[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018146990A1 - 積層セラミック電子部品 - Google Patents

積層セラミック電子部品 Download PDF

Info

Publication number
WO2018146990A1
WO2018146990A1 PCT/JP2018/000556 JP2018000556W WO2018146990A1 WO 2018146990 A1 WO2018146990 A1 WO 2018146990A1 JP 2018000556 W JP2018000556 W JP 2018000556W WO 2018146990 A1 WO2018146990 A1 WO 2018146990A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
external electrode
metal terminal
terminal
main body
Prior art date
Application number
PCT/JP2018/000556
Other languages
English (en)
French (fr)
Inventor
昌吾 神部
雅浩 安達
公介 中野
英樹 大塚
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018146990A1 publication Critical patent/WO2018146990A1/ja
Priority to US16/529,881 priority Critical patent/US11170937B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals

Definitions

  • the present invention relates to a multilayer ceramic electronic component including, for example, a multilayer ceramic capacitor.
  • a ferroelectric material such as barium titanate having a relatively high dielectric constant is generally used as a ceramic material for forming a multilayer body of such a multilayer ceramic capacitor. Since it has electrostrictive properties, stress and mechanical strain are generated when an electric field is applied to the ferroelectric material. Therefore, along with the stress and mechanical strain when an electric field is applied, this vibration is transmitted from the external electrode of the multilayer ceramic capacitor to the substrate side, and the entire substrate becomes an acoustic radiation surface, and the vibration sound that becomes noise (Squeal) could occur.
  • Squeal noise
  • a multilayer ceramic electronic component 1 constituted by connecting a pair of metal terminals 6 to the external electrodes 4 of a multilayer ceramic capacitor (electronic component body) 2 with solder 6a.
  • a configuration is considered in which the metal terminal 6 is soldered to the mounting substrate 8 so that the mounting substrate 7 and the multilayer ceramic capacitor 2 are spaced apart from each other.
  • the external electrode 4 and the metal terminal 6 of the multilayer ceramic capacitor 2 are joined by the solder 6a, the external electrode 4 and the metal terminal 6 Since a relatively large amount of Sn remains in the joint, the metal of the plating layer of the external electrode 4 (consisting of the base electrode layer and the plating layer) reaches the base electrode layer when exposed to a high temperature environment such as in-vehicle use. Spread. As a result, the plating layer disappears, the bonding strength between the external electrode 4 and the metal terminal 6 decreases with time, and there is a concern that a structural defect such as a crack in the external electrode 4, the metal terminal 6 and the bonding portion occurs. Is done.
  • a main object of the present invention is to provide a multilayer ceramic electronic component that can secure a sufficient strength against the stress generated in the direction connecting the metal terminals of the multilayer ceramic electronic component.
  • a plurality of dielectric layers and a plurality of internal electrode layers are alternately stacked, and the first main surface and the second main surface facing the stacking direction are orthogonal to the stacking direction.
  • a laminated body including a first side face and a second side face opposite to each other in a width direction, and a first end face and a second end face opposite to each other in a length direction perpendicular to the lamination direction and the width direction;
  • An electronic component body comprising: a first external electrode connected to the first end face of the first electrode; and a second external electrode connected to the second end face of the laminate;
  • a multilayer ceramic electronic component having a first metal terminal to be connected and a second metal terminal connected to a second external electrode by a bonding material, wherein the first metal terminal has a first end face And a terminal main body facing the terminal, and connected to the terminal main body extending in the mounting surface direction.
  • a terminal main body having a long portion and a mounting portion connected to the extension and extending in a direction connecting the end faces from the extension; and a second metal terminal facing the second end surface; and a terminal main body
  • the first metal terminal and the second metal terminal, the first metal terminal and the second metal terminal having an extension portion connected to the extension portion and extending in the mounting surface direction; and a mounting portion connected to the extension portion and extending in a direction connecting the end faces from the extension portion.
  • the extension portion is provided so as to form a gap between the lower surface of the electronic component body and the mounting portion, and the terminal body portion is provided with a rib portion extending so as to face the side surface of the electronic component body.
  • the bonding material is present at least between the rib portion of the first metal terminal and the first external electrode facing the rib portion, and the bonding material is formed between the terminal body portion and the first external electrode. It does not exist between the center of the end face, at least in the rib part and rib part of the second metal terminal It exists between the second external electrode that direction, and the bonding material is not present between the end face center of the terminal body portion and the second external electrode, a multilayer ceramic electronic component.
  • the multilayer ceramic electronic component according to the present invention preferably further includes a rib portion extending so as to face the main surface of the electronic component main body in the terminal main body portions of the first metal terminal and the second metal terminal.
  • the bonding material is a Cu-M (M is Ni, Mn, Al, Cr) alloy, Cu, Ni, Mn, Al, Cr, Sn, Au, Ag, Sb. Of Zn, Bi, it is comprised from the intermetallic compound comprised from at least 2 or more, and Sn, It is preferable that the ratio of Sn in a joining material is 5% or less. Furthermore, in the multilayer ceramic electronic component according to the present invention, the bonding material is disposed across the surface of the multilayer body from the first external electrode facing the rib portion of the first metal terminal, and the second metal terminal It is preferable that the first external electrode facing the rib portion is disposed across the surface of the laminate.
  • the rib portion of the first metal terminal and Bonding is performed using a bonding material existing between the first external electrode facing the rib portion, and bonding is performed between the terminal main body portion of the first metal terminal and the central portion of the end surface of the first external electrode.
  • the second metal terminal is bonded using a bonding material existing between the rib portion of the second metal terminal and the second external electrode facing the rib portion.
  • the terminal body portion of the metal terminal is further provided with a rib portion extending so as to face each main surface of the electronic component body.
  • Ribs that are bonded to each other by using a bonding material that exists between the first external electrode and a rib portion that extends so as to face each main surface, and similarly, each rib that extends so as to face each main surface of the electronic component main body
  • Sn that causes diffusion is 5% or less in the bonding material, and the melting point is 260 ° C. or higher. If there is little change in the interface structure even in a high-temperature environment of 200 ° C.
  • the bonding material is disposed on the first end face side of the multilayer body from the first external electrode facing the rib portion of the first metal terminal.
  • the second electrode is disposed across a part of the surface of the external electrode, and the bonding material is disposed on the second end surface side of the multilayer body from the second external electrode facing the rib portion of the second metal terminal. If it is arranged across a part of the surface of the external electrode, the bonding strength between the metal terminal and the external electrode can be increased.
  • FIG. 1 is an external perspective view showing an example of a multilayer ceramic electronic component according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1 showing the multilayer ceramic electronic component according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1 showing the multilayer ceramic electronic component according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 1, showing the multilayer ceramic electronic component according to the first embodiment of the present invention. It is an external appearance perspective view which shows the metal terminal with which the multilayer ceramic electronic component concerning 1st Embodiment of this invention is provided.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6 showing a multilayer ceramic electronic component according to a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along line VIII-VIII in FIG. 6 showing a multilayer ceramic electronic component according to a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line IX-IX of FIG. 6 showing a multilayer ceramic electronic component according to a second embodiment of the present invention.
  • the preparatory process for evaluation of a peeling strength test is shown, (a) shows the mounting state to the mounting substrate of a multilayer ceramic electronic component, (b) shows the state which cut
  • the implementation process for evaluating the peel strength test is shown.
  • the mounting substrate is pulled by the tool. It is an external appearance perspective view which shows the multilayer ceramic electronic component containing the conventional multilayer ceramic capacitor.
  • FIG. 1 is an external perspective view showing an example of a multilayer ceramic electronic component according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1 showing the multilayer ceramic electronic component according to the first embodiment of the present invention
  • FIG. 3 shows the multilayer ceramic component according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1 showing a ceramic electronic component.
  • 4 is a cross-sectional view taken along the line IV-IV in FIG. 1, showing the multilayer ceramic electronic component according to the first embodiment of the present invention.
  • FIG. 5 is an external perspective view showing a metal terminal provided in the multilayer ceramic electronic component according to the first embodiment of the present invention.
  • the multilayer ceramic electronic component 10 includes, for example, an electronic component body 12 and a pair of metal terminals 40A.
  • the electronic component body 12 and the pair of metal terminals 40 ⁇ / b> A are connected via a bonding material 60.
  • the electronic component body 12 includes a rectangular parallelepiped laminated body 14.
  • the laminated body 14 has a plurality of laminated ceramic layers 16 and a plurality of internal electrode layers 18. Furthermore, the laminate 14 includes a first main surface 14a and a second main surface 14b that are opposed to the lamination direction x, and a first side surface 14c and a second side surface that are opposed to the width direction y orthogonal to the lamination direction x. 14d, and a first end face 14e and a second end face 14f that face the length direction z orthogonal to the stacking direction x and the width direction y.
  • the laminated body 14 is preferably rounded at corners and ridge lines.
  • angular part is a part where three adjacent surfaces of a laminated body cross
  • a ridgeline part is a part where two adjacent surfaces of a laminated body intersect.
  • the ceramic layer 16 includes an outer layer portion 16a and an inner layer portion 16b.
  • the outer layer portion 16a is located on the first main surface 14a side and the second main surface 14b side of the multilayer body 14, and is formed between the first main surface 14a and the internal electrode layer 18 closest to the first main surface 14a.
  • the ceramic layer 16 is located between the second main surface 14b and the internal electrode layer 18 closest to the second main surface 14b.
  • a region sandwiched between the outer layer portions 16a is the inner layer portion 16b.
  • the ceramic layer 16 can be formed of, for example, a dielectric material.
  • a dielectric material for example, a dielectric ceramic containing a component such as BaTiO 3 , CaTiO 3 , SrTiO 3 , or CaZrO 3 can be used.
  • the dielectric material is included as a main component, the content is less than that of the main component such as, for example, a Mn compound, a Fe compound, a Cr compound, a Co compound, or a Ni compound, depending on the desired characteristics of the electronic component body 12 You may use what added the component.
  • the electronic component body When a piezoelectric ceramic is used for the laminated body 14, the electronic component body functions as a ceramic piezoelectric element.
  • the piezoelectric ceramic material include, for example, a PZT (lead zirconate titanate) ceramic material.
  • the electronic component main body when a semiconductor ceramic is used for the laminated body 14, the electronic component main body functions as a thermistor element.
  • the semiconductor ceramic material include spinel ceramic materials.
  • the electronic component body When a magnetic ceramic is used for the laminate 14, the electronic component body functions as an inductor element. When functioning as an inductor element, the internal electrode layer 18 becomes a coiled conductor.
  • the magnetic ceramic material include a ferrite ceramic material.
  • the thickness of the fired ceramic layer 16 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the multilayer body 14 includes, as the plurality of internal electrode layers 18, for example, a plurality of first internal electrode layers 18 a and a plurality of second internal electrode layers 18 b having a substantially rectangular shape.
  • the plurality of first internal electrode layers 18 a and the plurality of second internal electrode layers 18 b are embedded so as to be alternately arranged at equal intervals along the stacking direction x of the stacked body 14.
  • the electrode surfaces of the first internal electrode layer 18a and the second internal electrode layer 18b are arranged perpendicular to the direction in which the metal terminal 40A extends, and are arranged so as to be parallel to the mounting surface.
  • One end side of the first internal electrode layer 18 a has a first extraction electrode portion 20 a that is extracted to the first end surface 14 e of the multilayer body 14.
  • On one end side of the second internal electrode layer 18b there is a second extraction electrode portion 20b that is extracted to the second end face 14f of the multilayer body 14.
  • the first extraction electrode portion 20 a on one end side of the first internal electrode layer 18 a is exposed on the first end face 14 e of the multilayer body 14.
  • the second lead electrode portion 20 b on one end side of the second internal electrode layer 18 b is exposed on the second end face 14 f of the multilayer body 14.
  • the internal electrode 18 may be disposed so as to be parallel to the mounting surface or may be disposed so as to be vertical.
  • the laminated body 14 includes a counter electrode portion 22a in which the first internal electrode layer 18a and the second internal electrode layer 18b face each other in the inner layer portion 16b of the ceramic layer 16.
  • the stacked body 14 is formed between one end in the width direction y of the counter electrode portion 22a and the first side surface 14c and between the other end in the width direction y of the counter electrode portion 22a and the second side surface 14d.
  • W gap Side part of the laminate 14
  • the multilayer body 14 is formed between the second end surface 14f and the end of the first internal electrode layer 18a opposite to the first extraction electrode portion 20a and the second internal electrode layer 18b. It includes an end portion (hereinafter referred to as “L gap”) 22c of the stacked body 14 formed between the end portion on the opposite side to the extraction electrode portion 20b and the first end face 14e.
  • the internal electrode layer 18 contains, for example, a metal such as Ni, Cu, Ag, Pd, or Au, or an alloy such as an Ag—Pd alloy containing one of these metals.
  • the internal electrode layer 18 may further include dielectric particles having the same composition system as the ceramic contained in the ceramic layer 16.
  • the thickness of the internal electrode layer 18 is preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • External electrodes 24 are disposed on the first end face 14 e side and the second end face 14 f side of the multilayer body 14.
  • the external electrode 24 includes a first external electrode 24a and a second external electrode 24b.
  • the first external electrode 24a is disposed on the surface of the first end surface 14e of the multilayer body 14, and extends from the first end surface 14e to form the first main surface 14a, the second main surface 14b, and the first side surface. 14c and second side surface 14d are formed so as to cover each part.
  • the first external electrode 24a is electrically connected to the first extraction electrode 20a of the first internal electrode 18a.
  • the second external electrode 24b is disposed on the surface of the second end face 14f of the stacked body 14, and extends from the second end face 14f to the first main face 14a, the second main face 14b, and the first side face. 14c and second side surface 14d are formed so as to cover each part. In this case, the second external electrode 24b is electrically connected to the second extraction electrode 20b of the second internal electrode 18b.
  • the first internal electrode layer 18 a and the second internal electrode layer 18 b are opposed to each other through the ceramic layer 16 in each counter electrode portion 22 a, thereby forming a capacitance. Therefore, a capacitance can be obtained between the first external electrode 24a to which the first internal electrode layer 18a is connected and the second external electrode 24b to which the second internal electrode layer 18b is connected. . Therefore, the electronic component body having such a structure functions as a capacitor element.
  • the first external electrode 24a includes a first base electrode layer 28a and a first plating layer 30a disposed on the surface of the first base electrode layer 28a in this order from the stacked body 14 side.
  • the second external electrode 24b includes a second base electrode layer 28b and a second plating layer 30b disposed on the surface of the second base electrode layer 28b in this order from the stacked body 14 side.
  • the first base electrode layer 28a is disposed on the surface of the first end face 14e of the multilayer body 14, and extends from the first end face 14e to form the first main surface 14a, the second main surface 14b, and the first main surface 14e. It is formed so as to cover a part of each of the side surface 14c and the second side surface 14d. Further, the second base electrode layer 28b is disposed on the surface of the second end face 14f of the multilayer body 14, and extends from the second end face 14f so as to extend from the first main face 14a, the second main face 14b, and the second main face 14b. The first side surface 14c and the second side surface 14d are formed so as to cover a part thereof.
  • the first base electrode layer 28a and the second base electrode layer 28b includes at least one selected from a baking layer, a thin film layer, and the like.
  • the first base electrode layer 28a formed of the baking layer is used.
  • the second base electrode layer 28b will be described.
  • the baking layer includes glass and metal. Examples of the metal of the baking layer include at least one selected from Cu, Ni, Ag, Pb, an Ag—Pb alloy, Au, and the like.
  • glass of a baking layer at least 1 chosen from B, Si, Ba, Mg, Al, Li, Zn etc. is included.
  • the baking layer may be a plurality of layers.
  • the baking layer is obtained by applying a conductive paste containing glass and metal to the laminated body 14 and baking it.
  • the baking layer may be fired simultaneously with the ceramic layer 16 and the internal electrode layer 18. It may be baked after firing.
  • the thickness of the thickest part in the baking layer is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • a resin layer containing conductive particles and a thermosetting resin may be formed on the surface of the baking layer.
  • the resin layer may be directly formed on the laminate 14 without forming a baking layer.
  • the resin layer may be a plurality of layers.
  • the thickness of the thickest portion of the resin layer is preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the thin film layer is a layer of 1 ⁇ m or less formed by a thin film forming method such as a sputtering method or a vapor deposition method and deposited with metal particles.
  • the first plating layer 30a is disposed so as to cover the first base electrode layer 28a. Specifically, the first plating layer 30a is disposed on the first end surface 14e on the surface of the first base electrode layer 28a, and the first main surface 14a and the first main surface 14a on the surface of the first base electrode layer 28a. It is preferable that the second main surface 14b and the first side surface 14c and the second side surface 14d are provided. Similarly, the second plating layer 30b is disposed so as to cover the second base electrode layer 28b. Specifically, the second plating layer 30b is disposed on the second end face 14f of the surface of the second base electrode layer 28b, and the first main surface 14a and the first main surface 14a of the surface of the second base electrode layer 28b. It is preferable that the second main surface 14b and the first side surface 14c and the second side surface 14d are provided.
  • the first plating layer 30a and the second plating layer 30b (hereinafter also simply referred to as a plating layer), for example, at least selected from Cu, Ni, Sn, Ag, Pd, an Ag—Pd alloy, Au, and the like.
  • a plating layer may be formed of a plurality of layers.
  • the plating layer preferably has a two-layer structure of a Ni plating layer and a Sn plating layer.
  • the thickness per plating layer is preferably 1 ⁇ m or more and 15 ⁇ m or less. Moreover, it is preferable that a plating layer does not contain glass. Further, the plating layer preferably has a metal ratio per unit volume of 99% by volume or more.
  • a pair of metal terminals 40 ⁇ / b> A as shown in FIG. 5 is connected to the first external electrode 24 a and the second external electrode 24 b of the electronic component body 12 via a bonding material 60.
  • the pair of metal terminals 40 ⁇ / b> A are provided for mounting the multilayer ceramic electronic component 10 on the mounting substrate.
  • a plate-like lead frame is used for the pair of metal terminals 40A.
  • a pair of metal terminals 40A formed by the plate-like lead frame has one main surface 42 facing the first external electrode 24a or the second external electrode 24b, and the other main surface 44 facing the one main surface 42 ( And a peripheral surface 46 forming a thickness between the one main surface 42 and the other main surface 44.
  • the pair of metal terminals 40A formed by the plate-like lead frame has an L-shaped cross section. As described above, when the cross-sectional shape of the pair of metal terminals 40A is formed in an L shape, when the multilayer ceramic electronic component 10 is mounted on the mounting substrate, resistance to deflection of the mounting substrate can be improved.
  • the metal terminal 40A includes, for example, a rectangular plate-shaped terminal main body 50, an extension 52 connected to the terminal main body 50 and extending from the terminal main body 50 in the mounting surface direction, and connected to the extension 52 to the second extension 52.
  • the mounting portion 54 extends in the direction connecting the first end surface 14e and the second end surface 14f.
  • the terminal main body portion 50 of the metal terminal 40A is a portion located facing the first end surface 14e side or the second end surface 14f of the electronic component main body 12.
  • the terminal main body 50 of the metal terminal 40A is formed in a rectangular plate shape having a size equivalent to the width of the first external electrode 24a or the second external electrode 24b of the electronic component main body 12, for example.
  • One main surface 42 side is positioned to face the first external electrode 24a, and one main surface 42 side of the other metal terminal 40A is positioned to face the second external electrode 24b.
  • the terminal main body portion 50 of the metal terminal 40A is provided with side rib portions 56a and 56b extending so as to face the side surfaces 14c and 14d of the electronic component main body 12, respectively. That is, the side rib portions 56a and 56b of the metal terminal 40A are provided in a portion that does not reach the mounting portion 54 from the upper end portion of both end sides in the width direction y in the terminal main body portion 50, and the first end surface 14e of the laminate 14 and It extends in the direction connecting the second end face 14f. That is, the side rib portions 56a and 56b are formed in such a manner that they are bent at right angles to the electronic component main body 12 side from both side edges in the width direction y of the terminal main body portion 50.
  • the length in the length direction z of the side rib portions 56a and 56b of the metal terminal 40A (the length in the direction extending in the direction connecting the first end surface 14e and the second end surface 14f of the stacked body 14) is the stacked body 14. It is preferable that the external electrodes 24 formed on the surfaces of the main surfaces 14a and 14b and the side surfaces 14c and 14d are longer than the length in the length direction z.
  • the side rib portions 56a and 56b of the metal terminal 40A are provided so as to cover the external electrodes 24 formed on both the main surfaces 14a and 14b and the both side surfaces 14c and 14d of the laminate 14. preferable. Thereby, the concentration of thermal stress is relaxed, and an effect of greatly suppressing the occurrence of cracks in the electronic component main body 12 is obtained.
  • the extension portion 52 of the metal terminal 40A is provided so as to form a gap between the lower surface (second main surface 14b) of the electronic component body 12 and the mounting portion 54.
  • the extension part 52 of the metal terminal 40A is provided to float from the mounting board on which the electronic component main body 12 is mounted, and is a part up to contact with the mounting board. Thereby, an AC voltage is applied by elastic deformation of the metal terminal 40A, so that mechanical strain generated in the ceramic layer 16 can be absorbed, and the vibration is suppressed from being transmitted to the mounting substrate through the external electrode 24. As a result, generation of noise (squeal) can be suppressed. Further, since the thermal stress generated in the mounting substrate can be relaxed by the extension portion 52, it is possible to suppress the occurrence of cracks in the electronic component main body 12, and thus it is possible to prevent short circuit failures and failures such as ignition. Can do.
  • the extension 52 of the metal terminal 40A has, for example, a rectangular plate shape, and extends in the height direction perpendicular to the second main surface 14b of the multilayer body 14 from the terminal main body 50 in the mounting surface direction. 50 and one plane.
  • the mounting part 54 of the metal terminal 40A extends in the length direction z parallel to the second main surface 14b from the end of the extension part 52 of the metal terminal 40A, and is perpendicular to the extension part 52 of the metal terminal 40A. It can be bent. Further, the mounting portion 54 of the metal terminal 40A is formed by being bent so as to be in contact with the mounting substrate with respect to the extension portion 52 of the metal terminal 40A. In addition, the direction in which the mounting portion 54 is bent may be bent toward the electronic component main body 12 or may be bent toward the opposite side of the electronic component main body 12.
  • the length of the mounting portion 52 of the metal terminal 40 ⁇ / b> A in the length direction z (the direction connecting both end faces 14 e and 14 f of the multilayer body 14) is formed on the second main surface 14 b (mounting surface side) of the multilayer body 14.
  • the external electrode 24 may be formed longer than the length in the length direction z (the direction connecting both end faces 14e and 14f of the multilayer body 14).
  • the length in the length direction z of the mounting portion 54 of the metal terminal 40A (the direction connecting both end faces 14e and 14f of the multilayer body 14) is equal to the stacking direction x of the extension 52 of the metal terminal 40A (both main surfaces of the multilayer body 14).
  • 14a and 14b may be formed longer than the length in the direction connecting 14a and 14b).
  • angular part where the extension part 52 of 40 A of metal terminals and the mounting part 54 of 40 A of metal terminals cross may be rounded.
  • the metal terminal 40A has a terminal body and a plating film formed on the surface of the terminal body.
  • the terminal body is preferably made of Ni, Fe, Cu, Ag, Cr, or an alloy containing one or more of these metals as a main component. More preferably, the terminal body is made of Ni, Fe, Cu, Cr, or an alloy containing one or more of these metals as a main component.
  • the base metal of the terminal body can be an Fe-42Ni alloy or an Fe-18Cr alloy.
  • the thickness of the terminal body of the metal terminal 40A is preferably about 0.05 mm or more and 0.5 mm or less.
  • the heat resistance of the external electrode 24 can be improved by forming the terminal body from a high melting point Ni, Fe, Cr or an alloy containing one or more of these metals as a main component.
  • the plating film may be formed on the entire surface of the metal terminal 40A.
  • the plating film may not be formed on the extended portion 52 of the metal terminal 40A and the peripheral surface 46 of the mounting portion 54.
  • the extension part 52 of the metal terminal 40A is easily elastically deformed, mechanical strain generated in the ceramic layer 16 due to application of an AC voltage can be further absorbed. Thereby, it is possible to suppress the vibration generated at this time from being transmitted to the mounting substrate via the external electrode 24. Therefore, by providing the metal terminal 40A, it is possible to more stably suppress the generation of acoustic noise (squeal).
  • the removal method is a mechanical removal (cutting). , Polishing), removal by laser trimming, plating remover (for example, sodium hydroxide), and the like.
  • plating remover for example, sodium hydroxide
  • the resist may be removed. Note that the plating film may not be formed on the entire peripheral surface of the metal terminal 40A.
  • the plating film has, for example, a lower layer plating film and an upper layer plating film.
  • the lower plating film is formed on the surface of the terminal body, and the upper plating film is formed on the surface of the lower plating film.
  • the lower plating film is preferably made of Ni, Fe, Cu, Ag, Cr, or an alloy containing at least one of these metals as a main component. More preferably, the lower plating film is made of Ni, Fe, Cr, or an alloy containing one or more of these metals as a main component. By forming the lower plating film with high melting point Ni, Fe, Cr or an alloy containing one or more of these metals as a main component, the heat resistance of the external electrode 24 can be improved.
  • the thickness of the lower plating film is preferably about 0.2 ⁇ m or more and 5.0 ⁇ m or less. Further, the lower plating film may be composed of a plurality of plating films.
  • the upper plating film is preferably made of Sn, Ag, Au, or an alloy containing one or more of these metals as a main component. More preferably, the upper plating film is made of Sn or an alloy containing Sn as a main component. By forming the upper plating film with Sn or an alloy containing Sn as a main component, the solderability between the metal terminal 40A and the external electrode 24 can be improved.
  • the thickness of the upper plating film is preferably about 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the upper plating film may be composed of a plurality of layers. In the case of forming one layer as the plating film, it is preferable to form an upper plating film with good solderability.
  • the bonding material 60 is used for bonding the first external electrode 24a and the bonding portion of the one metal terminal 40A, and bonding the second external electrode 24b and the bonding portion of the other metal terminal 40A.
  • the bonding material 60 includes a side rib portion 56a and a side rib portion 56b of one metal terminal 40A, and a first external electrode 24a (first on the side surfaces 14c and 14d facing the side rib portion 56a and the side rib portion 56b. And the bonding material 60 does not exist between the terminal body 50 of the one metal terminal 40A and the end surface central portion 26a of the first external electrode 24a.
  • the bonding material 60 includes a side rib portion 56a and a side rib portion 56b of the other metal terminal 40A, and a second external electrode 24b (on the both side surfaces 14c and 14d) facing the side rib portion 56a and the side rib portion 56b.
  • the bonding material 60 does not exist between the terminal body portion 50 of the other metal terminal 40A and the end surface central portion 26b of the second external electrode 24b.
  • the bonding material 60 includes a first external electrode 24a disposed on the first end surface 14e side of the multilayer body 14 from the first external electrode 24a facing the side rib portions 56a and 56b of the one metal terminal 40A. It is preferable to be disposed across a part of the surface. Further, the bonding material 60 is a second external electrode 24b disposed on the second end face 14f side of the multilayer body 14 from the second external electrode 24b facing the side metal ribs 56a and 56b of the other metal terminal 40A. It is preferable to be disposed across a part of the surface of the.
  • the bonding material 60 is applied to a part of the surfaces of the first side surface 14c and the second side surface 14d of the multilayer body 14 from the first external electrode 24a facing the side rib portions 56a and 56b of the one metal terminal 40A. It is preferable that they are arranged across (not shown). Further, the bonding material 60 is formed on the surface of the first side surface 14c and the second side surface 14d of the stacked body 14 from the second external electrode 24b facing the side rib portions 56a and 56b of the other metal terminal 40A. It is preferable that they are arranged across (not shown). Thereby, the joining strength between one metal terminal 40A and the first external electrode 24a and the joining strength between the other metal terminal 40A and the second external electrode 24b can be further increased.
  • the bonding material 60 for example, a conductive adhesive in which conductive powder such as metal powder or the like is mixed with a resin component such as solder or silicon resin or epoxy resin can be used.
  • a conductive material having the following characteristics.
  • the conductive material includes a metal component composed of a first metal and a second metal having a melting point higher than that of the first metal and reacting with the first metal to generate an intermetallic compound.
  • the first metal of the conductive material is Sn or an alloy containing 70 mass% or more of Sn
  • the second metal is selected from Cu, Cu—Mn alloy, Cu—Ni alloy, Cu—Al alloy, and Cu—Cr alloy. At least one kind of alloy.
  • the first metal and the second metal of the conductive material generate an intermetallic compound having a melting point of 310 ° C. or higher.
  • the conductive material is a metal or alloy that does not hinder the reaction between the first metal and the second metal because the first metal melted as the second metal is easily wetted and does not diffuse and remain on the surface of the first metal. In which the surface is coated (for example, metals such as Ag and Au).
  • the bonding material 60 (bonding portion) is composed of a metal, an alloy, an intermetallic compound, and an Sn or Sn-based alloy having a melting point of 260 ° C. or higher, a Cu-M (M is Ni, Mn, Al, Cr) alloy, and a Cu , Ni, Mn, Al, Cr, Sn, Au, Ag, Sb, Zn, Bi, and the like, composed of an intermetallic compound composed of at least two or more and Sn, and the proportion of Sn in the bonding material 60 is 5 % Or less is preferable.
  • the side rib portions 56a extending so as to face the side surfaces 14c and 14d of the electronic component main body 12, respectively.
  • 56b is provided, and the bonding material 60 exists between the side rib portions 56a and 56b of one metal terminal 40A and the first external electrode 24a (the first external electrodes 24a on both side surfaces 14c and 14d).
  • the joining material 60 is not provided between the terminal main body portion 50 of one metal terminal 40A and the end surface central portion 26a of the first external electrode 24a.
  • the other metal terminal 40A is bonded using the bonding material 60 existing between the side rib portions 56a and 56b of 40A and the second external electrode 24b (the second external electrode 24b on both side surfaces 14c and 14d), and Since the bonding material 60 is not provided between the terminal main body portion 50 of the other metal terminal 40A and the end surface central portion 26b of the second external electrode 24b, even in the bonding material 60 that exhibits vulnerability to tension, By acting as a shearing force showing a strong strength, it is possible to ensure a sufficient strength against the stress (tensile stress) generated in the direction connecting the two metal terminals 40A.
  • the bonding material 60 is made of a metal and an intermetallic compound that have a Sn content of 5% or less and a melting point of 260 ° C. or higher. Therefore, there are almost no diffusion metal species, and the change in the interface structure is small even in a high temperature environment of 200 ° C. or higher. Therefore, even in a high temperature environment, the bonding strength between the external electrode and the metal terminal decreases with time, and the problem of occurrence of structural defects such as cracks at the joint between the external electrode 24 and the metal terminal 40A is suppressed. Is possible.
  • the bonding material 60 is formed from the first external electrode 24a facing the side rib portions 56a, 56b of the one metal terminal 40A.
  • the bonding material 60 faces the side rib portions 56a and 56b of the other metal terminal 40A.
  • FIG. 6 is an external perspective view showing an example of a multilayer ceramic electronic component according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 6 showing a multilayer ceramic electronic component according to the second embodiment of the present invention
  • FIG. 8 is a multilayer diagram according to the second embodiment of the present invention.
  • FIG. 7 is a sectional view taken along line VIII-VIII in FIG. 6 showing a ceramic electronic component.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 6 showing the multilayer ceramic electronic component according to the second embodiment of the present invention.
  • the multilayer ceramic electronic component 10B is the multilayer ceramic electronic component described with reference to FIG. 1 except that the configuration of the pair of metal terminals 40B is different from the configuration of the pair of metal terminals 40A. It has the same configuration as 10A. Therefore, the same parts as those of the multilayer ceramic electronic component 10A shown in FIG.
  • a metal terminal 40B used in the multilayer ceramic electronic component 10B shown in FIG. 6 is different from the metal terminal 40A as shown in FIG. 10, and further, in the terminal main body portion 50, the respective main surfaces 14a and 14b of the electronic component main body 12 are used.
  • Main surface rib portions 58a and 58b extending so as to face each other. That is, the main surface rib portion 58a of the metal terminal 40B extends in a direction connecting the first end surface 14e and the second end surface 14f of the stacked body 14 from the upper end portion in the stacking direction x of the terminal main body portion 50.
  • the main surface rib portion 58b of the metal terminal 40B extends from the lower end portion of the terminal body portion 50 in the stacking direction x in a direction connecting the first end surface 14e and the second end surface 14f of the stacked body 14.
  • the length in the longitudinal direction z of the main surface rib portions 58a, 58b of the metal terminal 40B (the length in the direction extending in the direction connecting the first end surface 14e and the second end surface 14f of the stacked body 14) is the stacked body.
