WO2020085819A1 - 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩 - Google Patents
밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩 Download PDFInfo
- Publication number
- WO2020085819A1 WO2020085819A1 PCT/KR2019/014081 KR2019014081W WO2020085819A1 WO 2020085819 A1 WO2020085819 A1 WO 2020085819A1 KR 2019014081 W KR2019014081 W KR 2019014081W WO 2020085819 A1 WO2020085819 A1 WO 2020085819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- balancing
- terminal
- voltage
- control unit
- high level
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0016—Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/22—Balancing the charge of battery modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/10—Control circuit supply, e.g. means for supplying power to the control circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
Definitions
- the present invention relates to a technique for equalizing the state of charge of a plurality of battery cells.
- lithium batteries have little memory effect compared to nickel-based batteries, so they are free to charge and discharge and have a very high self-discharge rate. It is spotlighted for its low energy density and high strength.
- the battery pack may include a plurality of battery cells and a battery management system.
- the battery management system is provided to manage the states of a plurality of battery cells. As charging and discharging of the battery pack is repeated, an imbalance is inevitably caused in a state of charge between a plurality of battery cells. If the battery pack is repeatedly charged and discharged without suppressing this imbalance, not only the battery pack cannot be fully utilized, but also the life span of a plurality of battery cells is rapidly shortened. To solve this problem, a balancing device has been proposed for equalizing the charging states of a plurality of battery cells.
- the balancing device only while the power required to drive the balancing device is supplied from the auxiliary battery (eg, lead acid battery) provided separately in the electric device (eg, electric vehicle) equipped with the battery pack, There has been a limitation that it is possible to equalize the state of charge of a plurality of battery cells.
- the auxiliary battery eg, lead acid battery
- the electric device eg, electric vehicle
- the present invention has been devised to solve the above problems, and even when the power supply from the auxiliary battery is interrupted during the operation of equalizing the charging state of the plurality of battery cells, the plurality of battery cells are used as a power source for the balancing device.
- An object of the present invention is to provide a balancing device capable of maintaining the operation of equalizing the state of charge of a plurality of battery cells, a battery management system including the same, and a battery pack.
- the balancing device includes: a voltage regulator configured to selectively generate a first high level voltage from the voltage of the auxiliary battery;
- a power switch including a first current terminal, a second current terminal, and a control terminal, wherein the first current terminal is electrically connected to a high voltage node of the battery group; It includes a voltage input terminal and a voltage output terminal, and is configured to generate a second high level voltage from a voltage applied to the voltage input terminal, and to output the second high level voltage to the voltage output terminal, wherein the voltage input terminal Is a DCDC converter electrically connected to the second current terminal;
- a balancing unit including a plurality of balancing circuits connected in parallel to a plurality of battery cells included in the battery group; And a power terminal, a hold terminal and a plurality of balancing terminals, wherein the power terminal is electrically connected to the voltage output terminal, the hold terminal is electrically connected to the control terminal, and the plurality of balancing terminals are the plurality. It includes:
- Each of the balancing circuits includes a resistance element and a balancing switch connected in series with each other. Each of the balancing switches is electrically connected to each of the balancing terminals.
- the control unit when receiving a balancing request message including information indicating the cell identification number and the balancing required period from the master controller, to set any one of the plurality of battery cells corresponding to the cell identification information as a balancing target Can be configured.
- the control unit may be configured to control the balancing switch of the balancing circuit connected in parallel to the balancing target among the plurality of balancing circuits while the second high level voltage is applied to the power terminal.
- the control unit may be configured to count a period during which the balancing switch of the balancing circuit connected in parallel to the balancing target is turned on.
- the control unit may be configured to stop holding the first high level voltage when the counted period reaches the balancing required period.
- the master controller and the control unit may further include a communication circuit configured to enable bidirectional communication.
- the power switch may be turned on when the first high level voltage is applied to the control terminal. While the power switch is on, the second high level voltage may be applied to the power terminal.
- the power switch may be an n-channel MOSFET including a source as the first current terminal, a drain as the second current terminal, and a gate from the control terminal.
- the control unit may further include a hold capacitor connected between the hold terminal and ground.
- the control unit may further include a hold switch connected in parallel to the hold capacitor.
- the control unit may be configured to control the hold switch to an off state in response to the application of the second high level voltage to the power terminal.
- the control unit may further include a disable terminal electrically connected to the high voltage node.
- the control unit may be configured to control the hold switch to an on state when a voltage applied to the disable terminal is lower than a threshold voltage.
- a battery management system includes the balancing device.
- a battery pack according to another aspect of the present invention includes the battery management system.
- the operation of equalizing the state of charge of the plurality of battery cells can be maintained by using the plurality of battery cells as a power source for the balancing device.
- the operation of equalizing the state of charge of the plurality of battery cells may be automatically stopped.
- FIG. 1 is a view exemplarily showing a configuration of a battery pack according to a first embodiment of the present invention.
- FIG. 2 is a diagram exemplarily showing a configuration of a voltage hold circuit included in the control unit illustrated in FIG. 1.
- FIG 3 is a view exemplarily showing a configuration of a battery pack according to a second embodiment of the present invention.
- FIG. 4 is a view exemplarily showing the configuration of a battery pack according to a third embodiment of the present invention.
- control unit> described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software, or a combination of hardware and software.
- FIG. 1 is a view showing the configuration of a battery pack 10 according to the first embodiment of the present invention by way of example
- Figure 2 is a configuration of the voltage hold circuit 280 included in the control unit 270 shown in Figure 1 It is a diagram showing an example.
- the battery pack 10 includes a battery group 20 and a battery management system 50 and can supply electric power to an electric motor of an electric vehicle.
- the battery group 20 includes a high voltage terminal 21, a low voltage terminal 22, and a plurality of battery cells 30.
- the plurality of battery cells 30 may be electrically connected in series between the high voltage terminal 21 and the low voltage terminal 22.
- the battery cell 30 is not particularly limited as long as it is rechargeable, such as the lithium ion cell 30.
- the battery management system 50 includes a master controller 100 and a balancing device 200.
- the master controller 100 is operatively coupled with the balancing device 200.
- the master controller 100 is configured to control the balancing device 200 based on the notification information from the balancing device 200.
- the master controller 100 controls the voltage regulator 210 in response to the start-up of the electric vehicle on which the battery pack 10 is mounted, thereby balancing the operating power from the auxiliary battery 40 (200) ).
- the balancing device 200 includes a voltage regulator 210, a power switch 220, a DCDC converter 230, a balancing unit 240 and a control unit 270.
- the balancing device 200 may further include a communication circuit 260.
- the voltage regulator 210 is configured to generate a first high level voltage (eg, 5V) from the voltage (eg, 12V) of the auxiliary battery 40 during operation. It may be a low-dropout (LDO) regulator. As the auxiliary battery 40, for example, a lead acid battery can be used.
- the master controller 100 operates the voltage regulator 210 while the electric device in which the battery pack 10 is mounted is driven, and accordingly, the voltage regulator 210 supplies the first high level voltage to the power switch 220. Can print The master controller 100 may stop the operation of the voltage regulator 210 while the driving of the electric vehicle is stopped, and accordingly, the voltage regulator 210 may stop the output of the first high level voltage.
- the power switch 220 includes a first current terminal 221, a second current terminal 222, and a control terminal 223.
- An n-channel MOSFET Metal Oxide Semiconductor Field Effect transistor
- the n-channel MOSFET includes a source (or drain) as the first current terminal 221, a drain (or source) as the second current terminal 222, and a gate as the control terminal 223.
- the first current terminal 221 is electrically connected to the high voltage terminal 21 of the battery group 20.
- the control terminal 223 is electrically connected to the voltage regulator 210 to receive the first high level voltage from the voltage regulator 210.
- the power switch 220 is controlled in an on state in response to the application of the first high level voltage to the control terminal 223.
- the power switch 220 is turned off in response to the application of a low level voltage (eg, 0V) lower than the first high level voltage to the control terminal 223. While the power switch 220 is off, current flow between the first current terminal 221 and the second current terminal 222 may be blocked.
- a low level voltage eg, 0V
- the DCDC converter 230 includes a voltage input terminal 231 and a voltage output terminal 232.
- a voltage step-down circuit such as a switched mode power supply (SMPS) may be used.
- the voltage input terminal 231 is electrically connected to the second current terminal 222.
- the DCDC converter 230 generates a second high level voltage from the voltage applied to the voltage input terminal 231 while the power switch 220 is in the on state, and then applies the second high level voltage to the voltage output terminal 232. It is configured to output to.
- the second high level voltage may be used as a power source for the operation of the control unit 270. While the power switch 220 is off, generation of the second high level voltage by the DCDC converter 230 is stopped.
- the balancing unit 240 includes a plurality of balancing circuits BC.
- the plurality of balancing circuits BC are connected in parallel to the plurality of battery cells 30 included in the battery group 20. That is, a balancing circuit BC that can be connected in parallel to each battery cell 30 is provided one for each battery cell 30.
- Each balancing circuit BC includes a discharge resistance element R D electrically connected in series with each other and a balancing switch SW D. That is, the balancing unit 240 includes a plurality of discharge resistance elements R D and a plurality of balancing switches SW D.
- Known switching elements such as n-channel MOSFETs can be used as the balancing switch SW D.
- the plurality of balancing switches SW D are controlled by the control unit 270 in an on state or an off state.
- the communication circuit 260 is configured to connect the master controller 100 and the control unit 270 to enable bidirectional communication.
- the communication circuit 260 supports wired or wireless communication between the master controller 100 and the control unit 270.
- the wired communication may be, for example, a controller area network (CAN) communication
- the wireless communication may be, for example, ZigBee or Bluetooth communication.
- the control unit 270 includes hardware, application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), microprocessors ( microprocessors), and electrical units for performing other functions.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- microprocessors microprocessors
- electrical units for performing other functions a memory device may be built in the control unit 270, and for example, a RAM, ROM, register, hard disk, optical recording medium, or magnetic recording medium may be used as the memory device.
- the memory device may store, update, and / or erase a program including various control logics executed by the control unit 270 and / or data generated when the control logics are executed.
- the control unit 270 may be referred to as a “slave controller
- the control unit 270 includes a plurality of sensing terminals P S , a power terminal P P , a hold terminal P H , a voltage hold circuit 280, and a plurality of balancing terminals P B.
- the control unit 270, and the voltage between pairs adjacent to each other among the plurality of the sensing terminal (S P) can be detected as the respective voltages of the plural battery cells (30).
- the power terminal P P is electrically connected to the voltage output terminal 232 of the DCDC converter 230 so as to receive the second high level voltage.
- the second high level voltage may refer to a voltage or voltage range required for the operation of the control unit 270.
- the hold terminal P H is electrically connected to the control terminal 223 to receive the first high level voltage. Accordingly, the first high level voltage from the voltage regulator 210 may be simultaneously applied to the control terminal 223 and the hold terminal (P H ).
- the voltage hold circuit 280 may include a hold capacitor (C H ) and a hold switch (SW H ).
- the hold capacitor C H is electrically connected between the hold terminal P H and ground.
- the hold switch SW H is electrically connected in parallel to the hold capacitor C H.
- the voltage hold circuit 280 may further include a discharge resistance element R H.
- the discharge resistance element R H is electrically connected in series to the hold switch SW H and electrically connected in parallel to the hold capacitor C H.
- control unit 270 controls the hold switch SW H to be off, and applies it to the control terminal 223. It is configured to hold the first high level voltage being applied through the hold terminal (P H ).
- Holding the first high level voltage means that the first high level voltage applied to the control terminal 223 is charged to the hold capacitor C H through the hold terminal P H. While the first high level voltage is held by the hold capacitor C H , even if the voltage regulator 210 stops outputting the first high level voltage, the power switch 220 is maintained in the on state, so that the control unit ( The 270 may continue to equalize the state of charge of the plurality of battery cells 30 by using the plurality of battery cells 30 as a power source.
- the plurality of balancing terminals P B are electrically connected to the plurality of balancing circuits BC. That is, the plurality of balancing switches SW D may be electrically connected to the plurality of balancing terminals P B one by one.
- the control unit 270 is configured to selectively output switching signals for controlling on / off of each of the plurality of balancing switches SW D to the plurality of balancing terminals P B.
- the control unit 270 is electrically connected to the positive terminal and the negative terminal of each of the plurality of battery cells 30 through the balancing unit 240.
- the control unit 270 detects an open circuit voltage (OCV) of each of the plurality of battery cells 30 using a plurality of differential amplifiers and analog-to-digital converters provided in the control unit 270, and then detects them. It is configured to generate the notification information including a voltage signal indicating the open voltage.
- the notification information may be transmitted to the master controller 100 through the communication circuit 260.
- the master controller 100 determines the state of charge of the plurality of battery cells 30 by referring to a lookup table in which data representing a relationship between a state of charge and an open voltage is recorded based on a voltage signal.
- the master controller 100 determines a maximum value, a minimum value, and a cell ID from the state of charge of the plurality of battery cells 30, and then determines a balancing period based on the difference between the maximum value and the minimum value.
- the cell ID indicates identification information of the battery cell 30 having the maximum charging state.
- the balancing period may be proportional to the difference between the maximum and minimum values.
- the master controller 100 may generate a balancing request message including information indicating a cell ID and a balancing required period.
- the balancing request message may be transmitted to the control unit 270 through the communication circuit 260.
- the control unit 270 When receiving the balancing request message through the communication circuit 260, the control unit 270 sets any one battery cell 30 among the plurality of battery cells 30 corresponding to the cell ID as a balancing target.
- the control unit 270 while the second high-level voltage is applied to the power supply terminal P P , a balancing switch SW D of one balancing circuit BC connected in parallel to a balancing target among the plurality of balancing circuits BC Is controlled to the on state, and all the remaining balancing switches SW D may be controlled to the off state.
- the balancing target While the electrical energy of the battery cell 30 set as the balancing target is consumed by the discharge resistor element R D of the balancing circuit BC including the balancing switch SW D controlled in the on state, the balancing target The state of charge gradually decreases toward the minimum.
- the control unit 270 may count the balance accumulation period for the balancing target using the timer provided in the control unit 270.
- the balancing accumulation period represents a period in which the balancing switch SW D of the balancing circuit BC connected in parallel to the balancing target is controlled in the on state in response to the control unit 270 receiving the balancing request message.
- the control unit 270 may stop holding the first high-level voltage when the balancing accumulation period reaches the balancing required period. Stopping the hold of the first high level voltage means that the control unit 270 controls the hold switch SW H to be on to discharge the hold capacitor C H. Accordingly, since the first high level voltage cannot be held by the hold capacitor C H from the time when the balancing accumulation period reaches the balancing required period, the voltage regulator 210 must resume the output of the first high level voltage.
- the power switch 220 may be turned on.
- FIG 3 is a view exemplarily showing the configuration of the battery pack 10 according to the second embodiment of the present invention.
- the balancing device 200 further includes a voltage divider 292, and the control unit 270 is a disable terminal (P D ) is further included.
- the voltage divider 292 is configured to generate a diagnostic voltage using the voltage of the high voltage terminal 21.
- the voltage divider 292 includes a protection resistor element R P1 and a protection resistor element R P2 connected in series between the high voltage terminal 21 and ground. That is, one end of the protection resistance element R P1 is electrically connected to the high voltage terminal 21, one end of the protection resistance element R P2 is electrically connected to ground, and the other end of the protection resistance element R P1 is It is electrically connected to the other end of the protection resistor element R P2 . Accordingly, the voltage between the high voltage terminal 21 and the ground is distributed by the protection resistor element R P1 and the protection resistor element R P2 .
- the diagnostic voltage is a voltage across the protection resistor element R P2 .
- V G is the voltage between the high voltage terminal 21 and ground
- r P1 is the resistance of the protection resistor element R P1
- r P2 is the resistance of the protection resistor element R P2
- V D is the diagnostic voltage
- V D V G ⁇ ⁇ r P2 / (r P1 + r P2 ) ⁇ .
- the disable terminal P D is electrically connected to the other end of the protection resistor element R P2 .
- the control unit 270 turns on the hold switch SW H to prevent over-discharge of the battery group 20. Can be controlled by.
- controlling the hold switch SW H to the on state means that the hold capacitor C H is not charged with the first high level voltage. Even before the balancing accumulation period reaches the balancing required period, when the voltage of the high voltage terminal 21 becomes less than the threshold voltage, the power terminal P P is no longer maintained at the first high level voltage. Accordingly, the power switch 220 is turned off, thereby protecting the battery group 20 from overdischarge.
- FIG 4 is a view exemplarily showing the configuration of the battery pack 10 according to the third embodiment of the present invention.
- the balancing device 200 further includes a voltage divider 294 and a protection switch SW P.
- the voltage divider 294 is configured to generate a protection voltage using the voltage of the high voltage terminal 21.
- the voltage divider 294 includes a protection resistor element R P3 and a protection resistor element R P4 connected in series between the high voltage terminal 21 and ground. That is, one end of the protection resistor element R P3 is electrically connected to the high voltage terminal 21, one end of the protection resistor element R P4 is electrically connected to ground, and the other end of the protection resistor element R P3 is It is electrically connected to the other end of the protection resistor element R P4 . Accordingly, the voltage between the high voltage terminal 21 and the ground is distributed by the protection resistor element R P3 and the protection resistor element R P4 .
- the protection voltage is a voltage across both ends of the protection resistor element R P4 .
