[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018034382A1 - 배터리 모듈 - Google Patents

배터리 모듈 Download PDF

Info

Publication number
WO2018034382A1
WO2018034382A1 PCT/KR2016/013233 KR2016013233W WO2018034382A1 WO 2018034382 A1 WO2018034382 A1 WO 2018034382A1 KR 2016013233 W KR2016013233 W KR 2016013233W WO 2018034382 A1 WO2018034382 A1 WO 2018034382A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling plate
secondary battery
battery module
battery
present
Prior art date
Application number
PCT/KR2016/013233
Other languages
English (en)
French (fr)
Inventor
최미금
문정오
강달모
신은규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16913565.4A priority Critical patent/EP3373384B1/en
Priority to CN201680073050.XA priority patent/CN108370075B/zh
Priority to US15/776,885 priority patent/US10629875B2/en
Priority to ES16913565T priority patent/ES2954996T3/es
Priority to JP2018540452A priority patent/JP6683817B2/ja
Priority to PL16913565.4T priority patent/PL3373384T3/pl
Publication of WO2018034382A1 publication Critical patent/WO2018034382A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery including one or more secondary cells, and more particularly, to a battery module and battery pack including the same, a battery having a simple structure, low volume and weight, and efficient cooling performance. will be.
  • водородн ⁇ е ⁇ е ⁇ ество Commercially available secondary batteries include nickel cadmium batteries, nickel hydride batteries, nickel zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. The self-discharge rate is very low and the energy density is high.
  • Such lithium secondary batteries mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with the positive electrode active material and the negative electrode active material are disposed with a separator interposed therebetween, and a packaging material that seals the electrode assembly together with the electrolyte solution, that is, a battery case.
  • a lithium secondary battery may be classified into a can type secondary battery in which an electrode assembly is embedded in a metal can and a pouch type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of the exterior material.
  • secondary batteries are widely used not only in small devices such as portable electronic devices but also in medium and large devices such as automobiles and power storage devices. When used in such medium and large devices, a large number of secondary batteries are electrically connected to increase capacity and output.
  • the pouch-type secondary battery is widely used in such a medium-large device because of its advantages such as easy lamination and light weight.
  • the pouch type secondary battery is generally packaged in a battery case of a laminate sheet of aluminum and polymer resin, the mechanical rigidity is not large and it is not easy to maintain the laminated state by itself. Therefore, when constructing a battery module including a plurality of pouch-type secondary batteries, in order to protect the secondary battery from external shocks, to prevent the flow thereof, and to facilitate lamination, a polymer cartridge is often used. many.
  • the cartridge is usually configured in the form of a rectangular plate with a central portion empty, wherein four side portions are configured to surround the outer circumference of the pouch type secondary battery.
  • the secondary battery may be located in the inner empty space generated when the cartridge is stacked.
  • a fastening part for fixing between cartridges may be required. That is, when a battery module is to be configured using a plurality of secondary batteries and a plurality of cartridges, in order to fix them, there must be a fastening part capable of fixing these to each other such as bolts or belts.
  • the cartridge or the like needs to be provided with a configuration such as a fastening component, for example, a hole.
  • the performance of the secondary battery may decrease, and in severe cases, there is also a risk of explosion or fire.
  • heat from a plurality of secondary batteries may be added in a narrow space, thereby increasing the temperature of the battery module more quickly and severely.
  • battery modules included in vehicle battery packs are frequently exposed to direct sunlight and may be placed in high temperature conditions such as summer or desert areas. Therefore, when configuring a battery module using a plurality of secondary batteries, it can be said that it is very important to secure a stable and effective cooling performance.
  • the present invention was devised to solve the above problems, while ensuring efficient cooling performance, the structure is simple and stable, lightweight and small in size, easy to reduce the manufacturing cost and battery module including the same Its purpose is to provide packs and cars.
  • the battery module according to the present invention for achieving the above object is provided with an electrode assembly, an electrolyte and a pouch sheathing material, and an accommodating part for accommodating the electrode assembly and a sealing part in which the pouch sheathing material is sealed are formed, and is erected in the vertical direction.
  • a plurality of pouch-type secondary batteries arranged in left and right directions and having a lower sealing portion folded;
  • a heat-conductive material disposed in a shape lying horizontally on a lower portion of the plurality of secondary batteries, and formed convexly in an upper direction on an upper surface thereof, the convex portion having a lower portion of an accommodating portion of the secondary battery attached thereto.
  • the cooling plate includes a cooling plate disposed between the convex portions and protruding upward, and supporting the folded lower sealing portion of the secondary battery in an upward direction.
  • the secondary battery at least a portion of the lower surface of the accommodating portion may be attached and fixed to the upper surface of the convex portion through the adhesive.
  • the adhesive may be a thermally conductive adhesive.
  • the secondary battery may be attached to and fixed to the upper surface of the convex portion through a double-sided adhesive tape having at least a portion of the lower surface of the housing portion provided with an adhesive layer on both sides.
  • the folding support may be configured such that the folded portion of the lower sealing portion contacts the lower surface of the accommodation portion.
  • the convex portion may have an inclined surface formed such that at least a portion thereof becomes narrower in an upward direction.
  • At least some of the convex portions may have different secondary batteries attached and fixed to the upper left and upper right surfaces, respectively.
  • the convex portion and the folding support portion may be alternately disposed along the arrangement direction of the secondary battery on an upper surface of the cooling plate.
  • the battery module according to the present invention the two side plates arranged to face each other in a form standing on both ends of the cooling plate; And an upper plate which is disposed to face the cooling plate in a lying down shape, and whose both ends are connected to the upper ends of the two side plates.
  • the cooling plate may be integrally formed with the two side plates and the upper plate in a tubular shape.
  • irregularities may be formed in the front and rear direction.
  • the cooling plate, the electrical insulation layer may be coated on at least a portion of the upper surface.
  • the battery pack according to the present invention for achieving the above object includes a battery module according to the present invention.
  • the vehicle according to the present invention for achieving the above object includes a battery module according to the present invention.
  • the cooling performance of a battery module including a plurality of secondary batteries may be improved.
  • a separate cartridge or cooling fin may not be interposed between the secondary battery and the cooling plate.
  • heat can be transferred directly from the secondary battery to the cooling plate without passing through other components such as cartridges or cooling fins.
  • the number of mediators on the heat transfer path is reduced, the distance between the secondary battery and the cooling plate is shorter, and the thermal resistance due to contact between the mediators is reduced, so that the heat dissipation efficiency can be improved.
  • the air layer can be removed or reduced on the path where heat is transferred from the secondary battery to the cooling plate, and thus the cooling performance can be further improved.
  • the structure of the battery module may be simplified and may be easy to reduce weight and volume.
  • the battery module assembly process can be simplified and the manufacturing cost can be reduced.
  • the secondary battery may be directly attached and fixed to the cooling plate. Therefore, the cartridge and the separate fastening member or the like for fixing the cartridges may not be separately provided.
  • FIG. 1 is a perspective view schematically showing the configuration of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a partial configuration of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line A1-A1 'of FIG.
  • FIG. 4 is an exploded perspective view schematically illustrating a configuration of a pouch type secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of the combination of the configuration of FIG.
  • FIG. 6 is a diagram schematically illustrating an attachment configuration of a secondary battery and a cooling plate according to an exemplary embodiment of the present invention.
  • FIG. 7 is a diagram schematically illustrating an attachment configuration of a rechargeable battery and a cooling plate according to another exemplary embodiment of the present invention.
  • FIG. 8 is a diagram schematically illustrating a form in which a secondary battery and a cooling plate are separated in the configuration of FIG. 6.
  • FIG. 9 is an enlarged view of a portion of a lower configuration of a battery module according to another embodiment of the present invention.
  • FIG. 10 is a diagram schematically showing a mode in which a secondary battery and a cooling plate are separated with respect to part A3 'of FIG. 3.
  • FIG. 11 is a front view schematically showing the configuration of a battery module according to another embodiment of the present invention.
  • FIG. 12 is an enlarged view of a portion A8 of FIG. 11.
  • FIG. 13 is a diagram schematically illustrating a configuration of a battery module according to another embodiment of the present invention.
  • FIG. 14 is a perspective view schematically showing the configuration of a cooling plate according to another embodiment of the present invention.
  • 15 is a front view schematically showing some components of a battery module according to another embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing the configuration of a battery module according to an embodiment of the present invention.
  • 2 is an exploded perspective view of a part of the configuration of Figure 1
  • Figure 3 is a cross-sectional view taken along the line A1-A1 'of FIG.
  • internal components of the secondary battery are not shown for convenience of description.
  • a battery module according to the present invention may include a secondary battery 100 and a cooling plate 200.
  • the secondary battery 100 may be provided in plural in one battery module.
  • each of the plurality of secondary batteries 100 may be configured as a pouch type secondary battery.
  • the pouch type secondary battery 100 may include an electrode assembly, an electrolyte, and a pouch packaging material. The configuration of the pouch type secondary battery 100 will be described in more detail with reference to FIGS. 4 and 5.
  • FIG. 4 is an exploded perspective view schematically illustrating a configuration of a pouch type secondary battery 100 according to an embodiment of the present invention
  • FIG. 5 is a combined perspective view of the configuration of FIG. 4.
  • the electrode assembly 110 may be configured in a form in which at least one positive electrode plate and at least one negative electrode plate are disposed with the separator interposed therebetween. More specifically, the electrode assembly 110 is divided into a winding type in which one positive electrode plate and one negative electrode plate are wound together with a separator, and a stack type in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked with a separator interposed therebetween. Can be.
  • the pouch exterior material 120 may be configured to include an outer insulating layer, a metal layer, and an inner adhesive layer.
  • the pouch sheath 120 is a metal thin film, for example, to protect internal components such as the electrode assembly 110 and the electrolyte, and to improve the electrochemical properties of the electrode assembly 110 and the electrolyte and to improve heat dissipation. It may be configured in a form containing an aluminum thin film.
  • the aluminum thin film may be insulated from an insulating material so as to secure electrical insulation with components inside the secondary battery 100, such as the electrode assembly 110 and the electrolyte, or with other components outside the secondary battery 100. It may be interposed between the layer and the inner adhesive layer.
  • the pouch packaging material 120 may include a left pouch 121 and a right pouch 122, and at least one of the left pouch 121 and the right pouch 122 may be formed with a concave inner space.
  • Payment (I) can be configured.
  • the electrode assembly 110 may be accommodated in the accommodating part I of the pouch.
  • the outer circumferential surfaces of the left pouch 121 and the right pouch 122 are provided with a sealing part S to bond the internal adhesive layers of the sealing part S to each other, thereby to seal the receiving part in which the electrode assembly 110 is accommodated. Can be.
  • each electrode plate of the electrode assembly 110 may include an electrode tab, and one or more electrode tabs 111 may be connected to the electrode lead 112.
  • the electrode lead 112 is interposed between the left pouch 121 and the sealing portion S of the right pouch 122 to be exposed to the outside of the pouch packaging material 120 to function as an electrode terminal of the secondary battery 100. can do.
  • the pouch-type secondary battery 100 may be arranged in a horizontal direction, respectively, in a form standing up and down.
  • the pouch type secondary battery 100 May be arranged in a left and right direction in a form erect perpendicular to the ground so that the wide side is left and right.
  • the pouch type secondary battery 100 is formed so that the wide outer surfaces of the housing portions face the left and right sides, and the sealing portions are positioned on the upper, lower, front, and rear sides. It can be configured as.
  • the pouch type secondary battery 100 of the upright shape may be arranged in parallel to the left and right directions so that a wide surface thereof faces each other.
  • the front, rear, left, right, up, and down directions are the front side as described above, where the electrode lead 112 protrudes and is generally viewed in the drawings, unless otherwise specified.
  • the battery module When the battery module is viewed from the front side, it may be divided based on the standard. That is, based on the view of the battery module in the direction indicated by the arrow A2 in the configuration of FIG. 1, the directions of front, rear, left, right, up, and down are distinguished.
  • the cooling plate 200 may be formed of at least a portion of a thermally conductive material. Therefore, the cooling plate 200 may serve to transfer heat generated when heat is generated in the secondary battery 100 to the outside of the battery module.
  • the cooling plate 200 may be made of a metal material.
  • the cooling plate 200 may be made of a single property of a metal such as aluminum, copper, and iron, or may be made of at least one alloy material. According to this embodiment of the present invention, through the cooling plate 200 can effectively transfer the heat of the secondary battery 100 to the outside side, reinforce the rigidity of the secondary battery 100, protect the battery module from external shocks, etc. can do.
  • a coolant such as air or water may flow under the cooling plate 200.
  • the battery module according to the present invention may further include a refrigerant supply unit for supplying air or water to the lower portion of the cooling plate 200.
  • the battery module according to the present invention may further include a flow path such as a duct, a pipe, and a heat sink to provide a path through which a coolant such as air or water flows to the lower portion of the cooling plate 200.
  • the cooling plate 200 may be formed in a substantially plate shape, and may be disposed in a shape lying down in a horizontal direction under the plurality of secondary batteries 100. That is, the cooling plate 200 may be disposed to be laid down in a direction parallel to the stacking direction of the secondary battery 100. In addition, the plurality of secondary batteries 100 stacked in the horizontal direction may be seated in a form standing vertically on one cooling plate 200.
  • the cooling plate 200 may be attached to the lower portion of the secondary battery 100. That is, the secondary battery 100 may be fixed in a state in which the lower portion is in direct surface contact with the upper surface of the cooling plate 200.
  • FIG. 6 is a diagram schematically illustrating an attachment configuration of a secondary battery 100 and a cooling plate 200 according to an embodiment of the present invention. More specifically, FIG. 6 can be said to be an example of the expanded structure with respect to the A3 part of FIG.
  • secondary batteries 100 may be disposed to be stacked on each other in a left and right direction, and each of the secondary batteries 100 may be mounted on the cooling plate 200 at a lower portion thereof.
  • an adhesive N may be interposed between the secondary battery 100 and the cooling plate 200. That is, the secondary battery 100 may be attached to the cooling plate 200 through the adhesive (N).
  • an adhesive N is applied to a lower surface of the secondary battery 100 and / or an upper surface of the cooling plate 200, and the secondary battery 100 and the cooling plate 200 may be formed through the adhesive N. Can be adhesively fixed to each other.
  • the secondary battery 100 can be simply fixed to the cooling plate 200 through the adhesive (N), fastening parts such as bolts or cartridges for fixing the secondary battery 100, etc.
  • the component of may not be included in the battery module. Therefore, according to this aspect of the present invention, the structure and assembly of the battery module can be simplified, and the parts can be reduced.
  • heat generated in the secondary battery 100 may be more efficiently transferred to the cooling plate 200. Can be.
  • the air layer can be excluded or reduced in the space between the secondary battery 100 and the cooling plate 200, it is possible to prevent a decrease in heat transfer due to the air layer.
  • the adhesive may be a thermally conductive adhesive.
  • the thermally conductive adhesive has a higher thermal conductivity than the general adhesive, the heat transfer amount, heat transfer rate, and the like can be further increased between the secondary battery 100 and the cooling plate 200. Therefore, according to this embodiment of the present invention, by further improving the heat dissipation performance of the secondary battery 100 through the cooling plate 200, it is possible to further improve the cooling performance of the battery module.
  • thermally conductive adhesives may be used.
  • a variety of organic and / or inorganic thermally conductive adhesives such as a thermally conductive epoxy adhesive, a thermally conductive silicone adhesive, and a thermally conductive urethane adhesive, may be employed in the battery module according to an embodiment of the present invention.
  • FIG. 7 is a view schematically illustrating an attachment configuration of a secondary battery 100 and a cooling plate 200 according to another embodiment of the present invention. More specifically, FIG. 7 may be another example of an enlarged configuration of part A3 of FIG. 3.
  • the secondary battery 100 may be attached to the cooling plate 200 through a double-sided adhesive tape T.
  • a double-sided adhesive tape T is interposed between the secondary battery 100 and the cooling plate 200, and the secondary battery 100 and the cooling plate 200 are attached to the double-sided adhesive tape T, thereby providing a secondary battery.
  • the battery 100 and the cooling plate 200 may be adhesively fixed to each other.
  • the double-sided adhesive tape (T) is configured in the form of a film may be provided with adhesive layers (T2, T3) on both surfaces.
  • the lower surface of the secondary battery 100 may be attached to the upper surface, and the upper surface of the cooling plate 200 may be attached to the lower surface.
  • the double-sided adhesive tape T may be provided with a base layer T1 between the adhesive layers T2 and T3 in order to maintain a shape and to secure a certain level or more of rigidity.
  • the double-sided adhesive tape T may be formed in a form in which adhesive layers T2 and T3 are coated on both surfaces of the base layer T1 made of a material such as PE foam or acrylic foam.
  • the process of placing the double-sided adhesive tape (T) in the desired portion on the surface of the secondary battery 100 or the cooling plate 200 it is easy, and the problem that the adhesive flows down may not occur.
  • the base material layer T1 is formed of a foam material or the like, when a shock or vibration is applied to the battery module by the base material layer T1, the base material layer T1 absorbs at least a part of the shock or vibration and the secondary battery The damage to the 100 can be reduced.
  • the cooling plate 200 may have a convex portion formed on a surface on which the secondary battery 100 is seated.
  • FIG. 8 is a diagram schematically illustrating a form in which the secondary battery 100 and the cooling plate 200 are separated in the configuration of FIG. 6. However, for convenience of description, the adhesive is not shown in FIG. 8.
  • the cooling plate 200 may be provided with a convex portion formed to protrude upward in an upper surface, as indicated by P.
  • the lower portion of the accommodating portion of the secondary battery may be seated and attached to the upper portion of the convex portion P. Therefore, the convex part P can support the accommodating part of a secondary battery to an upper direction.
  • the mounting position of the secondary battery 100 is guided by the convex portion P, thereby improving the assembly of the battery module.
  • the convex portion P the left and right flow of the secondary battery 100 is suppressed, so that the bonding force between the secondary battery 100 and the cooling plate 200 may be further improved.
  • the cooling performance may be further improved by increasing the amount and speed of heat transfer from the secondary battery 100 to the cooling plate 200.
  • the convex portion P may be provided in plural on one cooling plate 200. According to this configuration of the present invention, the coupling force between the secondary battery 100 and the cooling plate 200 through the plurality of convex portions P can be more strengthened, the contact area can be increased more.
  • the convex portion P may be such that all of the secondary batteries 100 are adjacent to the convex portion P. FIG. It is good to be provided with a large number.
  • the convex portion P may be formed to extend in the front-rear direction from the upper surface of the cooling plate 200, as shown in FIG. That is, the convex portion P may be configured to extend in a direction parallel to the longitudinal direction of the lower side of the secondary battery 100 from the front end portion to the rear end portion of the cooling plate 200. According to this embodiment of the present invention, by increasing the surface area of the cooling plate 200 more, the contact area between the secondary battery 100 and the cooling plate 200 can be widened. In addition, according to an embodiment of the present invention, the fixing force between the secondary battery 100 and the cooling plate 200 may be improved.
  • the convex portion P of the cooling plate 200 may be formed such that at least a portion thereof becomes narrower in an upward direction.
  • an inclined surface may be formed in the convex portion P of the cooling plate 200, as shown by D1 and D2 in FIG. 8, inclined at a predetermined angle from the ground on which the cooling plate 200 is placed.
  • the upper portion of the convex portion as shown in Figure 6 and 8, may be formed in a triangular form narrowing the width in the left and right direction toward the upper direction.
  • the convex portion may be configured not to have a flat portion in the horizontal direction.
  • the secondary battery 100 and the cooling plate 200 may be coupled in a more intimate state. That is, according to the exemplary embodiment, when the secondary battery 100 is seated on the cooling plate 200, the secondary battery 100 may move downward along the inclined surface of the convex portion formed on the cooling plate 200. As a result, the secondary battery 100 may be configured to be as close as possible to the cooling plate 200. Therefore, the distance between the secondary battery 100 and the cooling plate 200 can be reduced and the bonding force therebetween can be further improved, so that the cooling performance can be further increased.
  • the inclined surface formed on the outside of the convex portion may be formed in a flat shape. That is, the inclined surface of the convex portion may be formed in a planar shape rather than a curved surface or irregularities, such that the secondary battery 100 may smoothly move downward along the inclined surface of the convex portion. Therefore, according to this configuration of the present invention, the secondary battery 100 may be configured to be as close as possible to the cooling plate 200.
  • the secondary battery 100 may include an accommodating part I accommodating the electrode assembly and a sealing part S in which the pouch exterior material is sealed by heat fusion or the like.
  • the housing part I and the sealing part S may have different outer thicknesses (left and right lengths in FIG. 8). That is, in the case of the pouch-type secondary battery 100, the accommodating part I may be configured to be thicker than the sealing part S, and a step may be formed between the accommodating part and the sealing part. Therefore, when the secondary battery 100 is erected in the vertical direction, a substantial portion of the lower part and the upper part of the accommodating part may be exposed without being covered by the sealing part.
  • the secondary battery 100 at least a portion of the lower portion of the receiving portion may be fixed to the convex portion.
