[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015126035A1 - 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법 - Google Patents

전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법 Download PDF

Info

Publication number
WO2015126035A1
WO2015126035A1 PCT/KR2014/010869 KR2014010869W WO2015126035A1 WO 2015126035 A1 WO2015126035 A1 WO 2015126035A1 KR 2014010869 W KR2014010869 W KR 2014010869W WO 2015126035 A1 WO2015126035 A1 WO 2015126035A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery rack
relay
battery
state
Prior art date
Application number
PCT/KR2014/010869
Other languages
English (en)
French (fr)
Inventor
이종범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/649,347 priority Critical patent/US9954379B2/en
Priority to EP14868728.8A priority patent/EP2930811B1/en
Publication of WO2015126035A1 publication Critical patent/WO2015126035A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an apparatus, system and method for preventing damage to a battery rack through voltage measurement, and more particularly, a relay for energizing or interrupting a current flowing in a battery rack including a plurality of battery modules.
  • a relay for energizing or interrupting a current flowing in a battery rack including a plurality of battery modules.
  • the relay is operated before the battery rack and the relay form a short circuit.
  • the present invention relates to a battery rack breakage prevention device, system, and method through voltage measurement that prevents a short circuit occurring in a battery rack in which a relay is abnormally installed by controlling a state, thereby preventing breakage of the battery rack.
  • the secondary battery battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that the primary advantage of dramatically reducing the use of fossil energy is not only a by-product but also no byproducts are generated.
  • secondary battery batteries used in electric vehicles, hybrid vehicles, energy storage systems and uninterruptible power supplies are configured by connecting a plurality of battery racks including a plurality of battery modules for charging or discharging high power and large capacity.
  • a battery rack in which high power and a large amount of power are frequently charged or discharged is provided with a relay control technology for controlling a current flowing in the battery rack by installing a relay to protect the battery rack from overcharge, overdischarge, and surge current. have.
  • the relay installed by the installer is abnormally installed to protect the battery rack and is composed of a closed circuit connected only to the relay and the battery rack without an external load, a short circuit occurs in the battery rack.
  • the above short circuit occurs in some battery racks among a plurality of battery racks connected to secure high capacity, the charging speed of each battery rack is changed due to the capacity variation between the battery racks, which causes the first charged battery rack to be overcharged.
  • the battery rack is damaged due to overheating or swelling.
  • the present inventors in installing a relay for energizing or interrupting a current flowing in the battery rack including a plurality of battery modules, the battery module and the relay is abnormally connected in some battery racks, the voltage is less than the voltage limit set in the battery rack
  • the battery through voltage measurement to prevent the breakdown of the battery rack by preventing the short circuit occurring in the battery rack is installed abnormally by controlling the operating state of the relay before the battery rack and the relay to form a short circuit Invented a rack breakage prevention apparatus, system and method.
  • An object of the present invention is to install a relay for energizing or interrupting a current flowing in a battery rack including a plurality of battery modules in some battery racks are abnormally connected to the battery module and the relay is less than the preset voltage limit value in the battery rack
  • the voltage is measured by controlling the operation state of the relay before the battery rack and the relay form a short circuit, thereby preventing the battery rack from being broken by preventing a short circuit occurring in the battery rack in which the relay is abnormally installed.
  • an object of the present invention is to measure the voltage of the battery rack through a voltage measuring unit short circuit that can be generated in the battery rack when the closed circuit is connected only to the relay and the battery rack without an external load due to the installation of an abnormal relay of the installer
  • the detected voltage value is less than the preset voltage limit value
  • An object of the present invention is to provide a battery rack breakage preventing device, system, and method through voltage measurement that can prevent a battery rack from being damaged.
  • an object of the present invention is to provide a battery rack breakage prevention device by measuring the voltage in each of the at least one battery rack in the energy storage device or battery system connected to one or more battery rack to charge and discharge power, Measure the voltage value of the battery rack and compare it with a preset voltage limit value, and perform a voltage measurement to individually perform the process of controlling the operation state of the precharge relay and the main relay of the battery rack according to the comparison result.
  • Battery rack breakage prevention device through a voltage measurement includes a voltage measuring unit for measuring the voltage value of the battery rack including a plurality of battery modules; A comparison unit comparing the magnitude of the voltage value measured by the voltage measurement unit with a preset voltage limit value; And based on the comparison result derived through the comparison unit after the operation state of the precharge relay is changed to the on state and before the operation state of the main relay is changed from the off state to the on state. And a relay controller for controlling an operation state of the charge relay and the main relay, wherein the relay controller is provided in each of at least one battery rack, and measures a voltage value of the battery rack with respect to the battery rack, and compares the voltage value with a preset voltage limit value. According to the comparison result, a process of controlling the operating states of the precharge relay and the main relay of the corresponding battery rack may be separately performed.
  • the precharge relay may be connected in series with a precharge resistor whose resistance value is determined according to the capacity of the battery rack to reduce the current value of the overcurrent flowing to the battery rack.
  • the voltage measuring unit may measure the voltage applied to both ends of the battery rack and transmit the measured voltage value to the comparison unit.
  • the comparator may transmit a voltage under signal to the relay controller when the voltage value received from the voltage measurer is less than a preset voltage limit value.
  • the relay controller may change the operation state of the precharge relay from on to off and maintain the operation state of the main relay in the off state. .
  • the battery rack breakage prevention device by measuring the voltage may be included in a battery management system for controlling the one or more battery racks.
  • Battery rack damage prevention system through a voltage measurement includes a voltage measuring unit for measuring the voltage value of the battery rack including a plurality of battery modules; A comparison unit comparing the magnitude of the voltage value measured by the voltage measurement unit with a preset voltage limit value; And after the operation state of the precharge relay is changed to the on state, and before the operation state of the main relay is changed from the off state to the on state, the operation state of the precharge relay and the main relay is based on the comparison result value derived through the comparison unit.
  • a battery rack breakage prevention device through voltage measurement including a relay control unit for controlling, in each of the one or more battery racks, measuring a voltage value of the battery rack with respect to the corresponding battery rack, and comparing it with a preset voltage limit value. According to the comparison result, a process of controlling the operating states of the precharge relay and the main relay of the corresponding battery rack may be separately performed.
  • the precharge relay of the battery rack breakage prevention device through the voltage measurement provided in the battery rack breakage prevention system through voltage measurement is in series with the precharge resistor whose resistance value is determined according to the capacity of the battery rack. It is connected to reduce the current value of the overcurrent flowing to the battery rack.
  • the voltage measuring unit of the battery rack breakage prevention device through the voltage measurement provided in the battery rack breakage prevention system through voltage measurement measures the applied voltage of both ends of the battery rack and compare the measured voltage value You can send negative.
  • the undersignal may be transmitted to the relay controller.
  • the relay control unit of the battery rack damage prevention device through the voltage measurement provided in the battery rack damage prevention system through the voltage measurement operation state of the precharge relay when the voltage under signal is received from the comparator Can be changed from on to off state and the operation state of the main relay can be kept off state.
  • the battery rack breakage prevention system by measuring the voltage may be included in a battery management system for controlling the one or more battery racks.
  • a method for preventing battery rack damage through voltage measurement may include (a) a battery rack breakage prevention device through voltage measurement including a voltage measuring unit, a comparison unit, and a relay controller in each of at least one battery rack. Doing; And (b) a battery rack breakage preventing device through the voltage measurement is provided in each of the one or more battery racks, and measures a voltage value of the battery rack with respect to the battery rack, and compares the voltage with a preset voltage limit value. And separately performing a process of controlling operating states of the precharge relay and the main relay of the corresponding battery rack, wherein the step (b) includes (b1) the voltage measuring unit including a plurality of battery modules.
  • the step (b1) may include: measuring, by the voltage measuring unit, an applied voltage at both ends of the battery rack and transmitting the measured voltage value to the comparator.
  • the step (b2) may further include transmitting a voltage undersignal signal to the relay controller when the comparator receives a voltage value received from the voltage measurer below a preset voltage limit value. have.
  • the relay control unit when the relay control unit receives the undervoltage signal from the comparator, the relay control unit changes the operation state of the precharge relay from on to off state and the main relay. And maintaining an operating state of the off state.
  • An apparatus, system, and method for preventing damage to a battery rack through voltage measurement may include precharging before a short phenomenon occurs in a battery rack when a measured voltage value of the battery rack falls below a preset voltage limit value.
  • the relay cuts off the current flowing in the battery rack in which the relay is abnormally installed. Therefore, by preventing a short phenomenon that may occur in the battery rack has an effect of preventing the battery rack damage and fire due to overcharge and overheating.
  • the present invention is an energy storage device or battery system that is connected to one or more battery racks to charge and discharge power, each of the one or more battery racks is provided with a battery rack damage prevention device by measuring the voltage, corresponding to the corresponding battery rack By measuring the voltage value of the battery rack and comparing it with a preset voltage limit value, and individually performing the process of controlling the operation state of the precharge relay and the main relay of the battery rack according to the comparison result, a short phenomenon of some battery rack Due to this has the effect of preventing charge capacity imbalance between the battery racks.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a battery rack breakage prevention apparatus may be applied through voltage measurement according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of a battery rack breakage prevention apparatus through voltage measurement according to an embodiment of the present invention.
  • FIG 3 is a view showing an example of a specific configuration of a battery rack damage prevention device through a voltage measurement according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example in which the battery rack breakage prevention apparatus through voltage measurement operates in the battery rack breakage prevention system through voltage measurement.
  • FIG. 5 is a diagram illustrating another example in which the battery rack breakage prevention apparatus through voltage measurement operates in the battery rack breakage prevention system through voltage measurement.
  • FIG. 6 is a flowchart illustrating a procedure of a method of preventing battery rack breakage through voltage measurement according to an embodiment of the present invention.
  • ... unit described in the specification means a unit for processing one or more functions or operations, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 1 is a view schematically illustrating an electric vehicle to which a battery rack breakage prevention apparatus may be applied through voltage measurement according to an embodiment of the present invention.
  • FIG. 1 illustrates an example in which a battery rack breakage prevention device through voltage measurement according to an embodiment of the present invention is applied to an electric vehicle, but the battery rack breakage prevention device through voltage measurement according to an embodiment of the present invention is electrically
  • any technical field may be applied as long as a secondary battery battery such as a mobile device, an energy storage system (ESS), or an uninterruptible power supply (UPS) may be applied.
  • ESS energy storage system
  • UPS uninterruptible power supply
  • the electric vehicle 1 may include a battery 10, a battery management system (BMS) 20, an electronic control unit (ECU) 30, an inverter 40, and a motor 50.
  • BMS battery management system
  • ECU electronice control unit
  • inverter 40 inverter 40
  • motor 50 a motor 50.
  • the battery 10 is an electric energy source for driving the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 may be charged or discharged by the inverter 40 according to the driving of the motor 50 or the internal combustion engine (not shown).
  • the type of the battery 10 is not particularly limited, and the battery 10 may be, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, or the like.
  • the BMS 20 estimates the state of the battery 10 and manages the battery 10 using the estimated state information.
  • the battery 10 state information such as state of charging (SOC), state of health (SOH), maximum input / output power allowance, and output voltage of the battery 10 is estimated and managed.
  • the charging or discharging of the battery 10 is controlled using the state information, and the replacement time of the battery 10 may be estimated.
  • the BMS 20 may include a battery rack breakage prevention device and system through a voltage measurement to be described later.
  • the battery rack breakage prevention device and system through the voltage measurement it is possible to prevent the battery 10 from being overheated due to overcharging or short (short) occurs.
  • the ECU 30 is an electronic control device for controlling the state of the electric vehicle 1.
  • the torque degree is determined based on information such as an accelerator, a brake, a speed, and the like, and the output of the motor 50 is controlled to match the torque information.
  • the ECU 30 transmits a control signal to the inverter 40 so that the battery 10 can be charged or discharged based on state information such as SOC and SOH of the battery 10 received by the BMS 20. .
  • the inverter 40 causes the battery 10 to be charged or discharged based on the control signal of the ECU 30.
  • the motor 50 drives the electric vehicle 1 based on the control information (for example, torque information) transmitted from the ECU 30 using the electric energy of the battery 10.
  • control information for example, torque information
  • FIG. 2 is a block diagram illustrating a configuration of a battery rack breakage prevention device through voltage measurement according to an embodiment of the present invention
  • Figure 3 is a battery rack damage prevention device through voltage measurement according to an embodiment of the present invention It is a figure which shows an example of a specific structure.
  • the battery rack breakage prevention apparatus 100 through voltage measurement may include a battery rack 110, a first battery rack 111, a second battery rack 112, and a voltage measuring unit 120. , The comparator 130, the precharge relay 141, the precharge resistor 142, the main relay 143, and the relay controller 150.
  • the apparatus for preventing damage to the battery rack 100 by measuring the voltage in FIGS. 2 and 3 is according to one embodiment, and its components are not limited to the embodiment shown in FIGS. , Can be changed or deleted.
  • the battery rack 110 may be discharged by being supplied with electric power or being charged by supplying electrical energy charged in the battery rack 110 to the load.
  • the type of the battery rack 110 is not particularly limited, and may include a plurality of battery modules.
  • the battery rack 110 may be included in the battery 10 shown in FIG. 1, and the detailed description thereof will be omitted since the battery rack 110 uses a known technology.
  • the first battery rack 111 and the second battery rack 112 illustrated in FIG. 3 may be included in the battery rack 110, and the precharges connected to prevent breakage of the battery rack 110 are provided.
  • the battery modules 111a, 111b,..., 111n connected to the lower side of the relay 141, the precharge resistor 142, and the main relay 143 may be components of the first battery rack 111.
  • the battery modules 112a, 112b,..., 112n connected to the upper side may be components of the second battery rack 112.
  • the voltage measuring unit 120 which will be described later, may be positioned in contact with the negative ( ⁇ ) pole of the first battery rack 111 and the positive (+) pole of the second battery rack 112 to measure a voltage.
  • the voltage measuring unit 120 is located in contact with both ends (plus (+) and minus ()) of the battery rack 110 described above to serve to measure the potential difference of the voltage applied to the battery rack 110. Can be. Meanwhile, the voltage measuring unit 120 may include one or more switch elements, capacitors, conductive wires, etc. to measure the voltage of the battery rack 110. The voltage value measured through the voltage measuring unit 120 may be transmitted to the comparator 130 to be described later.
  • the comparator 130 may receive a measured voltage value from the voltage measurer 120 and compare the measured voltage value with a preset voltage limit value.
  • the preset voltage limit value is such that the short circuit is not formed because the battery rack 110, the precharge relay 141, the precharge resistor 142, and the main relay 143 are normally connected.
  • the voltage value measured by the battery rack 110 is initially set or may be set by a user.
  • the preset voltage limit value may be 400V.
  • the comparator 130 may transmit a voltage under signal to the relay controller 150 to be described later, and the measured voltage value is less than the preset voltage limit value. If not, the undervoltage signal will not be transmitted.
  • the comparator 130 may further include a separate ballast (for example, a resistor having a high resistance value, etc.) (not shown) similarly to the voltage measurer 120, and thus, from the high voltage It can be configured to protect itself inside.
  • a separate ballast for example, a resistor having a high resistance value, etc.
  • the precharge relay 141 and the precharge resistor 142 may be connected in series, and the main relay 143 may be connected in parallel with the precharge relay 141 and the precharge resistor 142 connected in series to the battery rack. It may serve to energize or cut off the current flowing in the (110).
  • An operating state of the precharge relay 141 and the main relay 143 may correspond to either an on state in which a pair of wires are in contact with each other, or an off state in which the wires are spaced from each other.
  • an operation state of any one or more of the relay 141 and the main relay 143 corresponds to an on state, current flowing through the battery rack 110 is energized, and both the precharge relay 141 and the main relay 143 are turned off. In this case, the current flowing in the battery rack 110 may be blocked.
  • the precharge relay 141 may be changed to an on state and may be free.
  • a surge current may flow to the precharge resistor 142 connected in series with the precharge relay 141 to protect the battery rack 110.
  • the operation state of the main relay 143 may be changed to an on state after a preset time (for example, a time corresponding to 1s) after the operation state of the precharge relay 141 is changed to the on state, and the comparison unit 130 is a voltage value measured by the voltage measuring unit 120 after the operation state of the precharge relay 141 is changed to the on state and before the operation state of the main relay 143 is changed to the on state. Compare and determine the set voltage limit value.
  • a preset time for example, a time corresponding to 1s
  • the preset voltage limit value may be set in the battery rack 110 in which the short circuit is not formed because the battery rack 110, the precharge relay 141, the precharge resistor 142, and the main relay 143 are normally connected.
  • the voltage value to be measured is initially set or can be set by the user.
  • the preset voltage limit value may be 400V.
  • the operating state of the precharge relay 141 and the main relay 143 is changed to the on state, and then the operating state of the precharge relay 141 is changed to the off state after a preset time (for example, a time corresponding to 1 s).
  • the power supplied to the battery rack 110 may be supplied without passing through the precharge resistor 142.
  • the relay controller 150 may be connected to the comparator 130, the precharge relay 141, the precharge resistor 142, and the main relay 143.
  • the relay controller 150 may connect the comparator 130 to the comparator 130.
  • When receiving the under voltage signal through the precharge relay 141 may change the operating state from the on state to the off state and may serve to maintain the operating state of the main relay 143 in the off state.
  • the relay controller 150 may not control the operation states of the precharge relay 141 and the main relay 143.
  • FIG. 4 is a diagram illustrating an example in which the battery rack breakage prevention apparatus through voltage measurement operates in the battery rack breakage prevention system through voltage measurement.
  • the battery rack breakage prevention system 100 ′ through voltage measurement may be applied to one or more battery racks 111 ′, 110 ′ b,..., 110 ′ n, respectively.
  • Battery rack breakage prevention device (100'a, ..., 100'n) by measuring the voltage may be provided.
  • the battery rack breakage prevention system 100 ′ through voltage measurement may include a first and second battery racks 111 ′ and 112 ′ provided with a battery rack breakage prevention device 100 ′ a through voltage measurement. And measure voltage values of the second battery racks 111 ′ and 112 ′ and compare them with preset voltage limits, and precharge relays of the first and second battery racks 111 ′ and 112 ′ according to the comparison result. 141 ') and the process of controlling the operation states of the main relay 143' may be performed separately.
  • the above processes may be performed separately.
  • Charging and discharging of the device or battery system can be carried out continuously.
  • the battery rack breakage prevention device 100'a by measuring voltage is abnormally connected to the first battery rack 111 ', the precharge relay 141', the precharge resistor 142 ', and the main relay 143'. It may be an example formed as a closed circuit without an external load. In the closed circuit, the precharge jill 141 'and the precharge resistor 142' are connected in series to prevent a short phenomenon when the operation state of the precharge relay 141 'is changed from off to on. Can be done.
  • the second battery rack 112 ' is connected to the precharge resistors 142'b, ..., 142'n of the battery rack breakage prevention device 100'b, ..., 100'n by measuring the voltage. It can act to prevent the short phenomenon.
  • the voltage measuring unit 120'a may serve to measure a voltage applied to the second battery rack 112 'except for the first battery rack 111'.
  • the voltage value measured by the voltage measuring unit 120 ' is a measurement value measuring a voltage applied only to the second battery rack 112' except for the first battery rack 111 '. b, ..., 120'n) may be smaller than the measured voltage value.
  • the comparator 130 ′ compares and determines the voltage value measured by the voltage measuring unit 120 ′ with a preset voltage limit value, when the measured voltage value falls below a preset voltage limit value.
  • a signal may be transmitted to the relay controller 150 ′.
  • the relay controller 150 ′ receiving the undervoltage signal maintains the operating state of the precharge relay 141 ′ before the operating state of the main relay 143 ′ is changed from off to on. As a result, a short phenomenon occurring in the first battery rack 111 ′ may be prevented.
  • each charging speed is changed by a capacity deviation between the battery racks 111 ′, 112 ′, 110 ′ b,..., 110 ′ n. It may serve to prevent breakage due to overcharge, overheating or swelling.
  • the preset voltage limit value may include the first battery rack 111 ′ and the second battery rack 112 ′, the precharge relay 141 ′, the precharge resistor 142 ′, and the main relay 143 ′. It is initially set to a voltage value measured across the negative (-) pole of the first battery rack 111 ′ and the positive (+) pole of the second battery rack 112 ′ where the short circuit is not normally formed, or This value can be set by the user.
  • the preset voltage limit value may be 400V.
  • FIG. 5 is a diagram illustrating another example in which the battery rack breakage prevention apparatus through voltage measurement operates in the battery rack breakage prevention system through voltage measurement.
  • the battery rack breakage prevention system 100 ′′ through voltage measurement may be applied to each of one or more battery racks 112 ′′, 110 ′′ b,.
  • Battery rack breakage prevention device (100 “a, ..., 100" n) by measuring the voltage may be provided.
  • Battery rack breakage prevention system (100 ") by measuring the voltage of the first and second battery racks 111", 112 "equipped with a battery rack breakage prevention device (100" a) by measuring the voltage, the first And measure voltage values of the second battery racks 111 ′′ and 112 ′′ and compare them with preset voltage limits, and precharge relays of the first and second battery racks 111 ′′ and 112 ′′ according to the comparison result.
  • the process of controlling the operation state of the 141 ′′ and the main relay 143 ′′ may be performed separately.
  • the battery through the voltage measurement as if the above procedures were performed separately.
  • the above processes may also be performed separately for the corresponding battery racks 110 "b, ..., 110" n respectively provided with the rack breakage preventing devices 100 "b, ..., 100" n. .
  • Charging and discharging of the device or battery system can be carried out continuously.
  • Battery rack breakage prevention device (100 “a) by measuring the voltage is abnormally connected to the second battery rack 112", precharge relay 141 “, precharge resistor 142" and the main relay 143 "
  • This may be an example of a closed circuit having no external load.
  • the precharge Gillay 141 "and the precharge resistor 142" are connected in series so that the operation state of the precharge relay 141 "is turned off. When the state is changed, it may play a role of preventing a short phenomenon.
  • the first battery rack 111 is connected to the precharge resistors 142" b, ..., 142 “n of the battery rack breakage prevention device 100" b, ..., 100 “n by measuring voltage. It can act to prevent the short phenomenon.
  • the voltage measuring unit 120 may serve to measure a voltage applied to the first battery rack 111" except for the second battery rack 112 ".
  • the voltage value measured by the voltage measuring unit 120 is a measurement value measuring a voltage applied only to the first battery rack 111" except the second battery rack 112 ", and thus the other voltage measuring unit 120". b, ..., 120 "n) may be smaller than the measured voltage value.
  • the comparator 130" is connected to the voltage measuring unit 120 ".
  • the voltage under signal may be transmitted to the relay controller 150 ′′.
  • the relay controller 150 ′′ receiving the undervoltage signal transmits the operation state of the precharge relay 141 ′′ from on to off state before the operation state of the main relay 143 ′′ is changed from off to on state.
  • the charging speed of each of the battery racks 111 ′′, 112 ′′, 110 ′′ b may serve to prevent breakage caused by overcharge, overheating or swelling.
  • the preset voltage limit value may include the first battery rack 111 ′′ and the second battery rack 112 ′′, the precharge relay 141 ′′, the precharge resistor 142 ′′, and the main relay 143 ′′. It is initially set to the voltage value measured at both the negative (-) pole of the first battery rack 111 "and the positive (+) pole of the second battery rack 112" where the short circuit is not normally formed, or A value that can be set by a user, for example, the preset voltage limit value may be 400V.
  • FIG. 6 is a flowchart illustrating a procedure of a method of preventing battery rack breakage through voltage measurement according to an embodiment of the present invention.
  • the voltage measuring unit 120 measures voltages applied to both ends of the battery rack 110 (plus and minus poles), and compares the measured voltage values with the comparator 130. (S601).
  • the comparator 130 compares and determines whether the measured voltage value received through the voltage measurer 120 falls below a preset voltage limit value (S602).
  • the predetermined voltage limit value is a battery rack 110 and a battery rack in which a short circuit is not formed because the precharge relay 141, the precharge resistor 142, and the main relay 143 which are described later are normally connected.
  • the voltage value measured at 110 is initially set or may be set by a user.
  • the preset voltage limit value may be 400V.
  • the comparator 130 transmits the under voltage signal to the relay controller 150 (S604).
  • the relay controller 150 receives the undervoltage signal to change the operation state of the precharge relay 141 from on to off, and the operation state of the main relay 143 from off to on. It is kept in the off state before the change (S605).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것으로서, 보다 상세하게는, 복수의 배터리 모듈(Battery Module)을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이(Relay)를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전압 제한값 미만의 전압이 인가되는 경우, 배터리 랙과 릴레이가 쇼트 서킷(Short Circuit)을 형성하기 전에 릴레이의 동작 상태를 제어함으로써 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트(Short) 현상을 방지하여 배터리 랙의 파손을 방지하는 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것이다.

Description

전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
본 출원은 2014년 02월 20일에 한국특허청에 제출된 한국 특허 출원 제10-2014-0019882호 및 2014년 11월 12일에 한국특허청에 제출된 한국 특허 출원 제10-2014-0156961호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것으로서, 보다 상세하게는, 복수의 배터리 모듈(Battery Module)을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이(Relay)를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전압 제한값 미만의 전압이 인가되는 경우, 배터리 랙과 릴레이가 쇼트 서킷(Short Circuit)을 형성하기 전에 릴레이의 동작 상태를 제어함으로써 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트(Short) 현상을 방지하여 배터리 랙의 파손을 방지하는 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법에 관한 것이다.
최근 화석 에너지의 고갈과 화석 에너지의 사용으로 인한 환경오염으로 이차 전지 배터리를 이용하여 구동할 수 있는 전기 제품에 대한 관심이 높아지고 있다. 이에 따라, 모바일 기기, 전기 차량(Electric Vehicle; EV), 하이브리드 차량(Hybrid Vehicle; HV), 에너지 저장 시스템(Energy Storage System; ESS) 및 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지 배터리의 수요가 급격히 증가하고 있다.
이러한 이차 전지 배터리는 화석 에너지의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
특히 전기 차량, 하이브리드 차량, 에너지 저장 시스템 및 무정전 전원 공급 장치에 사용되는 이차 전지 배터리는 고출력 및 대용량의 전력을 충전 또는 방전하기 위하여 복수의 배터리 모듈을 포함하는 배터리 랙을 여러 개 연결하여 구성된다. 이와 같이, 고출력 및 대용량의 전력이 수시로 충전 또는 방전되는 배터리 랙에는 과충전, 과방전 및 써지성 전류로부터 배터리 랙을 보호하기 위해 릴레이를 설치하여 배터리 랙에 흐르는 전류를 제어하는 릴레이 제어 기술이 구비되어 있다.
하지만, 배터리 랙을 보호하기 위해 설치자에 의해 설치된 릴레이가 비정상적으로 설치되어 외부 부하없이 릴레이와 배터리 랙으로만 연결된 폐회로로 구성되는 경우 배터리 랙에는 쇼트 현상이 발생된다. 고용량을 확보하기 위해 복수로 연결된 배터리 랙 중 일부 배터리 랙에서 상기의 쇼트 현상이 발생되는 경우 배터리 랙 간에 용량 편차로 인해 각 배터리 랙의 충전 속도가 달라지고, 이로 인해 먼저 충전된 배터리 랙이 과충전됨으로써 배터리 랙이 과열 또는 스웰링으로 파손되는 문제점이 발생된다.
이에, 본 발명자는 복수의 배터리 모듈을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전압 제한값 미만의 전압이 인가되는 경우, 배터리 랙과 릴레이가 쇼트 서킷을 형성하기 전에 릴레이의 동작 상태를 제어함으로써 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트 현상을 방지하여 배터리 랙의 파손을 방지하는 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 발명하기에 이르렀다.
본 발명의 목적은, 복수의 배터리 모듈을 포함하는 배터리 랙에 흐르는 전류를 통전 또는 차단하는 릴레이를 설치하는데 있어서 일부 배터리 랙에서 배터리 모듈과 릴레이가 비정상적으로 연결되어 배터리 랙에 기 설정된 전압 제한값 미만의 전압이 인가되는 경우, 배터리 랙과 릴레이가 쇼트 서킷을 형성하기 전에 릴레이의 동작 상태를 제어함으로써 릴레이가 비정상적으로 설치된 배터리 랙에 발생되는 쇼트 현상을 방지하여 배터리 랙의 파손을 방지하는 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 제공하고자 한다.
보다 구체적으로, 본 발명의 목적은 설치자의 비정상적인 릴레이 설치로 인해 외부 부하없이 릴레이와 배터리 랙으로만 연결된 폐회로가 구성되는 경우 전압 측정부를 통해 배터리 랙의 전압을 측정하여 배터리 랙에서 발생될 수 있는 쇼트 현상 감지하고 측정된 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 배터리 랙에 쇼트 현상이 일어난 것으로 판단하여 릴레이 제어부를 통해 프리차지 릴레이와 메인 릴레이를 제어함으로써 배터리 랙에 흐르는 전류를 차단하여 쇼트 현상으로 인한 배터리 랙의 파손을 방지할 수 있는 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 제공하고자 한다.
또한, 본 발명의 목적은 하나 이상의 배터리 랙이 연결되어 전력을 충방전하는 에너지 저장 장치 또는 배터리 시스템에서, 하나 이상의 배터리 랙 각각에 전압 측정을 통한 배터리 랙 파손 방지 장치를 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행할 수 있는 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치는 복수의 배터리 모듈을 포함하는 배터리 랙의 전압값을 측정하는 전압 측정부; 상기 전압 측정부를 통해 측정된 전압값과 기 설정된 전압 제한값의 대소를 비교하는 비교부; 및 프리차지 릴레이의 동작 상태가 온(On) 상태로 변경된 후, 메인 릴레이의 동작 상태가 오프(Off)에서 온(On) 상태로 변경되기 전에 상기 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부;를 포함하되, 하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행할 수 있다.
일 실시예에서, 상기 프리차지 릴레이는 상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시킬 수 있다.
일 실시예에서, 상기 전압 측정부는 상기 배터리 랙의 양단의 인가되는 전압을 측정하고 측정된 전압값을 상기 비교부로 전송할 수 있다.
일 실시예에서, 상기 비교부는 상기 전압 측정부로부터 전송받은 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 상기 릴레이 제어부에 전송할 수 있다.
일 실시예에서, 상기 릴레이 제어부는 상기 비교부로부터 상기 전압 미달 신호를 전송받는 경우 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시킬 수 있다.
일 실시예에서, 상기 전압 측정을 통한 배터리 랙 파손 방지 장치는 상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템에 포함될 수 있다.
본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 시스템은 복수의 배터리 모듈을 포함하는 배터리 랙의 전압값을 측정하는 전압 측정부; 상기 전압 측정부를 통해 측정된 전압값과 기 설정된 전압 제한값의 대소를 비교하는 비교부; 및 프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부;를 포함하는 전압 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행할 수 있다.
일 실시예에서, 전압 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전압 측정을 통한 배터리 랙 파손 방지 장치의 상기 프리차지 릴레이는 상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시킬 수 있다.
일 실시예에서, 전압 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전압 측정을 통한 배터리 랙 파손 방지 장치의 상기 전압 측정부는 상기 배터리 랙의 양단의 인가되는 전압을 측정하고 측정된 전압값을 상기 비교부로 전송할 수 있다.
일 실시예에서, 전압 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전압 측정을 통한 배터리 랙 파손 방지 장치의 상기 비교부는 상기 전압 측정부로부터 전송받은 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 상기 릴레이 제어부에 전송할 수 있다.
일 실시예에서, 전압 측정을 통한 배터리 랙 파손 방지 시스템에 구비된 전압 측정을 통한 배터리 랙 파손 방지 장치의 상기 릴레이 제어부는 상기 비교부로부터 상기 전압 미달 신호를 전송받는 경우 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시킬 수 있다.
일 실시예에서, 상기 전압 측정을 통한 배터리 랙 파손 방지 시스템은 상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템에 포함될 수 있다.
본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 방법은 (a) 전압 측정부, 비교부 및 릴레이 제어부를 포함하는 전압 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하는 단계; 및 (b) 상기 전압 측정을 통한 배터리 랙 파손 방지 장치가 상기 하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행하는 단계;를 포함하되, 상기 (b) 단계는 (b1) 상기 전압 측정부가 복수의 배터리 모듈을 포함하는 배터리 랙의 전압값을 측정하는 단계; (b2) 상기 비교부가 상기 전압 측정부를 통해 측정된 전압값과 기 설정된 전압 제한값의 대소를 비교하는 단계; 및 (b3) 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 상기 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 비교부를 통해 도출된 비교 결과값을 근거하여 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 제어하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 (b1) 단계는 상기 전압 측정부가 상기 배터리 랙의 양단의 인가되는 전압을 측정하고 측정된 전압값을 상기 비교부로 전송하는 단계;를 포함할 수 있다.
일 실시예에서, 상기 (b2) 단계는 상기 비교부가 상기 전압 측정부로부터 전송받은 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 상기 릴레이 제어부에 전송하는 단계;를 더 포함할 수 있다.
일 실시예에서, 상기 (b3) 단계는 상기 릴레이 제어부가 상기 비교부로부터 상기 전압 미달 신호를 전송받는 경우, 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 단계;를 포함할 수 있다.
본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법은 배터리 랙의 측정 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 배터리 랙에 쇼트 현상이 발생되기 전에, 프리차지 릴레이와 메인 릴레이의 동작상태를 제어함으로써, 릴레이가 비정상적으로 설치된 배터리 랙에 흐르는 전류를 차단시킨다. 따라서, 배터리 랙에 발생될 수 있는 쇼트 현상을 방지하여 과충전 및 과열로 인한 배터리 랙 손상 및 화재를 예방하는 효과를 가진다.
또한, 본 발명은 하나 이상의 배터리 랙이 연결되어 전력을 충방전하는 에너지 저장 장치 또는 배터리 시스템에서, 하나 이상의 배터리 랙 각각에 전압 측정을 통한 배터리 랙 파손 방지 장치를 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행함으로써, 일부 배터리 랙의 쇼트 현상으로 인한 배터리 랙 간에 충전 용량 불균형을 방지하는 효과를 가진다.
도 1은 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치의 구성을 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치의 구체적인 구성의 일 예를 도시한 도면이다.
도 4는 전압 측정을 통한 배터리 랙 파손 방지 장치가 전압 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 일 예를 도시한 도면이다.
도 5는 전압 측정을 통한 배터리 랙 파손 방지 장치가 전압 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 다른 예를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 방법의 순서를 도시한 순서도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "...부"의 용어는 하나 이상의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치가 적용될 수 있는 전기 자동차를 개략적으로 도시한 도면이다.
도 1에서 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치가 전기 자동차에 적용된 예를 도시하고 있으나, 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치는 전기 자동차 이외에도 모바일 기기, 에너지 저장 시스템(Energy Storage System; ESS) 또는 무정전 전원 공급 장치(Uninterruptible Power Supply; UPS) 등 이차 전지 배터리가 적용될 수 있는 분야라면 어떠한 기술 분야라도 적용될 수 있다.
전기 자동차(1)는 배터리(10), BMS(Battery Management System, 20), ECU(Electronic Control Unit, 30), 인버터(40) 및 모터(50)를 포함하여 구성될 수 있다.
배터리(10)는 모터(50)에 구동력을 제공하여 전기 자동차(1)를 구동시키는 전기 에너지원이다. 배터리(10)는 모터(50) 또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의해 충전되거나 방전될 수 있다.
여기서, 배터리(10)의 종류는 특별히 한정되지 않으며, 예컨대 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성할 수 있다.
BMS(20)는 배터리(10)의 상태를 추정하고, 추정한 상태 정보를 이용하여 배터리(10)를 관리한다. 예컨대, 배터리(10)의 잔존 용량(State Of Charging; SOC), 잔존 수명(State Of Health; SOH), 최대 입출력 전력 허용량, 출력 전압 등 배터리(10) 상태 정보를 추정하고 관리한다. 그리고, 이러한 상태 정보를 이용하여 배터리(10)의 충전 또는 방전을 제어하며, 나아가 배터리(10)의 교체 시기 추정도 가능하다.
또한, 상기 BMS(20)는 후술하는 전압 측정을 통한 배터리 랙 파손 방지 장치 및 시스템을 포함할 수 있다. 이러한 전압 측정을 통한 배터리 랙 파손 방지 장치 및 시스템에 의해 배터리(10)가 과충전으로 인해 과열되거나 쇼트(Short) 현상이 발생되어 파손되는 것을 방지할 수 있다.
ECU(30)는 전기 자동차(1)의 상태를 제어하는 전자적 제어 장치이다. 예컨대, 액셀러레이터(Accelerator), 브레이크(Break), 속도 등의 정보에 기초하여 토크 정도를 결정하고, 모터(50)의 출력이 토크 정보에 맞도록 제어한다.
또한, ECU(30)는 BMS(20)에 의해 전달받은 배터리(10)의 SOC, SOH 등의 상태 정보에 기초하여 배터리(10)가 충전 또는 방전될 수 있도록 인버터(40)에 제어 신호를 보낸다.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 배터리(10)가 충전 또는 방전되도록 한다.
모터(50)는 배터리(10)의 전기 에너지를 이용하여 ECU(30)로부터 전달되는 제어 정보(예컨대, 토크 정보)에 기초하여 전기 자동차(1)를 구동한다.
도 2는 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치의 구성을 도시한 블록도이며, 도 3은 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 장치의 구체적인 구성의 일 예를 도시한 도면이다.
도 2 및 도 3을 참조하면, 전압 측정을 통한 배터리 랙 파손 방지 장치(100)는 배터리 랙(110), 제1 배터리 랙(111), 제2 배터리 랙(112), 전압 측정부(120), 비교부(130), 프리차지 릴레이(141), 프리차지 저항(142), 메인 릴레이(143) 및 릴레이 제어부(150)를 포함하여 구성될 수 있다. 도 2 및 도 3에 전압 측정을 통한 배터리 랙 파손 방지 장치(100)는 일 실시예에 따른 것이고, 그 구성요소들이 도 2 내지 도 3에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 부가, 변경 또는 삭제될 수 있다.
배터리 랙(110)은 전력을 공급받아 충전되거나 배터리 랙(110)에 충전된 전기에너지를 부하에 공급함으로써 방전될 수 있다. 여기서 배터리 랙(110)의 종류는 특별히 한정되지 않으며, 복수의 배터리 모듈(Battery Module)을 포함하여 구성 될 수 있다.
일 실시예에서, 배터리 랙(110)은 도 1에 도시된 배터리(10)에 포함될 수 있으며, 배터리 랙(110)은 기존의 공지된 기술을 사용하기 때문에 상세한 설명은 생략하기로 한다.
한편, 도 3에 도시된 제1 배터리 랙(111) 및 제2 배터리 랙(112)은 상기 배터리 랙(110)에 포함될 수 있으며, 상기 배터리 랙(110)의 파손을 방지하기 위해 연결된 상기 프리차지 릴레이(141), 상기 프리차지 저항(142) 및 상기 메인 릴레이(143)를 기준으로 아래쪽에 연결된 배터리 모듈(111a, 111b, ..., 111n)은 제1 배터리 랙(111)의 구성요소일 수 있고, 위쪽에 연결된 배터리 모듈(112a, 112b, ..., 112n)은 제2 배터리 랙(112)의 구성요소일 수 있다. 상기의 경우 후술되는 전압 측정부(120)는 제1 배터리 랙(111)의 마이너스(-)극과 제2 배터리 랙(112)의 플러스(+)극과 접하게 위치하여 전압을 측정할 수 있다.
전압 측정부(120)는 상술된 배터리 랙(110)의 양단(플러스(+)극 및 마이너스( )극)과 접하게 위치하여 배터리 랙(110)에 인가된 전압의 전위차를 측정하는 역할을 수행할 수 있다. 한편, 전압 측정부(120)는 배터리 랙(110)의 전압을 측정 하기 위해 하나 이상의 스위치 소자, 캐패시터, 도선 등을 포함할 수 있다. 이러한, 전압 측정부(120)를 통해 측정된 전압값은 후술되는 비교부(130)로 전송될 수 있다.
비교부(130)는 전압 측정부(120)로부터 측정 전압값을 수신하고, 이를 기 설정된 전압 제한값과 비교 판단하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 전압 제한값은 상기 배터리 랙(110)과 후술되는 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)가 정상적으로 연결되어 쇼트 서킷(Short Circuit)이 형성되지 않는 배터리 랙(110)에서 측정되는 전압값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전압 제한값은 400V일 수 있다.
이어서, 상기 측정 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우, 비교부(130)는 전압 미달 신호를 후술되는 릴레이 제어부(150)에 전송할 수 있고, 측정 전압값이 기 설정된 전압 제한값 미만에 해당하지 않는 경우에는 전압 미달 신호를 전송하지 않게 된다.
일 실시예에서, 비교부(130)에는 전압 측정부(120)와 마찬가지로 별도의 안정기(예를 들어, 높은 저항값을 가지는 저항체 등)(미도시)를 더 포함할 수 있으며, 그에 따라 고전압으로부터 자체적으로 내부를 보호하도록 구성될 수 있다.
프리차지 릴레이(141)와 프리차지 저항(142)은 직렬로 연결될 수 있고 메인 릴레이(143)는 상기 직렬로 연결된 프리차지 릴레이(141) 및 프리차지 저항(142)과 병렬로 연결되어 상기 배터리 랙(110)에 흐르는 전류를 통전 또는 차단하는 역할을 수행할 수 있다. 프리차지 릴레이(141) 및 메인 릴레이(143)의 동작 상태는 한 쌍의 도선이 서로 접한 온(On) 상태 또는 도선이 서로 이격된 오프(Off) 상태 중 어느 하나에 해당할 수 있으며, 프리차지 릴레이(141) 및 메인 릴레이(143) 중 어느 하나 이상의 동작 상태가 온 상태에 해당되는 경우 상기 배터리 랙(110)에 흐르는 전류가 통전되고, 프리차지 릴레이(141) 및 메인 릴레이(143) 모두 오프 상태에 해당되는 경우 상기 배터리 랙(110)에 흐르는 전류가 차단될 수 있다.
한편, 상기 배터리 랙(110)에 전력이 공급되는 초기에 써지(Surge)성 전류로부터 배터리 랙(110)을 보호 하기 위해 프리차지 릴레이(141)는 동작 상태가 온 상태로 변경될 수 있고, 프리차지 릴레이(141)가 온 상태로 변경되는 경우 프리차지 릴레이(141)와 직렬로 연결된 프리차지 저항(142)으로 써지성 전류가 흐름으로써 상기 배터리 랙(110)을 보호할 수 있다. 프리차지 릴레이(141)의 동작 상태가 온 상태로 변경된 뒤 기 설정된 시간(예를 들어, 1s에 해당하는 시간) 이후 메인 릴레이(143)의 동작 상태가 온 상태로 변경될 수 있고, 상기 비교부(130)는 프리차지 릴레이(141)의 동작 상태가 온상태로 변경된 뒤부터 메인 릴레이(143)의 동작 상태가 온 상태로 변경되기 전까지 상기 전압 측정부(120)를 통해 측정된 전압값과 기 설정된 전압 제한값을 비교 판단하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 전압 제한값은 상기 배터리 랙(110)과 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)가 정상적으로 연결되어 쇼트 서킷이 형성되지 않는 배터리 랙(110)에서 측정되는 전압값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전압 제한값은 400V일 수 있다.
프리차지 릴레이(141) 및 메인 릴레이(143)의 동작 상태가 온 상태로 변경된 뒤 기 설정된 시간(예를 들어, 1s에 해당하는 시간) 이후 프리차지 릴레이(141)의 동작 상태가 오프 상태로 변경되어 상기 배터리 랙(110)으로 공급되는 전력이 프리차지 저항(142)을 통하지 않고 공급될 수 있다.
릴레이 제어부(150)는 상기 비교부(130), 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)와 연결될 수 있으며, 릴레이 제어부(150)는 상기 비교부(130)를 통해 전압 미달 신호를 전송받는 경우 상기 프리차지 릴레이(141)의 동작 상태를 온에서 오프 상태로 변경시킬 수 있고 상기 메인 릴레이(143)의 동작 상태를 오프 상태로 유지시키는 역할을 수행할 수 있다. 상기 프리차지 릴레이(141) 및 상기 메인 릴레이(143)의 동작 상태 오프 상태일 경우 상기 배터리 랙(110)에 흐르는 전류가 차단될 수 있다.
반대로, 상기 비교부(130)를 통해 전압 미달 신호를 전송받지 않는 경우 릴레이 제어부(150)는 상기 프리차지 릴레이(141) 및 상기 메인 릴레이(143)의 동작 상태를 제어하지 않을 수 있다.
도 4는 전압 측정을 통한 배터리 랙 파손 방지 장치가 전압 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 일 예를 도시한 도면이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 시스템(100')은 하나 이상의 배터리 랙(111', 110'b, ..., 110'n) 각각에 전압 측정을 통한 배터리 랙 파손 방지 장치(100'a, ..., 100'n)를 구비할 수 있다.
전압 측정을 통한 배터리 랙 파손 방지 시스템(100')은 전압 측정을 통한 배터리 랙 파손 방지 장치(100'a)가 구비된 제1 및 제2 배터리 랙(111',112')에 대하여, 제1 및 제2 배터리 랙(111',112')의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 제1 및 제2 배터리 랙(111',112')의 프리차지 릴레이(141') 및 메인 릴레이(143')의 동작 상태를 제어하는 과정을 개별적으로 수행할 수 있다.
전압 측정을 통한 배터리 랙 파손 방지 장치(100'a)가 구비된 제1 및 제2 배터리 랙(111',112')에 대하여, 상기의 과정을 개별적으로 수행한 것과 같이, 전압 측정을 통한 배터리 랙 파손 방지 장치(100'b, ..., 100'n)가 각각 구비된 배터리 랙(110'b, ..., 110'n)에 대해서도 상기의 과정을 각각 개별적으로 수행할 수 있다.
이러한 전압 측정을 통한 배터리 랙 파손 방지 장치(100'a, ..., 100'n)의 개별적 수행 과정을 통해 하나 이상의 배터리 랙이 연결되어 전력을 충방전하는 에너지 저장 장치 또는 배터리 시스템에서 프리차지 릴레이, 프리차지 저항 및 메인 릴레이가 비정상적으로 설치된 배터리 랙만을 손쉽게 파악할 수 있으며, 상호 연결된 하나 이상의 배터리 랙 전체의 전류를 차단하지 않고 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이만을 개별적으로 차단하여 에너지 저장 장치 또는 배터리 시스템의 충방전을 지속적으로 수행할 수 있다.
다음으로, 프리차지 릴레이(141'), 프리차지 저항(142') 및 메인 릴레이(143')가 비정상적으로 설치된 제1 배터리 랙(111')을 통해 전압 측정을 통한 배터리 랙 파손 방지 장치(100'a)를 보다 구체적으로 설명하도록 한다.
전압 측정을 통한 배터리 랙 파손 방지 장치(100'a)는 제1 배터리 랙(111')과 프리차지 릴레이(141'), 프리차지 저항(142') 및 메인 릴레이(143')가 비정상적으로 연결되어 외부 부하가 없는 폐회로로 형성된 예일 수 있다. 상기 폐회로에서 프리차지 질레이(141')와 프리차지 저항(142')은 직렬로 연결되어 프리차지 릴레이(141')의 동작 상태가 오프에서 온 상태로 변경되는 경우 쇼트 현상을 방지하는 역할을 수행할 수 있다.
제2 배터리 랙(112')은 전압 측정을 통한 배터리 랙 파손 방지 장치(100'b, ..., 100'n)의 프리차지 저항(142'b, ..., 142'n)과 연결되어 쇼트 현상을 방지하는 역할을 수행할 수 있다.
상기 전압 측정을 통한 배터리 랙 파손 방지 장치(100'a)가 전력 변환 장치(200)으로부터 전력을 공급받는 경우 제1 배터리 랙(111')을 제외한 제2 배터리 랙(112')에 전력이 충전될 수 있으며 전압 측정부(120'a)에서는 제1 배터리 랙(111')을 제외한 제2 배터리 랙(112')에 인가된 전압을 측정하는 역할을 수행할 수 있다. 상기 전압 측정부(120')를 통해 측정된 전압값은 제1 배터리 랙(111')을 제외한 제2 배터리 랙(112')에만 인가된 전압을 측정한 측정값이므로 다른 전압 측정부(120'b, ..., 120'n)에서 측정된 전압값 보다 작을 수 있다.
메인 릴레이(143')의 동작 상태가 오프에서 온 상태로 변경되는 경우 상기 폐회로에는 쇼트 현상이 발생될 수 있다. 이를 방지하기 위해 비교부(130')는 상기 전압 측정부(120')를 통해 측정된 전압값과 기 설정된 전압 제한값을 비교 판단하여 측정된 전압값이 기설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 릴레이 제어부(150')로 전송하는 역할을 수행할 수 있다. 상기 전압 미달 신호를 전송받은 릴레이 제어부(150')는 상기 메인 릴레이(143')의 동작 상태가 오프에서 온 상태로 변경되기 전에, 상기 프리차지 릴레이(141')의 동작 상태를 오프 상태로 유지함으로써 상기 제1 배터리 랙(111')에서 발생하는 쇼트 현상을 방지하는 역할을 수행할 수 있다.
또한, 상기 제1 배터리 랙(111')에 쇼트 현상이 발생되는 경우 배터리 랙(111', 112', 110'b, ..., 110'n) 간에 용량 편차로 각각의 충전 속도가 달라짐으로써 발생되는 과충전, 과열 또는 스웰링(Swelling)으로 인한 파손을 방지하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 전압 제한값은 상기 제1 배터리 랙(111') 및 제2 배터리 랙(112')과 프리차지 릴레이(141'), 프리차지 저항(142') 및 메인 릴레이(143')가 정상적으로 연결되어 쇼트 서킷이 형성되지 않은 제1 배터리 랙(111')의 마이너스(-)극과 제2 배터리 랙(112')의 플러스(+)극 양단에서 측정되는 전압값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전압 제한값은 400V일 수 있다.
도 5는 전압 측정을 통한 배터리 랙 파손 방지 장치가 전압 측정을 통한 배터리 랙 파손 방지 시스템에서 동작하는 경우의 다른 예를 도시한 도면이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 시스템(100")은 하나 이상의 배터리 랙(112", 110"b, ..., 110"n) 각각에 전압 측정을 통한 배터리 랙 파손 방지 장치(100"a, ..., 100"n)를 구비할 수 있다.
전압 측정을 통한 배터리 랙 파손 방지 시스템(100")은 전압 측정을 통한 배터리 랙 파손 방지 장치(100"a)가 구비된 제1 및 제2 배터리 랙(111", 112")에 대하여, 제1 및 제2 배터리 랙(111", 112")의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 제1 및 제2 배터리 랙(111", 112")의 프리차지 릴레이(141") 및 메인 릴레이(143")의 동작 상태를 제어하는 과정을 개별적으로 수행할 수 있다.
전압 측정을 통한 배터리 랙 파손 방지 장치(100"a)가 구비된 제 1 및 제2 배터리 랙(111", 112")에 대하여, 상기의 과정을 개별적으로 수행한 것과 같이, 전압 측정을 통한 배터리 랙 파손 방지 장치(100"b, ..., 100"n)가 각각 구비된 해당 배터리 랙(110"b, ..., 110"n)에 대해서도 상기의 과정을 각각 개별적으로 수행할 수 있다.
이러한 전압 측정을 통한 배터리 랙 파손 방지 장치(100"a, ..., 100"n)의 개별적 수행 과정을 통해 하나 이상의 배터리 랙이 연결되어 전력을 충방전하는 에너지 저장 장치 또는 배터리 시스템에서 프리차지 릴레이, 프리차지 저항 및 메인 릴레이가 비정상적으로 설치된 배터리 랙만을 손쉽게 파악할 수 있으며, 상호 연결된 하나 이상의 배터리 랙 전체의 전류를 차단하지 않고 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이만을 개별적으로 차단하여 에너지 저장 장치 또는 배터리 시스템의 충방전을 지속적으로 수행할 수 있다.
다음으로, 프리차지 릴레이(141'), 프리차지 저항(142') 및 메인 릴레이(143')가 비정상적으로 설치된 제1 배터리 랙(111')을 통해 전압 측정을 통한 배터리 랙 파손 방지 장치(100'a)를 보다 구체적으로 설명하도록 한다.
전압 측정을 통한 배터리 랙 파손 방지 장치(100"a)는 제2 배터리 랙(112")과 프리차지 릴레이(141"), 프리차지 저항(142") 및 메인 릴레이(143")가 비정상적으로 연결되어 외부 부하가 없는 폐회로로 형성된 예일 수 있다. 상기 폐회로에서 프리차지 질레이(141")와 프리차지 저항(142")은 직렬로 연결되어 프리차지 릴레이(141")의 동작 상태가 오프에서 온 상태로 변경되는 경우 쇼트(Shrot) 현상을 방지하는 역할을 수행할 수 있다.
제1 배터리 랙(111")은 전압 측정을 통한 배터리 랙 파손 방지 장치(100"b, ..., 100"n)의 프리차지 저항(142"b, ..., 142"n)과 연결되어 쇼트 현상을 방지하는 역할을 수행할 수 있다.
상기 전압 측정을 통한 배터리 랙 파손 방지 장치(100")가 전력 변환 장치(200)으로부터 전력을 공급받는 경우 제2 배터리 랙(112")을 제외한 제1 배터리 랙(111")에 전력이 충전될 수 있으며 전압 측정부(120")에서는 제2 배터리 랙(112")을 제외한 제1 배터리 랙(111")에 인가된 전압을 측정하는 역할을 수행할 수 있다. 상기 전압 측정부(120")를 통해 측정된 전압값은 제2 배터리 랙(112")을 제외한 제1 배터리 랙(111")에만 인가된 전압을 측정한 측정값이므로 다른 전압 측정부(120"b, ..., 120"n)에서 측정된 전압값보다 작을 수 있다.
메인 릴레이(143")의 동작 상태가 오프에서 온 상태로 변경되는 경우 상기 폐회로에는 쇼트 현상이 발생될 수 있다. 이를 방지하기 위해 비교부(130")는 상기 전압 측정부(120")를 통해 측정된 전압값과 기 설정된 전압 제한값을 비교 판단하여 측정된 전압값이 기설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 릴레이 제어부(150")로 전송하는 역할을 수행할 수 있다. 상기 전압 미달 신호를 전송받은 릴레이 제어부(150")는 상기 메인 릴레이(143")의 동작 상태가 오프에서 온 상태로 변경되기 전에, 상기 프리차지 릴레이(141")의 동작 상태를 온에서 오프 상태로 변경하고 상기 메인 릴레이(143")의 동작 상태를 오프 상태로 유지함으로써 상기 제2 배터리 랙(112")에서 발생하는 쇼트 현상을 방지하는 역할을 수행할 수 있다.
또한, 상기 제2 배터리 랙(112")에 쇼트 현상이 발생되는 경우 배터리 랙(111", 112", 110"b, ..., 110"n) 간에 용량 편차로 각각의 충전 속도가 달라짐으로써 발생되는 과충전, 과열 또는 스웰링으로 인한 파손을 방지하는 역할을 수행할 수 있다.
여기서, 상기 기 설정된 전압 제한값은 상기 제1 배터리 랙(111") 및 제2 배터리 랙(112")과 프리차지 릴레이(141"), 프리차지 저항(142") 및 메인 릴레이(143")가 정상적으로 연결되어 쇼트 서킷이 형성되지 않은 제1 배터리 랙(111")의 마이너스(-)극과 제2 배터리 랙(112")의 플러스(+)극 양단에서 측정되는 전압값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 상기 기 설정된 전압 제한값은 400V일 수 있다.
도 6은 본 발명의 일 실시예에 따른 전압 측정을 통한 배터리 랙 파손 방지 방법의 순서를 도시한 순서도이다.
도 6을 참조하면, 먼저 전압 측정부(120)는 배터리 랙(110)의 양단(플러스(+)극 및 마이너스( )극)에 인가된 전압을 측정하고, 측정된 전압값을 비교부(130)로 전송하게 된다(S601).
다음으로, 비교부(130)는 전압 측정부(120)를 통해 전송 받은 측정전압 값이 기 설정된 전압 제한값 미만에 해당하는지 비교 및 판단하게 된다(S602).
여기서, 기 설정된 전압 제한값은 배터리 랙(110)과 후술되는 프리차지 릴레이(141), 프리차지 저항(142) 및 메인 릴레이(143)가 정상적으로 연결되어 쇼트 서킷(Short Circuit)이 형성되지 않는 배터리 랙(110)에서 측정되는 전압값으로 초기 설정되어 있거나, 사용자에 의해 설정될 수 있는 값이다. 예를 들어, 기 설정된 전압 제한값은 400V일 수 있다.
만약, 비교부(130)에서 판단된 비교 결과값이 기 설정된 전압 제한값 미만에 해당하는 경우(S603), 비교부(130)는 전압 미달 신호를 릴레이 제어부(150)에 전송하게 된다(S604).
반대로, 비교부(130)에서 판단된 비교 결과값이 기 설정된 전압 제한값 미만에 해당하지 않는 경우 시작으로 돌아가게 된다.
릴레이 제어부(150)는 전압 미달 신호를 전송받아 프리차지 릴레이(141)의 동작 상태를 온(On)에서 오프(Off) 상태로 변경시키고, 메인 릴레이(143)의 동작 상태가 오프에서 온 상태로 변경되기 전에 오프 상태로 유지시키게 된다(S605).
결과적으로, 프리차지 릴레이(141) 및 메인 릴레이(143)의 동작 상태가 오프 상태가 됨으로써 배터리 랙(110)에 흐르는 전류를 차단하게 된다(S606).
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (16)

  1. 복수의 배터리 모듈(Battery Module)을 포함하는 배터리 랙의 전압값을 측정하는 전압 측정부;
    상기 전압 측정부를 통해 측정된 전압값과 기 설정된 전압 제한값의 대소를 비교하는 비교부; 및
    프리차지 릴레이(Precharge Relay)의 동작 상태가 온(On) 상태로 변경된 후, 메인 릴레이(Main Relay)의 동작 상태가 오프(Off)에서 온(On) 상태로 변경되기 전에 상기 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부;를 포함하되,
    하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 장치.
  2. 제1항에 있어서,
    상기 프리차지 릴레이는,
    상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시키는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 장치.
  3. 제1항에 있어서,
    상기 전압 측정부는,
    상기 배터리 랙의 양단의 인가되는 전압을 측정하고 측정된 전압값을 상기 비교부로 전송하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 장치.
  4. 제1항에 있어서,
    상기 비교부는,
    상기 전압 측정부로부터 전송받은 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 상기 릴레이 제어부에 전송하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 장치.
  5. 제4항에 있어서,
    상기 릴레이 제어부는,
    상기 비교부로부터 상기 전압 미달 신호를 전송받는 경우, 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 장치.
  6. 제1항에 있어서,
    상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템(Battery Management System; BMS)에 포함되는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 장치.
  7. 복수의 배터리 모듈을 포함하는 배터리 랙의 전압값을 측정하는 전압 측정부;
    상기 전압 측정부를 통해 측정된 전압값과 기 설정된 전압 제한값의 대소를 비교하는 비교부; 및
    프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 비교부를 통해 도출된 비교 결과값을 근거하여 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 릴레이 제어부;를 포함하는 전압 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하고, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 시스템.
  8. 제7항에 있어서,
    상기 프리차지 릴레이는,
    상기 배터리 랙의 용량에 따라 저항값이 결정되는 프리차지 저항과 직렬로 연결되어 상기 배터리 랙으로 흐르는 과전류의 전류값을 감소시키는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 시스템.
  9. 제7항에 있어서,
    상기 전압 측정부는,
    상기 배터리 랙의 양단의 인가되는 전압을 측정하고 측정된 전압값을 상기 비교부로 전송하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 시스템.
  10. 제7항에 있어서,
    상기 비교부는,
    상기 전압 측정부로부터 전송받은 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 상기 릴레이 제어부에 전송하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 시스템.
  11. 제10항에 있어서,
    상기 릴레이 제어부는,
    상기 비교부로부터 상기 전압 미달 신호를 전송받는 경우, 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 시스템.
  12. 제7항에 있어서,
    상기 하나 이상의 배터리 랙을 제어하는 배터리 관리 시스템에 포함되는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 시스템.
  13. (a) 전압 측정부, 비교부 및 릴레이 제어부를 포함하는 전압 측정을 통한 배터리 랙 파손 방지 장치를 하나 이상의 배터리 랙 각각에 구비하는 단계; 및
    (b) 상기 전압 측정을 통한 배터리 랙 파손 방지 장치가 상기 하나 이상의 배터리 랙 각각에 구비되어, 해당 배터리 랙에 대하여 해당 배터리 랙의 전압값을 측정하여 기 설정된 전압 제한값과 비교하고, 상기 비교 결과에 따라 해당 배터리 랙의 프리차지 릴레이 및 메인 릴레이의 동작 상태를 제어하는 과정을 개별적으로 수행하는 단계;를 포함하되,
    상기 (b) 단계는,
    (b1) 상기 전압 측정부가 복수의 배터리 모듈을 포함하는 상기 배터리 랙의 전압값을 측정하는 단계;
    (b2) 상기 비교부가 상기 전압 측정부를 통해 측정된 전압값과 기 설정된 전압 제한값의 대소를 비교하는 단계; 및
    (b3) 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태가 온 상태로 변경된 후, 상기 메인 릴레이의 동작 상태가 오프에서 온 상태로 변경되기 전에 상기 비교부를 통해 도출된 비교 결과값을 근거하여 상기 프리차지 릴레이 및 상기 메인 릴레이의 동작 상태를 제어하는 단계;를 포함하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 방법.
  14. 제13항에 있어서,
    상기 (b1) 단계는,
    상기 전압 측정부가 상기 배터리 랙의 양단의 인가되는 전압을 측정하고 측정된 전압값을 상기 비교부로 전송하는 단계;를 포함하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 방법.
  15. 제14항에 있어서,
    상기 (b2) 단계는,
    상기 비교부가 상기 전압 측정부로부터 전송받은 전압값이 기 설정된 전압 제한값 미만에 해당하는 경우 전압 미달 신호를 상기 릴레이 제어부에 전송하는 단계;를 더 포함하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 방법.
  16. 제14항에 있어서,
    상기 (b3) 단계는,
    상기 릴레이 제어부가 상기 비교부로부터 상기 전압 미달 신호를 전송받는 경우, 상기 릴레이 제어부가 상기 프리차지 릴레이의 동작 상태를 온에서 오프 상태로 변경시키고 상기 메인 릴레이의 동작 상태를 오프 상태로 유지시키는 단계;를 포함하는 것을 특징으로 하는,
    전압 측정을 통한 배터리 랙 파손 방지 방법.
PCT/KR2014/010869 2014-02-20 2014-11-12 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법 WO2015126035A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/649,347 US9954379B2 (en) 2014-02-20 2014-11-12 Apparatus, system, and method of preventing battery rack damage by measuring voltage
EP14868728.8A EP2930811B1 (en) 2014-02-20 2014-11-12 Apparatus, system and method for preventing damage to battery rack by means of voltage measurement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0019882 2014-02-20
KR20140019882 2014-02-20
KR10-2014-0156961 2014-11-12
KR1020140156961A KR20150098554A (ko) 2014-02-20 2014-11-12 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2015126035A1 true WO2015126035A1 (ko) 2015-08-27

Family

ID=54056029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010869 WO2015126035A1 (ko) 2014-02-20 2014-11-12 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법

Country Status (4)

Country Link
US (1) US9954379B2 (ko)
EP (1) EP2930811B1 (ko)
KR (2) KR20150098554A (ko)
WO (1) WO2015126035A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033213B2 (en) 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
KR102511224B1 (ko) * 2015-11-05 2023-03-17 삼성전자주식회사 배터리 전류량을 측정하는 퓨얼 게이지 시스템 및 이를 포함하는 휴대용 전자장치
CN105356535B (zh) * 2015-11-11 2018-06-15 成都雅骏新能源汽车科技股份有限公司 一种基于功能安全的电池管理系统总电压处理方法
WO2017190701A1 (zh) * 2016-05-05 2017-11-09 东风农业装备(襄阳)有限公司 电动手扶插秧机及其应用
US20180262026A1 (en) * 2017-03-10 2018-09-13 K2 Energy Solutions, Inc. Battery System With Short Circuit Protection
KR102030823B1 (ko) * 2017-09-29 2019-10-10 현대오트론 주식회사 배터리 관리 시스템 및 그것의 동작 방법
GB201800759D0 (en) * 2018-01-17 2018-02-28 Siemens Ag Method of assembling an energy storage system
KR102256101B1 (ko) 2018-01-30 2021-05-25 주식회사 엘지에너지솔루션 프리차지 저항 보호 장치
KR102630753B1 (ko) * 2018-07-13 2024-01-26 주식회사 엘지에너지솔루션 전류 제한 장치
KR20210045841A (ko) * 2019-10-17 2021-04-27 삼성에스디아이 주식회사 배터리 시스템
KR20210108148A (ko) * 2020-02-25 2021-09-02 삼성에스디아이 주식회사 배터리 시스템
KR20220039989A (ko) 2020-09-22 2022-03-30 현대자동차주식회사 에너지 저장부를 가지는 차량용 배터리 시스템
CN114347853B (zh) * 2022-01-11 2023-02-03 江苏新日电动车股份有限公司 一种两轮电动车的锂电池管理方法
US11789086B1 (en) 2022-07-06 2023-10-17 Fluence Energy, Llc Cell and rack performance monitoring system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767214A (ja) * 1993-08-24 1995-03-10 Yazaki Corp 電気自動車用配電回路
JPH08168172A (ja) * 1994-12-08 1996-06-25 Nissin Electric Co Ltd 給電装置
US20100277845A1 (en) * 2008-01-07 2010-11-04 Sk Energy Co., Ltd. Circuit Apparatus for Protecting a Pre-Charge Resistance Using an Interlock Switch
US20110049977A1 (en) * 2009-09-01 2011-03-03 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
KR20120137658A (ko) * 2011-06-13 2012-12-24 현대자동차주식회사 인버터의 구동전원부 돌입전류 저감용 회로 및 이의 제어 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157320A (en) * 1991-08-08 1992-10-20 Tyco Industries, Inc. Computerized battery charger
US6239579B1 (en) * 1996-07-05 2001-05-29 Estco Battery Management Inc. Device for managing battery packs by selectively monitoring and assessing the operative capacity of the battery modules in the pack
JP4529851B2 (ja) 2005-09-20 2010-08-25 トヨタ自動車株式会社 電源回路の異常検知装置
US7642750B2 (en) * 2005-10-04 2010-01-05 O2Micro International Limited Battery charge/discharge control circuit
JP4510753B2 (ja) * 2005-12-16 2010-07-28 パナソニックEvエナジー株式会社 電源装置、及びその制御方法
JP4699399B2 (ja) 2007-02-06 2011-06-08 プライムアースEvエナジー株式会社 電源装置
KR100929036B1 (ko) * 2007-09-27 2009-11-30 삼성에스디아이 주식회사 배터리 팩의 보호회로, 이를 구비하는 배터리 팩 및 이의동작방법
WO2011076257A1 (en) * 2009-12-22 2011-06-30 Abb Research Ltd. Battery energy storage system with short circuit protection, and method
US8698458B2 (en) 2010-07-08 2014-04-15 Samsung Sdi Co., Ltd. Battery pack having boosting charge function and method thereof
US8655535B2 (en) * 2010-07-09 2014-02-18 Lg Electronics Inc. Electric vehicle and method for controlling same
US8952823B2 (en) * 2011-01-20 2015-02-10 Indiana University Research And Technology Corporation Battery early warning and monitoring system
US8582269B2 (en) * 2011-08-04 2013-11-12 Lg Chem, Ltd. Overcurrent protection apparatus for secondary battery, protection method and battery pack
KR101262524B1 (ko) 2011-08-04 2013-05-08 주식회사 엘지화학 이차 전지의 과전류 보호 장치, 보호 방법 및 전지 팩
JP5495407B1 (ja) * 2012-12-21 2014-05-21 パナソニック株式会社 電子機器、充電器及び電子機器システム
WO2015126036A1 (ko) * 2014-02-20 2015-08-27 주식회사 엘지화학 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767214A (ja) * 1993-08-24 1995-03-10 Yazaki Corp 電気自動車用配電回路
JPH08168172A (ja) * 1994-12-08 1996-06-25 Nissin Electric Co Ltd 給電装置
US20100277845A1 (en) * 2008-01-07 2010-11-04 Sk Energy Co., Ltd. Circuit Apparatus for Protecting a Pre-Charge Resistance Using an Interlock Switch
US20110049977A1 (en) * 2009-09-01 2011-03-03 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
KR20120137658A (ko) * 2011-06-13 2012-12-24 현대자동차주식회사 인버터의 구동전원부 돌입전류 저감용 회로 및 이의 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2930811A4 *

Also Published As

Publication number Publication date
EP2930811A4 (en) 2016-10-26
KR20150098554A (ko) 2015-08-28
US9954379B2 (en) 2018-04-24
US20150372517A1 (en) 2015-12-24
KR20160137493A (ko) 2016-11-30
KR101696160B1 (ko) 2017-01-13
EP2930811B1 (en) 2018-11-07
EP2930811A1 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2015126036A1 (ko) 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2017047937A1 (ko) 배터리 스웰링 감지 시스템 및 방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2012091402A2 (ko) 배터리 시스템 관리 장치 및 방법
WO2018021661A1 (ko) 션트저항을 이용한 전류 측정 장치
WO2014077522A1 (ko) 배터리 시스템의 릴레이 융착 검출 장치 및 방법
WO2018225921A1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
WO2014030839A1 (ko) 릴레이 제어 시스템 및 그 제어 방법
WO2018034486A1 (ko) 전기 자동차의 충전 장치
WO2022177291A1 (ko) 배터리 관리 시스템, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2018038348A1 (ko) 배터리 관리 시스템
WO2015034144A1 (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
WO2018066839A1 (ko) 전압 분배를 이용한 퓨즈 진단 장치 및 방법
WO2016017963A1 (ko) 전기 자동차의 급속 충전 제어 장치
WO2015012460A1 (ko) 배터리 스웰링 감지 장치 및 방법
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2020055117A1 (ko) 배터리 관리 장치
WO2015002379A1 (ko) 배터리 팩 보호 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14649347

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014868728

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE