[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018074809A1 - 셀 밸런싱 시스템 및 제어방법 - Google Patents

셀 밸런싱 시스템 및 제어방법 Download PDF

Info

Publication number
WO2018074809A1
WO2018074809A1 PCT/KR2017/011448 KR2017011448W WO2018074809A1 WO 2018074809 A1 WO2018074809 A1 WO 2018074809A1 KR 2017011448 W KR2017011448 W KR 2017011448W WO 2018074809 A1 WO2018074809 A1 WO 2018074809A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
voltage
cell balancing
charging
battery
Prior art date
Application number
PCT/KR2017/011448
Other languages
English (en)
French (fr)
Inventor
홍성주
남호철
김학인
윤석진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/076,445 priority Critical patent/US10629961B2/en
Priority to JP2018536785A priority patent/JP6639686B2/ja
Priority to EP17862547.1A priority patent/EP3404794A4/en
Priority to CN201780008458.3A priority patent/CN108604811A/zh
Publication of WO2018074809A1 publication Critical patent/WO2018074809A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • H02J7/00041Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cell balancing system and method, and more particularly, when a charging voltage is supplied through two separately configured charging voltage sources and cell balancing is required, an appropriate charging voltage is applied to a corresponding cell through a switch configured individually for each cell.
  • the present invention relates to a cell balancing system and a method capable of stably performing cell balancing by supplying a system.
  • Batteries such as lithium ion batteries are used as power sources for various electronic devices.
  • a battery is composed of a plurality of unit cells (cell), the plurality of cells are different in charge voltage due to the difference in the individual dynamic state due to the coulombic efficiency and capacity as time passes by use Phenomenon occurs.
  • the battery will not only charge but also discharge even if all other cells have the appropriate charge voltage. Problems that cannot be performed may occur.
  • battery packs require cell balancing, and there are two types of cell balancing: passive and active.
  • the voltage of a cell having a high level flows through the resistor, thereby reducing the voltage deviation from other cells by dissipating the voltage with thermal energy.
  • the active method uses a device that stores energy such as an inductor and a capacitor to move the voltage of a high level cell to a low level cell so that the entire cell has a uniform value.
  • the passive method requires a relatively short time for balancing, while balancing only the direction in which the voltage of the battery is lowered. As a result, the output of the battery continuously decreases over time, resulting in a short recharge cycle. Since heat energy is generated through the battery pack, the temperature inside the battery pack increases.
  • the active method consumes less electrical energy than the passive method, and thus has a relatively long recharging cycle.
  • the active method has a problem in that the time required for cell balancing is increased because the voltage in one cell is moved to another cell.
  • the present invention provides a cell balancing system and method that can perform cell balancing quickly without consuming battery voltage.
  • a cell balancing system includes a battery pack including two or more battery cells, and a battery cell having a voltage deviation greater than or equal to a predetermined value by monitoring voltages of the two or more battery cells while charging the battery pack. If there is, the BMS commanding to perform cell balancing for the battery cell, the battery pack charge voltage for charging the battery pack is converted into a cell balancing voltage for charging the battery cell in accordance with the cell balancing command of the BMS to the battery And a cell switching unit for individually controlling on / off of supplying the cell balancing voltage to each cell.
  • the charging voltage converting unit converts an input voltage supplied from an external power source into a pack charging voltage and outputs a pack charging voltage, and converts an input voltage supplied from an external power source into a cell balancing voltage to output a cell balancing voltage.
  • the MCU controlling the MCU to release the supply of the pack charging voltage charging the battery pack to the battery pack and to switch the cell balancing voltage to supply the battery to the battery balancing voltage.
  • the charging voltage switching unit controls the circuit switching switching unit to charge the battery pack through a pack charging voltage source when a cell balancing execution command is not transmitted from the BMS.
  • the circuit switching switching unit includes a plurality of switches connected to the MCU and the converter.
  • Each of the cell switching units includes a first switch connected to a positive electrode of the cell, a BMS and a cell balancing voltage source, and a second switch connected to a negative electrode of the cell, a BMS, and ground.
  • a cell balancing method is a method of balancing two or more battery cells configured in a battery pack, the battery pack charging step of performing the charging of the battery pack, the battery being charged in the battery pack charging step
  • a cell balancing diagnosis step for diagnosing whether voltage balancing is required in a battery cell in a pack and requiring cell balancing, and when it is diagnosed that cell balancing needs to be performed in the cell balancing diagnosis step, a circuit for supplying a cell balancing voltage to the corresponding battery cell.
  • the circuit switching step of connecting the power supply circuit connected to the pack charging voltage source with the cell balancing voltage source and the cell balancing voltage to be supplied to the cell requiring the cell balancing voltage through the circuit switched in the circuit switching step A cell switch control step of turning on the switch .
  • the cell balancing diagnosis step includes a cell voltage measurement step of periodically measuring respective voltages of the two or more battery cells, and a voltage deviation calculation that calculates a voltage deviation between cells using two or more battery cell voltages measured in the cell voltage measurement step. And a voltage deviation comparison step of comparing the voltage deviation between the cells calculated in the voltage deviation calculation step with a voltage deviation in a predetermined range.
  • the circuit switching step if the voltage deviation between cells is larger than the predetermined voltage deviation, the circuit switching step is performed.
  • the switch connected to the pack charging voltage source is turned off, and the circuit connected to the cell balancing voltage source is turned on to switch the circuit.
  • the cell switch control step further comprises a ground connection step of electrically connecting the ground terminal in the charging voltage supply circuit to the ground terminal of the cell.
  • the switch connected to the cell balancing voltage source is turned off, and the battery pack charging voltage source is connected to the battery pack charging circuit and the power supply circuit again. Turn on the connected switch.
  • the switch connected to the cell balancing voltage source is turned off to perform cell balancing.
  • a cell balancing voltage that charges the cell is supplied to the corresponding cell through a switch, thereby enabling fast and efficient cell balancing. Can be performed.
  • FIG. 1 is a block diagram of a cell balancing system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a cell switching unit in a cell balancing system according to an exemplary embodiment of the present invention.
  • FIG. 3 is a flow chart of a cell balancing method according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a cell balancing diagnostic step of a cell balancing method according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of identifying one component from another component.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • a cell balancing voltage is supplied through the switch to charge only the corresponding cell, thereby enabling fast and efficient cell balancing.
  • FIG. 1 is a block diagram of a cell balancing system according to an embodiment of the present invention.
  • a cell balancing system 100 monitors a voltage of two or more battery cells while charging a battery pack including a battery pack including two or more battery cells, and displays a predetermined value with another battery cell.
  • the BMS 110 instructing to perform cell balancing with respect to the battery cell, and the pack charging voltage charging the battery pack according to the cell balancing command of the BMS 110 is determined.
  • the charging voltage switching unit 120 receives an AC input power from the outside as the charging voltage is supplied through two voltage sources supplying different voltages, and the input unit 121.
  • the converter 122 converts the AC input power from the DC input power to the DC input power so that the battery pack can be charged, and the command to transfer the voltage of the DC input power converted in the converter 122 to one of the two voltage sources.
  • the command of the MCU 123 and the MCU 123 is connected to one of the voltage source circuit of the two voltage source is configured to include a circuit switching switching unit 124 for transferring the voltage of the DC input power to the battery.
  • the two voltage sources are a pack charging voltage source 125 and a cell balancing voltage source 126.
  • the circuit switching switching unit 124 packs external power input through the converter 122 according to the command of the MCU 123. It is selectively applied to the charging voltage source 125 or the cell balancing voltage source 126.
  • the MCU 123 commands the external input voltage to be supplied to the cell balancing voltage source 126, and according to the command of the MCU 123, the circuit switching switching unit ( 124 converts the circuit that was connected to the pack charging voltage source 125 to be connected to the cell balancing voltage source 126.
  • the cell balancing voltage source 126 supplies the cell balancing voltage to the corresponding cell so that cell balancing is performed through the circuit connected by the circuit switching switching unit 124.
  • the charging voltage switching unit 120 connects an input voltage supplied from an external power source to the pack charging voltage source 125 to pack the battery to the battery pack. Charge the battery pack by supplying
  • the converter 120 is electrically connected to ground.
  • the cells of the battery pack may be connected in parallel to increase the capacity of the battery pack and have a constant voltage.
  • the two voltage sources supply a cell balancing voltage to charge a cell that requires cell balancing among a pack charging voltage source 125 supplying a pack charging voltage to charge a battery pack and a plurality of battery cells constituting the battery pack. Means the voltage source 126.
  • the pack charging voltage is set to 16.8V but is not limited thereto.
  • the cell balancing voltage is set to 5V according to an embodiment, but is not limited thereto.
  • the pack charging voltage source 125 and the cell balancing voltage source 126 further include a configuration for dropping the voltage of the DC input power source to each appropriate output voltage.
  • the pack charging voltage source 125 drops and outputs the external power input to a voltage required for charging the battery pack.
  • the pack charging voltage source 125 may include a voltage drop circuit that receives an external input voltage and drops it to the pack charging voltage.
  • the cell balancing voltage source 126 drops and outputs the external power input to a voltage required for balancing the battery cells.
  • the cell balancing voltage source 126 may include a voltage drop circuit that receives an external input voltage and drops it to the cell balancing voltage.
  • the output of the pack charging voltage source 125 and the cell balancing voltage source 126 may be output to the battery pack or a plurality of battery cells through the voltage output unit 127.
  • the MCU 123 is controlled by the BMS 110, and the MCU 123 and the BMS 110 communicate with each other using communication.
  • the communication may transmit a command using an internal communication scheme such as I2C, SMBus, CAN, UART, and SPI.
  • the BMS 110 determines that cell balancing is necessary, the BMS 110 stops supplying the pack charging voltage to the MCU 123 and transmits a command for converting the pack charging voltage into a cell balancing voltage and supplying it. .
  • the BMS 110 determines that an additional pack charging voltage is required after the cell balancing is terminated, the BMS 110 stops supplying the cell balancing voltage to the MCU 123 and converts the cell balancing voltage into the pack charging voltage. Send the command to supply.
  • circuit switching switching unit 124 is a plurality of switches connected and controlled with the MCU 123 so that the converter 122 and the pack charging voltage source 125 or the cell balancing voltage source 126 are connected or disconnected. It is configured and the circuit is switched by turning on / off the switch.
  • the switch of the circuit in which the pack charging voltage source 125 and the converter 122 are connected is switched off, and the cell balancing voltage source 126 and the converter 122 are used. ) Is turned on so that the voltage of the DC charging power converted from the converter 122 can be supplied. Accordingly, in the cell balancing apparatus of the present invention, when cell balancing is required, a cell balancing voltage is applied to the two or more battery cells by the cell balancing voltage source 126, and the cell balancing voltage is not required and the battery pack needs to be charged. The pack charging voltage is applied to the battery pack by the charging voltage source 125.
  • the switch element of the circuit switching switching unit 124 may be used using a metal oxide field effect transistor (MOSFET), a bipolar junction transistor (BJT), an insulated gate bipolar transistor (IGBT), or the like.
  • MOSFET metal oxide field effect transistor
  • BJT bipolar junction transistor
  • IGBT insulated gate bipolar transistor
  • the cell balancing voltage flowing in the circuit switched from the circuit switching switching unit 124 is supplied to the corresponding cell that needs cell balancing through the cell switching unit 130.
  • a detailed description of the cell switching unit 130 is shown in FIG. Please refer to it.
  • FIG. 2 is a block diagram of a cell switching unit in a cell balancing system according to an exemplary embodiment of the present invention.
  • the cell switching unit 130 of the cell balancing system has one end connected to the BMS 110 to receive a signal, and the second stage connected to a path of a voltage coming from the cell balancing voltage source 126.
  • a first switch 131 having one end connected to the positive electrode of the battery cell and one end connected to the BMS 110 to receive a signal, a second end connected to ground, and a third end connected to the battery cell;
  • a second switch 132 connected to the negative electrode.
  • the ground terminal of the cell switching unit 130 is grounded in the charging voltage switching unit 120. It is electrically connected to the terminal.
  • Such a cell switching unit 130 is provided with a plurality so as to be assigned to each individual battery cell.
  • the cell balancing system 100 receives AC input power from the outside through the input unit 121, and the received AC input power is converted into DC input power by the converter 122.
  • the BMS 110 diagnoses cell balancing and, when cell balancing is required, performs a cell balancing command to the MCU 123. send.
  • the BMS 110 applies a cell balancing execution signal to the cell switching unit 130 of the cell requiring balancing.
  • the MCU 123 receiving the cell balancing command from the BMS 110 switches the circuit through the circuit switching switching unit 124 and converts the voltage of the DC input power converted by the converter 122 into the cell balancing voltage source 126. To supply.
  • the switch connected to the pack charging voltage source 125 of the circuit switching switching unit 124 is turned off and the switch connected to the cell balancing voltage source 126 is turned on.
  • the cell switching unit 130 receiving the cell balancing execution signal from the BMS 110 may turn on the first switch 131 and the second switch 132 to supply the cell balancing voltage coming from the cell balancing voltage source 126. Make sure In this case, one end of the second switch 132 is connected to the ground connected to the converter 122.
  • the BMS 110 determines whether to continue charging the battery pack or to stop charging.
  • the BMS 110 When the BMS 110 determines that the battery pack needs to be charged, the BMS 110 transmits a battery pack charging resume command to the MCU 123 and applies a cell balancing stop signal to the cell switching unit 130. do.
  • the MCU 130 receiving the battery pack charging resume command controls the circuit switching switching unit 124 to switch the circuit connected to the cell balancing voltage source 126 to the pack charging voltage source 125 to switch the circuit. .
  • the switch connected to the cell balancing voltage source 126 is turned off and the switch connected to the pack charging voltage source 125 is turned on.
  • the cell switching unit 130 to which the cell balancing stop signal is applied from the BMS 110 turns off the first switch 131 and the second switch 132. At this time, the connection of the second switch 132 to the ground is released.
  • the BMS 110 determines that the charge of the battery pack and cell balancing is complete and stops charging, the BMS 110 transmits a battery pack charge stop command to the MCU 130, the cell switching unit The cell balancing stop signal is applied to 130.
  • the MCU 123 receiving the charge stop command from the BMS 110 controls the circuit switching switching unit 124 to release the circuit connection between the pack charging voltage source 125 and the cell balancing voltage source 126.
  • the switch connected to the cell balancing voltage source 126 of the switching unit 124 is turned off.
  • the driving method is a method of determining whether or not cell balancing is performed in real time.
  • This method has a disadvantage in that an algorithm is complicated because a voltage must be measured and determined in real time.
  • another driving method is a method of performing cell balancing after completing the charging of the battery pack.
  • the BMS 110 measures the voltage of each cell of the battery pack and compares the measured cell voltage value with a predetermined voltage value.
  • the BMS 110 transmits a cell balancing execution command to the MCU 123 and applies a cell balancing execution signal to the cell switching unit 130.
  • the MCU 123 controls the circuit switching switching unit 124 to switch a circuit connected to the pack charging voltage source 125 to be connected to the cell balancing voltage source 126.
  • the switch connected to the pack charging voltage source 125 of the circuit switching switching unit 124 is turned off and the switch connected to the cell balancing voltage source 126 is turned on.
  • the circuit connected to the cell balancing voltage source 126 allows the voltage of the DC input power converted by the converter 122 to be supplied.
  • the cell switching unit 130 to which the cell balancing execution signal is applied from the BMS 110 turns on the first switch 131 and the second switch 132 so that the cell balancing voltage is supplied to the corresponding cell.
  • the second switch 132 is connected to the ground connected to the converter 122.
  • the BMS 110 transmits a battery pack charge stop command to the MCU 130, the cell switching unit 130 Apply a cell balancing stop signal.
  • the MCU 123 receiving the charge stop command from the BMS 110 releases the circuit connection between the pack charging voltage source 125 and the cell balancing voltage source 126 by controlling the circuit switching switching unit 124.
  • the switch connected to the cell balancing voltage source 126 of the switching unit 124 is turned off.
  • the cell switching unit 130 applying the cell balancing stop signal from the BMS 110 turns off the first switch 131 and the second switch 132. At this time, the connection of the second switch 132 to the ground is released.
  • a cell charging voltage is controlled by converting a pack charging voltage supplied to a circuit into a cell balancing voltage and controlling a switch of a corresponding cell requiring cell balancing so that the cell balancing voltage is supplied. How to do balancing.
  • FIG. 3 is a flowchart of a cell balancing method according to an embodiment of the present invention.
  • a cell balancing method first performs charging of a battery pack from an input voltage supplied from an external power source (battery pack charging step: S310), and then, in a battery cell of a battery pack being charged.
  • battery pack charging step: S310 battery pack charging step
  • cell balancing diagnosis step S320 cell balancing diagnosis step S320
  • the circuit is switched so that the cell balancing voltage is supplied to the corresponding battery cell, so that the power supply circuit connected to the pack charging voltage source 125 is replaced with the cell balancing voltage source 126.
  • circuit switching step: S330 circuit switching step: S330).
  • the cell switches 131 and 132 of the corresponding battery cells are turned on so that the cell balancing voltage coming through the circuit switched in the circuit switching step S330 is supplied to the cells requiring cell balancing (cell switch control step S340).
  • the second switch 132 is connected to the ground connected to the converter 122.
  • the circuit switching method includes turning off the switch connecting the converter 122 and the pack charging voltage source 125, and turning on the switch connecting the converter 122 and the cell balancing voltage source 126. To switch the circuit.
  • the charging voltage for charging the battery pack is set to 16.8V as an embodiment, but is not limited thereto.
  • the cell balancing voltage is set to 5V as the voltage used in the battery cell, but is not limited thereto.
  • the BMS determines whether additional determination of the battery pack is necessary or whether the charging is stopped based on the cell voltage where the cell balancing is completed.
  • the switch connected to the cell balancing voltage source 160 is turned off so that the connected circuit is connected to the battery pack charging circuit again, and the pack charging voltage source 150 is performed. Turn on the switch connected to).
  • first switch 131 and the second switch 132 of each battery cell that has performed cell balancing are turned off. At this time, the connection of the second switch 132 to the ground is released.
  • the battery pack when the battery pack is fully charged after the cell balancing ends, the battery pack does not need to be charged anymore, so that the battery connected to the cell balancing voltage source 160 is turned off to perform cell balancing, and each battery that has performed cell balancing is performed.
  • the first switch 131 and the second switch 132 of the cell are also turned off. At this time, the connection of the second switch 132 to the ground is released.
  • FIG. 4 is a flowchart illustrating a cell balancing diagnosis step of a cell balancing method according to an exemplary embodiment of the present invention.
  • each voltage of the two or more battery cells is periodically measured (cell voltage measuring step S321), and the voltage between cells using two or more battery cell voltages measured in the cell voltage measuring step S321.
  • the deviation is calculated (voltage deviation calculation step: S322).
  • the circuit switching step (S330) is performed.
  • the cycle is a cycle arbitrarily set by the user, and the interval is set within a range in which the charging efficiency of the battery pack is not lowered.
  • the voltage deviation calculation method is a method of subtracting the voltage value of each cell from the highest value using the highest value of the voltage measured in each battery cell.
  • the predetermined voltage range is set to a range in which efficient battery pack charging is possible while reducing a time for charging a battery cell requiring cell balancing with a small amount of cell balancing voltage.
  • the embodiment is a method of determining whether or not cell balancing is performed in real time.
  • This method has a disadvantage in that an algorithm is complicated because voltage should be measured and determined in real time.
  • Another embodiment is a method of performing cell balancing after completing the charging of a battery pack.
  • the battery pack is charged using an input voltage supplied from an external power source, and each voltage of two or more battery cells is measured.
  • the measured cell voltage is less than the predetermined voltage by comparing the measured cell voltage with each of the predetermined predetermined voltages, it is determined that the cell needs cell balancing.
  • the circuit In order to charge an existing battery pack, the circuit is switched from a connected circuit to a circuit for performing cell balancing according to the cell balancing necessity determination, and the cell switching unit 130 switches the switch 131 and the second switch 132. ) So that the voltage can be supplied from a circuit which performs the cell balancing.
  • the second switch 132 is connected to the ground connected to the converter 122.
  • the battery pack After the cell balancing is finished, the battery pack is fully charged, so that the switch of the circuit connected to the cell balancing voltage source 126 is turned off to perform cell balancing, and the switch 131 and the second switch 132 to which the cell balancing voltage is supplied. Let off. At this time, the connection of the second switch 132 to the ground is released.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 셀 밸런싱 시스템 및 방법에 관한 것으로서, 보다 구체적으로는 별도로 구성된 두 개의 충전 전압원을 통해 충전전압을 공급하며 셀 밸런싱이 필요한 경우, 각 셀에 개별적으로 구성된 스위치를 통해 해당 셀에 적정 충전전압을 공급하여 안정적으로 셀 밸런싱을 수행할 수 있는 셀 밸런싱 시스템 및 방법에 관한 것이다.

Description

셀 밸런싱 시스템 및 제어방법
본 발명은 셀 밸런싱 시스템 및 방법에 관한 것으로서, 보다 구체적으로는 별도로 구성된 두 개의 충전 전압원을 통해 충전전압을 공급하며 셀 밸런싱이 필요한 경우, 각 셀에 개별적으로 구성된 스위치를 통해 해당 셀에 적정 충전전압을 공급하여 안정적으로 셀 밸런싱을 수행할 수 있는 셀 밸런싱 시스템 및 방법에 관한 것이다.
리튬이온전지 등과 같은 배터리는 다양한 전자기기의 전력원으로 이용되고 있다. 일반적으로 배터리(팩)는 단위 셀(cell)이 복수 개로 이루어지는 구성으로서, 복수 개의 셀은 사용에 따른 시간이 경과함에 따라 쿨롱 효율 및 용량에서 기인하는 개별적인 동적 상태의 차이에 의해 충전전압이 서로 달라지는 현상이 발생된다.
이로 인하여 적어도 하나 이상의 셀이 다른 셀들보다 훨씬 낮은 상태의 충전전압을 가지는 경우, 배터리 전체의 방전 능력을 영구적으로 제한되게 하는 문제점을 발생시킬 수 있다.
또한, 적어도 하나 이상의 셀이 다른 셀들보다 훨씬 높은 충전전압을 가지는 경우, 배터리 전체의 충전량이 영구적으로 제한되게 하는 문제점을 발생시킬 수 있다.
만약 하나의 셀이 최저 충전전압의 한계값을 갖는 상태이고, 다른 어느 하나의 셀이 최고 충전전압의 한계값을 갖는 상태이면 모든 다른 셀들이 적당한 충전전압을 가지고 있더라도 상기 배터리는 충전뿐만 아니라 방전도 수행되지 못하는 문제점이 발생될 수 있다.
또한, 배터리 셀의 충방전을 반복하는 경우에도 셀 전압 간에 불균형이 발생하며, 그로 인하여 배터리의 수명이 단축되고 배터리 셀의 에너지 효율이 떨어지게 된다.
또한, 완제품 상태에서 셀 전압의 불균형이 발생되면, 각 셀에 대한 A/S가 어려우며 배터리 팩 자체를 교환해줘야 하는 비용손실이 발생된다.
이와 같은 이유로 배터리 팩은 셀 밸런싱이 필요한데, 일반적인 셀 밸런싱은 패시브(Passive)방식과 액티브(Active)방식이 있다.
패시브 방식은 높은 레벨을 가진 셀의 전압을 저항에 흐르게 함에 따라 열에너지로 전압을 소모시켜 다른 셀들과의 전압 편차를 감소시킨다.
또한, 액티브 방식은 인덕터 및 커패시터와 같은 에너지를 저장하는 소자를 이용하여 높은 레벨을 가진 셀의 전압을 낮은 레벨을 가진 셀에 이동시켜 전체 셀이 균일한 값을 가질 수 있도록 한다.
그러나 패시브 방식은 밸런싱에 필요한 시간이 비교적 짧은 반면, 배터리의 전압이 낮아지는 방향으로만 밸런싱 되어 시간이 지남에 따라 배터리의 출력이 지속적으로 감소하여 재충전 사이클(Cycle)이 짧다는 문제점이 있으며, 저항을 통해 열에너지를 생성하기 때문에 배터리 팩 내부온도가 상승하는 단점이 있다.
또한, 액티브 방식은 패시브 방식보다 전기 에너지 소모가 적어 재충전 사이클이 비교적 길기는 하나, 하나의 셀에 있는 전압을 다른 셀로 이동시키므로 셀 밸런싱에 걸리는 시간이 길어진다는 문제점이 있다.
따라서 액티브 방식의 긴 재충전 사이클을 가지며, 패시브 방식의 빠른 셀 밸런싱을 수행 할 수 있는 기술 개발이 요구된다.
(선행기술문헌)
한국공개특허 제2014-0034089호
본 발명은 배터리 전압을 소모시키지 않으며 빠르게 셀 밸런싱을 수행할 수 있는 셀 밸런싱 시스템 및 방법을 제공한다.
본 발명의 실시 예에 따른 셀 밸런싱 시스템은 둘 이상의 배터리 셀로 구성된 배터리 팩, 상기 배터리 팩을 충전하는 동안 상기 둘 이상의 배터리 셀의 전압을 모니터링하여 다른 배터리 셀과 소정 값 이상의 전압편차를 가진 배터리 셀이 있는 경우, 해당 배터리 셀에 대하여 셀 밸런싱을 수행하도록 명령하는 BMS, 상기 BMS의 셀 밸런싱 수행 명령에 따라 상기 배터리 팩을 충전하던 팩 충전전압을 배터리 셀을 충전하기 위한 셀 밸런싱 전압으로 전환하여 상기 배터리 팩으로 연결하는 충전전압 전환부 및 상기 셀 밸런싱 전압이 각 셀에 공급되는 것을 개별적으로 온/오프 제어하는 셀 스위칭부를 포함하여 구성된다.
상기 충전전압 전환부는 외부전원으로부터 공급되는 입력전압을 팩 충전전압으로 변환하여 팩 충전전압을 출력하는 팩 충전 전압원, 외부전원으로부터 공급되는 입력전압을 셀 밸런싱 전압으로 변환하여 셀 밸런싱 전압을 출력하는 셀 밸런싱 전압원, 상기 BMS에서 전송된 셀 밸런싱 수행명령에 따라, 배터리 팩을 충전하는 팩 충전 전압의 상기 배터리 팩으로의 공급을 해제하고 셀 밸런싱 전압으로 전환하여 공급되도록 제어하는 MCU, 상기 MCU의 제어에 따라 회로를 전환하여 외부로부터 들어오는 입력전압을 셀 밸런싱 전압원에 공급하는 회로전환 스위칭부 및 상기 회로전환 스위칭부에 의하여 전환된 회로를 통해 상기 입력전압을 공급받아 해당 셀에 셀 밸런싱 전압을 공급하는 셀 밸런싱 전압원을 포함하여 구성된다.
상기 충전전압 전환부는 상기 BMS로부터 셀 밸런싱 수행명령이 전송되지 않은 경우, 팩 충전 전압원을 통해 상기 배터리 팩을 충전하도록 상기 회로전환 스위칭부를 제어한다.
상기 회로전환 스위칭부는 상기 MCU 및 컨버터와 연결되는 복수개의 스위치로 구성된다.
상기 셀 스위칭부 각각은 셀의 양(+)전극, BMS 및 셀 밸런싱 전압원과 연결되는 제1 스위치 및 셀의 음(-)전극, BMS 및 그라운드와 연결되는 제2스위치를 포함하여 구성된다.
본 발명의 실시 예에 따른 셀 밸런싱 방법은 배터리 팩에 구성된 둘 이상의 배터리 셀의 밸런싱을 수행하는 방법에 있어서, 상기 배터리 팩의 충전을 수행하는 배터리 팩 충전단계, 상기 배터리 팩 충전단계에서 충전 중인 배터리 팩 내 배터리 셀에 전압불균형이 발생되어 셀 밸런싱을 필요로 하는지 진단하는 셀 밸런싱 진단단계, 상기 셀 밸런싱 진단단계에서 셀 밸런싱 수행이 필요한 것으로 진단된 경우, 해당 배터리 셀에 셀 밸런싱 전압이 공급되도록 회로를 전환하여 팩 충전 전압원과 연결되었던 전원 공급회로를 셀 밸런싱 전압원과 연결시키는 회로전환단계 및 상기 회로전환단계에서 전환된 회로를 통해 들어오는 셀 밸런싱 전압을 셀 밸런싱이 필요한 셀에 공급되도록 해당 셀의 셀 스위치를 온 시키는 셀 스위치 제어단계를 포함하여 구성된다.
상기 셀 밸런싱 진단단계는 상기 둘 이상의 배터리 셀의 각 전압을 주기적으로 측정하는 셀 전압 측정단계, 상기 셀 전압 측정단계에서 측정된 둘 이상의 배터리 셀 전압을 이용하여 셀 간의 전압편차를 연산하는 전압편차 연산단계 및 상기 전압편차 연산단계에서 연산된 셀 간의 전압편차와 기 설정된 소정 범위의 전압편차를 비교하는 전압편차 비교단계를 포함한다.
상기 전압편차 비교단계에서 셀 간의 전압편차가 기 설정된 소정 범위의 전압편차보다 큰 경우, 상기 회로전환단계를 수행한다.
상기 회로전환단계는, 상기 팩 충전 전압원과 연결되는 스위치를 오프 시키고, 상기 셀 밸런싱 전압원과 연결되는 스위치를 온 시켜 회로를 전환한다.
상기 셀 스위치 제어단계는, 셀의 그라운드 단자에 충전전압 공급회로 내에 있는 그라운드 단자를 전기적으로 연결시키는 그라운드 연결단계를 추가적으로 구성한다.
셀 밸런싱 종료 후 상기 배터리 팩에 추가적인 충전이 필요하다고 판단한 경우, 셀 밸런싱을 수행하기 위하여 상기 셀 밸런싱 전압원과 연결된 스위치를 오프 시키고, 다시 배터리 팩 충전회로와 전원 공급회로가 연결되도록 상기 팩 충전 전압원과 연결된 스위치를 온 시킨다.
셀 밸런싱 종료 후 상기 배터리 팩이 충전이 완료된 것으로 판단한 경우, 셀 밸런싱을 수행하기 위하여 상기 셀 밸런싱 전압원과 연결된 스위치를 오프 시킨다.
본 발명의 실시 예에 따른 셀 밸런싱 시스템 및 방법은 각 셀에 스위치를 구성하여 셀의 전압 불균형이 발생하는 경우, 셀을 충전시키는 셀 밸런싱 전압을 스위치를 통해 해당 셀에 공급함에 따라 빠르고 효율적인 셀 밸런싱을 수행할 수 있다.
도 1은 본 발명의 실시 예에 따른 셀 밸런싱 시스템의 블록도.
도 2는 본 발명의 실시 예에 따른 셀 밸런싱 시스템 내 셀 스위칭부의 블록도.
도 3은 본 발명의 실시 예에 따른 셀 밸런싱 방법의 순서도.
도 4는 본 발명의 실시 예에 따른 셀 밸런싱 방법 중 셀 밸런싱 진단단계의 순서도.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명에 실시 예를 상세하게 설명한다. 다만, 본 발명이 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 단지 실시 예들은 본 발명의 개시가 완전하도록 하며, 본 발명의 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 식별하는 목적으로만 사용된다. 예컨대, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
1. 본 발명의 실시 예에 따른 셀 밸런싱 시스템
본 발명의 셀 밸런싱 시스템은 각 셀에 스위치를 구성하여 셀의 전압 불균형이 발생하는 경우, 스위치를 통해 셀 밸런싱 전압을 공급받아 해당 셀만을 충전함에 따라 빠르고 효율적인 셀 밸런싱을 수행할 수 있다.
도 1은 본 발명의 실시 예에 따른 셀 밸런싱 시스템의 블록도이다.
도 1을 참조하면, 본 발명의 실시 예에 셀 밸런싱 시스템(100)은 둘 이상의 배터리 셀로 구성된 배터리 팩, 상기 배터리 팩을 충전하는 동안 상기 둘 이상의 배터리 셀의 전압을 모니터링하여 다른 배터리 셀과 소정 값 이상의 전압 편차를 가진 배터리 셀이 있는 경우, 해당 배터리 셀에 대하여 셀 밸런싱을 수행하도록 명령하는 BMS(110), 상기 BMS(110)의 셀 밸런싱 수행 명령에 따라 상기 배터리 팩을 충전하던 팩 충전전압을 배터리 셀을 충전하기 위한 셀 밸런싱 전압으로 전환하여 상기 배터리 팩으로 연결하는 충전전압 전환부(120) 및 상기 셀 밸런싱 전압이 각 셀에 공급되는 것을 개별적으로 온/오프 제어하는 셀 스위칭부(130)를 포함하여 구성된다.
아래에서 충전전압 전환부(120)에 대하여 좀 더 상세하게 설명한다.
도 1을 참조하면, 상기 충전전압 전환부(120)는 상이한 전압을 공급하는 두 개의 전압원을 통해 충전전압을 공급함에 따라 외부로부터 들어오는 교류 입력전원을 수용하는 입력부(121), 상기 입력부(121)로부터 들어오는 교류 입력전원을 배터리 팩의 충전이 가능하도록 직류 입력전원으로 변환하는 컨버터(122), 상기 컨버터(122)에서 변환된 직류 입력전원의 전압을 상기 두 개의 전압원 중 하나의 전압원으로 전달되도록 명령하는 MCU(123) 및 상기 MCU(123)의 명령에 따라 상기 두 개의 전압원 중 하나의 전압원 회로와 연결시켜 직류 입력전원의 전압을 배터리로 전달하는 회로전환 스위칭부(124)를 포함하여 구성된다.
상기 두 개의 전압원은 팩 충전 전압원(125)와 셀 밸런싱 전압원(126)인데, 상기 회로전환 스위칭부(124)는 컨버터(122)를 통하여 입력되는 외부전원을 상기 MCU(123)의 명령에 따라 팩 충전 전압원(125) 또는 셀 밸런싱 전압원(126)에 선택적으로 인가한다.
따라서 MCU(123)는 상기 BMS(110)에서 셀 밸런싱 수행명령이 전송되면 외부에서 들어오는 입력전압이 셀 밸런싱 전압원(126)으로 공급되도록 명령하고, MCU(123)의 명령에 따라 회로전환 스위칭부(124)는 팩 충전 전압원(125)에 연결되었던 회로를 셀 밸런싱 전압원(126)에 연결되도록 전환한다.
상기 회로전환 스위칭부(124)에 의하여 연결된 회로를 통해 셀 밸런싱 전압원(126)은 셀 밸런싱이 수행되도록 해당 셀에 셀 밸런싱 전압을 공급한다.
여기서, 상기 BMS(110)로부터 셀 밸런싱 수행명령이 전송되지 않는 경우, 상기 충전전압 전환부(120)는 외부전원으로부터 공급되는 입력전압을 팩 충전 전압원(125)으로 연결하여 배터리 팩에 팩 충전전압을 공급함으로써 배터리 팩을 충전한다.
또한, 컨버터(120)는 그라운드와 전기적으로 연결된다.
또한, 상기 배터리 팩의 셀은 병렬로 연결되어 배터리 팩의 용량을 높이고 일정한 전압을 가질 수 있다.
한편, 아래에서 상기 충전전압 전환부(120)의 구성에 대해 상세하게 설명한다.
상기 두 개의 전압원은 배터리 팩이 충전되도록 팩 충전전압을 공급하는 팩 충전 전압원(125) 및 상기 배터리 팩을 구성하는 다수의 배터리 셀 중 셀 밸런싱이 필요한 셀이 충전되도록 셀 밸런싱 전압을 공급하는 셀 밸런싱 전압원(126)을 의미한다.
여기서 상기 팩 충전전압은 일 실시 예로써, 16.8V로 설정하지만 이에 한정되지 않는다.
또한, 상기 셀 밸런싱 전압은 일 실시 예로써, 5V로 설정하지만 이에 한정되지 않는다.
또한, 팩 충전 전압원(125) 및 셀 밸런싱 전압원(126)은 상기 직류 입력전원의 전압을 각각의 적정 출력 전압으로 강하시키는 구성을 더 포함한다.
따라서 상기 팩 충전 전압원(125)은 입력되는 외부 전원을 배터리 팩의 충전에 필요한 전압으로 강하하여 출력한다. 이를 위하여 팩 충전 전압원(125)은 외부 입력전압을 받아들여 이를 팩 충전 전압으로 강하하는 전압 강하 회로를 포함하여 구성될 수 있다.
또한, 상기 셀 밸런싱 전압원(126)은 입력되는 외부 전원을 배터리 셀들의 밸런싱에 필요한 전압으로 강하하여 출력한다. 이를 위하여 셀 밸런싱 전압원(126)은 외부 입력전압을 받아들여 이를 셀 밸런싱 전압으로 강하하는 전압 강하 회로를 포함하여 구성될 수 있다.
또한, 상기 팩 충전 전압원(125) 및 셀 밸런싱 전압원(126)의 출력은 전압 출력부(127)를 통하여 배터리 팩 또는 다수의 배터리 셀에 출력할 수 있다.
또한, MCU(123)는 BMS(110)에 의해 제어되며, 상기 MCU(123)와 BMS(110)는 통신을 이용하여 상호 간 통신한다. 상기 통신은 I2C, SMBus, CAN, UART 및 SPI등의 내부 통신방식을 이용하여 명령을 전송할 수 있다.
예를 들어, BMS(110)에서 셀 밸런싱이 필요하다고 판단한 경우, BMS(110)는 MCU(123)에 팩 충전전압 공급을 중지하고 팩 충전전압을 셀 밸런싱 전압으로 전환하여 공급시키는 명령을 전송한다.
또한, 셀 밸런싱 종료 후 BMS(110)에서 추가적인 팩 충전전압의 공급이 필요하다고 판단한 경우, BMS(110)는 MCU(123)에 셀 밸런싱 전압 공급을 중지하고 셀 밸런싱 전압을 팩 충전전압으로 전환하여 공급시키는 명령을 전송한다.
또한, 상기 회로전환 스위칭부(124)는 상기 컨버터(122)와 팩 충전 전압원(125) 또는 셀 밸런싱 전압원(126)이 연결되거나 연결해제 되도록 상기 MCU(123)와 연결되어 제어되는 복수 개의 스위치로 구성되어 있으며, 스위치를 온/오프 하여 회로를 전환시킨다.
예를 들면, 상기 MCU(123)로부터 셀 밸런싱 수행 명령을 받을 경우, 상기 팩 충전 전압원(125)과 컨버터(122)가 연결되어있는 회로의 스위치를 오프 시키고 셀 밸런싱 전압원(126)과 컨버터(122)가 연결되어있는 스위치를 온 시켜 상기 컨버터(122)로부터 변환된 직류 충전 전원의 전압이 공급될 수 있도록 한다. 이에 따라, 본 발명의 셀 밸런싱 장치는 셀 밸런싱 필요 시 셀 밸런싱 전압원(126)에 의하여 셀 밸런싱 전압이 상기 둘 이상의 배터리 셀로 인가되고, 셀 밸런싱이 필요하지 않고 배터리 팩을 충전하는 것이 필요한 경우, 팩 충전 전압원(125)에 의하여 팩 충전전압이 배터리 팩으로 인가된다.
여기서 상기 회로전환 스위칭부(124)의 스위치 소자는 MOSFET(Metal Oxide Field Effect Transistor), BJT(Bipolar Junction Transistor), IGBT(Insulated Gate Bipolar Transistor) 등을 이용하여 사용될 수 있다.
이러한 회로전환 스위칭부(124)로부터 전환된 회로에 흐르는 셀 밸런싱 전압은 셀 스위칭부(130)를 통해 셀 밸런싱이 필요한 해당 셀에 공급되는데, 셀 스위칭부(130)에 대한 자세한 설명은 도 2를 참조하여 하도록 한다.
도 2는 본 발명의 실시 예에 따른 셀 밸런싱 시스템 내 셀 스위칭부의 블록도이다.
도 2를 참조하면, 상기 셀 밸런싱 시스템 내 셀 스위칭부(130)는 일단이 상기 BMS(110)와 연결되어 신호를 수신하고, 이단이 상기 셀 밸런싱 전압원(126)으로부터 들어오는 전압의 경로와 연결되고, 삼단이 상기 배터리 셀의 양(+)전극과 연결되는 제1 스위치(131) 및 일단이 상기 BMS(110)와 연결되어 신호를 수신하고, 이단이 그라운드와 연결되고, 삼단이 상기 배터리 셀의 음(-)전극과 연결되는 제2 스위치(132)를 포함하여 구성된다.
또한, 셀 밸런싱이 진행되는 경우, 상기 BMS(110)의 신호에 의하여 제2 스위치(132)가 온 됨에 따라 상기 셀 스위칭부(130)의 그라운드 단자는 상기 충전 전압 전환부(120) 내에 있는 그라운드 단자와 전기적으로 연결된다.
이와 같은 셀 스위칭부(130)는 개별 배터리 셀마다 각각 할당되도록 다수 개가 구비된다.
이러한 셀 스위칭부(130)를 이용한 셀 밸런싱 시스템의 구동방법은 아래에서 상세하게 설명한다.
상기 셀 밸런싱 시스템(100)은 상기 입력부(121)를 통해 외부로부터 들어오는 교류 입력 전원을 수용하고, 수용된 교류 입력 전원은 상기 컨버터(122)에 의하여 직류 입력 전원으로 변환된다. 상기 팩 충전 전압원(125)을 통해 충전 중인 배터리 팩의 셀에 전압 불균형이 발생하는 경우, 상기 BMS(110)는 셀 밸런싱을 진단하고 셀 밸런싱이 필요하면 상기 MCU(123)에 셀 밸런싱 수행명령을 전송한다.
또한, BMS(110)는 밸런싱이 필요한 셀의 셀 스위칭부(130)에 셀 밸런싱 수행신호를 인가한다.
상기 BMS(110)로부터 셀 밸런싱 수행 명령을 받은 MCU(123)는 회로전환 스위칭부(124)를 통해 회로를 전환하고 상기 컨버터(122)에서 변환된 직류 입력 전원의 전압을 셀 밸런싱 전압원(126)으로 공급한다. 여기서 회로전환 스위칭부(124)의 팩 충전 전압원(125)과 연결된 스위치는 오프 되고 셀 밸런싱 전압원(126)과 연결된 스위치는 온 된다.
상기 BMS(110)로부터 셀 밸런싱 수행신호를 받은 셀 스위칭부(130)는 제1스위치(131) 및 제2 스위치(132)를 온 시켜 셀 밸런싱 전압원(126)에서 들어오는 셀 밸런싱 전압이 공급될 수 있도록 한다. 이때, 제2 스위치(132)의 일단은 상기 컨버터(122)와 연결된 그라운드와 연결된다.
또한, 상기 셀 밸런싱 전압원(126)을 통해 충전되던 셀의 밸런싱이 완료된 경우, 상기 BMS(110)는 배터리 팩 충전을 다시 진행할 것인지, 충전을 중지할 것인지 판단한다.
상기 BMS(110)에서 배터리 팩 충전이 필요하다고 판단한 경우, 상기 BMS(110)는 상기 MCU(123)로 배터리 팩 충전 재개명령을 전송하고, 상기 셀 스위칭부(130)에는 셀 밸런싱 중지신호를 인가한다.
배터리 팩 충전 재개명령을 받은 상기 MCU(130)는 상기 셀 밸런싱 전압원(126)과 연결되었던 회로를 다시 상기 팩 충전 전압원(125)과 연결되도록 회로전환 스위칭부(124)를 제어하여 회로를 전환한다. 여기서 셀 밸런싱 전압원(126)과 연결된 스위치는 오프 되고 팩 충전 전압원(125)과 연결된 스위치는 온 된다.
또한, 상기 BMS(110)로부터 셀 밸런싱 중지신호가 인가된 셀 스위칭부(130)는 제1 스위치(131) 및 제2 스위치(132)를 오프 시킨다. 이때, 제2 스위치(132)의 상기 그라운드와의 연결은 해제된다.
한편, 상기 BMS(110)에서 배터리 팩의 충전 및 셀 밸런싱이 완료되어 충전을 중지한다고 판단한 경우, 상기 BMS(110)는 상기 MCU(130)로 배터리 팩 충전 중지명령을 전송하고, 상기 셀 스위칭부(130)에는 셀 밸런싱 중지신호를 인가한다.
또한, 상기 BMS(110)로부터 충전 중지명령을 받은 MCU(123)는 회로전환 스위칭부(124)를 제어하여 상기 팩 충전 전압원(125) 및 셀 밸런싱 전압원(126)의 회로연결을 해제한다. 여기서 스위칭부(124)의 셀 밸런싱 전압원(126)과 연결된 스위치는 오프 된다.
또 다른 구동방법으로써, 상기 구동방법은 셀 밸런싱 수행 여부를 실시간으로 판단하여 수행하는 방식으로 이 방식은 실시간으로 전압을 측정하고 판단해야 하므로 알고리즘이 복잡해진다는 단점이 있다.
따라서 다른 구동방법은 배터리 팩의 충전을 완료한 후 셀 밸런싱을 수행하는 방법이다.
상기 팩 충전 전압원(125)을 통해 배터리 팩의 충전이 완료된 경우, 상기 BMS(110)는 배터리 팩의 각 셀의 전압을 측정하고 측정된 셀 전압 값을 기 설정한 소정 전압 값과 비교한다.
전압 값 비교결과로 셀 밸런싱이 필요한 경우, 상기 BMS(110)는 상기 MCU(123)에 셀 밸런싱 수행명령을 전송하고, 셀 스위칭부(130)에는 셀 밸런싱 수행신호를 인가한다.
상기 MCU(123)는 상기 회로전환 스위칭부(124)를 제어하여 상기 팩 충전 전압원(125)과 연결되었던 회로를 상기 셀 밸런싱 전압원(126)과 연결되도록 전환한다. 여기서 회로전환 스위칭부(124)의 팩 충전 전압원(125)과 연결된 스위치는 오프 되고 셀 밸런싱 전압원(126)과 연결된 스위치는 온 된다.
또한, 상기 셀 밸런싱 전압원(126)과 연결된 회로는 컨버터(122)에서 변환된 직류 입력전원의 전압이 공급되도록 한다.
또한, 상기 BMS(110)로부터 셀 밸런싱 수행신호가 인가된 셀 스위칭부(130)는 제1 스위치(131) 및 제2 스위치(132)를 온 시켜 해당 셀에 셀 밸런싱 전압이 공급되도록 한다. 이때, 제2 스위치(132)는 상기 컨버터(122)와 연결된 그라운드와 연결된다.
또한, 상기 셀 밸런싱 전압원(126)을 통해 충전되던 셀의 셀 밸런싱이 완료된 경우, 상기 BMS(110)는 상기 MCU(130)로 배터리 팩 충전 중지명령을 전송하고, 상기 셀 스위칭부(130)에는 셀 밸런싱 중지신호를 인가한다.
상기 BMS(110)로부터 충전 중지명령을 받은 MCU(123)는 회로전환 스위칭부(124)를 제어하여 상기 팩 충전 전압원(125) 및 셀 밸런싱 전압원(126)의 회로연결을 해제한다. 여기서 스위칭부(124)의 셀 밸런싱 전압원(126)과 연결된 스위치는 오프 된다.
또한, BMS(110)로부터 셀 밸런싱 중지신호를 인가한 셀 스위칭부(130)는 상기 제1 스위치(131) 및 제2 스위치(132)를 오프 시킨다. 이때, 제2 스위치(132)의 상기 그라운드와의 연결은 해제된다.
2. 본 발명의 실시 예에 따른 셀 밸런싱 방법
본 발명의 셀 밸런싱 방법은 배터리 팩 충전 시 셀 밸런싱이 필요한 경우, 회로에 공급되던 팩 충전전압을 셀 밸런싱 전압으로 전환 시키고 상기 셀 밸런싱 전압이 공급되도록 셀 밸런싱이 필요한 해당 셀의 스위치를 제어하여 셀 밸런싱을 수행하는 방법이다.
도3은 본 발명의 실시 예에 따른 셀 밸런싱 방법의 순서도이다.
도 3을 참조하면, 본 발명의 실시 예에 따른 셀 밸런싱 방법은 우선 외부전원으로부터 공급되는 입력전압으로부터 배터리 팩의 충전을 수행하고(배터리 팩 충전단계: S310), 충전 중인 배터리 팩의 배터리 셀에서 전압 불균형이 발생하는 경우, 해당 배터리 셀이 셀 밸런싱을 필요로 하는지 진단한다(셀 밸런싱 진단단계: S320). 상기 셀 밸런싱 진단단계(S220)에서 셀 밸런싱이 필요한 것으로 진단된 경우, 해당 배터리 셀에 셀 밸런싱 전압이 공급되도록 회로를 전환하여 팩 충전 전압원(125)과 연결되었던 전원 공급회로를 셀 밸런싱 전압원(126)과 연결 시킨다(회로전환단계: S330).
또한, 상기 회로전환단계(S330)에서 전환된 회로를 통해 들어오는 셀 밸런싱 전압을 셀 밸런싱이 필요한 셀에 공급되도록 해당 배터리 셀의 셀 스위치(131, 132)를 온 시킨다(셀 스위치 제어단계: S340). 이때, 제2 스위치(132)는 상기 컨버터(122)와 연결된 그라운드와 연결된다.
여기서 상기 회로전환단계(S330)에서의 회로전환방법은 컨버터(122)와 팩 충전 전압원(125)을 연결하는 스위치를 오프 시키고, 컨버터(122)와 셀 밸런싱 전압원(126)을 연결하는 스위치를 온 시켜 회로를 전환하는 방법이다.
또한, 배터리 팩을 충전하는 충전전압은 일 실시 예로써, 16.8V로 설정하지만 이에 한정되지 않는다.
또한, 상기 셀 밸런싱 전압은 상기 배터리 셀에서 사용되는 전압크기로, 일 실시 예로써 5V로 설정하지만 이에 한정되지 않는다.
한편, 셀 밸런싱 종료 후 BMS는 배터리 팩의 추가적인 판단이 필요한지 충전을 중지할지를 셀 밸런싱이 완료된 셀 전압을 기준으로 판단한다.
만약, 상기 배터리 팩에 추가적인 충전이 필요하다고 판단된 경우, 셀 밸런싱을 수행하기 위하여 연결된 회로를 다시 배터리 팩 충전회로에 연결되도록 셀 밸런싱 전압원(160)과 연결된 스위치를 오프 시키고, 팩 충전 전압원(150)과 연결된 스위치를 온 시킨다.
또한, 셀 밸런싱을 수행하였던 각 배터리 셀의 제1 스위치(131) 및 제2 스위치(132)를 오프 시킨다. 이때, 제2 스위치(132)의 상기 그라운드와의 연결은 해제된다.
반면에 셀 밸런싱 종료 후 상기 배터리 팩이 충전이 완료된 경우에는 더 이상 충전을 진행할 필요가 없으므로 셀 밸런싱을 수행하기 위하여 상기 셀 밸런싱 전압원(160)과 연결된 스위치를 오프 시키고, 셀 밸런싱을 수행하였던 각 배터리 셀의 제1 스위치(131) 및 제2 스위치(132)도 오프 시킨다. 이때, 제2 스위치(132)의 상기 그라운드와의 연결은 해제된다.
한편, 셀 밸런싱 진단단계(S320)는 도 4를 참조하여 하기에 상세하게 설명한다.
도 4는 본 발명의 실시 예에 따른 셀 밸런싱 방법 중 셀 밸런싱 진단단계의 순서도이다.
도 4를 참조하면, 상기 둘 이상의 배터리 셀의 각 전압을 주기적으로 측정하고(셀 전압 측정단계: S321), 상기 셀 전압 측정단계 (S321)에서 측정된 둘 이상의 배터리 셀 전압을 이용하여 셀 간의 전압 편차를 연산한다(전압 편차 연산단계: S322).
또한, 상기 전압 편차 연산단계(S322)에서 연산된 셀 간의 전압 편차와 기 설정된 소정 범위의 전압 편차를 비교한다(전압 편차 비교단계: S323).
상기 전압 편차 비교단계(S323)에서 셀 간의 전압 편차가 기 설정된 소정 범위의 전압 편차보다 큰 경우, 상기 회로전환단계(S330)를 수행한다.
여기서 주기는 사용자가 임의로 설정한 주기로써 그 간격을 배터리 팩의 충전효율이 저하되지 않는 범위 내로 설정한다.
또한, 전압 편차 연산방법은 각 배터리 셀에서 측정된 전압의 최고값을 이용하여 최고값에서 각 셀의 전압값을 빼는 방법이다.
또한, 기 설정된 소정범위의 전압 편차는 소량의 셀 밸런싱 전압으로 셀 밸런싱이 필요한 배터리 셀이 충전되는 시간을 감소시키면서 효율적인 배터리 팩의 충전이 가능한 범위로 설정한다.
또 다른 실시 예로써, 상기 실시 예는 셀 밸런싱 수행 여부를 실시간으로 판단하여 수행하는 방식으로 이 방식은 실시간으로 전압을 측정하고 판단해야 하므로 알고리즘이 복잡해진다는 단점이 있다.
따라서 다른 실시 예는 배터리 팩의 충전을 완료한 후 셀 밸런싱을 수행하는 방법이다.
우선 외부전원으로부터 공급되는 입력전압을 이용하여 배터리 팩의 충전을 완료하고, 둘 이상의 배터리 셀의 각 전압을 측정한다.
또한, 상기 측정된 셀 전압을 기 설정된 소정 전압과 각각 비교하여 상기 측정된 셀 전압이 기 설정된 소정 전압보다 미만인 경우, 해당 셀은 셀 밸런싱이 필요하다고 판단한다.
상기 셀 밸런싱 필요판단에 따라 기존의 배터리 팩을 충전하기 위하여 연결된 회로에서 셀 밸런싱을 수행하는 회로로 연결되도록 회로를 전환 시키고, 셀 스위칭부(130)에서는 상기 스위치(131) 및 제2 스위치(132)를 온 제어하여 상기 셀 밸런싱을 수행하는 회로로부터 전압이 공급될 수 있도록 한다. 이때 제2 스위치(132)는 상기 컨버터(122)와 연결된 그라운드와 연결된다.
셀 밸런싱 종료 후 배터리 팩의 충전이 완료되었으므로 셀 밸런싱을 수행하기 위하여 셀 밸런싱 전압원(126)과 연결된 회로의 스위치를 오프 시키고, 셀 밸런싱 전압이 공급되었던 상기 스위치(131) 및 제2 스위치(132)도 오프 시킨다. 이때, 제2 스위치(132)의 상기 그라운드와의 연결은 해제된다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 통상의 지식을 가진 자는 서술한 특허청구범위 기술 내에서 다양한 실시 예가 가능할 수 있을 것이다.

Claims (12)

  1. 둘 이상의 배터리 셀로 구성된 배터리 팩;
    상기 배터리 팩을 충전하는 동안 상기 둘 이상의 배터리 셀의 전압을 모니터링하여 다른 배터리 셀과 소정 값 이상의 전압 편차를 가진 배터리 셀이 있는 경우, 해당 배터리 셀에 대하여 셀 밸런싱을 수행하도록 명령하는 BMS;
    상기 BMS의 셀 밸런싱 수행 명령에 따라 상기 배터리 팩을 충전하던 팩 충전전압을 배터리 셀을 충전하기 위한 셀 밸런싱 전압으로 전환하여 상기 배터리 팩으로 연결하는 충전전압 전환부; 및
    상기 셀 밸런싱 전압이 각 셀에 공급되는 것을 개별적으로 온/오프 제어하는 셀 스위칭부;
    를 포함하여 구성되는 것을 특징으로 하는 셀 밸런싱 시스템.
  2. 청구항 1에 있어서,
    상기 충전전압 전환부는,
    외부전원으로부터 공급되는 입력전압을 팩 충전전압으로 변환하여 팩 충전전압을 출력하는 팩 충전 전압원;
    외부전원으로부터 공급되는 입력전압을 셀 밸런싱 전압으로 변환하여 셀 밸런싱 전압을 출력하는 셀 밸런싱 전압원;
    상기 BMS에서 전송된 셀 밸런싱 수행명령에 따라, 배터리 팩을 충전하는 팩 충전 전압의 상기 배터리 팩으로의 공급을 해제하고 셀 밸런싱 전압으로 전환하여 공급되도록 제어하는 MCU;
    상기 MCU의 제어에 따라 회로를 전환하여 외부로부터 들어오는 입력전압을 셀 밸런싱 전압원에 공급하는 회로전환 스위칭부; 및
    상기 회로전환 스위칭부에 의하여 전환된 회로를 통해 상기 입력전압을 공급받아 해당 셀에 셀 밸런싱 전압을 공급하는 셀 밸런싱 전압원;
    를 포함하여 구성되는 것을 특징으로 하는 셀 밸런싱 시스템.
  3. 청구항 2에 있어서,
    상기 충전전압 전환부는, 상기 BMS로부터 셀 밸런싱 수행명령이 전송되지 않는 경우, 팩 충전 전압원을 통해 상기 배터리 팩을 충전하도록 상기 회로전환 스위칭부를 제어하는 것을 특징으로 하는 셀 밸런싱 시스템.
  4. 청구항 2에 있어서,
    상기 회로전환 스위칭부는, 상기 MCU 및 컨버터와 연결되는 복수 개의 스위치로 구성되는 것을 특징으로 하는 셀 밸런싱 시스템.
  5. 청구항 1에 있어서,
    상기 셀 스위칭부 각각은, 셀의 양(+)전극, BMS 및 셀 밸런싱 전압원과 연결되는 제1 스위치 및 셀의 음(-)전극, BMS 및 그라운드와 연결되는 제2 스위치를 포함하여 구성되는 것을 특징으로 하는 셀 밸런싱 시스템.
  6. 배터리 팩에 구성된 둘 이상의 배터리 셀의 밸런싱을 수행하는 방법에 있어서,
    상기 배터리 팩의 충전을 수행하는 배터리 팩 충전단계;
    상기 배터리 팩 충전단계에서 충전 중인 배터리 팩 내 배터리 셀에 전압 불균형이 발생되어 셀 밸런싱을 필요로 하는지 진단하는 셀 밸런싱 진단단계;
    상기 셀 밸런싱 진단단계에서 셀 밸런싱 수행이 필요한 것으로 진단된 경우, 해당 배터리 셀에 셀 밸런싱 전압이 공급되도록 회로를 전환하여 팩 충전 전압원과 연결되었던 전원 공급회로를 셀 밸런싱 전압원과 연결시키는 회로전환단계; 및
    상기 회로전환단계에서 전환된 회로를 통해 들어오는 셀 밸런싱 전압을 셀 밸런싱이 필요한 셀에 공급되도록 해당 셀의 셀 스위치를 온 시키는 셀 스위치 제어단계;
    를 포함하여 구성되는 것을 특징으로 하는 셀 밸런싱 방법.
  7. 청구항 6에 있어서,
    상기 셀 밸런싱 진단단계는,
    상기 둘 이상의 배터리 셀의 각 전압을 주기적으로 측정하는 셀 전압 측정단계;
    상기 셀 전압 측정단계에서 측정된 둘 이상의 배터리 셀 전압을 이용하여 셀 간의 전압 편차를 연산하는 전압 편차 연산단계; 및
    상기 전압 편차 연산단계에서 연산된 셀 간의 전압 편차와 기 설정된 소정 범위의 전압 편차를 비교하는 전압 편차 비교단계;
    를 포함하는 것을 특징으로 하는 셀 밸런싱 방법.
  8. 청구항 6에 있어서,
    상기 전압 편차 비교단계에서 셀 간의 전압 편차가 기 설정된 소정 범위의 전압 편차보다 큰 경우, 상기 회로전환단계를 수행하는 것을 특징으로 하는 셀 밸런싱 방법.
  9. 청구항 6에 있어서,
    상기 회로전환단계는, 상기 팩 충전 전압원과 연결되는 스위치를 오프 시키고, 상기 셀 밸런싱 전압원과 연결되는 스위치를 온 시켜 회로를 전환하는 것을 특징으로 하는 셀 밸런싱 방법.
  10. 청구항 6에 있어서,
    상기 셀 스위치 제어단계는, 셀 스위치가 온 됨에 따라 셀 스위칭부의 그라운드 단자와 충전전압 전환부 내에 있는 그라운드 단자가 전기적으로 연결되는 것을 특징으로 하는 셀 밸런싱 방법.
  11. 청구항 6에 있어서,
    셀 밸런싱 종료 후 상기 배터리 팩에 추가적인 충전이 필요하다고 판단한 경우, 셀 밸런싱을 수행하기 위하여 상기 셀 밸런싱 전압원과 연결된 스위치를 오프 시키고, 다시 배터리 팩 충전회로와 전원 공급회로가 연결되도록 상기 팩 충전 전압원과 연결된 스위치를 온 시키는 것을 특징으로 하는 셀 밸런싱 방법.
  12. 청구항 6에 있어서,
    셀 밸런싱 종료 후 상기 배터리 팩이 충전이 완료된 것으로 판단한 경우, 셀 밸런싱을 수행하기 위하여 상기 셀 밸런싱 전압원과 연결된 스위치를 오프 시키는 것을 특징으로 하는 셀 밸런싱 방법.
PCT/KR2017/011448 2016-10-21 2017-10-17 셀 밸런싱 시스템 및 제어방법 WO2018074809A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/076,445 US10629961B2 (en) 2016-10-21 2017-10-17 Cell balancing system and control method
JP2018536785A JP6639686B2 (ja) 2016-10-21 2017-10-17 セルバランシングシステム及び制御方法
EP17862547.1A EP3404794A4 (en) 2016-10-21 2017-10-17 CELL BALANCING SYSTEM AND CONTROL METHOD
CN201780008458.3A CN108604811A (zh) 2016-10-21 2017-10-17 电池平衡系统及控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160137838A KR20180044483A (ko) 2016-10-21 2016-10-21 셀 밸런싱 시스템 및 제어방법
KR10-2016-0137838 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018074809A1 true WO2018074809A1 (ko) 2018-04-26

Family

ID=62019686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011448 WO2018074809A1 (ko) 2016-10-21 2017-10-17 셀 밸런싱 시스템 및 제어방법

Country Status (6)

Country Link
US (1) US10629961B2 (ko)
EP (1) EP3404794A4 (ko)
JP (1) JP6639686B2 (ko)
KR (1) KR20180044483A (ko)
CN (1) CN108604811A (ko)
WO (1) WO2018074809A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196266B1 (ko) * 2017-04-03 2020-12-29 주식회사 엘지화학 원통형 배터리 셀의 방열 구조
KR102202613B1 (ko) * 2017-09-27 2021-01-12 주식회사 엘지화학 배터리 모듈 균등화 장치, 이를 포함하는 배터리 팩 및 자동차
KR20210001724A (ko) 2019-06-28 2021-01-07 주식회사 엘지화학 불량 배터리 셀 검출 장치 및 방법
CN111864859B (zh) * 2020-08-12 2024-05-10 优动能科技(深圳)有限公司 一种带恒流恒压充放电的锂电池组寿命延长系统及方法
CN112202221B (zh) * 2020-09-28 2024-06-07 天津津航计算技术研究所 基于无桥隔离型电流校正技术的电池均衡电路及方法
KR102539821B1 (ko) * 2022-02-17 2023-06-08 울산대학교 산학협력단 재사용 배터리의 soc 임의 정렬 시스템 및 방법
KR20240123071A (ko) * 2023-02-06 2024-08-13 울산대학교 산학협력단 고전압 배터리의 고속 타겟 밸런싱 방법 및 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247195A (ja) * 2008-03-31 2009-10-22 O2 Micro Inc 充電電流を調節できるバッテリ管理システム
US20120161707A1 (en) * 2010-12-28 2012-06-28 Samsung Sdi Co., Ltd Balancing method and balancing system of battery pack
WO2013035963A1 (ko) * 2011-09-05 2013-03-14 에스케이씨앤씨 주식회사 충전 전압을 적응적으로 가변시키는 배터리 충전 장치 및 그의 배터리 충전 제어방법
KR20140034089A (ko) 2012-09-10 2014-03-19 주식회사 실리콘웍스 셀 밸런싱 집적회로, 셀 밸런싱 시스템 및 셀 밸런싱 방법
KR101572178B1 (ko) * 2012-12-04 2015-11-26 주식회사 엘지화학 이차 전지 셀의 전압 밸런싱 장치 및 방법
KR101667913B1 (ko) * 2016-03-25 2016-10-20 (주)아이비티 충전특성곡선을 이용한 배터리 팩 균등 충전 장치 및 방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528122A (en) * 1994-11-29 1996-06-18 Ventron Corporation Battery voltage equalizer circuit
JPH11289676A (ja) * 1998-04-01 1999-10-19 Toyo System Kk 二次電池充放電装置用の電源装置
JP2001008373A (ja) 1999-06-17 2001-01-12 Sony Corp バッテリー装置及びバッテリーの充電方法
JP3670522B2 (ja) * 1999-07-30 2005-07-13 富士通株式会社 バッテリパック
JP2002281686A (ja) 2001-01-12 2002-09-27 Jeol Ltd 蓄電電源の充電装置及び充電方法
TW552759B (en) * 2001-02-15 2003-09-11 Seiko Instr Inc Battery state monitoring circuit
US7378818B2 (en) * 2002-11-25 2008-05-27 Tiax Llc Bidirectional power converter for balancing state of charge among series connected electrical energy storage units
JP3832660B2 (ja) * 2003-10-29 2006-10-11 株式会社Nttファシリティーズ 充電装置
CN100358212C (zh) * 2005-04-05 2007-12-26 苏州星恒电源有限公司 电池均衡电路
JP2006320044A (ja) 2005-05-10 2006-11-24 Ntt Data Corp バッテリ充電器
US20080218127A1 (en) 2007-03-07 2008-09-11 O2Micro Inc. Battery management systems with controllable adapter output
KR100966732B1 (ko) 2008-02-28 2010-06-29 쌍용자동차 주식회사 배터리 시스템의 배터리 균등 충전장치 및 그 방법
JP2010029050A (ja) 2008-07-24 2010-02-04 Toshiba Corp 電池システム
US8350528B2 (en) 2009-02-04 2013-01-08 Samsung Sdi Co., Ltd. Battery pack and balancing method of battery cells
KR100969589B1 (ko) 2009-03-03 2010-07-12 대호전자(주) 급속 충전용 배터리 모듈 관리 시스템
KR20110117992A (ko) 2010-04-22 2011-10-28 장승민 배터리 충전 시스템 및 그것의 충전 방법
CN102064580A (zh) * 2010-12-14 2011-05-18 宁波飞驰达电子科技发展有限公司 串联电池组充电平衡系统及其充电平衡方法
CN102569926B (zh) * 2010-12-31 2015-10-14 欣旺达电子股份有限公司 汽车锂电池充电平衡方法以及平衡系统
CN102522788A (zh) * 2011-12-02 2012-06-27 苏州冠硕新能源有限公司 电池管理系统及采用该系统进行电池充电模式控制的方法
US20130141047A1 (en) 2011-12-02 2013-06-06 Golden Crown New Energy (Hk) Limited Battery management system and method thereof
CN102522798B (zh) * 2011-12-30 2014-01-08 深圳桑达国际电子器件有限公司 一种电池组模块之间的主动均衡电路
TWI452797B (zh) * 2012-03-13 2014-09-11 Univ Nat Formosa 二次電池組充放電平衡偵測及充電裝置
CN103036290B (zh) 2012-12-12 2015-06-10 中国石油大学(华东) 磷酸铁锂电池用24v充电器及其充电方法
CN202997622U (zh) * 2012-12-12 2013-06-12 中国石油大学(华东) 具有动态均衡功能的磷酸铁锂电池用24v充电器
JP2015171310A (ja) 2014-03-11 2015-09-28 株式会社豊田自動織機 電圧均等化装置および電圧均等化方法
CN104578316A (zh) * 2015-01-28 2015-04-29 深圳市良益实业有限公司 电池组分布多模式均衡充电方法及均衡充电电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247195A (ja) * 2008-03-31 2009-10-22 O2 Micro Inc 充電電流を調節できるバッテリ管理システム
US20120161707A1 (en) * 2010-12-28 2012-06-28 Samsung Sdi Co., Ltd Balancing method and balancing system of battery pack
WO2013035963A1 (ko) * 2011-09-05 2013-03-14 에스케이씨앤씨 주식회사 충전 전압을 적응적으로 가변시키는 배터리 충전 장치 및 그의 배터리 충전 제어방법
KR20140034089A (ko) 2012-09-10 2014-03-19 주식회사 실리콘웍스 셀 밸런싱 집적회로, 셀 밸런싱 시스템 및 셀 밸런싱 방법
KR101572178B1 (ko) * 2012-12-04 2015-11-26 주식회사 엘지화학 이차 전지 셀의 전압 밸런싱 장치 및 방법
KR101667913B1 (ko) * 2016-03-25 2016-10-20 (주)아이비티 충전특성곡선을 이용한 배터리 팩 균등 충전 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404794A4

Also Published As

Publication number Publication date
JP6639686B2 (ja) 2020-02-05
EP3404794A1 (en) 2018-11-21
US10629961B2 (en) 2020-04-21
US20190044194A1 (en) 2019-02-07
CN108604811A (zh) 2018-09-28
EP3404794A4 (en) 2019-03-13
KR20180044483A (ko) 2018-05-03
JP2019503640A (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2013119070A1 (ko) 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치
WO2012144674A1 (ko) 착탈 가능한 배터리 모듈, 이를 이용한 배터리 스트링을 위한 전하 균일 방법 및 장치
WO2017014487A1 (ko) 배터리 스택 밸런싱 장치
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2019093769A1 (ko) Bms 웨이크업 장치, 이를 포함하는 bms 및 배터리팩
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2018030704A1 (ko) 배터리 팩을 위한 온도 모니터링 장치 및 방법
WO2016056768A1 (ko) 엘씨 공진을 이용한 배터리 셀 밸런싱 시스템 및 방법
WO2009131336A2 (en) Two-stage charge equalization method and apparatus for series-connected battery string
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2020145550A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2018124514A1 (ko) 배터리 관리 장치 및 이를 이용한 리튬인산철 셀의 과전압 보호 방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2020085819A1 (ko) 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩
WO2020055117A1 (ko) 배터리 관리 장치
WO2021096250A1 (ko) 무선 배터리 관리 시스템, 무선 배터리 관리 방법 및 전기 차량
WO2020149537A1 (ko) 배터리 충전 시스템 및 배터리 충전 방법
WO2019160257A1 (ko) 배터리와 평활 커패시터 간의 에너지 전달을 위한 전원 회로, 배터리 관리 시스템 및 배터리 팩
WO2015034144A1 (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
WO2021162348A1 (ko) 배터리 제어 시스템, 배터리 팩, 전기 차량, 및 상기 배터리 제어 시스템을 위한 id 설정 방법
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2022019612A1 (ko) 듀얼 배터리의 배터리 간 충/방전 제어 시스템 및 방법
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2013133555A1 (ko) 무선 제어 방식의 배터리 에너지 저장장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536785

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017862547

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017862547

Country of ref document: EP

Effective date: 20180813

NENP Non-entry into the national phase

Ref country code: DE