  • the adhesive N is interposed between the lower surface of the accommodating part of the secondary battery 100 and the inclined surface of the convex portion of the cooling plate 200 to thereby form the secondary battery 100.
  • cooling plate 200 may be adhesively fixed to each other.
  • the bonding force between the secondary battery 100 and the cooling plate 200 can be further strengthened. That is, the inclined surface of the convex portion is configured to be inclined at a predetermined angle in a direction parallel to the ground, so that both the vertical movement and the horizontal movement of the secondary battery 100 can be suppressed. Therefore, when the secondary battery 100 is adhered to the inclined surface of the convex portion, it is possible to limit the vertical and horizontal flow of the secondary battery 100 in one bonding configuration as much as possible.
  • it may be configured to have the largest contact area between the cooling plate 200 placed horizontally in the left and right direction and the secondary battery 100 vertically placed in the vertical direction. Therefore, the adhesive force between the secondary battery 100 and the cooling plate 200 can be stably secured, and the heat transfer efficiency between the two batteries can be effectively increased.
  • the heat transfer efficiency between the secondary battery 100 and the cooling plate 200 is Can be further improved.
  • the secondary battery 100 may be attached and fixed to the upper surface of the convex portion through at least a portion of the lower surface of the accommodating portion of the secondary battery 100 through a double-sided adhesive tape having an adhesive layer on both surfaces thereof.
  • the double-sided adhesive tape may be attached between the lower surface of the accommodating part of the secondary battery 100 and the inclined surface of the convex part of the cooling plate 200.
  • the convex portions may be attached and fixed to different secondary batteries 100 on the upper left and upper right surfaces, respectively.
  • the convex portion of the cooling plate 200 may be configured such that the inclined surfaces D1 and D2 are formed on the left and right sides of the upper vertex, respectively, as shown in FIG. 8.
  • the left inclined surface (D1) and the right inclined surface (D2) in the inclination direction is opposite to each other, the absolute value of the angle is the same, the length of the inclined surface may also be configured to be the same.
  • different secondary batteries 100 may be attached and fixed to the left inclined surface D1 and the right inclined surface D2 of the convex portion.
  • the lower right side surface of the housing portion of the C1 which is the left secondary battery 100, may be bonded to the left inclined surface of the convex portion, and the right secondary battery 100 may be adhered to the right inclined surface of the convex portion.
  • the lower left surface of the receiving portion of C2 may be bonded.
  • two secondary batteries 100 adjacent to each other based on one convex portion P may be adhesively fixed to each other. Therefore, according to this configuration of the present invention, a large number of secondary batteries 100 can be attached and fixed with a small number of convex portions P.
  • the convex portions may be formed on the cooling plate 200 by the number of half (1/2) of the total number of secondary batteries 100. For example, as illustrated in FIG. 3, when twelve secondary cells 100 are included in the battery module, six convex parts may be provided on the cooling plate 200.
  • the convex portion may be formed in the cooling plate 200 in a number more than half (1/2) of the total number of secondary batteries 100. . In such a configuration, all of the secondary batteries 100 may be attached and fixed to the convex portions of the cooling plate 200.
  • the secondary battery 100 may be provided with a sealing portion on each side.
  • the sealing part of the secondary battery 100 may be folded.
  • the secondary battery 100 may be folded with a lower sealing part and an upper sealing part.
  • the secondary battery may be folded with a lower sealing part in contact with the cooling plate 200. According to this configuration of the present invention, due to the folding of the sealing portion can reduce the overall size of the battery module, in particular can reduce the distance between the receiving portion of the secondary battery 100 and the cooling plate 200.
  • the lower sealing part may be folded in a direction opposite to the convex part.
  • the convex portion of the cooling plate 200 in the configuration of FIG. 6, is positioned on the lower right side, and the lower right side of the accommodating portion may be attached to the inclined surface of the convex portion.
  • the lower sealing part of the C1 secondary battery may be folded in a left direction opposite to the convex part.
  • the convex portion of the cooling plate 200 in the C2 secondary battery, the convex portion of the cooling plate 200 is positioned at the lower left side, and the sealing portion may be folded in the right direction opposite to the convex portion to which the C2 secondary battery is attached.
  • the receiving portion of the secondary battery 100 and the cooling plate 200 may be in direct contact with each other without interposing the folding portion. Therefore, heat generated in the accommodating part may be effectively transmitted to the cooling plate 200.
  • the fixing force of the secondary battery 100 to the cooling plate 200 can be secured stably.
  • the sealing part of the secondary battery 100 may be folded one or more times.
  • the lower sealing part of the secondary battery 100 may be folded twice, as illustrated in FIG. 6.
  • the folded lower sealing portion when the lower sealing portion of the secondary battery 100 is folded, the folded lower sealing portion may be accommodated in a portion formed concave by the convex portion in the cooling plate 200.
  • the sealing portion may be folded inward.
  • the secondary battery positioned at the rightmost side of the secondary battery 100 included in the battery module may be folded in a left direction in which the upper and lower sealing parts are inward.
  • the secondary battery positioned at the leftmost side of the secondary batteries included in the battery module may be folded in a right direction in which the upper and lower sealing parts are inward.
  • the accommodating portion, not the sealing portion of the secondary battery 100, to the outer convex portion of the cooling plate 200 by attaching the accommodating portion, not the sealing portion of the secondary battery 100, to the outer convex portion of the cooling plate 200, the fixing force between the outermost secondary battery 100 and the cooling plate 200 is Can be strengthened.
  • the sealing part by preventing the sealing part from being exposed to the outside of the battery module, penetration of moisture or various foreign substances into the outermost secondary battery 100 through the sealing part can be prevented.
  • the secondary battery 100 is shown to be mainly attached to the convex portion of the cooling plate 200, the present invention is not necessarily limited to these embodiments.
  • FIG. 9 is an enlarged view of a portion of a lower configuration of a battery module according to another embodiment of the present invention.
  • FIG. 9 it may be another example of part A3 of FIG. 3.
  • the adhesive may be provided on the upper surface of the convex portion of the cooling plate 200, that is, the inclined surface, as well as the vertical surface of the convex portion.
  • the adhesive may be provided on a portion other than the convex portion, for example, the concave portion G between the convex portions of the cooling plate 200.
  • an adhesive may be interposed between the folding support described later and the folded sealing part. Therefore, the secondary battery 100 may be configured such that the sealing portion together with the accommodating portion is attached to the cooling plate 200.
  • the contact area between the secondary battery 100 and the cooling plate 200 through the bond is increased, the bonding force between the secondary battery 100 and the cooling plate 200 is improved, heat transfer Efficiency can be increased. Furthermore, by removing more portions of the air layer in the heat transfer path between the secondary battery 100 and the cooling plate 200, the thermal resistance due to the air layer can be further reduced.
  • the adhesive when the adhesive is applied to the cooling plate 200, the entire upper surface of the cooling plate 200 may be applied instead of only the inclined surface, and thus, the coating processability of the adhesive may be improved.
  • cooling plate 200 may include a folding support between the convex portions P. This will be described in more detail with reference to FIG. 10.
  • FIG. 10 is a diagram schematically illustrating a form in which the secondary battery 100 and the cooling plate 200 are separated from the portion A3 ′ of FIG. 3.
  • the cooling plate 200 may include two or more convex portions P, and may include a folding support, such as a portion indicated by R, between the plurality of convex portions. That is, in the cooling plate, a concave portion G may be formed between the convex portions due to the protruding shape of the convex portion P. Such concave portions are not formed flat as a whole, and at least a portion thereof protrudes upward. It can be formed to form a folding support.
  • the folding support part R may support the folded lower sealing part of the secondary battery, such as a portion indicated by SF in the drawing, in an upward direction.
  • the configuration in which the folding support R supports the folded portion SF of the lower sealing portion in an upward direction may be in a state in which the folding support portion and the folded portion of the lower sealing portion are in direct contact or spaced a predetermined distance apart.
  • the folding support R may not be in direct contact with the folded portion of the lower sealing part, as shown in FIGS. 6 and 7, and may be configured to be spaced a predetermined distance apart. .
  • the folding support R is not in direct contact with the folded portion of the lower sealing portion, but at least the folding state can be maintained without being released. That is, since the folding support part R restricts the folded portion of the lower sealing portion from moving downward in the state where the secondary battery is seated on the cooling plate, the folding state of the lower sealing portion can be maintained without being unwound. have.
  • the folding support part R may allow the lower sealing part to be folded or the degree of folding further deepened while the secondary battery is seated on the upper portion of the cooling plate.
  • the folding state of the lower sealing portion is released, thereby preventing the metal layer, such as the aluminum layer, exposed at the end of the sealing portion from contacting the cooling plate or another secondary battery, thereby improving the safety of the battery module. You can.
  • the folding support R may be configured to directly contact the folded portion of the lower sealing part.
  • the folding support R may be configured to be in direct contact with the lower sealing part through the adhesive N or the like.
  • the folding support R may not only release the folding state of the lower sealing part, but also may prevent the folded part SF of the lower sealing part from moving downward.
  • the folding support can fully secure the folded portion of the lower sealing portion, thereby further preventing the folding state of the lower sealing portion from being loosened, while further enhancing the fixability of the secondary battery.
  • the secondary battery side heat can be more smoothly transferred to the cooling plate side through the lower sealing portion. That is, since the secondary battery is in contact with the cooling plate not only through the storage portion but also through the lower sealing portion, the heat transfer path between the secondary battery and the cooling plate may be further expanded to improve the heat discharge rate.
  • the folding support R may be configured to support the folding portions of two sealing portions as one, as shown in the various figures.
  • one folding support has a convex center portion, and an inclined surface is formed on each of the left and right sides thereof. It can be configured to be located. That is, the folding support portion may be configured such that the width of the left and right in the upper direction becomes narrower.
  • the folding support may be formed to extend in the front-back direction similarly to the convex portion so as to correspond to the shape of the lower sealing portion.
  • the folding support may be configured such that the folded portion of the lower sealing portion contacts the lower surface of the receiving portion. This will be described in more detail with reference to FIGS. 11 and 12.
  • FIG. 11 is a front view schematically illustrating a configuration of a battery module according to another embodiment of the present invention
  • FIG. 12 is an enlarged view of portion A8 of FIG. 11.
  • the folding support R may be configured such that the folded portion SF of the lower sealing portion contacts the lower surface of the receiving portion.
  • the folding support may be configured to protrude upwards higher than in the previous embodiment.
  • the folding support portion is configured to have a significantly lower height than the convex portion, but in the present embodiment, the folding support portion does not show a large difference in height with the convex portion.
  • the folded portion of the lower sealing portion can be further bent to the upper side, so that the upper end of the folded portion can touch the bottom surface of the receiving portion.
  • the vertical thickness of the cooling plate is increased, the rigidity of the cooling plate can be reinforced. Therefore, the protection performance of the cooling plate against the impact on the lower side of the battery module can be further improved.
  • the heat of the secondary battery may be transferred to the cooling plate through the contact portion of the folded sealing part and the accommodating part, the cooling performance of the battery module may be further improved.
  • the convex portion and the folding support portion may be alternately disposed along the arrangement direction of the secondary battery on the upper surface of the cooling plate.
  • the cooling plate has a convex portion, a folding support portion, a convex portion, a folding support portion, a convex portion,..., From left to right. May be configured to be arranged sequentially.
  • the mutual assembly process of the secondary battery and the cooling plate can be easily performed, and the structure of the cooling plate can be simplified.
  • the thickness of the cooling plate may be prevented from increasing, and the rigidity of the cooling plate may be secured to a predetermined level or more.
  • the battery module according to the present invention may further include a side plate 300 and an upper plate 400 as shown in FIG. 11.
  • the side plate 300 is formed in a plate shape, it may be arranged to face each other in a form standing on both ends of the cooling plate 200.
  • the side plates may be disposed at both ends of the stacking direction of the secondary battery stack, that is, left and right sides, respectively.
  • the side plate may be configured to be perpendicular to the plane direction of the cooling plate at the left and right ends of the cooling plate.
  • the side plate, the lower end may be configured to be fixed to the cooling plate.
  • the upper plate 400 may be configured in a substantially plate shape, and may be configured in a flattened form like the cooling plate.
  • the upper plate may be disposed to face the cooling plate while being spaced apart from the cooling plate by a predetermined distance, and both ends thereof may be connected to the upper ends of the two side plates.
  • the left end and the right end of the upper plate may be fixedly fixed to the top of the left side plate and the top of the right side plate, respectively.
  • the side plate and the upper plate may form a case of a battery module together with a cooling plate. Therefore, the components inside the battery module, in particular the secondary battery, can be protected from external shocks or foreign matters due to such cooling plates, side plates and upper plates.
  • the side plate and the upper plate may be made of a metal material.
  • the side plate and the upper plate are stably secured as a part of the case, and can also perform a cooling function.
  • the side plate and the upper plate may be made of the same material as the cooling plate.
  • the upper plate is different from the cooling plate in that the upper plate is located in the upper portion, not the bottom of the secondary battery, various configurations of the cooling plate can be similarly applied.
  • the upper plate may have an upper convex portion P ′ and / or an upper folding support R ′, as shown in FIG. 11.
  • the upper convex portion P ′ is configured to correspond to the convex portion P of the cooling plate, and is formed convexly in a downward direction, and may be formed in a form corresponding to the accommodating portion of the secondary battery.
  • the upper folding support (R ') is a configuration corresponding to the folding support (R) of the cooling plate, is formed to protrude in the lower direction between the upper convex portion (P') to the folding portion of the upper sealing portion in the downward direction It can be supported so that the folding state of the upper sealing portion is maintained.
  • the cooling plate 200 may be integrally formed with the two side plates 300 and the upper plate 400 in a tubular shape.
  • the cooling plate 200, the two side plates 300, and the upper plate 400 are not separately combined in a separately manufactured state, but are integrated from the beginning by an extrusion or the like method. It may be configured in the form. In this case, the cooling plate 200, the two side plate 300 and the upper plate 400 are all formed of the same material, it may be configured in the form of a tube.
  • FIG. 13 is a diagram schematically illustrating a configuration of a battery module according to another embodiment of the present invention.
  • the battery module may include a module case in which a cooling plate 200, two side plates 300, and an upper plate 400 are integrally formed. That is, in the embodiment of FIG. 13, the module case may not be provided with a separate coupling structure such as welding, bolting, hook fastening, and the like, and the upper, lower, left and right portions may be configured as a whole.
  • the front end and / or the rear end may be opened, and the laminate of the secondary battery may be inserted through the open end. That is, in FIG. 13, the laminate of the secondary battery 100 can slide from the front open end of the module case to the internal space of the module case defined by the cooling plate, the side plate and the upper plate, as indicated by arrow A9. have.
  • the cooling plate may have irregularities in the front and rear directions. This will be described in more detail with reference to FIG. 14.
  • FIG. 14 is a perspective view schematically showing the configuration of a cooling plate according to another embodiment of the present invention. Here, only portions that differ from the above embodiment will be described.
  • the cooling plate may have a retaining groove formed at an upper portion thereof, as indicated by V.
  • the holding groove (V) may be formed in a shape recessed by a predetermined depth in the downward direction from the upper surface of the cooling plate.
  • the holding groove (V) may be configured to form irregularities in the front and rear direction. That is, the holding groove may be configured such that a convex shape and / or a concave shape are formed in the front and rear directions of the battery module.
  • an adhesive may be retained in the retaining groove (V). That is, an adhesive may be interposed between the upper surface of the cooling plate and the secondary battery, and more adhesive may be present in the holding groove at the portion where the holding groove is formed. Therefore, in this case, due to the adhesive housed in the holding groove, the adhesion performance between the secondary battery and the cooling plate can be more stably ensured.
  • the secondary battery is disposed at the front opening of the module case. It may slide in the rear end direction.
  • the adhesive previously applied to the upper surface of the cooling plate may be pushed to the rear end, the holding groove (V) can prevent the adhesive from continuing to the rear end. Therefore, according to this structure of this invention, the adhesive force between a secondary battery and a cooling plate by an adhesive agent can be strengthened further.
  • the holding groove (V) may be formed in the convex portion.
  • the retention groove V may be formed on the upper surface of the convex portion P.
  • the cooling plate may be adhesively fixed to the receiving portion of the secondary battery in the convex portion, in which case the retaining groove is formed on the upper surface of the convex portion so that more adhesive is retained between the receiving portion of the secondary battery and the convex portion of the cooling plate. can do.
  • the cooling plate may be coated with an electrical insulation layer on at least a portion of the upper surface. This will be described in more detail with reference to FIG. 15.
  • FIG. 15 is a front view schematically showing some components of a battery module according to another embodiment of the present invention. Hereinafter, description will be given focusing on a part different from the previous embodiment.
  • an electrical insulation layer may be coated on the upper surface of the cooling plate 200, as indicated by Q.
  • the electrical insulation layer Q may be coated on the folding support R as well as the convex portion P of the cooling plate.
  • the electrical insulation layer Q may be formed in various forms such as powder coating, plating, and insulation sheet, and the present invention is not limited to a specific formation method of the electrical insulation layer.
  • the electrical insulation between the secondary battery 100 and the cooling plate 200 can be stably ensured due to the electrical insulating layer (Q).
  • the electrical insulating layer (Q) In particular, even if a crack occurs in the folding part of the lower sealing part of the secondary battery or the metal layer at the end of the sealing part is exposed and contacts the cooling plate, an internal short circuit of the battery module may be prevented due to the electrical insulating layer Q. have.
  • the electrical insulation layer (Q) may be provided in the upper plate as well as the cooling plate. That is, the lower surface of the upper plate may be coated with an electrical insulation layer. In this case, both the lower portion and the upper portion of the secondary battery may be electrically insulated, and thus the withstand voltage performance of the battery module may be more stably obtained.
  • the pouch-type secondary battery 100 may be configured in a substantially rectangular shape when viewed from the top to the bottom in a lying down state. At this time, the outer peripheral portion of the pouch-type secondary battery 100 can be said to have two long sides and two short sides. For example, referring to FIG. 1 and FIG. 5, the pouch type secondary battery 100 has four sides at an edge portion, of which two sides are short in length and the remaining two sides are It can be relatively long. In this case, the pouch type secondary battery 100 may be configured such that at least one long side of two long sides is attached and fixed to the cooling plate 200.
  • each secondary battery 100 has two long sides the upper side Located on the lower and lower sides, two short sides can be configured to be located on the front side and the rear side.
  • the lower long side of each secondary battery 100 may be attached to the cooling plate 200 with an adhesive, an adhesive tape, or the like.
  • the long side portion of the outer peripheral portion of the secondary battery 100 is bonded to the cooling plate 200, the fixing force by the adhesion can be further improved.
  • the heat transfer efficiency between the secondary battery 100 and the cooling plate 200 may be further improved.
  • the adhesive since the electrode lead 112 may protrude from the short side of the pouch-type secondary battery 100, the adhesive may be applied to the long side rather than the adhesive to the short side.
  • the secondary battery 100 may be stacked such that wide surfaces face to surface contact with each other.
  • a wide surface of each secondary battery 100 that is, an outer surface of the storage part is positioned in the left and right directions.
  • the outer surface of each housing portion may be configured to face the outer surface of the housing portion of the adjacent secondary battery 100.
  • all secondary batteries 100 may directly heat exchange with the cooling plate 200 located below. Therefore, as in the conventional battery module configuration, it may not be configured in the form in which the cooling fin is present between the secondary battery (100). Therefore, the battery module according to the present invention, the secondary cells 100 can be directly face-to-face contact with each other, thereby, a compact, light and simple structure can be configured.
  • the battery pack according to the present invention may include one or more battery modules according to the present invention.
  • the battery pack according to the present invention may further include, in addition to the battery module, a pack case for accommodating the battery module, various devices for controlling charging and discharging of the battery module, such as a BMS, a current sensor, a fuse, and the like. have.
  • the battery module according to the present invention can be applied to an automobile such as an electric vehicle or a hybrid vehicle. That is, the vehicle according to the present invention may include a battery module according to the present invention.
  • the cooling performance of the battery module is very important. Therefore, when the battery module according to the present invention is applied to such a vehicle, a stable and safe battery module can be provided with effective cooling performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 효율적인 냉각 성능이 확보되면서도, 구조가 간단하고 경량화 및 소형화에 용이하며 제조 비용도 절감할 수 있는 배터리 모듈을 개시한다. 본 발명에 따른 배터리 모듈은, 전극 조립체, 전해질 및 파우치 외장재를 구비하여 상기 전극 조립체를 수납하는 수납부 및 상기 파우치 외장재가 실링된 실링부가 형성되고, 상하 방향으로 세워진 형태로 좌우 방향으로 배열되며, 하부 실링부가 폴딩된 복수의 파우치형 이차 전지; 및 열 전도성 재질로 구성되고, 상기 복수의 이차 전지의 하부에 수평 방향으로 눕혀진 형태로 배치되며, 상부 표면에서 상부 방향으로 볼록하게 형성되어 상기 이차 전지의 수납부의 하부가 부착된 볼록부가 둘 이상 구비되고, 상기 볼록부 사이에 위치하고 상부 방향으로 돌출되게 형성되어 상기 이차 전지의 폴딩된 하부 실링부를 상부 방향으로 지지하는 폴딩 지지부가 구비된 쿨링 플레이트를 포함한다.

