。化学結合を形成する改質剤としては、シリカ等のフィラーに使用される一般的な表面処理剤であれば特に問題なく使用できる。例えばシラン化合物、シラザン化合物、アルミネートカップリング剤、チタネートカップリング剤などが挙げられる。中でもムラの無い表面改質が可能としてシラン化合物及びシラザン化合物(以下、併せて「シリル化剤」といい、シリル化剤による処理を「シリル化」という)が好適に使用できる。しかしながら、シリル化剤のなかでも、加水分解性基以外の官能基を構成する炭素数は9以下が好ましい。ここで、複数の有機基を有する場合には、そのうちの炭素数最大の有機基の炭素数をいうものとする。例えばシリル化剤がヘキシルメチルジメトキシラン(C13Si(CH)(OCH)である場合、炭素数は6とカウントされる。炭素数の多いシラン化合物、即ち官能基鎖の長いシリル化剤は、有機基の相互作用が強く、シリル化剤が多量体として存在しやすいために、窒化アルミニウム粉末全体への均一な処理がされにくく、一部が凝集した粉末となりやすい。そうした粉末は粗粒が混じった状態で、フィラーとして樹脂に充填した際にグラインドゲージで線状痕または筋を生じるものとなり、ギャップ不良や浸透不良の原因となる。
 本発明では、表面改質剤は1種類のみ処理に用いてもよいし、2種類以上を組み合わせて使用されていてもよい。
 本発明の表面改質剤で処理された窒化アルミニウムのうち、シリル化剤のうちシラン化合物を用いた場合について詳しく述べる。シラン処理された窒化アルミニウム粉末とは、シラン化合物の一部または全部が窒化アルミニウム表面の酸化アルミニウム層の水酸基との脱水縮合により、シランが表面と結合を形成している状態を指す。シランと表面の結合とは、シラン処理された粉末を有機溶媒に分散し、その後固液分離しても一定量のシランが洗い流されずに粉末状に残留する状態を指す。また、本発明では処理に使用したシランのうち、一部は結合形成をしている必要はなく、洗浄により洗い流されるシランが存在しても構わない。
 また、シランは粒子表面に均等な厚みの処理層を形成する必要はなく、シランの存在する部分と無い部分が海島状になっていてもよい。なぜなら窒化アルミニウム表面の酸化被膜自体が均一ではなく、一部は窒化アルミニウム表面が露出している場合がある点、同じ理由で酸化アルミニウム層の反応可能な水酸基が均一に分布していない点、および加熱時に表面に吸着していたシラン化合物が集まって多量体を形成する点、の3点の可能性が少なくともあり、均一なシラン処理表面の形成そのものが難しい場合がありうるからである。
 窒化アルミニウム粉末は比表面積が小さく、かつ表面水酸基密度も低いため、シラン化合物の加水分解性基例えばアルコキシ基、ハロゲン基が全て反応していない場合があってもよい。
 洗浄により洗い流されずに表面に残るシランの量は、最初に粉末と接触させたシランの量によっても変動するため、明確な定義付けは難しいが、概ね5~7割が残留することが好ましい。残留量が多い方が粉末物性が安定するため望ましい状態である。また表面との結合は、シラン分子全てが同様の結合形成状態である必要はなく、シラン分子が単独で表面と結合している場合もあれば、2つ以上のシランの加水分解性基同士が縮合し多量体を形成し、その多量体が表面と1点または多点で結合している場合もあれば、分子量の大きい多量体が表面に吸着して、洗い流されにくい状態で存在する場合もある。
 シラン化合物について、具体的に例示する。官能基を構成する炭素数が9個以下で、官能基が反応性官能基であるものとしては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノエチル-3-アミノプロピルトリメトキシシラン、2-アミノエチル-3-アミノプロピルメチルジメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、アリルトリメトキシシランの如きアルコキシシランが挙げられる。
 官能基を構成する炭素数が9個以下で、官能基がアルキル基またはフッ化アルキル基であるシラン化合物としては、例えばメチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルメチルジメトキシシラン、ノナフルオロヘキシルトリエトキシシランなどが挙げられる。
 官能基を構成する炭素数が9個以下のその他のシランとしては、ビニルトリクロロシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリクロロメチルシラン、エチルジメチルクロロシラン、プロピルジメチルクロロシラン、フェニルトリクロロシラン、トリフルオロプロピルトリクロロシラン、イソプロピルジエチルクロロシランの如きクロロシランが挙げられる。
 シラザン化合物としては、例えばヘキサメチルジシラザン、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、ビス(トリフルオロプロピル)テトラメチルジシラザン、ヘキサメチルシクロトリシラザン、トリメチルトリビニルシクロトリシラザン、オクタメチルシクロテトラシラザンなどが挙げられる。
 表面改質剤で処理された窒化アルミニウム粉末は、該表面改質剤に由来する炭素を含有する。炭素含有量は0.001~0.35質量%であることが好ましい。
 上記本発明の窒化アルミニウム粉末の製造方法は特に限定されるものではないが、本発明者らの検討によれば、以下の方法により好適に製造できる。
 大まかに述べると、所定の粒度分布を有する原料窒化アルミニウム粉末を準備し、これを分級して粗大粒子を取り除くことにより得ることができる。分級は乾式でも湿式でもよいが、好ましくは湿式分級である。
 酸化被膜を設ける際には、分級前に酸化性雰囲気下で加熱処理して設けることが好ましい。表面改質剤による処理は、分級前に行ってもよいが、好ましくは湿式分級時に、分級と同時に行われる。
 また、湿式分級を行った際には、分級後に乾燥および必要に応じて解砕を行う。
 以下、これら操作をより詳細に説明する。
 [原料窒化アルミニウム粉末]
 <製法>
 本発明の製造方法における原料窒化アルミニウム粉末としては、従来公知の方法によって製造された粉末状のものを特に制限なく使用することができる。本発明では分級操作および表面改質を施す前の窒化アルミニウム粉末を「原料窒化アルミニウム粉末」と呼ぶ。本発明における原料窒化アルミニウム粉末を製造する方法としては、例えば直接窒化法、還元窒化法、気相合成法などを挙げることができる。
 <粒度分布>
 本発明における原料窒化アルミニウム粉末としては、レーザー回折散乱型粒度分布計で測定される粒度分布において累積体積50%粒径D50が0.5~7.0μmであり、累積体積90%粒径D90とD50の比(=D90/D50)が1.3~3.5であり、BET比表面積が0.4~6.0m/gであり且つD90の5倍を超える粒子がレーザー回折散乱型粒度分布計で測定されないか、存在しても極く微量であることが、後述する湿式分級により製造しやすい点で好ましい。
 また、上記測定法による窒化アルミニウム粉末の粒度分布には、体積頻度の極大値が1つまたは2つあることが望ましい。特に2つ以上の極大値を有する粒度分布の場合は、小粒径側の極大値の頻度の方が大きいことが望ましい。後述する分級操作により小粒径側を回収する際に、極大値が大粒径側に偏っていると分級効率が悪くなりやすく小粒径側の粉末回収率が悪くなり、加えて分級操作後の微粉にも除去されるべき粗粒が混じっているためである。
 このような粒度分布を持つ窒化アルミニウム粉末は、還元窒化法を用いる方が得やすい。より具体的には、製造される窒化アルミニウム粉末のD50およびD90に近い粒度のアルミナ原料を使用することで、目的の窒化アルミニウム粉末を得ることができる。還元窒化法では高温を付与するため、複数の粒子が焼結した凝集体が生じる場合があるが、そのような焼結凝集体は必要に応じてボールミル、ジェットミル等で解砕される。
 このような方法で製造した窒化アルミニウム粉末は、レーザー回折散乱型粒度分布計での測定では、通常、D90の5倍を超える粗粒は検出されない程度に少ないが、全く存在しない訳ではなく、広範囲のSEM観察などによって検出されるか、あるいはグラインドゲージによる測定で容易に線状痕または筋を生じることで存在が確認される。
 <不純物>
 本発明の原料窒化アルミニウムには、原料由来あるいは合成法上で意図的に添加されたアルカリ土類元素、希土類元素などの不純物は5質量部程度を上限として含まれていても差し支えない。また、凝集防止剤やセッター由来の不純物として窒化ホウ素が5質量部程度を上限として含まれていても構わない。ただし窒化アルミニウム結晶性を著しく下落させる不純物量は、熱伝導性低下の原因となるため好ましくない。原料窒化アルミニウム粉末における窒化アルミニウム含有率は90%以上が好ましく、95%以上がより好ましい。
 <酸化被膜>