- V G is the voltage between the high voltage terminal 21 and ground
- r P3 is the resistance of the protection resistor element R P3
- r P4 is the resistance of the protection resistor element R P4
- V P is the protection voltage
- V P V G ⁇ ⁇ r P4 / (r P3 + r P4 ) ⁇ .
- the protection switch SW P includes a first current terminal 295, a second current terminal 296 and a control terminal 297.
- Known switching elements such as n-channel MOSFETs can be used as the protection switch SW P.
- the first current terminal 295 of the protection switch SW P is electrically connected to the voltage output terminal 232 of the DCDC converter 230.
- the second current terminal 296 of the protection switch SW P is electrically connected to the power terminal P P of the control unit 270.
- the control terminal 297 of the protection switch SW P is electrically connected to the other end of the protection resistor element R P4 .
- the protection switch SW P When the protection voltage is equal to or higher than the third high level voltage, the protection switch SW P is turned on. On the other hand, when the protection voltage is less than the third high level voltage, the protection switch SW P is turned off. If the protection voltage is less than the third high level voltage, it may indicate that the state of charge of the battery group 20 has fallen below the lower limit value (eg, 20%) of a predetermined normal range. While the protection switch SW P is in the off state, since the power transmission path from the high voltage terminal 21 to the power terminal P P of the control unit 270 is blocked, over-discharge of the battery group 20 can be prevented. have.
- the lower limit value eg, 20%
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- General Factory Administration (AREA)
- Cash Registers Or Receiving Machines (AREA)
Abstract
밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리 팩이 제공된다. 상기 밸런싱 장치는, 보조 배터리의 전압으로부터 제1 하이 레벨 전압을 생성하는 전압 레귤레이터; 배터리 그룹의 고전압 노드에 전기적으로 연결되는 전원 스위치; 전압 입력 단자에 인가되는 전압으로부터 제2 하이 레벨 전압을 생성하는 DCDC 컨버터; 상기 배터리 그룹의 복수의 배터리 셀에 병렬 연결되는 복수의 밸런싱 회로를 포함하는 밸런싱부; 및 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 것에 응답하여, 상기 전원 스위치의 제어 단자에 인가되는 상기 제1 하이 레벨 전압을 홀드하는 제어부를 포함한다.
Description
본 발명은, 복수의 배터리 셀의 충전 상태를 균등화하기 위한 기술에 관한 것이다.
본 출원은 2018년 10월 26일자로 출원된 한국 특허출원 번호 제10-2018-0129069호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 차량, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
배터리팩은, 복수의 배터리 셀 및 배터리 관리 시스템을 포함할 수 있다. 배터리 관리 시스템은, 복수의 배터리 셀의 상태를 관리하기 위하여 제공된다. 배터리팩의 충방전이 반복됨에 따라, 복수의 배터리 셀 간의 충전 상태에 불균형이 발생할 수 밖에 없다. 이러한 불균형을 억제하기 않고 계속적으로 배터리팩의 충방전을 반복할 경우, 배터리팩을 충분히 활용할 수 없을 뿐만 아니라, 복수의 배터리 셀의 수명이 빠르게 단축된다. 이러한 문제를 해결하기 위해, 복수의 배터리 셀의 충전 상태를 균등화하기 위한 밸런싱 장치가 제안된바 있다.
그런데, 종래기술에 따른 밸런싱 장치는, 배터리팩이 탑재된 전동 장치(예, 전기 차량)에 별도로 마련되어 있는 보조 배터리(예, 납축 배터리)로부터 밸런싱 장치의 구동에 요구되는 전력이 공급되는 동안에만, 복수의 배터리 셀의 충전 상태를 균등화하는 동작이 가능하다는 제약이 존재하였다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 복수의 배터리 셀의 충전 상태를 균등화하는 동작 중에 보조 배터리로부터의 전력 공급이 중단되더라도, 복수의 배터리 셀을 밸런싱 장치를 위한 전원으로서 이용하여 복수의 배터리 셀의 충전 상태를 균등화하는 동작을 유지할 수 있는 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리 팩을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 밸런싱 장치는, 보조 배터리의 전압으로부터 제1 하이 레벨 전압을 선택적으로 생성하도록 구성되는 전압 레귤레이터; 제1 전류 단자, 제2 전류 단자 및 제어 단자를 포함하되, 상기 제1 전류 단자는 배터리 그룹의 고전압 노드에 전기적으로 연결되는 전원 스위치; 전압 입력 단자 및 전압 출력 단자를 포함하되, 상기 전압 입력 단자에 인가되는 전압으로부터 제2 하이 레벨 전압을 생성하고, 상기 제2 하이 레벨 전압을 상기 전압 출력 단자에 출력하도록 구성되며, 상기 전압 입력 단자는 상기 제2 전류 단자에 전기적으로 연결되는 DCDC 컨버터; 상기 배터리 그룹에 포함된 복수의 배터리 셀에 병렬 연결되는 복수의 밸런싱 회로를 포함하는 밸런싱부; 및 전원 단자, 홀드 단자 및 복수의 밸런싱 단자를 포함하되, 상기 전원 단자는 상기 전압 출력 단자에 전기적으로 연결되고, 상기 홀드 단자는 상기 제어 단자에 전기적으로 연결되며, 상기 복수의 밸런싱 단자는 상기 복수의 밸런싱 회로에 전기적으로 연결되는 제어부를 포함한다. 상기 제어부는, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 것에 응답하여, 상기 제1 하이 레벨 전압을 상기 홀드 단자를 통해 홀드하도록 구성된다.
상기 각 밸런싱 회로는, 서로 직렬 연결되는 저항 소자 및 밸런싱 스위치를 포함한다. 상기 각 밸런싱 스위치는, 상기 각 밸런싱 단자에 전기적으로 연결된다.
상기 제어부는, 마스터 컨트롤러로부터 셀 식별 번호 및 밸런싱 필요 기간을 나타내는 정보를 포함하는 밸런싱 요구 메시지를 수신 시, 상기 복수의 배터리 셀 중에서 상기 셀 식별 정보에 대응하는 어느 한 배터리 셀을 밸런싱 타겟으로서 설정하도록 구성될 수 있다. 상기 제어부는, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 동안, 상기 복수의 밸런싱 회로 중에서 상기 밸런싱 타겟에 병렬 연결된 상기 밸런싱 회로의 상기 밸런싱 스위치를 온 상태로 제어하도록 구성될 수 있다.
상기 제어부는, 상기 밸런싱 타겟에 병렬 연결된 상기 밸런싱 회로의 상기 밸런싱 스위치가 온 상태로 제어된 기간을 카운팅하도록 구성될 수 있다. 상기 제어부는, 상기 카운팅된 기간이 상기 밸런싱 필요 기간에 도달하는 경우, 상기 제1 하이 레벨 전압의 홀드를 중단하도록 구성될 수 있다.
상기 마스터 컨트롤러와 상기 제어부를 양방향 통신 가능하게 접속하도록 구성되는 통신 회로를 더 포함할 수 있다.
상기 전원 스위치는, 상기 제어 단자에 상기 제1 하이 레벨 전압이 인가되는 경우, 온 상태로 될 수 있다. 상기 전원 스위치가 온 상태인 동안, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가될 수 있다.
상기 전원 스위치는, 상기 제1 전류 단자로서의 소스, 상기 제2 전류 단자로서의 드레인 및 상기 제어 단자로부터의 게이트를 포함하는 n-채널 MOSFET일 수 있다.
상기 제어부는, 상기 홀드 단자와 접지 사이에 연결되는 홀드 커패시터를 더 포함할 수 있다. 상기 제어부는, 상기 홀드 커패시터에 병렬 연결되는 홀드 스위치를 더 포함할 수 있다. 상기 제어부는, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 것에 응답하여, 상기 홀드 스위치를 오프 상태로 제어하도록 구성될 수 있다.
상기 제어부는, 상기 고전압 노드에 전기적으로 연결되는 디스에이블 단자를 더 포함할 수 있다. 상기 제어부는, 상기 디스에이블 단자에 인가되는 전압이 임계 전압보다 낮은 경우, 상기 홀드 스위치를 온 상태로 제어하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 관리 시스템은, 상기 밸런싱 장치를 포함한다.
본 발명의 또 다른 측면에 따른 배터리팩은, 상기 배터리 관리 시스템을 포함한다.
본 발명의 실시예들 중 적어도 하나에 의하면, 보조 배터리로부터의 전력 공급이 중단되더라도, 복수의 배터리 셀을 밸런싱 장치를 위한 전원으로서 이용하여 복수의 배터리 셀의 충전 상태를 균등화하는 동작을 유지할 수 있다.
또한, 배터리 팩이 과방전될 위험이 있는 경우, 복수의 배터리 셀의 충전 상태를 균등화하는 동작을 자동적으로 중단할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 제1 실시예에 따른 배터리 팩의 구성을 예시적으로 나타낸 도면이다.
도 2는 도 1에 도시된 제어부에 포함되는 전압 홀드 회로의 구성을 예시적으로 나타낸 도면이다.
도 3은 본 발명의 제2 실시예에 따른 배터리 팩의 구성을 예시적으로 나타낸 도면이다.
도 4는 본 발명의 제3 실시예에 따른 배터리 팩의 구성을 예시적으로 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어부>과 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명의 제1 실시예에 따른 배터리 팩(10)의 구성을 예시적으로 나타낸 도면이고, 도 2는 도 1에 도시된 제어부(270)에 포함되는 전압 홀드 회로(280)의 구성을 예시적으로 나타낸 도면이다.
도 1을 참조하면, 배터리 팩(10)은, 배터리 그룹(20) 및 배터리 관리 시스템(50)을 포함하고, 전기 차량의 전기 모터에 전력을 공급할 수 있다.
배터리 그룹(20)은, 고전압 단자(21), 저전압 단자(22) 및 복수의 배터리 셀(30)을 포함한다. 복수의 배터리 셀(30)은, 고전압 단자(21)와 저전압 단자(22) 사이에 전기적으로 직렬 연결될 수 있다. 배터리 셀(30)은, 예컨대 리튬 이온 셀(30)과 같이, 재충전 가능한 것이라면 그 종류는 특별히 제한되지 않는다.
배터리 관리 시스템(50)은, 마스터 컨트롤러(100) 및 밸런싱 장치(200)를 포함한다.
마스터 컨트롤러(100)는, 밸런싱 장치(200)와 동작 가능하게 결합된다. 마스터 컨트롤러(100)는, 밸런싱 장치(200)로부터의 통지 정보를 기초로, 밸런싱 장치(200)를 제어하도록 구성된다. 마스터 컨트롤러(100)는, 배터리 팩(10)이 탑재되어 있는 전기 차량의 시동이 켜지는 것에 응답하여, 전압 레귤레이터(210)를 제어함으로써, 보조 배터리(40)로부터의 동작 전원을 밸런싱 장치(200)에 공급할 수 있다.
밸런싱 장치(200)는, 전압 레귤레이터(210), 전원 스위치(220), DCDC 컨버터(230), 밸런싱부(240) 및 제어부(270)를 포함한다. 밸런싱 장치(200)는, 통신 회로(260)를 더 포함할 수 있다.
전압 레귤레이터(210)는, 동작 중, 보조 배터리(40)의 전압(예, 12V)으로부터 제1 하이 레벨 전압(예, 5V)을 생성하도록 구성된다. LDO(Low-dropout) 레귤레이터일 수 있다. 보조 배터리(40)로는, 예컨대 납축 배터리를 이용할 수 있다. 마스터 컨트롤러(100)는 배터리 팩(10)이 탑재되어 있는 전동 장치가 구동하는 동안 전압 레귤레이터(210)를 동작시키고, 이에 따라 전압 레귤레이터(210)는 제1 하이 레벨 전압을 전원 스위치(220)에게 출력할 수 있다. 마스터 컨트롤러(100)는 전기 차량의 구동이 중단되어 있는 동안 전압 레귤레이터(210)의 동작을 중단시키고, 이에 따라 전압 레귤레이터(210)는 제1 하이 레벨 전압의 출력을 중단할 수 있다.
전원 스위치(220)는, 제1 전류 단자(221), 제2 전류 단자(222) 및 제어 단자(223)를 포함한다. 전원 스위치(220)로서 n채널 MOSFET(Metal Oxide Semiconductor Field Effect transistor)이 이용될 수 있다. n채널 MOSFET은, 제1 전류 단자(221)로서의 소스(또는 드레인), 제2 전류 단자(222)로서의 드레인(또는 소스) 및 제어 단자(223)로서의 게이트를 포함한다. 제1 전류 단자(221)는, 배터리 그룹(20)의 고전압 단자(21)에 전기적으로 연결된다. 제어 단자(223)는, 전압 레귤레이터(210)로부터의 제1 하이 레벨 전압을 수신할 수 있도록, 전압 레귤레이터(210)에 전기적으로 연결된다. 전원 스위치(220)는, 제어 단자(223)에 제1 하이 레벨 전압이 인가되는 것에 응답하여, 온 상태로 제어된다. 전원 스위치(220)가 온 상태인 동안, 제1 전류 단자(221)로부터 제2 전류 단자(222)로의 전류가 흐를 수 있다. 전원 스위치(220)는, 제어 단자(223)에 제1 하이 레벨 전압보다 낮은 로우 레벨 전압(예, 0V)이 인가되는 것에 응답하여, 오프 상태로 된다. 전원 스위치(220)가 오프 상태인 동안, 제1 전류 단자(221)와 제2 전류 단자(222) 간의 전류 흐름은 차단될 수 있다.
DCDC 컨버터(230)는, 전압 입력 단자(231) 및 전압 출력 단자(232)를 포함한다. DCDC 컨버터(230)로는, 예컨대 SMPS(switched mode power supply)와 같은 전압 강압 회로가 이용될 수 있다. 전압 입력 단자(231)는, 제2 전류 단자(222)에 전기적으로 연결된다. DCDC 컨버터(230)는, 전원 스위치(220)가 온 상태인 동안에 전압 입력 단자(231)에 인가되는 전압으로부터 제2 하이 레벨 전압을 생성한 다음, 제2 하이 레벨 전압을 전압 출력 단자(232)에 출력하도록 구성된다. 제2 하이 레벨 전압은, 제어부(270)의 동작을 위한 전원으로서 이용될 수 있다. 전원 스위치(220)가 오프 상태인 동안, DCDC 컨버터(230)에 의한 제2 하이 레벨 전압의 생성은 중단된다.
밸런싱부(240)는, 복수의 밸런싱 회로(BC)를 포함한다. 복수의 밸런싱 회로(BC)는, 배터리 그룹(20)에 포함된 복수의 배터리 셀(30)에 병렬 연결된다. 즉, 각 배터리 셀(30)에 병렬 연결 가능한 밸런싱 회로(BC)가 각 배터리 셀(30)에 대해 하나씩 제공된다. 각 밸런싱 회로(BC)는, 서로 전기적으로 직렬 연결되는 방전 저항 소자(R
D) 및 밸런싱 스위치(SW
D)를 포함한다. 즉, 밸런싱부(240)는, 복수의 방전 저항 소자(R
D) 및 복수의 밸런싱 스위치(SW
D)를 포함한다. n채널 MOSFET와 같은 공지의 스위칭 소자가 밸런싱 스위치(SW
D)로서 이용될 수 있다. 복수의 밸런싱 스위치(SW
D)는, 제어부(270)에 의해 온 상태 또는 오프 상태로 제어된다.
통신 회로(260)는, 마스터 컨트롤러(100)와 제어부(270)를 양방향 통신 가능하게 접속하도록 구성된다. 통신 회로(260)는, 마스터 컨트롤러(100)와 제어부(270) 간의 유선 또는 무선 통신을 지원한다. 유선 통신은 예컨대 캔(CAN: controller area network) 통신일 수 있고, 무선 통신은 예컨대 지그비나 블루투스 통신일 수 있다.
제어부(270)는, 하드웨어적으로 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 포함할 수 있다. 또한, 제어부(270)에는 메모리 디바이스가 내장될 수 있으며, 메모리 디바이스로는 예컨대 RAM, ROM, 레지스터, 하드디스크, 광기록 매체 또는 자기기록 매체가 이용될 수 있다. 메모리 디바이스는, 제어부(270)에 의해 실행되는 각종 제어 로직을 포함하는 프로그램, 및/또는 상기 제어 로직이 실행될 때 발생되는 데이터를 저장, 갱신 및/또는 소거할 수 있다. 제어부(270)는, 마스터 컨트롤러(100)의 감독 하에 있다는 점에서, '슬레이브 컨트롤러'라고 칭할 수도 있다.
제어부(270)는, 복수의 센싱 단자(P
S), 전원 단자(P
P), 홀드 단자(P
H), 전압 홀드 회로(280) 및 복수의 밸런싱 단자(P
B)를 포함한다.
복수의 센싱 단자(P
S)는, 복수의 배터리 셀(30) 각각의 양극 단자와 음극 단자에 전기적으로 연결된다. 이로써, 제어부(270)는, 복수의 센싱 단자(P
S) 중에서 서로 인접한 쌍들 간의 전압을 복수의 배터리 셀(30) 각각의 전압으로서 검출할 수 있다.
전원 단자(P
P)는, 제2 하이 레벨 전압을 수신할 수 있도록, DCDC 컨버터(230)의 전압 출력 단자(232)에 전기적으로 연결된다. 제2 하이 레벨 전압은, 제어부(270)의 동작에 요구되는 전압 또는 전압 범위를 지칭하는 것일 수 있다.
홀드 단자(P
H)는, 제1 하이 레벨 전압을 수신할 수 있도록, 제어 단자(223)에 전기적으로 연결된다. 이에 따라, 전압 레귤레이터(210)로부터의 제1 하이 레벨 전압은, 제어 단자(223)와 홀드 단자(P
H)에 동시에 인가될 수 있다.
전압 홀드 회로(280)는, 홀드 커패시터(C
H) 및 홀드 스위치(SW
H)를 포함할 수 있다. 홀드 커패시터(C
H)는, 홀드 단자(P
H)와 접지 사이에 전기적으로 연결된다. 홀드 스위치(SW
H)는, 홀드 커패시터(C
H)에 전기적으로 병렬 연결된다. 전압 홀드 회로(280)는, 방전 저항 소자(R
H)를 더 포함할 수 있다. 방전 저항 소자(R
H)는, 홀드 스위치(SW
H)에 전기적으로 직렬 연결되고, 홀드 커패시터(C
H)에 전기적으로 병렬 연결된다.
제어부(270)는, 전원 단자(P
P)에 제2 하이 레벨 전압이 인가되는 것에 응답하여, 제어부(270)가 홀드 스위치(SW
H)를 오프 상태로 제어하여, 제어 단자(223)에 인가되고 있는 제1 하이 레벨 전압을 홀드 단자(P
H)를 통해 홀드하도록 구성된다.
제1 하이 레벨 전압을 홀드한다는 것은, 제어 단자(223)에 인가되는 제1 하이 레벨 전압이 홀드 단자(P
H)를 통해 홀드 커패시터(C
H)에 충전된다는 것을 의미한다. 홀드 커패시터(C
H)에 의해 제1 하이 레벨 전압이 홀드되어 있는 동안에는, 전압 레귤레이터(210)가 제1 하이 레벨 전압을 출력을 중단하더라도, 전원 스위치(220)는 온 상태로 유지되므로, 제어부(270)는 복수의 배터리 셀(30)을 전원으로서 이용하여 복수의 배터리 셀(30)의 충전 상태를 균등화하는 동작을 계속할 수 있다.
복수의 밸런싱 단자(P
B)는, 복수의 밸런싱 회로(BC)에 전기적으로 연결된다. 즉, 복수의 밸런싱 스위치(SW
D)는, 복수의 밸런싱 단자(P
B)에 하나씩 전기적으로 연결될 수 있다. 제어부(270)는, 복수의 밸런싱 스위치(SW
D) 각각의 온오프를 제어하기 위한 스위칭 신호를 복수의 밸런싱 단자(P
B)에 선택적으로 출력하도록 구성된다.
제어부(270)는, 밸런싱부(240)를 통해 복수의 배터리 셀(30) 각각의 양극 단자와 음극 단자에 전기적으로 연결된다. 제어부(270)는, 제어부(270)에 구비된 복수의 차동 증폭기 및 아날로그-디지털 컨버터를 이용하여, 복수의 배터리 셀(30) 각각의 개방 전압(OCV: open circuit voltage)을 검출한 다음, 검출된 개방 전압을 나타내는 전압 신호를 포함하는 상기 통지 정보를 생성하도록 구성된다. 상기 통지 정보는, 통신 회로(260)를 통해 마스터 컨트롤러(100)에게 전달될 수 있다.
마스터 컨트롤러(100)는, 전압 신호를 기초로, 충전 상태 및 개방 전압 간의 관계를 나타내는 데이터가 기록되어 있는 룩업테이블을 참조하여, 복수의 배터리 셀(30)의 충전 상태를 결정한다. 마스터 컨트롤러(100)는, 복수의 배터리 셀(30)의 충전 상태로부터 최대치, 최소치 및 셀 ID를 결정한 다음, 최대치 및 최소치 간의 차이를 기초로 밸런싱 필요 기간을 결정한다. 셀 ID는, 상기 최대치의 충전 상태를 가지는 배터리 셀(30)의 식별 정보를 나타낸다. 또한, 밸런싱 필요 기간은, 최대치 및 최소치 간의 차이에 비례할 수 있다. 그 다음, 마스터 컨트롤러(100)는, 셀 ID 및 밸런싱 필요 기간을 나타내는 정보를 포함하는 밸런싱 요구 메시지를 생성할 수 있다. 밸런싱 요구 메시지는, 통신 회로(260)를 통해 제어부(270)에게 전달될 수 있다.
제어부(270)는, 통신 회로(260)를 통해 밸런싱 요구 메시지를 수신 시, 복수의 배터리 셀(30) 중에서 셀 ID에 대응하는 어느 한 배터리 셀(30)을 밸런싱 타겟으로서 설정한다. 제어부(270)는, 전원 단자(P
P)에 제2 하이 레벨 전압이 인가되는 동안, 복수의 밸런싱 회로(BC) 중에서 밸런싱 타겟에 병렬 연결된 어느 한 밸런싱 회로(BC)의 밸런싱 스위치(SW
D)를 온 상태로 제어하고, 나머지 밸런싱 스위치(SW
D)는 모두 오프 상태로 제어할 수 있다. 이에 따라, 온 상태로 제어되는 밸런싱 스위치(SW
D)를 포함하는 밸런싱 회로(BC)의 방전 저항 소자(R
D)에 의해 밸런싱 타겟으로 설정된 배터리 셀(30)의 전기 에너지가 소모되면서, 밸런싱 타겟의 충전 상태가 최소치를 향하여 점차적으로 감소한다.
제어부(270)는, 제어부(270)에 구비된 타이머를 이용하여, 밸런싱 타겟에 대한 밸런싱 누적 기간을 카운팅할 수 있다. 밸런싱 누적 기간은, 제어부(270)가 밸런싱 요구 메시지를 수신한 것에 응답하여, 밸런싱 타겟에 병렬 연결된 밸런싱 회로(BC)의 밸런싱 스위치(SW
D)가 온 상태로 제어된 기간을 나타낸다.
제어부(270)는, 밸런싱 누적 기간이 밸런싱 필요 기간에 도달하는 경우, 제1 하이 레벨 전압의 홀드를 중단할 수 있다. 제1 하이 레벨 전압의 홀드를 중단한다는 것은, 제어부(270)가 홀드 스위치(SW
H)를 온 상태로 제어하여, 홀드 커패시터(C
H)를 방전시킨다는 것을 의미한다. 따라서, 밸런싱 누적 기간이 밸런싱 필요 기간에 도달한 시점부터는, 홀드 커패시터(C
H)에 의해 제1 하이 레벨 전압이 홀드될 수 없으므로, 전압 레귤레이터(210)가 제1 하이 레벨 전압의 출력을 재개해야만 전원 스위치(220)가 온 상태로 될 수 있다.
도 3은 본 발명의 제2 실시예에 따른 배터리 팩(10)의 구성을 예시적으로 나타낸 도면이다.
도 3에 도시된 제2 실시예에 따른 배터리 팩(10)에 대하여는, 도 1 및 도 2를 참조하여 전술한 제1 실시예와 공통된 내용에 대한 반복 설명은 생략하고, 차이점을 중심으로 설명하기로 한다.
제2 실시예의 배터리 팩(10)과 제1 실시예의 배터리 팩(10)의 차이점은, 밸런싱 장치(200)가 전압 분배기(voltage divider, 292)를 더 포함하고, 제어부(270)가 디스에이블 단자(P
D)를 더 포함한다는 점이다.
전압 분배기(292)는, 고전압 단자(21)의 전압을 이용하여 진단 전압을 생성하도록 구성된다. 전압 분배기(292)는, 고전압 단자(21)와 접지 사이에서 서로 직렬 연결되는 보호 저항 소자(R
P1) 및 보호 저항 소자(R
P2)를 포함한다. 즉, 보호 저항 소자(R
P1)의 일단은 고전압 단자(21)에 전기적으로 연결되고, 보호 저항 소자(R
P2)의 일단은 접지에 전기적으로 연결되며, 보호 저항 소자(R
P1)의 타단은 보호 저항 소자(R
P2)의 타단에 전기적으로 연결된다. 이에 따라, 고전압 단자(21)와 접지 간의 전압은 보호 저항 소자(R
P1) 및 보호 저항 소자(R
P2)에 의해 분배된다. 상기 진단 전압은 보호 저항 소자(R
P2)의 양단에 걸친 전압이다. V
G는 고전압 단자(21)와 접지 간의 전압, r
P1은 보호 저항 소자(R
P1)의 저항(resistance), r
P2은 보호 저항 소자(R
P2)의 저항, V
D는 진단 전압이라고 할 때, V
D = V
G × {r
P2 / (r
P1 + r
P2)}이다.
디스에이블 단자(P
D)는, 보호 저항 소자(R
P2)의 타단에 전기적으로 연결된다. 제어부(270)는, 디스에이블 단자(P
D)에 인가되는 상기 진단 전압이 소정의 임계 전압보다 낮은 경우, 배터리 그룹(20)의 과방전을 방지하기 위하여, 홀드 스위치(SW
H)를 온 상태로 제어할 수 있다.
전술한 바와 같이, 홀드 스위치(SW
H)를 온 상태로 제어한다는 것은, 홀드 커패시터(C
H)가 제1 하이 레벨 전압으로 충전되지 못하게 한다는 것을 의미한다. 밸런싱 누적 기간이 밸런싱 필요 기간에 도달하기 전이라도, 고전압 단자(21)의 전압이 임계 전압 미만이 되면, 전원 단자(P
P)는 더 이상 제1 하이 레벨 전압으로 유지되지 못한다. 이에 따라, 전원 스위치(220)가 오프 상태로 됨으로써, 배터리 그룹(20)을 과방전으로부터 보호할 수 있다.
도 4는 본 발명의 제3 실시예에 따른 배터리 팩(10)의 구성을 예시적으로 나타낸 도면이다.
도 4에 도시된 제3 실시예에 따른 배터리 팩(10)에 대하여는, 도 1 내지 도 3을 참조하여 전술한 제1 및 제2 실시예와 공통된 내용에 대한 반복 설명은 생략하고, 차이점을 중심으로 설명하기로 한다.
제3 실시예의 배터리 팩(10)과 제1 실시예의 배터리 팩(10)의 차이점은, 밸런싱 장치(200)가 전압 분배기(294) 및 보호 스위치(SW
P)를 더 포함한다는 점이다.
전압 분배기(294)는, 고전압 단자(21)의 전압을 이용하여 보호 전압을 생성하도록 구성된다. 전압 분배기(294)는, 고전압 단자(21)와 접지 사이에서 서로 직렬 연결되는 보호 저항 소자(R
P3) 및 보호 저항 소자(R
P4)를 포함한다. 즉, 보호 저항 소자(R
P3)의 일단은 고전압 단자(21)에 전기적으로 연결되고, 보호 저항 소자(R
P4)의 일단은 접지에 전기적으로 연결되며, 보호 저항 소자(R
P3)의 타단은 보호 저항 소자(R
P4)의 타단에 전기적으로 연결된다. 이에 따라, 고전압 단자(21)와 접지 간의 전압은 보호 저항 소자(R
P3) 및 보호 저항 소자(R
P4)에 의해 분배된다. 상기 보호 전압은 보호 저항 소자(R
P4)의 양단에 걸친 전압이다. V
G는 고전압 단자(21)와 접지 간의 전압, r
P3은 보호 저항 소자(R
P3)의 저항(resistance), r
P4은 보호 저항 소자(R
P4)의 저항, V
P는 보호 전압이라고 할 때, V
P = V
G × {r
P4 / (r
P3 + r
P4)}이다.
보호 스위치(SW
P)는, 제1 전류 단자(295), 제2 전류 단자(296) 및 제어 단자(297)를 포함한다. n채널 MOSFET와 같은 공지의 스위칭 소자가 보호 스위치(SW
P)로서 이용될 수 있다. 보호 스위치(SW
P)의 제1 전류 단자(295)는 DCDC 컨버터(230)의 전압 출력 단자(232)에 전기적으로 연결된다. 보호 스위치(SW
P)의 제2 전류 단자(296)는, 제어부(270)의 전원 단자(P
P)에 전기적으로 연결된다. 보호 스위치(SW
P)의 제어 단자(297)는, 보호 저항 소자(R
P4)의 타단에 전기적으로 연결된다.
보호 전압이 제3 하이 레벨 전압 이상인 경우, 보호 스위치(SW
P)는 온 상태로 된다. 반면, 보호 전압이 제3 하이 레벨 전압 미만인 경우, 보호 스위치(SW
P)는 오프 상태로 된다. 보호 전압이 제3 하이 레벨 전압 미만이라는 것은, 배터리 그룹(20)의 충전 상태가 소정의 정상 범위의 하한값(예, 20%)의 아래로 떨어졌음을 나타낼 수 있다. 보호 스위치(SW
P)가 오프 상태인 동안에는, 고전압 단자(21)로부터 제어부(270)의 전원 단자(P
P)까지의 전력 전달 경로가 차단되므로, 배터리 그룹(20)의 과방전을 방지할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
Claims (12)
- 밸런싱 장치에 있어서,보조 배터리의 전압으로부터 제1 하이 레벨 전압을 선택적으로 생성하도록 구성되는 전압 레귤레이터;제1 전류 단자, 제2 전류 단자 및 제어 단자를 포함하되, 상기 제1 전류 단자는 배터리 그룹의 고전압 노드에 전기적으로 연결되는 전원 스위치;전압 입력 단자 및 전압 출력 단자를 포함하되, 상기 전압 입력 단자에 인가되는 전압으로부터 제2 하이 레벨 전압을 생성하고, 상기 제2 하이 레벨 전압을 상기 전압 출력 단자에 출력하도록 구성되며, 상기 전압 입력 단자는 상기 제2 전류 단자에 전기적으로 연결되는 DCDC 컨버터;상기 배터리 그룹에 포함된 복수의 배터리 셀에 병렬 연결되는 복수의 밸런싱 회로를 포함하는 밸런싱부; 및전원 단자, 홀드 단자 및 복수의 밸런싱 단자를 포함하되, 상기 전원 단자는 상기 전압 출력 단자에 전기적으로 연결되고, 상기 홀드 단자는 상기 제어 단자에 전기적으로 연결되며, 상기 복수의 밸런싱 단자는 상기 복수의 밸런싱 회로에 전기적으로 연결되는 제어부를 포함하고,상기 제어부는, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 것에 응답하여, 상기 제1 하이 레벨 전압을 상기 홀드 단자를 통해 홀드하도록 구성되는 밸런싱 장치.
- 제1항에 있어서,상기 각 밸런싱 회로는, 서로 직렬 연결되는 저항 소자 및 밸런싱 스위치를 포함하고,상기 각 밸런싱 스위치는, 상기 각 밸런싱 단자에 전기적으로 연결되는 밸런싱 장치.
- 제2항에 있어서,상기 제어부는, 마스터 컨트롤러로부터 셀 식별 번호 및 밸런싱 필요 기간을 나타내는 정보를 포함하는 밸런싱 요구 메시지를 수신 시, 상기 복수의 배터리 셀 중에서 상기 셀 식별 정보에 대응하는 어느 한 배터리 셀을 밸런싱 타겟으로서 설정하도록 구성되고,상기 제어부는, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 동안, 상기 복수의 밸런싱 회로 중에서 상기 밸런싱 타겟에 병렬 연결된 상기 밸런싱 회로의 상기 밸런싱 스위치를 온 상태로 제어하도록 구성되는 밸런싱 장치.
- 제3항에 있어서,상기 제어부는, 상기 밸런싱 타겟에 병렬 연결된 상기 밸런싱 회로의 상기 밸런싱 스위치가 온 상태로 제어된 기간을 카운팅하도록 구성되고,상기 제어부는, 상기 카운팅된 기간이 상기 밸런싱 필요 기간에 도달하는 경우, 상기 제1 하이 레벨 전압의 홀드를 중단하도록 구성되는 밸런싱 장치.
- 제3항에 있어서,상기 마스터 컨트롤러와 상기 제어부를 양방향 통신 가능하게 접속하도록 구성되는 통신 회로를 더 포함하는 밸런싱 장치.
- 제1항에 있어서,상기 전원 스위치는, 상기 제어 단자에 상기 제1 하이 레벨 전압이 인가되는 경우, 온 상태로 되고,상기 전원 스위치가 온 상태인 동안, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 밸런싱 장치.
- 제1항에 있어서,상기 전원 스위치는, 상기 제1 전류 단자로서의 소스, 상기 제2 전류 단자로서의 드레인 및 상기 제어 단자로부터의 게이트를 포함하는 n-채널 MOSFET인 밸런싱 장치.
- 제1항에 있어서,상기 제어부는,상기 홀드 단자와 접지 사이에 연결되는 홀드 커패시터를 더 포함하는 밸런싱 장치.
- 제8항에 있어서,상기 제어부는,상기 홀드 커패시터에 병렬 연결되는 홀드 스위치를 더 포함하되,상기 제어부는, 상기 전원 단자에 상기 제2 하이 레벨 전압이 인가되는 것에 응답하여, 상기 홀드 스위치를 오프 상태로 제어하도록 구성되는 밸런싱 장치.
- 제9항에 있어서,상기 제어부는, 상기 고전압 노드에 전기적으로 연결되는 디스에이블 단자를 더 포함하고,상기 제어부는, 상기 디스에이블 단자에 인가되는 전압이 임계 전압보다 낮은 경우, 상기 홀드 스위치를 온 상태로 제어하도록 구성되는 밸런싱 장치.
- 제1항 내지 제10항 중 어느 한 항에 따른 상기 밸런싱 장치를 포함하는 배터리 관리 시스템.
- 제11항에 따른 상기 배터리 관리 시스템을 포함하는 배터리 팩.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/042,011 US11689031B2 (en) | 2018-10-26 | 2019-10-24 | Balancing apparatus, and battery management system and battery pack including the same |
EP19877420.0A EP3790151B1 (en) | 2018-10-26 | 2019-10-24 | Balancing apparatus, and battery management system and battery pack including the same |
CN201980017816.6A CN111886772B (zh) | 2018-10-26 | 2019-10-24 | 平衡装置、包括该平衡装置的电池管理系统和电池组 |
JP2020551371A JP7059507B2 (ja) | 2018-10-26 | 2019-10-24 | バランシング装置、それを含むバッテリー管理システム及びバッテリーパック |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180129069A KR102443667B1 (ko) | 2018-10-26 | 2018-10-26 | 밸런싱 장치, 및 그것을 포함하는 배터리 관리 시스템과 배터리팩 |
KR10-2018-0129069 | 2018-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085819A1 true WO2020085819A1 (ko) | 2020-04-30 |
Family
ID=70332075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/014081 WO2020085819A1 (ko) | 2018-10-26 | 2019-10-24 | 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11689031B2 (ko) |
EP (1) | EP3790151B1 (ko) |
JP (1) | JP7059507B2 (ko) |
KR (1) | KR102443667B1 (ko) |
CN (1) | CN111886772B (ko) |
WO (1) | WO2020085819A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3117274A1 (fr) * | 2020-12-08 | 2022-06-10 | Renault S.A.S | Procédé d’équilibrage |
EP4106133A4 (en) * | 2020-10-29 | 2024-01-10 | LG Energy Solution, Ltd. | BATTERY MANAGEMENT DEVICE AND METHOD, AND BATTERY MANAGEMENT SYSTEM |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102236384B1 (ko) * | 2017-10-27 | 2021-04-05 | 주식회사 엘지화학 | 배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩 |
US11476679B2 (en) * | 2019-06-11 | 2022-10-18 | A123 Systems, LLC | Dual voltage battery and method for operating the same |
EP3989423B1 (en) * | 2019-06-20 | 2023-05-24 | Mitsubishi Electric Corporation | Power conversion system |
EP4225606A4 (en) * | 2020-10-09 | 2024-05-15 | Our Next Energy, Inc. | POWER SUPPLY OF AN ELECTRIC VEHICLE |
CN114498905B (zh) * | 2022-02-28 | 2022-10-11 | 上海玫克生储能科技有限公司 | 不同功率模式切换的电源供电系统 |
KR102583606B1 (ko) * | 2022-12-01 | 2023-09-27 | 주식회사 이엘티 | 태양광 발전용 가정형 하이브리드 에너지 통합 관리 시스템 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003189490A (ja) * | 2001-12-14 | 2003-07-04 | Honda Motor Co Ltd | 蓄電装置の残容量均等化装置 |
JP2007151256A (ja) * | 2005-11-25 | 2007-06-14 | Yazaki Corp | バッテリの管理装置 |
JP2008508685A (ja) * | 2004-07-28 | 2008-03-21 | エナーデル、インク | マルチセルリチウム電池システムのセル平衡化の方法及び装置 |
JP2016078533A (ja) * | 2014-10-14 | 2016-05-16 | 三菱電機株式会社 | エンジン始動装置 |
KR20170013445A (ko) * | 2015-07-27 | 2017-02-07 | 엘에스산전 주식회사 | 하이브리드 차량 제어 장치 |
KR20180129069A (ko) | 2017-05-25 | 2018-12-05 | 장선웅 | 수중 해적생물 포집장치 |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5164761A (en) * | 1991-03-06 | 1992-11-17 | Nikon Corporation | Battery system for camera |
JPH11355904A (ja) * | 1998-06-08 | 1999-12-24 | Honda Motor Co Ltd | バッテリ状態検出装置およびバッテリ状態検出ユニット |
JP3670522B2 (ja) * | 1999-07-30 | 2005-07-13 | 富士通株式会社 | バッテリパック |
JP2003189486A (ja) | 2001-12-13 | 2003-07-04 | Honda Motor Co Ltd | 蓄電装置の残容量均等化装置 |
JP3841001B2 (ja) | 2002-03-26 | 2006-11-01 | 新神戸電機株式会社 | 電池制御システム |
US7417405B2 (en) | 2004-10-04 | 2008-08-26 | Black & Decker Inc. | Battery monitoring arrangement having an integrated circuit with logic controller in a battery pack |
CN201174408Y (zh) * | 2004-10-04 | 2008-12-31 | 布莱克和戴克公司 | 监视电池组电池的设备及在充电期间平衡电池电压的装置 |
US7598706B2 (en) * | 2007-01-26 | 2009-10-06 | General Electric Company | Cell balancing battery pack and method of balancing the cells of a battery |
JP4845756B2 (ja) | 2007-01-31 | 2011-12-28 | 三洋電機株式会社 | 車両用の電源装置 |
JP4785797B2 (ja) | 2007-07-03 | 2011-10-05 | 三洋電機株式会社 | 車両用の電源装置 |
KR100993110B1 (ko) * | 2007-07-26 | 2010-11-08 | 주식회사 엘지화학 | 배터리 셀의 충전량 밸런싱 장치 및 방법 |
US7915859B2 (en) * | 2008-05-07 | 2011-03-29 | Lg Electronics Inc. | Apparatus and method for controlling power |
KR101091352B1 (ko) * | 2008-05-28 | 2011-12-07 | 주식회사 엘지화학 | 과방전 방지 기능을 구비한 배터리 팩의 밸런싱 장치 |
US20100207571A1 (en) * | 2009-02-19 | 2010-08-19 | SunCore Corporation | Solar chargeable battery for portable devices |
JP5385719B2 (ja) | 2009-07-29 | 2014-01-08 | プライムアースEvエナジー株式会社 | 組電池の管理装置 |
JP5498286B2 (ja) | 2009-08-31 | 2014-05-21 | 株式会社東芝 | 二次電池装置および車両 |
JP5470073B2 (ja) * | 2010-02-05 | 2014-04-16 | 日立ビークルエナジー株式会社 | 電池制御装置および電池システム |
KR101234059B1 (ko) * | 2010-02-22 | 2013-02-15 | 주식회사 엘지화학 | 셀 밸런싱부의 고장 진단 장치 및 방법 |
KR101256952B1 (ko) * | 2010-03-05 | 2013-04-25 | 주식회사 엘지화학 | 셀 밸런싱부의 고장 진단 장치 및 방법 |
JP5706108B2 (ja) | 2010-07-12 | 2015-04-22 | 旭化成株式会社 | エネルギー蓄積装置 |
KR101617292B1 (ko) | 2010-08-02 | 2016-05-18 | 엘지전자 주식회사 | 전기자동차 및 그 보조배터리의 충전제어방법. |
KR101750055B1 (ko) | 2010-09-13 | 2017-06-22 | 삼성전자주식회사 | 보조 전원 장치, 그것을 포함하는 메모리 시스템, 및 그것의 셀 균형 방법 |
JP5621044B2 (ja) * | 2011-05-31 | 2014-11-05 | エルジー・ケム・リミテッド | 電力貯蔵用単位ラックを連結するための電圧平準化装置及びこれを含む電力貯蔵システム |
EP2762346A1 (en) | 2011-09-26 | 2014-08-06 | Toyota Jidosha Kabushiki Kaisha | Battery processing device, vehicle, battery processing method, and battery processing program |
KR101497602B1 (ko) * | 2012-05-02 | 2015-03-03 | 주식회사 엘지화학 | 배터리 밸런싱 시스템 및 이를 이용한 배터리 밸런싱 방법 |
KR102028170B1 (ko) * | 2012-08-13 | 2019-10-02 | 삼성에스디아이 주식회사 | 셀 밸런싱 회로 및 이를 구비한 배터리 팩 |
TW201417452A (zh) * | 2012-10-16 | 2014-05-01 | Samya Technology Co Ltd | 可提供交流電之行動電源 |
KR101477272B1 (ko) * | 2012-11-09 | 2015-01-06 | 주식회사 엘지화학 | 이차 전지 셀의 충전량 밸런싱 작업을 제어하는 장치 및 방법 |
KR101589198B1 (ko) * | 2013-02-19 | 2016-01-28 | 주식회사 엘지화학 | 셀 밸런싱 회로의 고장 진단 장치 및 방법 |
JP6124271B2 (ja) * | 2013-05-08 | 2017-05-10 | エルジー・ケム・リミテッド | バッテリー予熱システム及びそれを用いたバッテリー予熱方法 |
KR20150091890A (ko) * | 2014-02-04 | 2015-08-12 | 삼성에스디아이 주식회사 | 배터리 트레이, 배터리 랙, 에너지 저장 시스템, 및 배터리 트레이의 동작 방법 |
JP6408304B2 (ja) * | 2014-08-29 | 2018-10-17 | 株式会社マキタ | 電動機械器具 |
KR101746139B1 (ko) | 2014-10-20 | 2017-06-12 | 주식회사 엘지화학 | 보조 배터리를 이용한 셀 밸런싱 장치 및 방법 |
KR101783919B1 (ko) * | 2014-10-31 | 2017-10-10 | 주식회사 엘지화학 | 개방전압 추정 장치 및 방법 |
KR101601717B1 (ko) | 2014-11-25 | 2016-03-09 | 현대오트론 주식회사 | 밸런싱 소요시간을 이용한 배터리 셀 밸런싱 장치 및 방법 |
KR101602277B1 (ko) | 2014-12-05 | 2016-03-10 | 현대오트론 주식회사 | 배터리 셀 밸런싱 장치 및 방법 |
KR102350085B1 (ko) * | 2015-06-29 | 2022-01-10 | 삼성에스디아이 주식회사 | 배터리 관리 시스템 |
KR101807087B1 (ko) | 2015-12-14 | 2017-12-08 | 현대오트론 주식회사 | 전압 균일화 장치 및 방법 |
US9876369B2 (en) * | 2016-03-15 | 2018-01-23 | Lg Chem, Ltd. | Battery system and method for determining an open circuit fault condition in a battery module |
KR20180013574A (ko) * | 2016-07-29 | 2018-02-07 | 주식회사 엘지화학 | 배터리 밸런싱 장치 및 방법 |
US10063068B1 (en) * | 2017-04-11 | 2018-08-28 | Lg Chem, Ltd. | Battery system |
KR102150147B1 (ko) * | 2017-05-24 | 2020-09-01 | 주식회사 엘지화학 | 배터리 모듈 균등화 장치 및 방법 |
KR102232116B1 (ko) * | 2017-06-13 | 2021-03-25 | 주식회사 엘지화학 | 밸런싱 저항을 이용한 과전압 방지 시스템 |
KR102173777B1 (ko) * | 2017-07-25 | 2020-11-03 | 주식회사 엘지화학 | 마스터 배터리 관리 유닛 및 이를 포함하는 배터리팩 |
KR102236384B1 (ko) * | 2017-10-27 | 2021-04-05 | 주식회사 엘지화학 | 배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩 |
KR102030118B1 (ko) * | 2017-11-03 | 2019-10-08 | 주식회사 엘지화학 | 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차 |
KR102258171B1 (ko) * | 2017-12-15 | 2021-05-28 | 주식회사 엘지에너지솔루션 | 워치독 타이머를 진단하기 위한 장치 및 방법 |
US11695293B2 (en) * | 2017-12-22 | 2023-07-04 | Litech Laboratories, Llc | Power system |
WO2020003806A1 (ja) * | 2018-06-27 | 2020-01-02 | 日立オートモティブシステムズ株式会社 | 電池管理装置、集積回路 |
KR102500362B1 (ko) * | 2018-10-19 | 2023-02-14 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 |
KR102372385B1 (ko) * | 2019-01-03 | 2022-03-07 | 주식회사 엘지에너지솔루션 | 배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩 |
US11418041B2 (en) * | 2019-03-15 | 2022-08-16 | Lg Energy Solution, Ltd. | Battery system |
JP7107495B2 (ja) * | 2019-10-22 | 2022-07-27 | エルジー エナジー ソリューション リミテッド | 並列で接続されたバッテリーパックのバランシング装置及び方法 |
-
2018
- 2018-10-26 KR KR1020180129069A patent/KR102443667B1/ko active IP Right Grant
-
2019
- 2019-10-24 US US17/042,011 patent/US11689031B2/en active Active
- 2019-10-24 CN CN201980017816.6A patent/CN111886772B/zh active Active
- 2019-10-24 EP EP19877420.0A patent/EP3790151B1/en active Active
- 2019-10-24 WO PCT/KR2019/014081 patent/WO2020085819A1/ko unknown
- 2019-10-24 JP JP2020551371A patent/JP7059507B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003189490A (ja) * | 2001-12-14 | 2003-07-04 | Honda Motor Co Ltd | 蓄電装置の残容量均等化装置 |
JP2008508685A (ja) * | 2004-07-28 | 2008-03-21 | エナーデル、インク | マルチセルリチウム電池システムのセル平衡化の方法及び装置 |
JP2007151256A (ja) * | 2005-11-25 | 2007-06-14 | Yazaki Corp | バッテリの管理装置 |
JP2016078533A (ja) * | 2014-10-14 | 2016-05-16 | 三菱電機株式会社 | エンジン始動装置 |
KR20170013445A (ko) * | 2015-07-27 | 2017-02-07 | 엘에스산전 주식회사 | 하이브리드 차량 제어 장치 |
KR20180129069A (ko) | 2017-05-25 | 2018-12-05 | 장선웅 | 수중 해적생물 포집장치 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3790151A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4106133A4 (en) * | 2020-10-29 | 2024-01-10 | LG Energy Solution, Ltd. | BATTERY MANAGEMENT DEVICE AND METHOD, AND BATTERY MANAGEMENT SYSTEM |
FR3117274A1 (fr) * | 2020-12-08 | 2022-06-10 | Renault S.A.S | Procédé d’équilibrage |
WO2022122621A1 (fr) * | 2020-12-08 | 2022-06-16 | Renault S.A.S | Procédé d'équilibrage |
Also Published As
Publication number | Publication date |
---|---|
KR20200047075A (ko) | 2020-05-07 |
JP7059507B2 (ja) | 2022-04-26 |
CN111886772B (zh) | 2024-04-26 |
US20210167610A1 (en) | 2021-06-03 |
US11689031B2 (en) | 2023-06-27 |
JP2021517448A (ja) | 2021-07-15 |
KR102443667B1 (ko) | 2022-09-14 |
CN111886772A (zh) | 2020-11-03 |
EP3790151A4 (en) | 2021-07-21 |
EP3790151B1 (en) | 2024-07-17 |
EP3790151A1 (en) | 2021-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020085819A1 (ko) | 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩 | |
WO2019216532A1 (ko) | 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템 | |
WO2019221368A1 (ko) | 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법 | |
KR101107999B1 (ko) | 전압 센서와 전하 균일 장치가 결합된 배터리 운용 시스템 | |
WO2013119070A1 (ko) | 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치 | |
WO2014054874A2 (ko) | 멀티 bms 기동 장치 | |
WO2018021664A1 (ko) | 배터리 밸런싱 장치 및 방법 | |
WO2019078589A1 (ko) | 배터리팩 및 그것을 포함하는 전력 시스템 | |
JP2004336994A (ja) | バッテリーパック及び該バッテリーパックを内蔵するバッテリーチャージ/ディスチャージ回路 | |
WO2019088558A1 (ko) | 배터리 팩 | |
KR20160099357A (ko) | 배터리 팩 및 이를 포함하는 배터리 시스템 | |
WO2022149958A1 (ko) | 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법 | |
WO2022092612A1 (ko) | 충전 관리 장치, 충전 관리 방법, 및 전기 차량 | |
WO2021060761A1 (ko) | 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차 | |
WO2020071682A1 (ko) | Bms 간 통신 시스템 및 방법 | |
WO2012023707A2 (ko) | 배터리 팩 그리고 배터리 팩의 액티브 셀 밸런싱 방법 | |
WO2020055162A1 (ko) | 스위치 진단 장치 및 방법 | |
WO2013047973A1 (ko) | 외부 배터리 셀을 이용하여 셀 밸런싱을 수행하는 전원 공급 장치 및 그의 셀 밸런싱 방법 | |
US11588189B2 (en) | Battery control method | |
WO2021210904A1 (ko) | 전압 센싱 회로, 배터리 팩 및 배터리 시스템 | |
KR20180114321A (ko) | 스위칭 디바이스를 제어하기 위한 시스템 | |
WO2023043023A1 (ko) | 셀 밸런싱 회로 및 이를 포함하는 배터리 시스템 | |
WO2015016427A1 (ko) | 선형 레귤레이터를 이용한 2차 전지 충전회로 | |
KR20210047750A (ko) | 배터리 관리 시스템 및 밸런싱 방법 | |
WO2023038289A1 (ko) | 배터리 관리 장치 및 그것의 동작 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877420 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020551371 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019877420 Country of ref document: EP Effective date: 20201202 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |