WO2018025427A1 - 空調制御システム - Google Patents
空調制御システム Download PDFInfo
- Publication number
- WO2018025427A1 WO2018025427A1 PCT/JP2017/000574 JP2017000574W WO2018025427A1 WO 2018025427 A1 WO2018025427 A1 WO 2018025427A1 JP 2017000574 W JP2017000574 W JP 2017000574W WO 2018025427 A1 WO2018025427 A1 WO 2018025427A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioner
- data
- temperature
- air
- server
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
- F24F11/58—Remote control using Internet communication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2130/00—Control inputs relating to environmental factors not covered by group F24F2110/00
- F24F2130/10—Weather information or forecasts
Definitions
- the present invention relates to an air conditioning control system that controls the operation of an air conditioner.
- An air conditioner that performs operations such as cooling operation and heating operation can be operated in an operation mode called automatic operation.
- the air conditioner acquires information such as the outdoor temperature (outside temperature) and the indoor temperature (room temperature), and selects the optimal driving method and set temperature based on this information. This is the operation mode.
- Patent Document 1 proposes an air conditioner that enables automatic operation that enables selection of a comfortable and comfortable operation mode and finer setting temperature.
- This air conditioner automatically controls air-conditioning operation based on environmental information obtained from an indoor temperature sensor, an outside air temperature sensor, etc., information on the area where the device is installed, and calendar information to which the current date and time belong. To generate automatic driving information.
- the present invention provides an air conditioning control system capable of controlling the air conditioning operation in accordance with the place where the air conditioner is installed and the situation at that time.
- An air conditioning control system is based on a storage unit storing a plurality of types of operation control tables for determining an operation method of an air conditioner, and the operation control table based on forecast data related to weather. And a transmission unit that transmits the operation control table selected by the control unit to the air conditioner.
- An air conditioning control system includes a storage unit storing a plurality of types of operation control tables for determining an operation method of the air conditioner, and the air conditioner.
- a receiving unit that receives information on the outside temperature and room temperature of the place, and the operation control table is selected based on forecast data related to weather, and the air is selected according to the selected operation control table and the information on the outside temperature and room temperature.
- a control unit that creates a control signal for controlling the operation method of the conditioner, and a transmission unit that transmits the control signal to the air conditioner.
- An air conditioning control system includes a receiving unit that receives prediction data related to weather information, a compressor that compresses a heat medium, an indoor heat exchanger, and an expansion that depressurizes the heat medium.
- a heat pump cycle including a valve and an outdoor heat exchanger, a storage unit storing a plurality of types of operation control tables for determining an operation method of the heat pump cycle, and the storage based on the prediction data
- a control unit that selects an operation control table stored in the unit and controls the operation of the heat pump cycle based on the selected operation control table.
- the prediction data may include data of a predicted minimum temperature and a predicted maximum temperature.
- the prediction data further includes sky prediction data
- the control unit corrects the operation control table based on the sky prediction data. Also good.
- control unit obtains atmospheric pressure data at a place where the air conditioner or the air conditioning control system is installed, and further considers the atmospheric pressure data. Then, an operation control table stored in the storage unit may be selected.
- control unit obtains seasonal data related to the current season, and further considers the data of the season, and the operation control stored in the storage unit A table may be selected.
- control unit obtains regional data regarding a region where the air conditioner or the air conditioning control system is installed, and based on the regional data, The operation control table may be corrected.
- the plurality of types of operation control tables may include a summer table, a winter table, and a basic table.
- the operation control table may be associated with an outside air temperature, a room temperature, and an operation method determined based on the outside air temperature and the room temperature. Further, the operation control table may include information relating the outside air temperature, the room temperature, and the set temperature of the air conditioner determined based on the outside air temperature and the room temperature.
- the air conditioning operation can be controlled in accordance with the location where the air conditioner is installed and the situation at that time.
- FIG. 1 It is a mimetic diagram showing the whole air-conditioning control system composition concerning a 1st embodiment of the present invention. It is a block diagram which shows the internal structure of the air conditioner which comprises the air-conditioning control system shown in FIG. It is a schematic diagram which shows the whole structure of the air conditioner which comprises the air-conditioning control system shown in FIG. It is a block diagram which shows the internal structure of the server which comprises the air-conditioning control system shown in FIG. In the air-conditioning control system shown in FIG. 1, it is a figure which shows the relationship between expected temperature (maximum temperature / minimum temperature) and the kind of table to be used. In the air-conditioning control system shown in FIG.
- FIG. 1 it is a figure which shows an example of the summer table utilized for the operation control of an air conditioner.
- the air-conditioning control system shown in FIG. 1 it is a figure which shows an example of the winter table utilized for operation control of an air conditioner.
- the air-conditioning control system shown in FIG. 1 it is a figure which shows an example of the basic table or spring table utilized for operation control of an air conditioner.
- the air-conditioning control system shown in FIG. 1 it is a figure which shows an example of the autumn table utilized for the operation control of an air conditioner.
- 2 is a flowchart showing a flow of operation control of the air conditioner in the air conditioning control system shown in FIG. 1.
- (A) shows the flow of operation control on the server side.
- (B) shows the flow of operation control on the air conditioner side.
- an air conditioning control system in the first embodiment, an air conditioning control system according to one aspect of the present invention will be described with reference to an example in which a server and an air conditioner are applied to a network system configured to be able to communicate via a network such as the Internet.
- a network such as the Internet
- an air conditioning control system in which an air conditioner and a server for providing a service for controlling the operation of the air conditioner are connected via a network (Internet) will be described as an example.
- FIG. 1 shows an overall configuration of an air conditioning control system 1 (hereinafter also simply referred to as a system) according to the first embodiment.
- the air conditioning control system 1 is mainly composed of an air conditioner 2 and a server 3.
- the air conditioner 2 and the server 3 can communicate via a network such as the Internet.
- the server 3 can obtain weather forecast data (predicted data related to weather) 4 via a network such as the Internet.
- the weather means the weather condition at a specific place and at a specific time.
- the term weather means each element such as temperature, humidity, sky pattern (clear, rain, cloudy, etc.), wind speed, cloudiness, amount of sunlight, atmospheric pressure, etc., and combinations of these elements. Is used to mean
- the weather forecast data means data that predicts the future weather in units of weeks, days, hours, or the like.
- the air conditioner 2 according to the present embodiment can be operated by a plurality of types of operation methods, for example, cooling operation, heating operation, dehumidifying operation, and air blowing operation. Moreover, the air conditioner 2 according to the present embodiment can perform automatic operation based on a command from the server 3 that is communicably connected via the Internet.
- the automatic operation is an operation in which the air conditioning control system 1 automatically determines various operation methods of the air conditioner 2 such as a cooling operation, a heating operation, a dehumidifying operation, and an air blowing operation, instead of being selected by the user.
- the operation modes that the air conditioner 2 can take are roughly divided into an automatic operation mode and a manual operation mode in which the user manually selects the type of operation.
- the manual operation mode includes, for example, a plurality of types of operation modes (operation methods) such as cooling operation, heating operation, dehumidifying operation, and air blowing operation.
- the server 3 acquires the weather forecast data 4 on the cloud, and selects an operation control table for determining the operation method and set temperature of the air conditioner 2 based on the weather forecast data 4. .
- the operation control table selected in the server 3 is transmitted to the air conditioner 2.
- the air conditioner 2 determines an operation method using the operation control table transmitted from the server 3. Specifically, the air conditioner 2 refers to the operation control table and selects an operation method to be taken based on information on the current outside air temperature and room temperature in the environment where the air conditioner 2 is installed. .
- FIG. 2 shows the internal configuration of the air conditioner 2.
- FIG. 3 shows the overall configuration of the air conditioner 2.
- the flow of the refrigerant (heat medium) during the cooling operation of the air conditioner 2 is indicated by a solid arrow, and the flow of the refrigerant (heat medium) during the heating operation of the air conditioner 2 is indicated by a broken arrow.
- the dehumidifying operation the operation of reducing the humidity in the room is performed while circulating the refrigerant in the heat pump cycle as in the cooling operation.
- the air blowing operation the operation of the heat pump cycle is stopped and only the indoor fan 13 is operated.
- the air conditioner 2 is a separate type air conditioner, and mainly includes an indoor unit 10 and an outdoor unit 50.
- the air conditioner 2 is configured by connecting the indoor unit 10 and the outdoor unit 50 via refrigerant pipes 57 and 58.
- the outdoor unit 50, the indoor unit 10, and the refrigerant pipes 57 and 58 will be described in detail.
- Outdoor unit 50 mainly includes a casing 51, a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor blower 56, a two-way valve 59, a three-way valve 60, and outside air. It consists of a thermometer 62.
- the outdoor unit 50 is installed outdoors.
- the casing 51 houses a compressor 52, a four-way valve 53, an outdoor heat exchanger (outdoor heat exchanger) 54, an expansion valve 55, an outdoor blower 56, a two-way valve 59, a three-way valve 60, and the like. .
- the compressor 52 has a discharge pipe 52a and a suction pipe 52b.
- the discharge pipe 52a and the suction pipe 52b are connected to different connection ports of the four-way valve 53, respectively.
- the compressor 52 sucks low-pressure refrigerant gas from the suction pipe 52b, compresses the refrigerant gas to generate high-pressure refrigerant gas, and then discharges the high-pressure refrigerant gas from the discharge pipe 52a.
- the four-way valve 53 is connected to the discharge pipe 52a and the suction pipe 52b of the compressor 52, the outdoor heat exchanger 54, and the indoor heat exchanger 12 through a refrigerant pipe.
- the four-way valve 53 switches the path of the refrigeration cycle according to a control signal transmitted from the control unit 20 (see FIG. 2) of the air conditioner 2 during operation. That is, the four-way valve 53 switches the path between the cooling operation state and the heating operation state.
- the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the outdoor heat exchanger 54 and connects the suction pipe 52b of the compressor 52 to the indoor heat exchanger 12 (FIG. (See solid line arrow 3).
- the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the indoor heat exchanger 12 and connects the suction pipe 52b of the compressor 52 to the outdoor heat exchanger 54 (broken line in FIG. 3). See arrow).
- the outdoor heat exchanger 54 has a large number of radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends, and functions as a condenser during cooling operation. It functions as an evaporator during heating operation.
- One of the expansion valves 55 is connected to the two-way valve 59 via the refrigerant pipe, and the other is connected to the outdoor heat exchanger 54.
- the expansion valve 55 depressurizes the high-temperature and high-pressure liquid refrigerant flowing out from the condenser (the indoor heat exchanger 12 during heating and the outdoor heat exchanger 54 during cooling) during operation. At the same time, it plays the role of adjusting the amount of refrigerant supplied to the evaporator (the outdoor heat exchanger 54 during heating and the indoor heat exchanger 12 during cooling).
- the outdoor blower 56 is mainly composed of a propeller fan and a motor.
- the propeller fan is rotationally driven by a motor and supplies outdoor outdoor air to the outdoor heat exchanger 54.
- the motor operates in accordance with a control signal transmitted from the control unit 20 of the air conditioner 2.
- the refrigerant pipe 57 is connected to the two-way valve 59.
- the refrigerant pipe 57 connects the outdoor unit and the indoor unit.
- the two-way valve 59 is closed when the refrigerant pipe 57 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside.
- One side of the three-way valve 60 is connected to the four-way valve 53 via the refrigerant pipe, and the other side is connected to the refrigerant pipe 58. Thereby, an outdoor unit and an indoor unit are connected.
- the three-way valve 60 is closed when the refrigerant pipe 58 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside. Further, when it is necessary to recover the refrigerant from the outdoor unit 50 or the entire refrigeration cycle (cooling mechanism) including the indoor unit 10, the refrigerant is recovered through the three-way valve 60.
- the outdoor thermometer 62 measures the outdoor temperature where the outdoor unit 50 is installed.
- the indoor unit 10 includes a housing 11, an indoor heat exchanger (indoor heat exchanger) 12, an indoor blower 13, an indoor thermometer 15, an indoor hygrometer 16, a speaker 18, as main constituent members.
- a display unit 21 and a communication interface 22 are provided.
- the air conditioner 2 includes a remote controller 26 as a constituent member different from the indoor unit 10.
- the housing 11 houses an indoor heat exchanger 12, an indoor blower 13, an indoor thermometer 15, an indoor hygrometer 16, a control unit 20, and the like.
- the indoor heat exchanger 12 is a combination of three heat exchangers such as a roof (inverted V shape) covering the indoor blower 13.
- Each heat exchanger has a large number of heat radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends, and functions as a condenser during heating operation. During cooling operation, it functions as an evaporator.
- the indoor blower 13 is mainly composed of a cross flow fan and a motor.
- the cross flow fan is rotationally driven by a motor, sucks indoor air into the housing 11 and supplies the air to the indoor heat exchanger 12, and sends out the air exchanged by the indoor heat exchanger 12 into the room.
- the indoor thermometer 15 measures the temperature of the room where the indoor unit 10 is installed.
- the indoor thermometer 15 is disposed, for example, near the indoor air intake port of the housing 11.
- the indoor hygrometer 16 measures the humidity in the room where the indoor unit 10 is installed.
- the indoor hygrometer 16 is disposed, for example, in the vicinity of the indoor air suction port of the housing 11.
- the speaker 18 is based on a command transmitted from the server 3 (for example, voice data created based on the weather forecast data 4), for example, when the air conditioner 2 is shut down, Speak probability and expected temperature. Moreover, the speaker 18 may be configured to emit a sound for notifying a person in the room when the operation of the air conditioner 2 is started, when the operation of the air conditioner 2 is completed, or when the operation mode is changed. Good. The speaker 18 may be configured to notify the current driving method when driving in the automatic driving mode.
- the control unit 20 is connected to each component in the air conditioner 2 and controls them.
- the control unit 20 includes a memory 23, a timer 24, and the like.
- the control unit 20 determines the operation method of the air conditioner 2 while referring to the operation control table transmitted from the server 3. And the control part 20 controls each component in the air conditioner 2 according to the determined operating method.
- the memory 23 includes ROM (read only memory) and RAM (Random access Memory).
- the memory 23 stores an operation program and setting data of the air conditioner 2 and temporarily stores a calculation result by the control unit 20.
- the timer 24 measures the time of processing performed in the control unit 20 and the operation time of each component in the air conditioner 2 as necessary.
- the display unit 21 includes a liquid crystal display panel, an LED light, and the like.
- the display unit 21 displays an operation status, an alarm, and the like of the air conditioner 2 based on a signal from the control unit 20.
- the communication interface 22 is realized by an antenna or a connector.
- the communication interface 22 exchanges data with other devices by wired communication or wireless communication. Specifically, the communication interface 22 receives an infrared signal transmitted when the remote controller (operation unit) 26 is operated. Furthermore, the communication interface 22 receives various signals, various data (for example, an operation control table, etc.), various commands, and the like transmitted from the server 3.
- the communication interface 22 can also transmit information such as the outside air temperature, room temperature, and indoor humidity to the server 3.
- the remote controller (operation unit) 26 functions as an operation unit for the user to operate the air conditioner 2.
- the user can operate the remote controller 26 to select an operation mode, a set temperature, and the like of the air conditioner 2.
- Refrigerant piping The refrigerant piping 57 is thinner than the refrigerant piping 58, and the liquid refrigerant flows during operation.
- the refrigerant pipe 58 is thicker than the refrigerant pipe 57, and a gas refrigerant flows during operation.
- a heat medium refrigerant
- the compressor 52, the four-way valve 53, the outdoor heat exchanger 54 and the expansion valve 55 of the outdoor unit 50, and the indoor heat exchanger 12 of the indoor unit 10 include refrigerant pipes 57 and 58.
- a refrigeration cycle heat pump cycle
- FIG. 4 shows the internal configuration of the server 3 constituting the air conditioning control system 1.
- the server 3 is connected to the air conditioner 2 via a network such as the Internet. As shown in FIG. 4, the server 3 includes a control unit 31, a memory 32, a communication interface 33, and the like.
- the control unit 31 controls each unit of the server 3 by executing a program stored in the memory 32 or an external storage medium. That is, the control unit 31 implements various processes described later by executing a program stored in the memory 32.
- the memory 32 is realized by various RAMs, various ROMs, flash memories, and the like.
- the memory 32 is a program executed by the control unit 31, data generated by execution of the program by the control unit 31, data input from a switch or keyboard, data received from the air conditioner 2, and the air conditioner 2.
- An operation control table (see FIG. 6 to FIG. 9 and the like) for controlling the operation is stored.
- the communication interface 33 exchanges data with other devices by wired communication or wireless communication.
- FIG. 5 shows an example of the relationship between the predicted temperature from the weather forecast data and the operation control table to be used in order to explain the method for determining the operation control table.
- FIG. 6 to 9 show examples of the operation control table. Specifically, FIG. 6 is an example of a summer table, FIG. 7 is an example of a winter table, and FIG. 8 is an example of a basic table. The flow of the operation control of the air conditioner 2 in the system 1 is shown.
- the air conditioner 2 performs air conditioning by three kinds of operation methods of heating operation, cooling operation, and air blowing operation will be described as an example.
- the operation method of the air conditioner is not limited to these three types.
- the present invention can be applied to an air conditioner capable of dehumidifying operation.
- the three types of operation control tables shown in FIGS. 6 to 8 are stored in the memory (storage unit) 32 in the server 3. Then, the control unit 31 of the server 3 selects one type of operation control table from the three types of operation control tables based on the weather forecast data 4 provided from the weather information server existing on the cloud.
- the server etc. which the company which provides the service which provides a weather forecast correspond, for example.
- the weather forecast data includes forecast information such as a weekly weather forecast, a predicted minimum temperature and a predicted maximum temperature of the day, and weather (sky pattern), wind speed, and precipitation probability every several hours.
- the operation control table is selected based on information on the predicted minimum temperature and the predicted maximum temperature of the day among these weather forecast data.
- the weather forecast data 4 transmitted from the weather information server is stored in the memory 32 in the server 3.
- the frequency at which the server 3 acquires the weather forecast data 4 from the weather information server is not particularly limited, but can be, for example, once a day.
- the information on the predicted minimum temperature and the predicted maximum temperature of the day can be acquired from, for example, weather forecast data for the next day provided on the day before that day.
- the control unit 31 updates the data in the memory 32 every time new weather forecast data is acquired. To do. And it is preferable to select an operation control table based on the latest weather forecast data.
- the server 3 selects the operation control table on the basis of information on the predicted minimum temperature and the predicted maximum temperature for one day (corresponding date) included in the weather forecast data 4.
- FIG. 5 shows an example of the predicted minimum temperature and the predicted maximum temperature when the winter table, the summer table, and the basic table are selected.
- the position of the upward arrow ( ⁇ ) indicates the predicted maximum temperature
- the position of the downward arrow ( ⁇ ) indicates the predicted minimum temperature.
- the summer table (see FIG. 6) is selected.
- the winter table (see FIG. 7) is selected.
- the basic table (see FIG. 8) is selected. In other words, there is a high possibility that the basic table is selected in the season such as autumn or spring.
- the summer table and the winter table may be selected in consideration of both the predicted minimum temperature and the predicted maximum temperature.
- finer control can be performed by setting the reference line of the temperature used when selecting the table more finely.
- a temperature line of 15 ° C. shown in FIG. 5 is set as an intermediate temperature line.
- a high temperature line having a threshold temperature higher than the intermediate temperature line and a low temperature line having a threshold temperature lower than the intermediate temperature line may be further provided.
- the table can be selected based on the following case classification.
- a summer high temperature table and a winter low temperature table are used in addition to the basic table, summer table, and winter table.
- the summer high temperature table is selected, for example, during a period of extreme heat.
- the winter low-temperature table is selected, for example, in a cold region or a time of midwinter.
- the basic table When both the predicted minimum temperature and the predicted maximum temperature are between the high temperature line and the low temperature line.
- the summer table When selecting the summer table: When the expected minimum temperature is higher than the intermediate temperature line and lower than the high temperature line.
- ⁇ When the summer high temperature table is selected: When the predicted minimum temperature is higher than the high temperature line.
- When selecting a winter low temperature table When the expected maximum temperature is below the low temperature line.
- the temperature of the intermediate temperature line is not necessarily limited to 15 ° C.
- the temperature of the intermediate temperature line can be appropriately set based on experimental results and the like.
- the temperature of the high-temperature line and the temperature of the low-temperature line can be set as appropriate based on the experimental results.
- each operation control table the outside temperature is set on the horizontal axis, and the room temperature is set on the vertical axis.
- the air conditioner 2 determines the operation method and set temperature of the air conditioner 2 according to the operation control table transmitted from the server 3.
- the control unit 20 of the air conditioner 2 is an operation control table stored in the memory 23 based on room temperature data acquired from the indoor thermometer 15 and outside air temperature data acquired from the outside air thermometer 62. To determine the operation method and set temperature.
- the operation control is performed using the summer table shown in FIG. 6, if the room temperature data is 27 ° C. and the outside air temperature data is 33 ° C., the operation method and the set temperature at the position where the corresponding room temperature and the outside air temperature intersect. Is selected. That is, as shown by the dashed arrows in FIG. 6, “cooling operation” is selected as the operation method, and “27 ° C.” is selected as the set temperature.
- the summer table, the winter table, and the basic table select the operation method and the set temperature that are selected even when the outside temperature and the room temperature are the same. Is different.
- the rate at which the blowing operation is selected as the operation method is high (see FIG. 8).
- the operation of the air conditioner 2 is controlled by an operation control method that is better suited to the climatic conditions of the day at the place where the air conditioner 2 is installed.
- the summer table is selected in the server 3 on a midsummer day when the predicted minimum temperature is 26 ° C. and the predicted maximum temperature is 35 ° C.
- the air conditioner 2 can determine an operating method and preset temperature with reference to a summer table.
- the summer table is selected.
- the air conditioner 2 can determine the operation method and the set temperature by referring to the summer table on the corresponding date of the weather forecast data 4 of “the predicted minimum temperature 21 ° C. and the predicted maximum temperature 28 ° C.”. . Thereby, the driving
- FIG. 10A shows a control flow in the server 3 (particularly, the control unit 31) constituting the system 1.
- FIG. 10B shows a control flow in the air conditioner 2 (particularly, the control unit 20) constituting the system 1.
- step S11 the location (area) where the air conditioner 2 is installed is registered (step S11).
- the registration of the installation location is performed, for example, when the air conditioner 2 is incorporated into the system 1 via the Internet or the like.
- the postal code information of the address where the air conditioner 2 is installed can be transmitted from the air conditioner 2 to the server 3. More specifically, for example, a user (or an installer of the air conditioner 2) selects a zip code using the remote controller 26, and transmits the selected zip code to the air conditioner 2.
- the air conditioner 2 transmits the received zip code to the server 3.
- the control unit 31 in the server 3 can acquire the local weather forecast data 4 corresponding to the location where the air conditioner 2 is installed (step S12). Thereafter, the control unit 31 in the server 3 stores the memory based on the weather forecast data 4 (specifically, the predicted maximum temperature information and the predicted minimum temperature information) provided from the weather information server existing on the cloud.
- One type of operation control table is selected from among a plurality of types of operation control tables stored in 32 (step S13).
- the communication interface 22 of the air conditioner 2 receives the data of the operation control table transmitted from the server 3 (step S21).
- the received operation control table data is stored in the memory 23 in the control unit 20.
- the control unit 20 receives the automatic operation mode ON signal (step S22).
- the system 200 includes a mobile terminal such as the smartphone 5 as in a fourth embodiment to be described later, it is also possible to transmit a command to start the automatic operation mode from the smartphone 5.
- control unit 20 acquires room temperature data from the indoor thermometer 15 and acquires outside air temperature data from the outside air thermometer 62 (step S23). And the control part 20 determines the driving
- the automatic operation of the air conditioner 2 is controlled according to the above flow.
- the air-conditioning control system 1 based on the predicted temperature at the place where the air conditioner 2 included in the weather forecast data 4 is installed, it is used for the corresponding date (or date and time). Select the operation control table to be used.
- the air conditioner 2 controls automatic operation using the selected operation control table. Therefore, it is possible to control the air conditioning operation according to the place where the air conditioner 2 is installed and the situation at that time.
- the automatic operation control in the case where the air conditioner 2 performs air conditioning by the three operation methods of the heating operation, the cooling operation, and the air blowing operation has been described.
- the present invention in addition to the above three types of operation methods, the present invention can also be applied to an automatic operation of an air conditioner capable of performing a dehumidifying operation.
- the cloud is composed of a server group including a plurality of servers that can periodically communicate with the air conditioner.
- Each server can collect, store, and transmit various types of data, and can process various types of data to create tables and the like.
- FIG. 8 is an example of a spring table used in this modification.
- FIG. 9 is an example of an autumn table used in this modification.
- the summer table (see FIG. 6) is selected when the predicted minimum temperature is 15 ° C. or higher.
- the winter table (see FIG. 7) is selected.
- the spring table (see FIG. 8) or the autumn table (see FIG. 9) is used. select.
- which of the spring table and the autumn table is selected can be determined based on, for example, calendar information (information relating to the date of the relevant date) included in the weather forecast data 4.
- calendar information information relating to the date of the relevant date
- the control unit in the server 3 selects the spring table.
- the calendar information included in the weather forecast data 4 received by the server 3 is a date from January to March or from October to December
- the control unit in the server 3 Select the autumn table.
- the present invention can also be applied to a case where the object is achieved by supplying a program to a system or apparatus. Then, a storage medium (or memory) storing a program represented by software for achieving one embodiment of the present invention is supplied to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus stores it. The effect of one embodiment of the present invention can also be enjoyed by reading and executing the program code stored in the medium.
- the program code itself read from the storage medium realizes the functions of the above-described embodiment, and the storage medium storing the program code constitutes one aspect of the present invention.
- the system 1 in which the air conditioner 2 determines the operation method and the set temperature based on the operation control table transmitted from the server 3 has been described as an example.
- the air conditioning control system of one aspect of the present invention may determine the operation method and set temperature of the air conditioner 2 on the server 3 side. Therefore, in the second embodiment, the server 3 determines the operation method and set temperature of the air conditioner 2 based on the operation control table based on information such as the outside air temperature and room temperature transmitted from the air conditioner 2.
- An example of an air conditioning control system will be described.
- FIG. 1 shows an overall configuration of an air conditioning control system 100 (hereinafter also simply referred to as a system) according to the second embodiment.
- the air conditioning control system 100 is mainly composed of an air conditioner 2 and a server 3.
- the air conditioning control system 100 is mainly composed of an air conditioner 2 and a server 3.
- the air conditioning control system 100 is mainly composed of an air conditioner 2 and a server 3.
- the structure similar to the system concerning 1st Embodiment is applicable. Therefore, in the second embodiment, only differences from the first embodiment will be described.
- FIG. 11 shows a flow of operation control of the air conditioner 2 in the system 100 when the operation mode of the air conditioner 2 is the automatic operation mode.
- FIG. 11 mainly shows a control flow in the server 3 (particularly, the control unit 31) constituting the system 100.
- the server 3 registers the location (area) where the air conditioner 2 is installed (step S31). For the registration of the installation location, the same method as in the first embodiment can be applied.
- control unit 31 in the server 3 can acquire the weather forecast data 4 in the region corresponding to the location where the air conditioner 2 is installed (step S32).
- the control unit 31 in the server 3 includes a plurality of types of operation control tables stored in the memory (storage unit) 32 based on the weather forecast data 4 provided from the weather information server existing on the cloud.
- One type of operation control table is selected from (Step S33).
- the plurality of types of operation control tables stored in the memory 32 are, for example, the operation control tables shown in FIGS. 6 to 9 as in the first embodiment.
- the same method as in the first embodiment can be applied.
- the server 3 receives information on the outside air temperature and the room temperature of the place where the air conditioner 2 is installed from the air conditioner 2 (step S34). Specifically, the room temperature data acquired by the indoor thermometer 15 of the air conditioner 2 and the outside air temperature data acquired by the outside air thermometer 62 are communicated with the server 3 via the communication interface 22 of the air conditioner 2. It is transmitted to the interface (receiver) 33.
- control unit 31 of the server 3 refers to the operation control table stored in the memory 32 based on the room temperature data and the outside air temperature data received from the air conditioner 2, and sets the operation method and setting of the air conditioner 2.
- the temperature is determined (step S35).
- the control unit 31 creates an operation control signal including information on the determined operation method and set temperature.
- the created operation control signal is transmitted to the control unit 20 of the air conditioner 2 via the communication interface (transmission unit) 32 of the server 3 and the communication interface 22 of the air conditioner 2 (step S36).
- the control unit 20 of the air conditioner 2 starts the automatic operation of the air conditioner 2 according to the operation method and the set temperature information included in the transmitted operation control signal.
- the automatic operation of the air conditioner 2 is controlled according to the above flow.
- the air-conditioning control system 100 based on the predicted temperature in the place where the air conditioner 2 included in the weather forecast data 4 is installed, it is used for the corresponding date (or date and time). Select the operation control table to be used.
- the server 3 creates an operation control signal for controlling the automatic operation of the air conditioner 2 using the selected operation control table.
- the air conditioner 2 controls automatic operation according to the operation control signal transmitted from the server 3. Therefore, it is possible to control the air conditioning operation according to the place where the air conditioner 2 is installed and the situation at that time.
- FIG. 12 shows a flow of operation control of the air conditioner 2 in the system 1 when the operation mode of the air conditioner 2 is the automatic operation mode.
- FIG. 12 mainly shows the flow of control in the server 3 (particularly, the control unit 31) constituting the system 1.
- the server 3 registers the location (area) where the air conditioner 2 is installed (step S41). For the registration of the installation location, the same method as in the first embodiment can be applied.
- control unit 31 in the server 3 can acquire the weather forecast data 4 in the region corresponding to the location where the air conditioner 2 is installed (step S42).
- the control unit 31 in the server 3 includes a plurality of types of operation control tables stored in the memory (storage unit) 32 based on the weather forecast data 4 provided from the weather information server existing on the cloud.
- One type of operation control table is selected from (Step S43).
- the plurality of types of operation control tables stored in the memory 32 are, for example, the operation control tables shown in FIGS. 6 to 9 as in the first embodiment.
- the same method as in the first embodiment can be applied.
- the control unit 31 in the server 3 corrects the operation control table based on the weather forecast data 4 acquired from the weather information server (step S44).
- the weather forecast data 4 includes information on the prediction of the sky such as sunny, rain, and cloudy (prediction data of the sky) in addition to the information of the predicted minimum temperature and the predicted maximum temperature.
- the control unit 31 corrects the content of the selected operation control table based on the sky pattern information.
- the location where the driving method is “cooling operation” is selected in the selected operation control table.
- the following correction may be performed when the winter table (see FIG. 7) is selected in step S43. That is, in the weather forecast data 4 acquired by the server 3, when the wind speed on the relevant date is “predetermined value (for example, 10 m / s) or more”, the set temperature is uniformly set in the selected operation control table. Change to “+ 1 ° C.”.
- the set temperature is changed to “ ⁇ 1 ° C.” uniformly in the selected operation control table. To do. For example, this correction may be performed only when the summer table (see FIG. 6) is selected in step S43.
- step S45 the information in the operation control table corrected by the control unit 31 in the server 3 is transmitted to the air conditioner 2 via the communication interface 33.
- the corrected operation control table is received, and automatic operation control is performed based on the operation control table.
- the same method as in the first embodiment for example, see FIG. 10B) can be applied.
- the automatic operation of the air conditioner 2 is controlled according to the above flow.
- the operation control table can be corrected based on information of weather forecast data including sky prediction data. Therefore, a more appropriate operation control table can be created according to the weather forecast data of the place where the air conditioner 2 is installed.
- the third embodiment as in the first embodiment, an example of a system in which the air conditioner 2 determines the operation method and the set temperature based on the operation control table transmitted from the server. explained. However, the correction of the operation control table described in the third embodiment can also be applied to the air conditioning control system 100 of the second embodiment.
- FIG. 13 shows an overall configuration of an air conditioning control system 200 (hereinafter also simply referred to as a system) according to the fourth embodiment.
- the air conditioning control system 200 mainly includes an air conditioner 2, a server 3, and a smartphone (portable terminal) 5.
- the air conditioner 2 and the server 3 can have the same configuration as the air conditioner 2 and the server 3 included in the system 1 according to the first embodiment.
- the server 3 and each device can communicate via a network such as the Internet.
- the server 3 can obtain weather forecast data (predicted data related to weather) 4 via a network such as the Internet.
- the server 3 can obtain the regional data 6 regarding the region where the air conditioner is installed via a network such as the Internet.
- the regional data 6 includes data relating to regional characteristics including the address where the air conditioner 2 is installed. That is, as compared with the weather forecast data 4 provided as local unit information such as prefectures or municipalities, the regional data 6 includes data relating to characteristics of land or areas in a narrower region.
- the area data 6 includes information on whether the area including the address where the air conditioner 2 is installed is an urban area or a rural area, the population density of the area, and the average amount of solar radiation for each season of the area. Etc. are included.
- the server 3 that receives the regional data 6 and the server 3 that receives the weather forecast data 4 are the same server. However, in one aspect of the present invention, the server 3 that receives the regional data 6 and the server 3 that receives the weather forecast data 4 may be configured by different servers. In the system 200 of the present embodiment, the server 3 may be a server group including a plurality of servers.
- FIG. 14 shows the internal configuration of the smartphone 5.
- the smartphone 5 includes a control unit 251, an operation unit 252, a memory 253, a communication interface 254, a display unit 255, a speaker 256, and the like.
- the control unit 251 controls each unit of the smartphone 5 by executing a program stored in the memory 253 or an external storage medium.
- the operation unit 252 receives a command from the user and inputs the command to the control unit 251.
- the memory 253 is realized by various RAMs, various ROMs, flash memories, and the like.
- the memory 253 stores a program executed by the control unit 251, data generated by execution of the program by the control unit 251, data input via the operation unit 252, data related to a task received from the server 3, and the like. .
- the communication interface 254 is realized by an antenna or a connector.
- the communication interface 254 exchanges data with other devices by wired communication or wireless communication.
- the display unit 255 outputs a screen such as a character or an image based on a signal from the control unit 251.
- the smartphone 5 has a touch panel in which a display unit 255 and an operation unit 252 are combined.
- the speaker 256 outputs various sounds such as a task-related sound, a call sound, and music based on the sound signal from the control unit 251.
- the smartphone 5 can be incorporated into the system 200 by downloading application software for using a service for controlling the operation of the air conditioner 2 from the server 3.
- the smartphone 5 may be taken into the system 200 when a person with the smartphone 5 enters the room.
- the smartphone 5 may download application software for obtaining the weather forecast data 4 and application software for obtaining the regional data 6.
- the smart phone 5 the information of the weather forecast of an applicable area (for example, the address where the air conditioner 2 is installed) and the information regarding the characteristic of an area are acquirable.
- the operation control method for the air conditioner 2 when the operation mode of the air conditioner 2 is the automatic operation mode has been described with reference to FIG. 12 in the third embodiment.
- a method according to the method can be applied.
- step S44 is different from the third embodiment. That is, in this embodiment, the control part 31 in the server 3 correct
- the selected operation control table is selected.
- the set temperature is changed to be uniformly “ ⁇ 1 ° C.”. This correction can be performed, for example, only when the summer table (see FIG. 6) is selected in step S43.
- the weather forecast of today, the probability of precipitation, the predicted temperature, and the like can be uttered from the speaker 18 of the air conditioner 2 when the operation of the air conditioner 2 is stopped. .
- the content of this utterance is determined based on voice data transmitted from the server 3.
- the memory 32 in the server 3 stores, for example, weather forecast data 4 acquired in units of several hours. Then, when the operation of the air conditioner 2 is stopped, voice data is created based on the weather forecast data 4 corresponding to the time after the stop time.
- the audio data created by the server 3 is transmitted to the air conditioner 2 and uttered by the speaker 18.
- the same content may be uttered from the speaker 256 of the smartphone 5.
- the regional data 6 obtained by the server 3 may include not only regional information including the installation location of the air conditioner 2 but also other regional information.
- the weather forecast data 4 obtained by the server 3 may include not only local weather forecast data including the place where the air conditioner 2 is installed, but also weather forecast data of each place.
- a specific region for example, one of the prefectures
- the corresponding region is determined based on the weather forecast data of the region.
- the operation of the air conditioner 2 may be controlled so as to reproduce the room at the same temperature and humidity.
- FIG. 1 shows an overall configuration of an air conditioning control system 300 (hereinafter also simply referred to as a system) according to a fifth embodiment.
- the air conditioning control system 300 mainly includes an air conditioner 302 and a server 3.
- the system 300 according to the fifth embodiment is different from the first embodiment in the configuration of the air conditioner 302. Therefore, in the fifth embodiment, the configuration of the air conditioner 302 will be described mainly.
- the structure similar to 1st Embodiment is fundamentally applicable.
- FIG. 15 shows the internal configuration of the air conditioner 302.
- the air conditioner 302 is a separate air conditioner, and mainly includes the indoor unit 10 and the outdoor unit 50.
- the outdoor unit 50 of the air conditioner 302 is provided with a barometer 363.
- omitted about the structure of other than that, since the structure similar to the air conditioner 2 of 1st Embodiment is applicable, detailed description is abbreviate
- the barometer 363 measures the atmospheric pressure in the environment where the air conditioner 302 is installed.
- the atmospheric pressure data measured by the barometer 363 is transmitted to the control unit 20.
- the control unit 20 estimates the altitude of the place where the air conditioner 302 is installed based on the atmospheric pressure data.
- the altitude information estimated by the control unit 20 is transmitted to the server 3.
- the control unit 31 of the server 3 changes the predicted temperature (at least one of the predicted minimum temperature and the predicted maximum temperature) of the acquired weather forecast data 4 as necessary based on the transmitted altitude information. For example, when the altitude of the place where the air conditioner 302 is installed is higher than the altitude that is the reference of the weather forecast data 4 in the corresponding region, the predicted temperature of the acquired weather forecast data 4 is lowered. Then, the control unit 31 of the server 3 selects an operation control table based on the changed predicted temperature.
- the same method as that of the first embodiment can be applied to a control method of automatic operation of the air conditioner 302 other than the selection method of the operation control table.
- control unit 20 of the air conditioner 302 estimates the altitude.
- the barometric pressure data measured by the barometer 363 may be transmitted to the server 3 and the altitude may be estimated by the control unit 31 of the server 3.
- the altitude of the installation location of the air conditioner 302 is estimated based on the atmospheric pressure data measured by the barometer 363.
- the air conditioner 302 or the server 3 acquires the atmospheric pressure data of the place where the air conditioner 302 is installed. Then, the server 3 selects one operation control table from a plurality of types of operation control tables stored in the memory 32 in consideration of the acquired atmospheric pressure data. Specifically, the altitude of the place where the air conditioner 302 is installed is predicted from the acquired atmospheric pressure data.
- the predicted temperature (at least one of the predicted minimum temperature and the predicted maximum temperature) of the acquired weather forecast data 4 is set to the predetermined temperature. (Eg, 1 ° C., 0.5 ° C., etc.).
- the operation control table is selected using the changed temperature as the predicted temperature.
- the predicted temperature of the weather forecast data 4 may be lowered as the altitude increases. For example, it is conceivable to lower by 0.5 ° C. every +100 m.
- the system 300 can control the automatic operation of the air conditioner 302 in consideration of the altitude of the place where the air conditioner 302 is installed.
- FIG. 16 shows an internal configuration of the air conditioner 402 according to the present embodiment.
- the air conditioner 402 according to the present embodiment is a separate type air conditioner, and mainly includes the indoor unit 10 and the outdoor unit 50.
- the structure similar to the air conditioner 2 concerning 1st Embodiment is applicable.
- the server 3 connected to the air conditioner 2 via the Internet so as to be communicable obtains the weather forecast data 4.
- the air conditioner 402 obtains the weather forecast data 4 directly from a weather information server or the like.
- the weather forecast data 4 is received by the communication interface 22.
- a plurality of types of operation control tables are stored in the memory (storage unit) 23 in the air conditioner 402. Then, the control unit 20 of the air conditioner 402 selects one type of operation control table from among a plurality of types of operation control tables based on the weather forecast data 4 provided from the weather information server that exists on the cloud. .
- control unit 20 acquires room temperature data from the indoor thermometer 15 and acquires outside air temperature data from the outside air thermometer 62. Based on the acquired room temperature data and outside air temperature data, the control unit 20 refers to the selected operation control table and determines an operation method and a set temperature. And the control part 20 starts the automatic driving
- FIGS. 1, 2, 4, and 4 The type of operation control table stored in the memory 23, the operation control table selection method, and the automatic operation control method of the air conditioner 402 are shown in FIGS. 1, 2, 4, and 4 in the first embodiment. A method similar to the method described with reference to FIGS. 5 to 8 and 10 can be applied.
- Air conditioning control system 2 Air conditioner 3: Server 4: Weather forecast data 5: Smartphone 6: Regional data 20: (Air conditioner) control unit 22: (Air conditioner) communication interface (transmitter, reception) Part) 23: Memory (storage unit) 31: Control unit 32 (server) Memory (storage unit) (server) 33: (server) communication interface (transmitter, receiver) 100: Air conditioning control system 200: Air conditioning control system 300: Air conditioning control system 302: Air conditioner 402: Air conditioner
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空調制御システム(1)は、サーバ(3)を有している。サーバ(3)は、インターネットなどのネットワークを介して空気調和機(2)と通信可能となっている。また、サーバ(3)は、インターネットなどのネットワークを介して、天気予報データ(4)を入手することができる。サーバ(3)は、空気調和機(2)の運転方法を決定するための複数種類の運転制御テーブルを格納しているメモリ(記憶部)と、天気予報データ(4)に基づいて運転制御テーブルを選択する制御部と、制御部が選択した運転制御テーブルを空気調和機(2)に送信する送信部(通信インターフェース)とを備えている。
Description
本発明は、空気調和機の運転を制御する空調制御システムに関する。
冷房運転および暖房運転などの運転を行う空気調和機においては、自動運転という運転モードでの運転が可能である。自動運転とは、空気調和機が、室外の気温(外気温)・室内の気温(室温)などの情報を取得し、これらの情報に基づいて、最適な運転方法および設定温度などの選択を行うという運転モードである。
空気調和機の自動運転に関しては、季節の変わり目である中間期における冷暖房の選択や、設定温度の最適化を行うための制御方法について種々の検討がされている。中間期を考慮した制御方法としては、例えば、空気調和機が暦情報を取得し、暦に応じて運転モードおよび設定温度を制御するという方法がある。
また、特許文献1には、体感的に快適な運転モードの選択や、よりきめ細やかな設定温度の選択を可能とした自動運転を可能とする空気調和機が提案されている。この空気調和機は、室内温度センサ、外気温度センサなどから得られる環境情報と、機器が設置されている地域の情報と、現在日時の属する暦情報とに基づいて、空調運転を自動運転制御するための自動運転情報を生成する。
しかしながら、暦に基づいて運転モードおよび設定温度などを決定するという従来の方法では、「寒の戻り」や「残暑」などの季節外れの気候が発生した場合などに、実情に即した自動運転ができなくなる可能性がある。
そこで、本発明では、空気調和機が設置されている場所およびその時の状況により即した空調運転の制御を行うことのできる空調制御システムを提供する。
本発明の一局面にかかる空調制御システムは、空気調和機の運転方法を決定するための複数種類の運転制御テーブルを格納している記憶部と、天気に関する予測データに基づいて、前記運転制御テーブルを選択する制御部と、前記制御部が選択した運転制御テーブルを前記空気調和機に送信する送信部とを備えている。
また、本発明の別の局面にかかる空調制御システムは、空気調和機の運転方法を決定するための複数種類の運転制御テーブルを格納している記憶部と、前記空気調和機が設置されている場所の外気温および室温の情報を受信する受信部と、天気に関する予測データに基づいて、前記運転制御テーブルを選択し、選択した前記運転制御テーブル並びに前記外気温および室温の情報にしたがって、前記空気調和機の運転方法を制御する制御信号を作成する制御部と、前記制御信号を前記空気調和機に送信する送信部とを備えている。
また、本発明のさらに別の局面にかかる空調制御システムは、気象情報に関する予測データを受信する受信部と、熱媒体を圧縮する圧縮機と、室内側熱交換器と、熱媒体を減圧する膨張弁と、室外側熱交換器とを含むヒートポンプサイクルと、前記ヒートポンプサイクルの運転方法を決定するための複数種類の運転制御テーブルを格納している記憶部と、前記予測データに基づいて、前記記憶部に格納されている運転制御テーブルを選択し、選択した運転制御テーブルに基づいて、前記ヒートポンプサイクルの運転を制御する制御部とを備えている。
上記の本発明の他の局面にかかる空調制御システムにおいて、前記予測データは、予想最低気温および予想最高気温のデータを含んでいてもよい。
上記の本発明の他の局面にかかる空調制御システムにおいて、前記予測データは、空模様の予測データをさらに含み、前記制御部は、前記空模様の予測データに基づいて、前記運転制御テーブルを補正してもよい。
上記の本発明の他の局面にかかる空調制御システムにおいて、前記制御部は、前記空気調和機または前記空調制御システムが設置されている場所の気圧のデータを取得し、前記気圧のデータをさらに考慮して、前記記憶部に格納されている運転制御テーブルを選択してもよい。
上記の本発明の他の局面にかかる空調制御システムにおいて、前記制御部は、現在の季節に関する季節データを取得し、前記季節のデータをさらに考慮して、前記記憶部に格納されている運転制御テーブルを選択してもよい。
上記の本発明の他の局面にかかる空調制御システムにおいて、前記制御部は、前記空気調和機または前記空調制御システムが設置されている地域に関する地域データを取得し、前記地域データに基づいて、前記運転制御テーブルを補正してもよい。
上記の本発明の他の局面にかかる空調制御システムにおいて、前記複数種類の運転制御テーブルには、夏テーブル、冬テーブル、および基本テーブルが含まれていてもよい。
上記の本発明の他の局面にかかる空調制御システムにおいて、前記運転制御テーブルは、外気温と、室温と、外気温および室温に基づいて決定される運転方法とが関連付けられていてもよい。さらに、前記運転制御テーブルには、外気温と、室温と、外気温および室温に基づいて決定される空気調和機の設定温度とを関連付けた情報が含まれていてもよい。
以上のように、本発明の一局面にかかる空調制御システムによれば、空気調和機が設置されている場所およびその時の状況により即した空調運転の制御を行うことができる。
以下、図面を参照しつつ、本発明の各実施形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
〔第1の実施形態〕
第1の実施形態では、本発明の一態様の空調制御システムを、サーバと空気調和機とがインターネットなどのネットワークを介して通信可能に構成されたネットワークシステムに適用する例を挙げて説明する。具体的には、空気調和機と、空気調和機の運転を制御するためのサービスを提供するためのサーバとが、ネットワーク(インターネット)で接続された空調制御システムを例に挙げて説明する。
第1の実施形態では、本発明の一態様の空調制御システムを、サーバと空気調和機とがインターネットなどのネットワークを介して通信可能に構成されたネットワークシステムに適用する例を挙げて説明する。具体的には、空気調和機と、空気調和機の運転を制御するためのサービスを提供するためのサーバとが、ネットワーク(インターネット)で接続された空調制御システムを例に挙げて説明する。
図1には、第1の実施形態にかかる空調制御システム1(以下、単にシステムとも呼ぶ)の全体構成を示す。空調制御システム1は、主として、空気調和機2と、サーバ3とで構成される。空気調和機2とサーバ3とは、インターネットなどのネットワークを介して通信可能となっている。また、図1に示すように、サーバ3は、インターネットなどのネットワークを介して、天気予報データ(天気に関する予測データ)4を入手することができる。
ここで、天気とは、特定の場所および特定の時刻の気象状態のことをいう。また、本明細書では、天気という用語は、気温、湿度、空模様(晴れ、雨、くもりなど)、風速、雲量、日照量、および気圧などの各要素のそれぞれ、並びに、これら各要素を複数組み合わせたものを意味するものとして用いられる。そして、天気予報データ(天気に関する予測データ)とは、週単位、日単位、および時間単位などで、将来の天気を予測したデータのことを意味する。
<空気調和機の構成>
先ず、空調制御システム1を構成する空気調和機2の全体構成と基本的な動作の概要について説明する。本実施形態にかかる空気調和機2は、例えば、冷房運転、暖房運転、除湿運転、および送風運転という複数種類の運転方法での運転が可能である。また、本実施形態にかかる空気調和機2は、インターネットを介して通信可能に接続されたサーバ3からの指令に基づいて、自動運転を行うことができる。
先ず、空調制御システム1を構成する空気調和機2の全体構成と基本的な動作の概要について説明する。本実施形態にかかる空気調和機2は、例えば、冷房運転、暖房運転、除湿運転、および送風運転という複数種類の運転方法での運転が可能である。また、本実施形態にかかる空気調和機2は、インターネットを介して通信可能に接続されたサーバ3からの指令に基づいて、自動運転を行うことができる。
ここで、自動運転とは、冷房運転、暖房運転、除湿運転、および送風運転などの空気調和機2の各種運転方法を、ユーザが選択するのではなく、空調制御システム1が自動で決定する運転モードのことをいう。すなわち、空気調和機2が取り得る運転モードは、自動運転モードと、ユーザが手動で運転の種類を選択する手動運転モードとに大きく分けられる。なお、手動運転モードの中には、例えば、冷房運転、暖房運転、除湿運転、および送風運転という複数種類の運転モード(運転方法)が含まれている。
自動運転では、サーバ3は、クラウド上で天気予報データ4を取得し、この天気予報データ4に基づいて、空気調和機2の運転方法および設定温度などを決定するための運転制御テーブルを選択する。サーバ3内で選択された運転制御テーブルは、空気調和機2に送信される。空気調和機2は、サーバ3から送信された運転制御テーブルを用いて、運転方法を決定する。具体的には、空気調和機2は、運転制御テーブルを参照して、空気調和機2が設置されている環境下における現在の外気温および室温の情報に基づいて、取るべき運転方法を選択する。
図2は、空気調和機2の内部構成を示す。図3は、空気調和機2の全体構成を示す。図3では、空気調和機2の冷房運転時の冷媒(熱媒体)の流れを実線の矢印で示し、空気調和機2の暖房運転時の冷媒(熱媒体)の流れを破線の矢印で示している。なお、除湿運転では、冷房運転と同様にヒートポンプサイクル内で冷媒を循環させつつ、室内の湿度を低下させる運転を行う。また、送風運転では、ヒートポンプサイクルの運転は停止し、室内送風機13のみを運転させる。
図2および図3に示すように、本実施の形態にかかる空気調和機2は、セパレート式の空気調和機であって、主として、室内機10と室外機50とから構成されている。なお、空気調和機2は、室内機10と室外機50とが冷媒配管57および58を介して接続されることによって構成されている。以下、室外機50、室内機10、冷媒配管57および58について詳述する。
(1)室外機
室外機50は、主に、筐体51、圧縮機52、四方弁53、室外熱交換器54、膨張弁55、室外送風機56、二方弁59、三方弁60、および外気温度計62から構成されている。なお、この室外機50は、屋外に設置されている。
室外機50は、主に、筐体51、圧縮機52、四方弁53、室外熱交換器54、膨張弁55、室外送風機56、二方弁59、三方弁60、および外気温度計62から構成されている。なお、この室外機50は、屋外に設置されている。
筐体51には、圧縮機52、四方弁53、室外熱交換器(室外側熱交換器)54、膨張弁55、室外送風機56、二方弁59、および三方弁60等が収納されている。
圧縮機52は、吐出管52aおよび吸入管52bを有している。吐出管52aおよび吸入管52bは、それぞれ、四方弁53の異なる接続口に接続されている。圧縮機52は、運転時、吸入管52bから低圧の冷媒ガスを吸入し、その冷媒ガスを圧縮して高圧の冷媒ガスを生成した後、その高圧の冷媒ガスを吐出管52aから吐出する。
四方弁53は、冷媒配管を介して圧縮機52の吐出管52aおよび吸入管52b、室外熱交換器54ならびに室内熱交換器12に接続されている。四方弁53は、運転時、空気調和機2の制御部20(図2参照)から送信される制御信号に従って、冷凍サイクルの経路を切り換える。すなわち、四方弁53は、冷房運転状態と暖房運転状態との間で経路の切り換えを行う。
具体的には、冷房運転状態では、四方弁53は、圧縮機52の吐出管52aを室外熱交換器54に連結させると共に圧縮機52の吸入管52bを室内熱交換器12に連結させる(図3の実線矢印参照)。一方、暖房運転状態では、四方弁53は、圧縮機52の吐出管52aを室内熱交換器12に連結させると共に圧縮機52の吸入管52bを室外熱交換器54に連結させる(図3の破線矢印参照)。
室外熱交換器54は、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたものであって、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。
膨張弁55は、一方が冷媒配管を介して二方弁59に接続されると共に、他方が室外熱交換器54に接続されている。膨張弁55は、運転時において、凝縮器(暖房時は室内熱交換器12であり、冷房時は室外熱交換器54である)から流出する高温高圧の液冷媒を蒸発しやすい状態に減圧すると共に、蒸発器(暖房時は室外熱交換器54であり、冷房時は室内熱交換器12である)への冷媒供給量を調節する役目を担っている。
室外送風機56は、主に、プロペラファンおよびモータから構成されている。プロペラファンは、モータによって回転駆動され、屋外の外気を室外熱交換器54に供給する。モータは、空気調和機2の制御部20から送信される制御信号に従って動作する。
二方弁59には、冷媒配管57が連結されている。冷媒配管57は、室外機と室内機とを連結する。なお、二方弁59は、室外機50から冷媒配管57が取り外されるときに閉じられ、冷媒が室外機50から外部に漏れることを防ぐ。
三方弁60は、一方が冷媒配管を介して四方弁53に連結されると共に、他方が冷媒配管58と連結される。これにより、室外機と室内機とが連結される。なお、三方弁60は、室外機50から冷媒配管58が取り外されるときに閉じられ、冷媒が室外機50から外部に漏れることを防ぐ。また、室外機50から、あるいは室内機10を含めた冷凍サイクル(冷却機構)全体から、冷媒を回収する必要があるときは、三方弁60を通じて冷媒の回収が行われる。
外気温度計62は、室外機50が設置されている屋外の温度を測定する。
(2)室内機
室内機10は、主な構成部材として、筐体11、室内熱交換器(室内側熱交換器)12、室内送風機13、室内温度計15、室内湿度計16、スピーカ18、表示部21、および通信インターフェース22などを備えている。また、図2に示すように、空気調和機2は、室内機10とは別の構成部材として、リモートコントローラ26を有している。
室内機10は、主な構成部材として、筐体11、室内熱交換器(室内側熱交換器)12、室内送風機13、室内温度計15、室内湿度計16、スピーカ18、表示部21、および通信インターフェース22などを備えている。また、図2に示すように、空気調和機2は、室内機10とは別の構成部材として、リモートコントローラ26を有している。
筐体11には、室内熱交換器12、室内送風機13、室内温度計15、室内湿度計16、および制御部20等が収納されている。
室内熱交換器12は、図3に示すように、3個の熱交換器を、室内送風機13を覆う屋根(逆V字形状)のように組み合わせたものである。なお、各熱交換器は、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたものであって、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。
室内送風機13は、主に、クロスフローファンおよびモータから構成されている。クロスフローファンは、モータによって回転駆動され、室内の空気を筐体11に吸い込んで室内熱交換器12に供給すると共に、室内熱交換器12で熱交換された空気を室内に送出する。
室内温度計15は、室内機10が設置されている室内の温度を測定する。室内温度計15は、例えば、筐体11の室内空気吸込み口付近に配置されている。
室内湿度計16は、室内機10が設置されている室内の湿度を測定する。室内湿度計16は、例えば、筐体11の室内空気吸込み口付近に配置されている。
スピーカ18は、サーバ3から送信された指令(例えば、天気予報データ4に基づいて作成された音声データ)に基づいて、例えば、空気調和機2の運転停止時などに、本日の天気予報、降水確率、および予想気温などを発話する。また、スピーカ18は、空気調和機2の運転の開始時、空気調和機2の運転の終了時、運転モードの変更時などに、室内の人にその旨を報知する音声を発するようにしてもよい。また、スピーカ18は、自動運転モードでの運転を行っているときに、現在の運転方法の通知を行うように構成されていてもよい。
制御部20は、空気調和機2内の各構成部品と接続され、これらの制御を行う。制御部20内には、メモリ23、およびタイマ24などが備えられている。また、本実施形態においては、制御部20は、サーバ3から送信された運転制御テーブルを参照しながら、空気調和機2の運転方法を決定する。そして、制御部20は、決定した運転方法にしたがって空気調和機2内の各構成部品を制御する。
メモリ23は、ROM(read only memory)及びRAM(Random Access Memory)を含む。メモリ23は、空気調和機2の動作プログラムや設定データを記憶するとともに制御部20による演算結果を一時記憶する。タイマ24は、必要に応じて、制御部20内で行われる処理の時間、空気調和機2内の各構成部材の動作時間などを計測する。
表示部21は、液晶表示パネルおよびLEDライトなどを含む。表示部21は制御部20からの信号に基づいて空気調和機2の動作状況や警報等を表示する。
通信インターフェース22は、アンテナやコネクタによって実現される。通信インターフェース22は、有線通信あるいは無線通信によって他の装置との間でデータをやり取りする。具体的には、通信インターフェース22は、リモートコントローラ(操作部)26を操作した際に送信される赤外線の信号を受信する。さらに、通信インターフェース22は、サーバ3から送信される各種信号、各種データ(例えば、運転制御テーブルなど)、および各種指令などを受信する。また、通信インターフェース22は、サーバ3に対して、外気温、室温、および室内の湿度などの情報を送信することもできる。
リモートコントローラ(操作部)26は、ユーザが空気調和機2を操作するための操作部として機能する。ユーザは、例えば、リモートコントローラ26を操作して、空気調和機2の運転モード、設定温度などを選択することができる。
(3)冷媒配管
冷媒配管57は、冷媒配管58よりも細い管であって、運転時に液冷媒が流れる。冷媒配管58は、冷媒配管57よりも太い管であって、運転時にガス冷媒が流れる。なお、熱媒体(冷媒)としては、例えば、HFC系のR410AやR32等が用いられる。
冷媒配管57は、冷媒配管58よりも細い管であって、運転時に液冷媒が流れる。冷媒配管58は、冷媒配管57よりも太い管であって、運転時にガス冷媒が流れる。なお、熱媒体(冷媒)としては、例えば、HFC系のR410AやR32等が用いられる。
上記の構成を有する空気調和機2において、室外機50の圧縮機52、四方弁53、室外熱交換器54および膨張弁55、ならびに室内機10の室内熱交換器12は、冷媒配管57,58によって順次接続されている。これにより、冷凍サイクル(ヒートポンプサイクル)が構成される。
<サーバの構成>
次に、空調制御システム1を構成するサーバ3について説明する。図4は、空調制御システム1を構成するサーバ3の内部構成を示す。
次に、空調制御システム1を構成するサーバ3について説明する。図4は、空調制御システム1を構成するサーバ3の内部構成を示す。
サーバ3は、インターネットなどのネットワークを介して、空気調和機2と接続される。図4に示すように、サーバ3は、制御部31、メモリ32、および通信インターフェース33などを備えている。
制御部31は、メモリ32あるいは外部の記憶媒体に記憶されているプログラムを実行することによって、サーバ3の各部を制御する。すなわち、制御部31は、メモリ32に格納されているプログラムを実行することによって、後述する各種の処理を実現する。
メモリ32は、各種のRAM、各種のROM、フラッシュメモリなどによって実現される。メモリ32は、制御部31によって実行されるプログラムや、制御部31によるプログラムの実行により生成されたデータ、スイッチやキーボードから入力されたデータ、空気調和機2から受信したデータ、および空気調和機2の運転を制御するための運転制御テーブル(図6から図9など参照)などを記憶する。
通信インターフェース33は、有線通信あるいは無線通信によって他の装置との間でデータをやり取りする。
<空気調和機の自動運転の制御について>
続いて、本実施形態にかかるシステム1において、空気調和機2の自動運転を制御する方法について、図1、図2、図4、図5から図8、および図10を参照しながら説明する。図5には、運転制御テーブルの決定方法を説明するために、天気予報データからの予想気温と使用する運転制御テーブルとの関係の一例を示す。図6から図9には、運転制御テーブルの例を示す。具体的には、図6は、夏テーブルの一例であり、図7は、冬テーブルの一例であり、図8は、基本テーブルの一例である。システム1における空気調和機2の運転制御の流れを示す。
続いて、本実施形態にかかるシステム1において、空気調和機2の自動運転を制御する方法について、図1、図2、図4、図5から図8、および図10を参照しながら説明する。図5には、運転制御テーブルの決定方法を説明するために、天気予報データからの予想気温と使用する運転制御テーブルとの関係の一例を示す。図6から図9には、運転制御テーブルの例を示す。具体的には、図6は、夏テーブルの一例であり、図7は、冬テーブルの一例であり、図8は、基本テーブルの一例である。システム1における空気調和機2の運転制御の流れを示す。
以下では、空気調和機2が、暖房運転、冷房運転、および送風運転の3種類の運転方法による空調を行う場合を例に挙げて説明する。但し、本発明の一態様の空調制御システムでは、空気調和機の運転方法は、これら3種類に限定はされない。これ以外の運転方法として、例えば、除湿運転などが可能な空気調和機にも、本発明を適用できる。
本実施形態のシステム1において、図6から図8に示す3種類の運転制御テーブルは、サーバ3内のメモリ(記憶部)32に格納されている。そして、サーバ3の制御部31は、クラウド上に存在する天気情報サーバから提供される天気予報データ4に基づいて、上記3種類の運転制御テーブルの中から1種類の運転制御テーブルを選択する。なお、天気情報サーバとしては、例えば、天気予報を提供するサービスを行っている会社が運営するサーバなどが該当する。
天気予報データには、週間天気予報、1日の予想最低気温および予想最高気温、並びに、数時間ごとの天気(空模様)、風速、および降水確率などの予測情報が含まれている。本実施形態では、これらの天気予報データのうち、1日の予想最低気温および予想最高気温の情報に基づいて、運転制御テーブルの選択を行う。天気情報サーバから送信された天気予報データ4は、サーバ3内のメモリ32に格納される。
なお、サーバ3において、天気情報サーバから天気予報データ4を取得する頻度については、特に限定はされないが、例えば、1日1回とすることができる。また、1日の予想最低気温および予想最高気温の情報は、例えば、該当日の前日に提供される翌日の天気予報データから取得することができる。また、天気予報データ4の取得頻度をより多く(1日数回、または数時間ごとなど)とした場合には、制御部31は、新しい天気予報データを取得するごとにメモリ32内のデータを更新する。そして、最新の天気予報データに基づいて、運転制御テーブルの選択を行うことが好ましい。
続いて、運転制御テーブルの決定方法について、図5を参照しながら説明する。上述したように、サーバ3は、天気予報データ4に含まれる1日(該当する期日)の予想最低気温および予想最高気温の情報に基づいて、運転制御テーブルの選択を行う。
図5には、冬テーブル、夏テーブル、および基本テーブルがそれぞれ選択されるときの、予想最低気温と予想最高気温の例を示す。図5では、上向きの矢印(↑)の位置が予想最高気温を指し、下向きの矢印(↓)の位置が予想最低気温を指している。
一例では、予想最低気温が15℃以上のときには、夏テーブル(図6参照)を選択する。また、予想最高気温が15℃以下のときには、冬テーブル(図7参照)を選択する。また、これらの何れにも該当しないとき(すなわち、予想最低気温が15℃未満で予想最高気温が15℃を超えるとき)には、基本テーブル(図8参照)を選択する。言い換えると、秋や春などの季節には、基本テーブルが選択される可能性が高くなる。
なお、予想最低気温と予想最高気温の両方を考慮して、夏テーブルおよび冬テーブルを選択するようにしてもよい。このようにすれば、より細やかな制御が可能となる。例えば、テーブルを選択する際に用いる温度の基準ラインをより細かく設定することで、より細やかな制御を行うことができる。具体的には、図5に示す15℃という温度ラインを中間温度ラインとする。そして、中間温度ライン以外の温度ラインを設けることで、より細かな場合分けに基づくテーブル選択を行うことができる。一例として、中間温度ラインよりも高い温度を閾値とする高温ラインと、中間温度ラインよりも低い温度を閾値とする低温ラインとをさらに設けてもよい。そして、例えば、以下のような場合分けに基づいてテーブルを選択することができる。
この例では、基本テーブル、夏テーブル、冬テーブルの他に、夏高温テーブルおよび冬低温テーブルを使用する。夏高温テーブルは、例えば、猛暑の時期などに選択されることが想定される。また、冬低温テーブルは、例えば、寒冷地や真冬の時期などに選択されることが想定される。
・基本テーブルを選択する場合:予想最低気温と予想最高気温の両方が、高温ラインと低温ラインとの間にあるとき。
・夏テーブルを選択する場合:予想最低気温が中間温度ラインより高くかつ高温ライン未
満であるとき。
・夏高温テーブルを選択する場合:予想最低気温が高温ライン以上であるとき。
・冬テーブルを選択する場合:予想最高気温が中間温度ライン以下かつ低温ラインより高いとき。
・冬低温テーブルを選択する場合:予想最高気温が低温ライン以下であるとき。
・基本テーブルを選択する場合:予想最低気温と予想最高気温の両方が、高温ラインと低温ラインとの間にあるとき。
・夏テーブルを選択する場合:予想最低気温が中間温度ラインより高くかつ高温ライン未
満であるとき。
・夏高温テーブルを選択する場合:予想最低気温が高温ライン以上であるとき。
・冬テーブルを選択する場合:予想最高気温が中間温度ライン以下かつ低温ラインより高いとき。
・冬低温テーブルを選択する場合:予想最高気温が低温ライン以下であるとき。
なお、本実施形態では、中間温度ラインの温度は15℃に必ずしも限定されない。中間温度ラインの温度は、実験結果などに基づいて適宜設定することができる。同様に、高温ラインの温度および低温ラインの温度も、実験結果などに基づいて適宜設定することができる。
図6から図8には、各種運転制御テーブルの例を示す。各運転制御テーブルは、横軸に外気温が設定され、縦軸に室温が設定されている。空気調和機2は、サーバ3から送信された運転制御テーブルにしたがって、空気調和機2の運転方法と設定温度を決定する。具体的には、空気調和機2の制御部20は、室内温度計15から取得した室温データと、外気温度計62から取得した外気温データに基づいて、メモリ23に格納されている運転制御テーブルを参照し、運転方法と設定温度を決定する。
例えば、図6に示す夏テーブルを用いて運転制御を行う場合、室温データが27℃であり、外気温データが33℃あると、該当する室温と外気温の交差する位置の運転方法および設定温度が選択される。すなわち、図6中に破線の矢印で示すように、運転方法として「冷房運転」が選択され、設定温度として「27℃」が選択される。
なお、図6から図8に示す各テーブルを比較すればわかるように、夏テーブル、冬テーブル、および基本テーブルでは、同じ外気温および室温の場合であっても、選択される運転方法および設定温度は異なっている。例えば、通常、春や秋などの中間期に選択される可能性の高い基本テーブルでは、運転方法として送風運転が選択される割合が高くなっている(図8参照)。これは、空気調和機2の設置されている場所におけるその日の気候状況によりうまく適合した運転制御方法で、空気調和機2の運転を制御するためである。つまり、天気予報データ4に含まれる予想気温から、該当する季節のテーブルを選択することで、より季節の特性を考慮した運転制御方法を採用することができる。
例えば、予想最低気温26℃、予想最高気温35℃という真夏の日には、サーバ3において夏テーブルが選択される。そして、空気調和機2は、夏テーブルを参照して、運転方法および設定温度を決定することができる。
また、例えば、日本において5月は、季節としては春に該当する。しかし、もし天気予報データ4に含まれる「予想最低気温の情報、予想最高気温の情報」が、「予想最低気温21℃、予想最高気温28℃」である場合には、予想最低気温が15℃以上であるので、夏テーブルが選択される。そして、「予想最低気温21℃、予想最高気温28℃」という天気予報データ4の該当期日には、空気調和機2は、夏テーブルを参照して、運転方法および設定温度を決定することができる。これにより、空気調和機2が設置されている場所における、その日の気候状況により適した運転方法および設定温度を決定することができる。
続いて、システム1における空気調和機2の運転制御の流れを、図10を参照しながら説明する。図10(a)には、システム1を構成するサーバ3(特に、制御部31)における制御の流れを示す。図10(b)には、システム1を構成する空気調和機2(特に、制御部20)における制御の流れを示す。
図10(a)に示すように、最初に、サーバ3において、空気調和機2が設置されている場所(地域)の登録が行われる(ステップS11)。設置場所の登録は、例えば、インターネットなどを介してシステム1内に空気調和機2を組み込む際に行われる。具体的には、例えば、空気調和機2が設置される住所の郵便番号の情報を、空気調和機2からサーバ3へ送信することによって行うことができる。より具体的には、例えば、ユーザ(あるいは、空気調和機2の設置業者)がリモートコントローラ26にて、郵便番号を選択し、その選択した郵便番号を空気調和機2へ送信する。空気調和機2は、受信した郵便番号をサーバ3へ送信する。
設置場所の登録が行われると、サーバ3内の制御部31では、空気調和機2が設置されている場所が該当する地方の天気予報データ4を取得することができる(ステップS12)。その後、サーバ3内の制御部31は、クラウド上に存在する天気情報サーバから提供される天気予報データ4(具体的には、予想最高気温の情報、予想最低気温の情報)に基づいて、メモリ32に格納されている複数種類の運転制御テーブルの中から1種類の運転制御テーブルを選択する(ステップS13)。
そして、サーバ3内の制御部31が選択した運転制御テーブルの情報は、通信インターフェース33を介して、空気調和機2へ送信される(ステップS14)。
続いて、図10(b)に示すように、空気調和機2の通信インターフェース22は、サーバ3から送信された運転制御テーブルのデータを受信する(ステップS21)。受信した運転制御テーブルのデータは、制御部20内のメモリ23に格納される。
その後、ユーザは、リモートコントローラ26などから空気調和機2に対して自動運転モードを開始する指令を送信する。すなわち、制御部20は、自動運転モードON信号を受信する(ステップS22)。なお、後述の第4の実施形態のように、システム200がスマートフォン5などの携帯端末を有する場合には、スマートフォン5から自動運転モードを開始する指令を送信することも可能である。
すると、制御部20は、室内温度計15から室温データを取得し、外気温度計62から外気温データを取得する(ステップS23)。そして、制御部20は、メモリ23に格納されている運転制御テーブルを参照し、運転方法と設定温度を決定する(ステップS24)。そして、制御部20は、決定した運転方法と設定温度にしたがって、空気調和機2の自動運転を開始する(ステップS25)。
以上のような流れで、空気調和機2の自動運転の制御が行われる。このように、本実施形態にかかる空調制御システム1によれば、天気予報データ4に含まれる空気調和機2が設置されている場所における予想気温に基づいて、該当する期日(または日時)に使用する運転制御テーブルを選択する。そして、空気調和機2は、選択した運転制御テーブルを用いて自動運転の制御を行う。そのため、空気調和機2が設置されている場所およびその時の状況により即した空調運転の制御を行うことができる。
上述の例では、空気調和機2が、暖房運転、冷房運転、および送風運転の3種類の運転方法による空調を行う場合の自動運転の制御について説明した。しかし、これは本発明の一例である。本発明の一態様では、上記の3種類の運転方法に加えて、除湿運転を行うことが可能な空気調和機の自動運転に適用することもできる。この場合には、運転制御テーブルに室内湿度のパラメータを加えることが好ましい。そして、空気調和機2に備えられた室内湿度計16の検知結果に基づいて、冷房運転の代わりに除湿運転を行うか否かを決定すればよい。
なお、本実施形態にかかる空調制御システム1は、それを構成する各装置(例えば、空気調和機2)の役割の一部または全部を、他の装置(例えば、クラウド上のサーバ3)が実行してもよい。ここで、クラウドとは、空気調和機と定期的に通信可能な複数のサーバを含むサーバ群で構成される。各サーバは、各種データの収集、蓄積、および発信が可能であり、各種データを処理してテーブルなどを作成することができる。
<変形例について>
ここで、システム1において行われる空気調和機2の自動運転の制御方法の変形例を、図6から図9を参照しながら説明する。上述の第1の実施形態では、図6から図8に示す3種類の運転制御テーブルを用いて、空気調和機2の自動運転の制御を行っている。一方、本変形例では、図6から図9に示す4種類の運転制御テーブルを用いて、空気調和機2の自動運転の制御を行う。
ここで、システム1において行われる空気調和機2の自動運転の制御方法の変形例を、図6から図9を参照しながら説明する。上述の第1の実施形態では、図6から図8に示す3種類の運転制御テーブルを用いて、空気調和機2の自動運転の制御を行っている。一方、本変形例では、図6から図9に示す4種類の運転制御テーブルを用いて、空気調和機2の自動運転の制御を行う。
図6に示す夏テーブルと、図7に示す冬テーブルを選択する方法については、第1の実施形態と同様の方法が適用できる。図8は、本変形例に使用される春テーブルの一例である。図9は、本変形例に使用される秋テーブルの一例である。
本変形例では、予想最低気温が15℃以上のときには、夏テーブル(図6参照)を選択する。また、最高気温が15℃以下のときには、冬テーブル(図7参照)を選択する。また、これらの何れにも該当しないとき(すなわち、予想最低気温が15℃未満で予想最高気温が15℃を超えるとき)には、春テーブル(図8参照)または秋テーブル(図9参照)を選択する。
なお、春テーブルと秋テーブルの何れを選択するかは、例えば、天気予報データ4内に含まれている暦情報(該当期日の日付に関する情報)に基づいて決定することができる。例えば、サーバ3が受信した天気予報データ4内に含まれている暦情報が、4月から9月の何れかの日付である場合には、サーバ3内の制御部は、春テーブルを選択する。一方、サーバ3が受信した天気予報データ4内に含まれている暦情報が、1月から3月または10月から12月の何れかの日付である場合には、サーバ3内の制御部は、秋テーブルを選択する。
以上のように、本変形例によれば、4種類の運転制御テーブルを用いて、よりきめ細かな空気調和機2の自動運転の制御を行うことができる。すなわち、第1の実施形態では、天気予報データが春や秋などの中間期の気候状況に該当する場合には、基本テーブルのみを用いていたが、本変形例では、春テーブルと秋テーブルの2種類のテーブルを適宜使い分けることができる。
<その他の応用例>
本発明は、システムあるいは装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。そして、本発明の一態様を達成するためのソフトウェアによって表されるプログラムを格納した記憶媒体(あるいはメモリ)を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、本発明の一態様の効果を享受することが可能となる。
本発明は、システムあるいは装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。そして、本発明の一態様を達成するためのソフトウェアによって表されるプログラムを格納した記憶媒体(あるいはメモリ)を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、本発明の一態様の効果を享受することが可能となる。
この場合、記憶媒体から読出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明の一態様を構成することになる。
また、コンピュータが読出したプログラムコードを実行することにより、前述した実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わる他の記憶媒体に書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。
〔第2の実施形態〕
上述した第1の実施形態では、サーバ3から送信された運転制御テーブルに基づいて、空気調和機2が運転方法および設定温度を決定するシステム1を例に挙げて説明した。しかし、本発明の一態様の空調制御システムは、サーバ3側で、空気調和機2の運転方法および設定温度を決定してもよい。そこで、第2の実施形態では、空気調和機2から送信された外気温および室温などの情報に基づいて、サーバ3が、運転制御テーブルに基づいて空気調和機2の運転方法および設定温度を決定する空調制御システムの例を挙げて説明する。
上述した第1の実施形態では、サーバ3から送信された運転制御テーブルに基づいて、空気調和機2が運転方法および設定温度を決定するシステム1を例に挙げて説明した。しかし、本発明の一態様の空調制御システムは、サーバ3側で、空気調和機2の運転方法および設定温度を決定してもよい。そこで、第2の実施形態では、空気調和機2から送信された外気温および室温などの情報に基づいて、サーバ3が、運転制御テーブルに基づいて空気調和機2の運転方法および設定温度を決定する空調制御システムの例を挙げて説明する。
図1には、第2の実施形態にかかる空調制御システム100(以下、単にシステムとも呼ぶ)の全体構成を示す。空調制御システム100は、主として、空気調和機2と、サーバ3とで構成される。第2の実施形態にかかるシステム100の全体構成については、第1の実施形態にかかるシステムと同様の構成が適用できる。そこで、第2の実施形態では、第1の実施の形態とは異なる点のみを説明する。
第2の実施形態にかかるシステム100において、空気調和機2の自動運転を制御する方法について、図1、図2、図4、図5から図8、および図11を参照しながら説明する。図11には、空気調和機2の運転モードが自動運転モードとなった場合における、システム100における空気調和機2の運転制御の流れを示す。図11では、主として、システム100を構成するサーバ3(特に、制御部31)における制御の流れを示す。
図11に示すように、最初に、サーバ3において、空気調和機2が設置されている場所(地域)の登録が行われる(ステップS31)。設置場所の登録は、第1の実施形態と同様の方法が適用できる。
設置場所の登録が行われると、サーバ3内の制御部31では、空気調和機2が設置されている場所が該当する地方の天気予報データ4を取得することができる(ステップS32)。
その後、サーバ3内の制御部31は、クラウド上に存在する天気情報サーバから提供される天気予報データ4に基づいて、メモリ(記憶部)32に格納されている複数種類の運転制御テーブルの中から1種類の運転制御テーブルを選択する(ステップS33)。なお、メモリ32に格納されている複数種類の運転制御テーブルは、第1の実施形態と同様に、例えば、図6から図9に示す運転制御テーブルである。また、運転制御テーブルの選択方法については、第1の実施形態と同様の方法が適用できる。
続いて、サーバ3は、空気調和機2から、空気調和機2が設置されている場所の外気温および室温の情報を受信する(ステップS34)。具体的には、空気調和機2の室内温度計15が取得した室温データと、外気温度計62が取得した外気温データとが、空気調和機2の通信インターフェース22を介して、サーバ3の通信インターフェース(受信部)33へ送信される。
その後、サーバ3の制御部31は、空気調和機2から受信した室温データおよび外気温データに基づいて、メモリ32に格納されている運転制御テーブルを参照し、空気調和機2の運転方法と設定温度を決定する(ステップS35)。そして、制御部31は、決定した運転方法および設定温度の情報を含む運転制御信号を作成する。
作成された運転制御信号は、サーバ3の通信インターフェース(送信部)32および空気調和機2の通信インターフェース22を介して、空気調和機2の制御部20へ送信される(ステップS36)。空気調和機2の制御部20は、送信された運転制御信号に含まれる運転方法と設定温度の情報にしたがって、空気調和機2の自動運転を開始する。
以上のような流れで、空気調和機2の自動運転の制御が行われる。このように、本実施形態にかかる空調制御システム100によれば、天気予報データ4に含まれる空気調和機2が設置されている場所における予想気温に基づいて、該当する期日(または日時)に使用する運転制御テーブルを選択する。そして、サーバ3は、選択した運転制御テーブルを用いて空気調和機2の自動運転の制御を行うための運転制御信号を作成する。空気調和機2は、サーバ3から送信された運転制御信号にしたがって、自動運転の制御を行う。そのため、空気調和機2が設置されている場所およびその時の状況により即した空調運転の制御を行うことができる。
〔第3の実施形態〕
第3の実施形態では、第1の実施形態にかかる空調制御システム1において、運転制御テーブルの補正をさらに行う例について説明する。本実施形態にかかる空調制御システムの構成は、上述した第1の実施形態にかかる空調制御システムの構成を同様に適用できる。そこで、第3の実施形態では、第1の実施の形態とは異なる点のみを説明する。
第3の実施形態では、第1の実施形態にかかる空調制御システム1において、運転制御テーブルの補正をさらに行う例について説明する。本実施形態にかかる空調制御システムの構成は、上述した第1の実施形態にかかる空調制御システムの構成を同様に適用できる。そこで、第3の実施形態では、第1の実施の形態とは異なる点のみを説明する。
図12には、空気調和機2の運転モードが自動運転モードとなった場合における、システム1における空気調和機2の運転制御の流れを示す。図12では、主として、システム1を構成するサーバ3(特に、制御部31)における制御の流れを示す。
図12に示すように、最初に、サーバ3において、空気調和機2が設置されている場所(地域)の登録が行われる(ステップS41)。設置場所の登録は、第1の実施形態と同様の方法が適用できる。
設置場所の登録が行われると、サーバ3内の制御部31では、空気調和機2が設置されている場所が該当する地方の天気予報データ4を取得することができる(ステップS42)。
その後、サーバ3内の制御部31は、クラウド上に存在する天気情報サーバから提供される天気予報データ4に基づいて、メモリ(記憶部)32に格納されている複数種類の運転制御テーブルの中から1種類の運転制御テーブルを選択する(ステップS43)。なお、メモリ32に格納されている複数種類の運転制御テーブルは、第1の実施形態と同様に、例えば、図6から図9に示す運転制御テーブルである。また、運転制御テーブルの選択方法については、第1の実施形態と同様の方法が適用できる。
次に、サーバ3内の制御部31は、天気情報サーバから取得した天気予報データ4に基づいて、運転制御テーブルを補正する(ステップS44)。ここで、天気予報データ4には、予想最低気温および予想最高気温の情報に加えて、晴れ・雨・くもりなどの空模様の予測に関する情報(空模様の予測データ)も含まれる。制御部31は、この空模様の情報に基づいて、選択した運転制御テーブルの内容を補正する。
具体的には、サーバ3が取得した天気予報データ4において、該当期日の空模様の情報が「雨」であった場合には、選択した運転制御テーブルにおいて、運転方法が「冷房運転」の箇所を「除湿運転」に変更する。この補正は、例えば、ステップS43において、夏テーブル(図6参照)および基本テーブル(図8参照)が選択された場合にのみ行ってもよい。またあるいは、この補正は、選択されたテーブルの種類に関わらず一律に行ってもよい。
また例えば、天気予報データ4に風速の予報データが含まれている場合には、ステップS43において冬テーブル(図7参照)が選択されたときに、以下のような補正を行ってもよい。すなわち、サーバ3が取得した天気予報データ4において、該当期日の風速が「所定値(例えば、10m/s)以上」であった場合には、選択した運転制御テーブルにおいて、設定温度を一律に「+1℃」となるように変更する。
さらに例えば、サーバ3が取得した天気予報データ4において、該当期日の天気が「猛暑」である場合には、選択した運転制御テーブルにおいて、設定温度を一律に「-1℃」となるように変更する。この補正は、例えば、ステップS43において、夏テーブル(図6参照)が選択された場合にのみ行ってもよい。
その後、サーバ3内の制御部31において補正された運転制御テーブルの情報は、通信インターフェース33を介して、空気調和機2へ送信される(ステップS45)。空気調和機2側では、補正された運転制御テーブルを受信し、この運転制御テーブルに基づいて、自動運転の運転制御を行う。空気調和機2側での制御の流れは、第1の実施形態と同様の方法(例えば、図10(b)参照)が適用できる。
以上のような流れで、空気調和機2の自動運転の制御が行われる。第3の実施形態のシステム1によれば、空模様の予測データなどを含む天気予報データの情報に基づいて、運転制御テーブルを補正することができる。そのため、空気調和機2が設置されている場所の天気予報データに合せてより適切な運転制御テーブルを作成することができる。
以上のように、第3の実施形態では、第1の実施形態と同様に、サーバから送信された運転制御テーブルに基づいて、空気調和機2が運転方法および設定温度を決定するシステムの例について説明した。しかし、第3の実施形態で説明した運転制御テーブルの補正を、第2の実施形態の空調制御システム100に適用することもできる。
〔第4の実施形態〕
上述の第3の実施形態では、空模様の予測データを含む天気予報データの情報に基づいて、運転制御テーブルを補正する例について説明した。しかし、運転制御テーブルの補正方法については、これに限定はされない。そこで、第4の実施形態では、空気調和機2が設置されている地域(より範囲の限定された領域)のデータに基づいて、運転制御テーブルを補正する例について説明する。
上述の第3の実施形態では、空模様の予測データを含む天気予報データの情報に基づいて、運転制御テーブルを補正する例について説明した。しかし、運転制御テーブルの補正方法については、これに限定はされない。そこで、第4の実施形態では、空気調和機2が設置されている地域(より範囲の限定された領域)のデータに基づいて、運転制御テーブルを補正する例について説明する。
図13には、第4の実施形態にかかる空調制御システム200(以下、単にシステムとも呼ぶ)の全体構成を示す。空調制御システム200は、主として、空気調和機2と、サーバ3と、スマートフォン(携帯端末)5とで構成される。空気調和機2およびサーバ3は、第1の実施形態にかかるシステム1に含まれる空気調和機2およびサーバ3と同様の構成が適用できる。
第1の実施形態と同様に、サーバ3と各機器(空気調和機2およびスマートフォン5)とは、インターネットなどのネットワークを介して通信可能となっている。また、図13に示すように、サーバ3は、インターネットなどのネットワークを介して、天気予報データ(天気に関する予測データ)4を入手することができる。
さらに、本実施形態では、サーバ3は、インターネットなどのネットワークを介して、空気調和機が設置されている地域に関する地域データ6を入手することができる。地域データ6には、空気調和機2が設置されている住所を含む地域の特性に関するデータが含まれている。すなわち、都道府県または市区町村などの地方単位の情報として提供される天気予報データ4と比較して、地域データ6は、より狭い領域の土地また区域の特性に関するデータを含む。例えば、地域データ6には、空気調和機2が設置されている住所を含む地域が都市部であるか田園部であるかの情報、当該地域の人口密度、当該地域の季節ごとの平均日射量などが含まれる。
なお、図13では、地域データ6を受信するサーバ3と、天気予報データ4を受信するサーバ3とは、同一のサーバとなっている。しかし、本発明の一態様では、地域データ6を受信するサーバ3と、天気予報データ4を受信するサーバ3とは、異なるサーバで構成されていてもよい。本実施形態のシステム200では、サーバ3は、複数台のサーバを含むサーバ群であってもよい。
図14には、スマートフォン5の内部構成を示す。図14に示すように、スマートフォン5は、制御部251、操作部252、メモリ253、通信インターフェース254、表示部255、およびスピーカ256などを備えている。
制御部251は、メモリ253あるいは外部の記憶媒体に記憶されているプログラムを実行することによって、スマートフォン5の各部を制御する。
操作部252は、ユーザからの指令を受け付けて当該指令を制御部251に入力する。
メモリ253は、各種のRAM、各種のROM、フラッシュメモリなどによって実現される。メモリ253は、制御部251によって実行されるプログラムや、制御部251によるプログラムの実行により生成されたデータ、操作部252を介して入力されたデータ、サーバ3から受信したタスクに関するデータなどを記憶する。
通信インターフェース254は、アンテナやコネクタによって実現される。通信インターフェース254は、有線通信あるいは無線通信によって他の装置との間でデータをやり取りする。
表示部255は、制御部251からの信号に基づいて、文字や画像などの画面を出力する。なお、本実施の形態においては、スマートフォン5は、表示部255と操作部252とが組み合わされたタッチパネルを有する。
スピーカ256は、制御部251からの音声信号に基づいてタスクに関する音声、通話音声、音楽などの様々な音声を出力する。
スマートフォン5は、空気調和機2の運転を制御するためのサービスを利用するためのアプリケーションソフトをサーバ3からダウンロードするなどして、システム200に組み込むことができる。スマートフォン5は、例えば、スマートフォン5を持つ人が室内に入ったときなどに、本システム200内に取り込まれるようにしてもよい。
また、スマートフォン5は、天気予報データ4を入手するためのアプリケーションソフトや、地域データ6を入手するためのアプリケーションソフトをダウンロードしてもよい。これにより、スマートフォン5で、該当する地域(例えば、空気調和機2が設置されている住所)の天気予報の情報や、地域の特性に関する情報を入手することができる。
本実施形態にかかるシステム200において、空気調和機2の運転モードが自動運転モードとなった場合の空気調和機2の運転制御の方法は、第3の実施形態で図12を参照しながら説明した方法に準じた方法が適用できる。
具体的には、図12に示す一連の流れにおいて、ステップS44のみが第3の実施形態とは異なっている。すなわち、本実施形態では、ステップS44において、サーバ3内の制御部31は、取得した地域データ6に基づいて運転制御テーブルを補正する。
例えば、サーバ3が取得した地域データ6において、空気調和機2が設置されている住所を含む地域データ6が「都市部」であるという情報が含まれていた場合には、選択した運転制御テーブルにおいて、設定温度を一律に「-1℃」となるように変更する。この補正は、例えば、ステップS43において、夏テーブル(図6参照)が選択された場合にのみ行うことができる。
また、本実施形態にかかるシステム200においては、空気調和機2のスピーカ18から、空気調和機2の運転停止時などに、本日の天気予報、降水確率、および予想気温などを発話することができる。
この発話内容は、サーバ3から送信される音声データなどに基づいて決定される。サーバ3内のメモリ32には、例えば、数時間単位で取得した天気予報データ4が、それぞれ格納されている。そして、空気調和機2の運転が停止されたときに、停止時刻の後の時刻に該当する天気予報データ4に基づき、音声データを作成する。サーバ3で作成された音声データは、空気調和機2へ送信され、スピーカ18によって発話される。
また、本実施形態にかかるシステム200においては、スマートフォン5のスピーカ256から、同様の内容の発話を行うようにしてもよい。
さらに、本実施形態にかかるシステム200において、サーバ3が入手する地域データ6には、空気調和機2の設置場所を含む地域の情報だけでなく、それ以外の地域の情報が含まれていてもよい。また、サーバ3が入手する天気予報データ4には、空気調和機2の設置場所を含む地方の天気予報データだけでなく、各地の天気予報データが含まれていてもよい。この場合、システム200内のスマートフォン5または空気調和機2のリモートコントローラ26などから、特定の地方(例えば、都道府県の何れか)を選択すると、該当地方の天気予報データに基づいて、該当地方と同じ温度および湿度に部屋を再現するように、空気調和機2の運転を制御してもよい。
〔第5の実施形態〕
続いて、本発明の第5の実施形態について説明する。第5の実施形態では、空気調和機が気圧計を備えている構成について説明する。図1には、第5の実施形態にかかる空調制御システム300(以下、単にシステムとも呼ぶ)の全体構成を示す。空調制御システム300は、主として、空気調和機302と、サーバ3とで構成される。第5の実施形態にかかるシステム300は、空気調和機302の構成が第1の実施形態とは異なっている。そこで、第5の実施形態では、空気調和機302の構成について、重点的に説明する。それ以外の構成については、基本的に第1の実施形態と同様の構成が適用できる。
続いて、本発明の第5の実施形態について説明する。第5の実施形態では、空気調和機が気圧計を備えている構成について説明する。図1には、第5の実施形態にかかる空調制御システム300(以下、単にシステムとも呼ぶ)の全体構成を示す。空調制御システム300は、主として、空気調和機302と、サーバ3とで構成される。第5の実施形態にかかるシステム300は、空気調和機302の構成が第1の実施形態とは異なっている。そこで、第5の実施形態では、空気調和機302の構成について、重点的に説明する。それ以外の構成については、基本的に第1の実施形態と同様の構成が適用できる。
図15には、空気調和機302の内部構成を示す。空気調和機302は、セパレート式の空気調和機であって、主に、室内機10と室外機50とから構成されている。空気調和機302の室外機50には、気圧計363が備えられている。それ以外の構成については、第1の実施形態の空気調和機2と同様の構成が適用できるため、詳細な説明は省略する。
気圧計363は、空気調和機302が設置されている環境下の気圧を測定する。気圧計363が測定した気圧データは、制御部20へ送信される。制御部20では、この気圧データをもとに空気調和機302が設置されている場所の標高を推定する。制御部20が推定した標高の情報は、サーバ3へ送信される。
サーバ3の制御部31は、送信された標高の情報をもとに、取得した天気予報データ4の予想気温(予想最低気温および予想最高気温の少なくとも何れか)を必要に応じて変更する。例えば、空気調和機302が設置されている場所の標高が、該当する地方の天気予報データ4の基準となる標高よりも高い場合には、取得した天気予報データ4の予想気温を低くする。そして、サーバ3の制御部31は、変更後の予想気温に基づいて、運転制御テーブルの選択を行う。
運転制御テーブルの選択方法以外の空気調和機302の自動運転の制御方法については、第1の実施形態と同様の方法が適用できる。
なお、上述の説明では、空気調和機302の制御部20で標高の推定を行っている。しかし、気圧計363が測定した気圧データをサーバ3へ送信し、サーバ3の制御部31で標高の推定を行ってもよい。
また、上述の説明では、気圧計363が測定した気圧データをもとに、空気調和機302の設置場所の標高を推定している。しかし、他の態様として、気圧データと、予想気温の変更値とを関連付けたテーブルなどを用いて、測定した気圧データに基づいて直接予想気温を変更することも可能である。
以上のように、本実施形態にかかるシステム300では、空気調和機302またはサーバ3が、空気調和機302が設置されている場所の気圧のデータを取得する。そして、サーバ3は、取得した気圧のデータを考慮して、メモリ32に格納されている複数種類の運転制御テーブルから1つの運転制御テーブルを選択する。具体的には、取得した気圧データから空気調和機302が設置されている場所の標高を予測する。
そして、予測された標高が、所定値(例えば、+100m)以上となった場合には、取得した天気予報データ4の予想気温(予想最低気温および予想最高気温の少なくとも何れか)を、所定の温度(例えば、1℃、0.5℃など)だけ低くする。この変更後の温度を予想気温として、運転制御テーブルを選択する。一般的に標高が高くなればなるほど、気温が低くなることが知られている。そのため、標高が高くなるにつれて、天気予報データ4の予想気温を低くするようにしてもよい。例えば、+100mごとに、0.5℃ずつ低くすることが考えられる。ただし、取得した天気予報データにおいて、既に標高が考慮されている場合は、上述のような天気予報データ4の予想気温の変更は行わないことが望ましい。
本実施形態にかかるシステム300によれば、空気調和機302が設置されている場所の標高を考慮して、空気調和機302の自動運転の制御を行うことができる。
〔第6の実施形態〕
上述の第1から5の実施形態では、空気調和機とサーバとが、インターネットで接続されたシステムを例に挙げて説明した。しかし、本発明の一態様の空調制御システムは、空気調和機単独の構成として実現することもできる。そこで、第6の実施形態では、本発明の一態様にかかる空気調和機の一例について説明する。
上述の第1から5の実施形態では、空気調和機とサーバとが、インターネットで接続されたシステムを例に挙げて説明した。しかし、本発明の一態様の空調制御システムは、空気調和機単独の構成として実現することもできる。そこで、第6の実施形態では、本発明の一態様にかかる空気調和機の一例について説明する。
図16には、本実施形態にかかる空気調和機402の内部構成を示す。本実施の形態にかかる空気調和機402は、セパレート式の空気調和機であって、主に、室内機10と室外機50とから構成されている。空気調和機402の内部構成については、第1の実施形態にかかる空気調和機2と同様の構成が適用できる。
上述の第1の実施形態では、空気調和機2とインターネットを介して通信可能に接続されたサーバ3が、天気予報データ4を入手していた。これに対して、本実施形態にかかる空気調和機402では、空気調和機2が天気情報サーバなどから直接天気予報データ4を入手する。天気予報データ4は、通信インターフェース22が受信する。
また、本実施形態の空気調和機402においては、複数種類の運転制御テーブルは、空気調和機402内のメモリ(記憶部)23に格納されている。そして、空気調和機402の制御部20は、クラウド上に存在する天気情報サーバから提供される天気予報データ4に基づいて、複数種類の運転制御テーブルの中から1種類の運転制御テーブルを選択する。
その後、制御部20は、室内温度計15から室温データを取得し、外気温度計62から外気温データを取得する。取得した室温データおよび外気温データに基づいて、制御部20は、選択した運転制御テーブルを参照し、運転方法と設定温度を決定する。そして、制御部20は、決定した運転方法と設定温度にしたがって、空気調和機402の自動運転を開始する。
メモリ23に格納される運転制御テーブルの種類、運転制御テーブルの選択方法、および空気調和機402の自動運転の制御方法については、第1の実施形態において、図1、図2、図4、図5から図8、および図10を参照しながら説明した方法と同様の方法が適用できる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、本明細書で説明した異なる実施形態の構成を互いに組み合わせて得られる構成についても、本発明の範疇に含まれる。
1 :空調制御システム
2 :空気調和機
3 :サーバ
4 :天気予報データ
5 :スマートフォン
6 :地域データ
20 :(空気調和機の)制御部
22 :(空気調和機の)通信インターフェース(送信部、受信部)
23 :(空気調和機の)メモリ(記憶部)
31 :(サーバの)制御部
32 :(サーバの)メモリ(記憶部)
33 :(サーバの)通信インターフェース(送信部、受信部)
100 :空調制御システム
200 :空調制御システム
300 :空調制御システム
302 :空気調和機
402 :空気調和機
2 :空気調和機
3 :サーバ
4 :天気予報データ
5 :スマートフォン
6 :地域データ
20 :(空気調和機の)制御部
22 :(空気調和機の)通信インターフェース(送信部、受信部)
23 :(空気調和機の)メモリ(記憶部)
31 :(サーバの)制御部
32 :(サーバの)メモリ(記憶部)
33 :(サーバの)通信インターフェース(送信部、受信部)
100 :空調制御システム
200 :空調制御システム
300 :空調制御システム
302 :空気調和機
402 :空気調和機
Claims (8)
- 空気調和機の運転方法を決定するための複数種類の運転制御テーブルを格納している記憶部と、
天気に関する予測データに基づいて、前記運転制御テーブルを選択する制御部と、
前記制御部が選択した運転制御テーブルを前記空気調和機に送信する送信部と
を備えている空調制御システム。 - 空気調和機の運転方法を決定するための複数種類の運転制御テーブルを格納している記憶部と、
前記空気調和機が設置されている場所の外気温および室温の情報を受信する受信部と、
天気に関する予測データに基づいて、前記運転制御テーブルを選択し、選択した前記運転制御テーブル並びに前記外気温および室温の情報にしたがって、前記空気調和機の運転方法を制御する制御信号を作成する制御部と、
前記制御信号を前記空気調和機に送信する送信部と
を備えている空調制御システム。 - 気象情報に関する予測データを受信する受信部と、
熱媒体を圧縮する圧縮機と、室内側熱交換器と、熱媒体を減圧する膨張弁と、室外側熱交換器とを含むヒートポンプサイクルと、
前記ヒートポンプサイクルの運転方法を決定するための複数種類の運転制御テーブルを格納している記憶部と、
前記予測データに基づいて、前記記憶部に格納されている運転制御テーブルを選択し、選択した運転制御テーブルに基づいて、前記ヒートポンプサイクルの運転を制御する制御部と
を備えている空調制御システム。 - 前記予測データは、予想最低気温および予想最高気温のデータを含む、請求項1から3の何れか1項に記載の空調制御システム。
- 前記予測データは、空模様の予測データをさらに含み、
前記制御部は、前記空模様の予測データに基づいて、前記運転制御テーブルを補正する、請求項4に記載の空調制御システム。 - 前記制御部は、
前記空気調和機または前記空調制御システムが設置されている場所の気圧のデータを取得し、
前記気圧のデータをさらに考慮して、前記記憶部に格納されている運転制御テーブルを選択する、請求項1から5の何れか1項に記載の空調制御システム。 - 前記制御部は、
現在の季節に関する季節データを取得し、
前記季節のデータをさらに考慮して、前記記憶部に格納されている運転制御テーブルを選択する、請求項1から6の何れか1項に記載の空調制御システム。 - 前記制御部は、
前記空気調和機または前記空調制御システムが設置されている地域に関する地域データを取得し、
前記地域データに基づいて、前記運転制御テーブルを補正する、請求項1から7の何れか1項に記載の空調制御システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018531730A JP6827470B2 (ja) | 2016-08-04 | 2017-01-11 | 空調制御システム |
US16/080,281 US20200400334A1 (en) | 2016-08-04 | 2017-01-11 | Air-conditioning control system |
EP17836534.2A EP3495747A4 (en) | 2016-08-04 | 2017-01-11 | AIR CONDITIONING CONTROL SYSTEM |
CN201780014186.8A CN109642746A (zh) | 2016-08-04 | 2017-01-11 | 空调控制系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016153369 | 2016-08-04 | ||
JP2016-153369 | 2016-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025427A1 true WO2018025427A1 (ja) | 2018-02-08 |
Family
ID=61073366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/000574 WO2018025427A1 (ja) | 2016-08-04 | 2017-01-11 | 空調制御システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200400334A1 (ja) |
EP (1) | EP3495747A4 (ja) |
JP (1) | JP6827470B2 (ja) |
CN (1) | CN109642746A (ja) |
WO (1) | WO2018025427A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020153642A (ja) * | 2019-03-22 | 2020-09-24 | 三菱重工サーマルシステムズ株式会社 | 空気調和機、空調制御システム、制御方法及びプログラム |
WO2021002098A1 (ja) * | 2019-07-02 | 2021-01-07 | 株式会社日立産機システム | 空気圧縮機 |
JP2021099203A (ja) * | 2019-12-23 | 2021-07-01 | シャープ株式会社 | 空気調和システム、サーバ、空気調和機の制御方法、および空気調和機 |
WO2022059376A1 (ja) * | 2020-09-18 | 2022-03-24 | パナソニックIpマネジメント株式会社 | 空気調和機と加湿空気清浄機とを連動させる空気調和システム、サーバ、および連動方法 |
JPWO2022157832A1 (ja) * | 2021-01-19 | 2022-07-28 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7431536B2 (ja) * | 2019-09-10 | 2024-02-15 | シャープ株式会社 | 空気調和機およびサーバ |
CN114391080A (zh) * | 2019-09-17 | 2022-04-22 | 大金工业株式会社 | 空调室内机 |
CN111856619A (zh) * | 2020-05-08 | 2020-10-30 | 浙江大冲能源科技有限公司 | 一种可接入工控系统的天气预报获取系统及方法 |
CN112539512B (zh) * | 2020-12-09 | 2022-02-22 | 广东电网有限责任公司佛山供电局 | 一种变电站物联网温湿度控制系统 |
CN115164344A (zh) * | 2022-09-07 | 2022-10-11 | 深圳市心流科技有限公司 | 基于睡眠状态的室内温度调节方法、穿戴设备及存储介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63306344A (ja) * | 1987-06-04 | 1988-12-14 | Mitsubishi Electric Corp | 空気調和機器の制御装置 |
JPH0634177A (ja) * | 1992-07-14 | 1994-02-08 | Fujitsu Ltd | 空調制御装置 |
JPH06185785A (ja) * | 1992-12-16 | 1994-07-08 | Mitsubishi Electric Corp | 空調機制御装置 |
JP2003083586A (ja) * | 2001-09-10 | 2003-03-19 | Matsushita Electric Ind Co Ltd | 空気調和機の制御装置 |
JP2004271149A (ja) * | 2003-03-12 | 2004-09-30 | Sanyo Electric Co Ltd | 空気調和装置の制御装置 |
JP2008126765A (ja) * | 2006-11-17 | 2008-06-05 | Toshiba Corp | 車両用空調装置制御システム |
JP2010175229A (ja) * | 2009-02-02 | 2010-08-12 | Mitsubishi Electric Corp | 空調制御装置 |
JP2014009932A (ja) * | 2012-07-03 | 2014-01-20 | Sharp Corp | 空気調和機および空気調和機の制御方法 |
JP2014040978A (ja) * | 2012-08-23 | 2014-03-06 | Toshiba Corp | 空気調和機 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3852463B2 (ja) * | 2004-09-28 | 2006-11-29 | ダイキン工業株式会社 | 環境ナビゲーション装置及び環境ナビゲーションプログラム |
JP4461064B2 (ja) * | 2005-06-23 | 2010-05-12 | 株式会社東芝 | 空調制御装置 |
JP4917866B2 (ja) * | 2006-11-13 | 2012-04-18 | 旭化成ホームズ株式会社 | 季節判定方法 |
US8855830B2 (en) * | 2009-08-21 | 2014-10-07 | Allure Energy, Inc. | Energy management system and method |
US9784464B2 (en) * | 2013-04-22 | 2017-10-10 | Mitsubishi Electric Corporation | Air-conditioning control system and air-conditioning control method |
CN106796043B (zh) * | 2014-08-25 | 2020-09-04 | 三星电子株式会社 | 温度控制方法和装置 |
US10619874B2 (en) * | 2014-10-23 | 2020-04-14 | Trane International Inc. | Apparatuses, methods and systems for configuring electronically programmable HVAC system |
JP2017028881A (ja) * | 2015-07-23 | 2017-02-02 | 株式会社デンソーウェーブ | 使用電力量の変化パターン予測装置、及び使用電力量の変化パターン予測プログラム |
CN105387565B (zh) * | 2015-11-24 | 2018-03-30 | 深圳市酷开网络科技有限公司 | 调节温度的方法和装置 |
-
2017
- 2017-01-11 CN CN201780014186.8A patent/CN109642746A/zh active Pending
- 2017-01-11 JP JP2018531730A patent/JP6827470B2/ja active Active
- 2017-01-11 WO PCT/JP2017/000574 patent/WO2018025427A1/ja unknown
- 2017-01-11 US US16/080,281 patent/US20200400334A1/en not_active Abandoned
- 2017-01-11 EP EP17836534.2A patent/EP3495747A4/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63306344A (ja) * | 1987-06-04 | 1988-12-14 | Mitsubishi Electric Corp | 空気調和機器の制御装置 |
JPH0634177A (ja) * | 1992-07-14 | 1994-02-08 | Fujitsu Ltd | 空調制御装置 |
JPH06185785A (ja) * | 1992-12-16 | 1994-07-08 | Mitsubishi Electric Corp | 空調機制御装置 |
JP2003083586A (ja) * | 2001-09-10 | 2003-03-19 | Matsushita Electric Ind Co Ltd | 空気調和機の制御装置 |
JP2004271149A (ja) * | 2003-03-12 | 2004-09-30 | Sanyo Electric Co Ltd | 空気調和装置の制御装置 |
JP2008126765A (ja) * | 2006-11-17 | 2008-06-05 | Toshiba Corp | 車両用空調装置制御システム |
JP2010175229A (ja) * | 2009-02-02 | 2010-08-12 | Mitsubishi Electric Corp | 空調制御装置 |
JP2014009932A (ja) * | 2012-07-03 | 2014-01-20 | Sharp Corp | 空気調和機および空気調和機の制御方法 |
JP2014040978A (ja) * | 2012-08-23 | 2014-03-06 | Toshiba Corp | 空気調和機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3495747A4 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020153642A (ja) * | 2019-03-22 | 2020-09-24 | 三菱重工サーマルシステムズ株式会社 | 空気調和機、空調制御システム、制御方法及びプログラム |
JP7372040B2 (ja) | 2019-03-22 | 2023-10-31 | 三菱重工サーマルシステムズ株式会社 | 空調制御システム及び制御方法 |
WO2021002098A1 (ja) * | 2019-07-02 | 2021-01-07 | 株式会社日立産機システム | 空気圧縮機 |
JPWO2021002098A1 (ja) * | 2019-07-02 | 2021-01-07 | ||
JP7245332B2 (ja) | 2019-07-02 | 2023-03-23 | 株式会社日立産機システム | 空気圧縮機 |
US11982456B2 (en) | 2019-07-02 | 2024-05-14 | Hitachi Industrial Equipment Systems Co., Ltd. | Air compressor |
JP2021099203A (ja) * | 2019-12-23 | 2021-07-01 | シャープ株式会社 | 空気調和システム、サーバ、空気調和機の制御方法、および空気調和機 |
WO2022059376A1 (ja) * | 2020-09-18 | 2022-03-24 | パナソニックIpマネジメント株式会社 | 空気調和機と加湿空気清浄機とを連動させる空気調和システム、サーバ、および連動方法 |
JPWO2022157832A1 (ja) * | 2021-01-19 | 2022-07-28 | ||
JP7395024B2 (ja) | 2021-01-19 | 2023-12-08 | 三菱電機株式会社 | 空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018025427A1 (ja) | 2019-05-23 |
EP3495747A1 (en) | 2019-06-12 |
JP6827470B2 (ja) | 2021-02-10 |
CN109642746A (zh) | 2019-04-16 |
US20200400334A1 (en) | 2020-12-24 |
EP3495747A4 (en) | 2019-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018025427A1 (ja) | 空調制御システム | |
JP6712509B2 (ja) | 検知システム | |
US20200284461A1 (en) | Method and System of Controlling Operation State of Multi-Split Air Conditioner, and Heat Pump Multi-Split Air Conditioner | |
US8042352B2 (en) | Control method and device for an air conditioning economizer system | |
KR101676921B1 (ko) | 공기조화기 및 그 제어방법 | |
CN108061359B (zh) | 空调控制方法及装置 | |
CN104110799A (zh) | 空调器电子膨胀阀的综合控制方法及电路 | |
US9658609B2 (en) | Device assisted settings adjustment for HVAC controllers | |
KR102262245B1 (ko) | 공기조화기 및 그 제어방법 | |
CN108800479A (zh) | 一拖多空调的控制方法、装置及计算机可读存储介质 | |
CN108036471B (zh) | 空调器除湿控制方法 | |
CN105135622A (zh) | 家用空调的控制方法及家用空调 | |
US20210310707A1 (en) | Expansion valve with selectable operation modes | |
CN112728716A (zh) | 一种智能空调节能控制方法和装置 | |
CN108036472B (zh) | 空调器除湿控制系统及空调器 | |
CN106979592B (zh) | 一种空调器控制方法、空调器控制装置、移动终端和空调器 | |
JP4845814B2 (ja) | 空気調和機 | |
CN114440502B (zh) | 电子膨胀阀初始开度的控制方法、多联机及存储介质 | |
KR102138572B1 (ko) | 캠핑카용 복합 전력제어 시스템과 연동하는 관제서버 | |
US20200292190A1 (en) | Systems and methods for primary and secondary temperature control | |
WO2020261360A1 (ja) | 空気調和装置、運転制御方法およびプログラム | |
JP5535849B2 (ja) | 空気調和機 | |
CN115638517A (zh) | 一种集中控制系统 | |
KR20080001293A (ko) | 공기 조화기의 슬립 모드 제어 장치 및 방법 | |
CN109974221B (zh) | 根据建筑特征自适应控制的空调器及控制空调器的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018531730 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17836534 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017836534 Country of ref document: EP Effective date: 20190304 |