 本発明で使用される原料窒化アルミニウム粉末は、加水分解性を抑える目的、あるいは後述する表面改質の処理効率を高めるために、その表面に酸化アルミニウム層を有するものが好ましい。具体的には原料窒化アルミニウム粉末を構成する粒子の表面にAl-O-Al結合や、Al-OH基があることが望ましい。この酸化アルミニウム層は、原料窒化アルミニウム粉末を保管する際の自然酸化によって形成された酸化膜層であってもよく、意識的に行う酸化処理工程によって形成された酸化膜層であってもよい。この酸化処理工程は、原料窒化アルミニウム粉末の製造過程において行ってもよく、あるいは原料窒化アルミニウム粉末を製造した後に、別個の工程として行ってもよい。例えば、還元窒化法によって得られる原料窒化アルミニウム粉末は、反応時に使用する炭素を除去する目的で、製造過程に酸化処理工程を経るため、表面には酸化アルミニウム層が存在する。そうして得られた還元窒化法の窒化アルミニウム粉末に対し、さらに酸化処理工程を追加して行ってもよい。
 <酸化処理>
 酸化処理工程を別個の工程として追加して行う場合、その条件は以下のとおりである。各種方法で得られた原料窒化アルミニウム粉末を、酸素含有雰囲気中で、好ましくは400~1,000℃の温度、より好ましくは600~900℃の温度において、好ましくは10~600分間、より好ましくは30~300分間の時間、加熱することによって、原料窒化アルミニウム粒子表面に酸化アルミニウム層を形成することができる。上記酸素含有雰囲気としては、例えば酸素、空気、水蒸気、二酸化炭素などを使用することができるが、本発明の目的との関係においては、空気中、特に大気圧下における処理が好ましい。
 一方、酸化処理を900℃を超える高温で長時間行うと、窒化アルミニウム表面に厚い酸化被膜が形成することがあり、この酸化アルミニウムの被膜は窒化アルミニウムのコアと熱膨張係数が異なるために、均一な被膜を維持できず、被膜が割れて、コアの窒化アルミニウム表面を露出するおそれがあり、かえって耐加水分解性が落ちる原因となる。そのため酸化処理条件は厳し過ぎない方が良い。窒化アルミニウム粉末の熱伝導性を著しく低下させない範囲の酸化アルミニウム層の厚みは、好ましくは粒子の直径の0.005%~0.2%程度である。
 <表面水酸基>
 原料窒化アルミニウム粉末は酸化処理の有無に関わらず、表面水酸基量は2個/nm未満である。表面水酸基は表面の酸化アルミニウム層に由来するものが望ましい。
 <粒子形状>
 本発明における原料窒化アルミニウム粉末の一次粒子の形状は特に限定されるものではなく、例えば不定形状、球状、多面体状、柱状、ウィスカー状、平板状など任意の形状であることができる。中でも、フィラー用途においては、粘度特性が良好で、熱伝導率の再現性の高い球状が望ましい。また、分級操作においてはアスペクト比が小さい方が、粗大な粒子の混入するおそれが少なく望ましい。好適なアスペクト比は1~3である。
 また、本発明で粗粒とは、一次粒子と高次凝集粒子の両方を指すが、もし高次凝集体が液状樹脂との混練や溶媒への分散によって凝集が解かれる性状のものであれば、見かけ上粗粒であっても粗粒として扱わないこととする。
 [分級操作]
 本発明の窒化アルミニウム粉末は、上記のような原料窒化アルミニウム粉末を分級して、ある粒径以上の粗粒を除去することより得ることができる。
 <分級の方法>
 分級は乾式法、湿式法の各種方法を用いることができる。乾式法は篩分級法と気流分級法に大別される。篩分級は比較的大きい粉末の分級に適するが、粒径が小さくなると粉末の凝集等が原因で通過性が著しく悪くなる。より効率的に粗粒を除去できるのは気流分級や湿式分級である。気流分級と湿式分級を比較すると、湿式分級の方が分級後に残存する粗粒が少ない。
<気流分級>
 気流分級は粉末を気流中に分散させ、その際の粒子の重力や慣性力、遠心力などで微粉と粗粉に分ける方式による。特に数μmの粒子の分級に適した精度は、慣性力と遠心力を利用した分級装置により得られる。
 慣性力を利用する方法としては、例えば装置内部に案内羽根等を設けて空気の旋回流を作ることで、気流で勢いをつけた粉粒体を曲線に曲げる際に微粉と粗粉を分けるインパクタ型や、粒子に遠心力を働かせて分級する半自由渦遠心式や、コアンダ効果を利用したコアンダ型などが挙げられる。慣性力を利用した分級装置としては、カスケードインパクタ、バイアブルインパクタ、エアロファインクラシファイア、エディクラシファイア、エルボージェット、ハイパープレックスなどが挙げられる。
 遠心力を利用する方法は、渦状気流を利用して微粉と粗粉を分けるもので、装置としては自由渦型と強制渦型が挙げられる。自由渦型装置は案内羽根のないサイクロン、多段サイクロン、二次エアーを使用し凝集の解消を促すターボプレックス、案内羽根を設けて分級精度を高めたディスパージョンセパレータ、マイクロスピン、マイクロカットなどが挙げられる。強制渦型は装置内部の回転体で粒子に遠心力を働かせ、さらに装置内部に別の空気の流れを作ることにより分級精度を高めた装置で、ターボクラシファイアやドナセレックなどが挙げられる。
 <湿式分級操作>
 湿式分級は、粉末を溶媒に分散させた上で、フィルター等を通過させて粗粒を除去する方式と、流体状にして粗粒と微粒子を分ける流体分級方式があるが、フィルター分級法が精度が良く、生産能力も高くできる。
 <湿式フィルター分級>
 粉末を溶媒に分散し、凝集を解いた上でフィルターを通過させる分級方法である。フィルターは材質、構造、形状などにより分級ポイント、分級精度、詰まり発生の度合いなどが異なる。
 フィルターとしては、例えばメンブレンフィルター、樹脂メッシュ、金属製メッシュ、ろ紙、が使用できる。フィルターの形状は平板状や積層構造やプリーツ構造でも構わないし、カートリッジタイプでもかまわない。本発明は粉末中の粗大な粒子を除去することが目的であり、目詰まりを起こさないことがフィルター選定において重要である。中でも粒子の通過性が良いフィルターとしては、例えばトラックエッチドメンブレンフィルター、デプスフィルター、篩、電成ふるい、ナイロンやポリプロピレン等の織布メッシュなどが好ましく使用できる。
 フィルター材質は不純物の関係から樹脂製、ステンレス製が望ましいが、分散媒との接触で溶出成分があるものは避けるべきであり、用いる溶媒に応じて適した材質を選択することが望ましい。
 フィルターを通過させる際は、最初から目の細かいフィルターを通過させても良いし、あるいは粗い目のフィルターを先に通過させて粗粒を取り除き次いで目の細かいフィルターを通過させるなど、段階的に行っても良い。目の粗いフィルターとしては、D90の15~50倍が望ましい。目の細かいフィルターとしてはD90の5倍以下、通常3~5倍の範囲にあるフィルターが採用される。
 例えばD90が1.6μmの粉末からD90の5倍の8μm以上の粗粒を除去する場合に、目の粗い45μmのフィルターを通過させた後、さらに8μmのフィルターを通過させるといった具合である。
 分級操作の際は、フィルターに粉末を分散した液を通過させるが、通過させる方法は、重力式、吸引式、加圧式、圧送式など方法は問わない。強制的に通過させると目詰まりを起こすリスクが高まるため、粉末の濃度、通過速度、フィルターの目の細かさなど適した条件を選択する必要がある。
 <湿式分級の分散溶媒>
 湿式分級は粉末を溶媒に分散させる必要がある。窒化アルミニウム粉末を分散可能な溶媒であれば使用可能である。ただし水は、窒化アルミニウムが加水分解性であることと、分級操作後の乾燥時に強固な凝集体を形成するために使用を避けるべきである。有機溶媒は多量に水を含んでいなければ特に制限はなく使用できる。例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなどのアルコール、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンなどのケトン、ジエチルエーテル、ジオキサン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、テトラヒドロフランなどのエーテル、ヘキサン、2-メチルペンタン、ヘプタン、シクロヘキサン、オクタン、2,2,4-トリメチルペンタン、石油エーテルなどのアルカン、ギ酸エチル、ギ酸ブチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族炭化水素などが好適に使用できる。これらの溶媒は、1種のみを使用してもよく、あるいは2種以上を併用してもよい。
 上記に上げた溶媒の中でも、表面改質剤をよく溶かし、かつ窒化アルミニウム粉末の分散性も良い溶媒として、アルコール、ケトン、エーテルが好ましく、アルコールがより好ましい。さらにアルコールの中でも、メタノール、エタノール、イソプロピルアルコール等の低級アルコールが、沸点が低くて蒸発除去しやすく好ましい。
 <分散溶媒の量>
 溶媒の最適な使用量は、原料窒化アルミニウム粉末100質量部に対し、100~1900質量部が好ましく、150~900質量部がより好ましい。150質量部以上とすることにより、窒化アルミニウム粉末と溶媒からなるスラリーの粘度を低減でき窒化アルミニウム粉末の分散性を良好にできる。また900質量部以下とすることにより、溶媒の蒸発を短時間ででき、コスト低減ができる。
 <分散方法>
 溶媒と混合する前の窒化アルミニウム粉末はその大部分が凝集状態にある場合が多い。そのため溶媒と混合するだけでは、十分に分散せずに、湿式分級時の目詰まりの原因となったり、同時に添加する表面改質剤が凝集体内部までが行き渡らないことになり、ムラのある表面改質体となって粘度特性などに影響したりする。
 スラリーを高い分散状態にするために好適な装置としては、例えばディスパーザー、ホモジナイザー、超音波分散機、ナノマイザー、せん断効果のあるプラネタリーミキサー、エジェクター、ウォータージェットミル、高圧分散機などの衝突分散機などが挙げられる。また、粒度分布が変化しない程度のマイルドな条件での湿式ボールミル、湿式振動ボールミル、湿式ビーズミルなども使用可能である。ただし必要以上に衝撃を加えて窒化アルミニウムの一次粒子まで砕いてしまう方法は、酸化被膜の無い表面を露出させてしまうおそれがあるため、避けるべきである。分散装置の中でも好適なのは、ディスパーザー、ホモジナイザー、超音波分散機である。また、溶媒に分散させる粉末濃度を下げることもフィルター分級しやすくするのに効果的である。
 <溶媒除去・乾燥>
 本発明において湿式分級操作後に分級された窒化アルミニウム粉末を得るためには、上記スラリーから溶媒を除去する必要がある。溶媒の除去法は特に限定されないが、例えば、以下に挙げる3つの方法が挙げられる。1つ目は全ての溶媒を乾燥除去する蒸発乾固法である。2つ目は、溶媒を粗く乾燥させる工程と、その後溶媒を完全に除去する乾燥工程の2段階で行う方法である。3つ目は、固体成分と液体成分を分離する工程と、その後溶媒を完全に除去する乾燥工程の2段階で行う方法である。
 <乾燥方法>
 1つ目の方法は、窒化アルミニウム粉末を含むスラリーから溶媒を蒸発除去可能な加熱装置であれば使用でき、具体的にはコニカルドライヤー、ドラムドライヤー、V型ドライヤー、振動乾燥機、ロッキングミキサー、ナウタミキサー、リボコーン、真空造粒装置、真空乳化装置、その他攪拌型真空乾燥装置が好適に使用できる。最終乾燥までの工程の詳細については下記の乾燥工程の項で述べる。
 2つ目の方法は、スラリーから溶媒を揮発させる装置を使用できる。具体的には、ロータリーエバポレーター、薄膜乾燥装置、スプレードライヤー、ドラムドライヤー、ディスクドライヤー、流動層乾燥機などが挙げられる。
 3つ目の方法はろ過法であり、スラリーを固体成分と液体成分に分離する装置であれば好適に使用できる。具体的には吸引ろ過装置、遠心ろ過機、デカンター、ギナ式遠心分離機、加圧ろ過機、フィルタープレス機、およびろ過と乾燥を1台で実施できるろ過乾燥装置などが挙げられる。使用するろ材の材質、保留粒子径、分離の条件等は、用いる方法や捕集率に応じて適宜選択すれば良い。
 上記に挙げた溶媒除去の方法としては、1段階で全ての溶媒を除去できる1つ目の方法がコスト的に好ましい。また、表面改質剤を添加している場合は、3つ目のろ過法に比べ、粒子表面の表面改質剤量にムラが発生しにくい。このように1つ目の方法で溶媒を除去した場合には、用いた表面改質剤の全量が窒化アルミニウムの表面に吸着していると見なすことができる。
 本発明の湿式分級された窒化アルミニウム粉末は最終乾燥物において、用いた溶媒が完全に除去されていることが望ましい。ここで最終乾燥物とは、乾燥直後の分級された窒化アルミニウム粉末の質量減少率、すなわち大気中で120℃乾燥させた際の質量減少率が0.5%未満であるものを指す。
 乾燥工程の雰囲気は、減圧下、不活性ガス中、乾燥空気中が好ましい。中でも環境の水分の影響が少ない減圧下、不活性ガス中が望ましく、減圧下がより好ましい。
 また、乾燥工程後に得られた最終乾燥物に、さらに追加の加熱処理を加えても良い。表面改質剤を添加している場合の追加加熱は、改質剤と窒化アルミニウム表面の反応を促進する効果があり、表面からの改質剤の脱離が起こりにくくなる。また、表面改質剤の加水分解性残基が加熱により減ることにより、分級された窒化アルミニウム粉末の保存安定性を高くできる。
 追加加熱の温度は、前工程で実施された乾燥工程の温度以上で実施される。具体的な温度としては70~150℃が好ましく、80~120℃がより好ましい。70℃未満では、追加加熱の効果が小さい。一方150℃を超えると、表面改質剤を添加している場合は、表面改質剤同士が粒子間で縮合することで粒子が凝集しやすくなる。
 追加加熱装置としては、通風式乾燥機、対流型乾燥機、真空乾燥機、コニカルドライヤー、ドラムドライヤー、V型ドライヤー、振動乾燥機、ロッキングミキサー、ナウタミキサー、リボコーン、真空造粒装置、真空乳化装置、その他攪拌型真空乾燥装置が好適に使用できる。
 追加加熱の雰囲気は、減圧下、不活性ガス中、乾燥空気中が望ましい。中でも環境の水分の影響が少ない減圧下、不活性ガス中が望ましく、減圧下がより好ましい。
 [解砕処理]
 上記の如くして乾燥(追加加熱を含む)して本発明の湿式分級された窒化アルミニウム粉末が得られるが、得られた窒化アルミニウム粉末が強固に凝集した状態になることもある。具体的には、1次粒子および1次粒子の凝集体の混合物であるが殆どが凝集粒子からなる粉末は、そのままでは粉末としての操作性が悪く、また樹脂と混練した際に十分に分散しないおそれがあるため、必要に応じて解砕処理が施される。
 解砕処理の方法は、乾式解砕が良い。また、もともとスラリーの乾燥によって形成された凝集体を砕く程度の比較的マイルドな方法が望ましい。一次粒子や、一次粒子同士が強固に焼結して粒界が存在する二次粒子をも砕く装置・条件で実施すると、酸化被膜が無い表面が露出してしまい、加水分解されやすい状態になるおそれがある。解砕処理の雰囲気は、空気中または不活性ガス中が望ましい。また、雰囲気の湿度は高過ぎないことが好ましく、具体的には、湿度70%未満、より好ましくは55%未満である。
 解砕装置としては、例えば石臼型摩砕機、らいかい機、カッターミル、ハンマーミル、ピンミルなど乾式解砕装置が挙げられる。中でも凝集体を短時間で砕くことができ、解砕ムラが少ない石臼型摩砕機が好ましい。また、解砕を粗く実施した後、粗大な粒子を振動篩機などで除去しても良い。石臼型摩砕機を用いる場合、回転速度を500~3000rpm、上下2枚の砥石の間隔を窒化アルミニウム粉末の平均粒子径d50(単位:μm)の30~200倍として行うことが、良好な結果を得られやすく好ましい。砥石の直径は解砕処理する第一の窒化アルミニウム粉末の量に応じて適宜決められる。
 [分級粉末]
 上記の操作で分級された粉末は、粗大粒子が除去された窒化アルミニウム粉末であり、レーザー回折散乱型粒度分布計で測定される粒度分布において累積体積50%粒径D50が0.5~7.0μmの範囲にあり、累積体積90%粒径D90とD50の比(=D90/D50)が1.3~3.5の範囲にあり、BET比表面積が0.4~6.0m/gの窒化アルミニウム粉末であり、かつ該窒化アルミニウム粉末150質量部と、25℃での動粘度が1000cStのシリコーンオイル100質量部を混合して得た樹脂ペーストをグラインドゲージで測定したとき、線状痕または筋を生じる上限粒径がD90の5倍以下のものである。
 [表面改質処理]
 前述の通り、本発明の窒化アルミニウム粉末は、さらに表面改質剤で処理されていても良い。
 <表面改質の効果>
 本発明に関しては、湿式分級後に溶媒を除去した際、表面改質をしていない場合は強固な凝集体になるおそれがある。そうした場合、分級操作により粉末から粗粒が除去されていても、フィラーとして用いた際に凝集体が樹脂に分散せずに、粗粒として振る舞うことで、薄膜化できなかったり、狭い隙間への浸透性が悪くなることがある。そうしたリスクを表面改質により低減可能である。2点目の分級操作上の効果とは、表面改質による凝集防止の効果と同様で、粒子同士の結びつきが弱くなることにより分級効率を向上させる効果である。乾式分級であれば、例えば気流中で粉末を粉流体としたときに凝集がほぐれやすくなることで、微粉の回収率が向上する効果が期待できる。湿式分級では、流体分級法であれば、凝集防止効果により溶媒への分散性が向上し、微粉の回収率向上やカットポイントの精度が高まる効果が期待できる。フィルター等でろ過する分級方式であれば、凝集体によるフィルターの目詰まり低減効果が期待でき、フィルター交換頻度の低減を図ることができる。表面改質剤は流体中では比表面積の高い窒化アルミニウム粒子表面に吸着しやすいため、流体中に共存するだけでも効果が期待できる。
 従って、窒化アルミニウムの表面改質剤での処理は、湿式分級においてフィルターを通過させる前に実施されていることが好ましい。この場合、湿式分級とは別途であらかじめ表面改質剤による処理を行ってもよいし、湿式分級のためのスラリーを作る際に、同時に表面改質剤での処理を行ってもよい。
 前者の予め表面改質処理を行う方法としては乾式表面処理、湿式表面処理のいずれかの方法で処理が可能である。
<乾式表面処理>
 乾式表面処理とは、窒化アルミニウム粉末と表面改質剤を混合する際に、多量の溶媒を介さない乾式混合による方法である(A-1法)。
 乾式混合の方法として、表面改質剤をガス化して粉末と混ぜる方法、液状の表面改質剤を噴霧または滴下投入し粉末と混ぜる方法、表面改質剤を少量の有機溶媒で希釈して液体量を増やし、さらに噴霧または滴下する方法などが挙げられる。ガス化する方法は、揮発性の高い低分子量のシラン化合物やシラザン化合物を処理する場合に適用できる。最後の希釈する方法は、表面改質剤の量が少なすぎて、粉末全体に均一に分散しないことを避けるために行う方法だが、あまり希釈に使用する有機溶媒が多いと、粉末全体の含液量が高くなってダマや凝集の原因になる。希釈する場合は、重量で5~50倍程度の希釈が望ましい。いずれの場合にせよ、乾式法では表面改質剤を粉末全体に均一に行き渡らせることが重要である。
 乾式で混合する際は、加熱しながらでもよいし、常温で十分に混合した後に加熱操作を別途行ってもよい。加熱は表面改質剤を窒化アルミニウム表面に強く固定化する方法として実施することが望ましい。ただしあまりに高温で加熱すると表面改質剤が揮散したり、表面改質剤同士の縮合が過度に進むことでムラのある処理になったりする可能性がある。混合時の加熱温度としては20~150℃、特には40~130℃程度が好ましい。また加熱を開始する前に常温での混合時間を設けた方が、表面改質剤が全体に行き渡った後の反応になり、均一な処理粉末が得られやすい。
 使用する表面改質剤としてシラン化合物を使用する場合は、予め酸や塩基等で加水分解されたものを使用することもできる。ただし加水分解に使用した酸・塩基、特に塩基性物質は窒化アルミニウム表面を変質させるため、使用は避けた方が良い。
 乾式混合装置としては、一般の混合攪拌装置を使用することができ、例えばプラネタリー混合装置、ヘンシェルミキサー、スーパーミキサー、V型混合機、ドラムミキサー、ダブルコーンミキサー、ロッキングミキサーなどが挙げられる。それら装置には、加熱機能が付与されていることが望ましい。攪拌しながら加熱をすることで、表面改質の工程が少なく済む。また、乾式での混合は粉末が凝集しやすいため、混合装置には解砕羽根やチョッパーなど、一度生成した凝集を解く機構がついていることが望ましい。さらに混合操作の際、粉末が単に付着するのみならず、攪拌機構によっては粉末が混合容器壁に押し当てられるような状況になることで厚い付着層を形成する場合があり、そうなると粉末の混合状態を維持できなくなる。そのため、混合容器壁面にはフッ素樹脂コートなどの付着防止措置や、ノッカーなどの付着粉払い落し機構、攪拌羽根を工夫した掻き落とし機構などが備わっているとなお良い。
 <湿式表面処理>
 湿式表面処理とは、窒化アルミニウム粉末と表面改質剤を混合する際に、溶媒を介する方法を指す。本発明の粗大粒子を含まない窒化アルミニウム粉末を得る場合、湿式で表面改質処理した粉末を分級操作に供する場合(A-2法)と表面改質処理と同時に分級操作を行う場合(B法)の2種類があげられる。
 湿式法は乾式法に比べ表面改質剤が全ての粒子に均一に行き渡らせることが可能となるため、処理剤のムラが少なく、粉末の性状も安定したものが得られる。一方で乾燥工程が必要である。湿式法の操作手順としては、(A-2法)は溶媒への表面改質剤添加、原料窒化アルミニウム粉末の溶媒への分散、必要に応じて加熱、溶媒除去、加熱乾燥を行う。
 ここで、必要に応じて行う加熱とは、表面改質剤と窒化アルミニウム表面の反応促進を目的としたものである。加熱温度は50~120℃程度、時間は60~300分程度が好適である。
 このようにして得た表面改質剤処理窒化アルミニウム粉末を、分級操作に供する。
 (A-2法)で用いられる分散媒、分散方法、溶媒除去・乾燥方法は、前記本発明の窒化アルミニウム粉末を製造する際の湿式分級操作の箇所で述べた内容と同様である。
 3番目の方法が、表面改質処理と分級操作を同時に行う方法である(B法)。(B法)では、湿式分級操作に供するために原料窒化アルミニウム粉末を溶媒に分散させスラリーを調製する際に、表面改質剤を有機溶媒に予め溶かしておく、または有機溶媒に原料窒化アルミニウム粉末と同時に表面改質剤を投入することで、表面改質剤と原料窒化アルミニウム粉末を有機溶媒に共存させたスラリーとし、スラリーを分級操作に供した後に、溶媒を除去することで、表面改質処理された分級粉末を得ることができる。
 この(B法)では、通常の湿式分級における湿式分級操作、溶媒除去、加熱乾燥に加えて、(A-2法)と同様、表面改質剤と窒化アルミニウム表面の反応促進を目的として、加熱を行うことが好ましい。この加熱は、湿式分級操作の前又は後に行うことができる。
 工程が少なく、コストが低くなる点で、一般的には(B法)が好ましいが、シラザン化合物のようにアンモニアを発生する表面改質剤を使用する場合は、(A-1)法又は(A-2)法の方が窒化アルミニウムの変質が少なくて済むので好ましい。
 <表面改質剤の量>
 窒化アルミニウム粉末と表面改質剤のシラン化合物との反応において、上述の通りアルコキシ基等のシランの反応性基が全て窒化アルミニウムと結合形成している必要はない。ただし、そうした反応性基が水と反応して生成した水酸基は、形成されているシランと窒化アルミニウム粒子間の結合を切ることもあるため、過剰なシランの添加は好ましくない。従って、シランと反応する窒化アルミニウムの表面水酸基量に応じて、シラン量を調整するのが良い。
 シラン化合物の処理量は、粉末の粒径や比表面積によって最適量は異なるが、目安としては0.2~3.8重量%である。
 表面改質剤の中でも、ヘキサメチルジシラザン等のシラザン化合物は低沸点であり、表面水酸基とも1対1で反応するため、過剰な量で処理しても構わない。過剰量加えた場合は加熱真空排気などで除去が可能である。ただしシラザン化合物はアンモニアを発生するため、アルカリ性状況に弱い窒化アルミニウムとの接触量は過剰になり過ぎないよう注意しなければいけない。窒化アルミニウムを100重量部としたとき、シラザン化合物の量は窒化アルミニウム比表面積1m/gあたり0.8重量部以下が望ましい。
 <シラン化合物との接触時間>
 (A-2法)、(B法)において原料窒化アルミニウム粉末の溶媒への分散時の原料窒化アルミニウム粉末と溶媒およびシラン化合物との接触は、好ましくは5分間~24時間、より好ましくは10分間~10時間実施する。
 [放熱用複合材料]
 本発明の方法によって得られる窒化アルミニウム粉末は、これを樹脂と混合することにより、放熱用複合材料として好適に使用することができる。
 ここで使用することのできる樹脂としては、熱可塑性樹脂および熱硬化性樹脂のいずれをも例示することができる。上記熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリアセタール、フッ素樹脂(例えばポリフッ化ビニリデン、ポリテトラフルオロエチレンなど)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、ABS樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸エステル(例えばポリメタクリル酸メチルなど)、ポリアクリル酸、ポリアクリル酸エステル(例えばポリアクリル酸メチルなど)、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリケトン、液晶ポリマー、アイオノマーなどを;上記熱硬化性樹脂としては、例えばエポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、フェノール樹脂、イミド樹脂、熱硬化型変性PPE、熱硬化型PPEなどを、それぞれ挙げることができる。
 本発明の方法によって得られた分級された窒化アルミニウム粉末を用いて製造された放熱用複合材料の用途としては、例えば家電製品、自動車、ノート型パーソナルコンピュータなどに搭載される半導体部品からの発熱を効率よく放熱するための放熱部材の材料を挙げることができる。これらの具体例としては、例えば放熱グリース、放熱ゲル、放熱シート、フェイズチェンジシート、接着剤などを挙げることができる。上記複合材料は、これら以外にも、例えばメタルベース基板、プリント基板、フレキシブル基板などに用いられる絶縁層;半導体封止剤、アンダーフィル、筐体、放熱フィンなどとしても使用することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
 本発明における各種物性測定方法は、それぞれ以下のとおりである。
 [粒度分布]
 窒化アルミニウム粉末をエタノール中に1質量%濃度で分散し、200W程度の超音波照射を3分間行うことにより分散させた液体について、レーザー回折散乱型粒度分布計を用いて粒度分布を測定する。粒径の体積頻度分布において、粒径が小さい方から体積頻度を累積して、累積値が50%となるところの粒径の値をD50、90%となるところの粒径の値をD90、粒子としてカウントされた最大の粒径を最大カウント粒径とする。
 [BET比表面積]
 窒化アルミニウム粉末のBET比表面積測定には、比表面積測定装置(島津製作所製:フローソーブ2-2300型)を用いて、BET法(窒素吸着1点法)により求めた。測定には窒化アルミニウム粉末2gを用い、予め窒素ガスフロー中で100℃で乾燥処理を1時間実施したものを測定に用いた。
 [表面水酸基量]
 窒化アルミニウム粉末をヘキサメチルジシラザンで乾式処理した際に窒化アルミニウム表面に生成したトリメチルシリル基量を、炭素分析により見積り、その量を表面水酸基量とした。
 [炭素分析]
 窒化アルミニウム粉末の炭素含有量を炭素分析装置(例えば堀場製作所製EMIA-110)で測定した。粉末を酸素気流中1350℃にて二酸化炭素ガスが発生しなくなるまで燃焼し、発生した二酸化炭素量から各粉末の炭素含有量を定量した。下記式から、分級された窒化アルミニウム粉末の表面改質層由来の炭素含有量を算出した。
   表面改質層由来の炭素含有量(質量%)=(A-B)×100/C
    A:表面改質後の炭素量(質量)
    B:表面改質前の炭素量(質量)
    C:表面改質後の窒化アルミニウム粉末の質量
 [溶出テスト]
 窒化アルミニウム粉末2gおよびエタノール100gを容量120mlのビーカーに入れ、1時間攪拌した後、懸濁液を遠心沈降させ、上澄みを捨てた。残った粉末を水分量が0.5質量%以下になるまで乾燥させ、得られた粉末を炭素分析で測定し、上記と同様に炭素含有量を算出した。
 [グラインドゲージ]
 窒化アルミニウム粉末に含まれる粗大な粒子の最大粒径を見積もるために、窒化アルミニウム粉末を充填した樹脂組成物をJIS-K5101を参考にして、幅90mm、長さ240mm、最大深さ50μmのグラインドゲージ(粒ゲージ)を用いて評価した。粉末3gを25℃での動粘度が1000cStのジメチルシリコーンオイル(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社:Element14*PDMS 1000-J)2gと混合し、自動らいかい機で3分間混練と掻き落とし操作を3回繰り返し、粉末が分散されたペーストとした。粒ゲージにペーストを載せスクレーパーを垂直に当て、溝の上をスライドさせた際の線状痕を観察した(図2参照)。操作はn=3で行い、線状痕が観察され始めた粒径を読み取った(図3参照)。
 [粘度評価]
 窒化アルミニウム粉末のフィラーとしての特性を評価するために、窒化アルミニウム粉末と液状樹脂とを混練して得た樹脂組成物の粘度を測定した。凝集粒子等の粗粒が分級により減少した場合、樹脂組成物の流動性が上がり、粘度が低下する効果が期待される。粘度測定装置はブルックフィールド社製の回転粘度計RVDV-II+CP(φ12mm、角度3度のコーンプレートを使用)を用いた。
 混合条件1では、液状樹脂は三菱化学製ビスフェノールF型エポキシ樹脂807を0.552g使用し、窒化アルミニウム粉末を0.5g使用した。
 混合条件2では、液状樹脂は三菱化学製ビスフェノールF型エポキシ樹脂807を0.3g使用し、窒化アルミニウム粉末を0.44g使用した。
 混合条件3では、液状樹脂は1000mPa・sのジメチルシリコーンオイル(東レ・ダウコーニング株式会社:CY52-276A)を0.466g使用し、窒化アルミニウム粉末は0.65g使用した。1から3の混合条件で混合したペーストを、それぞれ自動らいかい機で3分間混練および掻き落とし操作を3回繰り返し、粉末が分散されたペーストとした。得られたペーストの粘度を30℃で測定した。粘度測定はシェアレートを変えて実施した。シェアレートに対する粘度をプロットしたものを図4から図9に示した。高シェアレート側にプロットが無い場合があるが、それは高トルクで測定できなかったためである。また粘度測定結果の代表値として、シェアレート5s-1の時の値を表1から表3に示した。
 <原料窒化アルミニウム>
・A1:トクヤマ社製H No.1グレード粉末。D50=1.6μm、D90=3.8μm、最大カウント粒径=9.3μm、D90/D50=2.4、表面水酸基量1.4個/nm、比表面積2.6m/g。
・A2:トクヤマ社製Eグレード粉末をジェットミルで粉砕して得た。粉砕はアーステクニカ社製EMJ-0Qを使用し、空気圧0.8MPaで粉砕し、バグフィルターで全量回収した粉末。D50=1.1μm、D90=1.6μm、最大カウント粒径=2.8μm、D90/D50=1.5、表面水酸基量1.6個/nm、比表面積3.8m/g。
・A3:トクヤマ社製Eグレード粉末。D50=1.3μm、D90=2.8μm、最大カウント粒径=7.8μm、D90/D50=2.2、表面水酸基量1.3個/nm、比表面積3.3m/g。
・A4:特開2014-201474に記載の方法で合成して得た。D50=1.7μm、D90=2.8μm、最大カウント粒径=5.5μm、D90/D50=1.6、表面水酸基量1.2個/nm、比表面積2.0m/g。
・A5:特許第6038886号公報に記載の方法で合成して得た。D50=2.7μm、D90=4.3μm、最大カウント粒径=9.3μm、D90/D50=1.6、表面水酸基量1.6個/nm、比表面積1.7m/g)
・A6:特許第6038886号公報に記載の方法で合成して得た。D50=6.0μm、D90=12.2μm、最大カウント粒径=26.2μm、D90/D50=2.0、表面水酸基量1.3個/nm、比表面積0.6m/g。
 <表面改質剤>
 ・GPS:3-グリシドキシプロピルトリメトキシシラン(東京化成工業、>97%)
 ・GPMS:3-グリシドキシプロピルメチルジメトキシシラン(信越化学工業、>95%)
 ・ECHS:2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(東京化成工業、>97%)
 ・MPS:3-メタクリロキシプロピルトリメトキシシラン(東京化成工業、>98%)
 ・AEPS:2-アミノエチル-3-アミノプロピルトリメトキシシラン(東京化成工業、>97%)
 ・PMS:フェニルトリメトキシシラン(東京化成工業、>98%)
 ・VMS:ビニルトリメトキシシラン(東京化成工業、>98%)
 ・MMS:メチルトリメトキシシラン(東京化成工業、>98%)
 ・DMDS:ジメチルジメトキシシラン(東京化成工業、>98%)
 ・PRMS:プロピルトリメトキシシラン(東京化成工業、>98%)
 ・HES:ヘキシルトリエトキシシラン(東京化成工業、>98%)
 ・OES:オクチルトリエトキシシラン(東京化成工業、>97%)
 ・HMDS:ヘキサメチルジシラザン(東京化成工業、>96%)
 ・DMS:デシルトリメトキシシラン(東京化成工業、>97%)
 ・HDMS:ヘキサデシルトリメトキシシラン(東京化成工業、>85%)
 ・ODMS:オクタデシルトリメトキシシラン(東京化成工業、>85%)
 ・PAPS:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業、>95%)
 <溶媒>
 ・IPA:イソプロピルアルコール(和光純薬工業、特級)
 (比較例1~6)
 原料窒化アルミニウム粉末A1~A6について、粒ゲージによる粗粒評価と粘度測定を実施し、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 実施例1
 2LポリビーカーにIPAを1167g入れ、さらに500gの原料窒化アルミニウム粉末A1を加え、攪拌羽根で攪拌した。得られた懸濁液を、孔径20μmのナイロンフィルターに通液し、粗粒を除去した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、湿式分級された窒化アルミニウム粉末を得たが、乾燥粉末には手では容易に砕けない塊状物が含まれた。粒ゲージによる粗粒評価の結果を表2に示した。
 実施例2
 孔径15μmのナイロンフィルターを用いた以外は実施例1と同様の操作で湿式分級された窒化アルミニウム粉末を得たが、乾燥粉末には手では容易に砕けない塊状物が含まれた。粒ゲージによる粗粒評価の結果を表2に示した。
 実施例3
 孔径10μmのナイロンフィルターを用いた以外は実施例1と同様の操作で湿式分級したところ、途中からフィルターの目詰まりが発生したが、その後フィルターを新しいものに3回交換することにより懸濁液を全てフィルターを通過させることができた。フィルターは目詰まりが発生したらすぐに交換し、フィルター上に析出したケーキは廃棄した。フィルターを通過した懸濁液についてロータリーエバポレーターを実施し、IPAを蒸発除去した。続いて80℃で真空乾燥することで、湿式分級された窒化アルミニウム粉末を得たが、乾燥粉末には手では容易に砕けない塊状物が含まれた。粒ゲージによる粗粒評価の結果と粘度測定の結果を表2に示した。
 実施例4
 2LポリビーカーにIPAを1167g入れ、さらに500gの原料窒化アルミニウム粉末A3を加え、攪拌羽根で攪拌した。得られた懸濁液を、孔径10μmのナイロンフィルターに通液し、粗粒を除去した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、湿式分級された窒化アルミニウム粉末を得たが、乾燥粉末には手では容易に砕けない塊状物が含まれた。粒ゲージによる粗粒評価の結果と粘度測定の結果を表2に示した。
 実施例5
 2LポリビーカーにIPAを1167g入れ、さらに500gの原料窒化アルミニウム粉末A4を加え、攪拌羽根で攪拌した。得られた懸濁液を、孔径10μmのナイロンフィルターに通液し、粗粒を除去した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、湿式分級された窒化アルミニウム粉末を得たが、乾燥粉末には手では容易に砕けない塊状物が含まれた。粒ゲージによる粗粒評価の結果と粘度測定の結果を表2に示した。
 実施例6
 2LポリビーカーにIPAを1167g入れ、さらに500gの原料窒化アルミニウム粉末A6を加え、攪拌羽根で攪拌した。得られた懸濁液を、孔径30μmのナイロンフィルターに通液し、粗粒を除去した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、湿式分級された窒化アルミニウム粉末を得たが、乾燥粉末には手では容易に砕けない塊状物が含まれた。粒ゲージによる粗粒評価の結果と粘度測定の結果を表2に示した。
 実施例7
 2Lポリビーカーに表面改質剤GPSを2.36g、IPAを1167g入れ、表面改質剤が溶解したのを確認した後、500gの原料窒化アルミニウム粉末A1を上記IPA溶液に加え、攪拌羽根で攪拌した。得られた懸濁液を、孔径10μmのナイロンフィルターに通液し、粗粒を除去した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果と粘度測定の結果を表2に示した。
 実施例8
 表面改質剤GPSを0.12g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例9
 表面改質剤GPSを0.59g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例10
 表面改質剤GPSを1.18g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例11
 表面改質剤GPSを3.55g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例12
 表面改質剤GPSを5.32g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例13
 ナイロンフィルターに孔径7μmのものを用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例14
 原料窒化アルミニウム粉末にA2を用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例15
 原料窒化アルミニウム粉末にA3を用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例16
 原料窒化アルミニウム粉末にA4を用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例17
 原料窒化アルミニウム粉末にA4を用い、ナイロンフィルターに孔径7μmのものを用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例18
 原料窒化アルミニウム粉末にA5を用い、ナイロンフィルターに孔径20μmのものを用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
 実施例19
 原料窒化アルミニウム粉末にA6を用い、ナイロンフィルターに孔径30μmのものを用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 実施例20
 表面改質剤にGPMSを2.20g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例21
 表面改質剤にECHSを2.46g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例22
 表面改質剤にMPSを2.48g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例23
 表面改質剤にAEPSを2.22g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例24
 表面改質剤にPMSを1.98g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例25
 表面改質剤にVMSを1.48g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例26
 表面改質剤にMMSを1.36g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例27
 表面改質剤にDMDSを1.20g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例28
 表面改質剤にPRMSを1.64g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例29
 表面改質剤にHESを2.48g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例30
 表面改質剤にOESを2.77g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果と粘度測定の結果を表3に示した。
 実施例31
 表面改質剤にPAPSを2.55g用いた他は、実施例7と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果と粘度測定の結果を表3に示した。
 実施例32
 2Lポリビーカーに表面改質剤GPSを2.36g、IPAを1167g入れ、表面改質剤が溶解したのを確認した後、500gの原料窒化アルミニウム粉末A1を上記IPA溶液に加え、攪拌羽根で攪拌した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥した。得られた表面改質粉末を2Lポリビーカーに入れ、さらにIPAを1167g入れ懸濁液とした。攪拌羽根で攪拌した懸濁液を孔径7μmのナイロンフィルターに通液し、粗粒を除去した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例33
 表面改質剤にOESを2.77g用いた他は、実施例32と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
 実施例34
 2Lのステンレス密閉容器に500gの原料窒化アルミニウム粉末A1を入れ、真空排気と窒素導入を3回繰り返して、粉末に含まれる酸素を除去した。その後、処理剤導入管からHMDSを7.50g密閉容器内に投入した。攪拌羽根で内部を攪拌しながら容器を150℃で3時間加熱した後、150℃でさらに真空排気を3時間実施した。得られた表面改質粉末を2Lポリビーカーに入れ、さらにIPAを1167g入れ懸濁液とした。攪拌羽根で攪拌した懸濁液を孔径7μmのナイロンフィルターに通液し、粗粒を除去した。その後、ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 比較例8
 2Lポリビーカーに表面改質剤GPSを2.36g、IPAを1167g入れ、表面改質剤が溶解したのを確認した後、500gの原料窒化アルミニウム粉末A1を上記IPA溶液に加え、攪拌羽根で攪拌した。ロータリーエバポレーターで懸濁液からIPAを蒸発除去し、続いて80℃で真空乾燥することで、表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表4に示した。
 比較例9
 表面改質剤にOESを2.77g用いた他は、比較例8と同様の操作で表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表4に示した。
 比較例10
 表面改質剤にDMSを2.63g用いた他は、実施例4と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表4に示した。
 比較例11
 表面改質剤にHDMSを3.47g用いた他は、実施例4と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表4に示した。
 比較例12
 表面改質剤にODMSを3.75g用いた他は、実施例4と同様の操作で湿式分級され、かつ表面改質された窒化アルミニウム粉末を得た。乾燥粉末は手では容易に砕ける性質だった。洗浄前後の表面改質剤由来の炭素含有量、および粒ゲージによる粗粒評価の結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004

Claims (6)

  1.  レーザー回折散乱型粒度分布計で測定される粒度分布において累積体積50%粒径D50が0.5~7.0μmの範囲にあり、累積体積90%粒径D90とD50の比(=D90/D50)が1.3~3.5の範囲にあり、BET比表面積が0.4~6.0m/gの窒化アルミニウム粉末であって、
     該窒化アルミニウム粉末150質量部と、25℃での動粘度1000cStのシリコーンオイル100質量部を混合して得たペーストをグラインドゲージで測定し、線状痕を生じる上限粒径がD90の5倍以下であることを特徴とする窒化アルミニウム粉末。
  2.  表面に酸化被膜を有し、該酸化被膜表面の水酸基量が2個/nm未満である請求項1記載の窒化アルミニウム粉末。
  3.  さらに表面改質剤により処理されている、請求項1又は2に記載の窒化アルミニウム粉末。
  4.  炭素含有量が0.001~0.35質量%である、請求項3に記載の窒化アルミニウム粉末。
  5.  表面改質剤がシラン化合物またはシラザン化合物であり、該シラン化合物の加水分解性基を除いたうちの炭素数の一番大きな有機官能基、あるいはシラザン化合物の有するうちの炭素数の一番大きな有機官能基が有する炭素数が9以下である、請求項3又は4に記載の窒化アルミニウム粉末。
  6.  請求項1乃至5のいずれかに記載の窒化アルミニウム粉末と樹脂とを含有する樹脂組成物。
PCT/JP2018/008575 2017-03-07 2018-03-06 粗大粒子を含まない窒化アルミニウム粉末 WO2018164123A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880005127.9A CN110088039B (zh) 2017-03-07 2018-03-06 不含粗大粒子的氮化铝粉末
EP18764716.9A EP3594178B1 (en) 2017-03-07 2018-03-06 Aluminum nitride powder not containing coarse particles
KR1020197019111A KR102508160B1 (ko) 2017-03-07 2018-03-06 조대 입자를 포함하지 않는 질화알루미늄 분말
US16/491,904 US11427470B2 (en) 2017-03-07 2018-03-06 Aluminum nitride powder containing no coarse particles
JP2019504605A JP7017556B2 (ja) 2017-03-07 2018-03-06 粗大粒子を含まない窒化アルミニウム粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017042555 2017-03-07
JP2017-042555 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018164123A1 true WO2018164123A1 (ja) 2018-09-13

Family

ID=63447549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008575 WO2018164123A1 (ja) 2017-03-07 2018-03-06 粗大粒子を含まない窒化アルミニウム粉末

Country Status (7)

Country Link
US (1) US11427470B2 (ja)
EP (1) EP3594178B1 (ja)
JP (1) JP7017556B2 (ja)
KR (1) KR102508160B1 (ja)
CN (1) CN110088039B (ja)
TW (1) TWI740012B (ja)
WO (1) WO2018164123A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131199A1 (ja) * 2020-12-15 2022-06-23 株式会社トクヤマ 疎水性窒化アルミニウム粉末及びその製造方法
JP7175413B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP7175412B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2022255294A1 (ja) * 2021-06-02 2022-12-08 株式会社トクヤマ 六方晶窒化ホウ素粉末
WO2024210054A1 (ja) * 2023-04-07 2024-10-10 株式会社トクヤマ 窒化アルミニウム粉末

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092542A (ko) * 2020-01-16 2021-07-26 엘지전자 주식회사 무기물 입자의 표면처리 방법 및 이에 따라 제조되는 무기물 입자
CN115066392A (zh) * 2020-02-10 2022-09-16 株式会社德山 氮化铝粉末及制造方法
US20230127313A1 (en) * 2020-03-30 2023-04-27 Panasonic Intellectual Property Management Co., Ltd. Aluminum nitride structure and method for producing same
US20220363835A1 (en) * 2020-09-03 2022-11-17 Fuji Polymer Industries Co., Ltd. Thermally conductive silicone composition and method for producing the same
JP7291304B2 (ja) * 2021-01-06 2023-06-14 デンカ株式会社 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
CN114105110B (zh) * 2021-10-26 2022-12-30 江苏悟晴电子新材料有限公司 一种高纯度氮化铝的制备方法
KR102477618B1 (ko) * 2022-04-07 2022-12-14 주식회사 일진그라텍 친환경 라미네이트용 무용제 이액형 접착제 조성물을 이용한 포장필름의 제조방법 및 이로부터 제조되는 포장필름
CN115637063B (zh) * 2022-09-02 2024-05-28 北京中石伟业科技股份有限公司 一种氮化铝粉的包覆改性方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038886B2 (ja) 1975-11-20 1985-09-03 ハンス・コルベ・ウント・コンパニ− 受信アンテナの雑音減少装置
JP2002053736A (ja) 2000-08-09 2002-02-19 Denki Kagaku Kogyo Kk 高熱伝導性フィラー及びその用途
JP2011125801A (ja) 2009-12-18 2011-06-30 Denki Kagaku Kogyo Kk 湿式分級装置及びその湿式分級方法
JP2012140260A (ja) * 2010-12-28 2012-07-26 Tokuyama Corp 表面処理された窒化アルミニウム粉末の製造方法
JP2014201474A (ja) 2013-04-03 2014-10-27 株式会社トクヤマ 窒化アルミニウム粉末の製造方法
JP2015086120A (ja) 2013-10-31 2015-05-07 株式会社トクヤマ 球状シリカ微粉末とその製造方法
JP2016074920A (ja) * 2010-12-16 2016-05-12 日立化成株式会社 封止用エポキシ樹脂成形材料及びこれを用いた半導体装置
JP6038886B2 (ja) * 2012-03-30 2016-12-07 株式会社トクヤマ 窒化アルミニウム粉末の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385096B1 (en) * 1989-01-27 1995-08-30 MITSUI TOATSU CHEMICALS, Inc. Process for producing sinterable crystalline aluminum nitride powder
FR2722492B1 (fr) * 1994-07-12 1997-03-14 Sumitomo Chemical Co Poudre de nitrure d'aluminium et corps fritte et composition de resine la contenant
TWI259200B (en) * 2001-07-12 2006-08-01 Univ Nat Cheng Kung Surface treating method of aluminum nitride powder
EP1731482B1 (en) * 2004-03-29 2017-01-25 Denka Company Limited Aluminum nitride powder and aluminum nitride sintered compact
CN101198566A (zh) * 2005-06-15 2008-06-11 德山株式会社 氮化铝烧结体、浆料、生坯及脱脂体
CN100354232C (zh) * 2006-06-15 2007-12-12 南京工业大学 抗水化易分散的氮化铝粉末的制备方法
KR102051899B1 (ko) * 2012-09-07 2019-12-04 가부시끼가이샤 도꾸야마 내수성 질화알루미늄 분말의 제조 방법
WO2015137263A1 (ja) * 2014-03-13 2015-09-17 株式会社トクヤマ 耐水性に優れた窒化アルミニウム粉末

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038886B2 (ja) 1975-11-20 1985-09-03 ハンス・コルベ・ウント・コンパニ− 受信アンテナの雑音減少装置
JP2002053736A (ja) 2000-08-09 2002-02-19 Denki Kagaku Kogyo Kk 高熱伝導性フィラー及びその用途
JP2011125801A (ja) 2009-12-18 2011-06-30 Denki Kagaku Kogyo Kk 湿式分級装置及びその湿式分級方法
JP2016074920A (ja) * 2010-12-16 2016-05-12 日立化成株式会社 封止用エポキシ樹脂成形材料及びこれを用いた半導体装置
JP2012140260A (ja) * 2010-12-28 2012-07-26 Tokuyama Corp 表面処理された窒化アルミニウム粉末の製造方法
JP6038886B2 (ja) * 2012-03-30 2016-12-07 株式会社トクヤマ 窒化アルミニウム粉末の製造方法
JP2014201474A (ja) 2013-04-03 2014-10-27 株式会社トクヤマ 窒化アルミニウム粉末の製造方法
JP2015086120A (ja) 2013-10-31 2015-05-07 株式会社トクヤマ 球状シリカ微粉末とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594178A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131199A1 (ja) * 2020-12-15 2022-06-23 株式会社トクヤマ 疎水性窒化アルミニウム粉末及びその製造方法
JP7175413B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP7175412B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2022255294A1 (ja) * 2021-06-02 2022-12-08 株式会社トクヤマ 六方晶窒化ホウ素粉末
WO2024210054A1 (ja) * 2023-04-07 2024-10-10 株式会社トクヤマ 窒化アルミニウム粉末

Also Published As

Publication number Publication date
TW201838914A (zh) 2018-11-01
EP3594178B1 (en) 2021-11-10
CN110088039A (zh) 2019-08-02
US20190389725A1 (en) 2019-12-26
TWI740012B (zh) 2021-09-21
KR102508160B1 (ko) 2023-03-10
EP3594178A1 (en) 2020-01-15
KR20190120747A (ko) 2019-10-24
CN110088039B (zh) 2022-05-10
US11427470B2 (en) 2022-08-30
EP3594178A4 (en) 2020-12-09
JPWO2018164123A1 (ja) 2020-01-09
JP7017556B2 (ja) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2018164123A1 (ja) 粗大粒子を含まない窒化アルミニウム粉末
JP6209030B2 (ja) シリカ被覆無機酸化物粒子およびその製造方法、並びに樹脂組成物
TW201927689A (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
JP6704271B2 (ja) 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
JP6238440B2 (ja) シリカ被覆金属窒化物粒子およびその製造方法
JP2016155937A (ja) 熱伝導性粒子組成物、熱伝導性粒子組成物の製造方法、熱伝導性樹脂組成物および熱伝導性樹脂硬化体
TW202231574A (zh) 疏水性氮化鋁粉末及其製造方法
JP6329776B2 (ja) モールドアンダーフィル用封止材
JP7257384B2 (ja) 有機無機複合粒子からなる粉末
WO2020203710A1 (ja) 球状酸化マグネシウム、その製造方法、熱伝導性フィラー及び樹脂組成物
WO2023008290A1 (ja) 球状シリカ粉末及び球状シリカ粉末の製造方法
JP2007051187A (ja) 微小粒子含有組成物
CN113614033B (zh) 块状氮化硼粒子、导热树脂组合物和散热构件
JP2022142190A (ja) 表面処理窒化アルミニウム粉末
JP7393975B2 (ja) 複合窒化アルミニウム粉末及びその製造方法
JP2015193493A (ja) 高比重アルミナおよびその製造方法
WO2024210054A1 (ja) 窒化アルミニウム粉末
KR102251201B1 (ko) 박리된 보론나이트라이드, 이의 박리방법, 및 이를 이용한 고분자 방열 복합체의 제조방법
JP2023115939A (ja) 表面処理窒化アルミニウム粉末
TW202330410A (zh) 電子材料用填料及其製造方法、電子材料用漿料以及電子材料用樹脂組成物
TW202406847A (zh) 高純度尖晶石粒子及其製造方法、樹脂組成物及成形物
TW202335962A (zh) 氧化物微粒、含微粒的樹脂組成物、密封材、有機基板及氧化物微粒的製造方法
WO2024143411A1 (ja) 表面処理シリカ粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019111

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019504605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764716

Country of ref document: EP

Effective date: 20191007