WO2018073904A1 - 空気調和装置の室内機及び空気調和装置 - Google Patents
空気調和装置の室内機及び空気調和装置 Download PDFInfo
- Publication number
- WO2018073904A1 WO2018073904A1 PCT/JP2016/080907 JP2016080907W WO2018073904A1 WO 2018073904 A1 WO2018073904 A1 WO 2018073904A1 JP 2016080907 W JP2016080907 W JP 2016080907W WO 2018073904 A1 WO2018073904 A1 WO 2018073904A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- rotational speed
- air volume
- blower
- heat exchanger
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
Definitions
- the present invention relates to an indoor unit of an air conditioner and an air conditioner.
- Patent Document 1 an air conditioner that controls the rotation speed of a compressor and the rotation speed of an indoor blower based on the indoor temperature has been proposed (see, for example, Patent Document 1).
- the air conditioner described in Patent Literature 1 reduces the rotation speed of the compressor and the rotation speed of the indoor fan.
- the heating operation When the heating operation is executed, if the condensation temperature of the heat exchanger mounted on the indoor unit is high, high-temperature air is supplied from the indoor unit to the room accordingly. In such a situation, the room temperature may exceed the target temperature, the room may be heated more than necessary, and the energy saving performance of the air conditioner may be reduced.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner indoor unit and an air conditioner that can improve energy saving.
- An indoor unit of an air conditioner detects a first heat exchanger that functions as a condenser, a blower that supplies air to the first heat exchanger, and a condensation temperature of the first heat exchanger.
- the control device has a temperature at which the condensing temperature is determined in advance during the heating operation. When it becomes above, it is configured to reduce the current set rotational speed of the blower to a corrected rotational speed that is determined according to the size of the condensation temperature and is smaller than the current set rotational speed. .
- FIG. 1 is an explanatory diagram of the refrigerant circuit C of the air-conditioning apparatus 100 according to the present embodiment.
- the air conditioning apparatus 100 includes a refrigerant circuit C that circulates the refrigerant.
- the air conditioner 100 includes an outdoor unit 101 and an indoor unit 102.
- the air conditioner 100 is a so-called separate type air conditioner in which an outdoor unit 101 and an indoor unit 102 are separated.
- the outdoor unit 101 and the indoor unit 102 are connected via a refrigerant pipe P1 and a refrigerant pipe P2.
- the outdoor unit 101 is provided with a valve Va to which the refrigerant pipe P1 and the refrigerant pipe P2 are connected.
- the indoor unit 102 is also provided with a valve Va to which the refrigerant pipe P1 and the refrigerant pipe P2 are connected.
- the refrigerant circuit C includes a compressor 1, a four-way valve 2, a throttle device 4, a first heat exchanger 5, a second heat exchanger 3, a refrigerant pipe P1, and a refrigerant pipe P2.
- the air conditioner 100 includes a second blower 3A attached to the second heat exchanger 3 and a first blower 5A attached to the first heat exchanger 5.
- a compressor 1, a four-way valve 2, a second heat exchanger 3, a second blower 3A, and a throttle device 4 are mounted in the indoor unit 102.
- the first heat exchanger 5 and the first blower 5A are mounted in the indoor unit 102.
- the air conditioner 100 includes a control device 50 that performs overall control of the outdoor unit 101 and the indoor unit 102.
- the control device 50 is mounted on the indoor unit 102, but is not limited thereto.
- the air conditioning apparatus 100 may be configured such that control devices are mounted on the outdoor unit 101 and the indoor unit 102, and these control devices communicate with each other.
- the air conditioner 100 includes an input device RC that gives a control command to the indoor unit 102.
- the input device RC functions as a remote controller.
- the air conditioning apparatus 100 includes a condensation temperature detection unit D1 that detects the condensation temperature of the refrigerant circuit C, and an indoor temperature detection unit D2 that detects the room temperature.
- Compressor 1 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
- the rotation speed of the compressor 1 is controlled by an inverter, for example.
- the compressor 1 includes a refrigerant discharge portion that discharges high-pressure refrigerant and a refrigerant suction portion that sucks low-pressure refrigerant that circulates and returns through the refrigerant circuit C.
- the four-way valve 2 communicates the refrigerant discharge part of the compressor 1 and the second heat exchanger 3, and communicates the refrigerant suction part of the compressor 1 and the first heat exchanger 5.
- a second flow path that communicates the passage, the refrigerant discharge portion of the compressor 1 and the first heat exchanger 5, and communicates the refrigerant suction portion of the compressor 1 and the second heat exchanger 3. including.
- the four-way valve 2 is selectively switched between the first flow path and the second flow path by the control device 50. During the cooling operation, the four-way valve 2 is switched to the first flow path, and during the heating operation, the four-way valve 2 is switched to the second flow path.
- the throttle device 4 is, for example, an electronic expansion valve whose opening degree can be adjusted.
- the expansion device 4 can also use other decompression means such as a capillary tube.
- the first heat exchanger 5 can be configured, for example, as an air-cooled heat exchanger that performs heat exchange between the refrigerant circulating inside and the air blown by the first blower 5A.
- the first heat exchanger 5 can be configured as a fin-and-tube heat exchanger.
- the first heat exchanger 5 functions as an evaporator when the air-conditioning apparatus 100 is performing a cooling operation, and functions as a condenser when a heating operation is being performed.
- the first blower 5A includes an electric motor (not shown) and a fan that is rotated by the electric motor.
- the rotation speed of the first blower 5 ⁇ / b> A is controlled so that the amount of air supplied to the first heat exchanger 5 can be variably adjusted.
- the rotational speed of the first blower 5A is the rotational speed of the fan of the first blower 5A. In the present embodiment, there are at least seven rotation speeds (air volumes) that can be set in the first blower 5A (see FIG. 2B).
- the second heat exchanger 3 can be configured as, for example, an air-cooled heat exchanger that performs heat exchange between the refrigerant circulating inside and the air blown by the second blower 3A.
- the air-cooling heat source side heat exchanger can be configured as, for example, a cross-fin type fin-and-tube heat exchanger including a heat transfer tube and a plurality of fins.
- the second heat exchanger 3 functions as a condenser (heat radiator) when the air-conditioning apparatus 100 is performing the cooling operation, and functions as an evaporator when the heating operation is being performed.
- the control device 50 comprehensively controls the compressor 1, the expansion device 4, the second blower 3A, the first blower 5A, and the like.
- the control device 50 acquires the condensation temperature data transmitted from the condensation temperature detection unit D1 and the room temperature data transmitted from the room temperature detection unit D2.
- Each functional unit included in the control device 50 is configured by dedicated hardware or MPU (Micro Processing Unit) that executes a program stored in a memory.
- MPU Micro Processing Unit
- the control device 50 may be, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination thereof. Applicable.
- Each functional unit realized by the control device 50 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
- each function executed by the control device 50 is realized by software, firmware, or a combination of software and firmware.
- Software and firmware are described as programs and stored in a memory.
- the MPU implements each function of the control device 50 by reading and executing a program stored in the memory.
- the memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
- the input device RC can transmit to the indoor unit 102 a control command for heating operation and cooling operation, a control command for the air volume blown from the indoor unit 102, and a control command for the indoor set temperature. It is configured.
- the input device RC may be connected to the indoor unit 102 by wire or may be connected wirelessly.
- the input device RC can also be configured by a mobile terminal (for example, a mobile phone) provided with a predetermined application.
- the input device RC includes an air volume setting unit RC1 that receives a set air volume, an indoor temperature setting unit RC2 that receives an indoor set temperature, and an operation mode setting unit RC3 that receives various operation modes. In the operation mode, there is a heating operation, and there may be a cooling operation.
- the air volume setting unit RC1, the room temperature setting unit RC2, and the operation mode setting unit RC3 can be configured with buttons operated by the user, for example.
- the air volume setting unit RC1 is configured to receive a plurality of air volumes.
- the control device 50 has a large air volume (Hi) that is the first set air volume, a medium air volume 2 (Mid2) that is the second set air volume, and a medium air volume that is the third set air volume. It is possible to set four levels of air volume, 1 (Mid1) and a small air volume (Lo) that is the fourth set air volume.
- the air volume decreases in the order of large air volume, 2 medium air volumes, 1 medium air volume, and small air volumes.
- the set air volume is not limited to four stages, but may be one to three stages or five stages or more.
- the condensation temperature detector D1 includes a first condensation temperature sensor SE1 and a second condensation temperature sensor SE3.
- the first condensation temperature sensor SE1 and the second condensation temperature sensor SE3 can be composed of a thermistor or the like.
- the first condensing temperature sensor SE ⁇ b> 1 is provided in the first heat exchanger 5 mounted on the indoor unit 102.
- the first condensing temperature sensor SE1 detects the condensing temperature of the refrigerant during the heating operation in which the first heat exchanger 5 functions as a radiator.
- the second condensing temperature sensor SE3 is provided in the second heat exchanger 3 mounted on the outdoor unit 101.
- the second condensing temperature sensor SE3 detects the condensing temperature of the refrigerant during the cooling operation in which the second heat exchanger 3 functions as a radiator.
- the condensation temperature detected by the first condensation temperature sensor SE1 and the condensation temperature detected by the second condensation temperature sensor SE3 are transmitted from the condensation temperature detection unit D1 to the control device 50 as condensation temperature data.
- the room temperature detection unit D2 includes a room temperature sensor SE2 that detects the room temperature.
- the indoor temperature detection unit D2 is provided in the indoor unit 102.
- the indoor temperature sensor SE2 detects the temperature (indoor temperature) of the air taken into the indoor unit 102 by the action of the first blower 5A.
- the indoor temperature sensor SE2 can be composed of a thermistor or the like.
- the room temperature detected by the room temperature sensor SE2 is transmitted from the room temperature detection unit D2 to the control device 50 as room temperature data.
- the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is supplied to the second heat exchanger 3 through the four-way valve 2.
- the refrigerant supplied to the second heat exchanger 3 exchanges heat with air, dissipates heat, condenses, becomes a high-pressure liquid refrigerant, and is supplied to the expansion device 4.
- the refrigerant supplied to the expansion device 4 is reduced in pressure to become a low-temperature and low-pressure two-phase refrigerant, passes through the refrigerant pipe P2, and is supplied to the first heat exchanger 5 of the indoor unit 102.
- the refrigerant supplied to the first heat exchanger 5 exchanges heat with indoor air to absorb heat, evaporates and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled by the refrigerant. And the cooled air is supplied indoors from the blower outlet of the indoor unit 102 by the effect
- the refrigerant that has passed through the first heat exchanger 5 returns to the outdoor unit 101 through the refrigerant pipe P1, and returns to the compressor 1 through the four-way valve 2.
- the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is supplied to the first heat exchanger 5 of the indoor unit 102 through the four-way valve 2 and the refrigerant pipe P1.
- coolant supplied to the 1st heat exchanger 5 heat-exchanges with air, dissipates heat, condenses, and turns into a high voltage
- indoor air is heated.
- the heated air is supplied into the room from the outlet of the indoor unit 102 by the action of the first blower 5A.
- the refrigerant that has passed through the first heat exchanger 5 returns to the outdoor unit 101 through the refrigerant pipe P ⁇ b> 2 and is supplied to the expansion device 4.
- the refrigerant supplied to the expansion device 4 is depressurized to become a low-temperature and low-pressure two-phase refrigerant and supplied to the second heat exchanger 3.
- the refrigerant supplied to the second heat exchanger 3 exchanges heat with air to absorb heat, evaporates and becomes a low-temperature gas refrigerant. Then, the refrigerant that has passed through the second heat exchanger 3 is returned to the compressor 1 through the four-way valve 2.
- FIG. 2A is a functional block diagram of control device 50 of air-conditioning apparatus 100 according to the present embodiment.
- FIG. 2B is an explanatory diagram of a table used when correcting the rotation speed currently set in the first blower 5A.
- the numbers 1 to 7 shown in FIG. 2B indicate the magnitude relationship of the rotational speed of the first blower 5A.
- the control device 50 includes a determination unit 50A (determination of various temperature arrivals), a rotation speed correction unit 50B, a target temperature calculation unit 50C, an output control device 50D, and a storage unit 50E.
- determination unit 50A determination of various temperature arrivals
- rotation speed correction unit 50B correction of various temperature arrivals
- target temperature calculation unit 50C calculation of various temperature arrivals
- output control device 50D output control device
- storage unit 50E storage unit 50E.
- the control apparatus 50 is provided with the timer, and has the function to measure time.
- the determination unit 50A determines whether or not the room has reached the target temperature based on the room temperature data transmitted from the room temperature detection unit D2. Further, the determination unit 50A determines whether or not to correct the rotation speed of the first blower 5A based on the condensation temperature data transmitted from the condensation temperature detection unit D1. The determination unit 50A determines that correction is performed when the condensation temperature specified by the condensation temperature data is equal to or higher than a predetermined temperature, and determines that correction is not performed when the temperature is lower than the predetermined temperature.
- Rotation speed correction unit 50B When the determination unit 50A determines that the rotation number of the first blower 5A is to be corrected, the rotation number correction unit 50B calculates a correction value (corrected rotation number) of the rotation number of the first blower 5A. The rotation speed correction unit 50B calculates the corrected rotation speed in accordance with the magnitude of the condensation temperature specified by the condensation temperature data.
- the rotation speed correction unit 50B calculates the corrected rotation speed using the corrected rotation speed calculation table stored in the storage unit 50E.
- a predetermined arithmetic expression is stored in the storage unit 50E, and correction is performed based on the arithmetic expression, the condensation temperature, and the set air volume.
- the post-rotation speed may be calculated.
- the rotation speed correction unit 50B is configured to reduce the corrected rotation speed according to the size of the condensation temperature. For example, when the current set air volume is a small air volume (Lo), the rotation speed after correction is as follows. Here, the rotational speed corresponding to the small air volume (Lo) is 4. (1) When the condensation temperature is lower than the first temperature T1, the rotation speed correction unit 50B determines that the set rotation speed of the first blower 5A remains the current set rotation speed. (2) When the condensation temperature is equal to or higher than the first temperature T1 and lower than the second temperature T2, the rotation speed correction unit 50B sets the set rotation speed of the first blower 5A to a size 4. A decision is made to change from the currently set rotational speed to a corrected rotational speed (first rotational speed) of size 3.
- the rotation speed correction unit 50B sets the set rotation speed of the first blower 5A to a size 4. It is determined that the current set rotational speed is changed to a post-correction rotational speed (second rotational speed) having a magnitude of 2.
- the rotation speed correction unit 50B increases the setting rotation speed of the first blower 5A from the current setting rotation speed of size 4. It is determined to change to a post-correction rotational speed (third rotational speed) that is 1.
- size is small in order of the present setting rotation speed, 1st rotation speed, 2nd rotation speed, and 3rd rotation speed.
- the rotational speed is not corrected as in the above (1), but the condensation temperature is the predetermined temperature (first temperature T1).
- the rotational speed is corrected as in (2) to (4) above, and the set rotational speed of the first blower 5A is reduced.
- the post-correction rotational speed can be changed in three stages (first rotational speed, second rotational speed, and third rotational speed). However, it may be two stages or four stages or more.
- the rotation speed correction unit 50B is configured to reduce the corrected rotation speed in accordance with the set air volume of the first blower 5A set by the input device RC.
- the current set air volume is a large air volume (Hi) that is the first set air volume
- the first rotational speed of the first blower 5A is 6 and the current set air volume is the second.
- the air flow rate is 2 (Mid2)
- the first rotational speed of the first blower 5A is 5 and the current air flow rate is 1 (3).
- the first rotational speed of the first blower 5A is 4 and the current set air volume is the fourth set air volume, which is the low air volume (Lo).
- the first rotational speed of the blower 5 ⁇ / b> A is 3.
- the 1st number of rotations becomes small, so that the setting air volume of 5 A of 1st fans set by input device RC becomes small.
- the second rotation speed and the third rotation speed also decrease as the set air volume decreases.
- the corrected rotational speed includes a rotational speed lower than the rotational speed corresponding to the minimum air volume among the plurality of set air volumes. That is, the control device 50 can operate the first blower 5A with an air volume smaller than the fourth set air volume that is the minimum as the set air volume that can be set by the input device RC.
- the control device 50 and the first blower 5A are configured to be able to be operated at a rotational speed smaller than the rotational speed corresponding to the fourth set air volume that is the minimum as the set air volume. .
- the rotation speed described here corresponds to the rotation speeds of magnitude 1 to magnitude 3 in FIG. 2B.
- the target temperature calculation unit 50C calculates the indoor target temperature based on the indoor set temperature data transmitted from the input device RC.
- the target temperature is usually a temperature equivalent to a set temperature set by the input device RC.
- the target temperature is a value deviated from the set temperature set by the input device RC.
- the target temperature calculation unit 50C calculates a temperature higher than the set temperature as the target temperature.
- the control device 50 increases the rotational speed of the compressor 1.
- the output control device 50D controls various devices based on the determination result of the determination unit 50A, the calculation result of the rotation speed correction unit 50B, the data stored in the storage unit 50E, and the like.
- the output control device 50D controls at least one of the compressor 1, the expansion device 4, the second blower 3A, and the first blower 5A.
- Storage unit 50E Various data are stored in the storage unit 50E.
- the storage unit 50E stores various data such as condensation temperature data and room temperature data.
- the storage unit 50E stores a corrected rotation speed calculation table.
- the control device 50 uses an arithmetic expression for calculating the corrected rotational speed instead of the corrected rotational speed calculation table, the arithmetic expression is stored in the storage unit 50E.
- FIG. 3 is an explanatory diagram of a control flow of the air-conditioning apparatus 100 according to the present embodiment. With reference to FIG. 3, an example of the control flow of the air conditioning apparatus 100 will be described. In this control flow, the heating operation is assumed.
- the target temperature calculation unit 50C calculates a target temperature based on data (for example, indoor set temperature data) transmitted from the input device RC (step S1).
- the control device 50 acquires the room temperature.
- the room temperature is specified by room temperature data transmitted from the room temperature detection unit D2.
- the determination unit 50A compares the target temperature with the room temperature (step S3). When the absolute value of the value obtained by subtracting the room temperature from the target temperature is equal to or greater than a predetermined value, the control device 50 proceeds from step S3 to step S4-1. When the absolute value is less than the predetermined value, The control device 50 proceeds from step S3 to step S4-2.
- the output control device 50D compresses the target temperature and the room temperature because there is an opening.
- the rotational speed of the machine 1 is maintained or increased (step S4-1).
- the output control device 50D determines that the absolute value of the value obtained by subtracting the room temperature from the target temperature is less than a predetermined value, the target temperature and the room temperature do not open or are small.
- the rotational speed of the compressor 1 is reduced (step S4-2).
- the control device 50 acquires the condensation temperature of the first heat exchanger 5.
- the condensation temperature is specified by the condensation temperature data transmitted from the condensation temperature detection unit D1.
- the determination unit 50A determines whether or not to correct the current set rotational speed of the first blower 5A based on the condensation temperature of the second heat exchanger (step S6).
- step S7 If it is determined that the current set rotational speed of the first blower 5A is to be corrected, the control device 50 proceeds to step S7, and if it is determined not to correct the current set rotational speed of the first blower 5A, the control device 50 performs a step. Return to S1.
- the rotation speed correction unit 50B calculates the corrected rotation speed based on the condensation temperature of the first heat exchanger 5 and the set air volume of the first blower 5A (step S7).
- the output control device 50D operates the first blower 5A at the corrected rotational speed (step S8).
- FIG. 4 is an explanatory diagram of the time change of the room temperature and the time change of the rotational speed of the blower.
- FIG. 4A shows the transition of the indoor temperature in the conventional control and the transition of the indoor temperature in the present embodiment.
- FIG.4 (b) has shown transition of the rotation speed of the 2nd air blower of conventional control.
- FIG.4 (c) has shown transition of the rotation speed of 5 A of 1st air blowers of this Embodiment.
- the room temperature exceeds the set temperature of the input device RC without decreasing the rotational speed of the second blower according to the increase in the condensation temperature. That is, in the conventional control, extra air heated in the room is supplied, and the energy saving performance is reduced accordingly.
- the rotation speed of a 2nd air blower is dropped according to the rise in condensation temperature, it approaches so that indoor temperature may not exceed the preset temperature of input device RC, and energy-saving property improves. Yes.
- the indoor unit 102 of the air conditioner 100 has the current setting of the first blower 5A when the condensing temperature is equal to or higher than a predetermined temperature during the heating operation.
- the rotational speed is reduced to a corrected rotational speed that is smaller than the currently set rotational speed.
- the post-correction rotational speed is determined according to the magnitude of the condensation temperature. The higher the condensing temperature, the smaller the corrected rotation speed. For this reason, the indoor unit 102 can suppress the power consumption of the first blower 5 ⁇ / b> A as much as it is not necessary to supply extra air heated indoors, and can improve energy saving.
- FIG. 5 is a modification of the control flowchart shown in FIG.
- Steps S1 to S8 in FIG. 5 are the same as steps S1 to S8 in FIG.
- step S9 of FIG. 5 step S9 for increasing the opening degree of the expansion device 4 is added after step S8.
- control device 50 is configured to increase the opening degree of the expansion device 4 when the current set rotational speed is reduced to the corrected rotational speed. Thereby, it is possible to prevent the condensation temperature of the first heat exchanger 5 from rising too much. That is, when the rotation speed of the first blower 5A is decreased to the corrected rotation speed, the flow rate of the air supplied to the first heat exchanger 5 may decrease and the condensation temperature may increase. . Then, when the rotation speed of the first blower 5A is reduced to the corrected rotation speed, the condensing temperature increases, and further, the rotation speed of the first blower 5A may be decreased to the corrected rotation speed. . In order to avoid such a situation, in the present modification, when the current set rotational speed is reduced to the post-correction rotational speed, the opening degree of the expansion device 4 is increased.
- the control device 50 increases the opening degree of the expansion device 4 at the timing to reduce the current set rotational speed to the corrected rotational speed. Thereby, the situation as described above can be avoided more reliably.
- the timing at which the current set rotational speed is reduced to the corrected rotational speed will be described.
- the opening degree of the expansion device 4 may be increased at the same time as the current set rotational speed is reduced to the corrected rotational speed.
- it is not limited simultaneously, and the opening degree of the expansion device 4 may be increased immediately after the current set rotational speed is reduced to the corrected rotational speed. Further, the opening degree of the expansion device 4 may be increased immediately before the current set rotational speed is reduced to the corrected rotational speed.
- FIG. 6 is a modification of the refrigerant circuit shown in FIG.
- differences from this embodiment will be mainly described, and the same reference numerals are given to common configurations.
- the configuration of the refrigerant circuit is not limited to the mode shown in FIG. 1, but may be the mode shown in FIG.
- An air conditioner 500 according to the modification shown in FIG. 6 is assumed to be a multi air conditioner for buildings, for example.
- the air conditioner 500 includes an outdoor unit 501 and an indoor unit 502.
- the air conditioner 500 is provided with a plurality of indoor units 502.
- the outdoor unit 501 is not provided with the expansion device 4.
- each indoor unit 502 is provided with a throttle device 4.
- the expansion device 4 may be provided in each indoor unit 502, and the expansion device may also be provided in the outdoor unit 101.
- an outdoor unit 501 and a plurality of indoor units 502 are connected via a refrigerant pipe P1 and a refrigerant pipe P2.
- a refrigerant pipe P1 and a refrigerant pipe P2 are connected via a refrigerant pipe P1 and a refrigerant pipe P2.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
凝縮器として機能する第1の熱交換器と、第1の熱交換器に空気を供給する送風機と、第1の熱交換器の凝縮温度を検出する凝縮温度センサーと、凝縮温度センサーによって検出された凝縮温度に基づいて送風機を制御する制御装置と、を備え、制御装置は、暖房運転を実行しているときに凝縮温度が予め定められた温度以上となった場合には、送風機の現在の設定回転数を、凝縮温度の大きさに応じて定められ、現在の設定回転数よりも小さい補正後回転数へ、低下させるように構成されている。
Description
本発明は、空気調和装置の室内機及び空気調和装置に関するものである。
従来から、室内温度に基づいて、圧縮機の回転数及び室内送風機の回転数を制御する空気調和装置が提案されている(例えば、特許文献1参照)。特許文献1に記載の空気調和装置は、室内温度が目標温度に到達すると、圧縮機の回転数及び室内送風機の回転数を低下させる。
暖房運転を実行しているときにおいて、室内機に搭載された熱交換器の凝縮温度が高いと、その分室内機から室内へ高温の空気が供給されることとなる。このような状況では、室内温度が目標温度を超え、必要以上に室内が暖まってしまい、空気調和装置の省エネルギー性が低下する場合がある。
本発明は、上述のような課題を解決するためになされたものであり、省エネルギー性を向上させることができる空気調和装置の室内機及び空気調和装置を提供することを目的とする。
本発明に係る空気調和装置の室内機は、凝縮器として機能する第1の熱交換器と、第1の熱交換器に空気を供給する送風機と、第1の熱交換器の凝縮温度を検出する凝縮温度センサーと、凝縮温度センサーによって検出された凝縮温度に基づいて送風機を制御する制御装置と、を備え、制御装置は、暖房運転を実行しているときに凝縮温度が予め定められた温度以上となった場合には、送風機の現在の設定回転数を、凝縮温度の大きさに応じて定められ、現在の設定回転数よりも小さい補正後回転数へ、低下させるように構成されている。
本発明によれば、上記構成を備えているので、省エネルギー性を向上させることができる。
実施の形態.
本実施の形態に係る空気調和装置100について説明する。
図1は、本実施の形態に係る空気調和装置100の冷媒回路Cの説明図である。
本実施の形態に係る空気調和装置100について説明する。
図1は、本実施の形態に係る空気調和装置100の冷媒回路Cの説明図である。
[構成説明]
図1に示すように、空気調和装置100は、冷媒を循環させる冷媒回路Cを含む。
また、空気調和装置100は、室外機101と、室内機102とを含む。空気調和装置100は、室外機101と室内機102とが分離している、いわゆるセパレート型の空気調和装置である。なお、室外機101と室内機102とは、冷媒配管P1及び冷媒配管P2を介して接続されている。また、室外機101には、冷媒配管P1及び冷媒配管P2が接続されるバルブVaが設けられている。室内機102にも、冷媒配管P1及び冷媒配管P2が接続されるバルブVaが設けられている。
図1に示すように、空気調和装置100は、冷媒を循環させる冷媒回路Cを含む。
また、空気調和装置100は、室外機101と、室内機102とを含む。空気調和装置100は、室外機101と室内機102とが分離している、いわゆるセパレート型の空気調和装置である。なお、室外機101と室内機102とは、冷媒配管P1及び冷媒配管P2を介して接続されている。また、室外機101には、冷媒配管P1及び冷媒配管P2が接続されるバルブVaが設けられている。室内機102にも、冷媒配管P1及び冷媒配管P2が接続されるバルブVaが設けられている。
冷媒回路Cは、圧縮機1、四方弁2、絞り装置4、第1の熱交換器5、第2の熱交換器3、冷媒配管P1及び冷媒配管P2を含む。また、空気調和装置100は、第2の熱交換器3に付設される第2の送風機3Aと、第1の熱交換器5に付設される第1の送風機5Aとを含む。
室外機101には、圧縮機1、四方弁2、第2の熱交換器3、第2の送風機3A及び絞り装置4が搭載されている。室内機102には、第1の熱交換器5及び第1の送風機5Aが搭載されている。
室外機101には、圧縮機1、四方弁2、第2の熱交換器3、第2の送風機3A及び絞り装置4が搭載されている。室内機102には、第1の熱交換器5及び第1の送風機5Aが搭載されている。
空気調和装置100は、室外機101及び室内機102を統括制御する制御装置50を備えている。なお、図1では、制御装置50が室内機102に搭載されているが、それに限定されるものではない。空気調和装置100は、制御装置が室外機101及び室内機102にそれぞれ搭載され、これらの制御装置が通信する態様であってもよい。
空気調和装置100は、室内機102に制御指令をする入力装置RCを備えている。入力装置RCは、リモートコントローラーとして機能するものである。空気調和装置100は、冷媒回路Cの凝縮温度を検出する凝縮温度検出部D1と、室内温度を検出する室内温度検出部D2とを含む。
圧縮機1は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。圧縮機1は、例えば、インバータにより回転数が制御される。圧縮機1は、高圧冷媒を吐出する冷媒吐出部と冷媒回路Cを循環して戻ってきた低圧冷媒を吸入する冷媒吸入部とを備えている。
四方弁2は、圧縮機1の冷媒吐出部と第2の熱交換器3とを連通し、且つ、圧縮機1の冷媒吸入部と第1の熱交換器5とを連通する第1の流路と、圧縮機1の冷媒吐出部と第1の熱交換器5とを連通し、且つ、圧縮機1の冷媒吸入部と第2の熱交換器3とを連通する第2の流路とを含む。四方弁2は制御装置50によって、第1の流路と第2の流路とが選択的に切り替えられる。冷房運転時は四方弁2が第1の流路に切り替えられ、暖房運転時は四方弁2が第2の流路に切り替えられる。
絞り装置4は、例えば、開度を調節可能な電子膨張弁である。なお、絞り装置4はキャピラリーチューブ等の他の減圧手段を用いることもできる。
第1の熱交換器5は、例えば、内部を流通する冷媒と、第1の送風機5Aにより送風される空気との熱交換を行う空冷式熱交換器として構成することができる。第1の熱交換器5は、フィンアンドチューブ型熱交換器として構成できる。第1の熱交換器5は、空気調和装置100が冷房運転を実行している場合には蒸発器として機能し、暖房運転を実行している場合には凝縮器として機能する。第1の送風機5Aは、図示省略の電動機と、電動機に回転させられるファンとを備えている。第1の送風機5Aは、第1の熱交換器5に供給する空気の風量を可変に調整できるように、回転数が制御される。なお、第1の送風機5Aの回転数とは第1の送風機5Aのファン回転数である。本実施の形態において、第1の送風機5Aに設定することができる回転数(風量)は少なくとも7つある(図2B参照)。
第2の熱交換器3は、例えば、内部を流通する冷媒と、第2の送風機3Aにより送風される空気との熱交換を行う空冷式熱交換器として構成することができる。空冷式熱源側熱交換器は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィンアンドチューブ型熱交換器として構成できる。第2の熱交換器3は、空気調和装置100が冷房運転を実行している場合には凝縮器(放熱器)として機能し、暖房運転を実行している場合には蒸発器として機能する。
制御装置50は、圧縮機1、絞り装置4、第2の送風機3A及び第1の送風機5A等を統括制御する。制御装置50は、凝縮温度検出部D1から送信される凝縮温度データ及び室内温度検出部D2から送信される室内温度データを取得する。制御装置50に含まれる各機能部は、専用のハードウェア、またはメモリに格納されるプログラムを実行するMPU(Micro Processing Unit)で構成される。制御装置50が専用のハードウェアである場合、制御装置50は、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、またはこれらを組み合わせたものが該当する。制御装置50が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。制御装置50がMPUの場合、制御装置50が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。MPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置50の各機能を実現する。メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。
入力装置RCは、例えば、暖房運転及び冷房運転の制御指令、室内機102から吹き出す空気の風量に係る制御指令、及び、室内の設定温度に係る制御指令を室内機102に送信することができるように構成されている。入力装置RCは、室内機102に、有線で接続されていてもよいし、無線で接続されていてもよい。なお、入力装置RCは、予め定められたアプリケーションを備えた携帯端末(例えば、携帯電話)で構成することもできる。
入力装置RCは、設定風量を受け付ける風量設定部RC1と、室内設定温度を受け付ける室内温度設定部RC2と、各種運転モードを受け付ける運転モード設定部RC3とを備えている。運転モードには、暖房運転があり、その他に冷房運転があってもよい。風量設定部RC1、室内温度設定部RC2及び運転モード設定部RC3は、例えば、ユーザーが操作するボタン等で構成することができる。風量設定部RC1は、複数の風量を受け付けるように構成されている。本実施の形態では、制御装置50には、第1の設定風量である風量大(Hi)と、第2の設定風量である風量中2(Mid2)と、第3の設定風量である風量中1(Mid1)と、第4の設定風量である風量小(Lo)との4段階の風量を設定することができる。風量大、風量中2、風量中1、及び、風量小の順番に風量が小さくなる。なお、設定風量は4段階に限定されるものではなく、1~3段階でもよいし、5段階以上であってもよい。
入力装置RCは、設定風量を受け付ける風量設定部RC1と、室内設定温度を受け付ける室内温度設定部RC2と、各種運転モードを受け付ける運転モード設定部RC3とを備えている。運転モードには、暖房運転があり、その他に冷房運転があってもよい。風量設定部RC1、室内温度設定部RC2及び運転モード設定部RC3は、例えば、ユーザーが操作するボタン等で構成することができる。風量設定部RC1は、複数の風量を受け付けるように構成されている。本実施の形態では、制御装置50には、第1の設定風量である風量大(Hi)と、第2の設定風量である風量中2(Mid2)と、第3の設定風量である風量中1(Mid1)と、第4の設定風量である風量小(Lo)との4段階の風量を設定することができる。風量大、風量中2、風量中1、及び、風量小の順番に風量が小さくなる。なお、設定風量は4段階に限定されるものではなく、1~3段階でもよいし、5段階以上であってもよい。
凝縮温度検出部D1は、第1の凝縮温度センサーSE1と、第2の凝縮温度センサーSE3とを含む。第1の凝縮温度センサーSE1及び第2の凝縮温度センサーSE3は、サーミスタ等で構成することができる。第1の凝縮温度センサーSE1は、室内機102に搭載された第1の熱交換器5に設けられている。第1の凝縮温度センサーSE1は、第1の熱交換器5が放熱器として機能する暖房運転時において、冷媒の凝縮温度を検出する。一方、第2の凝縮温度センサーSE3は、室外機101に搭載された第2の熱交換器3に設けられている。第2の凝縮温度センサーSE3は、第2の熱交換器3が放熱器として機能する冷房運転時において、冷媒の凝縮温度を検出する。第1の凝縮温度センサーSE1で検出された凝縮温度及び第2の凝縮温度センサーSE3で検出された凝縮温度は、凝縮温度データとして、凝縮温度検出部D1から制御装置50へ送信される。
室内温度検出部D2は、室内温度を検出する室内温度センサーSE2を含む。室内温度検出部D2は、室内機102に設けられている。室内温度センサーSE2は、第1の送風機5Aの作用によって、室内機102内に取り込まれた空気の温度(室内温度)を検出する。室内温度センサーSE2は、サーミスタ等で構成することができる。室内温度センサーSE2で検出された室内温度は、室内温度データとして室内温度検出部D2から制御装置50へ送信される。
室内温度検出部D2は、室内温度を検出する室内温度センサーSE2を含む。室内温度検出部D2は、室内機102に設けられている。室内温度センサーSE2は、第1の送風機5Aの作用によって、室内機102内に取り込まれた空気の温度(室内温度)を検出する。室内温度センサーSE2は、サーミスタ等で構成することができる。室内温度センサーSE2で検出された室内温度は、室内温度データとして室内温度検出部D2から制御装置50へ送信される。
[暖房運転及び冷房運転の動作説明]
冷房運転を行う場合には、圧縮機1によって圧縮された冷媒が高温高圧の冷媒となって四方弁2を通り第2の熱交換器3に供給される。第2の熱交換器3に供給された冷媒は、空気と熱交換して放熱して凝縮し、高圧の液冷媒となり、絞り装置4に供給される。絞り装置4に供給された冷媒は、減圧されて低温低圧の二相冷媒となり、冷媒配管P2を通り、室内機102の第1の熱交換器5に供給される。第1の熱交換器5に供給された冷媒は、室内の空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。このとき、室内の空気は冷媒に冷却される。そして、冷却された空気は、第1の送風機5Aの作用によって室内機102の吹出口から室内に供給される。第1の熱交換器5を通過した冷媒は、冷媒配管P1を通り室外機101に戻り、四方弁2を通って圧縮機1に戻される。
冷房運転を行う場合には、圧縮機1によって圧縮された冷媒が高温高圧の冷媒となって四方弁2を通り第2の熱交換器3に供給される。第2の熱交換器3に供給された冷媒は、空気と熱交換して放熱して凝縮し、高圧の液冷媒となり、絞り装置4に供給される。絞り装置4に供給された冷媒は、減圧されて低温低圧の二相冷媒となり、冷媒配管P2を通り、室内機102の第1の熱交換器5に供給される。第1の熱交換器5に供給された冷媒は、室内の空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。このとき、室内の空気は冷媒に冷却される。そして、冷却された空気は、第1の送風機5Aの作用によって室内機102の吹出口から室内に供給される。第1の熱交換器5を通過した冷媒は、冷媒配管P1を通り室外機101に戻り、四方弁2を通って圧縮機1に戻される。
暖房運転を行う場合には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2及び冷媒配管P1を通り室内機102の第1の熱交換器5に供給される。そして、第1の熱交換器5に供給された冷媒は、空気と熱交換して放熱して凝縮し、高圧の液冷媒となる。このとき、室内の空気は加熱される。加熱された空気は、第1の送風機5Aの作用によって室内機102の吹出口から室内に供給される。第1の熱交換器5を通過した冷媒は、冷媒配管P2を通り室外機101に戻り、絞り装置4に供給される。絞り装置4に供給された冷媒は、減圧されて低温低圧の二相冷媒となり、第2の熱交換器3に供給される。第2の熱交換器3に供給された冷媒は、空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。そして、第2の熱交換器3を通過した冷媒は、四方弁2を通って圧縮機1に戻される。
[制御装置50について]
図2Aは、本実施の形態に係る空気調和装置100の制御装置50の機能ブロック図である。
図2Bは、第1の送風機5Aに現在設定されている回転数を補正するときに用いるテーブルの説明図である。なお、図2Bに示す1~7の数字は、第1の送風機5Aの回転数の大小関係を示すものである。
図2Aは、本実施の形態に係る空気調和装置100の制御装置50の機能ブロック図である。
図2Bは、第1の送風機5Aに現在設定されている回転数を補正するときに用いるテーブルの説明図である。なお、図2Bに示す1~7の数字は、第1の送風機5Aの回転数の大小関係を示すものである。
制御装置50は、判定部50A(各種の温度到達の判定)と、回転数補正部50Bと、目標温度算出部50Cと、出力制御装置50Dと、記憶部50Eとを備えている。なお、図示は省略しているが、制御装置50は、タイマーを備えており、時間を計測する機能を有している。
(判定部50A)
判定部50Aは、室内温度検出部D2から送信される室内温度データに基づいて、室内が目標温度に到達したか否かを判定する。また、判定部50Aは、凝縮温度検出部D1から送信される凝縮温度データに基づいて、第1の送風機5Aの回転数を補正するか否かを判定する。判定部50Aは、凝縮温度データによって特定される凝縮温度が、予め定められた温度以上である場合に補正をすると判定し、予め定められた温度未満である場合に補正をしないと判定する。
判定部50Aは、室内温度検出部D2から送信される室内温度データに基づいて、室内が目標温度に到達したか否かを判定する。また、判定部50Aは、凝縮温度検出部D1から送信される凝縮温度データに基づいて、第1の送風機5Aの回転数を補正するか否かを判定する。判定部50Aは、凝縮温度データによって特定される凝縮温度が、予め定められた温度以上である場合に補正をすると判定し、予め定められた温度未満である場合に補正をしないと判定する。
(回転数補正部50B)
回転数補正部50Bは、判定部50Aが第1の送風機5Aの回転数を補正すると判定した場合に、第1の送風機5Aの回転数の補正値(補正後回転数)を算出する。回転数補正部50Bは、凝縮温度データによって特定される凝縮温度の大きさに応じて、補正後回転数を算出する。
回転数補正部50Bは、判定部50Aが第1の送風機5Aの回転数を補正すると判定した場合に、第1の送風機5Aの回転数の補正値(補正後回転数)を算出する。回転数補正部50Bは、凝縮温度データによって特定される凝縮温度の大きさに応じて、補正後回転数を算出する。
回転数補正部50Bは、図2Bに示すように、記憶部50Eに格納された補正後回転数算出テーブルを用いて、補正後の回転数を算出する。なお、ここでは、補正後回転数算出テーブルを用いる態様について説明するが、予め定められた演算式を記憶部50Eに記憶しておきこの演算式と、凝縮温度及び設定風量とに基づいて、補正後回転数を算出してもよい。
回転数補正部50Bは、凝縮温度が大きさに応じて、補正後回転数を小さくするように構成されている。例えば、現在の設定風量が風量小(Lo)である場合においては次のような補正後回転数とする。ここで、風量小(Lo)に対応する回転数の大きさは4である。(1)回転数補正部50Bは、凝縮温度が第1の温度T1未満である場合には、第1の送風機5Aの設定回転数を、現在の設定回転数のままとすると決定する。(2)回転数補正部50Bは、凝縮温度が第1の温度T1以上であって第2の温度T2未満である場合には、第1の送風機5Aの設定回転数を、大きさ4である現在の設定回転数から、大きさ3である補正後回転数(第1の回転数)へ変更する決定する。(3)回転数補正部50Bは、凝縮温度が第2の温度T2以上であって第3の温度T3未満である場合には、第1の送風機5Aの設定回転数を、大きさ4である現在の設定回転数から、大きさ2である補正後回転数(第2の回転数)へ変更すると決定する。(4)回転数補正部50Bは、凝縮温度が第3の温度T3以上である場合には、第1の送風機5Aの設定回転数を、大きさ4である現在の設定回転数から、大きさ1である補正後回転数(第3の回転数)へ変更すると決定する。なお、現在の設定回転数、第1の回転数、第2の回転数及び第3の回転数の順番で大きさが小さい。このように凝縮温度が予め定められた温度(第1の温度T1)未満である場合には上記(1)のように回転数の補正がなされないが、凝縮温度が予め定められた温度(第1の温度T1)以上である場合には上記(2)~(4)のように回転数の補正が行われ、第1の送風機5Aの設定回転数が低下する。本実施の形態では、補正後回転数は3段階(第1の回転数、第2の回転数及び第3の回転数)に変更できるようになっている例を説明しているが、1段階でもよいし、2段階でもよいし、4段階以上でもよい。
また、回転数補正部50Bは、入力装置RCによって設定された第1の送風機5Aの設定風量に応じて、補正後回転数を小さくするように構成されている。例えば、現在の設定風量が第1の設定風量である風量大(Hi)である場合においては、第1の送風機5Aの第1の回転数が大きさ6であり、現在の設定風量が第2の設定風量である風量中2(Mid2)である場合においては第1の送風機5Aの第1の回転数が大きさ5であり、現在の設定風量が第3の設定風量である風量中1(Mid1)である場合においては第1の送風機5Aの第1の回転数が大きさ4であり、現在の設定風量が第4の設定風量である風量小(Lo)である場合においては第1の送風機5Aの第1の回転数が大きさ3である。このように、入力装置RCによって設定された第1の送風機5Aの設定風量が小さくなる程、第1の回転数が小さくなっていく。同じように、第2の回転数及び第3の回転数も、設定風量が小さくなると、小さくなっていく。
ここで、補正後回転数には、複数の設定風量のうちの最小風量に対応する回転数よりも、低い回転数が含まれている。つまり、制御装置50は、入力装置RCで設定することができる設定風量としては最小である第4の設定風量よりも小さい風量で、第1の送風機5Aを運転させることができる。制御装置50及び第1の送風機5Aは、設定風量としては最小である第4の設定風量に対応する回転数よりも、小さい回転数で運転することができるように構成されているということである。これにより、より確実に、第1の送風機5Aの消費電力を抑えることができ、省エネルギー性を向上させることができる。ここで説明した回転数は、図2Bにおいて、大きさ1~大きさ3の回転数に対応している。
(目標温度算出部50C)
目標温度算出部50Cは、入力装置RCから送信される室内設定温度データに基づいて、室内の目標温度を算出する。目標温度は、通常、入力装置RCで設定される設定温度と同等の温度である。ここで、例えばパワフル運転を実行するように入力装置RCから設定されていると、目標温度は、入力装置RCで設定される設定温度からずれた値となる。例えば、暖房運転及びパワフル運転を実行するように入力装置RCから設定されている場合には、目標温度算出部50Cは、目標温度として、設定温度よりも高い温度を算出する。これにより、現在の室内温度と目標温度との差が増大するため、空気調和装置100は、より暖房能力が高い運転を実行することになる。例えば、制御装置50は、圧縮機1の回転数を増大させることになる。
目標温度算出部50Cは、入力装置RCから送信される室内設定温度データに基づいて、室内の目標温度を算出する。目標温度は、通常、入力装置RCで設定される設定温度と同等の温度である。ここで、例えばパワフル運転を実行するように入力装置RCから設定されていると、目標温度は、入力装置RCで設定される設定温度からずれた値となる。例えば、暖房運転及びパワフル運転を実行するように入力装置RCから設定されている場合には、目標温度算出部50Cは、目標温度として、設定温度よりも高い温度を算出する。これにより、現在の室内温度と目標温度との差が増大するため、空気調和装置100は、より暖房能力が高い運転を実行することになる。例えば、制御装置50は、圧縮機1の回転数を増大させることになる。
(出力制御装置50D)
出力制御装置50Dは、判定部50Aの判定結果、回転数補正部50Bの算出結果、及び、記憶部50Eに格納されたデータ等に基づいて、各種の機器を制御する。出力制御装置50Dは、圧縮機1、絞り装置4、第2の送風機3A及び第1の送風機5Aの少なくとも一つを制御する。
出力制御装置50Dは、判定部50Aの判定結果、回転数補正部50Bの算出結果、及び、記憶部50Eに格納されたデータ等に基づいて、各種の機器を制御する。出力制御装置50Dは、圧縮機1、絞り装置4、第2の送風機3A及び第1の送風機5Aの少なくとも一つを制御する。
(記憶部50E)
記憶部50Eには、各種のデータが格納される。例えば、記憶部50Eは、凝縮温度データ及び室内温度データ等の各種データが格納されている。また、記憶部50Eには、補正後回転数算出テーブルが格納されている。制御装置50が補正後回転数算出テーブルの代わりに補正後回転数を算出する演算式を用いる場合には、記憶部50Eには当該演算式が格納されている。
記憶部50Eには、各種のデータが格納される。例えば、記憶部50Eは、凝縮温度データ及び室内温度データ等の各種データが格納されている。また、記憶部50Eには、補正後回転数算出テーブルが格納されている。制御装置50が補正後回転数算出テーブルの代わりに補正後回転数を算出する演算式を用いる場合には、記憶部50Eには当該演算式が格納されている。
[制御フロー]
図3は、本実施の形態に係る空気調和装置100の制御フローの説明図である。
図3を参照して、空気調和装置100の制御フローの一例を説明する。この制御フローでは、暖房運転時を想定している。
図3は、本実施の形態に係る空気調和装置100の制御フローの説明図である。
図3を参照して、空気調和装置100の制御フローの一例を説明する。この制御フローでは、暖房運転時を想定している。
目標温度算出部50Cは、入力装置RCから送信されるデータ(例えば、室内設定温度データ)に基づいて、目標温度を算出する(ステップS1)。制御装置50は、室内温度を取得している。ここで、室内温度は、室内温度検出部D2から送信される室内温度データによって特定される。判定部50Aは、目標温度と室内温度とを比較する(ステップS3)。目標温度から室内温度を減算した値の絶対値が、予め定められた値以上である場合には制御装置50はステップS3からステップS4-1に進み、予め定められた値未満である場合には制御装置50はステップS3からステップS4-2に進む。
出力制御装置50Dは、目標温度から室内温度を減算した値の絶対値が、予め定められた値以上であると判定された場合には、目標温度と室内温度との開きがあることから、圧縮機1の回転数を維持又は増加させる(ステップS4-1)。出力制御装置50Dは、目標温度から室内温度を減算した値の絶対値が、予め定められた値未満であると判定された場合には、目標温度と室内温度との開き無い又は小さいことから、圧縮機1の回転数を低下させる(ステップS4-2)。
制御装置50は、第1の熱交換器5の凝縮温度を取得している。ここで、凝縮温度は、凝縮温度検出部D1から送信される凝縮温度データによって特定される。判定部50Aは、第2の熱交換器の凝縮温度に基づいて、第1の送風機5Aの現在の設定回転数を補正するか否かを判定する(ステップS6)。
制御装置50は、第1の送風機5Aの現在の設定回転数を補正すると判定した場合にはステップS7に進み、第1の送風機5Aの現在の設定回転数を補正しないと判定した場合にはステップS1に戻る。回転数補正部50Bは、第1の熱交換器5の凝縮温度と、第1の送風機5Aの設定風量とに基づいて、補正後回転数を算出する(ステップS7)。出力制御装置50Dは、補正後回転数で第1の送風機5Aを運転する(ステップS8)。
[室内温度の時間変化及び送風機の回転数の時間変化]
図4は、室内温度の時間変化及び送風機の回転数の時間変化の説明図である。
図4(a)は、従来制御の室内温度の推移と、本実施の形態の室内温度の推移を示している。
図4(b)は、従来制御の第2の送風機の回転数の推移を示している。
図4(c)は、本実施の形態の第1の送風機5Aの回転数の推移を示している。
図4は、室内温度の時間変化及び送風機の回転数の時間変化の説明図である。
図4(a)は、従来制御の室内温度の推移と、本実施の形態の室内温度の推移を示している。
図4(b)は、従来制御の第2の送風機の回転数の推移を示している。
図4(c)は、本実施の形態の第1の送風機5Aの回転数の推移を示している。
図4(a)に示すように、従来制御では、凝縮温度の上昇に応じて第2の送風機の回転数を落とさず、室内温度が入力装置RCの設定温度を超えてしまっている。つまり、従来制御では、室内に加熱された空気を余分に供給しており、その分、省エネルギー性が低くなっている。一方、本実施の形態では、凝縮温度の上昇に応じて第2の送風機の回転数を落とすため、室内温度が入力装置RCの設定温度を超えないように近づいていき、省エネルギー性が向上している。
[実施の形態の効果]
本実施の形態に係る空気調和装置100の室内機102は、暖房運転を実行しているときに凝縮温度が予め定められた温度以上となった場合には、第1の送風機5Aの現在の設定回転数を、現在の設定回転数よりも小さい補正後回転数へ、低下させるように構成されている。この補正後回転数は、凝縮温度の大きさに応じて定められる。凝縮温度が大きい程、補正後回転数は小さい。このため、室内機102は、室内に加熱された空気を余分に供給しなくて済む分、第1の送風機5Aの消費電力を抑えることができ、省エネルギー性を向上させることができる。
本実施の形態に係る空気調和装置100の室内機102は、暖房運転を実行しているときに凝縮温度が予め定められた温度以上となった場合には、第1の送風機5Aの現在の設定回転数を、現在の設定回転数よりも小さい補正後回転数へ、低下させるように構成されている。この補正後回転数は、凝縮温度の大きさに応じて定められる。凝縮温度が大きい程、補正後回転数は小さい。このため、室内機102は、室内に加熱された空気を余分に供給しなくて済む分、第1の送風機5Aの消費電力を抑えることができ、省エネルギー性を向上させることができる。
[制御フローチャートの変形例]
図5は、図3に示す制御フローチャートの変形例である。なお、ここでは、本実施の形態との相違点を中心に説明するものとし、共通する構成については同じ符号を付している。図5のステップS1~ステップS8は、図3のステップS1~ステップS8と同様である。
図5は、図3に示す制御フローチャートの変形例である。なお、ここでは、本実施の形態との相違点を中心に説明するものとし、共通する構成については同じ符号を付している。図5のステップS1~ステップS8は、図3のステップS1~ステップS8と同様である。
本実施の形態では、図3に示す制御において、絞り装置4の開度は変更しなかった。本変形例では、図5のステップS9に示すように、ステップS8の後に、絞り装置4の開度を大きくするステップS9が追加されている。
具体的には、制御装置50は、現在の設定回転数を補正後回転数へ低下させた場合には、絞り装置4の開度を大きくするように構成されている。これにより、第1の熱交換器5の凝縮温度が上昇しすぎないようにすることができる。つまり、第1の送風機5Aの回転数を補正後回転数へ低下させると、第1の熱交換器5に供給される空気の流量が低下し、凝縮温度が上昇するように作用する場合がある。すると、第1の送風機5Aの回転数を補正後回転数へ低下させると、凝縮温度が上昇して、更に、第1の送風機5Aの回転数を補正後回転数へ低下させるといった事態が生じうる。こういった事態を回避するために、本変形例では、現在の設定回転数を補正後回転数へ低下させた場合には、絞り装置4の開度を大きくする。
制御装置50は、現在の設定回転数を補正後回転数へ低下させるタイミングで、絞り装置4の開度を大きくする。これにより、より確実に、上述したような事態を回避することができる。ここで、現在の設定回転数を補正後回転数へ低下させるタイミングについて説明する。例えば、現在の設定回転数を補正後回転数へ低下させると同時に、絞り装置4の開度を大きくしてもよい。また、同時に限定されるものではなく、現在の設定回転数を補正後回転数へ低下させた直後に、絞り装置4の開度を大きくしてもよい。また、現在の設定回転数を補正後回転数へ低下させる直前に、絞り装置4の開度を大きくしてもよい。
[冷媒回路の変形例]
図6は、図1に示す冷媒回路の変形例である。なお、ここでは、本実施の形態との相違点を中心に説明するものとし、共通する構成については同じ符号を付している。
図6は、図1に示す冷媒回路の変形例である。なお、ここでは、本実施の形態との相違点を中心に説明するものとし、共通する構成については同じ符号を付している。
冷媒回路の構成は図1の態様に限定されるものではなく、図6に示す態様であってもよい。図6に示す変形例に係る空気調和装置500は、例えば、ビル用マルチエアコンを想定している。空気調和装置500は、室外機501と、室内機502とを備えている。空気調和装置500には、複数の室内機502が設けられている。また、室外機501は、室外機101とは異なり、絞り装置4が設けられていない。その代わりに、各室内機502には、絞り装置4が設けられている。なお、各室内機502に絞り装置4を設け、更に、室外機101にも絞り装置が設けられている態様であってもよい。空気調和装置500の冷媒回路CCは、室外機501と複数の室内機502とが、冷媒配管P1及び冷媒配管P2を介して接続されている。図6に示す態様の空気調和装置500であっても、本実施の形態に係る空気調和装置500と同様の効果を得ることができる。
1 圧縮機、2 四方弁、3 第2の熱交換器、3A 第2の送風機、4 絞り装置、5 第1の熱交換器、5A 第1の送風機、50 制御装置、50A 判定部、50B 回転数補正部、50C 目標温度算出部、50D 出力制御装置、50E 記憶部、100 空気調和装置、101 室外機、102 室内機、500 空気調和装置、501 室外機、502 室内機、C 冷媒回路、CC 冷媒回路、D1 凝縮温度検出部、D2 室内温度検出部、P1 冷媒配管、P2 冷媒配管、RC 入力装置、RC1 風量設定部、RC2 室内温度設定部、RC3 運転モード設定部、SE1 第1の凝縮温度センサー、SE2 室内温度センサー、SE3 第2の凝縮温度センサー、Va バルブ。
Claims (7)
- 凝縮器として機能する第1の熱交換器と、
前記第1の熱交換器に空気を供給する送風機と、
前記第1の熱交換器の凝縮温度を検出する凝縮温度センサーと、
前記凝縮温度センサーによって検出された凝縮温度に基づいて前記送風機を制御する制御装置と、
を備え、
前記制御装置は、
暖房運転を実行しているときに前記凝縮温度が予め定められた温度以上となった場合には、
前記送風機の現在の設定回転数を、前記凝縮温度の大きさに応じて定められ、前記現在の設定回転数よりも小さい補正後回転数へ、低下させるように構成されている
空気調和装置の室内機。 - 前記制御装置は、
前記凝縮温度が第1の温度未満の場合には、前記現在の設定回転数のまま前記送風機を運転し、
前記凝縮温度が前記第1の温度以上であって前記第1の温度よりも高い第2の温度未満の場合には、前記補正後回転数に対応し、前記現在の設定回転数よりも低い第1の回転数で前記送風機を運転し、
前記凝縮温度が前記第2の温度以上であって前記第2の温度よりも高い第3の温度未満の場合には、前記補正後回転数に対応し、前記第1の回転数よりも低い第2の回転数で前記送風機を運転する
請求項1に記載の空気調和装置の室内機。 - 設定風量を受け付ける風量設定部をさらに備え、
前記制御装置は、
前記設定風量が第1の設定風量である場合における前記第1の回転数よりも、前記設定風量が第1の設定風量よりも小さい第2の設定風量である場合における前記第1の回転数の方が小さく、
前記設定風量が第1の設定風量である場合における前記第2の回転数よりも、前記設定風量が前記第2の設定風量である場合における前記第2の回転数の方が小さい
請求項2に記載の空気調和装置の室内機。 - 前記補正後回転数には、
複数の設定風量のうちの最小風量に対応する回転数よりも低い回転数が含まれる
請求項3に記載の空気調和装置の室内機。 - 請求項1~4のいずれか一項に記載の空気調和装置の室内機と、
前記第1の熱交換器に接続され、前記第1の熱交換器から流出する冷媒を減圧する絞り装置と、
を備え、
前記制御装置は、
前記現在の設定回転数を前記補正後回転数へ低下させた場合には、前記絞り装置の開度を大きくするように構成されている
空気調和装置。 - 前記制御装置は、
前記現在の設定回転数を前記補正後回転数へ低下させるタイミングで、前記絞り装置の開度を大きくする
請求項5に記載の空気調和装置。 - 圧縮機と、
前記暖房運転を実行しているときに蒸発器として機能する第2の熱交換器と、
をさらに備え、
前記室内機は、複数設けられ、
各室内機には、前記絞り装置が接続されている
請求項5又は6に記載の空気調和装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018546080A JP6656400B2 (ja) | 2016-10-19 | 2016-10-19 | 空気調和装置の室内機及び空気調和装置 |
PCT/JP2016/080907 WO2018073904A1 (ja) | 2016-10-19 | 2016-10-19 | 空気調和装置の室内機及び空気調和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/080907 WO2018073904A1 (ja) | 2016-10-19 | 2016-10-19 | 空気調和装置の室内機及び空気調和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018073904A1 true WO2018073904A1 (ja) | 2018-04-26 |
Family
ID=62019152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080907 WO2018073904A1 (ja) | 2016-10-19 | 2016-10-19 | 空気調和装置の室内機及び空気調和装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6656400B2 (ja) |
WO (1) | WO2018073904A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019215108A (ja) * | 2018-06-11 | 2019-12-19 | ダイキン工業株式会社 | 空調システム |
CN113566458A (zh) * | 2021-07-01 | 2021-10-29 | 福建佰时德能源科技有限公司 | 一种风冷冷凝机及控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0367962A (ja) * | 1989-08-03 | 1991-03-22 | Toshiba Corp | 空気調和機 |
JP2002228274A (ja) * | 2001-02-01 | 2002-08-14 | Sanyo Electric Co Ltd | 冷凍装置及びこの装置を用いた空気調和機 |
JP2004144377A (ja) * | 2002-10-23 | 2004-05-20 | Mitsubishi Heavy Ind Ltd | 複数の室内ユニットを有する空気調和装置およびその制御方法 |
JP2004163099A (ja) * | 2003-12-24 | 2004-06-10 | Toshiba Kyaria Kk | 空気調和機 |
JP2013145113A (ja) * | 2013-03-19 | 2013-07-25 | Panasonic Corp | 空調装置 |
JP2016053452A (ja) * | 2014-09-04 | 2016-04-14 | パナソニックIpマネジメント株式会社 | 空気調和機 |
-
2016
- 2016-10-19 JP JP2018546080A patent/JP6656400B2/ja not_active Expired - Fee Related
- 2016-10-19 WO PCT/JP2016/080907 patent/WO2018073904A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0367962A (ja) * | 1989-08-03 | 1991-03-22 | Toshiba Corp | 空気調和機 |
JP2002228274A (ja) * | 2001-02-01 | 2002-08-14 | Sanyo Electric Co Ltd | 冷凍装置及びこの装置を用いた空気調和機 |
JP2004144377A (ja) * | 2002-10-23 | 2004-05-20 | Mitsubishi Heavy Ind Ltd | 複数の室内ユニットを有する空気調和装置およびその制御方法 |
JP2004163099A (ja) * | 2003-12-24 | 2004-06-10 | Toshiba Kyaria Kk | 空気調和機 |
JP2013145113A (ja) * | 2013-03-19 | 2013-07-25 | Panasonic Corp | 空調装置 |
JP2016053452A (ja) * | 2014-09-04 | 2016-04-14 | パナソニックIpマネジメント株式会社 | 空気調和機 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019215108A (ja) * | 2018-06-11 | 2019-12-19 | ダイキン工業株式会社 | 空調システム |
JP7355987B2 (ja) | 2018-06-11 | 2023-10-04 | ダイキン工業株式会社 | 空調システム |
CN113566458A (zh) * | 2021-07-01 | 2021-10-29 | 福建佰时德能源科技有限公司 | 一种风冷冷凝机及控制方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018073904A1 (ja) | 2019-06-24 |
JP6656400B2 (ja) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5674572B2 (ja) | 空気調和機 | |
JP6642379B2 (ja) | 空調機 | |
JP4468682B2 (ja) | 空気調和機の節電除湿運転方法 | |
JP6567183B2 (ja) | 空気調和システム | |
JP5182358B2 (ja) | 冷凍装置 | |
US20110276185A1 (en) | Use-side unit and air conditioner | |
CN107036230B (zh) | 空调和控制空调的方法 | |
JP2008175490A (ja) | 空気調和装置 | |
AU2012392673B2 (en) | Air conditioning apparatus | |
JP7142682B2 (ja) | 空気調和システム | |
JP2015068582A (ja) | 空気調和機 | |
JP2011075179A (ja) | 空調システム | |
JP7026781B2 (ja) | 空気調和システム | |
CN108351116A (zh) | 空调机 | |
JP2014190554A (ja) | 空気調和機 | |
JP5846226B2 (ja) | 空気調和装置 | |
JP6495064B2 (ja) | 空調システムの制御装置、空調システム、空調システムの制御プログラム、及び空調システムの制御方法 | |
JP2016053452A (ja) | 空気調和機 | |
WO2018164253A1 (ja) | 空気調和装置 | |
JP2007271112A (ja) | 空気調和装置 | |
JP6019773B2 (ja) | 空気調和機の制御装置 | |
JP2016138666A (ja) | 空気調和機 | |
JP2009014321A (ja) | 空気調和機 | |
WO2018073904A1 (ja) | 空気調和装置の室内機及び空気調和装置 | |
JP2009041829A (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16919091 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018546080 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16919091 Country of ref document: EP Kind code of ref document: A1 |