Description

배터리 모듈
본 출원은 2016년 8월 18일자로 출원된 한국 특허출원 번호 제10-2016-0105056호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 하나 이상의 이차 전지를 포함하는 배터리에 관한 것으로서, 보다 상세하게는, 구조가 간단하고 부피 및 무게가 낮으며 효율적인 냉각 성능이 확보될 수 있는 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차에 관한 것이다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차 전지가 널리 이용되고 있다. 이러한 중대형 장치에 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 이차 전지가 전기적으로 연결된다. 특히, 이러한 중대형 장치에는 적층이 용이하고 무게가 가볍다는 등의 장점으로 인해 파우치형 이차 전지가 많이 이용된다.
하지만, 파우치형 이차 전지는 일반적으로 알루미늄과 폴리머 수지의 라미네이트 시트의 전지 케이스로 포장되어 있으므로 기계적 강성이 크지 않고, 그 자체만으로 적층 상태를 유지하는 것이 쉽지 않다. 따라서, 다수의 파우치형 이차 전지를 포함하여 배터리 모듈을 구성할 때, 이차 전지를 외부의 충격 등으로부터 보호하고, 그 유동을 방지하며, 적층이 용이하도록 하기 위해, 폴리머 재질의 카트리지를 이용하는 경우가 많다.
카트리지는 보통 중앙 부분이 비어 있는 사각 플레이트 형태로 구성되는 경우가 많으며, 이때 4개의 변 부분이 파우치형 이차 전지의 외주부를 감싸도록 구성된다. 그리고, 이러한 카트리지는 배터리 모듈을 구성하기 위해 다수가 적층된 형태로 이용되며, 이차 전지는 카트리지가 적층되었을 때 생기는 내부의 빈 공간에 위치할 수 있다.
또한, 이러한 카트리지 등을 이용하여 배터리 모듈을 구성하는 경우, 카트리지 간 고정을 위한 체결 부품이 필요할 수 있다. 즉, 다수의 이차 전지와 다수의 카트리지를 이용하여 배터리 모듈을 구성하고자 할 때, 이들을 고정시키기 위해서는, 볼트나 벨트와 같은 이들 상호 간을 고정시킬 수 있는 체결 부품이 있어야 한다. 그리고, 이 경우 카트리지 등에는 체결 부품이 결합될 수 있는 구성, 이를테면 홀 등이 마련될 필요가 있다.
따라서, 종래 배터리 모듈 구성에 의하면, 카트리지나 체결 부품 등을 마련하는데 추가 비용이 소요되고, 조립이 쉽지 않아 작업성이 떨어질 수 있다. 또한, 이와 같은 카트리지나 체결 부품 등으로 인해 배터리 모듈의 부피가 커서, 배터리 모듈을 소형화하는데에는 한계가 있다.
또한, 이차 전지는, 적정 온도보다 높아지는 경우 이차 전지의 성능이 저하될 수 있고, 심한 경우 폭발이나 발화의 위험도 있다. 특히, 다수의 파우치형 이차 전지를 적층시켜 배터리 모듈을 구성할 때에는, 좁은 공간에서 다수의 이차 전지로부터 나오는 열이 합산되어 배터리 모듈의 온도가 더욱 빠르고 심하게 올라갈 수 있다. 더욱이, 차량용 배터리 팩에 포함되는 배터리 모듈의 경우, 직사광선에 자주 노출되고, 여름철이나 사막 지역과 같은 고온 조건에 놓여질 수 있다. 따라서, 다수의 이차 전지를 이용하여 배터리 모듈을 구성하는 경우, 안정적이면서도 효과적인 냉각 성능을 확보하는 것은 매우 중요하다고 할 수 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 효율적인 냉각 성능이 확보되면서도, 구조가 간단하면서 안정적이고 경량화 및 소형화에 용이하며 제조 비용도 절감할 수 있는 배터리 모듈 및 이를 포함하는 배터리 팩과 자동차를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 모듈은, 전극 조립체, 전해질 및 파우치 외장재를 구비하여 상기 전극 조립체를 수납하는 수납부 및 상기 파우치 외장재가 실링된 실링부가 형성되고, 상하 방향으로 세워진 형태로 좌우 방향으로 배열되며, 하부 실링부가 폴딩된 복수의 파우치형 이차 전지; 및 열 전도성 재질로 구성되고, 상기 복수의 이차 전지의 하부에 수평 방향으로 눕혀진 형태로 배치되며, 상부 표면에서 상부 방향으로 볼록하게 형성되어 상기 이차 전지의 수납부의 하부가 부착된 볼록부가 둘 이상 구비되고, 상기 볼록부 사이에 위치하고 상부 방향으로 돌출되게 형성되어 상기 이차 전지의 폴딩된 하부 실링부를 상부 방향으로 지지하는 폴딩 지지부가 구비된 쿨링 플레이트를 포함한다.
여기서, 상기 이차 전지는, 상기 수납부의 하부면의 적어도 일부가 접착제를 통해 상기 볼록부의 상부면에 부착 고정될 수 있다.
또한, 상기 접착제는, 열전도성 접착제일 수 있다.
또한, 상기 이차 전지는, 상기 수납부의 하부면의 적어도 일부가 양면에 접착층을 구비하는 양면 접착 테이프를 통해 상기 볼록부의 상부면에 부착 고정될 수 있다.
또한, 상기 폴딩 지지부는, 상기 하부 실링부의 폴딩된 부분이 상기 수납부의 하부면에 접촉하도록 구성될 수 있다.
또한, 상기 볼록부는, 적어도 일부분이 상부 방향으로 갈수록 폭이 좁아지게 경사면이 형성될 수 있다.
또한, 적어도 일부 볼록부는, 좌측 상부면과 우측 상부면에 서로 다른 이차 전지가 각각 부착 고정될 수 있다.
또한, 상기 볼록부와 상기 폴딩 지지부는, 상기 쿨링 플레이트의 상면에서 상기 이차 전지의 배열 방향을 따라 교대로 배치될 수 있다.
또한, 본 발명에 따른 배터리 모듈은, 상기 쿨링 플레이트의 양단에 세워진 형태로 서로 마주보게 배치된 2개의 측면 플레이트; 및 눕혀진 형태로 상기 쿨링 플레이트와 마주보게 배치되어 양단이 상기 2개의 측면 플레이트의 상단에 연결된 어퍼 플레이트를 더 포함할 수 있다.
여기서, 상기 쿨링 플레이트는, 상기 2개의 측면 플레이트 및 상기 어퍼 플레이트와 관 형태로 일체로 형성될 수 있다.
또한, 상기 쿨링 플레이트는, 전후 방향으로 요철이 형성될 수 있다.
또한, 상기 쿨링 플레이트는, 상면 중 적어도 일부에 전기 절연층이 코팅될 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함한다.
본 발명의 일 측면에 의하면, 다수의 이차 전지를 포함하는 배터리 모듈의 냉각 성능이 향상될 수 있다.
특히, 본 발명의 일 구성에 의하면, 이차 전지와 쿨링 플레이트 사이에 별도의 카트리지나 쿨링핀이 개재되지 않을 수 있다. 따라서, 이차 전지로부터 열이 발생한 경우, 열은 카트리지나 쿨링핀 등의 다른 구성요소를 거치지 않고 이차 전지로부터 쿨링 플레이트로 직접 전달될 수 있다.
따라서, 본 발명의 이러한 구성에 의하면, 열 전달 경로 상 매개체의 수가 감소하여, 이차 전지와 쿨링 플레이트 사이의 거리가 가까워지고 매개체 간 접촉에 의한 열저항이 감소하여 열 배출 효율이 향상될 수 있다.
더욱이, 본 발명의 일 구성에 의하면, 이차 전지가 쿨링 플레이트에 직접 부착되어, 이차 전지로부터 쿨링 플레이트로 열이 전달되는 경로 상에 공기층이 제거되거나 감소될 수 있으므로, 냉각 성능이 더욱 향상될 수 있다.
또한, 본 발명의 이러한 구성에 의하면, 카트리지나 쿨링핀 등의 구성요소가 배터리 모듈에 포함되지 않을 수 있으므로, 배터리 모듈의 구조가 간단해지고 무게 및 부피를 줄이는데 용이할 수 있다.
또한, 본 발명의 이러한 구성에 의하면, 배터리 모듈 조립 공정이 간소화되고 제조 비용이 절감될 수 있다.
또한, 본 발명의 일 측면에 의하면, 쿨링 플레이트에 이차 전지가 직접 부착 고정될 수 있다. 따라서, 카트리지 및 이러한 카트리지들을 상호 고정시키기 위한 별도의 체결 부재 등을 별도로 마련하지 않을 수 있다.
또한, 본 발명의 일 측면에 의하면, 이차 전지와 쿨링 플레이트 사이의 접촉 면적을 증대시켜 냉각 성능의 향상을 꾀할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 사시도이다.
도 2는, 도 1의 일부 구성에 대한 분리 사시도이다.
도 3은, 도 1의 A1-A1'선에 대한 단면도이다.
도 4는, 본 발명의 일 실시예에 따른 파우치형 이차 전지의 구성을 개략적으로 나타내는 분리 사시도이다.
도 5는, 도 4의 구성에 대한 결합 사시도이다.
도 6은, 본 발명의 일 실시예에 따른 이차 전지와 쿨링 플레이트의 부착 구성을 개략적으로 나타내는 도면이다.
도 7은, 본 발명의 다른 실시예에 따른 이차 전지와 쿨링 플레이트의 부착 구성을 개략적으로 나타내는 도면이다.
도 8은, 도 6의 구성에서 이차 전지와 쿨링 플레이트를 분리시킨 형태를 개략적으로 나타내는 도면이다.
도 9는, 본 발명의 또 다른 실시예에 따른 배터리 모듈의 하부 구성 일부분을 확대하여 나타낸 도면이다.
도 10은, 도 3의 A3' 부분에 대하여, 이차 전지와 쿨링 플레이트를 분리시킨 형태를 개략적으로 나타내는 도면이다.
도 11은, 본 발명의 다른 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 정면도이다.
도 12는, 도 11의 A8 부분에 대한 확대도이다.
도 13은, 본 발명의 또 다른 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 도면이다.
도 14는, 본 발명의 다른 실시예에 따른 쿨링 플레이트의 구성을 개략적으로 나타내는 사시도이다.
도 15는, 본 발명의 또 다른 실시예에 따른 배터리 모듈의 일부 구성을 개략적으로 나타내는 정면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은, 본 발명의 일 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 사시도이다. 또한, 도 2는 도 1의 일부 구성에 대한 분리 사시도이고, 도 3은 도 1의 A1-A1'선에 대한 단면도이다. 다만, 도 3에서는 설명의 편의를 위해 이차 전지의 내부 구성요소는 도시되지 않도록 한다.
도 1 내지 도 3을 참조하면, 본 발명에 따른 배터리 모듈은, 이차 전지(100) 및 쿨링 플레이트(200)를 포함할 수 있다.
상기 이차 전지(100)는, 하나의 배터리 모듈에 복수 개 구비될 수 있다. 특히, 복수의 이차 전지(100) 각각은, 파우치형 이차 전지로 구성될 수 있다. 이러한 파우치형 이차 전지(100)는, 전극 조립체, 전해질 및 파우치 외장재를 구비할 수 있다. 파우치형 이차 전지(100)의 구성에 대해서는, 도 4 및 도 5를 참조하여 보다 구체적으로 설명한다.
도 4는 본 발명의 일 실시예에 따른 파우치형 이차 전지(100)의 구성을 개략적으로 나타내는 분리 사시도이고, 도 5는 도 4의 구성에 대한 결합 사시도이다.
상기 전극 조립체(110)는, 하나 이상의 양극판 및 하나 이상의 음극판이 세퍼레이터를 사이에 두고 배치된 형태로 구성될 수 있다. 보다 구체적으로, 전극 조립체(110)는, 하나의 양극판과 하나의 음극판이 세퍼레이터와 함께 권취된 권취형, 및 다수의 양극판과 다수의 음극판이 세퍼레이터를 사이에 두고 교대로 적층된 스택형 등으로 구분될 수 있다.
또한, 상기 파우치 외장재(120)는, 파우치형 이차 전지(100)의 경우, 외부 절연층, 금속층 및 내부 접착층을 구비하는 형태로 구성될 수 있다. 특히, 파우치 외장재(120)는, 전극 조립체(110)와 전해액 등 내부 구성요소를 보호하고, 전극 조립체(110)와 전해액에 의한 전기 화학적 성질에 대한 보완 및 방열성 등을 제고하기 위하여 금속 박막, 이를테면 알루미늄 박막이 포함된 형태로 구성될 수 있다. 그리고, 이러한 알루미늄 박막은, 전극 조립체(110) 및 전해액과 같은 이차 전지(100) 내부의 구성요소나 이차 전지(100) 외부의 다른 구성 요소와의 전기적 절연성을 확보하기 위해, 절연물질로 형성된 절연층과 내부 접착층 사이에 개재될 수 있다.
또한, 파우치 외장재(120)는, 좌측 파우치(121)와 우측 파우치(122)로 구성될 수 있으며, 좌측 파우치(121)와 우측 파우치(122) 중 적어도 하나에는 오목한 형태의 내부 공간이 형성되어 수납부(I)를 구성할 수 있다. 그리고, 이러한 파우치의 수납부(I)에는 전극 조립체(110)가 수납될 수 있다. 또한, 좌측 파우치(121)와 우측 파우치(122)의 외주면에는 실링부(S)가 구비되어 이러한 실링부(S)의 내부 접착층이 서로 접착됨으로써, 전극 조립체(110)가 수용된 수납부가 밀폐되도록 할 수 있다.
한편, 전극 조립체(110)의 각 전극판에는 전극 탭이 구비되며, 하나 이상의 전극 탭(111)이 전극 리드(112)와 연결될 수 있다. 그리고, 전극 리드(112)는 좌측 파우치(121)와 우측 파우치(122)의 실링부(S) 사이에 개재되어 파우치 외장재(120)의 외부로 노출됨으로써, 이차 전지(100)의 전극 단자로서 기능할 수 있다.
본 발명의 일 측면에 따른 배터리 모듈에는, 본원발명의 출원 시점에 공지된 다양한 형태의 파우치형 이차 전지(100)가 채용될 수 있다.
상기 파우치형 이차 전지(100)는, 각각 상하 방향으로 세워지는 형태로 수평 방향으로 배열될 수 있다. 예를 들어, 도 1 및 도 2의 구성에서 전극 리드(112)가 전체적으로 보이는 측면을 배터리 모듈의 전방 측이라 할 때, 이러한 배터리 모듈의 전방 측에서 배터리 모듈을 바라보면, 파우치형 이차 전지(100)는 넓은 면이 좌우를 향하도록 지면에 수직하게 세워진 형태로 좌우 방향으로 다수 배열될 수 있다.
즉, 본 발명에 따른 배터리 모듈에 있어서, 파우치형 이차 전지(100)는, 수납부의 넓은 외측 표면이 각각 좌우 측을 향하도록 하고, 상부, 하부, 전방 및 후방 측에는 실링부가 위치하도록 세워지는 형태로 구성될 수 있다. 그리고, 이와 같이 세워진 형태의 파우치형 이차 전지(100)는, 넓은 면이 서로 대면되는 형태로 좌우 방향으로 평행하게 배열될 수 있다.
한편, 본 발명에 있어서, 전, 후, 좌, 우, 상, 하와 같은 방향은, 특별한 설명이 없는 한, 상기와 같이, 전극 리드(112)가 돌출되어 도면에서 전체적으로 보이는 측면을 전방 측이라 하고, 이러한 전방 측에서 배터리 모듈을 바라볼 때를 기준으로 구분하도록 한다. 즉, 도 1의 구성에서 화살표 A2로 표시된 방향으로 배터리 모듈을 바라보는 것을 기준으로, 전, 후, 좌, 우, 상, 하 등의 방향을 구분하도록 한다.
상기 쿨링 플레이트(200)는, 적어도 일부분이 열전도성 재질로 구성될 수 있다. 따라서, 상기 쿨링 플레이트(200)는, 이차 전지(100)에서 열이 발생한 경우 발생된 열을 배터리 모듈의 외측으로 전달하는 역할을 할 수 있다.
특히, 상기 쿨링 플레이트(200)는, 금속 재질로 구성될 수 있다. 예를 들어, 상기 쿨링 플레이트(200)는, 전체적으로 알루미늄이나 구리, 철과 같은 금속의 단일 속성 재질로 이루어지거나, 이들 중 적어도 하나의 합금 재질로 구성될 수 있다. 본 발명의 이러한 실시예에 의하면, 쿨링 플레이트(200)를 통해 이차 전지(100)의 열을 외부 측으로 효과적으로 전달할 수 있으며, 이차 전지(100)의 강성을 보강하고, 외부 충격 등으로부터 배터리 모듈을 보호할 수 있다.
여기서, 쿨링 플레이트(200)의 하부에는 공기나 물과 같은 냉매가 흐를 수 있다. 이를 위해, 본 발명에 따른 배터리 모듈은, 쿨링 플레이트(200)의 하부로 공기나 물 등을 공급하는 냉매 공급 유닛을 더 포함할 수 있다. 또한, 본 발명에 따른 배터리 모듈은, 쿨링 플레이트(200)의 하부로 공기나 물 등의 냉매가 흐르는 경로를 제공하기 위해, 덕트나 파이프, 히트 싱크와 같은 유로를 더 포함할 수 있다.
상기 쿨링 플레이트(200)는, 대략 판상으로 구성되어, 복수의 이차 전지(100)의 하부에 수평 방향으로 눕혀진 형태로 배치될 수 있다. 즉, 상기 쿨링 플레이트(200)는, 이차 전지(100)의 적층 방향과 평행한 방향으로 눕혀진 형태로 배치될 수 있다. 그리고, 수평 방향으로 적층된 다수의 이차 전지(100)는, 하나의 쿨링 플레이트(200) 상부에 수직하게 세워진 형태로 안착될 수 있다.
특히, 상기 쿨링 플레이트(200)는, 이차 전지(100)의 하부가 부착될 수 있다. 즉, 상기 이차 전지(100)는, 하부가 쿨링 플레이트(200)의 상부면에 직접 표면 접촉한 상태로 고정될 수 있다.
도 6은, 본 발명의 일 실시예에 따른 이차 전지(100)와 쿨링 플레이트(200)의 부착 구성을 개략적으로 나타내는 도면이다. 보다 구체적으로, 도 6은 도 3의 A3 부분에 대한 확대 구성의 일례라 할 수 있다.
도 6을 참조하면, 이차 전지(100)는 좌우 방향으로 상호 적층되도록 배치되며, 각각의 이차 전지(100)는 하부가 쿨링 플레이트(200)에 안착될 수 있다. 이때, 이차 전지(100)와 쿨링 플레이트(200) 사이에는 접착제(N)가 개재될 수 있다. 즉, 이차 전지(100)는, 접착제(N)를 통해 상기 쿨링 플레이트(200)에 부착될 수 있다. 예를 들어, 이차 전지(100)의 하부 및/또는 쿨링 플레이트(200)의 상부면에 접착제(N)가 도포되고, 이러한 접착제(N)를 통해 이차 전지(100)와 쿨링 플레이트(200)는 상호 접착 고정될 수 있다.
본 발명의 이러한 구성에 의하면, 이차 전지(100)는 접착제(N)를 통해 쿨링 플레이트(200)에 간단하게 고정될 수 있으며, 이차 전지(100)를 고정시키기 위한 볼트와 같은 체결 부품이나 카트리지 등의 구성요소를 배터리 모듈에 포함시키지 않을 수 있다. 따라서, 본 발명의 이러한 측면에 의하면, 배터리 모듈의 구조 및 조립이 간단해지고, 부품을 줄일 수 있다.
또한, 이차 전지(100)와 쿨링 플레이트(200) 사이의 거리를 가깝게 하고, 구성 요소 간 접촉 개수를 줄임으로써, 이차 전지(100)에서 생성된 열이 쿨링 플레이트(200)로 보다 효과적으로 전달되도록 할 수 있다. 더욱이, 이차 전지(100)와 쿨링 플레이트(200) 사이 공간에서 공기층을 배제하거나 줄일 수 있으므로, 공기층으로 인한 열전달 저하를 방지할 수 있다.
바람직하게는, 상기 접착제는, 열전도성 접착제일 수 있다.
열전도성 접착제는, 일반적인 접착제에 비해, 열전도율이 높기 때문에, 이차 전지(100)와 쿨링 플레이트(200) 사이에서 열 전달량 및 열 전달속도 등을 더욱 높일 수 있다. 따라서, 본 발명의 이러한 실시예에 의하면, 쿨링 플레이트(200)를 통한 이차 전지(100)의 열 배출 성능을 보다 향상시켜, 배터리 모듈의 냉각 성능이 보다 개선되도록 할 수 있다.
본 발명에 따른 배터리 모듈에는, 다양한 열전도성 접착제가 이용될 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 배터리 모듈에는, 열전도성 에폭시 접착제, 열전도성 실리콘 접착제, 열전도성 우레탄 접착제 등 다양한 유기 및/또는 무기 열전도성 접착제가 채용될 수 있다.
도 7은, 본 발명의 다른 실시예에 따른 이차 전지(100)와 쿨링 플레이트(200)의 부착 구성을 개략적으로 나타내는 도면이다. 보다 구체적으로, 도 7은 도 3의 A3 부분에 대한 확대 구성의 다른 예라 할 수 있다.
도 7을 참조하면, 상기 이차 전지(100)는, 양면 접착 테이프(T)를 통해 쿨링 플레이트(200)에 부착될 수 있다. 즉, 이차 전지(100)와 쿨링 플레이트(200) 사이에는, 양면 접착 테이프(T)가 개재되고, 이러한 양면 접착 테이프(T)에 이차 전지(100)와 쿨링 플레이트(200)가 부착됨으로써, 이차 전지(100)와 쿨링 플레이트(200)는 상호 접착 고정될 수 있다.
이때, 양면 접착 테이프(T)는, 필름 형태로 구성되며 양 표면에 접착층(T2, T3)을 구비할 수 있다. 그리고, 상면에 이차 전지(100)의 하면이 접착되고, 하면에 쿨링 플레이트(200)의 상면이 접착될 수 있다. 이러한 양면 접착 테이프(T)는, 형상을 유지하고 강성을 일정 수준 이상 확보하기 위해 접착층(T2, T3) 사이에 기재층(T1)을 구비할 수 있다. 예를 들어, 상기 양면 접착 테이프(T)는, PE폼이나 아크릴폼 등의 재질로 구성된 기재층(T1)의 양면에 접착층(T2, T3)이 코팅된 형태로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 양면 접착 테이프(T)를 이차 전지(100)나 쿨링 플레이트(200) 표면에서 원하는 부분에 위치시키는 공정이 용이하며, 점착제가 흘러내리는 문제 등이 발생하지 않을 수 있다. 또한, 기재층(T1)을 폼 재질 등으로 구성하는 경우, 기재층(T1)에 의해 배터리 모듈에 충격이나 진동 등이 가해진 경우, 기재층(T1)이 충격이나 진동을 적어도 일부 흡수하여 이차 전지(100)가 파손되는 것을 줄일 수 있다.
바람직하게는, 상기 쿨링 플레이트(200)는, 이차 전지(100)가 안착되는 표면에 볼록부가 형성될 수 있다.
도 8은, 도 6의 구성에서 이차 전지(100)와 쿨링 플레이트(200)를 분리시킨 형태를 개략적으로 나타내는 도면이다. 다만, 설명의 편의를 위해, 도 8에서는 접착제를 도시하지 않도록 한다.
도 8을 참조하면, 상기 쿨링 플레이트(200)는, P로 표시된 바와 같이, 상부 표면에 상부 방향으로 돌출되게 형성된 볼록부가 구비될 수 있다. 그리고, 이러한 볼록부(P)의 상부에는, 이차 전지의 수납부의 하부가 안착되어 부착될 수 있다. 따라서, 볼록부(P)는, 이차 전지의 수납부를 상부 방향으로 지지할 수 있다. 본 발명의 이러한 구성에 의하면, 볼록부(P)에 의해 이차 전지(100)의 안착 위치가 가이드되어 배터리 모듈의 조립성이 향상될 수 있다. 또한, 볼록부(P)에 의해, 이차 전지(100)의 좌우 유동이 억제되어, 이차 전지(100)와 쿨링 플레이트(200) 간 결합력이 보다 향상될 수 있다. 또한, 동일한 수평 길이에서도 볼록부(P)에 의해 쿨링 플레이트(200)의 상부 면적이 증대될 수 있으므로, 이차 전지(100)와 쿨링 플레이트(200)의 접촉 부분이 더욱 넓어질 수 있다. 따라서, 이차 전지(100)로부터 쿨링 플레이트(200)로 열이 전달되는 양 및 속도를 증가시켜 냉각 성능이 보다 향상될 수 있다.
상기 볼록부(P)는, 도 3 등에 도시된 바와 같이, 하나의 쿨링 플레이트(200) 상에 복수 개 구비될 수 있다. 본 발명의 이러한 구성에 의하면, 복수의 볼록부(P)를 통해 이차 전지(100)와 쿨링 플레이트(200) 간 결합력이 보다 강화되고, 접촉 면적이 보다 증가할 수 있다. 특히, 배터리 모듈에 다소 많은 개수의 이차 전지(100), 이를테면 5개 이상의 이차 전지(100)가 포함된 경우, 모든 이차 전지(100)가 볼록부(P)에 인접되도록, 볼록부(P)는 다수 구비되는 것이 좋다.
또한, 상기 볼록부(P)는, 도 2에 도시된 바와 같이, 쿨링 플레이트(200)의 상부면에서 전후 방향으로 길게 연장되는 형태로 형성될 수 있다. 즉, 볼록부(P)는, 이차 전지(100)의 하부 변이 이루는 길이 방향에 평행한 방향으로, 쿨링 플레이트(200)의 전단부에서 후단부에 이르기까지 길게 연장되게 구성될 수 있다. 본 발명의 이러한 실시예에 의하면, 쿨링 플레이트(200)의 표면적을 보다 많이 늘림으로써 이차 전지(100)와 쿨링 플레이트(200) 사이의 접촉 면적을 넓힐 수 있다. 또한, 본 발명의 일 실시예에 의하면, 이차 전지(100)와 쿨링 플레이트(200) 사이의 고정력이 향상될 수 있다.
또한 바람직하게는, 상기 쿨링 플레이트(200)의 볼록부(P)는, 적어도 일부분이 상부 방향으로 갈수록 폭이 좁아지게 형성될 수 있다. 그리고, 이 경우, 쿨링 플레이트(200)의 볼록부(P)에는, 도 8에서 D1 및 D2로 표시된 바와 같이, 쿨링 플레이트(200)가 놓인 지면에서 소정 각도 기울어진 형태로 경사면이 형성될 수 있다. 예를 들어, 상기 볼록부의 상부는, 도 6 및 도 8에 도시된 바와 같이, 상부 방향으로 갈수록 좌우 방향 폭이 좁아지는 삼각형 형태로 형성될 수 있다. 특히, 상기 볼록부는 수평 방향으로 평평한 부분이 구비되지 않도록 구성될 수 있다.
본 발명의 이러한 실시예에 의하면, 이차 전지(100)와 쿨링 플레이트(200)가 보다 밀착된 상태로 결합될 수 있다. 즉, 상기 실시예에 의하면, 쿨링 플레이트(200)의 상부에 이차 전지(100)를 안착시킬 때, 이차 전지(100)는 쿨링 플레이트(200)에 형성된 볼록부의 경사면을 따라 아래 방향으로 이동할 수 있으며, 이로 인해 이차 전지(100)는 쿨링 플레이트(200)에 최대한 가까워지게 구성될 수 있다. 따라서, 이차 전지(100)와 쿨링 플레이트(200) 사이의 거리는 줄어들고 그 사이의 결합력은 더욱 향상될 수 있어, 냉각 성능이 더욱 증대될 수 있다.
여기서, 상기 볼록부의 외측에 형성된 경사면은 평평한 형태로 형성될 수 있다. 즉, 상기 볼록부의 경사면은 곡면이나 요철 형태가 아닌 평면 형태로 형성됨으로써, 이차 전지(100)가 볼록부의 경사면을 따라 원활하게 최대한 하부 방향으로 이동되도록 할 수 있다. 따라서, 본 발명의 이러한 구성에 의하면, 이차 전지(100)가 쿨링 플레이트(200)에 최대한 밀착되게 구성될 수 있다.
한편, 상기 이차 전지(100)는, 앞서 설명한 바와 같이 전극 조립체를 수납하는 수납부(I)와 파우치 외장재가 열융착 등으로 실링된 실링부(S)를 구비할 수 있다. 이때, 수납부(I)와 실링부(S)는 외측 두께(도 8의 좌우 방향 길이)가 서로 다르게 구성될 수 있다. 즉, 파우치형 이차 전지(100)의 경우, 수납부(I)는 실링부(S)보다 통상적으로 두껍게 구성될 수 있으며, 이로 인해 수납부와 실링부 사이에는 단차가 형성될 수 있다. 따라서, 이차 전지(100)는, 상하 방향으로 세워지는 경우, 수납부의 하부 및 상부의 상당 부분이 실링부에 의해 커버되지 않고 노출될 수 있다.
이때, 상기 이차 전지(100)는, 이러한 수납부의 하부 중 적어도 일부가 볼록부에 부착 고정될 수 있다. 예를 들어, 도 6에서 A4로 표시된 부분과 같이, 이차 전지(100)의 수납부의 하부면과 쿨링 플레이트(200)의 볼록부 경사면 사이에는 접착제(N)가 개재됨으로써, 이차 전지(100)와 쿨링 플레이트(200)는 상호 접착 고정될 수 있다.
본 발명의 이러한 구성에 의하면, 이차 전지(100)와 쿨링 플레이트(200) 사이의 결합력이 보다 강화될 수 있다. 즉, 볼록부의 경사면은 지면에 평행한 방향에서 소정 각도 기울어진 형태로 구성되어, 이차 전지(100)의 상하 방향 움직임 및 좌우 방향 움직임을 모두 억제할 수 있다. 따라서, 이러한 볼록부의 경사면에 이차 전지(100)가 접착되는 경우, 하나의 접착 구성으로 이차 전지(100)의 상하 및 좌우 방향 유동을 최대한 제한할 수 있다.
또한, 본 발명의 이러한 구성에 의하면, 좌우 방향으로 수평하게 놓인 쿨링 플레이트(200)와 상하 방향으로 수직하게 세워진 이차 전지(100) 사이에서, 최대한 넓은 접촉 면적을 갖도록 구성될 수 있다. 따라서, 이차 전지(100)와 쿨링 플레이트(200) 사이의 접착력이 안정적으로 확보되고, 양자 간 열 전달 효율이 효과적으로 증대될 수 있다.
더욱이, 이러한 이차 전지(100)의 수납부의 하부면과 쿨링 플레이트(200)의 볼록부의 경사면이 열전도성 접착제를 통해 접착되는 경우, 이차 전지(100)와 쿨링 플레이트(200) 사이의 열전달 효율은 더욱 향상될 수 있다.
또한, 이차 전지(100)는, 이차 전지(100)의 수납부의 하부면의 적어도 일부가 양면에 접착층을 구비하는 양면 접착 테이프를 통해 볼록부의 상부면에 부착 고정될 수 있다. 예를 들어, 도 7에 도시된 바와 같이, 양면 접착 테이프는 이차 전지(100)의 수납부 하부면과 쿨링 플레이트(200)의 볼록부 경사면 사이에 부착될 수 있다. 더욱이, 이러한 양면 접착 테이프는, 볼록부의 경사면에 구비되더라도 흘러내릴 염려가 없어, 이차 전지(100)의 수납부 하부와 쿨링 플레이트(200)의 경사면에 구비시키는 구성이 보다 용이하게 수행될 수 있다.
바람직하게는, 적어도 일부의 볼록부는, 좌측 상부면과 우측 상부면에 서로 다른 이차 전지(100)가 각각 부착 고정될 수 있다. 예를 들어, 쿨링 플레이트(200)의 볼록부는, 도 8에 도시된 바와 같이, 상단 꼭지점을 중심으로 좌측과 우측에 각각 경사면(D1, D2)이 형성되게 구성될 수 있다. 특히, 좌측 경사면(D1)과 우측 경사면(D2)은 경사 방향은 서로 반대이되 각도의 절대값은 동일하고, 경사면의 길이 또한 동일하게 구성될 수 있다.
이와 같은 구성에 있어서, 볼록부의 좌측 경사면(D1)과 우측 경사면(D2)에는 서로 다른 이차 전지(100)가 부착 고정될 수 있다. 예를 들어, 도 8에 도시된 구성에서, 볼록부의 좌측 경사면에는 좌측 이차 전지(100)인 C1의 수납부의 우측 하부면이 접착될 수 있고, 볼록부의 우측 경사면에는 우측 이차 전지(100)인 C2의 수납부의 좌측 하부면이 접착될 수 있다.
이 경우, 하나의 볼록부(P)를 기준으로 인접하는 2개의 이차 전지(100)가 서로 접착 고정될 수 있다. 따라서, 본 발명의 이러한 구성에 의하면, 적은 개수의 볼록부(P)로 많은 개수의 이차 전지(100)가 부착 고정되도록 할 수 있다. 예를 들어, 이차 전지(100)가 배터리 모듈에 짝수 개 포함된 경우, 상기 볼록부는 이차 전지(100) 전체 개수의 절반(1/2)의 개수로 쿨링 플레이트(200)에 형성될 수 있다. 이를테면, 도 3에 도시된 구성과 같이, 배터리 모듈에 12개의 이차 전지(100)가 포함된 경우, 볼록부는 쿨링 플레이트(200)에 6개 구비될 수 있다. 또한, 이차 전지(100)가 배터리 모듈에 홀수 개 포함된 경우, 상기 볼록부는 이차 전지(100) 전체 개수의 절반(1/2)보다 하나 더 많은 개수로 쿨링 플레이트(200)에 형성될 수 있다. 이와 같은 구성의 경우, 모든 이차 전지(100)가 쿨링 플레이트(200)의 볼록부에 부착 고정되도록 할 수 있다.
한편, 상기 이차 전지(100)는, 각 변에 실링부를 구비할 수 있다. 이때, 이차 전지(100)의 실링부는, 폴딩될 수 있다. 특히, 이차 전지(100)는 하부 실링부 및 상부 실링부가 폴딩될 수 있다. 더욱이, 본 발명에 따른 배터리 모듈에서, 이차 전지는, 쿨링 플레이트(200)와 접하는 하부 실링부가 폴딩될 수 있다. 본 발명의 이러한 구성에 의하면, 실링부의 폴딩으로 인해 배터리 모듈의 전체적인 크기를 감소시키고, 특히 이차 전지(100)의 수납부와 쿨링 플레이트(200) 사이의 거리를 줄일 수 있다.
특히, 이차 전지(100)는, 하부 실링부가 볼록부와 반대 방향으로 폴딩될 수 있다. 예를 들어, 도 6의 구성에서, C1 이차 전지는, 우측 하부에 쿨링 플레이트(200)의 볼록부가 위치하여 수납부의 우측 하부면이 볼록부의 경사면에 부착될 수 있다. 이때, C1 이차 전지의 하부 실링부는, 볼록부와 반대 방향인 좌측 방향으로 폴딩될 수 있다. 또한, C2 이차 전지는, 좌측 하부에 쿨링 플레이트(200)의 볼록부가 위치하고, 실링부는 C2 이차 전지가 부착된 볼록부와 반대 방향인 우측 방향으로 폴딩될 수 있다.
본 발명의 이러한 구성에 의하면, 이차 전지(100)의 수납부와 쿨링 플레이트(200) 사이에 폴딩부가 개재되지 않고 상호 간 직접 접촉하는 부분이 존재할 수 있다. 따라서, 수납부에서 발생하는 열이 쿨링 플레이트(200)로 효과적으로 전달되도록 할 수 있다. 또한, 본 발명의 이러한 구성에 의하면, 쿨링 플레이트(200)에 대한 이차 전지(100)의 고정력이 안정적으로 확보될 수 있다.
더욱이, 이차 전지(100)의 실링부는, 1회 이상 폴딩될 수 있다. 예를 들어, 이차 전지(100)의 하부 실링부는, 도 6 등에 도시된 바와 같이, 2회 폴딩될 수 있다. 특히, 실링부가 동일 방향으로 다수 회 폴딩된 구성에 의하면, 실링부의 융착 부분을 통해 이차 전지(100) 내부로 수분 등 이물질이 침투하거나 이차 전지(100) 내부에서 전해액이 누출되는 것을 보다 효과적으로 방지할 수 있다.
상기 실시예와 같이, 이차 전지(100)의 하부 실링부가 폴딩된 경우, 폴딩된 하부 실링부는, 쿨링 플레이트(200)에서 볼록부에 의해 오목하게 형성된 부분에 수용될 수 있다.
예를 들어, 쿨링 플레이트(200)에 다수의 볼록부가 형성된 경우, 이러한 볼록부 사이에는 도 8에서 G로 표시된 부분과 같이, 하부 방향으로 오목한 형태의 오목부가 형성될 수 있다. 이때, 이차 전지(100)의 폴딩된 하부 실링부는, 이러한 오목부(G)에 수용될 수 있다.
또한 바람직하게는, 최외측 이차 전지(100)는, 실링부가 내측 방향으로 폴딩되는 것이 좋다. 예를 들어, 도 3의 구성에 도시된 바와 같이, 배터리 모듈에 포함된 이차 전지(100) 중 가장 우측에 위치한 이차 전지는, 상부 및 하부 실링부가 내측 방향인 좌측 방향으로 폴딩될 수 있다. 그리고, 배터리 모듈에 포함된 이차 전지 중 가장 좌측에 위치한 이차 전지는, 상부 및 하부 실링부가 내측 방향인 우측 방향으로 폴딩될 수 있다.
본 발명의 이러한 구성에 의하면, 쿨링 플레이트(200)의 외측 볼록부에 이차 전지(100)의 실링부가 아닌 수납부가 부착되도록 함으로써, 최외측 이차 전지(100)와 쿨링 플레이트(200) 사이의 고정력이 강화되도록 할 수 있다. 또한, 실링부가 배터리 모듈의 외측으로 노출되지 않도록 함으로써, 실링부를 통해 최외측 이차 전지(100)의 내부로 수분이나 각종 이물질의 침투를 방지할 수 있다.
한편, 상기 여러 실시예에서는, 이차 전지(100)가 쿨링 플레이트(200)의 볼록부에만 부착되는 구성을 위주로 도시되어 있으나, 본 발명이 반드시 이러한 실시예로 한정되는 것은 아니다.
도 9는, 본 발명의 또 다른 실시예에 따른 배터리 모듈의 하부 구성 일부분을 확대하여 나타낸 도면이다. 이를테면, 도 9의 경우, 도 3의 A3 부분에 대한 다른 예라 할 수 있다.
도 9를 참조하면, 접착제는, 쿨링 플레이트(200)의 볼록부의 상부면, 즉 경사면뿐 아니라, 볼록부의 수직면에도 구비될 수 있다. 또한, 접착제는 쿨링 플레이트(200)에서 볼록부 이외의 부분, 이를테면 볼록부 사이의 오목부(G)의 적어도 일부에도 구비될 수 있다. 특히, 후술하는 폴딩 지지부와 폴딩된 실링부 사이에도 접착제가 개재될 수 있다. 따라서, 이차 전지(100)는, 수납부와 함께 실링부도 쿨링 플레이트(200)에 접착되도록 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 본드를 통한 이차 전지(100)와 쿨링 플레이트(200) 사이의 접촉 면적이 증가하므로, 이차 전지(100)와 쿨링 플레이트(200) 사이의 결합력이 향상되고, 열 전달 효율이 증대될 수 있다. 더욱이, 이차 전지(100)와 쿨링 플레이트(200) 사이의 열 전달 경로에서 더 많은 부분의 공기층이 제거됨으로써, 공기층으로 인한 열저항은 더욱 감소할 수 있다. 또한, 쿨링 플레이트(200)에 접착제를 도포할 때, 경사면만 도포하지 않고 쿨링 플레이트(200)의 상부면 전체를 도포하면 되므로, 접착제 등의 도포 공정성이 향상될 수 있다.
또한, 상기 쿨링 플레이트(200)는, 볼록부(P) 사이에 폴딩 지지부를 구비할 수 있다. 이에 대해서는, 도 10을 참조하여, 보다 구체적으로 설명하도록 한다.
도 10은, 도 3의 A3' 부분에 대하여, 이차 전지(100)와 쿨링 플레이트(200)를 분리시킨 형태를 개략적으로 나타내는 도면이다.
도 10을 참조하면, 상기 쿨링 플레이트(200)는, 둘 이상의 볼록부(P)를 구비하되, 이러한 다수의 볼록부 사이에, R로 표시된 부분과 같이, 폴딩 지지부를 구비할 수 있다. 즉, 쿨링 플레이트에는, 볼록부(P)의 돌출된 형태로 인해 볼록부 사이에 오목부(G)가 형성될 수 있는데, 이러한 오목부는 전체적으로 평평하게 형성되지 않고, 적어도 일부분이 상부 방향으로 돌출되게 형성되어 폴딩 지지부를 구성할 수 있다. 그리고, 이러한 폴딩 지지부(R)는, 도면에서 SF로 표시된 부분과 같은 이차 전지의 폴딩된 하부 실링부를 상부 방향으로 지지할 수 있다.
여기서, 폴딩 지지부(R)가 하부 실링부의 폴딩된 부분(SF)을 상부 방향으로 지지하는 구성은, 폴딩 지지부와 하부 실링부의 폴딩된 부분이 직접 접촉되거나 소정 거리 이격된 상태로 이루어질 수 있다.
예를 들어, 배터리 모듈이 구성된 상태에서 상기 폴딩 지지부(R)는, 도 6 및 도 7에 도시된 바와 같이, 하부 실링부의 폴딩된 부분과 직접적으로 접촉되지 않고, 소정 거리 이격되게 구성될 수 있다. 이 경우, 폴딩 지지부(R)는, 하부 실링부의 폴딩된 부분과 직접적으로 접촉하고 있지는 않지만, 적어도 폴딩 상태가 풀리지 않고 안정적으로 유지되도록 할 수 있다. 즉, 폴딩 지지부(R)는, 이차 전지가 쿨링 플레이트 상부에 안착된 상태에서, 하부 실링부의 폴딩된 부분이 하부 방향으로 이동하는 것을 제한하므로, 하부 실링부의 폴딩 상태가 풀리지 않고 그대로 유지되도록 할 수 있다. 또한, 상기 폴딩 지지부(R)는, 이차 전지를 쿨링 플레이트의 상부에 안착시키는 과정에서 하부 실링부가 폴딩되도록 하거나 폴딩 정도가 더욱 심화되도록 할 수 있다.
그러므로, 본 발명의 이러한 구성에 의하면, 하부 실링부의 폴딩 상태가 풀림으로써, 실링부의 단부에 노출된 금속층, 이를테면 알루미늄층이 쿨링 플레이트나 다른 이차 전지에 접촉하는 것을 방지하여, 배터리 모듈의 안전성을 향상시킬 수 있다.
다른 예로, 배터리 모듈이 구성된 상태에서 상기 폴딩 지지부(R)는, 하부 실링부의 폴딩된 부분과 직접 접촉하도록 구성될 수 있다. 예를 들어, 도 9에 도시된 바와 같이, 폴딩 지지부(R)는, 접착제(N) 등을 통해 하부 실링부와 직접 접촉되게 구성될 수 있다. 이 경우, 폴딩 지지부(R)는 하부 실링부의 폴딩 상태가 풀리지 않도록 하는 것은 물론, 하부 실링부의 폴딩된 부분(SF)이 조금도 아래로 움직이지 않도록 할 수 있다. 특히, 접착제가 개재된 경우, 폴딩 지지부는, 하부 실링부의 폴딩된 부분을 완전하게 고정시킴으로써, 하부 실링부의 폴딩 상태가 풀리는 것을 원천적으로 차단하면서, 이차 전지의 고정성을 더욱 강화할 수 있다. 또한, 이러한 구성에 의하면, 이차 전지 측 열이 하부 실링부를 통해 쿨링 플레이트 측으로 보다 원활하게 전달되도록 할 수 있다. 즉, 이차 전지는, 수납부뿐 아니라 하부 실링부를 통해서도 쿨링 플레이트와 접촉되므로, 이차 전지와 쿨링 플레이트 사이의 열전달 경로가 더욱 확대되어 열배출 속도가 향상될 수 있다.
상기 폴딩 지지부(R)는, 여러 도면에 도시된 바와 같이, 하나로써 2개의 실링부의 폴딩 부분을 지지하도록 구성될 수 있다. 예를 들어, 도 10에 도시된 바와 같이, 1개의 폴딩 지지부는, 중앙 부분이 볼록하게 형성되고, 좌측과 우측에 각각 경사면이 형성되어, 이러한 경사면에 서로 다른 이차 전지의 실링부의 폴딩된 부분이 위치하도록 구성될 수 있다. 즉, 상기 폴딩 지지부는, 상부가 상부 방향으로 갈수록 좌우 방향 폭이 좁아지게 구성될 수 있다. 또한, 상기 폴딩 지지부는, 하부 실링부의 형태에 대응되도록 볼록부와 마찬가지로 전후 방향으로 길게 연장된 형태로 형성될 수 있다.
바람직하게는, 상기 폴딩 지지부는, 하부 실링부의 폴딩된 부분이 수납부의 하부면에 접촉하도록 구성될 수 있다. 이에 대해서는, 도 11 및 도 12를 참조하여 보다 구체적으로 설명하도록 한다.
도 11은 본 발명의 다른 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 정면도이고, 도 12는 도 11의 A8 부분에 대한 확대도이다. 이하에서는, 앞선 실시예에 대한 설명이 유사하게 적용될 수 있는 부분에 대해서는 상세한 설명을 생략하고, 차이점이 있는 부분을 위주로 설명한다.
도 11 및 도 12를 참조하면, 폴딩 지지부(R)는, 하부 실링부의 폴딩된 부분(SF)이 수납부의 하부면에 접촉하도록 구성될 수 있다. 특히, 도 12를 살펴보면, 이차 전지의 하부 실링부에서 폴딩된 부분의 일부가 이차 전지의 수납부(I)의 하부면에 접촉되어 있음을 알 수 있다. 이를 위해, 상기 폴딩 지지부는, 앞선 실시예보다 더욱 높게 상부 방향으로 돌출되게 구성될 수 있다. 예를 들어, 도 10의 실시예에서는, 폴딩 지지부가 볼록부에 비해 높이가 현저하게 낮도록 구성되어 있으나, 본 실시예에서는, 폴딩 지지부가 볼록부와 높이에 있어 큰 차이를 보이지 않고 있다. 따라서, 이 경우, 하부 실링부의 폴딩된 부분은 상부 측으로 더욱 절곡될 수 있고, 이로 인해 폴딩된 부분의 상단이 수납부의 하면에 닿을 수 있다.
