[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018151056A1 - ペリクル、露光原版、露光装置、及び半導体装置の製造方法 - Google Patents

ペリクル、露光原版、露光装置、及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2018151056A1
WO2018151056A1 PCT/JP2018/004726 JP2018004726W WO2018151056A1 WO 2018151056 A1 WO2018151056 A1 WO 2018151056A1 JP 2018004726 W JP2018004726 W JP 2018004726W WO 2018151056 A1 WO2018151056 A1 WO 2018151056A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
exposure
original plate
layer
adhesive
Prior art date
Application number
PCT/JP2018/004726
Other languages
English (en)
French (fr)
Inventor
高村 一夫
陽介 小野
敦 大久保
大樹 種市
比佐子 石川
恒明 美谷島
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2018568502A priority Critical patent/JP6816170B2/ja
Priority to SG11201907482YA priority patent/SG11201907482YA/en
Priority to CN201880012953.6A priority patent/CN110325908A/zh
Priority to EP18754194.1A priority patent/EP3584636A4/en
Priority to KR1020197023454A priority patent/KR102237878B1/ko
Publication of WO2018151056A1 publication Critical patent/WO2018151056A1/ja
Priority to US16/535,183 priority patent/US11137677B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/66Containers specially adapted for masks, mask blanks or pellicles; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Definitions

  • the present invention prevents photomasks or reticles (hereinafter collectively referred to as “photomasks” or “masks”) and dust used when manufacturing semiconductor devices and the like by lithography technology from adhering.
  • the present invention relates to a pellicle that is a dust-proof cover for a photomask.
  • the present invention relates to a pellicle for extreme ultraviolet (EUV) optical lithography, a method for manufacturing the pellicle, an exposure original plate using the same, and a method for manufacturing a semiconductor device.
  • EUV extreme ultraviolet
  • the semiconductor element is manufactured through a process called lithography.
  • lithography an exposure apparatus called a scanner or a stepper is used to irradiate a mask on which a circuit pattern is drawn with exposure light, and transfer the circuit pattern onto a semiconductor wafer coated with a photoresist.
  • a scanner or a stepper is used to irradiate a mask on which a circuit pattern is drawn with exposure light, and transfer the circuit pattern onto a semiconductor wafer coated with a photoresist.
  • the shadow of the foreign matter is transferred to the semiconductor wafer, and the circuit pattern is not accurately transferred.
  • the semiconductor element may not operate normally and become a defective product.
  • the pellicle film used for the pellicle is required to have a characteristic of transmitting exposure light with high transmittance. This is because if the light transmittance of the pellicle film is low, the intensity of the exposure light from the mask on which the circuit pattern is formed decreases, and the photoresist formed on the semiconductor wafer is not sufficiently exposed.
  • EUV light refers to light having a wavelength in the soft X-ray region or vacuum ultraviolet region, and refers to light having a wavelength of about 13.5 nm ⁇ 0.3 nm.
  • the resolution limit of a pattern is about 1/2 of the exposure wavelength, and it is said to be about 1/4 of the exposure wavelength even when the immersion method is used.
  • the immersion of ArF laser (wavelength: 193 nm) Even if the method is used, the exposure wavelength is expected to be about 45 nm. Therefore, EUV lithography is expected as an innovative technology that can be greatly miniaturized from conventional lithography.
  • a holding spring provided in common to the mask and the pellicle is used, and a pressing spring attached to the pellicle and a pin called a stud installed on the mask are used.
  • a method of (mechanically) fixing has been studied (Patent Document 1). Further, in a pellicle that is not for EUV exposure, for example, a pellicle for ArF, an adhesive is used to connect the pellicle to the mask.
  • an object is to provide a manufacturing method of an EUV pellicle, an exposure original plate, an exposure apparatus, and a semiconductor device with less outgassing while using an adhesive.
  • a pellicle film, a support frame that supports the pellicle film, and an end portion of the support frame that is opposite to the end portion on which the pellicle film is suspended are provided.
  • a mass absorption coefficient of the inorganic material layer (mu m) is, the pellicle is provided, which is a range of 5 ⁇ 10 3 cm 2 / g ⁇ 2 ⁇ 10 5 cm 2 / g.
  • the support frame may include a first frame body connected to the pellicle film and a second frame body connected to the first frame body.
  • the first frame body and the second frame body are connected by a second adhesive layer, and among the side surfaces in the direction intersecting the pellicle film surface of the second adhesive layer Any one of them may have a second inorganic layer.
  • the transmittance of EUV light having a wavelength of 13.5 nm may be 10% or less.
  • the inorganic layer may have a thickness of 50 nm or more.
  • the inorganic layer may be a metal layer.
  • the metal layer is any one metal selected from the group consisting of aluminum, titanium, chromium, iron, nickel, copper, ruthenium, tantalum, and gold, and two types selected from this group. It may be an alloy containing the above elements, or an oxide containing any one or two or more elements selected from this group.
  • a protective layer may be provided on the end surface opposite to the pellicle film of the first adhesive layer.
  • an exposure original plate including an original plate and a pellicle mounted on the surface having the pattern of the original plate may be provided.
  • an exposure apparatus having the exposure original plate may be provided.
  • the light source includes: a light source that emits exposure light; the exposure original plate; and an optical system that guides the exposure light emitted from the light source to the exposure original plate.
  • An exposure apparatus may be provided in which the exposure light emitted from is transmitted through the pellicle film and applied to the original.
  • the exposure light may be EUV light.
  • the exposure light emitted from the light source is transmitted through the pellicle film of the exposure original plate, irradiated to the original plate, reflected by the original plate, and the exposure light reflected by the original plate is used as the pellicle
  • a method for manufacturing a semiconductor device is provided in which the sensitive substrate is exposed in a pattern by passing through the film and irradiating the sensitive substrate.
  • the exposure light may be EUV light.
  • an EUV pellicle, an exposure original plate, an exposure apparatus, and a method for manufacturing a semiconductor device with less outgassing while using an adhesive are provided. Further, according to each embodiment, outgas generated from the adhesive is suppressed in a vacuum state where no EUV light is irradiated, and contamination in a region irradiated with EUV light in a space formed by the mask and the pellicle Can be provided, and a pellicle with improved resistance to the EUV light irradiation of the adhesive can be provided. Furthermore, it is possible to provide an exposure original plate, an exposure apparatus, and a method for manufacturing a semiconductor device that can perform pattern exposure with reduced resolution defects due to foreign matter using this pellicle.
  • FIGS. 1A to 14 Embodiments of the present invention will be described with reference to FIGS. 1A to 14.
  • the present invention can be implemented in many different modes and should not be construed as being limited to the description of the embodiments exemplified below.
  • the drawings may be schematically represented with respect to the width, thickness, shape, and the like of each part in comparison with actual aspects for the sake of clarity of explanation, but are merely examples, and the interpretation of the present invention is not limited. It is not limited.
  • elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate.
  • EUV light refers to light having a wavelength of 5 nm to 30 nm.
  • the wavelength of the EUV light is preferably 5 nm or more and 14 nm or less.
  • the pellicle film means a thin film used for the pellicle.
  • the pellicle means a pellicle film and a support frame that is provided on one surface of the pellicle film and supports the pellicle film.
  • the support frame includes at least a first frame body connected to the pellicle film.
  • the support frame may further include a second frame body connected to the first frame body.
  • back etching the process of removing a part of the substrate while leaving the pellicle film.
  • back etching a process of etching from the back surface (the surface of the substrate opposite to the surface on which the pellicle film is formed) is shown.
  • the first adhesive layer is “an adhesive layer for placing a pellicle on a mask”.
  • the “adhesive layer for placing the pellicle on the mask” is an adhesive layer provided at the end opposite to the end where the pellicle film of the support frame of the pellicle is suspended. , Used when connecting the mask and the pellicle.
  • the first adhesive layer of the pellicle has two side surfaces and an end surface, which are a first side surface, a second side surface, and a first end surface, respectively.
  • the “surface” is not limited to a flat surface but includes a curved surface.
  • the first side surface, the second side surface, and the first end surface are not limited to flat surfaces, but also include curved surfaces.
  • the first side surface of the first adhesive layer is a side surface in a direction intersecting the pellicle film surface in the first adhesive layer, and is a side surface on which the pellicle is suspended.
  • the second side surface of the first adhesive layer is the side surface in the direction intersecting the pellicle film surface in the first adhesive layer, and is opposite to the side surface on the side where the pellicle is suspended. It is the side of the side.
  • the first end surface of the first adhesive layer is a surface substantially parallel to the pellicle film surface in the first adhesive layer, and is a surface opposite to the surface on which the pellicle is formed. is there.
  • the second adhesive layer means a layer connecting the first frame and the second frame.
  • adhesive used for the adhesive layer includes not only an adhesive but also a pressure-sensitive adhesive.
  • the adhesive layer is damaged and outgas is generated. Once the EUV light hits, the amount of outgas generated decreases even if the EUV light hits for the second time and thereafter. However, the damaged portion of the adhesive layer loses flexibility and becomes brittle, which may cause foreign matter.
  • the pellicle 100 that can be used in the present invention is a pellicle for EUV photolithography.
  • a pellicle film for EUV photolithography there is no particular limitation on the pellicle film for EUV photolithography used.
  • a pellicle is formed on a substrate (eg, silicon wafer, sapphire, silicon carbide, etc.) by a method such as CVD (Chemical Vapor Deposition) (eg, LP-CVD film formation, PE-CVD film formation) or sputtering film formation.
  • CVD Chemical Vapor Deposition
  • a film 101 (SiN, a carbon-based film (for example, a graphene film, a carbon nanotube film formed by a spin coating method, a carbon nanosheet, or the like), polysilicon, or a stacked structure in which a plurality of these layers are stacked) is formed. Thereafter, the pellicle film 101 is manufactured by etching (back etching) the substrate from the substrate side so that the pellicle film is exposed.
  • the support frame 103 is a frame that is provided on one surface of the pellicle film 101 and supports the pellicle film 101.
  • the pellicle film 101 and the support frame 103 may be fixed by preparing another support frame instead of using the support frame 103 as the frame portion left by etching while leaving the substrate in a frame shape.
  • the method for fixing the pellicle film 101 to the support frame 103 is not particularly limited, and the pellicle film 101 may be directly attached to the support frame 103 or may be passed through a film adhesive layer on one end face of the support frame 103.
  • the pellicle film 101 and the support frame 103 may be fixed using a mechanical fixing method or an attractive force such as a magnet.
  • the frame portion left by etching while leaving the substrate in a frame shape is used as the first frame body 104 connected to the pellicle film 101, and the second frame body 107 such as aluminum is provided on the first frame body 104.
  • the support frame 103 is preferably formed by etching so that the substrate remains as the first frame body 104.
  • the support frame 103 preferably includes the second frame 107 from the viewpoint of increasing the strength of the support frame 103.
  • the support frame 103 has a first frame body 104 formed by etching while leaving the substrate in a frame shape from the viewpoint of increasing the strength of the support frame 103 while preventing foreign matter from adhering to the pellicle film 101.
  • the second frame body 107 is preferably included.
  • the material of the first frame 104 is not particularly limited, but silicon, sapphire, or silicon carbide is preferable, and silicon is more preferable.
  • the material of the second frame 107 is not particularly limited, but aluminum or an aluminum alloy (5000 series, 6000 series, 7000 series, etc.) is preferable from the viewpoint of achieving both light weight and strength.
  • a means of providing the first adhesive layer 109 (FIG. 1A) is used as a connection method when the pellicle 100 manufactured in this way is connected to a photomask.
  • the method of reducing the outgas generation amount during use by irradiating one side of the adhesive with EUV light and generating gas in advance before using the pellicle is from the viewpoint of reducing dust. Not appropriate. Also, means for reducing outgas by prebaking or the like is not suitable from the viewpoint of reducing dust.
  • the first adhesive layer 109 (FIG. 1A), that is, the first side surface 121 (shown in FIG. 1A) of the first adhesive layer 109 for placing the pellicle 100 on the mask (not shown). .) Is coated with a material (metal, ceramic, etc.) having a low transmittance of EUV light.
  • the “adhesive layer for placing the pellicle on the mask” is an adhesive layer provided at the end opposite to the end where the pellicle film of the support frame of the pellicle is suspended. The adhesive layer is used when connecting the mask and the pellicle.
  • the first side surface 121 is the first side surface of the first adhesive layer defined above.
  • the first side surface 121 can also be referred to as a portion surrounded by the mask and the pellicle, and is one side surface of the first adhesive layer and is surrounded by the mask and the pellicle when connected to the mask. It can also be called the side surface forming the closed space.
  • the thickness of the first adhesive layer 109 that is, the length of the first adhesive layer 109 in the direction orthogonal to the film surface of the pellicle film 101 is preferably 10 ⁇ m to 1 mm.
  • the thickness of the first adhesive layer 109 is 10 ⁇ m or more, the adhesiveness between the support frame 103 and the mask that contacts the first end surface 136 is excellent.
  • the thickness of the first adhesive layer 109 is 1 mm or less, the gas barrier property is improved.
  • FIG. 1A, FIG. 1B, and FIG. 2 are drawings in the case where the second frame 107 and the second adhesive layer 105 shown in FIG. 3A are not provided.
  • 3A, FIG. 3B, FIG. 4A, and FIG. 4B are drawings in the case where the second frame body 107 and the second adhesive layer 105 are provided.
  • the portions of the first adhesive layer 109 that can be coated are the first side surface 121 (FIGS. 1A and 3A), the second side surface 131 (FIGS. 1A and 3A), and the first end surface defined above. It is 136 (FIG. 1A and FIG. 3A), It is the 1st side surface 121 that a coating is essential.
  • the state where the first side surface 121 is coated with the inorganic layer 111 is schematically shown in FIGS. 1B and 3B.
  • the second side surface 131 of the first adhesive layer 109 may also be coated with the inorganic layer 113 (FIGS. 2 and 4A).
  • the second side surface 131 of the first adhesive layer 109 is not exposed to EUV light scattered on the mask surface. Thus, a coating is not essential. However, in order to prevent outgas generated from the second side surface 131 of the first adhesive layer 109 from causing contamination in a region other than the closed region surrounded by the mask and the pellicle 100, the outgas is further reduced. More preferably, the second side 131 is also coated to prevent the portion from entering the closed region of the mask and pellicle 100 and causing contamination on the mask surface.
  • the first end surface 136 (shown in FIGS. 1A and 3A) of the first adhesive layer 109 may be partially coated as long as the adhesive force can be maintained.
  • the first end surface 136 of the first adhesive layer 109 is not exposed to EUV light.
  • a coating is not essential. However, in order to prevent contamination in areas other than the closed region surrounded by the mask and the pellicle 100 due to outgas from the adhesive, it is more preferable that the coating is performed.
  • coating may be performed on an adhesive layer different from the above.
  • the side surface 141 and / or the side surface 143 (FIG. 3A) of the second adhesive layer 105 defined above may be coated with the inorganic layer 115 and the inorganic layer 117 (FIG. 5A shows the side surface 141 and the side surface 143. Are illustrated as being coated with the inorganic layer 115 and the inorganic layer 117, respectively).
  • it may be coated together with the second frame 107 by the inorganic layer 111 (FIG. 4B).
  • the side surface of the first adhesive layer 109 and the side surface of the second adhesive layer 105 may be coated together with the second frame 107 by the inorganic layer 111 and the inorganic layer 113 (FIG.
  • the second adhesive layer 105 is an adhesive layer that bonds the first frame body 104 connected to the pellicle film 101 and the second frame body 107 (such as aluminum). More preferably, the side and / or the outer side surrounded by the mask and the pellicle 100 are coated with an inorganic layer. In order to prevent EUV light from hitting the second adhesive layer 105, it is preferable that the second frame body 107 is also provided with the inorganic layer 111 and the inorganic layer 113.
  • the second adhesive layer 105 can be made thinner than the first adhesive layer 109, and the first adhesive layer 109 is at a height away from the mask surface and is shaded by the second frame 107. Therefore, since the EUV light scattered on the mask surface is not exposed, the coating is not essential, that is, it is not essential to provide an inorganic layer.
  • the inorganic layer has EUV resistance and satisfies the condition that the transmittance of EUV light is 10% or less. Those that satisfy these conditions have less outgassing. Furthermore, it is more preferable if there is resistance to hydrogen radicals.
  • the thickness of the inorganic layer is preferably about 50 nm to 1 ⁇ m.
  • the EUV light transmittance of 10% or less means that when a predetermined inorganic layer has a thickness of 400 nm, the EUV light having a wavelength of 13.5 nm is irradiated and the EUV light transmittance is 10%. Means less than a percent.
  • the material of the inorganic layer examples include materials having low EUV transmittance (metal, ceramic, etc.).
  • a force in the direction of installation is applied to the adhesive layer, and in the exposure apparatus, a force (shear) in the direction crossing the installation direction is applied to the adhesive layer.
  • the inorganic layer is preferably a metal.
  • the method of coating the inorganic layer on the adhesive layer includes vapor deposition and sputtering, but is not limited thereto. Any method can be used as long as it can be formed on the adhesive surface.
  • the mass absorption coefficient (mu m) is preferably in the range of 5 ⁇ 10 3 cm 2 / g ⁇ 2 ⁇ 10 5 cm 2 / g. The technical meaning of such numerical values will be described later.
  • Metals that can be used as the inorganic layer include Al (aluminum), Ti (titanium), V (vanadium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), and Ni (nickel).
  • the inorganic layer may be an alloy using two or more elements selected from these, or may be an oxide.
  • metals that can be used as the inorganic layer include Al (aluminum), Ti (titanium), Cr (chromium), Fe (iron), Ni (nickel), Cu (copper), Ru (ruthenium), Any one kind of metal selected from the group of Ta (tantalum) and Au (gold) is more preferable.
  • the inorganic layer is composed of Al (aluminum), Ti (titanium), Cr (chromium), Fe (iron), Ni (nickel), Cu (copper), Ru (ruthenium), Ta (tantalum), and Au (gold).
  • An alloy using two or more elements selected from the group may be used, or an oxide may be used.
  • the transmittance T of light transmitted through the inorganic layer can be calculated as follows based on the thickness d of the inorganic layer, the density ⁇ , and the absorption coefficient ⁇ of the inorganic layer.
  • the transmittance T is defined by the following equation (1).
  • I transmitted light intensity
  • I 0 incident light intensity
  • N is the number of atoms in the unit volume
  • r 0 2.82 ⁇ 10 ⁇ 13 [cm] (classical electron radius)
  • is the wavelength
  • f 2 is the atomic scattering factor at wavelength ⁇ .
  • N A is Avogadro's number, and A is the atomic weight of the elements constituting the inorganic layer.
  • the mass absorption coefficient mu m is independent of the coupling state of each other atoms.
  • the photon energy at a wavelength of 13.5 nm is around 92.5 eV, and is sufficiently away from the absorption edge of atoms. Therefore, the mass absorption coefficient mu m is not dependent on the bonding state of atoms between the compound constituting the inorganic layer.
  • the mass absorption coefficient ⁇ m constituting the inorganic layer is obtained from the mass absorption coefficient ⁇ mi of each element (1, 2,..., I) constituting the inorganic layer and the mass fraction W i of each element. It is obtained by the following formula (5).
  • ⁇ m ⁇ m1 W 1 + ⁇ m2 W 2 + ... ⁇ mi W i ⁇ (5)
  • a i is the atomic weight of each element i
  • n i is the number of each element i.
  • the wavelength of the inorganic layer of 13.5 nm can be determined based on the equations (1) and (2).
  • the light transmittance can be calculated.
  • the transmittance can also be calculated from the optical constant website of the X-ray Optical Center at Lawrence Berkeley National Laboratory.
  • Adhesive in the present specification refers to an adhesive in a broad sense, and the concept of “adhesive” includes an adhesive.
  • Adhesives include acrylic resin adhesives, epoxy resin adhesives, polyimide resin adhesives, silicone resin adhesives, inorganic adhesives, double-sided adhesive tapes, silicone resin adhesives, acrylic adhesives, polyolefin adhesives, etc. Is mentioned. The type is not particularly limited.
  • An intermediate layer may be provided between the adhesive and the inorganic layer for the purpose of preventing cracks in the inorganic layer. Since the inorganic layer is laminated on the intermediate layer, there are no limitations on the physical properties relating to EUV transmittance and outgas. For example, parylene, polyimide, ceramic, metal, and the like can be given, and it may be formed by a method such as vapor deposition, sputtering, or CVD.
  • the protective layer 120 may be provided on the surface (first end surface 136) opposite to the surface on which the pellicle film 101 of the first adhesive layer 109 is formed (FIG. 6).
  • the protective layer 120 can be applied to all the above-described embodiments, and a known layer such as a release liner (also called a release film or a separator) can be used without any particular limitation.
  • a release liner also called a release film or a separator
  • the pellicle 100 has a ventilation mechanism for moving the gas inside and outside the pellicle and eliminating the differential pressure inside and outside the pellicle during the decompression or venting process. Further, it may have a foreign matter capturing function for suppressing foreign matter from entering from the outside of the pellicle and adhering to the mask surface during decompression or venting.
  • a through hole may be formed in the support frame 103 (which may be the first frame 104 or the second frame 107), and a filter having foreign matter capturing performance may be attached.
  • Test example 1 Hydrogenated styrene hot melt adhesive (used in pellicle for ArF laser exposure) on the upper surface of aluminum frame with outer dimensions 151mm ⁇ 118.5mm, inner dimensions 147mm ⁇ 114.5mm, height 1.6mm ⁇ 2.0mm The adhesive was applied with a thickness of about 100 ⁇ m and a width of 1.5 to 2.0 mm. A masking film was pasted with a width of about 0.5 mm from the central portion of the surface opposite to the surface in contact with the aluminum frame of the adhesive. The exposed portion of the adhesive was coated with nickel to a thickness of about 100 nm by magnetron sputtering.
  • the masking film was peeled off to expose a part of the adhesive portion, which was attached to a stainless steel substrate to obtain an evaluation sample.
  • the obtained sample was inserted into a high vacuum chamber (1 ⁇ 10 ⁇ 6 Pa), and mass spectrometry of outgas generated from the sample was performed using a quadrupole mass spectrometer (QMS).
  • QMS quadrupole mass spectrometer
  • the measurement range of mass spectrometry was a mass to charge ratio m / z of 1 to 200.
  • the peak intensity derived from hydrocarbon chains in the m / z range of 45 to 200 which is considered to be a cause of contamination, is the peak intensity of only the aluminum frame to which no adhesive is applied and the empty intensity where no sample is inserted. It was the same as the peak intensity in the state.
  • the total peak intensity in the range of m / z from 45 to 200 was about 1000.
  • Comparative Test Example 1 A sample similar to Test Example 1 was prepared except that the nickel coating step was not performed, and mass spectrometry of outgas was performed (Comparative Test Example 1).
  • Comparative Test Example 1 peaks were observed at about 14 cycles in the range where m / z was 45 or more. Since 14 is equal to the mass of CH 2 which is a unit of hydrocarbon chain, these peaks are considered to be derived from the outgas derived from the hydrocarbon chain generated from the adhesive. The total peak intensity in the range of m / z from 45 to 200 was about 8000.
  • the comparison between Test Example 1 and Comparative Test Example 1 revealed that the amount of outgas derived from the adhesive can be reduced.
  • Test example 2 A hydrogenated styrene hot melt adhesive was applied to a thickness of about 100 ⁇ m on a silicon wafer. The surface of the adhesive opposite to the surface in contact with the silicon wafer was coated with nickel to a thickness of about 100 nm by magnetron sputtering to obtain a sample. The obtained sample was cut into 1.5 cm x 2 cm, and the EUV irradiation device (Newsval (facility name) BL-9, Hyogo Prefectural University) was used to emit light (EUV light) with a wavelength of 13.5 nm to an intensity of about 500 mW. The pressure change in the chamber was observed when irradiated from the direction perpendicular to the nickel coating surface for 15 minutes at / cm 2 . The beam size was about 2 mm ⁇ 4 mm.
  • the pressure in the chamber increased by 1.7 ⁇ Pa after irradiation compared to before EUV irradiation.
  • This pressure increase value is the same within the error range as the pressure increase value when the EUV light is irradiated without a sample and when the EUV light is irradiated to a silicon wafer to which no adhesive is applied. It was. No particular discoloration or deformation was observed in the EUV irradiated part of the nickel surface after the EUV light irradiation.
  • Comparative test example 2 EUV light irradiation was carried out in the same manner as in the above example except that the adhesive was not coated with nickel (Comparative Example 2).
  • the pressure in the chamber increased by 24 ⁇ Pa after irradiation as compared with before irradiation with EUV light.
  • This pressure increase value is one or more orders of magnitude higher than the pressure increase value when EUV light is irradiated without a sample and when the EUV light is irradiated to a silicon wafer to which no adhesive is applied. Met.
  • This pressure increase is considered to be derived from a decomposition product from the adhesive generated by irradiation with EUV light.
  • FIG. 7 is a schematic diagram of a cross-sectional view of a test apparatus 400 used for contamination adhesion evaluation in Test Example 3.
  • a hydrogenated styrene-based hot melt adhesive 420 is about 100 ⁇ m thick. And applied in a width of 1.5 to 2.0 mm.
  • a masking film was pasted on a surface 420B opposite to the surface 420A in contact with the aluminum frame 410 with a width of about 0.5 mm from the center portion.
  • An inorganic material layer 430 was provided on the exposed portion of the adhesive 420 by coating nickel with magnetron sputtering to a thickness of about 100 nm. After the nickel coating, the masking film was peeled off to expose a part of the adhesive 420 to obtain an evaluation sample.
  • a stainless steel thin plate 450 having both an aluminum frame 410 and a through hole 452 for providing a SiN film (also referred to as a SiN free-standing film) 460 with a thickness of 50 nm and through holes 454 and 456 for ventilation.
  • SiN film also referred to as a SiN free-standing film
  • the aluminum frame 410 and the outer peripheral size of the thin plate 450 are the same.
  • the SiN film 460 held in the rectangular frame was mechanically bonded to the thin plate 450 using screws and a holding plate.
  • An EUV irradiation substrate 470 in which a TaN layer used as an EUV mask absorber is formed on a silicon wafer surface by sputtering as an EUV light irradiation substrate for observing the adhesion state of contamination in a closed space. installed.
  • the TaN surface of the EUV irradiation substrate 470 was irradiated with light (EUV light L) having a wavelength of 13.5 nm through the SiN film 460.
  • the irradiation intensity was about 110 mW / cm 2 and the irradiation time was 135 minutes.
  • the beam size was about 2 mm ⁇ 4 mm.
  • the SiN film 460 is a 1 cm ⁇ 1 cm square.
  • the size of the frame for the SiN film 460 is a 3 cm ⁇ 3 cm square.
  • the carbon component is considered to be generated due to contamination in the apparatus.
  • grease is used to move the stage on which the test apparatus 400 is placed. Therefore, it is considered that the component in which the grease volatilized diffused into the pellicle and changed to contamination in the EUV irradiation section.
  • EUV light was irradiated onto the EUV irradiation substrate 470 in the same manner as in Test Example 3 except that the sample was mechanically attached to the stainless steel substrate 440 without using the adhesive 420.
  • the contamination layer had a thickness of 2.7 ⁇ 1.1 nm and a carbon abundance ratio of 62.1 ⁇ 9.1.
  • Comparative test example 3 A sample (Comparative Test Example 3) was prepared in the same manner as in Test Example 3 except that the surface of the adhesive 420 was not coated with nickel, and irradiated with EUV light. The irradiation region on the substrate for EUV irradiation after irradiation with EUV light was turned black, and a peak derived from a carbon deposit was observed in the Raman spectrum. For the irradiated region on the EUV irradiation substrate 470 after irradiation with EUV light, a slice of the substrate cross section is created using a focused ion beam, and the thickness of the contamination layer is directly observed using a transmission electron microscope (TEM). went.
  • TEM transmission electron microscope
  • the thickness of the contamination layer in the EUV irradiation region was 17.5 ⁇ 3.5 nm.
  • the irradiation area on the substrate for EUV irradiation after EUV irradiation was subjected to XPS wide scan measurement, and the carbon abundance ratio was calculated.
  • the carbon abundance ratio was 90.5 ⁇ 0.6%.
  • the thickness of the contamination layer and the abundance ratio of carbon in Test Example 3 coincide with those without using the adhesive 420 within an error range.
  • Comparative Test Example 3 in which the adhesive was used but the nickel coating was not performed, it can be seen that the contamination layer thickness and the carbon abundance ratio increased, and contamination adhesion could not be suppressed. For this reason, it can be seen from the comparison between Test Example 3 and Comparative Test Example 3 that adhesion of contamination due to irradiation with EUV light can be suppressed.
  • Table 1 summarizes the results of Test Examples 1 to 3 and Comparative Test Examples 1 to 3 described above. Although the samples used as Test Examples 1 to 3 have some differences because of different measurement methods, all of them are the same as the test examples of the pellicle coated with the inorganic layer. It describes as. For the same reason, Comparative Test Examples 1 to 3 are collectively described as “Comparative Test Examples”.
  • the nickel coating has significant differences in three points: suppression of outgas when not irradiated with EUV light, EUV resistance, and contamination adhesion evaluation.
  • the adhesive layer can be coated with less outgas and not affected by EUV light.
  • Al aluminum
  • Cr chromium
  • Ni nickel
  • Ru ruthenium
  • Ta It can be seen that even a metal coating such as tantalum or Au (gold) has a sufficient effect.
  • it is considered that resistance to hydrogen radicals generated by irradiation with EUV light can be imparted to the adhesive.
  • FIG. 8 is a diagram showing another example of the configuration around the first adhesive layer 109 and the support frame 103 in the pellicle 100.
  • the inorganic layer 111 is in contact with at least a part of the first end surface 136 of the first adhesive layer 109 in addition to the first side surface 121.
  • the inorganic layer 111 is in contact with the region 136 ⁇ / b> A adjacent to the first side surface 121 of the first end surface 136.
  • a region 136B of the first end surface 136 adjacent to the region 136A is in contact with the surface of the mask 200 under the first adhesive layer 109.
  • the thickness of the inorganic layer 111 that is, the length in the direction orthogonal to the film surface of the pellicle film 101 is smaller as it approaches the region 136B.
  • the support frame 103 may further include a second frame. The aspect in the case of having the second frame is as described above. In FIG. 8, “101” represents the pellicle film, and “131” represents the second side surface.
  • FIG. 9 is a view of the pellicle 100 having the configuration of FIG. 8 as viewed from below (that is, a view as viewed from a direction perpendicular to the first end face 136).
  • the inorganic layer 111 is formed in a rectangular (or square) frame shape.
  • the first adhesive layer 109 is formed in a rectangular (or square) frame shape along the outer periphery of the inorganic layer 111.
  • the region T inside the inorganic layer 111 is a closed region closed by the mask 200, the inorganic layer 111 (first adhesive layer 109), the support frame 103, and the pellicle film 101.
  • the inorganic layer 111 is formed by, for example, coating the inorganic material by, for example, magnetron sputtering while protecting the region 136B of the first adhesive layer 109 with a masking tape. And then a method of peeling the masking tape.
  • FIG. 10 is a diagram showing another example of the configuration around the first adhesive layer 109 and the support frame 103 in the pellicle 100.
  • the inorganic layer 111 is in contact with at least a part of the first end surface 136 of the first adhesive layer 109 in addition to the first side surface 121.
  • the inorganic layer 111 is in contact with the region 136 ⁇ / b> C adjacent to the first side surface 121 of the first end surface 136.
  • the inorganic layer 113 is in contact with at least a partial region of the first end surface 136 of the first adhesive layer 109 in addition to the second side surface 131.
  • the inorganic layer 113 is in contact with the region 136 ⁇ / b> D adjacent to the second side surface 131 of the first end surface 136.
  • a region 136E of the first end surface 136 located between the region 136C and the region 136D and adjacent to the region 136C and the region 136D is in contact with the surface of the mask 200 under the first adhesive layer 109. Yes.
  • the thicknesses of the inorganic layer 111 and the inorganic layer 113 that is, the length in the direction perpendicular to the film surface of the pellicle film 101 are smaller as the region 136E is approached.
  • the support frame 103 may further include a second frame. The aspect in the case of having the second frame is as described above. In FIG. 10, “101” represents a pellicle film.
  • FIG. 11 is a view of the pellicle 100 having the configuration shown in FIG. 10 as viewed from below.
  • the support frame 103 and the pellicle film 101 are not shown.
  • the inorganic layer 111 and the inorganic layer 113 are formed in a rectangular (or square) frame shape.
  • the first adhesive layer 109 is sandwiched between the outer periphery of the inorganic layer 111 and the inner periphery of the inorganic layer 113, and is formed in a rectangular (may be a square) frame shape along the entire periphery.
  • the region T inside the inorganic layer 111 is a closed region closed by the mask 200, the inorganic layer 111 (first adhesive layer 109), the support frame 103, the second adhesive layer 105, and the pellicle film 101. is there.
  • the region 136E of the first adhesive layer 109 is protected with a masking tape, and the inorganic layer is coated by, for example, magnetron sputtering. And then a method of peeling the masking tape.
  • Test Example 3 A specific example in which the inorganic layer 111 is formed by this method is described in Test Example 3.
  • the inorganic layer 111 may be interposed in at least a part of the region between the first adhesive layer 109 and the mask 200.
  • the shapes of the first adhesive layer 109 and the inorganic layer 111 shown in FIGS. 8 to 11 are examples, and various modifications can be made.
  • the inorganic layer 111 may be interposed in a part of the region between the first adhesive layer 109 and the support frame 103.
  • FIG. 12 is a schematic diagram of a cross-sectional view of a pellicle having another configuration.
  • the inventors coated the entire end surface of the support frame 103 on the side where the first adhesive layer 109 is formed with the inorganic layer 111, and the opposite side of the inorganic layer 111 from the support frame 103.
  • the structure in which the concave portion 1112 is formed on the surface and the first adhesive layer 109 is formed by filling the concave portion 1112 with an adhesive was studied.
  • the recess 1112 has a semispherical shape. However, in this case, it is difficult to control the amount of adhesive disposed in the recess 1112.
  • the adhesive protrudes from the recess 1112 and the meaning of coating the inorganic layer 111 is lost, or the adhesive between the inorganic layer 111 and the mask 200 is insufficient, and dust enters. In some cases, it may adhere to the surface of the mask 200. For this reason, in the configuration of FIG. 12, further suppression of outgas and further suppression of adhesion of dust to the mask 200 may be required.
  • FIG. 13 is a schematic diagram of a cross-sectional view of a pellicle having another configuration.
  • the inventors also examined the configuration shown in FIG. In this configuration, the concave portion 1032 is formed on the end surface of the support frame 103 on the side where the first adhesive layer 109 is formed, and the concave portion 1032 is filled with an adhesive to form the first adhesive layer 109.
  • the recess 1032 has a semispherical shape. However, in this case, it is difficult to control the amount of the adhesive disposed in the recess 1032.
  • the adhesive protrudes from the concave portion 1032, resulting in a state similar to that when the inorganic layer 111 is not coated, or the adhesive between the support frame 103 and the mask 200 is insufficient. It is defective and dust may enter and adhere to the surface of the mask 200. Further, depending on the material of the support frame 103, EUV light cannot be blocked. Therefore, in the configuration of FIG. 13, further suppression of outgas and further suppression of adhesion of dust to the mask 200 may be required.
  • the exposure original plate of this embodiment has an original plate and the pellicle of this embodiment mounted on the original plate. Since the exposure original plate of this embodiment includes the pellicle of this embodiment, the same effects as the pellicle of this embodiment can be obtained.
  • an original including a support substrate, a reflective layer laminated on the support substrate, and an absorber layer formed on the reflective layer can be used.
  • the absorber layer partially absorbs EUV light, whereby a desired image is formed on a sensitive substrate (for example, a semiconductor substrate with a photoresist film).
  • the reflective layer can be a multilayer film of molybdenum (Mo) and silicon (Si).
  • the absorber layer can be a material having high absorbability such as EUV light, such as chromium (Cr) or tantalum nitride.
  • the exposure apparatus of this embodiment includes the exposure original plate of this embodiment. For this reason, there exists an effect similar to the exposure original plate of this embodiment.
  • the exposure apparatus of the present embodiment exposes exposure light (preferably EUV light or the like, more preferably EUV light; the same shall apply hereinafter), a light source that emits exposure light, an exposure original plate of the present embodiment, and exposure light emitted from the light source. It is preferable that the exposure original plate is arranged so that the exposure light emitted from the light source passes through the pellicle film and is irradiated to the original plate.
  • exposure light preferably EUV light or the like, more preferably EUV light; the same shall apply hereinafter
  • a light source that emits exposure light
  • an exposure original plate of the present embodiment and exposure light emitted from the light source.
  • the exposure original plate is arranged so that the exposure light emitted from the light source passes through the pellicle film and is irradiated to the original plate.
  • Pattern exposure with reduced resolution failure can be performed.
  • the exposure light emitted from the light source is transmitted through the pellicle film of the exposure original plate according to the present embodiment to be irradiated on the original plate, reflected by the original plate, and reflected by the original plate.
  • the sensitive substrate is exposed in a pattern by irradiating the sensitive substrate with the exposed exposure light through the pellicle film.
  • a semiconductor device in which the resolution failure due to foreign matter is reduced can be manufactured even when EUV light, which is likely to cause a resolution failure due to foreign matter, is used. .
  • FIG. 14 is a schematic sectional view of an EUV exposure apparatus 180, which is an example of the exposure apparatus of the present embodiment.
  • the EUV exposure apparatus 180 includes a light source 182 that emits EUV light, an exposure original plate 181 that is an example of an exposure original plate according to this embodiment, and an EUV light emitted from the light source 182. And an illumination optical system 183.
  • the exposure original plate 181 includes a pellicle 100 including a pellicle film 101 and a support frame, and an original plate 184.
  • the exposure original plate 181 is arranged so that EUV light emitted from the light source 182 passes through the pellicle film 101 and is irradiated onto the original plate 184.
  • the original plate 184 reflects the irradiated EUV light in a pattern.
  • the pellicle film 101 and the pellicle 100 are examples of the pellicle film and the pellicle of the present embodiment, respectively.
  • filter windows 185 and 186 are installed between the light source 182 and the illumination optical system 183 and between the illumination optical system 183 and the original 184, respectively.
  • the EUV exposure apparatus 180 includes a projection optical system 188 that guides the EUV light reflected by the original 184 to the sensitive substrate 187.
  • the EUV light reflected by the original 184 is guided onto the sensitive substrate 187 through the projection optical system 188, and the sensitive substrate 187 is exposed in a pattern. Note that exposure by EUV is performed under reduced pressure conditions.
  • the EUV light source 182 emits EUV light toward the illumination optical system 183.
  • the EUV light source 182 includes a target material, a pulse laser irradiation unit, and the like. By irradiating the target material with a pulse laser to generate plasma, EUV light can be obtained.
  • EUV light having a wavelength of 13 nm to 14 nm can be obtained.
  • the wavelength of light emitted from the EUV light source is not limited to 13 nm to 14 nm, and may be light having a wavelength suitable for the purpose within a wavelength range of 5 nm to 30 nm.
  • the illumination optical system 183 condenses the light emitted from the EUV light source 182 and irradiates the original 184 with uniform illuminance.
  • the illumination optical system 183 includes a plurality of multilayer mirrors 189 for adjusting the optical path of EUV light, an optical coupler (optical integrator), and the like.
  • the multilayer film mirror is a multilayer film in which molybdenum (Mo) and silicon (Si) are alternately stacked.
  • the method for attaching the filter windows 185 and 186 is not particularly limited, and examples thereof include a method of attaching via an adhesive or the like, and a method of mechanically fixing in the EUV exposure apparatus.
  • a filter window 185 disposed between the light source 182 and the illumination optical system 183 captures scattered particles (debris) generated from the light source, and the scattered particles (debris) are elements inside the illumination optical system 183 (for example, a multilayer film). Avoid sticking to the mirror 189).
  • the filter window 186 disposed between the illumination optical system 183 and the original 184 captures particles (debris) scattered from the light source 182 side and prevents the scattered particles (debris) from adhering to the original 184. .
  • the foreign matter adhering to the original plate absorbs or scatters EUV light, which causes poor resolution on the wafer. Therefore, the pellicle 100 is mounted so as to cover the irradiation area of the original 184 with the EUV light. The EUV light passes through the pellicle film 101 and is irradiated on the original 184.
  • the EUV light reflected by the original 184 passes through the pellicle film 101 and is irradiated onto the sensitive substrate 187 through the projection optical system 188.
  • the projection optical system 188 collects the light reflected by the original 184 and irradiates the sensitive substrate 187.
  • the projection optical system 188 includes a plurality of multilayer mirrors 190, 191 and the like for adjusting the optical path of EUV light.
  • the sensitive substrate 187 is a substrate on which a resist is coated on a semiconductor wafer, and the resist is cured in a pattern by EUV light reflected by the original 184.
  • the resist is developed, and the semiconductor wafer is etched to form a desired pattern on the semiconductor wafer.
  • the pellicle 100 is mounted on the original 184 via an original adhesive layer or the like.
  • the foreign matter adhering to the original plate absorbs or scatters EUV light, which causes poor resolution on the wafer. Therefore, the pellicle 100 is mounted so as to cover the EUV light irradiation area of the original 184, and the EUV light passes through the pellicle film 101 and is irradiated onto the original 184.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

EUV透過性が高く、アウトガスが少なく、コンタミネーションが少ない、EUV用ペリクル、及びその製造方法を提供する。ペリクル(100)は、ペリクル膜(101)と、支持枠(103)と、支持枠のペリクル膜が吊架された端部と反対側の端部に設けられた第1の接着層(109)と、を有し、第1の接着層においてペリクル膜面と交差する方向の側面であって、ペリクル膜が吊架される側の側面に、無機物層(111)を有し、前記無機物層の質量吸収係数(μm)が、5×103cm2/g~2×105 cm2/gの範囲であることを特徴とする。

Description

ペリクル、露光原版、露光装置、及び半導体装置の製造方法
 本発明は、半導体デバイス等をリソグラフィ技術により製造する際に使用するフォトマスク又はレチクル(以下、これらを総称して「フォトマスク」又は「マスク」ともいう。)及び、塵埃が付着することを防ぐフォトマスク用防塵カバーであるペリクル等に関する。特に、本発明は、極端紫外(Extreme Ultraviolet:EUV)光リソグラフィ用のペリクル、及びその製造方法、並びにこれらを用いた露光原版、半導体装置の製造方法に関する。
 半導体素子は、リソグラフィと称される工程を経て製造される。リソグラフィでは、スキャナやステッパと呼ばれる露光装置を用いて、回路パターンが描画されたマスクに露光光を照射して、フォトレジストが塗布された半導体ウェハに回路パターンを転写する。そのときに、マスク上に塵埃などの異物が付着すると、該異物の影が半導体ウェハに転写され、回路パターンが正確に転写されない。その結果として、半導体素子が正常に作動せず不良品となってしまうことがある。
 それに対して、ペリクル膜が貼り付けられた枠体からなるペリクルを、マスクに装着することによって、塵埃などの異物をペリクル膜上に付着させ、マスクに付着することを防ぐことが知られている。露光装置の露光光の焦点は、マスク面と半導体ウェハ面に設定されており、ペリクル膜の面には設定されていない。したがって、ペリクル膜に付着した異物の影が半導体ウェハ上で結象することはない。そのため、ペリクル膜に異物が付着した場合は、マスクに異物が付着した場合と比較して、回路パターンの転写を妨害する程度は大幅に軽減され、半導体素子の不良品発生率は著しく抑制される。
 ペリクルに用いられるペリクル膜には、露光光を高透過率で透過させる特性が求められる。ペリクル膜の光透過率が低いと、回路パターンが形成されているマスクからの露光光の強度が低下して、半導体ウェハ上に形成されているフォトレジストが十分に感光されないからである。
 現在までに、リソグラフィの波長は短波長化が進み、次世代のリソグラフィ技術として、EUVリソグラフィの開発が進められている。EUV光は、軟X線領域又は真空紫外線領域の波長の光を指し、13.5nm±0.3nm程度の光線を指す。フォトリソグラフィでは、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(波長:193nm)の液浸法を用いても、その露光波長は45nm程度が限界と予想されている。したがって、EUVリソグラフィは、従来のリソグラフィから大幅な微細化が可能な革新的な技術として期待されている。
 ここで、EUV露光用のペリクルをマスクに接続する方法としては、マスクとペリクルとに共通に設けられた留め具を介し、ペリクルに取り付けられた押さえバネとマスクに設置されたスタッドと呼ばれるピンとで(機械的に)固定する方法が検討されている(特許文献1)。また、EUV露光用ではないペリクル、例えばArF用のペリクルでは、マスクへのペリクルの接続に接着剤が用いられている。
国際公開第2016/124536号
 しかしながら、発明者らが検討したところ、ピンを用いて接続させるとすると、着脱の際の手間の改善を求められる場合があることが分かった。また、機械的接続であるがゆえに脱着時に小さなゴミが発生してしまう場合があることが分かった。また、マスクとペリクル枠との間には、換気のために200μm~300μm程度のギャップがペリクル枠の全周にわたって設けられているため、ギャップからゴミが侵入する場合があることが分かった。さらに、ゴミがマスクに付着すると、半導体素子の製造効率が低下するため、ゴミの付着の低減を求められる場合があることが分かった。
 また、発明者らが検討したところ、EUV露光用ではないペリクル用の接着剤を用いると、アウトガスが発生する場合があることが分かった。
 上記課題を解決するため、接着剤を用いつつもアウトガスが少ないEUV用ペリクル、露光原版、露光装置、及び半導体装置の製造方法を提供することを目的の一とする。
 上記の課題を解決するため、本発明の一実施形態では、ペリクル膜と、ペリクル膜を支持する支持枠と、前記支持枠のペリクル膜が吊架された端部と反対側の端部に設けられた第1の接着層と、を有し、前記第1の接着層において前記ペリクル膜面と交差する方向の側面であって、前記ペリクル膜が吊架される側の側面に、無機物層を有し、前記無機物層の質量吸収係数(μm)が、5×103cm2/g~2×105 cm2/gの範囲であることを特徴とするペリクルが提供される。
 本発明の一実施形態において、前記支持枠が、前記ペリクル膜に接続される第1の枠体と、前記第1の枠体に接続される第2の枠体と、を有してもよい。
 本発明の一実施形態において、前記第1の枠体と前記第2の枠体とが第2の接着層により接続され、前記第2の接着層のペリクル膜面と交差する方向の側面のうちいずれか一に、第2の無機物層を有してもよい。
 本発明の一実施形態において、無機物層は、厚さ400nmであるときに、波長13.5nmのEUV光の透過率が、10パーセント以下であってもよい。
 本発明の一実施形態において、無機物層の厚みが50nm以上であってもよい。
 また、本発明の一実施形態において、無機物層は、金属層であってもよい。
 本発明の一実施形態において、金属層は、アルミニウム、チタン、クロム、鉄、ニッケル、銅、ルテニウム、タンタル、及び金の群から選ばれた何れか一種の金属、この群から選ばれた二種以上の元素を含む合金、又は、この群から選ばれる何れか一種又は二種以上の元素を含む酸化物であってもよい。
 本発明の一実施形態において、前記第1の接着層のペリクル膜が形成されたのと反対側の端面に保護層を有してもよい。
 本発明の一実施形態において、原版と、原版のパターンを有する側の面に装着されたペリクルと、を含む露光原版が提供されてもよい。
 本発明の一実施形態において、前記露光原版を有する露光装置が提供されてもよい。
 本発明の一実施形態において、露光光を放出する光源と、前記露光原版と、前記光源から放出された露光光を前記露光原版に導く光学系と、を有し、前記露光原版は、前記光源から放出された露光光が前記ペリクル膜を透過して前記原版に照射されるように配置されている、露光装置が提供されてもよい。
 本発明の一実施形態において、前記露光光が、EUV光であってもよい。
 本発明の一実施形態において、光源から放出された露光光を、前記露光原版のペリクル膜を透過させて原版に照射し、前記原版で反射させ、前記原版によって反射された露光光を、前記ペリクル膜を透過させて感応基板に照射することにより、前記感応基板をパターン状に露光する、半導体装置の製造方法が提供される。前記露光光がEUV光であってもよい。
 各実施形態によれば、接着剤を用いつつも、アウトガスが少ないEUV用ペリクル、露光原版、露光装置、及び半導体装置の製造方法が提供される。また、各実施形態によれば、EUV光を照射していない真空状態において接着剤から発生するアウトガスが抑制され、マスクとペリクルとによって形成される空間内のEUV光が照射される領域におけるコンタミネーションが抑制され、かつ接着剤のEUV光の照射に対する耐性が向上したペリクルを提供することができる。さらに、このペリクルを用い、異物による解像不良が低減されたパターン露光を行うことできる露光原版、露光装置及び半導体装置の製造方法を提供することができる。
本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の試験例3のコンタミネーション付着評価に用いた試験装置の断面図の模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルを下方から見た模式図である。 本発明の一実施形態にかかるペリクルの断面図の模式図である。 本発明の一実施形態にかかるペリクルを下方から見た模式図である。 他の構成のペリクルの断面図の模式図である。 他の構成のペリクルの断面図の模式図である。 本発明の一実施形態に露光装置の模式図である。
 以下、本発明の実施の形態を、図1A~図14を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
[定義]
 本明細書において、ある部材又は領域が、他の部材又は領域の「上に(又は下に)」あるとする場合、特段の限定がない限り、これは他の部材又は領域の直上(又は直下)にある場合のみでなく、他の部材又は領域の上方(又は下方)にある場合を含み、すなわち、他の部材又は領域の上方(又は下方)において間に別の構成要素が含まれている場合も含む。
 本明細書において、EUV光とは、波長5nm以上30nm以下の光を指す。EUV光の波長は、5nm以上14nm以下が好ましい。
 本明細書において、ペリクル膜とはペリクルに使用される薄膜を意味する。ペリクルとは、ペリクル膜と、ペリクル膜の一方の面に設けられペリクル膜を支持する支持枠と、を有するものを意味する。支持枠は、少なくとも、ペリクル膜と接続される第1の枠体を含む。支持枠は、さらに、第1の枠体に接続される第2の枠体を含んでいてもよい。
 本明細書において、ペリクル膜を残して基板の一部を除去する工程をバックエッチングと称する。明細書中、バックエッチングの例として背面(基板の、ペリクル膜が形成された面とは反対側の面)からエッチングする工程を示している。
 本明細書において、第1の接着層とは、「マスクにペリクルを設置するための接着層」である。「マスクにペリクルを設置するための接着層」とは、ペリクルの支持枠のペリクル膜が吊架された端部とは反対側の端部に設けられる接着層のことであり、当該接着層は、マスクとペリクルとを接続する際に使用されるものである。
 ペリクルの第1の接着層には2つの側面と端面があり、それぞれ、第1の側面、第2の側面、第1の端面である。本明細書において、「面」とは、平面に限られるものではなく、曲面を含む。第1の側面、第2の側面、第1の端面は平面に限られるものではなく曲面である場合も含む。
 本明細書において、第1の接着層の第1の側面とは、第1の接着層において、ペリクル膜面と交差する方向の側面であって、ペリクルが吊架される側の側面である。
 本明細書において、第1の接着層の第2の側面とは、第1の接着層において、ペリクル膜面と交差する方向の側面であって、ペリクルが吊架される側の側面とは反対側の側面である。
 本明細書において、第1の接着層の第1の端面とは、第1の接着層において、ペリクル膜面と略平行な面であって、ペリクルが形成される面とは反対側の面である。
 本明細書において、第2の接着層とは、第1の枠体と第2の枠体とを接続する層を意味する。
 本明細書において、接着層に使用される「接着剤」には接着剤のみならず粘着剤も含まれる。
[本発明において見出した従来技術の問題点]
 EUV露光用のペリクルをマスクに接続する方法としては、マスクとペリクルとに共通に設けられた留め具を介し、ペリクルに取り付けられた押さえバネとマスクに設置されたスタッドと呼ばれるピンとで(機械的に)固定する方法が検討されている。しかし、この方法では、着脱の際の手間を軽減することが求められる場合がある。また、装着及び脱着時の振動等によって発生した粉塵が、マスク表面に異物として付着することを抑制することが求められる場合がある。さらには、マスクとペリクル枠との間に換気のためのギャップが設けられると、ギャップから侵入する異物がマスク表面に付着することを抑制することが求められる場合がある。他方、接着剤によりギャップを塞ぐことでペリクル内部への異物侵入経路を無くす方法として、従来から、ArFレーザを用いる場合のペリクルに使用される接着剤を用いることが考えられている。しかし、発明者らは、EUV光リソグラフィにおいては真空下で露光が行われるため、接着剤からアウトガスが発生しやすいことを見出した。また、接着剤から発生するアウトガスがマスク表面のEUV光を照射する照射部に炭素成分となって堆積し、コンタミネーション(マスクの反射率低下)の原因になること、及びマスク表面で散乱するEUV光が接着剤に当たることで接着剤がダメージを受け、さらにアウトガスが発生すること、を順次見出した。
 ここで、接着層に直接EUV光が当たると、接着層がダメージを受けてアウトガスが発生する。EUV光が一度当たれば、二度目以降はEUV光が当たってもアウトガスの発生量は減少する。しかし、接着層のダメージを受けた箇所は柔軟性を失って脆くなるために、異物発生の原因となる可能性がある。
 そこで、以下で説明する実施の形態では、(1)EUV光を照射していない真空状態において接着剤から発生するアウトガスを抑制すること、(2)マスクとペリクルとによって形成される空間内のEUV光が照射される領域におけるコンタミネーションを抑制すること、及び(3)接着剤のEUV光の照射に対する耐性を向上させることを課題とする。
[ペリクル100]
 図1A~図5Bを用いて本発明の一実施形態にかかるペリクルを説明する。前提として、本発明において用いることのできるペリクル100は、EUVフォトリソグラフィ用ペリクルである。本発明との関係では用いるEUVフォトリソグラフィ用ペリクル膜に特段の限定はない。例えば、基板(例えばシリコンウェハ、サファイア、炭化ケイ素等)上に、CVD法(Chemical Vapor Deposition)(例えば、LP-CVD成膜、PE-CVD成膜など)やスパッタ製膜等の方法によって、ペリクル膜101(SiN、炭素系膜(例えば、グラフェン膜、スピンコート法で製膜したカーボンナノチューブの膜、カーボンナノシート等)、ポリシリコン、又はそれら複数の層が積層した積層構造体)を形成する。その後、ペリクル膜が露出するように基板側から基板をエッチング(バックエッチング)することで、ペリクル膜101を製造する。
 この際、基板を枠状に残してエッチングをすることで、残った枠部分をペリクルの支持枠103として活用できる(図1A)。支持枠103は、ペリクル膜101の一方の面に設けられ、ペリクル膜101を支持する枠体である。基板を枠状に残してエッチングをすることで残った枠部分を支持枠103とせずに、別の支持枠を用意してペリクル膜101と支持枠103とを固定してもよい。ペリクル膜101を支持枠103に固定する方法は特に制限されず、ペリクル膜101を支持枠103へ直接貼り付けてもよく、支持枠103の一方の端面にある膜接着剤層を介してもよく、機械的に固定する方法や磁石などの引力を利用してペリクル膜101と支持枠103とを固定してもよい。基板を枠状に残してエッチングをすることで残った枠部分を、ペリクル膜101に接続される第1の枠体104とし、第1の枠体104に、アルミニウム等の第2の枠体107を接続して、支持枠103とすることもできる(図3A)。すなわち、支持枠103は、枠体としてペリクル膜101に接続される第1の枠体104のみを含んでいてもよく、第1の枠体104に接続される第2の枠体107を含んでいてもよい。
 ペリクルの製造時におけるペリクル膜101への異物の付着を防止する観点から、支持枠103は、基板が第1の枠体104として残るようエッチングして形成することが好ましい。また、支持枠103は、その支持枠103の強度を高める観点から、第2の枠体107を有することが好ましい。さらに、支持枠103は、ペリクル膜101への異物の付着を防止しつつ、その支持枠103の強度を高める観点から、基板を枠状に残してエッチングして形成した第1の枠体104と、第2の枠体107とを有することが好ましい。第1の枠体104の材質は特に制限されないが、シリコン、サファイア、又は炭化ケイ素が好ましく、シリコンがより好ましい。第2の枠体107の材質は特に制限されないが、軽量さ及び強度を両立する観点から、アルミニウム又はアルミニウム合金(5000系、6000系、7000系等)が好ましい。
 本発明では、このようにして製造したペリクル100をフォトマスクと接続する際の接続方法について、第1の接着層109(図1A)を設けるという手段を用いる。上記述べた通り、ペリクルを使用する前に接着剤の一側面に対してEUV光を照射し、あらかじめガスを発生させることで使用時のアウトガス発生量を減らすという手法は、粉塵の低減という観点から適切ではない。また、プリベイクなどでアウトガスを減らすとの手段も、粉塵の低減という観点から適さない。
[第1の接着層109]
 本発明では、第1の接着層109(図1A)、すなわち、マスク(図示せず)にペリクル100を設置するための第1の接着層109の第1の側面121(図1Aにて示した。)を、EUV光の透過率が低い材料(金属、セラミック等)でコーティングする。ここで「マスクにペリクルを設置するための接着層」とは、ペリクルの支持枠のペリクル膜が吊架された端部と反対側の端部に設けられる接着層のことである。当該接着層は、マスクとペリクルとを接続する際に使用される。第1の側面121は、上記にて定義した第1の接着層の第1の側面である。第1の側面121は、マスクとペリクルとに囲まれた部分とも称することができるし、第1の接着層の一側面であって、マスクに接続された際に、マスクとペリクルに囲まれた閉鎖空間を形成する側の側面、と称することもできる。第1の接着層109の厚み、すなわち、ペリクル膜101の膜面に直交する方向における第1の接着層109の長さは、10μm~1mmであることが望ましい。例えば、第1の接着層109の厚みが10μm以上であることにより、支持枠103と第1の端面136に接触するマスクとの密着性に優れる。第1の接着層109の厚みが1mm以下であることにより、ガスバリア性が良好になる。
 図1A、図1B及び図2は、図3Aに示す第2の枠体107及び第2の接着層105を有しない場合の図面である。図3A、図3B、図4A、及び図4Bは第2の枠体107及び第2の接着層105を有する場合の図面である。第1の接着層109においてコーティングを施し得る箇所は、上記にて定義した第1の側面121(図1A及び図3A)、第2の側面131(図1A及び図3A)、及び第1の端面136(図1A及び図3A)であるところ、コーティングが必須なのは、第1の側面121である。第1の側面121を無機物層111でコーティングした状態を、図1B及び図3Bに模式的に示した。
[第2の側面131]
 第1の接着層109の第2の側面131も無機物層113によってコーティングされていてもよい(図2及び図4A)。第1の接着層109の第2の側面131はマスク表面で散乱したEUV光が当たることはない。したがって、コーティングは必須ではない。しかしながら、第1の接着層109の第2の側面131から発生するアウトガスが、マスクとペリクル100に囲まれた閉鎖領域以外におけるコンタミネーションをもたらすことを防止するために、さらには、そのアウトガスの一部がマスクとペリクル100の閉鎖領域に侵入してマスク表面にコンタミネーションをもたらすことを防止するために、第2の側面131もコーティングされていることがより好ましい。
[第1の端面136]
 第1の接着層109の第1の端面136(図1A及び図3Aにて示した)は、接着力が維持できる限りにおいて、一部コーティングされていてもよい。第1の接着層109の第1の端面136はEUV光が当たることはない。したがって、コーティングは必須ではない。しかしながら、接着剤からのアウトガスによる、マスクとペリクル100とに囲まれた閉鎖領域以外におけるコンタミネーションを防止するために、コーティングされていることがより好ましい。
 さらに、上記とは別の接着層についてコーティングが行われてもよい。例えば、上記にて定義した第2の接着層105における側面141及び/又は側面143(図3A)が無機物層115及び無機物層117によってコーティングされていてもよい(図5Aには側面141及び側面143がそれぞれ無機物層115及び無機物層117によってコーティングされる例を図示した。)。さらに、無機物層111によって第2の枠体107とともにコーティングされていてもよい(図4B)。また、無機物層111及び無機物層113によって第2の枠体107とともに、第1の接着層109の側面、第2の接着層105の側面がコーティングされていてもよい(図5B)。第2の接着層105は、ペリクル膜101に接続される第1の枠体104と、第2の枠体107(アルミニウムなど)とを接着している接着層である。マスクとペリクル100とに囲まれた側及び/又は外側が無機物層でコーティングされているとより好ましい。EUV光が第2の接着層105に当たらないようにするために、第2の枠体107にも無機物層111及び無機物層113が設けられることが好ましい。
 第2の接着層105は、第1の接着層109よりも厚みを薄くできること、また、第1の接着層109はマスク表面から離れた高さにあり、第2の枠体107によって影になりうるため、マスク表面で散乱したEUV光が当たらない位置であることから、コーティングは必須ではない、すなわち、無機物層を設けることは必須ではない。
[無機物層の材質]
 無機物層としては、EUV耐性を有し、EUV光の透過率が10パーセント以下という条件を満たすことが好ましい。これらの条件を満たすものは、アウトガスも少ない。さらに、水素ラジカルへの耐性があるとより好ましい。無機物層の厚さは50nm~1μm程度が好ましい。
 EUV光の透過率が10パーセント以下とは、所定の無機物層について、その無機物層の厚みが400nmである場合に、波長13.5nmのEUV光を照射して、そのEUV光の透過率が10パーセント以下であるということを意味する。
 無機物層の材質としては、EUVの透過率が低い材料(金属、セラミック等)が挙げられる。ペリクルをマスクに設置する際に接着層に設置方向の力がかかること、露光装置内では接着層に設置方向に交差する方向の力(ずり)がかかることから、接着層の形状への追随性を持たせるために、無機物層は金属であることが好ましい。
 無機物層を接着層にコーティングする方法としては、蒸着、スパッタリングなどがあげられるが、これに限定されるものではない。接着剤表面に形成可能な方法であれば問わない。
 無機物層として用いることのできる金属としては、質量吸収係数(μm)が、5×103cm2/g~2×105 cm2/gの範囲にあることが好ましい。かかる数値の技術的意味については後述する。
 無機物層として用いることのできる金属としては、Al(アルミニウム)、Ti(チタン)、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲルマニウム)、Rb(ルビジウム)、Sr(ストロンチウム)、Y(イットリウム)、Zr(ジルコニア)、Nb(ニオブ)、Mo(モリブデン)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Ag(銀)、Hf(ハフニウム)、Ta(タンタル)W(タングステン)、Pt(プラチナ)、及びAu(金)の群から選ばれた何れか一種の金属が好ましい。無機物層は、これらから選択される2以上の元素を用いた合金であってもよいし、酸化物であってもよい。
 上記のうち、無機物層として用いることのできる金属としては、Al(アルミニウム)、Ti(チタン)、Cr(クロム)、Fe(鉄)、Ni(ニッケル)、Cu(銅)、Ru(ルテニウム)、Ta(タンタル)、及びAu(金)の群から選ばれた何れか一種の金属がより好ましい。
 無機物層は、上記Al(アルミニウム)、Ti(チタン)、Cr(クロム)、Fe(鉄)、Ni(ニッケル)、Cu(銅)、Ru(ルテニウム)、Ta(タンタル)、及びAu(金)の群から選択される2以上の元素を用いた合金であってもよいし、酸化物であってもよい。
 上記した質量吸収係数に関し以下述べる。まず、無機物層を透過する光の透過率Tは、無機物層の厚みd、密度ρ、及び無機物層の吸収係数μに基づき、以下のように算出できる。
 前提として透過率Tは以下の式(1)で定義される。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)中、Iは透過光強度、I0は入射光強度を示す。透過光強度I及び入射光強度I0、コーティングの厚みd及び無機物層の吸収係数μには、以下の式(2)で表される関係が成り立つ。
I=Iexp(-μd)・・・ (2)
 上記式(2)における吸収係数μは、以下のように求められる。
μ=2N r0 λf2 ・・・(3)
 なお、ここで、Nは単位体積中の原子数、r0=2.82×10-13 [cm](古典電子半径)、λは波長、f2は波長λにおける原子散乱因子である。
 吸収係数μは、無機物層の質量吸収係数μmと無機物層の密度ρの積で表される。また、μmは以下の式で表すこともできる。
 μm= 2 NA r0 λf / A ・・・(4)
 なお、NAはアボガドロ数、Aは無機物層を構成する元素の原子量である。
 以下では、無機物層が複数の元素から構成される場合について考える。光子のエネルギーがおよそ30eVより大きく、なおかつ光子のエネルギーが原子の吸収端から十分に離れている場合、質量吸収係数μmは原子どうしの結合状態等に依存しない。波長13.5nmの光子エネルギーは、92.5eV付近であり、原子の吸収端からも十分に離れている。よって、上記質量吸収係数μmは、無機物層を構成する化合物の原子同士の結合状態に依存しない。そのため、無機物層を構成する質量吸収係数μmは、無機物層を構成する各元素(1、2、・・・、i)の質量吸収係数μmiと、各元素の質量分率Wiとから、以下の式(5)で求められる。
μm=μm11+μm22+…μmii ・・・(5)
 なお、Wiは、Wi=nii/Σniiで求められる値であり、質量分率を表す。Aiは各元素iの原子量、niは各元素iの数である。
 上記式(5)における各元素の質量吸収係数μmi、あるいは各元素の原子散乱因子f2については、Henkeらによってまとめられている以下の参考文献の値を適用できる。(B. L. Henke、 E. M. Gullikson、 and J. C. Davis、 "X-Ray Interactions:Photoabsorption、 Scattering、 Transmission、 and Reflection at E = 50?30、000 eV、 Z = 1-92、" At. Data Nucl. Data Tables 54、 181 (1993) これらの数値の最新版はhttp:// wwwcxro.lbl.gov/optical#constants/に掲載されている。)
 無機物層の吸収係数μ(又は質量吸収係数μmと無機物層の密度ρ)と無機物層の厚みdが特定できれば、式(1)及び式(2)に基づき、無機物層の波長13.5nmの光の透過率を算出できる。なお、上記透過率は、ローレンスバークレー国立研究所のX線光学センターの光学定数ウェブサイトでも計算できる。
 ここで、上記した無機物層として用いることができる金属材料の吸収係数μを表すと、Al(アルミニウム)=0.027nm-1、Cr(クロム)=0.036nm-1、Ni(ニッケル)=0.068nm-1、Ru(ルテニウム)=0.017nm-1、Ta(タンタル)=0.038nm-1である。質量吸収係数μmは、Al(アルミニウム)=1.0×105cm2/g、Cr(クロム)=5.0×104cm2/g、Ni(ニッケル)=7.6×104cm2/g、Ru(ルテニウム)=1.3×104cm2/g、Ta(タンタル)=2、3×104cm2/gである。これらはいずれも質量吸収係数(μm)が、5×103~2×105 cm2/gの範囲に存在する。
[接着剤]
 上記のとおり本明細書の「接着剤」は広義の接着剤を指し、「接着剤」の概念には、粘着剤も含まれる。接着剤としては、アクリル樹脂接着剤、エポキシ樹脂接着剤、ポリイミド樹脂接着剤、シリコーン樹脂接着剤、無機系接着剤、両面粘着テープ、シリコーン樹脂粘着剤、アクリル系粘着剤、ポリオレフィン系粘着剤、等が挙げられる。特に種類は問わない。
 接着剤と無機物層との間には、無機物層のクラック発生を防止するため等の理由から、中間層を設けても良い。中間層には無機物層が積層されることから、EUV透過率及びアウトガスに関する物性には限定がない。例えば、パリレン、ポリイミド、セラミック、金属などが挙げられ、蒸着、スパッタリング、CVDなどの方法により形成されてもよい。
 第1の接着層109のペリクル膜101が形成される面と反対側の面(第1の端面136)に、保護層120が設けられてもよい(図6)。保護層120は、上記した実施形態全てにおいて適用することができ、剥離ライナー(剥離フィルムやセパレーターとも呼ばれている。)などの公知のものを特に制限なく用いることができる。保護層120を設けることで、搬送時に接着層の粘着力が低下することを抑制できる。
 ペリクル100は、減圧やベント過程において、ペリクル内部と外部で気体を移動させ、ペリクル内外の差圧を解消するための換気機構を有していることが望ましい。さらには減圧やベント過程において、ペリクル外部から異物が侵入してマスク表面に異物が付着することを抑制するための異物捕捉機能を有していてもよい。例えば、支持枠103(第1の枠体104であってもよく、第2の枠体107であってもよい。)に貫通孔を形成し、異物捕捉性能を有するフィルターを張り付けてもよい。
<EUV非照射時におけるアウトガス量(真空下)>
 試験例1
 外寸151mm×118.5mm、内寸147mm×114.5mm、高さ1.6mm~2.0mmのアルミニウムフレームの上面に、水添スチレン系ホットメルト接着剤(ArFレーザ露光用ペリクルで使用されている接着剤)を厚さ約100μm、幅1.5~2.0mmで塗布した。接着剤のアルミニウムフレームと接した面とは反対側の表面の中心部分から約0.5mmの幅で、マスキングフィルムを貼り付けた。接着剤の露出した部分に、マグネトロンスパッタリングにて、ニッケルを約100nmの厚さでコーティングした。ニッケルコーティング後にマスキングフィルムを剥離して接着剤部分の一部を露出させ、ステンレス製の基板に貼り付けて評価サンプルを得た。得られたサンプルを高真空チャンバー(1×10-6Pa)内に挿入し、四重極型質量分析計(QMS)を用いてサンプルから発生するアウトガスの質量分析を行った。質量分析の測定範囲は質量電荷比m/zが1から200の範囲とした。
 コンタミネーションの原因となると考えられる、m/zが45~200の範囲における炭化水素鎖由来のピーク強度は、接着剤を塗布していないアルミ枠のみのピーク強度及びサンプルを挿入していない空の状態でのピーク強度と同じであった。m/zが45~200の範囲におけるピーク強度の総和は約1000であった。
 接着剤にコーティングをすることによって、接着剤から発生するm/zが45~200の範囲におけるアウトガスが抑制されたと考えられる。
 比較試験例1
 上記ニッケルコーティング工程を行わなかったこと以外は上記試験例1と同様のサンプルを作成し、アウトガスの質量分析を行った(比較試験例1)。比較試験例1においては、m/zが45以上の範囲において、約14周期でピークが観察された。14は炭化水素鎖の単位であるCH2の質量と等しいことから、これらのピークは接着剤から発生する炭化水素鎖由来のアウトガスに由来すると考えられる。m/zが45から200の範囲におけるピーク強度の総和は約8000であった。試験例1と比較試験例1との対比により、接着剤に由来するアウトガス量を低減できることが分かった。
<EUV耐性>
 試験例2
 シリコンウェハ上に水添スチレン系ホットメルト接着剤を厚さ約100μm塗布した。接着剤のシリコンウェハと接した面とは反対側の表面に、マグネトロンスパッタリングにてニッケルを約100nmの厚さでコーティングしてサンプルを得た。得られたサンプルを1.5cm×2cmにカットし、EUV照射装置(ニュースバル(施設名) BL-9、兵庫県立大)にて、波長13.5nmの光(EUV光)を照度強度約500mW/cm2で15分間、ニッケルコーティング面に対して垂直方向から照射した際のチャンバー内の圧力変化を見た。ビームサイズは約2mm×4mmとした。
 EUV照射前と比べて照射後はチャンバー内の圧力が1.7μPa上昇した。この圧力上昇値は、サンプルを入れずにEUV光を照射したとき、及び、接着剤を塗布していないシリコンウェハに対してEUV光を照射したときの圧力上昇値と誤差範囲内で同じであった。EUV光の照射後のニッケル面のEUV照射部分は、変色や変形は特に見られなかった。
 比較試験例2
 接着剤にニッケルコーティングを行わなかったこと以外は上記実施例と同様にしてEUV光の照射を行った(比較例2)。EUV光の照射前と比べて照射後はチャンバー内の圧力が24μPa上昇した。この圧力上昇値は、サンプルを入れずにEUV光を照射したとき、及び、接着剤を塗布していないシリコンウェハに対してEUV光を照射したときの圧力上昇値と比べて1桁以上高い値であった。この圧力上昇は、EUV光の照射によって発生した接着剤からの分解物に由来すると考えられる。EUV光の照射後の接着剤面のEUV照射部分は黒く変色しており、また窪みが観察された。試験例2と比較試験例2との対比により、EUV光の照射による接着剤の劣化(変色)がなく、かつ、アウトガスが発生していないため、接着剤のEUV光の照射耐性が向上していることが分かった。
<コンタミネーション付着評価>
 試験例3
 図7は、試験例3のコンタミネーション付着評価に用いた試験装置400の断面図の模式図である。外寸151mm×118.5mm、内寸147mm×114.5mm、高さ1.6mm~2.0mmのアルミニウムフレーム410の一方の面に、水添スチレン系ホットメルト接着剤420を、厚さ約100μm、幅1.5~2.0mmで塗布した。
 接着剤420のうち、アルミニウムフレーム410と接する面420Aとは反対側の面420Bに、その中心部分から約0.5mmの幅で、マスキングフィルムを貼り付けた。接着剤420の露出した部分に、マグネトロンスパッタリングにてニッケルを約100nmの厚さでコーティングすることにより無機物質層430を設けた。ニッケルコーティング後にマスキングフィルムを剥離して接着剤420の部分を一部露出させ、評価サンプルを得た。
 接着剤420の露出部でサンプルをステンレス製の基板440に貼り付けた。次に、アルミニウムフレーム410と、厚さ50nmのSiN膜(SiN自立膜ともいう。)460を設けるための貫通孔452及び換気のための貫通孔454,456の両方を備えたステンレス製の薄板450とを、ネジ及びおさえ板を用いて、機械的に貼り合わせた。アルミニウムフレーム410と、薄板450の外周サイズとは同じである。次いで、矩形状の枠に保持されたSiN膜460をネジおよびおさえ板を用いて、薄板450に機械的に貼り合わせた。
 閉空間内に、コンタミネーションの付着状況を観察するためのEUV光の照射用基板として、シリコンウェハ表面にEUVマスク用吸収体として用いられているTaN層をスパッタリングで形成したEUV照射用基板470を設置した。
 EUV照射装置(ニュースバル(施設名) BL-9、兵庫県立大)にて、波長13.5nmの光(EUV光L)をSiN膜460越しにEUV照射用基板470のTaN面に照射した。照射強度は約110mW/cm2、照射時間は135分間とした。ビームサイズは約2mm×4mmとした。SiN膜460は、1cm×1cmの正方形である。SiN膜460用の枠の大きさは3cm×3cmの正方形である。
 EUV照射後の、EUV照射用基板470上の照射領域は、特に変色は見られず、ラマンスペクトルにおいても炭素の付着は見られなかった。
(断面TEMによるコンタミネーション層の厚み測定)
 EUV光の照射後のEUV照射用基板上の照射領域について、集束イオンビームを用いて基板断面の薄片を作成し、透過型電子顕微鏡(TEM)を用いてコンタミネーション層の厚みの直接観察を行った。EUV光の照射領域におけるコンタミネーション層の厚みは2.9±0.9nmであった。また、EUV光の照射後のEUV照射用基板470上の照射領域について、XPSのワイドスキャン測定を行い、炭素の存在比を算出したところ、炭素の存在比は65.0±5.2%であった。なお、炭素成分は、装置内の汚れに起因して発生したと考えられる。具体的には、試験装置400を置くステージを移動させるためにグリースが使用される。よって、グリースの揮発した成分がペリクル内部まで拡散し、EUV照射部でコンタミネーションに変化したと考えられる。
 一方、接着剤420を用いずに、サンプルをステンレス製の基板440に対して機械的に貼り付けたこと以外は、上記試験例3と同様に、EUV照射用基板470上にEUV光を照射し、断面のTEM観察及びXPS測定を行ったところ、コンタミネーション層の厚みは2.7±1.1nm、炭素の存在比62.1±9.1であった。
 比較試験例3
 接着剤420の表面にニッケルコーティングを行わなかったこと以外は上記試験例3と同様にしたサンプル(比較試験例3)を作成し、EUV光の照射を行った。EUV光の照射後の、EUV照射用基板上の照射領域は黒く変色しており、ラマンスペクトルにおいて、炭素堆積物由来のピークが観察された。EUV光の照射後のEUV照射用基板470上の照射領域について、集束イオンビームを用いて基板断面の薄片を作成し、透過型電子顕微鏡(TEM)を用いてコンタミネーション層の厚みの直接観察を行った。EUV照射領域におけるコンタミネーション層の厚みは17.5±3.5nmであった。EUV照射後のEUV照射用基板上の照射領域について、XPSのワイドスキャン測定を行い、炭素の存在比を算出したところ、炭素の存在比は90.5±0.6%であった。
 試験例3のコンタミネーション層の厚み及び炭素の存在比は、接着剤420を用いなかったものと誤差範囲内で一致している。一方、接着剤を用いたがニッケルコーティングを行っていない比較試験例3は、コンタミネーション層の厚み及び炭素の存在比が増えており、コンタミネーションの付着が抑制できていないことが分かる。このため、試験例3と比較試験例3との対比により、EUV光の照射によるコンタミネーションの付着が抑制できることが分かる。
 表1は、以上の試験例1~3及び比較試験例1~3の結果をまとめた表である。なお、試験例1~3として用いたサンプルは、測定方法が違うため多少の差異は存在するものの、いずれも無機物層をコーティングしたペリクルの試験例としては同一なのであるから、まとめて「試験例」として表記する。同様の理由により、比較試験例1~3はまとめて「比較試験例」として表記する。
Figure JPOXMLDOC01-appb-T000002
 上記表1によれば、ニッケルコーティングにより、EUV光の非照射時におけるアウトガスの抑制、EUV耐性、コンタミネーション付着評価という3つの点において有意な差があることがわかる。かかる実験結果によれば、同様に接着層にコーティングができ、アウトガスが少なく、EUV光による影響を受けない、Al(アルミニウム)、Cr(クロム)、Ni(ニッケル)、Ru(ルテニウム)、Ta(タンタル)、又はAu(金)をはじめとする金属コーティングであっても、十分な効果を奏することが分かる。また、これらの金属コーティングによれば、EUV光の照射によって発生する水素ラジカルに対する耐性を接着剤に付与できると考えられる。
 以下、上述した第1の接着層の第1の端面が一部コーティングされている態様について例示する。
[第1の接着層109及び支持枠103の周辺の構成の他の例]
 図8は、ペリクル100における第1の接着層109及び支持枠103の周辺の構成の他の例を示す図である。この例では、無機物層111は、第1の側面121に加え、第1の接着層109の第1の端面136の少なくとも一部の領域と接する。具体的には、無機物層111は、第1の端面136のうちの第1の側面121に隣接する領域136Aに接している。第1の端面136のうちの領域136Aに隣接する領域136Bは、第1の接着層109の下のマスク200の表面と接している。無機物層111の厚み、すなわちペリクル膜101の膜面に直交する方向の長さは、領域136Bに近づくほど小さくなっている。支持枠103は、第2の枠体をさらに有していてもよい。第2の枠体を有する場合の態様は、上述のとおりである。図8中、「101」はペリクル膜を表し、「131」は第2の側面を表す。
 図9は、図8の構成のペリクル100を下方から見た図(すなわち、第1の端面136に垂直な方向から見た図)である。図9においては、支持枠103及びペリクル膜101の図示を省略している。無機物層111は、矩形(正方形であってもよい。)の枠状に形成されている。第1の接着層109は、無機物層111の外周に沿って、矩形(正方形であってもよい。)の枠状に形成されている。これにより、無機物層111の内側の領域Tは、マスク200、無機物層111(第1の接着層109)、支持枠103、及びペリクル膜101によって閉鎖された閉鎖領域である。図8及び図9に記載された例において、無機物層111を形成する方法としては、例えば、第1の接着層109のうち、領域136Bをマスキングテープで保護しつつ例えばマグネトロンスパッタリングにて無機物をコーティングし、その後にマスキングテープを剥離する方法が挙げられる。
 図10は、ペリクル100における第1の接着層109及び支持枠103の周辺の構成の他の例を示す図である。この例では、無機物層111は、第1の側面121に加え、第1の接着層109の第1の端面136の少なくとも一部の領域と接する。具体的には、無機物層111は、第1の端面136のうちの第1の側面121に隣接する領域136Cに接している。無機物層113は、第2の側面131に加え、第1の接着層109の第1の端面136の少なくとも一部の領域と接する。具体的には、無機物層113は、第1の端面136のうちの第2の側面131に隣接する領域136Dに接している。第1の端面136のうちの領域136Cと領域136Dとの間に位置し、かつ領域136Cと領域136Dとに隣接する領域136Eは、第1の接着層109の下のマスク200の表面と接している。無機物層111及び無機物層113の厚み、すなわちペリクル膜101の膜面に直交する方向の長さは、領域136Eに近づくほど小さくなっている。支持枠103は、第2の枠体をさらに有していてもよい。第2の枠体を有する場合の態様は上述のとおりである。図10中「101」はペリクル膜を表す。
 図11は、図10の構成のペリクル100を下方から見た図である。図11においては、支持枠103及びペリクル膜101の図示を省略している。無機物層111及び無機物層113は、矩形(正方形であってもよい。)の枠状に形成されている。第1の接着層109は、無機物層111の外周と無機物層113の内周とに挟持され、全周に沿って、矩形(正方形であってもよい。)の枠状に形成されている。これにより、無機物層111の内側の領域Tは、マスク200、無機物層111(第1の接着層109)、支持枠103、第2の接着層105、及びペリクル膜101によって閉鎖された閉鎖領域である。図10及び図11に記載された例において、無機物層111を形成する方法としては、例えば、第1の接着層109のうち、領域136Eをマスキングテープで保護しつつ例えばマグネトロンスパッタリングにて無機物をコーティングし、その後にマスキングテープを剥離する方法が挙げられる。この方法で無機物層111を作成した具体例が試験例3に記載されている。
 以上のとおり、無機物層111が、第1の接着層109とマスク200との間の領域の少なくとも一部に介在していてもよい。なお、図8~11に示す第1の接着層109及び無機物層111の形状は一例であり、様々な変形が可能である。また、無機物層111が、第1の接着層109と支持枠103との間の領域の一部に介在していてもよい。
 図12は、他の構成のペリクルの断面図の模式図である。発明者らは、図12に示すように、支持枠103の第1の接着層109が形成される側の端面の全面を無機物層111でコーティングし、無機物層111の支持枠103とは反対側の面に凹部1112を形成し、凹部1112に接着剤を充填して第1の接着層109を形成する構成について検討した。凹部1112は、ここでは半円球状である。しかし、この場合、凹部1112に配置する接着剤の量を制御することが困難である。このため、接着剤が凹部1112からはみ出してしまい無機物層111をコーティングした意味がなくなってしまうか、又は接着剤が足りず無機物層111とマスク200との密着性が不良であり、粉塵が入り込み、マスク200の表面に付着する場合がある。そのため、図12の構成では、アウトガスのさらなる抑制、及びマスク200への粉塵の付着のさらなる抑制が求められる場合がある。
 図13は、他の構成のペリクルの断面図の模式図である。発明者らは、図13に示す構成についても検討した。この構成は、支持枠103の第1の接着層109が形成される側の端面に凹部1032を形成し、凹部1032中に接着剤を充填して第1の接着層109を形成する構成である。凹部1032は、ここでは半円球状である。しかし、この場合、凹部1032に配置する接着剤の量を制御することが困難である。このため、接着剤が凹部1032からはみ出してしまい、無機物層111をコーティングしていないのと同じような状態になってしまうか、又は接着剤が足りず支持枠103とマスク200との密着性が不良であり、粉塵が入り込み、マスク200の表面に付着する場合がある。また、支持枠103の材質によってはEUV光を遮断できない。そのため、図13の構成ではアウトガスのさらなる抑制、マスク200への粉塵の付着のさらなる抑制が求められる場合がある。
[露光原版]
 本実施形態の露光原版は、原版と、原版に装着された本実施形態のペリクルと、を有する。本実施形態の露光原版は、本実施形態のペリクルを備えるので、本実施形態のペリクルと同様の効果を奏する。
 ここで、原版としては、支持基板と、この支持基板上に積層された反射層と、反射層上に形成された吸収体層と、を含む原版を用いることができる。吸収体層がEUV光を一部吸収することで、感応基板(例えば、フォトレジスト膜付き半導体基板)上に、所望の像が形成される。反射層は、モリブデン(Mo)とシリコン(Si)との多層膜でありうる。吸収体層は、クロム(Cr)や窒化タンタル等、EUV光等の吸収性の高い材料でありうる。
[露光装置]
 本実施形態の露光装置は、本実施形態の露光原版を備える。このため、本実施形態の露光原版と同様の効果を奏する。
 本実施形態の露光装置は、露光光(好ましくはEUV光等、より好ましくはEUV光。以下同じ。)を放出する光源と、本実施形態の露光原版と、光源から放出された露光光を露光原版に導く光学系と、を備え、露光原版は、光源から放出された露光光がペリクル膜を透過して原版に照射されるように配置されていることが好ましい。
 この態様によれば、EUV光等によって微細化されたパターン(例えば線幅32nm以下)を形成できることに加え、異物による解像不良が問題となり易いEUV光を用いた場合であっても、異物による解像不良が低減されたパターン露光を行うことができる。
[半導体装置の製造方法]
 本実施形態の半導体装置の製造方法は、光源から放出された露光光を、本実施形態の露光原版の前記ペリクル膜を透過させて前記原版に照射し、前記原版で反射させ、前記原版によって反射された露光光を、前記ペリクル膜を透過させて感応基板に照射することにより、前記感応基板をパターン状に露光する。
 本実施形態の半導体装置の製造方法によれば、異物による解像不良が問題となり易いEUV光を用いた場合であっても、異物による解像不良が低減された半導体装置を製造することができる。
 図14は、本実施形態の露光装置の一例である、EUV露光装置180の概略断面図である。
 図14に示されるように、EUV露光装置180は、EUV光を放出する光源182と、本実施形態の露光原版の一例である露光原版181と、光源182から放出されたEUV光を露光原版181に導く照明光学系183と、を備える。
 露光原版181は、ペリクル膜101及び支持枠を含むペリクル100と、原版184と、を備えている。この露光原版181は、光源182から放出されたEUV光がペリクル膜101を透過して原版184に照射されるように配置されている。
 原版184は、照射されたEUV光をパターン状に反射するものである。
 ペリクル膜101及びペリクル100は、それぞれ、本実施形態のペリクル膜及びペリクルの一例である。
 EUV露光装置180において、光源182と照明光学系183との間、及び照明光学系183と原版184の間には、フィルター・ウィンドウ185及び186がそれぞれ設置されている。
 また、EUV露光装置180は、原版184が反射したEUV光を感応基板187へ導く投影光学系188を備えている。
 EUV露光装置180では、原版184により反射されたEUV光が、投影光学系188を通じて感応基板187上に導かれ、感応基板187がパターン状に露光される。なお、EUVによる露光は、減圧条件下で行われる。
 EUV光源182は、照明光学系183に向けて、EUV光を放出する。
 EUV光源182には、ターゲット材と、パルスレーザー照射部等が含まれる。このターゲット材にパルスレーザーを照射し、プラズマを発生させることで、EUV光が得られる。ターゲット材をXeとすると、波長13nm~14nmのEUV光が得られる。EUV光源が発する光の波長は、13nm~14nmに限られず、波長5nm~30nmの範囲内の、目的に適した波長の光であればよい。
 照明光学系183は、EUV光源182から照射された光を集光し、照度を均一化して原版184に照射する。
 照明光学系183には、EUV光の光路を調整するための複数枚の多層膜ミラー189と、光結合器(オプティカルインテグレーター)等が含まれる。多層膜ミラーは、モリブデン(Mo)、シリコン(Si)が交互に積層された多層膜等である。
 フィルター・ウィンドウ185、186の装着方法は特に制限されず、接着剤等を介して貼り付ける方法や、機械的にEUV露光装置内に固定する方法等が挙げられる。
 光源182と照明光学系183との間に配置されるフィルター・ウィンドウ185は、光源から発生する飛散粒子(デブリ)を捕捉し、飛散粒子(デブリ)が照明光学系183内部の素子(例えば多層膜ミラー189)に付着しないようにする。
 一方、照明光学系183と原版184との間に配置されるフィルター・ウィンドウ186は、光源182側から飛散する粒子(デブリ)を捕捉し、飛散粒子(デブリ)が原版184に付着しないようにする。
 また、原版に付着した異物は、EUV光を吸収、もしくは散乱させるため、ウェハへの解像不良を引き起こす。したがって、ペリクル100は原版184のEUV光の照射エリアを覆うように装着されている。EUV光はペリクル膜101を通過して、原版184に照射される。
 原版184で反射されたEUV光は、ペリクル膜101を通過し、投影光学系188を通じて感応基板187に照射される。
 投影光学系188は、原版184で反射された光を集光し、感応基板187に照射する。投影光学系188には、EUV光の光路を調製するための複数枚の多層膜ミラー190、191等が含まれる。
 感応基板187は、半導体ウェハ上にレジストが塗布された基板等であり、原版184によって反射されたEUV光により、レジストがパターン状に硬化する。このレジストを現像し、半導体ウェハのエッチングを行うことで、半導体ウェハに所望のパターンを形成する。
 また、ペリクル100は、原版用接着剤層等を介して原版184に装着される。原版に付着した異物は、EUV光を吸収、もしくは散乱させるため、ウェハへの解像不良を引き起こす。したがって、ペリクル100は原版184のEUV光の照射エリアを覆うように装着され、EUV光はペリクル膜101を通過して、原版184に照射される。
 以上、本発明の好ましい実施形態によるペリクル膜の製造方法について説明した。しかし、これらは単なる例示に過ぎず、本発明の技術的範囲はそれらには限定されない。実際、当業者であれば、特許請求の範囲において請求されている本発明の要旨を逸脱することなく、種々の変更が可能であろう。よって、それらの変更も当然に、本発明の技術的範囲に属すると解されるべきである。
100:ペリクル、101:ペリクル膜、103:支持枠、104:第1の枠体、105:第2の接着層、107:第2の枠体、109:第1の接着層、111:無機物層、113:無機物層、115:無機物層、117:無機物層、120:保護層、121:第1の側面、131:第2の側面、136:第1の端面、136A:領域、136B:領域、136C:領域、136D:領域、136E:領域、141:側面、143:側面、180:露光装置、181:露光原版、182:光源、183:照明光学系、184:原版、185:フィルター・ウィンドウ、186:フィルター・ウィンドウ、187:感応基板、188:投影光学系、189:多層膜ミラー、190:多層膜ミラー、191:多層膜ミラー、200:マスク、400:試験装置、410:アルミニウムフレーム、420:接着剤、420A:面、420B:面、430:無機物質層、440:基板、450:薄板、452:貫通孔、454:貫通孔、456:貫通孔、460:膜、470:照射用基板、1032:凹部、1112:凹部

Claims (13)

  1.  ペリクル膜と、
     ペリクル膜を支持する支持枠と、
     前記支持枠のペリクル膜が吊架された端部と反対側の端部に設けられた第1の接着層と、を有し、
     前記第1の接着層において前記ペリクル膜面と交差する方向の側面であって、前記ペリクル膜が吊架される側の側面に、無機物層を有し、
     前記無機物層の質量吸収係数(μm)が、5×103cm2/g~2×105 cm2/gの範囲であることを特徴とする
     ペリクル。
  2.  前記支持枠が、前記ペリクル膜に接続される第1の枠体と、前記第1の枠体に接続される第2の枠体と、を有する、請求項1に記載のペリクル。
  3.  前記第1の枠体と前記第2の枠体とが第2の接着層により接続され、前記第2の接着層のペリクル膜面と交差する方向の側面のうちいずれか一に、第2の無機物層を有する、請求項2に記載のペリクル。
  4.  前記無機物層は、
     厚さ400nmであるときに、波長13.5nmのEUV(Extreme Ultraviolet)光の透過率が、10パーセント以下である、請求項1に記載のペリクル。
  5.  前記無機物層の厚みが50nm以上である、請求項1に記載のペリクル。
  6.  前記無機物層が金属層である、請求項1に記載のペリクル。
  7.  前記金属層は、アルミニウム、チタン、クロム、鉄、ニッケル、銅、ルテニウム、タンタル、及び金の群から選ばれた何れか一種の金属、前記群から選ばれた二種以上の元素を含む合金、又は、前記群から選ばれる何れか一種又は二種以上の元素を含む酸化物である、請求項6に記載のペリクル。
  8.  前記第1の接着層のペリクル膜が形成されたのと反対側の端面に保護層を有する、請求項1に記載のペリクル。
  9.  原版と、前記原版のパターンを有する側の面に装着された、請求項1に記載のペリクルと、を含む露光原版。
  10.  請求項9に記載の露光原版を有する露光装置。
  11.  露光光を放出する光源と、
     請求項9に記載の露光原版と、
     前記光源から放出された露光光を前記露光原版に導く光学系と、を有し、
     前記露光原版は、前記光源から放出された露光光が前記ペリクル膜を透過して前記原版に照射されるように配置されている、露光装置。
  12.  前記露光光が、EUV(Extreme Ultraviolet)光である請求項11に記載の露光装置。
  13.  光源から放出された露光光を、請求項9に記載の露光原版のペリクル膜を透過させて前記原版に照射し、前記原版で反射させ、
     前記原版によって反射された露光光を、前記ペリクル膜を透過させて感応基板に照射することにより、前記感応基板をパターン状に露光する、半導体装置の製造方法。
PCT/JP2018/004726 2017-02-17 2018-02-09 ペリクル、露光原版、露光装置、及び半導体装置の製造方法 WO2018151056A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018568502A JP6816170B2 (ja) 2017-02-17 2018-02-09 ペリクル、露光原版、露光装置、及び半導体装置の製造方法
SG11201907482YA SG11201907482YA (en) 2017-02-17 2018-02-09 Pellicle, exposure original plate, exposure device, and semiconductor device manufacturing method
CN201880012953.6A CN110325908A (zh) 2017-02-17 2018-02-09 防护膜组件、曝光原版、曝光装置及半导体装置的制造方法
EP18754194.1A EP3584636A4 (en) 2017-02-17 2018-02-09 PELLICLE, ORIGINAL EXPOSURE PLATE, EXPOSURE DEVICE, AND SEMICONDUCTORIAL COMPONENT MANUFACTURING METHOD
KR1020197023454A KR102237878B1 (ko) 2017-02-17 2018-02-09 펠리클, 노광 원판, 노광 장치 및 반도체 장치의 제조 방법
US16/535,183 US11137677B2 (en) 2017-02-17 2019-08-08 Pellicle, exposure original plate, exposure device, and semiconductor device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-027742 2017-02-17
JP2017027742 2017-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16535183 Continuation 2019-08-08

Publications (1)

Publication Number Publication Date
WO2018151056A1 true WO2018151056A1 (ja) 2018-08-23

Family

ID=63169801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004726 WO2018151056A1 (ja) 2017-02-17 2018-02-09 ペリクル、露光原版、露光装置、及び半導体装置の製造方法

Country Status (8)

Country Link
US (1) US11137677B2 (ja)
EP (1) EP3584636A4 (ja)
JP (1) JP6816170B2 (ja)
KR (1) KR102237878B1 (ja)
CN (1) CN110325908A (ja)
SG (1) SG11201907482YA (ja)
TW (1) TWI761451B (ja)
WO (1) WO2018151056A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020091310A (ja) * 2018-12-03 2020-06-11 信越化学工業株式会社 ペリクル
US20200401039A1 (en) * 2018-03-05 2020-12-24 Mitsui Chemicals, Inc. Pellicle, exposure master, exposure device and method for manufacturing semiconductor device
CN112445063A (zh) * 2019-08-28 2021-03-05 芯恩(青岛)集成电路有限公司 一种保护膜框架及其制备方法及保护膜组件
WO2022030499A1 (ja) 2020-08-06 2022-02-10 三井化学株式会社 ペリクル、露光原版、露光装置、ペリクルの製造方法及び半導体装置の製造方法
WO2023038142A1 (ja) * 2021-09-13 2023-03-16 三井化学株式会社 ペリクル、露光原版、露光装置、及びペリクルの製造方法
WO2023181869A1 (ja) * 2022-03-22 2023-09-28 三井化学株式会社 ペリクル枠、ペリクル、露光原版、露光装置、及びペリクルの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7361622B2 (ja) * 2019-03-05 2023-10-16 Hoya株式会社 フォトマスクの修正方法、フォトマスクの修正装置、ペリクル付きフォトマスクの製造方法および表示装置の製造方法
KR102624936B1 (ko) * 2021-05-21 2024-01-15 주식회사 에프에스티 극자외선 리소그라피용 펠리클 프레임 및 극자외선 리소그라피용 펠리클 프레임용 실링재
CN115050636A (zh) * 2022-05-09 2022-09-13 中北大学 一种低成本大面积石墨烯图形化方法
WO2024056548A1 (en) * 2022-09-12 2024-03-21 Asml Netherlands B.V. Pellicle and methods for forming pellicle for use in a lithographic apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343738A (ja) * 2000-06-02 2001-12-14 Asahi Kasei Electronics Co Ltd ペリクル
US20070287074A1 (en) * 2006-06-12 2007-12-13 Texas Instruments, Incorporated Controlled ambient reticle frame
JP2013097308A (ja) * 2011-11-04 2013-05-20 Shin Etsu Chem Co Ltd ペリクル
WO2015166927A1 (ja) * 2014-05-02 2015-11-05 三井化学株式会社 ペリクル枠、ペリクル及びその製造方法、露光原版及びその製造方法、露光装置、並びに半導体装置の製造方法
WO2016043301A1 (ja) * 2014-09-19 2016-03-24 三井化学株式会社 ペリクル、ペリクルの製造方法及びペリクルを用いた露光方法
WO2016079051A2 (en) * 2014-11-17 2016-05-26 Asml Netherlands B.V. Mask assembly
WO2016124536A2 (en) 2015-02-03 2016-08-11 Asml Netherlands B.V. Mask assembly and associated methods

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291347A (ja) * 1991-03-20 1992-10-15 Nikon Corp マスク保護装置、マスク及びマスク保護枠
JPH04299820A (ja) * 1991-03-28 1992-10-23 Canon Inc X線マスク構造体
JP2550281Y2 (ja) * 1991-11-26 1997-10-08 凸版印刷株式会社 ペリクル用フレーム
JPH05150443A (ja) * 1991-11-27 1993-06-18 Nikon Corp 異物検査装置
US5365330A (en) 1991-11-27 1994-11-15 Nikon Corporation Foreign particle inspection apparatus
JPH05323586A (ja) * 1992-05-15 1993-12-07 Hitachi Ltd ペリクル枠壁面の反射防止ペリクル
JPH05323585A (ja) * 1992-05-15 1993-12-07 Hitachi Ltd 投影転写用マスク
JPH0619124A (ja) * 1992-07-01 1994-01-28 Seiko Epson Corp ペリクルフレーム及び半導体装置の製造方法
JP4380910B2 (ja) * 2000-12-14 2009-12-09 信越化学工業株式会社 ペリクル
JP4195550B2 (ja) * 2000-12-27 2008-12-10 三井化学株式会社 ペリクル
JP4396354B2 (ja) * 2004-03-30 2010-01-13 凸版印刷株式会社 フォトマスク
JP4921417B2 (ja) * 2007-12-21 2012-04-25 三井化学株式会社 ペリクル
JP5173444B2 (ja) * 2008-01-07 2013-04-03 株式会社アルバック 封着パネルの製造方法及びそれを用いたプラズマディスプレイパネルの製造方法
JP5436296B2 (ja) * 2010-03-26 2014-03-05 信越化学工業株式会社 リソグラフィー用ペリクル
KR20130141025A (ko) * 2012-06-15 2013-12-26 주식회사 선반도체 펠리클 제조방법
KR101699635B1 (ko) * 2012-08-02 2017-01-24 미쓰이 가가쿠 가부시키가이샤 펠리클
EP3007206A4 (en) * 2013-05-24 2017-03-15 Mitsui Chemicals, Inc. Pellicle and euv exposure device comprising same
CN113917783B (zh) * 2014-09-19 2023-12-19 三井化学株式会社 防护膜组件、其制造方法及曝光方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343738A (ja) * 2000-06-02 2001-12-14 Asahi Kasei Electronics Co Ltd ペリクル
US20070287074A1 (en) * 2006-06-12 2007-12-13 Texas Instruments, Incorporated Controlled ambient reticle frame
JP2013097308A (ja) * 2011-11-04 2013-05-20 Shin Etsu Chem Co Ltd ペリクル
WO2015166927A1 (ja) * 2014-05-02 2015-11-05 三井化学株式会社 ペリクル枠、ペリクル及びその製造方法、露光原版及びその製造方法、露光装置、並びに半導体装置の製造方法
WO2016043301A1 (ja) * 2014-09-19 2016-03-24 三井化学株式会社 ペリクル、ペリクルの製造方法及びペリクルを用いた露光方法
WO2016079051A2 (en) * 2014-11-17 2016-05-26 Asml Netherlands B.V. Mask assembly
WO2016124536A2 (en) 2015-02-03 2016-08-11 Asml Netherlands B.V. Mask assembly and associated methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. L. HENKEE. M. GULLIKSONJ. C. DAVIS: "X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50?30,000 eV, Z = 1 - 92", AT. DATA NUCL. DATA TABLES, vol. 54, 1993, pages 181
See also references of EP3584636A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200401039A1 (en) * 2018-03-05 2020-12-24 Mitsui Chemicals, Inc. Pellicle, exposure master, exposure device and method for manufacturing semiconductor device
US11852968B2 (en) * 2018-03-05 2023-12-26 Mitsui Chemicals, Inc. Pellicle, exposure master, exposure device and method for manufacturing semiconductor device
JP2020091310A (ja) * 2018-12-03 2020-06-11 信越化学工業株式会社 ペリクル
JP7040427B2 (ja) 2018-12-03 2022-03-23 信越化学工業株式会社 ペリクル、ペリクル付露光原版、露光方法及び半導体の製造方法
CN112445063A (zh) * 2019-08-28 2021-03-05 芯恩(青岛)集成电路有限公司 一种保护膜框架及其制备方法及保护膜组件
WO2022030499A1 (ja) 2020-08-06 2022-02-10 三井化学株式会社 ペリクル、露光原版、露光装置、ペリクルの製造方法及び半導体装置の製造方法
JPWO2022030499A1 (ja) * 2020-08-06 2022-02-10
WO2023038142A1 (ja) * 2021-09-13 2023-03-16 三井化学株式会社 ペリクル、露光原版、露光装置、及びペリクルの製造方法
JP7547645B2 (ja) 2021-09-13 2024-09-09 三井化学株式会社 ペリクル、露光原版、露光装置、及びペリクルの製造方法
WO2023181869A1 (ja) * 2022-03-22 2023-09-28 三井化学株式会社 ペリクル枠、ペリクル、露光原版、露光装置、及びペリクルの製造方法

Also Published As

Publication number Publication date
EP3584636A1 (en) 2019-12-25
TW201836121A (zh) 2018-10-01
TWI761451B (zh) 2022-04-21
CN110325908A (zh) 2019-10-11
JP6816170B2 (ja) 2021-01-20
EP3584636A4 (en) 2020-12-30
KR20190102273A (ko) 2019-09-03
US11137677B2 (en) 2021-10-05
US20200064729A1 (en) 2020-02-27
KR102237878B1 (ko) 2021-04-07
JPWO2018151056A1 (ja) 2019-12-12
SG11201907482YA (en) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2018151056A1 (ja) ペリクル、露光原版、露光装置、及び半導体装置の製造方法
US11042085B2 (en) Pellicle film, pellicle frame, pellicle, method for producing same, original plate for light exposure, light exposure apparatus and method for manufacturing semiconductor device
JP6275270B2 (ja) ペリクル、その製造方法及び露光方法
JP6367342B2 (ja) ペリクル、ペリクルの製造方法及びペリクルを用いた露光方法
TWI661263B (zh) 防護薄膜組件、含有其的euv曝光裝置、曝光原版以及曝光方法
JP6968259B2 (ja) ペリクル、露光原版、露光装置、及び半導体装置の製造方法
JP2017083791A (ja) ペリクル、ペリクルの製造方法及びペリクルを用いた露光方法
WO2022030499A1 (ja) ペリクル、露光原版、露光装置、ペリクルの製造方法及び半導体装置の製造方法
KR20210054385A (ko) 외부 충격을 감쇠 할 수 있는 펠리클 및 그의 제조방법
WO2023181869A1 (ja) ペリクル枠、ペリクル、露光原版、露光装置、及びペリクルの製造方法
JP2024541390A (ja) リソグラフィ装置で使用するためのペリクル及び膜
TW202424639A (zh) 微影設備中使用之薄膜及形成薄膜的方法
JPH066504Y2 (ja) X線露光用マスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568502

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023454

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754194

Country of ref document: EP

Effective date: 20190917