  • the external electrodes 24 formed on the surfaces of the 14 main surfaces 14a and 14b are longer than the length in the length direction z.
  • the main surface rib portions 58a and 58b of the metal terminal 40A are preferably provided so as to cover the external electrodes 24 formed on the surfaces of both the main surfaces 14a and 14b of the laminate 14.
  • the first external electrode 24a and the one metal terminal 40B are joined by the joining material 60, and the second external electrode 24b and the other metal terminal 40B are joined by the joining material 60.
  • the bonding material 60 includes a side rib portion 56a and a side rib portion 56b of the one metal terminal 40B, and a first external electrode 24a (first on the side surfaces 14c and 14d facing the side rib portion 56a and the side rib portion 56b). Existing external electrode 24a).
  • the bonding material 60 includes the main surface rib portion 58a and the main surface rib portion 58b of the one metal terminal 40B, and the first external electrode 24a (both main surfaces) facing the main surface rib portion 58a and the main surface rib portion 58b.
  • the bonding material 60 does not exist between the terminal main body portion 50 of the one metal terminal 40B and the end surface central portion 26a of the first external electrode 24a.
  • the bonding material 60 includes a side rib portion 56a and a side rib portion 56b of the other metal terminal 40B, and a second external electrode 24b (on both side surfaces 14c and 14d) facing the side rib portion 56a and the side rib portion 56b. Of the second external electrode 24b).
  • the bonding material 60 includes a main surface rib portion 58a and a main surface rib portion 58b of the other metal terminal 40B, and a second external electrode 24b (both main surfaces) facing the main surface rib portion 58a and the main surface rib portion 58b. 14a, 14b on the second external electrode 24b). Further, the bonding material 60 does not exist between the terminal main body portion 50 of the other metal terminal 40B and the end surface central portion 26b of the second external electrode 24b.
  • the bonding material 60 is formed of the first external electrode 24a disposed on the first end face 14e side of the multilayer body 14 from the first external electrode 24a facing the side rib portions 56a and 56b of the one metal terminal 40B. It is preferable to be disposed across a part of the surface, and further, from the first external electrode 24a facing the main surface ribs 58a, 58b of the other metal terminal 40B to the first end face 14e side of the laminate 14. It is preferable that the first external electrode 24a is disposed over a part of the surface of the first external electrode 24a.
  • the bonding material 60 includes a second external electrode 24b disposed on the second end face 14f side of the multilayer body 14 from the second external electrode 24b facing the side rib portions 56a and 56b of the other metal terminal 40B. It is preferable to be disposed across a part of the surface, and further, from the second external electrode 24b facing the main surface ribs 58a, 58b of the other metal terminal 40B to the second end face 14f side of the laminate 14. It is preferable to dispose over a part of the surface of the second external electrode 24b.
  • the bonding material 60 is applied to a part of the surface of the first side surface 14c and the second side surface 14d of the multilayer body 14 from the first external electrode 24a facing the side rib portions 56a and 56b of the one metal terminal 40B. It is preferable that they are arranged across (not shown). Furthermore, from the first external electrode 24a facing the main surface rib portions 58a, 58b of one metal terminal 40B to a part of the surface of the first main surface 14a and the second main surface 14b of the laminate 14. Preferably it is arranged (not shown). Thereby, the joining strength of one metal terminal 40B and the 1st external electrode 24a can be made stronger.
  • the bonding material 60 is formed on the surface of the first side surface 14c and the second side surface 14d of the stacked body 14 from the second external electrode 24b facing the side rib portions 56a and 56b of the other metal terminal 40B. It is preferable that they are arranged across (not shown). Further, the second external electrode electrode 24b facing the main surface rib portions 58a and 58b of the other metal terminal 40B extends over a part of the surfaces of the first main surface 14a and the second main surface 14b of the laminate 14. Are preferably arranged (not shown). Thereby, the joint strength between the other metal terminal 40B and the second external electrode 24b can be further increased.
  • the multilayer ceramic electronic component including the metal terminal 40B has the same effects as the metal terminal 40A shown in FIG. 5 and the following effects. That is, in the terminal main body portion 50 of the metal terminal 40B, side rib portions 56a and 56b extending so as to face the respective side surfaces 14c and 14d of the electronic component main body 12 are provided, and each main surface of the electronic component main body 12 is further provided. Main surface rib portions 58a and 58b extending so as to face 14a and 14b are provided, and the side rib portions 56a and 56b of one metal terminal 40B and the first external electrode 24a (first surfaces on both side surfaces 14c and 14d).
  • the first external electrode 24a (both main surfaces 14a, 14b) and the main surface ribs 58a, 58b of one metal terminal 40B and the first external electrode 24a (both main surfaces 14a, 14b). It joins using the joining material 60 which exists between the upper 1st external electrodes 24a), and also the terminal main-body part 50 of one metal terminal 40B, and the end surface of the 1st external electrode 24a
  • the bonding material 60 is not provided between the central portion 26a, and similarly, the side rib portions 56a and 56b of the other metal terminal 40B and the second external electrode 24b (second external portions on both side surfaces 14c and 14d).
  • a ceramic green sheet, an internal electrode conductive paste for forming the internal electrode layer 18 and an external electrode conductive paste for forming the external electrode 24 are prepared.
  • the ceramic green sheet, the internal electrode conductive paste, and the external electrode conductive paste include an organic binder and a solvent, and a known organic binder or organic solvent can be used.
  • the internal electrode conductive paste is printed in a predetermined pattern on the ceramic green sheet, and the internal electrode pattern is formed on the ceramic green sheet.
  • the internal electrode conductive paste can be printed by a known method such as screen printing or gravure printing.
  • a predetermined number of outer layer ceramic green sheets on which the internal electrode pattern is not printed are laminated, on which ceramic green sheets on which the internal electrode pattern is printed are sequentially laminated, and on the outer layer ceramic green sheets Are laminated to produce a laminate sheet.
  • the laminate sheet is pressed in the lamination direction x by means such as an isostatic press to produce a laminate block.
  • the laminate block is cut into a predetermined shape and a raw laminate chip is cut out.
  • the corners and ridges of the raw laminate may be rounded by barrel polishing or the like.
  • the cut raw laminate chip is fired to produce a laminate 14.
  • the firing temperature of the raw laminate chip depends on the ceramic material and the material of the internal electrode conductive paste, but is preferably 900 ° C. or higher and 1300 ° C. or lower.
  • the baking layer of the external electrode 24 for example, the exposed portion of the first extraction electrode portion 20a of the first internal electrode 18a exposed on the surface of the multilayer body 14 from the first end surface 14e.
  • the conductive paste for the external electrode is applied and baked on the second electrode.
  • the second electrode 14 f exposed from the second end face 14 f of the multilayer body 14 is used.
  • An external electrode conductive paste is applied to the exposed portion of the second extraction electrode portion 20b of the internal electrode 18b and baked to form a baking layer.
  • the baking temperature is preferably 700 ° C. or higher and 900 ° C. or lower. If necessary, one or more plating layers are formed on the surface of the baking layer, the external electrode 24 is formed, and the electronic component body 12 is manufactured.
  • a desired pair of metal terminals 40A is prepared.
  • the prepared one metal terminal 40 ⁇ / b> A is attached to the first external electrode 24 a of the electronic component body 12 by the bonding material 60.
  • the bonding material 60 is not provided between the terminal main body portion 50 of the one metal terminal 40A and the end surface central portion 26a of the first external electrode 24a.
  • the other prepared metal terminal 40 ⁇ / b> A is attached to the second external electrode 24 b of the electronic component main body 12 by the bonding material 60.
  • the bonding material 60 is not provided between the terminal main body portion 50 of the other metal terminal 40A and the end surface central portion 26b of the second external electrode 24b.
  • the bonding material 60 for example, a conductive adhesive in which conductive powder such as metal powder or the like is mixed with a resin component such as solder or silicon resin or epoxy resin can be used.
  • a conductive material having the following characteristics.
  • the conductive material includes a metal component composed of a first metal and a second metal having a melting point higher than that of the first metal and reacting with the first metal to generate an intermetallic compound.
  • the first metal of the conductive material is Sn or an alloy containing 70 mass% or more of Sn
  • the second metal is selected from Cu, Cu—Mn alloy, Cu—Ni alloy, Cu—Al alloy, and Cu—Cr alloy. At least one kind of alloy.
  • the first metal and the second metal of the conductive material generate an intermetallic compound having a melting point of 310 ° C. or higher.
  • the conductive material is a metal or alloy that does not hinder the reaction between the first metal and the second metal because the first metal melted as the second metal is easily wetted and does not diffuse and remain on the surface of the first metal. In which the surface is coated (for example, metals such as Ag and Au).
  • the bonding material 60 (bonding portion) is composed of a metal, an alloy, an intermetallic compound, and an Sn or Sn-based alloy having a melting point of 260 ° C. or higher, a Cu-M (M is Ni, Mn, Al, Cr) alloy, and a Cu Ni, Mn, Al, Cr, Sn, Au, Ag, Sb, Zn, Bi, etc. are composed of an intermetallic compound composed of at least two and Sn, and the proportion of Sn in the bonding material 60 is 5%. The following is preferable.
  • the residual Sn ratio is controlled by adjusting the amount of the low melting point metal component, the amount of activator, and the heating conditions.
  • the multilayer ceramic electronic component 10A shown in FIG. 1 is manufactured.
  • Example 1 the samples used in the experiments were prepared as the examples of the samples of Example 1 and Example 2. Moreover, the sample of the comparative example 1 was prepared as a comparative example. Five samples were prepared for each of Example 1, Example 2, and Comparative Example 1.
  • an electronic component body (multilayer ceramic capacitor) having the following specifications was produced according to the method for manufacturing a multilayer ceramic electronic component described above.
  • Ceramic layer material BaTiO 3 Capacity: 17 ⁇ F
  • Rated voltage DC35V
  • Structure of external electrode Structure including base electrode layer (baked layer) and plating layer Material of base electrode layer (baked layer): Electrode containing conductive metal (Cu) and glass component Thickness of base electrode layer: center of end face At 100 ⁇ m
  • Plating layer Ni plating (thickness: 3 ⁇ m or more and 6 ⁇ m or less) and Sn plating (3 ⁇ m or more and 6 ⁇ m or less)
  • Example 1 the pair of metal terminals joined to the manufactured electronic component main body was the metal terminal 40A according to the first embodiment.
  • the specifications of the metal terminal 40A are as follows. Metal terminal structure: a terminal body part, an extension part and a mounting part are provided, and the terminal body part is provided with a side rib part.
  • Metal terminal Two-layer structure with terminal body and plating film
  • Terminal body Cu-based material (Cu-8Sn alloy)
  • Plating film Two-layer structure of Ni plating film (thickness: 1 ⁇ m to 2 ⁇ m) and Sn plating film (2 ⁇ m to 4 ⁇ m) Extension length: 1 mm
  • Material of bonding material Sn-10Sb alloy Structure of bonding material: The bonding material exists between the side rib part and the external electrode facing the side rib part, and the terminal body part of the metal terminal and the center part of the end face of the external electrode Does not exist between.
  • the joining of the metal terminal to the electronic component body was as follows. First, the bonding material was applied only to the side rib portion of the metal terminal using a dispenser. Thereafter, one metal terminal was reflow bonded to the first end face side of the electronic component main body in a state where the electronic component main body was vertically erected. Similarly, the other metal terminal was reflow bonded to the second end face side of the electronic component main body.
  • Example 2 the pair of metal terminals joined to the manufactured electronic component main body was the metal terminal 40B according to the second embodiment.
  • the specifications of the metal terminal 40B are as follows.
  • Metal terminal structure It is provided with a terminal body part, an extension part and a mounting part, and the terminal body part is provided with a side rib part and a main surface rib part.
  • Metal terminal Two-layer structure with terminal body and plating film
  • Terminal body Cu-based material (Cu-8Sn)
  • Plating film Two-layer structure of Ni plating film (thickness: 1 ⁇ m to 2 ⁇ m) and Sn plating film (2 ⁇ m to 4 ⁇ m) Extension length: 1 mm
  • Bonding material Sn-10Sb alloy Bonding material structure: The bonding material exists between the side rib portion and the external electrode facing the side rib portion, and is external to the main surface rib portion and the main surface rib portion. It exists between the electrodes, and does not exist between the terminal body portion of the metal terminal and the central portion of the end face of the external electrode.
  • the joining of the metal terminal to the electronic component body was as follows. First, the bonding material was applied only to the side surface rib portion and the main surface rib portion of the metal terminal using a dispenser. Thereafter, one metal terminal was reflow bonded to the first end face side of the electronic component main body in a state where the electronic component main body was vertically erected. Similarly, the other metal terminal was reflow bonded to the second end face side of the electronic component main body.
  • the metal terminal used for the multilayer ceramic electronic component according to the comparative example is a conventional metal terminal as shown in FIG. 13, and has only a terminal main body portion, an extension portion, and a mounting portion, and includes a side rib portion and a main surface. Does not have ribs. And the joining material exists in the whole end surface of an electronic component main body, and the terminal main-body part and external electrode of a metal terminal are connected via the joining material. Other configurations of the metal terminal were the same as those of the first and second embodiments.
  • a solder paste of Sn-10Sb alloy was applied on a Cu electrode of an alumina substrate, and a multilayer ceramic electronic component to which metal terminals were attached was mounted.
  • the dimensions of the alumina substrate were 15 mm ⁇ 8 mm, the thickness was 635 ⁇ m, and the thickness of the Cu electrode was 35 ⁇ m.
  • FIG. 11 and FIG. 12 show schematic views of the evaluation method of the peel strength test.
  • FIG. 11 shows a preparation process for the evaluation of the peel strength test, (a) shows a mounting state of the multilayer ceramic electronic component on the mounting board, and (b) shows a state where the mounting board is cut left and right.
  • FIG. 12 shows an implementation process for evaluating the peel strength test, (a) shows a state where both ends of the mounting substrate are held by jigs (fixing jig and tension jig), (b) Indicates a state in which the mounting substrate is pulled by a pulling jig.
  • Example 1 a case where a peel strength test is performed on the sample of Example 1 will be described.
  • the multilayer ceramic electronic component 10 ⁇ / b> A as a sample was mounted on the mounting substrate 70 using the bonding material 60.
  • the mounting substrate 70 positioned below the multilayer ceramic electronic component 10 ⁇ / b> A as a sample was cut along a cutting line X with a wire saw.
  • one end of the mounting substrate 70 is fixed by a fixing jig 72a, and the other end of the mounting substrate 70 is fixed by a pulling jig 72b.
  • the tool 72b was pulled upward (in the direction of arrow F).
  • FIG.12 (b) until the metal terminal 40A removed from the electronic component main body 12, it pulled upwards and evaluated the average value of the maximum intensity
  • the pulling speed of the pulling jig 72b was 0.5 mm / second.
  • the peel strength test was performed on each sample of Example 2 and Comparative Example 1 in the same manner.
  • Table 1 shows the experimental results of the evaluation of the peel strength of the metal terminal.
  • the sample of Comparative Example 1 uses a metal terminal on which no side rib portion or main surface rib portion is formed, and the peel strength using the sample is 30N.
  • the sample of Example 1 is provided with a side rib portion on the metal terminal, and the metal terminal and the external electrode are bonded with a bonding material between the side rib portion and the external electrode (external electrode on the side surface), and Since no bonding material was provided between the terminal body and the center of the end face of the external electrode, the peel strength of the sample was 44.9 N, which was better than Comparative Example 1. Even in a bonding material that exhibits vulnerability to tension due to the configuration of the sample of Example 1, the stress (tensile) generated in the direction of connecting two metal terminals is caused by acting as a shearing force that exhibits relatively strong strength. It was confirmed that sufficient strength could be secured against
  • the side rib portion but also the main surface rib portion is provided on the metal terminal, and between the side rib portion and the external electrode (external electrode on the side surface) and the main surface rib.
  • the metal terminal and the external electrode are bonded with a bonding material between the terminal and the external electrode (external electrode on the main surface), and the bonding material is provided between the terminal main body and the center of the end surface of the external electrode. Therefore, the peel strength of the sample was 90 N, which was better than Comparative Example 1 and Example 1.
  • Sn that causes diffusion is 5% or less at the joint between the external electrode and the metal terminal of each sample, and most of the melting points are metals and intermetallic compounds having a melting point of 260 ° C. or more. It hardly exists and the change in the interface structure is small even in a high temperature environment of 200 ° C. or higher. Therefore, even under a high temperature environment, it is possible to suppress the problem that the bonding strength between the external electrode and the metal terminal decreases with time and structural defects such as cracks at the joint between the external electrode and the metal terminal occur. It was confirmed that
  • this invention is not limited to the said embodiment, In the range of the summary, it deform
  • the side rib portions 56a and 56b are formed.
  • the present invention is not limited to this, and only the main surface rib portions 58a and 58b are formed on the metal terminal. You may be made to do.
  • the present invention is not limited to this, and the electronic component body 12 is stacked in two or more stages. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

積層セラミック電子部品について、その金属端子同士を結ぶ方向に発生する応力に対して十分な強度を確保しうる積層セラミック電子部品を提供すること。 積層セラミック電子部品10は、積層体14と外部電極24とを有する電子部品本体12と一対の金属端子40Aとが接合材60により接続され形成されている。一対の金属端子40Aは、端子本体部50、延長部52及び実装部54により構成される。さらに、端子本体部50には、電子部品本体12の側面と対向するように延びる側面リブ部56a,56bを有する。接合材60は、側面リブ部56a,56bと側面リブ部56a,56bに対向する外部電極24との間に存在し、かつ、接合材60は、端子本体部50と外部電極24の端面中央部との間には存在しない。

Description

積層セラミック電子部品
 本発明は、たとえば、積層セラミックコンデンサ等を含む積層セラミック電子部品に関する。
 近年の積層セラミックコンデンサの薄層化技術及び多層化技術の進展は目覚しく、アルミ電解コンデンサに匹敵する高静電容量を有したものが商品化されるようになった。
 このような積層セラミックコンデンサの積層体を形成するセラミックス材料として、誘電率の比較的高いチタン酸バリウムなどの強誘電体材料が一般的に用いられているが、この強誘電体材料は圧電性及び電歪性を有する為、この強誘電体材料に電界が加わった際に応力及び機械的歪みが生じる。
 そのため、電界が加わった際の応力及び機械的歪みに伴い、積層セラミックコンデンサの外部電極から基板側にこの振動が伝わるようになり、この基板全体が音響放射面となって、雑音となる振動音(鳴き)を発生するおそれを有していた。
 また、一般に、電源周辺は高熱を発するため、基板は放熱性の良いアルミニウム基板が用いられる。しかしながら、電源周辺では、電源のオン/オフによる温度変化が大きく、熱膨張率の大きなアルミニウム基板上に実装した積層セラミックコンデンサには大きな熱応力が発生する。この熱応力は、積層セラミックコンデンサにクラックを発生させ、ショート不良や、発火等のトラブルを発生させる原因となる。
 この対策として、たとえば、図13に記載されるように、積層セラミックコンデンサ(電子部品本体)2の外部電極4に一対の金属端子6をはんだ6aで接続することにより構成される積層セラミック電子部品1は、実装基板7と積層セラミックコンデンサ2とが間隔を隔てるようにして、金属端子6を実装基板8にはんだ付けする構成が考えられている。このような構成とすることにより、金属端子6の弾性変形によって交流電圧が加わることでセラミック層に生じる機械的歪みを吸収することができ、その振動が外部電極4を介して基板に伝達されることを抑えて雑音の発生を減少することができ、さらに、実装基板からの熱応力を緩和することができる(特許文献1の図20ないし図22を参照)。
特開2004-288847号公報
 しかしながら、特許文献1のような構造(図13を参照)では、金属端子6と外部電極4を接合する接合材6aにおいて、接合材の内部に空隙が発生するか、あるいは接合材内部に空隙が発生するような接合材を用いる場合に、2つの金属端子6同士を結ぶ方向に発生する応力(引張り応力)に対して、たとえば、その接合部にクラックが発生することで、十分な強度が得られない場合があった。
 さらに、特許文献1のような構造(図13を参照)において示されるように、はんだ6aによって積層セラミックコンデンサ2の外部電極4と金属端子6とを接合した場合、外部電極4と金属端子6と接合部において、Snが比較的多く残留するため、車載用途など高温環境下にさらされる際に、外部電極4(下地電極層およびめっき層で構成される)のめっき層の金属が下地電極層まで拡散する。その結果、めっき層が消滅し、経時的に外部電極4と金属端子6との接合強度が低下し、外部電極4と金属端子6と接合部のクラックなどの構造欠陥が発生するという問題が懸念される。
 それゆえに、この発明の主たる目的は、積層セラミック電子部品について、その金属端子同士を結ぶ方向に発生する応力に対して十分な強度を確保しうる積層セラミック電子部品を提供することである。
 この発明にかかる積層セラミック電子部品は、複数の誘電体層と複数の内部電極層とが交互に積層され、積層方向に相対する第1の主面および第2の主面と、積層方向に直交する幅方向に相対する第1の側面および第2の側面と、積層方向および幅方向に直交する長さ方向に相対する第1の端面および第2の端面と、を含む積層体と、積層体の第1の端面に接続される第1の外部電極と、積層体の第2の端面に接続される第2の外部電極と、を備える電子部品本体と、第1の外部電極に接合材によって接続される第1の金属端子と、第2の外部電極に接合材によって接続される第2の金属端子と、を有する積層セラミック電子部品であって、第1の金属端子が、第1の端面に対向する端子本体部と、端子本体部に接続され実装面方向に延びる延長部と、延長部に接続され、延長部から端面同士を結んだ方向に延びる実装部と、を有し、第2の金属端子が、第2の端面に対向する端子本体部と、端子本体部に接続され実装面方向に延びる延長部と、延長部に接続され、延長部から端面同士を結んだ方向に延びる実装部と、を有し、第1の金属端子および第2の金属端子において、延長部が、電子部品本体の下面と実装部との間に隙間を形成するように設けられており、端子本体部には、電子部品本体の側面と対向するように延びるリブ部が設けられており、接合材が、少なくとも第1の金属端子のリブ部とリブ部に対向する第1の外部電極との間に存在し、かつ、接合材は、端子本体部と第1の外部電極の端面中央との間には存在せず、少なくとも第2の金属端子のリブ部とリブ部に対向する第2の外部電極との間に存在し、かつ、接合材が、端子本体部と第2の外部電極の端面中央との間には存在しない、積層セラミック電子部品である。
 この発明にかかる積層セラミック電子部品は、第1の金属端子および第2の金属端子の端子本体部において、電子部品本体の主面と対向するように延びるリブ部をさらに備えることが好ましい。
 また、この発明にかかる積層セラミック電子部品は、接合材が、Cu-M(MはNi、Mn、Al、Cr)合金と、Cu、Ni、Mn、Al、Cr、Sn、Au、Ag、Sb、Zn、Biのうち、少なくとも2以上から構成される金属間化合物と、Snとから構成され、接合材におけるSnの割合が、5%以下であることが好ましい。
 さらに、この発明にかかる積層セラミック電子部品は、接合材が、第1の金属端子のリブ部に対向する第1の外部電極から積層体の表面に跨って配置され、そして、第2の金属端子のリブ部に対向する第1の外部電極から積層体の表面に跨って配置されることが好ましい。
 この発明にかかる積層セラミック電子部品によれば、金属端子の端子本体部において、電子部品本体のそれぞれの側面と対向するように延びるリブ部が設けられており、第1の金属端子のリブ部とリブ部に対向する第1の外部電極との間に存在する接合材を用いて接合し、かつ、第1の金属端子の端子本体部と第1の外部電極の端面中央部との間に接合材を設けないようにし、同様に、第2の金属端子のリブ部とリブ部に対向する第2の外部電極との間に存在する接合材を用いて接合し、かつ、第2の金属端子の端子本体部と第2の外部電極の端面中央部との間に接合材を設けないので、引張りに対して脆弱性を示す接合材においても、比較的強い強度を示すせん断力として作用させることで、2つの金属端子同士を結ぶ方向に発生する応力(引張り応力)に対して、十分な強度を確保することが可能となる。
 また、この発明にかかる積層セラミック電子部品によれば、金属端子の端子本体部において、さらに、電子部品本体のそれぞれの主面と対向するように延びるリブ部が設けられており、電子部品本体のそれぞれの主面と対向するように延びるリブ部と第1の外部電極との間に存在する接合材を用いて接合し、同様に、電子部品本体のそれぞれの主面と対向するように延びるリブ部と第2の外部電極との間に存在する接合材を用いて接合すると、2つの金属端子同士を結ぶ方向に発生する応力(引張り応力)に対して、さらに十分な強度を確保することができる。
 さらに、この発明にかかる積層セラミック電子部品によれば、接合材には拡散の原因となるSnが5%以下であり、融点が260℃以上の金属および金属間化合物であるため、拡散金属種がほとんど存在せず、200℃以上の高温環境下においても界面構造の変化が小さいと、高温環境下においても、経時的に外部電極と金属端子との接合強度が低下し、外部電極と金属端子との接合部のクラックなどの構造欠陥が発生するという問題を抑制することが可能となる。
 さらにまた、この発明にかかる積層セラミック電子部品によれば、接合材が、第1の金属端子のリブ部に対向する第1の外部電極から積層体の第1の端面側に配置される第1の外部電極の表面一部に跨って配置され、また、接合材が、第2の金属端子のリブ部に対向する第2の外部電極から積層体の第2の端面側に配置される第2の外部電極の表面の一部に跨って配置されると、金属端子と外部電極との接合強度を強くすることができる。
 この発明によれば、積層セラミック電子部品について、その金属端子同士を結ぶ方向に発生する応力に対して十分な強度を確保しうる積層セラミック電子部品が得られる。
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。
この発明の第1の実施の形態にかかる積層セラミック電子部品の一例を示す外観斜視図である。 この発明の第1の実施の形態にかかる積層セラミック電子部品を示す図1のII-II線における断面図である。 この発明の第1の実施の形態にかかる積層セラミック電子部品を示す図1のIII-III線における断面図である。 この発明の第1の実施の形態にかかる積層セラミック電子部品を示す図1のIV-IV線における断面図である。 この発明の第1の実施の形態にかかる積層セラミック電子部品が備える金属端子を示す外観斜視図である。 この発明の第2の実施の形態にかかる積層セラミック電子部品の一例を示す外観斜視図である。 この発明の第2の実施の形態にかかる積層セラミック電子部品を示す図6のVII-VII線における断面図である。 この発明の第2の実施の形態にかかる積層セラミック電子部品を示す図6のVIII-VIII線における断面図である。 この発明の第2の実施の形態にかかる積層セラミック電子部品を示す図6のIX-IX線における断面図である。 この発明の第2の実施の形態にかかる積層セラミック電子部品が備える金属端子を示す外観斜視図である。 引剥強度試験の評価のための準備工程を示し、(a)は積層セラミック電子部品の実装基板への実装状態を示し、(b)は実装基板を左右に切断した状態を示す。 引剥強度試験を評価するための実施工程を示し、(a)は実装基板の両端を治具(固定用治具と引張用治具)により保持した状態を示し、(b)は引張用治具により実装基板を引っ張った状態を示す。 従来の積層セラミックコンデンサを含む積層セラミック電子部品を示す外観斜視図である。
1.積層セラミック電子部品
(第1の実施の形態)
 この発明の第1の実施の形態にかかる積層セラミック電子部品について説明する。図1は、この発明の第1の実施の形態にかかる積層セラミック電子部品の一例を示す外観斜視図である。図2は、この発明の第1の実施の形態にかかる積層セラミック電子部品を示す図1のII-II線における断面図であり、図3は、この発明の第1の実施の形態にかかる積層セラミック電子部品を示す図1のIII-III線における断面図である。図4は、この発明の第1の実施の形態にかかる積層セラミック電子部品を示す図1のIV-IV線における断面図である。図5は、この発明の第1の実施の形態にかかる積層セラミック電子部品が備える金属端子を示す外観斜視図である。
 図1および図2に示すように、積層セラミック電子部品10は、たとえば、電子部品本体12と一対の金属端子40Aとにより構成される。電子部品本体12と一対の金属端子40Aとは、接合材60を介して接続される。
 また、電子部品本体12は、直方体状の積層体14を含む。
 積層体14は、積層された複数のセラミック層16と複数の内部電極層18とを有する。さらに、積層体14は、積層方向xに相対する第1の主面14aおよび第2の主面14bと、積層方向xに直交する幅方向yに相対する第1の側面14cおよび第2の側面14dと、積層方向xおよび幅方向yに直交する長さ方向zに相対する第1の端面14eおよび第2の端面14fとを有する。この積層体14には、角部および稜線部に丸みがつけられていることが好ましい。なお、角部とは、積層体の隣接する3面が交わる部分のことであり、稜線部とは、積層体の隣接する2面が交わる部分のことである。
 セラミック層16は、外層部16aと内層部16bとを含む。外層部16aは、積層体14の第1の主面14a側および第2の主面14b側に位置し、第1の主面14aと最も第1の主面14aに近い内部電極層18との間に位置するセラミック層16、および第2の主面14bと最も第2の主面14bに近い内部電極層18との間に位置するセラミック層16である。そして、両外層部16aに挟まれた領域が内層部16bである。
 セラミック層16は、たとえば、誘電体材料により形成することができる。誘電体材料としては、たとえば、BaTiO3、CaTiO3、SrTiO3、またはCaZrO3などの成分を含む誘電体セラミックを用いることができる。上記の誘電体材料を主成分として含む場合、所望する電子部品本体12の特性に応じて、たとえば、Mn化合物、Fe化合物、Cr化合物、Co化合物、Ni化合物などの主成分よりも含有量の少ない成分を添加したものを用いてもよい。
 なお、積層体14に、圧電体セラミックを用いた場合、電子部品本体は、セラミック圧電素子として機能する。圧電セラミック材料の具体例としては、たとえば、PZT(チタン酸ジルコン酸鉛)系セラミック材料などが挙げられる。
 また、積層体14に、半導体セラミックを用いた場合、電子部品本体は、サーミスタ素子として機能する。半導体セラミック材料の具体例としては、たとえば、スピネル系セラミック材料などが挙げられる。
 また、積層体14に、磁性体セラミックを用いた場合、電子部品本体は、インダクタ素子として機能する。また、インダクタ素子として機能する場合は、内部電極層18は、コイル状の導体となる。磁性体セラミック材料の具体例としては、たとえば、フェライトセラミック材料などが挙げられる。
 焼成後のセラミック層16の厚みは、0.5μm以上10μm以下であることが好ましい。
 図2に示すように、積層体14は、複数の内部電極層18として、たとえば略矩形状の複数の第1の内部電極層18aおよび複数の第2の内部電極層18bを有する。複数の第1の内部電極層18aおよび複数の第2の内部電極層18bは、積層体14の積層方向xに沿って等間隔に交互に配置されるように埋設されている。
 第1の内部電極層18aおよび第2の内部電極層18bの各電極面は、金属端子40Aが延びる方向と垂直に配置されており、実装面に対しては平行になるように配置される。   
 第1の内部電極層18aの一端側には、積層体14の第1の端面14eに引き出された第1の引出電極部20aを有する。第2の内部電極層18bの一端側には、積層体14の第2の端面14fに引き出された第2の引出電極部20bを有する。具体的には、第1の内部電極層18aの一端側の第1の引出電極部20aは、積層体14の第1の端面14eに露出している。また、第2の内部電極層18bの一端側の第2の引出電極部20bは、積層体14の第2の端面14fに露出している。
 なお、内部電極18は、実装面に対して平行になるように配置されてもよく、垂直になるように配置されてもよい。
 積層体14は、セラミック層16の内層部16bにおいて、第1の内部電極層18aと第2の内部電極層18bとが対向する対向電極部22aを含む。また、積層体14は、対向電極部22aの幅方向yの一端と第1の側面14cとの間および対向電極部22aの幅方向yの他端と第2の側面14dとの間に形成される積層体14の側部(以下、「Wギャップ」という。)22bを含む。さらに、積層体14は、第1の内部電極層18aの第1の引出電極部20aとは反対側の端部と第2の端面14fとの間および第2の内部電極層18bの第2の引出電極部20bとは反対側の端部と第1の端面14eとの間に形成される積層体14の端部(以下、「Lギャップ」という。)22cを含む。
 内部電極層18は、たとえば、Ni、Cu、Ag、Pd、Auなどの金属や、これらの金属の一種を含む、たとえば、Ag-Pd合金などの合金を含有している。内部電極層18は、さらにセラミック層16に含まれるセラミックスと同一組成系の誘電体粒子を含んでいてもよい。
 内部電極層18の厚みは、0.1μm以上2μm以下であることが好ましい。
 積層体14の第1の端面14e側および第2の端面14f側には、外部電極24が配置される。外部電極24は、第1の外部電極24aおよび第2の外部電極24bを有する。
 第1の外部電極24aは、積層体14の第1の端面14eの表面に配置され、第1の端面14eから延伸して第1の主面14a、第2の主面14b、第1の側面14cおよび第2の側面14dのそれぞれの一部分を覆うように形成される。この場合、第1の外部電極24aは、第1の内部電極18aの第1の引出電極20aと電気的に接続される。
 第2の外部電極24bは、積層体14の第2の端面14fの表面に配置され、第2の端面14fから延伸して第1の主面14a、第2の主面14b、第1の側面14cおよび第2の側面14dのそれぞれの一部分を覆うように形成される。この場合、第2の外部電極24bは、第2の内部電極18bの第2の引出電極20bと電気的に接続される。
 積層体14内においては、各対向電極部22aで第1の内部電極層18aと第2の内部電極層18bとがセラミック層16を介して対向することにより、静電容量が形成されている。そのため、第1の内部電極層18aが接続された第1の外部電極24aと第2の内部電極層18bが接続された第2の外部電極24bとの間に、静電容量を得ることができる。したがって、このような構造の電子部品本体はコンデンサ素子として機能する。
 第1の外部電極24aは、図2に示すように、積層体14側から順に、第1の下地電極層28aと第1の下地電極層28aの表面に配置された第1のめっき層30aとを有する。同様に、第2の外部電極24bは、積層体14側から順に、第2の下地電極層28bと第2の下地電極層28bの表面に配置された第2のめっき層30bとを有する。
 第1の下地電極層28aは、積層体14の第1の端面14eの表面に配置され、第1の端面14eから延伸して第1の主面14a、第2の主面14b、第1の側面14cおよび第2の側面14dのそれぞれの一部分を覆うように形成される。
 また、第2の下地電極層28bは、積層体14の第2の端面14fの表面に配置され、第2の端面14fから延伸して第1の主面14a、第2の主面14b、第1の側面14cおよび第2の側面14dのそれぞれの一部分を覆うように形成される。
 第1の下地電極層28aおよび第2の下地電極層28bは、それぞれ、焼付け層、薄膜層などから選ばれる少なくとも1つを含むが、ここでは焼付け層で形成された第1の下地電極層28aおよび第2の下地電極層28bについて説明する。
 焼付け層は、ガラスと金属とを含む。焼付け層の金属としては、たとえば、Cu、Ni、Ag、Pb、Ag-Pb合金、Au等から選ばれる少なくとも1つを含む。また、焼付け層のガラスとしては、B、Si、Ba、Mg、Al、Li、Zn等から選ばれる少なくとも1つを含む。焼付け層は、複数層であってもよい。焼付け層は、ガラスおよび金属を含む導電性ペーストを積層体14に塗布して焼き付けたものであり、セラミック層16および内部電極層18と同時に焼成したものでもよく、セラミック層16および内部電極層18を焼成した後に焼き付けたものでもよい。焼付け層のうちの最も厚い部分の厚みは、10μm以上50μm以下であることが好ましい。
 焼付け層の表面に、導電性粒子と熱硬化性樹脂とを含む樹脂層が形成されてもよい。なお、樹脂層は、焼付け層を形成せずに積層体14上に直接形成してもよい。また、樹脂層は、複数層であってもよい。樹脂層のうちの最も厚い部分の厚みは、10μm以上150μm以下であることが好ましい。
 また、薄膜層は、スパッタ法または蒸着法等の薄膜形成法により形成され、金属粒子が堆積された1μm以下の層である。
 第1のめっき層30aは、第1の下地電極層28aを覆うように配置される。具体的には、第1のめっき層30aは、第1の下地電極層28aの表面の第1の端面14eに配置され、第1の下地電極層28aの表面の第1の主面14aおよび第2の主面14bならびに第1の側面14cおよび第2の側面14dにも至るように設けられていることが好ましい。
 同様に、第2のめっき層30bは、第2の下地電極層28bを覆うように配置される。具体的には、第2のめっき層30bは、第2の下地電極層28bの表面の第2の端面14fに配置され、第2の下地電極層28bの表面の第1の主面14aおよび第2の主面14bならびに第1の側面14cおよび第2の側面14dにも至るように設けられていることが好ましい。
 また、第1のめっき層30aおよび第2のめっき層30b(以下、単にめっき層ともいう)としては、たとえば、Cu、Ni、Sn、Ag、Pd、Ag-Pd合金、Au等から選ばれる少なくとも1種の金属または当該金属を含む合金が用いられる。
 めっき層は、複数層によって形成されてもよい。この場合、めっき層は、Niめっき層とSnめっき層の2層構造であることが好ましい。Niめっき層が、下地電極層の表面を覆うように設けられることで、下地電極層が金属端子40Aを接合する際のはんだによって侵食されることを防止するために用いられる。また、Niめっき層の表面に、Snめっき層を設けることにより、積層セラミックコンデンサを実装する際に、実装に用いられるはんだの濡れ性を向上させ、容易に実装することができる。
 めっき層一層あたりの厚みは、1μm以上15μm以下であることが好ましい。また、めっき層は、ガラスを含まないことが好ましい。さらに、めっき層は、単位体積あたりの金属割合が99体積%以上であることが好ましい。
 電子部品本体12の第1の外部電極24aおよび第2の外部電極24bには、図5に示すような一対の金属端子40Aが接合材60を介して接続される。一対の金属端子40Aは、積層セラミック電子部品10を、実装基板に実装するために設けられる。
 一対の金属端子40Aは、たとえば、板状のリードフレームが用いられる。この板状のリードフレームにより形成される一対の金属端子40Aは、第1の外部電極24aまたは第2の外部電極24bと対向する一方主面42、一方主面42と対向する他方主面44(電子部品本体12とは反対側の面)および一方主面42と他方主面44との間の厚みを形成する周囲面46を有する。そして、この板状のリードフレームにより形成される一対の金属端子40Aは、断面の形状がL字形状に形成されている。このように、一対の金属端子40Aの断面の形状がL字形状に形成されると、積層セラミック電子部品10を実装基板に実装したとき、実装基板のたわみに対する耐性を向上させることができる。
 金属端子40Aは、たとえば、矩形板状の端子本体部50と、端子本体部50に接続され端子本体部50から実装面方向に延びる延長部52と、延長部52に接続され延長部52から第1の端面14eおよび第2の端面14fを結んだ方向に延びる実装部54とにより構成される。この構成により、金属端子40Aを電子部品本体12と実装基板との間に介在させることで、電子部品本体12に対して、熱衝撃を加わりにくくすることができる。また、温度変化によるストレスや、実装基板の変形が生じたとしても、金属端子40Aの弾性変形によって有利に吸収することができる。
 金属端子40Aの端子本体部50は、電子部品本体12の第1の端面14e側または第2の端面14fに対向して位置する部分である。金属端子40Aの端子本体部50は、たとえば電子部品本体12の第1の外部電極24aまたは第2の外部電極24bの幅と同等の大きさの矩形板状に形成され、一方の金属端子40Aの一方主面42側が第1の外部電極24aに対向して位置し、他方の金属端子40Aの一方主面42側が第2の外部電極24bに対向して位置する。
 金属端子40Aの端子本体部50には、電子部品本体12のそれぞれの側面14c,14dと対向するように延びる側面リブ部56a,56bが設けられる。すなわち、金属端子40Aの側面リブ部56a,56bは、端子本体部50における幅方向yの両端辺の上端部から実装部54まで至らない部分に設けられ、積層体14の第1の端面14eと第2の端面14fとを結ぶ方向に延びる。すなわち、側面リブ部56a,56bは、端子本体部50における幅方向yの両端辺から、電子部品本体12側に直角に折り曲げられる態様で形成される。金属端子40Aの側面リブ部56a,56bの長さ方向zの長さ(積層体14の第1の端面14eと第2の端面14fとを結ぶ方向に延びる方向の長さ)は、積層体14の両主面14a,14bおよび両側面14c,14dの表面に形成されるそれぞれの外部電極24の長さ方向zの長さよりも長く形成されることが好ましい。換言すると、金属端子40Aの側面リブ部56a,56bは、積層体14の両主面14a,14bおよび両側面14c,14dの表面に形成される外部電極24を覆うように設けられていることが好ましい。これにより、熱応力の集中が緩和され、電子部品本体12に対するクラックの発生を大幅に抑制する効果が得られる。
 金属端子40Aの延長部52は、電子部品本体12の下面(第2の主面14b)と実装部54との間に隙間を形成するように設けられる。金属端子40Aの延長部52は、電子部品本体12を実装する実装基板から浮かせるために設けられ、実装基板に接するまでの部分である。これにより、金属端子40Aの弾性変形によって交流電圧が加わることで、セラミック層16に生じる機械的歪みを吸収することができ、その振動が外部電極24を介して実装基板に伝達されることを抑えて、その結果、雑音(鳴き)の発生を抑制することができる。また、実装基板において生じる熱応力を延長部52によって緩和することができることから、電子部品本体12にクラックが発生することを抑制することができるので、ショート不良や、発火等の故障を防止することができる。
 金属端子40Aの延長部52は、たとえば、長方形板状をしており、端子本体部50から実装面方向に積層体14の第2の主面14bと直交する高さ方向に延び、端子本体部50と一平面状に形成されている。
 金属端子40Aの実装部54は、金属端子40Aの延長部52の端部から第2の主面14bに平行する長さ方向zに延びて、金属端子40Aの延長部52と直角になるように折り曲げられる。また、金属端子40Aの実装部54は、金属端子40Aの延長部52に対して、実装基板に接するように折り曲げられて形成される。なお、実装部54の折り曲げられる方向は、電子部品本体12側に曲げられてもよいし、電子部品本体12とは反対側に折り曲げられていてもよい。
 金属端子40Aの実装部52の長さ方向z(積層体14の両端面14e,14fを結ぶ方向)の長さは、積層体14の第2の主面14b(実装面側)に形成される外部電極24の長さ方向z(積層体14の両端面14e,14fを結ぶ方向)の長さよりも長く形成されていてもよい。これによって、積層セラミック電子部品10を実装基板に実装する際において、積層セラミック電子部品10を下方からカメラで画像認識して部品の位置を検出する場合、電子部品本体12の外部電極24を金属端子40Aとして誤認識することを防止することができ、検出ミスを防止することができる。
 金属端子40Aの実装部54の長さ方向z(積層体14の両端面14e,14fを結ぶ方向)の長さは、金属端子40Aの延長部52の積層方向x(積層体14の両主面14a,14bを結ぶ方向)の長さよりも長く形成されていてもよい。また、金属端子40Aの延長部52と金属端子40Aの実装部54とが交わる角部は、丸みがつけられていてもよい。
 金属端子40Aは、端子本体と端子本体の表面に形成されるめっき膜とを有する。
 端子本体は、Ni、Fe、Cu、Ag、Crまたはこれらの金属のうちの一種以上の金属を主成分として含む合金からなることが好ましい。さらに好ましくは、端子本体は、Ni、Fe、Cu、Crまたはこれらの金属のうちの一種以上の金属を主成分として含む合金からなる。具体的には、たとえば、端子本体の母材の金属をFe-42Ni合金やFe-18Cr合金とすることができる。金属端子40Aの端子本体の厚みは、0.05mm以上0.5mm以下程度であることが好ましい。端子本体を、高融点のNi、Fe、Crまたはこれらの金属のうちの一種以上の金属を主成分として含む合金により形成することにより、外部電極24の耐熱性を向上させることができる。
 ここで、めっき膜は、金属端子40Aの表面全体に形成されてもよい。なお、めっき膜は、金属端子40Aの延長部52および実装部54の周囲面46においては形成されなくてもよい。これにより、積層セラミック電子部品10を実装基板にはんだを用いて実装する際に、はんだの金属端子40Aへの濡れ上がりを抑制することができる。そのため、電子部品本体12と金属端子40Aとの間(浮き部分)にはんだが濡れ上がることを抑制することができるため、浮き部分にはんだが充填されることを防止することができる。よって、浮き部分の空間を十分に確保することができる。従って、金属端子40Aの延長部52が弾性変形し易くなるため、交流電圧が加わることでセラミック層16に生じる機械的歪みをより吸収することができる。これにより、このとき生じる振動が、外部電極24を介して実装基板に伝達することを抑制することができる。従って、金属端子40Aを備えることで、より安定してアコースティックノイズ(鳴き)の発生を抑制することができる。
 金属端子40Aの表面に形成されためっき膜、または、金属端子40Aの延長部52および実装部54の周囲面46に形成されためっき膜を除去する場合、その除去方法は、機械による除去(切削、研磨)、レーザートリミングによる除去、めっき剥離剤(たとえば、水酸化ナトリウム)などが考えられる。また、たとえば、金属端子40Aの延長部52および実装部54の表面にめっき膜を形成しない場合、予めめっき膜を形成しない部分をレジストで覆ったうえで、金属端子40Aの他の部分にめっき膜を形成し、その後、レジストを除去するようにしてもよい。なお、金属端子40Aの全周囲面には、めっき膜が形成されなくてもよい。
 めっき膜は、たとえば、下層めっき膜と上層めっき膜とを有する。
 下層めっき膜は、端子本体の表面に形成されており、上層めっき膜は、下層めっき膜の表面に形成されている。
 下層めっき膜は、Ni、Fe、Cu、Ag、Crまたはこれらの金属のうちの一種以上の金属を主成分として含む合金からなることが好ましい。さらに好ましくは、下層めっき膜は、Ni、Fe、Crまたはこれらの金属のうちの一種以上の金属を主成分として含む合金からなる。下層めっき膜を、高融点のNi、Fe、Crまたはこれらの金属のうちの一種以上の金属を主成分として含む合金により形成することにより、外部電極24の耐熱性を向上させることができる。下層めっき膜の厚みは0.2μm以上5.0μm以下程度であることが好ましい。また、下層めっき膜は、複数のめっき膜により構成されていてもよい。
 上層めっき膜は、Sn、Ag、Auまたはこれらの金属のうちの一種以上の金属を主成分として含む合金からなることが好ましい。さらに好ましくは、上層めっき膜は、SnまたはSnを主成分として含む合金からなる。上層めっき膜をSnまたはSnを主成分として含む合金により形成することにより、金属端子40Aと外部電極24とのはんだ付き性を向上させることができる。上層めっき膜の厚みは、1.0μm以上5.0μm以下程度であることが好ましい。また、上層めっき膜は、複数の層により構成されてもよい。
 なお、めっき膜として、1層形成の場合には、はんだ付き性のよい上層めっき膜を形成するのが好ましい。
 接合材60は、第1の外部電極24aと一方の金属端子40Aの接合部とを接合し、第2の外部電極24bと他方の金属端子40Aの接合部とを接合するために用いられる。
 接合材60は、一方の金属端子40Aの側面リブ部56aおよび側面リブ部56bと、側面リブ部56aおよび側面リブ部56bに対向する第1の外部電極24a(両側面14c,14d上の第1の外部電極24a)との間に存在し、かつ接合材60は、一方の金属端子40Aの端子本体部50と第1の外部電極24aの端面中央部26aとの間には存在しない。また、接合材60は、他方の金属端子40Aの側面リブ部56aおよび側面リブ部56bと、側面リブ部56aおよび側面リブ部56bに対向する第2の外部電極24b(両側面14c,14d上の第2の外部電極24b)との間に存在し、かつ接合材60は、他方の金属端子40Aの端子本体部50と第2の外部電極24bの端面中央部26bとの間には存在しない。
 また、接合材60は、一方の金属端子40Aの側面リブ部56a,56bに対向する第1の外部電極24aから積層体14の第1の端面14e側に配置される第1の外部電極24aの表面一部に跨って配置されることが好ましい。また、接合材60は、他方の金属端子し40Aの側面リブ部56a,56bに対向する第2の外部電極24bから積層体14の第2の端面14f側に配置される第2の外部電極24bの表面の一部に跨って配置されることが好ましい。
 さらに、接合材60は、一方の金属端子40Aの側面リブ部56a,56bに対向する第1の外部電極24aから積層体14の第1の側面14cおよび第2の側面14dの表面の一部に跨って配置されていることが好ましい(図示せず)。また、接合材60は、他方の金属端子40Aの側面リブ部56a,56bに対向する第2の外部電極24bから積層体14の第1の側面14cおよび第2の側面14dの表面の一部に跨って配置されていることが好ましい(図示せず)。これにより、一方の金属端子40Aと第1の外部電極24aとの接合強度および他方の金属端子40Aと第2の外部電極24bとの接合強度をより強くすることができる。
 接合材60としては、たとえば、はんだや、シリコン樹脂あるいはエポキシ樹脂等の樹脂成分に金属粉末等の導電性粉末を配合した導電性接着剤などを用いることができる。特に、以下の特徴を持つ導電性材料によって接続すること好ましい。
 導電性材料は、第1金属と、第1金属よりも融点が高く、第1金属と反応して金属間化合物を生成する第2金属とからなる金属成分を含む。導電性材料の第1金属はSnまたはSnを70質量%以上含む合金であり、第2金属はCu、Cu-Mn合金、Cu-Ni合金、Cu-Al合金、Cu-Cr合金の中から選択される少なくとも1種類以上の合金である。導電性材料の第1金属と第2金属とは、310℃以上の融点を示す金属間化合物を生成する。また、導電性材料は、第2金属として溶融した第1金属がぬれやすく、第1金属中に拡散して表面に残留しないことにより第1金属と第2金属との反応を阻害しない金属または合金で表面がコートされているものも含む(たとえば、Ag、Auなどの金属)。
 接合材60(接合部)は、融点が260℃以上の金属、合金、金属間化合物及びSnまたはSn基合金から構成され、Cu-M(MはNi、Mn、Al、Cr)合金と、Cu、Ni、Mn、Al、Cr、Sn、Au、Ag、Sb、Zn、Bi等のうち、少なくとも2以上から構成される金属間化合物とSnとから構成され、Snの接合材60における割合が5%以下であることが好ましい。これにより、高温環境下においても、経時的に外部電極と金属端子との接合強度が低下し、外部電極24と金属端子40Aとの接合部のクラックなどの構造欠陥が発生するという問題を抑制することが可能となる。
 この第1の実施の形態にかかる積層セラミック電子部品10Aによれば、金属端子40Aの端子本体部50において、電子部品本体12のそれぞれの側面14c,14dと対向するように延びる側面リブ部56a,56bが設けられており、一方の金属端子40Aの側面リブ部56a,56bと第1の外部電極24a(両側面14c,14d上の第1の外部電極24a)との間に存在する接合材60を用いて接合し、かつ、一方の金属端子40Aの端子本体部50と第1の外部電極24aの端面中央部26aとの間に接合材60を設けないようにし、同様に、他方の金属端子40Aの側面リブ部56a,56bと第2の外部電極24b(両側面14c,14d上の第2の外部電極24b)との間に存在する接合材60を用いて接合し、かつ、他方の金属端子40Aの端子本体部50と第2の外部電極24bの端面中央部26bとの間に接合材60を設けないので、引張りに対して脆弱性を示す接合材60においても、比較的強い強度を示すせん断力として作用させることで、2つの金属端子40A同士を結ぶ方向に発生する応力(引張り応力)に対して、十分な強度を確保することが可能となる。
 また、この第1の実施の形態にかかる積層セラミック電子部品10Aによれば、接合材60には拡散の原因となるSnが5%以下であり、融点が260℃以上の金属および金属間化合物であるため、拡散金属種がほとんど存在せず、200℃以上の高温環境下においても界面構造の変化が小さい。従って、高温環境下においても、経時的に外部電極と金属端子との接合強度が低下し、外部電極24と金属端子40Aとの接合部のクラックなどの構造欠陥が発生するという問題を抑制することが可能となる。
 さらに、この第1の実施の形態にかかる積層セラミック電子部品10Aによれば、接合材60が、一方の金属端子40Aの側面リブ部56a,56bに対向する第1の外部電極24aから積層体14の第1の端面14e側に配置される第1の外部電極24aの表面一部に跨って配置され、また、接合材60が、他方の金属端子40Aの側面リブ部56a,56bに対向する第2の外部電極24bから積層体14の第2の端面14f側に配置される第2の外部電極24bの表面の一部に跨って配置されると、金属端子40Aと外部電極24との接合強度を強くすることができる。
(第2の実施の形態)
 この発明の第2の実施の形態にかかる積層セラミック電子部品について説明する。図6は、この発明の第2の実施の形態にかかる積層セラミック電子部品の一例を示す外観斜視図である。図7は、この発明の第2の実施の形態にかかる積層セラミック電子部品を示す図6のVII-VII線における断面図であり、図8は、この発明の第2の実施の形態にかかる積層セラミック電子部品を示す図6のVIII-VIII線における断面図である。図9は、この発明の第2の実施の形態にかかる積層セラミック電子部品を示す図6のIX-IX線における断面図である。図10は、この発明の第2の実施の形態にかかる積層セラミック電子部品が備える金属端子を示す外観斜視図である。なお、この実施の形態にかかる積層セラミック電子部品10Bは、一対の金属端子40Bの構成が、一対の金属端子40Aと異なる構成であることを除いて、図1を用いて説明した積層セラミック電子部品10Aと同様の構成を有する。従って、図1に示した積層セラミック電子部品10Aと同一部分には、同一の符号を付し、その説明を省略する。
 図6示す積層セラミック電子部品10Bに用いられる金属端子40Bは、図10に示すように、金属端子40Aとは異なり、さらに、端子本体部50において、電子部品本体12のそれぞれの主面14a,14bと対向するように延びる主面リブ部58a,58bが設けられる。すなわち、金属端子40Bの主面リブ部58aは、端子本体部50における積層方向xの上端部から積層体14の第1の端面14eと第2の端面14fとを結ぶ方向に延びる。また、金属端子40Bの主面リブ部58bは、端子本体部50における積層方向xの下端部から積層体14の第1の端面14eと第2の端面14fとを結ぶ方向に延びる。金属端子40Bの主面リブ部58a,58bの長さ方向zの長さ(積層体14の第1の端面14eと第2の端面14fとを結ぶ方向に延びる方向の長さ)は、積層体14の両主面14a,14bの表面に形成されるそれぞれの外部電極24の長さ方向zの長さよりも長く形成されることが好ましい。換言すると、金属端子40Aの主面リブ部58a,58bは、積層体14の両主面14a,14bの表面に形成される外部電極24を覆うように設けられていることが好ましい。
 第1の外部電極24aと一方の金属端子40Bとは接合材60により接合され、第2の外部電極24bと他方の金属端子40Bとは接合材60により接合される。
 接合材60は、一方の金属端子40Bの側面リブ部56aおよび側面リブ部56bと、側面リブ部56aおよび側面リブ部56bに対向する第1の外部電極24a(両側面14c,14d上の第1の外部電極24a)との間に存在する。また、接合材60は、一方の金属端子40Bの主面リブ部58aおよび主面リブ部58bと、主面リブ部58aおよび主面リブ部58bに対向する第1の外部電極24a(両主面14a,14b上の第1の外部電極24a)との間に存在する。さらに、接合材60は、一方の金属端子40Bの端子本体部50と第1の外部電極24aの端面中央部26aとの間には存在しない。同様に、接合材60は、他方の金属端子40Bの側面リブ部56aおよび側面リブ部56bと、側面リブ部56aおよび側面リブ部56bに対向する第2の外部電極24b(両側面14c,14d上の第2の外部電極24b)との間に存在する。また、接合材60は、他方の金属端子40Bの主面リブ部58aおよび主面リブ部58bと、主面リブ部58aおよび主面リブ部58bに対向する第2の外部電極24b(両主面14a,14b上の第2の外部電極24b)との間に存在する。さらに、接合材60は、他方の金属端子40Bの端子本体部50と第2の外部電極24bの端面中央部26bとの間には存在しない。
 また、接合材60は、一方の金属端子40Bの側面リブ部56a,56bに対向する第1の外部電極24aから積層体14の第1の端面14e側に配置される第1の外部電極24aの表面の一部に跨って配置されることが好ましく、さらに、他方の金属端子40Bの主面リブ部58a,58bに対向する第1の外部電極24aから積層体14の第1の端面14e側に配置される第1の外部電極24aの表面の一部に跨って配置されることが好ましい。
 また、接合材60は、他方の金属端子40Bの側面リブ部56a,56bに対向する第2の外部電極24bから積層体14の第2の端面14f側に配置される第2の外部電極24bの表面の一部に跨って配置されることが好ましく、さらに、他方の金属端子40Bの主面リブ部58a,58bに対向する第2の外部電極24bから積層体14の第2の端面14f側に配置される第2の外部電極24bの表面の一部に跨って配置されることが好ましい。
 さらに、接合材60は、一方の金属端子40Bの側面リブ部56a,56bに対向する第1の外部電極24aから積層体14の第1の側面14cおよび第2の側面14dの表面の一部に跨って配置されていることが好ましい(図示せず)。さらに、一方の金属端子40Bの主面リブ部58a,58bに対向する第1の外部電極24aから積層体14の第1の主面14aおよび第2の主面14bの表面の一部に跨って配置されることが好ましい(図示せず)。これにより、一方の金属端子40Bと第1の外部電極24aとの接合強度をより強くすることができる。
 また、接合材60は、他方の金属端子40Bの側面リブ部56a,56bに対向する第2の外部電極24bから積層体14の第1の側面14cおよび第2の側面14dの表面の一部に跨って配置されていることが好ましい(図示せず)。さらに、他方の金属端子40Bの主面リブ部58a,58bに対向する第2の外部電極極24bから積層体14の第1の主面14aおよび第2の主面14bの表面の一部に跨って配置されることが好ましい(図示せず)。これにより、他方の金属端子40Bと第2の外部電極24bとの接合強度をより強くすることができる。
 積層セラミック電子部品10Aに対して、金属端子40Bを備える積層セラミック電子部品は、図5に示す金属端子40Aと同様の作用効果を奏するとともに、次の効果を奏する。
 すなわち、金属端子40Bの端子本体部50において、電子部品本体12のそれぞれの側面14c,14dと対向するように延びる側面リブ部56a,56bが設けられ、さらに、電子部品本体12のそれぞれの主面14a,14bと対向するように延びる主面リブ部58a,58bが設けられており、一方の金属端子40Bの側面リブ部56a,56bと第1の外部電極24a(両側面14c,14d上の第1の外部電極24a)との間に存在する接合材60を用いて接合し、また、一方の金属端子40Bの主面リブ部58a,58bと第1の外部電極24a(両主面14a,14b上の第1の外部電極24a)との間に存在する接合材60を用いて接合し、さらに、一方の金属端子40Bの端子本体部50と第1の外部電極24aの端面中央部26aとの間に接合材60を設けないようにし、同様に、他方の金属端子40Bの側面リブ部56a,56bと第2の外部電極24b(両側面14c,14d上の第2の外部電極24b)との間に存在する接合材60を用いて接合し、また、他方の金属端子40Bの主面リブ部58a,58bと第2の外部電極24b(両主面14a,14b上の第2の外部電極24b)との間に存在する接合材60を用いて接合し、さらに、他方の金属端子40Bの端子本体部50と第2の外部電極24bの端面中央部26bとの間に接合材60を設けないので、2つの金属端子40B同士を結ぶ方向に発生する応力(引張り応力)に対して、さらに十分な強度を確保することができる。
2.積層セラミック電子部品の製造方法
 次に、以上の構成からなる積層セラミック電子部品の製造方法の一実施の形態について、積層セラミック電子部品10Aを例にして説明する。
 まず、セラミックグリーンシート、内部電極層18を形成するための内部電極用導電性ペーストおよび外部電極24を形成するための外部電極用導電性ペーストが準備される。なお、セラミックグリーンシート、内部電極用導電性ペーストおよび外部電極用導電性ペーストには、有機バインダおよび溶剤が含まれるが、公知の有機バインダや有機溶剤を用いることができる。
 そして、セラミックグリーンシート上に、たとえば、所定のパターンで内部電極用導電性ペーストを印刷し、セラミックグリーンシートには、内部電極パターンが形成される。なお、内部電極用導電性ペーストは、スクリーン印刷やグラビア印刷などの公知の方法により印刷することができる。
 次に、内部電極パターンが印刷されていない外層用セラミックグリーンシートが所定枚数積層され、その上に、内部電極パターンが印刷されたセラミックグリーンシートが順次積層され、その上に、外層用セラミックグリーンシートが所定枚数積層され、積層体シートが作製される。続いて、この積層体シートは、静水圧プレスなどの手段により積層方向xに圧着させて、積層体ブロックを作製する。
 その後、積層体ブロックが所定の形状寸法に切断され、生の積層体チップが切り出される。このとき、バレル研磨などにより生の積層体の角部や稜部に丸みをつけてもよい。続いて、切り出された生の積層体チップが焼成され、積層体14が生成される。なお、生の積層体チップの焼成温度は、セラミックの材料や内部電極用導電性ペーストの材料に依存するが、900℃以上1300℃以下であることが好ましい。
 次に、外部電極24の焼付け層を形成するために、たとえば、積層体14の表面に第1の端面14eから露出している第1の内部電極18aの第1の引出電極部20aの露出部分に外部電極用導電性ペーストが塗布されて焼き付けられ、また、同様に、外部電極24の焼付け層を形成するために、たとえば、積層体14の第2の端面14fから露出している第2の内部電極18bの第2の引出電極部20bの露出部分に外部電極用導電性ペーストが塗布されて焼き付けられ、焼付け層が形成される。このとき、焼き付け温度は、700℃以上900℃以下であることが好ましい。なお、必要に応じて、焼付け層の表面に1層以上のめっき層が形成され、外部電極24が形成され、電子部品本体12が製造される。
 続いて、本発明にかかる積層セラミック電子部品の製造方法における金属端子の取り付け工程について、説明する。
 まず、所望の一対の金属端子40Aが準備される。
 次に、準備された一方の金属端子40Aは、電子部品本体12の第1の外部電極24aに接合材60によって取り付けられる。このとき、一方の金属端子40Aの端子本体部50と第1の外部電極24aの端面中央部26aとの間には接合材60は設けない。同様に、準備された他方の金属端子40Aは、電子部品本体12の第2の外部電極24bに接合材60によって取り付けられる。このとき、他方の金属端子40Aの端子本体部50と第2の外部電極24bの端面中央部26bとの間に接合材60は設けない。
 接合材60としては、たとえば、はんだや、シリコン樹脂あるいはエポキシ樹脂等の樹脂成分に金属粉末等の導電性粉末を配合した導電性接着剤などを用いることができる。特に、以下の特徴を持つ導電性材料によって接続すること好ましい。
 導電性材料は、第1金属と、第1金属よりも融点が高く、第1金属と反応して金属間化合物を生成する第2金属とからなる金属成分を含む。導電性材料の第1金属はSnまたはSnを70質量%以上含む合金であり、第2金属はCu、Cu-Mn合金、Cu-Ni合金、Cu-Al合金、Cu-Cr合金の中から選択される少なくとも1種類以上の合金である。導電性材料の第1金属と第2金属とは、310℃以上の融点を示す金属間化合物を生成する。また、導電性材料は、第2金属として溶融した第1金属がぬれやすく、第1金属中に拡散して表面に残留しないことにより第1金属と第2金属との反応を阻害しない金属または合金で表面がコートされているものも含む(たとえば、Ag、Auなどの金属)。
 接合材60(接合部)は、融点が260℃以上の金属、合金、金属間化合物及びSnまたはSn基合金から構成され、Cu-M(MはNi、Mn、Al、Cr)合金と、Cu、Ni、Mn、Al、Cr、Sn、Au、Ag、Sb、Zn、Bi等のうち、少なくとも2以上から構成される金属間化合物とSnから構成され、Snの接合材60における割合が5%以下であることが好ましい。
 なお、残留Sn率は、低融点金属成分の量、活性剤量、加熱条件を調整することで制御する。
 上述のようにして、図1に示す積層セラミック電子部品10Aが製造される。
3.実験例
 次に、本発明にかかる積層セラミック電子部品10A、10Bについて、金属端子の引剥強度の評価の実験を行った。
 まず、実験に用いた試料は、実施例として、実施例1および実施例2の試料を準備した。また、比較例として、比較例1の試料を準備した。試料数は、実施例1、実施例2、比較例1それぞれ、5個作製した。
 まず、上述した積層セラミック電子部品の製造方法にしたがって、以下のような仕様の電子部品本体(積層セラミックコンデンサ)を作製した。
 チップサイズ(設計値):長さ×幅×高さ=5.0mm×5.0mm×2.7mm
 セラミック層の材料:BaTiO3
 容量:17μF
 定格電圧:DC35V
 外部電極の構造:下地電極層(焼付け層)とめっき層とを含む構造
 下地電極層(焼き付け層)の材料:導電性金属(Cu)とガラス成分を含む電極
 下地電極層の厚み:端面中央部で100μm
 めっき層:Niめっき(厚み:3μm以上6μm以下)とSnめっき(3μm以上6μm以下)の2層構造
 実施例1において、作製された電子部品本体に接合される一対の金属端子は、第1の実施の形態にかかる金属端子40Aとした。金属端子40Aの仕様は以下の通りである。
 金属端子の構造:端子本体部、延長部および実装部を備え、端子本体部には側面リブ部を備える。
 金属端子:端子本体とめっき膜とによる2層構造
 端子本体:Cu系材料(Cu-8Sn合金)
 めっき膜:Niめっき膜(厚み:1μm以上2μm以下)とSnめっき膜(2μm以上4μm以下)の2層構造
 延長部の長さ:1mm
 接合材の材料:Sn-10Sb合金
 接合材の構造:接合材は、側面リブ部と側面リブ部に対向する外部電極との間に存在し、金属端子の端子本体部と外部電極の端面中央部との間には存在しない。
 電子部品本体に対する金属端子の接合は、以下の通りとした。まず、金属端子の側面リブ部にのみディスペンサーを用いて接合材を塗布した。その後、電子部品本体を垂直に立てた状態で、電子部品本体の第1の端面側に一方の金属端子をリフロー接合した。同様に、電子部品本体の第2の端面側に他方の金属端子をリフロー接合した。
 実施例2において、作製された電子部品本体に接合される一対の金属端子は、第2の実施の形態にかかる金属端子40Bとした。金属端子40Bの仕様は以下の通りである。
 金属端子の構造:端子本体部、延長部および実装部を備え、端子本体部には側面リブ部および主面リブ部を備える。
 金属端子:端子本体とめっき膜とによる2層構造
 端子本体:Cu系材料(Cu-8Sn)
 めっき膜:Niめっき膜(厚み:1μm以上2μm以下)とSnめっき膜(2μm以上4μm以下)の2層構造
 延長部の長さ:1mm
 接合材の材料:Sn-10Sb合金
 接合材の構造:接合材は、側面リブ部と側面リブ部に対向する外部電極との間に存在し、主面リブ部と主面リブ部に対向する外部電極との間に存在し、金属端子の端子本体部と外部電極の端面中央部との間には存在しない。
 電子部品本体に対する金属端子の接合は、以下の通りとした。まず、金属端子の側面リブ部および主面リブ部にのみディスペンサーを用いて接合材を塗布した。その後、電子部品本体を垂直に立てた状態で、電子部品本体の第1の端面側に一方の金属端子をリフロー接合した。同様に、電子部品本体の第2の端面側に他方の金属端子をリフロー接合した。
 また、比較例にかかる積層セラミック電子部品に用いられる金属端子は、図13に示すような従来の金属端子であり、端子本体部、延長部および実装部のみを有し、側面リブ部や主面リブ部を有しない。そして、接合材は、電子部品本体の端面全体に存在し、金属端子の端子本体部と外部電極とが接合材を介して接続されている。金属端子のその他の構成は、実施例1および実施例2の構造と同様とした。
 (評価用実装体の作製方法)
 実装基板として、アルミナ基板のCu電極上にSn-10Sb合金のはんだペーストを塗布し、金属端子が取り付けられた積層セラミック電子部品を実装した。アルミナ基板の寸法は、15mm×8mm、厚みは635μmとし、Cu電極の厚みは35μmとした。
(引剥強度評価方法)
 図11および図12に引剥強度試験の評価方法の模式図を示す。図11は、引剥強度試験の評価のための準備工程を示し、(a)は積層セラミック電子部品の実装基板への実装状態を示し、(b)は実装基板を左右に切断した状態を示す。図12は、引剥強度試験を評価するための実施工程を示し、(a)は実装基板の両端を治具(固定用治具と引張用治具)により保持した状態を示し、(b)は引張用治具により実装基板を引っ張った状態を示す。
 ここでは、実施例1の試料について引剥強度試験を行う場合について説明する。
 まず、図11(a)に示すように、実装基板70に試料となる積層セラミック電子部品10Aを、接合材60を用いて実装した。そして、図11(b)に示すように、試料である積層セラミック電子部品10Aの下部に位置する実装基板70を切断線Xに沿って、ワイヤーソーで切断した。
 続いて、図12(a)に示すように、実装基板70の一方端側を固定用治具72aにより固定し、実装基板70の他方端側を引張用治具72bにより固定し、引張用治具72bを上方(矢印Fの方向)に引っ張った。そして、図12(b)に示すように、金属端子40Aが電子部品本体12から外れるまで、上方に引張り、金属端子40Aが外れたときの最大強度の平均値を引剥強度として評価した。なお、引張用治具72bの引張り速度は、0.5mm/秒とした。
 同様の方法で、実施例2および比較例1の各試料に対しても、引剥強度試験を行った。
 以上の、金属端子の引剥強度の評価の実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1の試料は、側面リブ部や主面リブ部の形成されない金属端子が用いられており、その試料を用いた引剥強度は、30Nであった。
 一方、実施例1の試料は、金属端子に側面リブ部が設けられ、側面リブ部と外部電極(側面上の外部電極)との間で金属端子と外部電極とを接合材により接合し、かつ、端子本体部と外部電極の端面中央部との間に接合材を設けていないため、その試料の引剥強度は、44.9Nであり、比較例1よりも良好な強度が得られた。実施例1の試料の構成により、引張りに対して脆弱性を示す接合材においても、比較的強い強度を示すせん断力として作用させることで、2つの金属端子同士を結ぶ方向に発生する応力(引張り力)に対して、十分な強度を確保しうることが確認された。
 さらに、実施例2の試料は、金属端子に側面リブ部だけでなく、さらに、主面リブ部が設けられ、側面リブ部と外部電極(側面上の外部電極)との間、および主面リブ部と外部電極(主面上の外部電極)との間で金属端子と外部電極とを接合材により接合し、かつ、端子本体部と外部電極の端面中央部との間に接合材を設けていないため、その試料の引剥強度は、90Nであり、比較例1や実施例1よりも良好な強度が得られた。
 さらに、各試料の外部電極と金属端子との接合部には拡散の原因となるSnが5%以下であり、ほとんどの融点が260℃以上の金属及び金属間化合物であるため、拡散金属種がほとんど存在せず、200℃以上の高温環境下においても界面構造の変化が小さい。したがって、高温環境下においても、経時的に外部電極と金属端子との接合強度が低下し、外部電極と金属端子との接合部のクラックなどの構造欠陥が発生するという問題を抑制することが可能となることが確認された。
 なお、この発明は、前記実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形される。また、電子部品本体のセラミック層の厚み、層数、対向電極面積および外形寸法は、これに限定されるものではない。
 本実施の形態にかかる金属端子40Aおよび金属端子40Bでは、側面リブ部56a,56bが形成されているが、これに限るものではなく、金属端子には、主面リブ部58a,58bのみが形成されるようにしてもよい。
 また、本実施の形態にかかる積層セラミック電子部品10Aおよび10Bでは、電子部品本体12は、1つだけ含まれているが、これに限るものではなく、電子部品本体12は、2段以上積み重ねられていてもよい。
 10A,10B 積層セラミック電子部品
 12 電子部品本体
 14 積層体
 16 セラミック層
 16a 外層部
 16b 内層部
 18 内部電極層
 18a 第1の内部電極層
 18b 第2の内部電極層
 20a 第1の引出電極部
 20b 第2の引出電極部
 22a 対向電極部
 22b 側部(Wギャップ)
 22c 端部(Lギャップ)
 24 外部電極
 24a 第1の外部電極
 24b 第2の外部電極
 26a,26b 端面中央部
 28a,28b 下地電極層
 30a,30b めっき層
 40A,40B 金属端子
 50 端子本体部
 52 延長部
 54 実装部
 56a,56b 側面リブ部
 58a,58b 主面リブ部
 60 接合材
 70 実装基板
 72a 固定用治具
 72b 引張用治具

Claims (4)

  1.  複数の誘電体層と複数の内部電極層とが交互に積層され、積層方向に相対する第1の主面および第2の主面と、積層方向に直交する幅方向に相対する第1の側面および第2の側面と、積層方向および幅方向に直交する長さ方向に相対する第1の端面および第2の端面と、を含む積層体と、
     前記積層体の第1の端面に接続される第1の外部電極と、前記積層体の前記第2の端面に接続される第2の外部電極と、を備える電子部品本体と、
     前記第1の外部電極に接合材によって接続される第1の金属端子と、前記第2の外部電極に接合材によって接続される第2の金属端子と、
     を有する積層セラミック電子部品であって、
     前記第1の金属端子は、前記第1の端面に対向する端子本体部と、前記端子本体部に接続され実装面方向に延びる延長部と、前記延長部に接続され、前記延長部から前記端面同士を結んだ方向に延びる実装部と、を有し、
     前記第2の金属端子は、前記第2の端面に対向する端子本体部と、前記端子本体部に接続され実装面方向に延びる延長部と、前記延長部に接続され、前記延長部から前記端面同士を結んだ方向に延びる実装部と、を有し、
     前記第1の金属端子および前記第2の金属端子において、
     前記延長部は、前記電子部品本体の下面と前記実装部との間に隙間を形成するように設けられており、
     前記端子本体部には、前記電子部品本体の側面と対向するように延びるリブ部が設けられており、
     前記接合材は、
     少なくとも前記第1の金属端子の前記リブ部と前記リブ部に対向する前記第1の外部電極との間に存在し、かつ、前記接合材は、前記端子本体部と前記第1の外部電極の端面中央との間には存在せず、
     少なくとも前記第2の金属端子の前記リブ部と前記リブ部に対向する前記第2の外部電極との間に存在し、かつ、前記接合材は、前記端子本体部と前記第2の外部電極の端面中央との間には存在しない、積層セラミック電子部品。
  2.  前記第1の金属端子および前記第2の金属端子の前記端子本体部には、前記電子部品本体の主面と対向するように延びるリブ部をさらに備える、請求項1に記載の積層セラミック電子部品。
  3.  前記接合材は、Cu-M(MはNi、Mn、Al、Cr)合金と、Cu、Ni、Mn、Al、Cr、Sn、Au、Ag、Sb、Zn、Biのうち、少なくとも2以上から構成される金属間化合物と、Snとから構成され、
     前記接合材におけるSnの割合が、5%以下である、請求項1または請求項2に記載の積層セラミック電子部品。
  4.  前記接合材は、
     前記第1の金属端子の前記リブ部に対向する前記第1の外部電極から前記積層体の表面に跨って配置され、そして、
     前記第2の金属端子の前記リブ部に対向する前記第1の外部電極から前記積層体の表面に跨って配置される、請求項1ないし請求項3のいずれかに記載の積層セラミック電子部品。
PCT/JP2018/000556 2017-02-13 2018-01-12 積層セラミック電子部品 WO2018146990A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/529,881 US11170937B2 (en) 2017-02-13 2019-08-02 Multilayer ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023960 2017-02-13
JP2017023960A JP2018133355A (ja) 2017-02-13 2017-02-13 積層セラミック電子部品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/529,881 Continuation US11170937B2 (en) 2017-02-13 2019-08-02 Multilayer ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2018146990A1 true WO2018146990A1 (ja) 2018-08-16

Family

ID=63108207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000556 WO2018146990A1 (ja) 2017-02-13 2018-01-12 積層セラミック電子部品

Country Status (3)

Country Link
US (1) US11170937B2 (ja)
JP (1) JP2018133355A (ja)
WO (1) WO2018146990A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10460874B2 (en) * 2017-02-22 2019-10-29 Taiyo Yuden Co., Ltd. Electronic component with metal terminals
CN111063545A (zh) * 2018-10-17 2020-04-24 三星电机株式会社 电子组件
US20220181078A1 (en) * 2020-12-04 2022-06-09 Samsung Electro-Mechanics Co., Ltd. Electronic component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142516B1 (ko) 2018-09-04 2020-08-07 삼성전기주식회사 전자 부품
JP7234974B2 (ja) 2020-02-27 2023-03-08 株式会社村田製作所 積層セラミック電子部品
JP2021174821A (ja) * 2020-04-22 2021-11-01 株式会社村田製作所 積層セラミックコンデンサ
KR20220092249A (ko) * 2020-12-24 2022-07-01 삼성전기주식회사 적층형 전자 부품
WO2024042949A1 (ja) * 2022-08-23 2024-02-29 株式会社村田製作所 コイル部品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028125U (ja) * 1988-06-29 1990-01-19
JPH11102837A (ja) * 1997-09-25 1999-04-13 Marcon Electron Co Ltd 電子部品
JPH11162780A (ja) * 1997-11-21 1999-06-18 Tokin Ceramics Kk 積層セラミックコンデンサー結合体とその製造方法
JP2008130954A (ja) * 2006-11-24 2008-06-05 Maruwa Co Ltd 導電脚体付きチップ形積層コンデンサ及びその製造方法並びにチップ形積層コンデンサの導電脚体形成用前駆体
JP2012023322A (ja) * 2010-07-13 2012-02-02 Maruwa Co Ltd チップ型積層セラミックコンデンサ及びその製造方法
WO2016039057A1 (ja) * 2014-09-10 2016-03-17 株式会社村田製作所 金属間化合物の生成方法
JP2016162938A (ja) * 2015-03-03 2016-09-05 Tdk株式会社 電子部品
JP2016225380A (ja) * 2015-05-28 2016-12-28 株式会社村田製作所 セラミック電子部品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344402B2 (ja) 1993-03-05 2002-11-11 株式会社村田製作所 チップ型電子部品
JPH09266134A (ja) * 1996-03-28 1997-10-07 Kyocera Corp 複合セラミックコンデンサの製造方法
JP3506964B2 (ja) * 1999-06-30 2004-03-15 太陽誘電株式会社 積層セラミック電子部品の製造方法
JP3785966B2 (ja) * 2001-08-23 2006-06-14 株式会社村田製作所 積層セラミック電子部品の製造方法および積層セラミック電子部品
JP3847265B2 (ja) 2003-03-20 2006-11-22 Tdk株式会社 電子部品
JP5176775B2 (ja) * 2008-06-02 2013-04-03 株式会社村田製作所 セラミック電子部品及びその製造方法
JP5857847B2 (ja) * 2011-06-22 2016-02-10 株式会社村田製作所 セラミック電子部品
JP5983930B2 (ja) 2012-08-24 2016-09-06 Tdk株式会社 セラミック電子部品
JP2015008270A (ja) 2013-05-27 2015-01-15 株式会社村田製作所 セラミック電子部品
DE102014221006A1 (de) * 2014-10-16 2016-04-21 Robert Bosch Gmbh Kapazitives Bauelement mit einem wärmeleitfähigen Anschlusselement

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028125U (ja) * 1988-06-29 1990-01-19
JPH11102837A (ja) * 1997-09-25 1999-04-13 Marcon Electron Co Ltd 電子部品
JPH11162780A (ja) * 1997-11-21 1999-06-18 Tokin Ceramics Kk 積層セラミックコンデンサー結合体とその製造方法
JP2008130954A (ja) * 2006-11-24 2008-06-05 Maruwa Co Ltd 導電脚体付きチップ形積層コンデンサ及びその製造方法並びにチップ形積層コンデンサの導電脚体形成用前駆体
JP2012023322A (ja) * 2010-07-13 2012-02-02 Maruwa Co Ltd チップ型積層セラミックコンデンサ及びその製造方法
WO2016039057A1 (ja) * 2014-09-10 2016-03-17 株式会社村田製作所 金属間化合物の生成方法
JP2016162938A (ja) * 2015-03-03 2016-09-05 Tdk株式会社 電子部品
JP2016225380A (ja) * 2015-05-28 2016-12-28 株式会社村田製作所 セラミック電子部品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10460874B2 (en) * 2017-02-22 2019-10-29 Taiyo Yuden Co., Ltd. Electronic component with metal terminals
CN111063545A (zh) * 2018-10-17 2020-04-24 三星电机株式会社 电子组件
CN111063545B (zh) * 2018-10-17 2023-02-03 三星电机株式会社 电子组件
US20220181078A1 (en) * 2020-12-04 2022-06-09 Samsung Electro-Mechanics Co., Ltd. Electronic component
US11587729B2 (en) * 2020-12-04 2023-02-21 Samsung Electro-Mechanics Co., Ltd. Electronic component
US11837404B2 (en) 2020-12-04 2023-12-05 Samsung Electro-Mechanics Co., Ltd. Electronic component

Also Published As

Publication number Publication date
US20190355522A1 (en) 2019-11-21
JP2018133355A (ja) 2018-08-23
US11170937B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2018146990A1 (ja) 積層セラミック電子部品
JP6201900B2 (ja) セラミック電子部品
JP5857847B2 (ja) セラミック電子部品
JP5664574B2 (ja) 積層セラミックコンデンサ
US10580577B2 (en) Multilayer ceramic electronic component and mounting structure thereof
JP2018018938A (ja) 積層セラミック電子部品
US10790092B2 (en) Multilayer ceramic electronic component
JP6962305B2 (ja) 積層セラミック電子部品
JP5776583B2 (ja) 積層セラミックコンデンサ
US10573459B2 (en) Multilayer ceramic electronic component and mounting structure thereof
KR101718307B1 (ko) 세라믹 전자 부품 및 그 제조 방법
JP2014229867A (ja) セラミック電子部品
JP2016225380A (ja) セラミック電子部品
JP2016225417A (ja) セラミック電子部品
KR20200001512A (ko) 적층 세라믹 전자부품
JP2014229869A (ja) セラミック電子部品
JP2016225381A (ja) セラミック電子部品
JP2018148059A (ja) 熱収縮チューブ付き積層セラミック電子部品およびその実装方法
JP7319133B2 (ja) 積層セラミック電子部品及び電子部品実装基板
JP2015088616A (ja) セラミック電子部品
JP7353141B2 (ja) 積層セラミック電子部品及び電子部品実装基板
JP2010114385A (ja) セラミック電子部品
JP2017085026A (ja) 金属端子付き積層セラミック電子部品
JP2016207727A (ja) リード端子付き積層セラミック電子部品
JP5906766B2 (ja) リード線付き電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751048

Country of ref document: EP

Kind code of ref document: A1