본 발명의 이러한 구성에 의하면, 폴딩 지지부의 크기가 커짐으로써 쿨링 플레이트의 상하 방향 두께가 두꺼워져, 쿨링 플레이트의 강성이 보강될 수 있다. 따라서, 배터리 모듈의 하부 측 충격에 대한 쿨링 플레이트의 보호 성능이 더욱 향상될 수 있다. 또한, 이차 전지의 열이, 폴딩된 실링부와 수납부의 접촉 부분을 통해서도 쿨링 플레이트로 전달될 수 있으므로, 배터리 모듈의 냉각 성능이 더욱 향상될 수 있다.
한편, 상기 볼록부와 상기 폴딩 지지부는, 쿨링 플레이트의 상면에서 이차 전지의 배열 방향을 따라 교대로 배치될 수 있다.
예를 들어, 도 11에 도시된 구성을 참조하면, 상기 쿨링 플레이트는, 좌측에서 우측 방향으로, 볼록부, 폴딩 지지부, 볼록부, 폴딩 지지부, 볼록부, …가 순차적으로 배치되도록 구성될 수 있다.
이러한 구성에서는, 이차 전지와 쿨링 플레이트의 상호 조립 공정이 용이하게 수행될 수 있고, 쿨링 플레이트의 구조가 간소화될 수 있다. 또한, 쿨링 플레이트의 두께가 얇아지는 부분이 많아지는 것을 방지하여, 쿨링 플레이트의 강성을 일정 수준 이상으로 확보할 수 있다.
또한 바람직하게는, 본 발명에 따른 배터리 모듈은, 도 11에 도시된 바와 같이, 측면 플레이트(300) 및 어퍼 플레이트(400)를 더 포함할 수 있다.
상기 측면 플레이트(300)는, 판상으로 구성되며, 쿨링 플레이트(200)의 양단에 세워진 형태로 서로 마주보게 배치될 수 있다. 예를 들어, 도 11에 도시된 바와 같이, 측면 플레이트는, 이차 전지 적층체의 적층 방향 양단, 즉 좌측과 우측에 각각 배치될 수 있다. 특히, 상기 측면 플레이트는, 쿨링 플레이트의 좌측 단부와 우측 단부에서 쿨링 플레이트의 평면 방향에 대하여 수직이 되도록 구성될 수 있다. 그리고, 측면 플레이트는, 하단이 쿨링 플레이트에 결합 고정되게 구성될 수 있다.
상기 어퍼 플레이트(400)는, 대략 판상으로 구성되며, 쿨링 플레이트와 마찬가지로 눕혀진 형태로 구성될 수 잇다. 또한, 상기 어퍼 플레이트는, 쿨링 플레이트와 소정 거리 이격된 상태에서 쿨링 플레이트와 마주보게 배치되며, 양단이 2개의 측면 플레이트의 상단에 연결될 수 있다. 예를 들어, 도 11의 실시예에서, 어퍼 플레이트의 좌측 단부와 우측 단부는, 각각 좌측 측면 플레이트의 상단 및 우측 측면 플레이트의 상단에 결합 고정될 수 있다.
상기 측면 플레이트와 상기 어퍼 플레이트는, 쿨링 플레이트와 함께 배터리 모듈의 케이스를 구성할 수 있다. 따라서, 배터리 모듈 내부의 구성요소, 특히 이차 전지는, 이러한 쿨링 플레이트, 측면 플레이트 및 어퍼 플레이트로 인해 외부 충격이나 이물질 등으로부터 보호될 수 있다.
상기 측면 플레이트와 어퍼 플레이트는, 쿨링 플레이트와 마찬가지로, 금속 재질로 구성될 수 있다. 이 경우, 측면 플레이트와 어퍼 플레이트는, 케이스의 일부로서 강성이 안정적으로 확보되며, 냉각 기능도 수행할 수 있다. 특히, 상기 측면 플레이트와 어퍼 플레이트는, 쿨링 플레이트와 동일한 재질로 구성될 수 있다.
한편, 상기 어퍼 플레이트는, 이차 전지의 하부가 아닌 상부에 위치한다는 점에서 쿨링 플레이트와 다르나, 쿨링 플레이트의 여러 구성이 유사하게 적용될 수 있다. 예를 들어, 어퍼 플레이트는, 도 11에 도시된 바와 같이, 상부 볼록부(P') 및/또는 상부 폴딩 지지부(R')를 구비할 수 있다. 여기서, 상부 볼록부(P')는, 쿨링 플레이트의 볼록부(P)에 대응되는 구성으로, 하부 방향으로 볼록하게 형성되어, 이차 전지의 수납부에 대응되는 형태로 형성될 수 있다. 또한, 상부 폴딩 지지부(R')는, 쿨링 플레이트의 폴딩 지지부(R)에 대응되는 구성으로, 상부 볼록부(P') 사이에서 하부 방향으로 돌출되게 형성되어 상부 실링부의 폴딩 부분을 하부 방향으로 지지하여 상부 실링부의 폴딩 상태가 유지되도록 할 수 있다.
바람직하게는, 상기 쿨링 플레이트(200)는, 2개의 측면 플레이트(300) 및 어퍼 플레이트(400)와 관 형태로 일체로 형성될 수 있다.
예를 들어, 도 11의 구성에서, 쿨링 플레이트(200), 2개의 측면 플레이트(300) 및 어퍼 플레이트(400)는 별도로 제조된 상태에서 추후 결합된 구성이 아니라, 압출 등의 방식으로 처음부터 일체화된 형태로 구성될 수 있다. 이 경우, 쿨링 플레이트(200), 2개의 측면 플레이트(300) 및 어퍼 플레이트(400)는 모두 동일한 재질로 형성되며, 관 형태로 구성될 수 있다.
도 13은, 본 발명의 또 다른 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 도면이다.
도 13을 참조하면, 배터리 모듈은, 쿨링 플레이트(200), 2개의 측면 플레이트(300) 및 어퍼 플레이트(400)가 일체화된 형태로 형성된 모듈 케이스를 구비할 수 있다. 즉, 도 13의 실시예에서, 모듈 케이스는, 용접이나 볼팅, 후크 체결 등 별도의 추후 결합 구성을 구비하지 않고, 상부, 하부, 좌측부 및 우측부 모두 전체적으로 일체화된 형태로 구성될 수 있다.
그리고, 모듈 케이스는, 전단 및/또는 후단이 개방되고, 이러한 개방단을 통해 이차 전지의 적층체가 삽입될 수 있다. 즉, 도 13에서, 이차 전지(100)의 적층체는, 화살표 A9로 표시된 바와 같이, 모듈 케이스의 전방 개방단으로부터, 쿨링 플레이트, 측면 플레이트 및 어퍼 플레이트로 한정된 모듈 케이스의 내부 공간으로 슬라이딩될 수 있다.
본 발명의 이러한 구성에 의하면, 쿨링 플레이트, 측면 플레이트 및 어퍼 플레이트 사이에 별도의 결합 구성이 존재하지 않고 처음부터 일체화된 형태로 형성되므로, 모듈 케이스의 제조 공정이 용이해지고, 제조 시간이 단축되며, 모듈 케이스의 강성이 효과적으로 향상될 수 있다.
또한 바람직하게는, 상기 쿨링 플레이트는, 전후 방향으로 요철이 형성될 수 있다. 이에 대해서는, 도 14를 참조하여 보다 구체적으로 설명하도록 한다.
도 14는, 본 발명의 다른 실시예에 따른 쿨링 플레이트의 구성을 개략적으로 나타내는 사시도이다. 여기서는, 앞선 실시예와 차이점이 있는 부분만을 설명하도록 한다.
도 14를 참조하면, 상기 쿨링 플레이트는, V로 표시된 바와 같이, 상부에 보유홈이 형성될 수 있다. 이러한 보유홈(V)은, 쿨링 플레이트의 상부 표면에서 하부 방향으로 소정 깊이만큼 오목하게 파여진 형태로 형성될 수 있다. 더욱이, 상기 보유홈(V)은, 전후 방향으로 요철을 형성하도록 구성될 수 있다. 즉, 상기 보유홈은, 배터리 모듈의 전후 방향으로 볼록 형태 및/또는 오목 형태가 형성되도록 구성될 수 있다.
이러한 구성의 경우, 상기 보유홈(V)에는, 접착제가 보유될 수 있다. 즉, 쿨링 플레이트의 상부면과 이차 전지 사이에는 접착제가 개재될 수 있는데, 보유홈이 형성된 부분에서는 보유홈에 보다 많은 접착제가 존재할 수 있다. 따라서, 이 경우, 보유홈에 수용된 접착제로 인해, 이차 전지와 쿨링 플레이트 사이의 접착 성능은 보다 안정적으로 확보될 수 있다.
특히, 앞서 설명된 바와 같이, 쿨링 플레이트, 측면 플레이트 및 어퍼 플레이트가 일체화된 형태, 즉 모듈 케이스가 관 형태로 형성된 구성에서는, 도 13에 도시된 바와 같이, 이차 전지가 모듈 케이스의 전단 개방부에서 후단 방향으로 슬라이딩될 수 있다. 이때, 쿨링 플레이트의 상부 표면에 미리 도포되어 있는 접착제가 후단으로 밀릴 수 있는데, 상기 보유홈(V)은 접착제가 후단으로 계속해서 밀리는 것을 방지할 수 있다. 따라서, 본 발명의 이러한 구성에 의하면, 접착제에 의한, 이차 전지와 쿨링 플레이트 사이의 접착력을 더욱 강화시킬 수 있다.
더욱이, 상기 보유홈(V)은, 볼록부에 형성될 수 있다. 예를 들어, 도 14에 도시된 바와 같이, 보유홈(V)은 볼록부(P)의 상부 표면에 형성될 수 있다. 쿨링 플레이트는 볼록부에서 이차 전지의 수납부와 접착 고정될 수 있는데, 이 경우 보유홈은 볼록부의 상부 표면에 형성되어, 이차 전지의 수납부와 쿨링 플레이트의 볼록부 사이에서 보다 많은 접착제가 보유되도록 할 수 있다.
또한 바람직하게는, 상기 쿨링 플레이트는, 상면 중 적어도 일부에 전기 절연층이 코팅될 수 있다. 이에 대해서는, 도 15를 참조하여 보다 구체적으로 설명하도록 한다.
도 15는, 본 발명의 또 다른 실시예에 따른 배터리 모듈의 일부 구성을 개략적으로 나타내는 정면도이다. 이하에서는, 앞선 실시예와 차이점이 있는 부분을 위주로 설명한다.
도 15를 참조하면, 쿨링 플레이트(200)의 상부 표면에는, Q로 표시된 바와 같이, 전기 절연층이 코팅될 수 있다. 특히, 이러한 전기 절연층(Q)은, 쿨링 플레이트의 볼록부(P)는 물론이고, 폴딩 지지부(R)에도 코팅될 수 있다.
상기 전기 절연층(Q)은, 분체 도장, 도금, 절연 시트 등 다양한 형태로 형성될 수 있으며, 본 발명이 전기 절연층의 특정 형성 방식으로 제한되는 것은 아니다.
본 발명의 이러한 구성에 의하면, 전기 절연층(Q)으로 인해 이차 전지(100)와 쿨링 플레이트(200) 사이의 전기적 절연성이 안정적으로 확보될 수 있다. 특히, 이차 전지의 하부 실링부 중 폴딩 부분에서 크랙이 발생하거나 실링부 단부의 금속층이 노출되어 쿨링 플레이트에 접촉되더라도, 전기 절연층(Q)으로 인해 배터리 모듈의 내부 단락이 발생하는 것을 방지할 수 있다.
한편, 이러한 전기 절연층(Q)은, 쿨링 플레이트뿐 아니라, 어퍼 플레이트에도 구비될 수 있다. 즉, 어퍼 플레이트의 하부 표면은 전기 절연층이 코팅될 수 있다. 이 경우, 이차 전지의 하부 및 상부 모두 전기적 절연성이 확보되어 배터리 모듈의 내전압 성능이 보다 안정적으로 확보될 수 있다.
상기 파우치형 이차 전지(100)는, 눕혀진 상태로 상부에서 하부 방향으로 바라볼 때, 대략 직사각형 형태로 구성될 수 있다. 이때, 파우치형 이차 전지(100)의 외주부는, 2개의 장변과 2개의 단변을 구비한다고 할 수 있다. 예를 들어, 도 1 및 도 5에 도시된 바를 참조하면, 파우치형 이차 전지(100)는, 테두리부에 있어서 4개의 변을 갖는데, 그 중 2개의 변은 길이가 짧고, 나머지 2개의 변은 상대적으로 길이가 길 수 있다. 이때, 파우치형 이차 전지(100)는, 길이가 긴 2개의 변 중 적어도 하나의 장변이 쿨링 플레이트(200)에 부착 고정되게 구성될 수 있다. 예를 들어, 도 1 및 도 2에 도시된 구성에서, 다수의 파우치형 이차 전지(100)가 상하 방향으로 세워진 형태로 좌우 방향으로 적층되되, 각 이차 전지(100)는 2개의 장변이 상부 측과 하부 측에 위치하고, 2개의 단변이 전방 측과 후방 측에 위치하도록 구성될 수 있다. 그리고, 각 이차 전지(100)의 하부 장변은, 접착제나 접착 테이프 등으로 쿨링 플레이트(200)에 부착될 수 있다.
본 발명의 이러한 실시예에 의하면, 이차 전지(100) 외주부의 장변 부분이 쿨링 플레이트(200)에 접착됨으로써, 접착에 의한 고정력이 보다 향상될 수 있다. 또한, 이차 전지(100)와 쿨링 플레이트(200)가 보다 넓은 면적에서 직접 접촉되도록 함으로써 이차 전지(100)와 쿨링 플레이트(200) 사이의 열전달 효율이 보다 향상되도록 할 수 있다. 더욱이, 파우치형 이차 전지(100)의 단변에는 전극 리드(112)가 돌출될 수 있으므로, 이러한 단변 부분에 접착제가 도포되기보다는 장변 부분에 접착제가 도포되는 것이 좋다.
또한, 상기 이차 전지(100)는, 넓은 면이 상호 간 대면 접촉하도록 적층될 수 있다. 예를 들어, 도 3 및 도 11에 도시된 바와 같이, 이차 전지(100)가 좌우 방향으로 적층 배치될 때, 각 이차 전지(100)의 넓은 면, 즉 수납부의 외측면은 좌우 방향에 위치하고, 각각의 수납부의 외측면은 인접하는 이차 전지(100)의 수납부의 외측면과 대면 접촉되도록 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 배터리 모듈의 소형화 및 경량화를 달성하는데 용이할 수 있다. 더욱이, 본 발명의 일 측면에 의하면, 모든 이차 전지(100)는 하부에 위치한 쿨링 플레이트(200)와 직접 열교환을 할 수 있다. 따라서, 종래 배터리 모듈 구성과 같이, 이차 전지(100) 사이에 쿨링 핀이 존재하는 형태로 구성되지 않을 수 있다. 그러므로, 본 발명에 따른 배터리 모듈은, 이차 전지(100)끼리 직접 대면 접촉될 수 있으며, 이로 인해, 컴팩트하고 가벼우며 구조가 간단하게 구성될 수 있다.
본 발명에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 하나 이상 포함할 수 있다. 또한, 본 발명에 따른 배터리 팩은, 이러한 배터리 모듈 이외에, 이러한 배터리 모듈을 수납하기 위한 팩 케이스, 배터리 모듈의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS, 전류 센서, 퓨즈 등을 더 포함할 수 있다.
본 발명에 따른 배터리 모듈은, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다. 즉, 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함할 수 있다. 특히, 전기 자동차와 같이 배터리로부터 구동력을 얻는 자동차의 경우, 배터리 모듈의 냉각 성능은 매우 중요하다. 따라서, 이러한 자동차에 본 발명에 따른 배터리 모듈이 적용되는 경우, 효과적인 냉각 성능으로 안정적이고 안전한 배터리 모듈이 제공될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용된 경우, 이러한 용어들은 상대적인 위치를 나타내는 것으로서 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.

Claims (14)

  1. 전극 조립체, 전해질 및 파우치 외장재를 구비하여 상기 전극 조립체를 수납하는 수납부 및 상기 파우치 외장재가 실링된 실링부가 형성되고, 상하 방향으로 세워진 형태로 좌우 방향으로 배열되며, 하부 실링부가 폴딩된 복수의 파우치형 이차 전지; 및
    열 전도성 재질로 구성되고, 상기 복수의 이차 전지의 하부에 수평 방향으로 눕혀진 형태로 배치되며, 상부 표면에서 상부 방향으로 볼록하게 형성되어 상기 이차 전지의 수납부의 하부가 부착된 볼록부가 둘 이상 구비되고, 상기 볼록부 사이에 위치하고 상부 방향으로 돌출되게 형성되어 상기 이차 전지의 폴딩된 하부 실링부를 상부 방향으로 지지하는 폴딩 지지부가 구비된 쿨링 플레이트
    를 포함하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 이차 전지는, 상기 수납부의 하부면의 적어도 일부가 접착제를 통해 상기 볼록부의 상부면에 부착 고정된 것을 특징으로 하는 배터리 모듈.
  3. 제2항에 있어서,
    상기 접착제는, 열전도성 접착제인 것을 특징으로 하는 배터리 모듈.
  4. 제1항에 있어서,
    상기 이차 전지는, 상기 수납부의 하부면의 적어도 일부가 양면에 접착층을 구비하는 양면 접착 테이프를 통해 상기 볼록부의 상부면에 부착 고정된 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서,
    상기 폴딩 지지부는, 상기 하부 실링부의 폴딩된 부분이 상기 수납부의 하부면에 접촉하도록 구성된 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서,
    상기 볼록부는, 적어도 일부분이 상부 방향으로 갈수록 폭이 좁아지게 경사면이 형성된 것을 특징으로 하는 배터리 모듈.
  7. 제6항에 있어서,
    적어도 일부 볼록부는, 좌측 상부면과 우측 상부면에 서로 다른 이차 전지가 각각 부착 고정된 것을 특징으로 하는 배터리 모듈.
  8. 제1항에 있어서,
    상기 볼록부와 상기 폴딩 지지부는, 상기 쿨링 플레이트의 상면에서 상기 이차 전지의 배열 방향을 따라 교대로 배치된 것을 특징으로 하는 배터리 모듈.
  9. 제1항에 있어서,
    상기 쿨링 플레이트의 양단에 세워진 형태로 서로 마주보게 배치된 2개의 측면 플레이트; 및 눕혀진 형태로 상기 쿨링 플레이트와 마주보게 배치되어 양단이 상기 2개의 측면 플레이트의 상단에 연결된 어퍼 플레이트를 더 포함하는 것을 특징으로 하는 배터리 모듈.
  10. 제9항에 있어서,
    상기 쿨링 플레이트는, 상기 2개의 측면 플레이트 및 상기 어퍼 플레이트와 관 형태로 일체로 형성된 것을 특징으로 하는 배터리 모듈.
  11. 제1항에 있어서,
    상기 쿨링 플레이트는, 전후 방향으로 요철이 형성된 것을 특징으로 하는 배터리 모듈.
  12. 제1항에 있어서,
    상기 쿨링 플레이트는, 상면 중 적어도 일부에 전기 절연층이 코팅된 것을 특징으로 하는 배터리 모듈.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 배터리 모듈을 포함하는 배터리 팩.
  14. 제1항 내지 제12항 중 어느 한 항에 따른 배터리 모듈을 포함하는 자동차.
PCT/KR2016/013233 2016-08-18 2016-11-16 배터리 모듈 WO2018034382A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16913565.4A EP3373384B1 (en) 2016-08-18 2016-11-16 Battery module
CN201680073050.XA CN108370075B (zh) 2016-08-18 2016-11-16 电池模块
US15/776,885 US10629875B2 (en) 2016-08-18 2016-11-16 Battery module
ES16913565T ES2954996T3 (es) 2016-08-18 2016-11-16 Módulo de baterías
JP2018540452A JP6683817B2 (ja) 2016-08-18 2016-11-16 バッテリーモジュール
PL16913565.4T PL3373384T3 (pl) 2016-08-18 2016-11-16 Moduł akumulatorowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0105056 2016-08-18
KR1020160105056A KR102119183B1 (ko) 2016-08-18 2016-08-18 배터리 모듈

Publications (1)

Publication Number Publication Date
WO2018034382A1 true WO2018034382A1 (ko) 2018-02-22

Family

ID=61197344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013233 WO2018034382A1 (ko) 2016-08-18 2016-11-16 배터리 모듈

Country Status (9)

Country Link
US (1) US10629875B2 (ko)
EP (1) EP3373384B1 (ko)
JP (1) JP6683817B2 (ko)
KR (1) KR102119183B1 (ko)
CN (1) CN108370075B (ko)
ES (1) ES2954996T3 (ko)
HU (1) HUE063003T2 (ko)
PL (1) PL3373384T3 (ko)
WO (1) WO2018034382A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770946A (zh) * 2018-03-30 2020-02-07 株式会社Lg化学 易于组装的包括汇流条框架的电池模块
EP3611776A1 (en) * 2018-08-17 2020-02-19 Hyundai Motor Company Battery module
US20200119415A1 (en) * 2018-10-10 2020-04-16 Mahle International Gmbh Accumulator
JP2022524739A (ja) * 2019-03-26 2022-05-10 エルジー エナジー ソリューション リミテッド 電池モジュールおよびその製造方法
EP4037069A4 (en) * 2020-08-24 2023-08-16 LG Energy Solution, Ltd. BATTERY MODULE AND BATTERY PACK COMPRISING THEM

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102120118B1 (ko) 2016-08-18 2020-06-08 주식회사 엘지화학 배터리 모듈
KR102576860B1 (ko) * 2018-03-30 2023-09-11 에스케이온 주식회사 파우치 외장재, 및 이를 이용한 이차 전지와 이차 전지팩
KR102325438B1 (ko) * 2018-04-25 2021-11-10 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR102597128B1 (ko) * 2018-08-08 2023-11-03 에스케이온 주식회사 파우치형 이차전지 모듈
KR102424400B1 (ko) * 2018-09-13 2022-07-22 주식회사 엘지에너지솔루션 열수축성 튜브를 포함하는 배터리 모듈
KR102378527B1 (ko) * 2018-12-05 2022-03-23 주식회사 엘지에너지솔루션 전지 모듈 및 그 제조 방법
CN114256550B (zh) 2019-01-09 2023-10-17 比亚迪股份有限公司 单体电池、动力电池包及电动车
JP7151493B2 (ja) * 2019-01-15 2022-10-12 トヨタ自動車株式会社 電池装置
JP2020119661A (ja) * 2019-01-21 2020-08-06 トヨタ自動車株式会社 電池モジュール
CN113228387B (zh) * 2019-01-25 2023-10-27 株式会社东芝 电池包以及电池系统
KR20200140476A (ko) 2019-06-07 2020-12-16 에스케이이노베이션 주식회사 배터리 모듈
KR102284380B1 (ko) * 2019-06-21 2021-07-30 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20210011639A (ko) * 2019-07-23 2021-02-02 에스케이이노베이션 주식회사 이차전지 및 이를 포함하는 배터리 모듈
KR20210019760A (ko) * 2019-08-13 2021-02-23 에스케이이노베이션 주식회사 이차전지 및 이를 포함하는 배터리 모듈
KR102356020B1 (ko) * 2019-09-30 2022-01-27 에스케이온 주식회사 파우치외장재, 파우치형 이차전지 및 이의 제조 방법
KR20210053054A (ko) 2019-11-01 2021-05-11 에스케이이노베이션 주식회사 배터리 모듈
KR20210064935A (ko) * 2019-11-26 2021-06-03 주식회사 엘지에너지솔루션 배터리 모듈
KR20210077415A (ko) * 2019-12-17 2021-06-25 에스케이이노베이션 주식회사 배터리 모듈
KR20210092566A (ko) * 2020-01-16 2021-07-26 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
KR20210099424A (ko) * 2020-02-04 2021-08-12 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20210118527A (ko) * 2020-03-23 2021-10-01 주식회사 엘지에너지솔루션 서로 다른 방향으로 돌출된 요철 패턴이 형성된 전지 모듈 커버재, 이의 제조방법 및 이를 포함하는 전지 모듈
CN115997334A (zh) 2020-04-16 2023-04-21 锂平衡公司 直流-直流转换器组件
KR20210130549A (ko) * 2020-04-22 2021-11-01 주식회사 엘지에너지솔루션 전지 모듈 및 그 제조 방법
CN112997350B (zh) * 2020-05-21 2023-07-04 宁德时代新能源科技股份有限公司 电池模块、电池模块组件及其生产方法以及装置
KR20210149415A (ko) * 2020-06-02 2021-12-09 주식회사 엘지에너지솔루션 다단 냉각 방식의 배터리 모듈, 이를 포함하는 배터리 팩과 자동차
KR20210153430A (ko) 2020-06-10 2021-12-17 주식회사 엘지에너지솔루션 배터리 모듈 및 그의 제조방법
KR20210153431A (ko) * 2020-06-10 2021-12-17 주식회사 엘지에너지솔루션 배터리 모듈 및 그의 제조방법
KR20220014160A (ko) * 2020-07-28 2022-02-04 에스케이온 주식회사 배터리 셀 및 이를 포함하는 배터리 모듈
KR20220081540A (ko) 2020-12-09 2022-06-16 에스케이온 주식회사 배터리 모듈의 하부케이스 제조방법 및 배터리 모듈의 하부케이스
KR20220105062A (ko) * 2021-01-19 2022-07-26 주식회사 엘지에너지솔루션 전지 모듈, 이를 포함하는 전지팩 및 전지 모듈의 제조 방법
JP7434197B2 (ja) 2021-02-08 2024-02-20 プライムプラネットエナジー&ソリューションズ株式会社 組電池
JP7317876B2 (ja) 2021-02-08 2023-07-31 プライムプラネットエナジー&ソリューションズ株式会社 組電池
WO2022202712A1 (ja) * 2021-03-26 2022-09-29 三井化学株式会社 温度制御構造、電池パック、及び温度制御構造の製造方法
CN113113708A (zh) * 2021-04-12 2021-07-13 中国第一汽车股份有限公司 一种固态电池模组、电池包及电池包的设计方法
KR20220150693A (ko) * 2021-05-04 2022-11-11 에스케이온 주식회사 냉각 효율이 우수한 고전압 배터리 모듈
CN113314812A (zh) * 2021-06-25 2021-08-27 东莞新能安科技有限公司 电池组及用电设备
JP7429209B2 (ja) * 2021-08-30 2024-02-07 プライムプラネットエナジー&ソリューションズ株式会社 蓄電装置
KR20230037161A (ko) * 2021-09-09 2023-03-16 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
KR20230037409A (ko) * 2021-09-09 2023-03-16 주식회사 엘지에너지솔루션 냉각이 용이한 구조를 갖는 파우치형 전지셀 및 이의 제조방법
KR20230098059A (ko) * 2021-12-24 2023-07-03 주식회사 엘지에너지솔루션 개선된 안전성과 조립성을 갖는 배터리 모듈
GB2625265A (en) * 2022-12-08 2024-06-19 Jaguar Land Rover Ltd A vehicle traction battery pack and a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272048A (ja) * 2008-04-30 2009-11-19 Hitachi Vehicle Energy Ltd 電池モジュール
KR20130011740A (ko) * 2011-07-22 2013-01-30 삼성에스디아이 주식회사 배터리 모듈
KR20130023059A (ko) * 2011-06-23 2013-03-07 삼성에스디아이 주식회사 배터리 팩
KR20140074151A (ko) * 2012-12-07 2014-06-17 타이코에이엠피(유) 전지모듈
KR20160016498A (ko) * 2014-07-31 2016-02-15 주식회사 엘지화학 배터리 모듈

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307784A (ja) 2000-04-20 2001-11-02 Japan Storage Battery Co Ltd 組電池
KR100571269B1 (ko) * 2004-09-22 2006-04-13 삼성에스디아이 주식회사 이차전지용 파우치 및 파우치형 이차전지
JP2008159440A (ja) 2006-12-25 2008-07-10 Calsonic Kansei Corp 車両用バッテリ冷却システム
WO2009061451A1 (en) 2007-11-07 2009-05-14 Enerdel, Inc. Battery assembly with temperature control device
US8361644B2 (en) * 2009-02-26 2013-01-29 Magna Electronics Inc. Battery module composed of flexible battery cells and cell interconnect structure therefor
JP5529164B2 (ja) 2009-11-17 2014-06-25 本田技研工業株式会社 蓄電装置
US8846227B2 (en) * 2009-12-18 2014-09-30 MAGNA STEYR Battery Systems GmbH & Co. OG Cooling/heating element for a rechargeable battery
JP2011175743A (ja) * 2010-02-23 2011-09-08 Sanyo Electric Co Ltd 電源装置及びこれを備える車両
JP5776345B2 (ja) 2011-06-09 2015-09-09 ソニー株式会社 バッテリモジュール、電子機器、電力システムおよび電動車両
KR101371040B1 (ko) * 2011-06-16 2014-03-10 에스케이이노베이션 주식회사 파우치형 이차전지 및 그 제조방법
JP2013051099A (ja) * 2011-08-31 2013-03-14 Nissan Motor Co Ltd バッテリ温調用モジュール
KR101447057B1 (ko) * 2012-01-26 2014-10-07 주식회사 엘지화학 전지셀의 장착 및 방열을 위한 방열 지지부재를 포함하는 전지모듈
US9431636B2 (en) * 2012-06-25 2016-08-30 Samsung Sdi Co., Ltd. Rechargeable battery
KR20140004003U (ko) * 2012-12-21 2014-07-01 현대중공업 주식회사 고소작업용 사다리 고정장치
KR20160017759A (ko) * 2014-08-04 2016-02-17 삼성에스디아이 주식회사 테두리 접합부를 갖는 이차 전지
KR101865995B1 (ko) * 2015-03-27 2018-06-08 주식회사 엘지화학 배터리 모듈
KR101900998B1 (ko) * 2015-06-18 2018-09-20 주식회사 엘지화학 경량화를 위한 냉각 플레이트, 이를 포함하는 전지모듈 및 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272048A (ja) * 2008-04-30 2009-11-19 Hitachi Vehicle Energy Ltd 電池モジュール
KR20130023059A (ko) * 2011-06-23 2013-03-07 삼성에스디아이 주식회사 배터리 팩
KR20130011740A (ko) * 2011-07-22 2013-01-30 삼성에스디아이 주식회사 배터리 모듈
KR20140074151A (ko) * 2012-12-07 2014-06-17 타이코에이엠피(유) 전지모듈
KR20160016498A (ko) * 2014-07-31 2016-02-15 주식회사 엘지화학 배터리 모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373384A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770946A (zh) * 2018-03-30 2020-02-07 株式会社Lg化学 易于组装的包括汇流条框架的电池模块
JP2020524375A (ja) * 2018-03-30 2020-08-13 エルジー・ケム・リミテッド 組立性が向上したバスバーフレームを備えたバッテリーモジュール
JP7045602B2 (ja) 2018-03-30 2022-04-01 エルジー エナジー ソリューション リミテッド 組立性が向上したバスバーフレームを備えたバッテリーモジュール
US11545727B2 (en) 2018-03-30 2023-01-03 Lg Energy Solution, Ltd. Easier to assemble battery module including bus bar frame
EP3611776A1 (en) * 2018-08-17 2020-02-19 Hyundai Motor Company Battery module
US20200119415A1 (en) * 2018-10-10 2020-04-16 Mahle International Gmbh Accumulator
JP2022524739A (ja) * 2019-03-26 2022-05-10 エルジー エナジー ソリューション リミテッド 電池モジュールおよびその製造方法
JP7286196B2 (ja) 2019-03-26 2023-06-05 エルジー エナジー ソリューション リミテッド 電池モジュールおよびその製造方法
EP4037069A4 (en) * 2020-08-24 2023-08-16 LG Energy Solution, Ltd. BATTERY MODULE AND BATTERY PACK COMPRISING THEM

Also Published As

Publication number Publication date
US10629875B2 (en) 2020-04-21
JP6683817B2 (ja) 2020-04-22
EP3373384B1 (en) 2023-07-26
KR20180020546A (ko) 2018-02-28
CN108370075A (zh) 2018-08-03
PL3373384T3 (pl) 2023-11-27
ES2954996T3 (es) 2023-11-28
CN108370075B (zh) 2021-04-20
JP2019508846A (ja) 2019-03-28
EP3373384A1 (en) 2018-09-12
KR102119183B1 (ko) 2020-06-04
US20180331336A1 (en) 2018-11-15
EP3373384A4 (en) 2019-02-20
HUE063003T2 (hu) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2018034382A1 (ko) 배터리 모듈
WO2018034383A1 (ko) 배터리 모듈
WO2016159549A2 (ko) 배터리 모듈
WO2016017983A1 (ko) 배터리 모듈
WO2020009484A1 (ko) 열수축성 튜브를 포함하는 배터리 모듈
WO2020055219A1 (ko) 열수축성 튜브를 포함하는 배터리 모듈
WO2017138709A1 (ko) 배터리 모듈
WO2017104878A1 (ko) 배터리 팩
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019156390A1 (ko) 전류 차단부를 구비한 버스바 및 그것을 포함한 배터리 모듈
WO2017160029A1 (ko) 배터리 모듈
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2021118028A1 (ko) 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈
WO2021149903A1 (ko) 배터리 모듈
WO2016175590A1 (ko) 배터리 팩 및 그 제조 방법
WO2021107305A1 (ko) 배터리 모듈
WO2020138849A1 (ko) 내측 커버를 포함하는 배터리 모듈
WO2021221340A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022149896A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021107429A1 (ko) 배터리 모듈 및 배터리 팩
WO2022149900A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021112655A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2020101209A1 (ko) 모듈 하우징을 포함한 배터리 모듈
WO2022149884A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15776885

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018540452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE