[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018055901A1 - アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラム - Google Patents

アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラム Download PDF

Info

Publication number
WO2018055901A1
WO2018055901A1 PCT/JP2017/027072 JP2017027072W WO2018055901A1 WO 2018055901 A1 WO2018055901 A1 WO 2018055901A1 JP 2017027072 W JP2017027072 W JP 2017027072W WO 2018055901 A1 WO2018055901 A1 WO 2018055901A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter information
information
bss
access point
unit
Prior art date
Application number
PCT/JP2017/027072
Other languages
English (en)
French (fr)
Inventor
菅谷 茂
裕一 森岡
山浦 智也
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP24192504.9A priority Critical patent/EP4436244A3/en
Priority to US16/334,380 priority patent/US11438778B2/en
Priority to KR1020197007441A priority patent/KR102334600B1/ko
Priority to EP17852682.8A priority patent/EP3518571A4/en
Priority to JP2018540663A priority patent/JP7205228B2/ja
Publication of WO2018055901A1 publication Critical patent/WO2018055901A1/ja
Priority to US17/870,859 priority patent/US11943650B2/en
Priority to US18/599,268 priority patent/US20240251277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to an access point device, a station device, a wireless control method, a communication control method, and a program.
  • Patent Document 1 discloses a method in which a database server collects interference information, and an access point apparatus acquires interference information from the database server and uses it for interference control.
  • Patent Document 2 discloses a method in which a monitoring server collects interference information, a power control apparatus acquires interference information from the monitoring server, and is used for interference control.
  • the access point device cannot grasp the interference information without using a management device such as a database server or a monitoring server.
  • the present disclosure has been made in view of the above, and the present disclosure is a new and improved access point device that enables an access point device to grasp interference information without using a management device, A station apparatus, a wireless control method, a communication control method, and a program are provided.
  • a reception unit that receives a signal transmitted from a network other than the BSS to which the device belongs, an acquisition unit that acquires parameter information regarding the signal, and the parameter information are included in the interference in the BSS.
  • a station device including a report unit that reports to an access point device that performs control.
  • a computer-implemented wireless control method includes reporting to an access point device that performs control.
  • receiving a signal transmitted from a network other than the BSS to which the device belongs, obtaining parameter information regarding the signal, and receiving the parameter information as interference in the BSS A program for causing a computer to report to an access point device that performs control is provided.
  • a receiving unit that receives parameter information about a signal transmitted from a network other than the BSS to which the own device belongs from a station device, and a control unit that performs interference control based on the parameter information, An access point device is provided.
  • a communication control method executed by a computer is provided.
  • the parameter information related to a signal transmitted from a network other than the BSS to which the own device belongs is received from the station device, and interference control is performed based on the parameter information.
  • a program for realizing this is provided.
  • the access point apparatus grasp the interference information without using the management apparatus.
  • FIG. 1 is a diagram illustrating a configuration of a wireless LAN system according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating a configuration of a wireless LAN system according to Prior Literature 1.
  • FIG. It is a sequence diagram which shows the operation
  • AP which concerns on this embodiment exchanges aggregate parameter information.
  • One embodiment of the present disclosure relates to a wireless LAN system. First, an overview of a wireless LAN system according to an embodiment of the present disclosure will be described with reference to FIGS.
  • FIG. 1 is a diagram illustrating a configuration of a wireless LAN system according to an embodiment of the present disclosure.
  • a wireless LAN system according to an embodiment of the present disclosure includes an access point device (hereinafter referred to as “AP (Access Point)” for convenience) 200 and a station device (hereinafter referred to as convenience). (Referred to as “STA (Station)”).
  • AP Access Point
  • STA Station
  • a basic service set hereinafter referred to as “BSS (Basic Service Set)” for convenience
  • BSS Basic Service Set
  • the wireless LAN system according to an embodiment of the present disclosure can be installed in an arbitrary place.
  • the wireless LAN system according to the present embodiment can be installed in an office building, a house, a commercial facility, a public facility, or the like.
  • the area of the BSS 10 may overlap with the area of another BSS 10 (hereinafter referred to as “OBSS (Overlap Basic Service Set)” for convenience) in which the frequency channels used overlap.
  • OBSS overlap Basic Service Set
  • the signal transmitted from the STA 100 located in the overlapping area may interfere with the signal transmitted from the OBSS.
  • the area of the BSS 10a overlaps with a part of the area of the BSS 10b that is the OBSS, and the STA 100b and the STA 100c are located in the overlapping area.
  • a signal transmitted from the STA 100b belonging to the BSS 10a may interfere with a signal transmitted from the AP 200b or STA 100c belonging to the BSS 10b.
  • a signal transmitted from the STA 100c belonging to the BSS 10b may interfere with a signal transmitted from the AP 200a or the STA 100b belonging to the BSS 10a.
  • the AP 200 is connected to an external network and provides the STA 100 with communication with the external network.
  • the AP 200 is connected to the Internet, and provides communication between the STA 100 and devices on the Internet or devices connected via the Internet.
  • the STA 100 is a wireless device that communicates with the AP 200.
  • the STA 100 may be any wireless device.
  • the STA 100 may be a display having a display function, a memory having a storage function, a keyboard and a mouse having an input function, a speaker having a sound output function, and a smartphone having a function of executing advanced calculation processing.
  • the AP acquires interference information such as parameter information of a signal transmitted from the OBSS, and based on the interference information, the BSS to which the own device belongs (hereinafter, “automatically”
  • interference information such as parameter information of a signal transmitted from the OBSS
  • the BSS to which the own device belongs hereinafter, “automatically”
  • the AP prevents the occurrence of interference by changing the transmission power to a low value based on the interference information with the OBSS and reducing the radio wave reachable range.
  • FIG. 2 is a diagram showing a configuration of the wireless LAN system according to the prior document 1.
  • BSS1 is configured by AP1, STA1, and STA2
  • BSS2 is configured by AP2, STA3, and STA4.
  • the area of BSS1 overlaps with a part of area of BSS2 which is OBSS, and STA2 and STA3 are located in the overlapping area.
  • the wireless LAN system includes a database connected to AP1 and AP2 via a network.
  • the database acquires and manages interference information from each AP.
  • each AP acquires interference information from the database, and prevents the occurrence of interference by changing each parameter in communication in its own BSS based on the interference information.
  • a monitoring server connected to each AP via a network receives and manages interference information from the AP. Then, the power control apparatus connected to the monitoring server acquires interference information from the monitoring server, and determines the transmission power of each AP based on the interference information.
  • the management device that collects and manages the interference information refers to the database in the prior document 1 and refers to the monitoring server in the prior document 2).
  • the AP acquires interference information from the management apparatus.
  • each AP cannot acquire interference information from the management device, and thus cannot perform interference control.
  • the AP 200 can grasp interference information without using a management device.
  • the AP 200 can exchange the interference information with another AP 200.
  • the AP 200 can appropriately perform interference control based on the interference information.
  • the functional outline, configuration, operation, modification example, and application example of the wireless LAN system according to an embodiment of the present disclosure will be described below.
  • the STA 100 in the wireless LAN system When the STA 100 in the wireless LAN system according to the present embodiment receives its own BSS or OBSS signal, the STA 100 reports parameter information related to these signals to the AP 200 instead of the management apparatus as in the prior art. More specifically, when the STA 100 receives a signal of its own BSS or OBSS, the STA 100 provides parameter information related to the modulation method, transmission power, BSS identifier, RSSI (Received Signal Strength Indicator), transmission path usage time, etc. Alternatively, it is stored in a state where the OBSS is distinguished, and is reported to the AP 200.
  • RSSI Receiveived Signal Strength Indicator
  • FIG. 3 is a sequence diagram illustrating an operation in which the STA 100 according to the present embodiment acquires parameter information.
  • step S1000 when the STA 100a transmits a signal to the AP 200a, it is assumed that not only the AP 200a but also the STA 100b receives the signal.
  • the STA 100b stores the parameter information of the signal as the parameter information of the own BSS.
  • the AP 200a that has received the signal also stores the parameter information of the signal as parameter information of the own BSS.
  • step S1004 the STA 100b transmits a signal to the AP 200a. Assume that not only the AP 200a but also the STA 100c receives the signal. In this case, the STA 100c stores the parameter information of the signal as OBSS parameter information. In addition, AP200a which received the said signal memorize
  • step S1008 the STA 100c transmits a signal to the AP 200b. Assume that not only the AP 200b but also the STA 100b receives the signal. In this case, the STA 100b stores the parameter information of the signal as OBSS parameter information. In addition, AP200b which received the said signal memorize
  • step S1012 the STA 100d transmits a signal to the AP 200b. Assume that not only the AP 200b but also the STA 100c receives the signal. In this case, the STA 100c stores the parameter information of the signal as the parameter information of the own BSS. The AP 200b that has received the signal also stores the parameter information of the signal as the parameter information of the own BSS.
  • FIG. 4 is a sequence diagram illustrating an operation in which the STA 100 according to the present embodiment transmits parameter information to the AP 200.
  • step S1100 the STA 100b generates a frame including the parameter information of the own BSS or OBSS, and transmits the frame to the AP 200a.
  • AP200a can grasp
  • AP200a can perform interference control by changing parameters, such as transmission power, a modulation system, or a frequency band.
  • step S1104 the STA 100c can recognize that the parameter information has been reported from the STA 100b to the AP 200a.
  • the STA 100c may report the parameter information to the AP 200b triggered by the parameter information being reported from the STA 100b to the AP 200a.
  • step S1108 the STA 100c generates a frame including the parameter information of the own BSS or OBSS, and transmits the frame to the AP 200b.
  • AP200b can grasp
  • the AP 200b can perform interference control by changing parameters such as transmission power, modulation scheme, or used frequency band, as described above.
  • step S1112 the STA 100b can recognize that the parameter information has been reported from the STA 100c to the AP 200b in the same manner as described above.
  • the AP 200 can acquire the parameter information of the own BSS or OBSS signal from each STA 100. Then, the AP 200 stores these parameter information in association with the identification information of the STA 100 that is the acquisition source.
  • the parameter information that the AP 200 acquires and stores from each STA 100 is referred to as aggregate parameter information.
  • the aggregate parameter information may be information obtained by editing the parameter information reported from each STA 100.
  • the parameter information reported from each STA 100 is simply associated with the identification information of the STA 100 that is the acquisition source. It may be information.
  • FIG. 5 is a sequence diagram showing an operation in which each AP 200 according to the present embodiment exchanges aggregate parameter information.
  • step S1200 the AP 200a transmits the aggregate parameter information, and the AP 200b receives the aggregate parameter information.
  • AP200b can grasp
  • AP200b can perform interference control appropriately by changing parameter information.
  • step S1204 the AP 200b transmits aggregate parameter information, and the AP 200a receives the aggregate parameter information.
  • the AP 200a can ascertain the parameter information set in the BSS 10b and the influence of interference received by the BSS 10b device as described above, and appropriately perform interference control by changing the parameter information. be able to.
  • the STA 100 reports the parameter information of the own BSS or OBSS to the AP 200, so that the AP 200 can grasp the interference information without using the management device.
  • the AP 200 can grasp parameter information set in different BSSs and an interference state between the BSSs by aggregating the parameter information reported from the STA 100 and exchanging the aggregate parameter information between the APs 200. Then, the AP 200 can appropriately perform interference control by changing the parameter information of the own BSS based on the aggregate parameter information.
  • FIG. 6 is a diagram illustrating a configuration of a frame transmitted and received in the wireless LAN system according to the present embodiment.
  • the frame transmitted and received by the wireless LAN system according to the present embodiment is a PPDU having a preamble, a PLCP header, and an MPDU.
  • the PLCP Header has L-SIG and HE-SIG.
  • the MPDU has a MAC Header, Frame Body, and FCS (Frame Check Sequence).
  • FIG. 7 is a diagram showing the configuration of the PLCP Header in FIG.
  • the PLCP Header includes BSS Color, Tx Power, MCS Index, Uplink Indicator, and the like.
  • BSS Color is information for identifying the BSS of a signal to be transmitted / received.
  • BSS Color information corresponding to the BSS is stored in a BSS Color of a signal transmitted / received within a certain BSS
  • wild card BSS Color information is stored in a BSS Color such as aggregate parameter information transmitted / received between different BSSs. Is stored.
  • the STA 100 or AP 200 that has received the signal determines whether the signal is a signal of its own BSS or a signal communicated between the BSSs based on the BSS Color.
  • Tx Power is transmission power information.
  • the MCS index is a combination of a modulation scheme, a coding rate, and the like converted into an index.
  • the Uplink Indicator is a signal transmission direction. For example, when the Uplink Indicator is 1, it indicates that the signal is an upstream signal, and when it is 0, the signal is a downstream signal. Indicates.
  • FIG. 8 is a diagram showing the configuration of the MAC header in FIG.
  • MAC Header includes Frame Control, Address 1 to Address 4, Sequence Control, QoS Control, HT Control, and the like.
  • Information such as protocol version or frame type is stored in Frame Control, and information such as BSSID, source address or destination address is stored in Address1 to Address4.
  • the Sequence Number is stored in the Sequence Control
  • the QoS parameter is stored in the Qos Control
  • the high-speed communication parameter is stored in the HT Control.
  • FIG. 9 is a diagram illustrating the configuration of the STA 100 and the AP 200 according to the present embodiment.
  • the STA 100 includes a wireless communication unit 110, a data processing unit 120, and a control unit 130.
  • the radio communication unit 110 includes an antenna control unit 111, a reception processing unit 112, and a transmission processing unit 113, and functions as a reception unit and a reporting unit.
  • the antenna control unit 111 controls transmission / reception of signals via at least one antenna. More specifically, the antenna control unit 111 provides a signal received via the antenna to the reception processing unit 112, and transmits a signal generated by the transmission processing unit 113 via the antenna.
  • the reception processing unit 112 performs frame reception processing based on the signal provided from the antenna control unit 111. For example, the reception processing unit 112 outputs a baseband reception signal by performing analog processing and down conversion on the signal obtained from the antenna. The reception processing unit 112 calculates the correlation between the predetermined signal pattern and the reception signal while shifting the reception signal to be calculated on the time axis, and detects the preamble based on the appearance of the correlation peak. . Thereby, the reception processing unit 112 can detect the signal of the own BSS or the signal of the OBSS. Also, the reception processing unit 112 acquires a frame by performing demodulation and decoding on the baseband received signal, and provides the acquired frame to the reception frame analysis unit 121.
  • the reception processing unit 112 provides the operation control unit 131 with information regarding the success or failure of the reception processing. For example, the reception processing unit 112 provides error occurrence information to the operation control unit 131 when reception processing such as demodulation fails. In addition, when the reception processing unit 112 receives a signal that cannot be detected by a correlation calculation with a predetermined signal pattern (that is, a signal that does not include a preamble of the wireless LAN standard), the reception processing unit 112 sends the information to the reception frame analysis unit 121. provide.
  • the transmission processing unit 113 performs transmission processing of a frame provided from the transmission frame construction unit 126. More specifically, the transmission processing unit 113 generates a transmission signal based on a frame provided from the transmission frame construction unit 126 and a parameter set by an instruction from the signal control unit 132. For example, the transmission processing unit 113 encodes, interleaves, and modulates the baseband transmission signal by performing encoding, interleaving, and modulation on the frame provided from the transmission frame construction unit 126 according to the coding and modulation schemes indicated by the signal control unit 132. Generate. Further, the transmission processing unit 113 performs up-conversion on the baseband transmission signal obtained by the preceding process.
  • the data processing unit 120 includes a reception frame analysis unit 121, a reception buffer 122, an interface unit 123, a transmission buffer 124, a parameter information storage unit 125, and a transmission frame construction unit 126. Prepare.
  • the received frame analysis unit 121 functions as a determination unit and an acquisition unit, and performs analysis of received frames, acquisition of parameter information, and the like. More specifically, the received frame analysis unit 121 analyzes PLCP Header, MAC Header, and the like included in the frame received by the wireless communication unit 110. Then, the received frame analysis unit determines whether the received signal is a signal of the own BSS, based on the BSS Color or BSSID that is identification information.
  • the received frame analysis unit 121 acquires each parameter and stores it in the parameter information storage unit 125 as parameter information of the own BSS (pointing to the second parameter information).
  • the received frame analysis unit 121 acquires each parameter and stores it in the parameter information storage unit 125 as OBSS parameter information.
  • the reception processing unit 112 provides information that a signal that does not include a wireless LAN standard preamble is received, the reception frame analysis unit 121 acquires each parameter and stores parameter information as energy detection parameter information. The data is stored in the unit 125.
  • the reception frame analysis unit 121 acquires data or the like from the frame and stores the data in the reception buffer 122 when the own apparatus is included in the frame destination.
  • the reception buffer 122 stores data included in the received frame.
  • the interface unit 123 is an interface connected to other components provided in the STA 100. More specifically, the interface unit 123 receives data desired to be transmitted from another configuration such as an application or user interface, or provides received data to the application or user interface.
  • the transmission buffer 124 stores transmission data provided from the interface unit 123.
  • the parameter information storage unit 125 stores the own BSS parameter information, the OBSS parameter information, and the energy detection parameter information provided from the received frame analysis unit 121.
  • FIG. 10 is a diagram illustrating an example of parameter information stored in the parameter information storage unit 125 according to the present embodiment.
  • the parameter information storage unit 125 creates a record for each received signal and stores each parameter information. Then, the parameter information storage unit 125 also adds information on the transmission source network of the received signal. More specifically, the parameter information storage unit 125 stores the information of the own BSS or OBSS in the “BSS / OverLap BSS column” in the record, so that the received signal is the signal of the own BSS or the signal of the OBSS. (In the parameter information of the own BSS, “BSS” is described instead of “Own BSS”).
  • the record 10, the record 11, and the record 13 in FIG. 10 are parameter information of the OBSS signal
  • the record 12 is the parameter information of the own BSS signal.
  • N / A when the received signal is a signal of a network other than a wireless LAN such as a cellular network, “N / A” or the like may be stored in the “BSS / OverLap BSS column”. Identification information may be stored. For example, wireless LAN version information, a frame type format, a subtype format, an aggregation format, and a type defined by EDCA, for example, as a QoS parameter may be stored.
  • the transmission frame construction unit 126 generates a transmission frame. For example, the transmission frame construction unit 126 generates a parameter report frame based on the parameter information stored in the parameter information storage unit 125 and the control information set by the operation control unit 131. The transmission frame construction unit 126 generates a frame (packet) from the parameter information for transmission acquired from the parameter information storage unit 125, and a MAC header for media access control (MAC: Media Access Control) in the generated frame. Are added and error detection code is added. In addition, the transmission frame construction unit 126 may generate a transmission frame using transmission data stored in the transmission buffer 124.
  • MAC Media Access Control
  • FIG. 11 is a diagram showing an information element 20 used for transmission of parameter information of the own BSS.
  • the information element 20 includes Element ID, Length, Report MAC Address, BSS STA Counts, parameter information for each received signal, and the like.
  • Element ID is information on the type of information element
  • Length is information on the length of information element 20
  • Report MAC Address is information on the report destination address
  • BSS STA Counts is the number of reported BSS signals.
  • Information The parameter information for each BSS signal can include RSSI, MCS, Type, Duration, and the like, but can be changed as appropriate.
  • Type is information indicating the type of data
  • Type includes, for example, version information of a wireless LAN frame, information regarding whether or not the frame type is aggregated, or data.
  • Information regarding Voice or Video may be included.
  • Duration is information related to the transmission path usage time. FIG. 11 is merely an example, and the content of the information element 20 can be changed as appropriate.
  • FIG. 12 is a diagram showing an information element 30 used for transmission of OBSS parameter information.
  • the information element 30 includes Element ID, Length, Report MAC Address, OBSS Counts, parameter information for each received signal, and the like.
  • OBSS Counts is information on the number of OBSS signals to be reported. The other information is the same as that of the information element 20 in FIG. FIG. 12 is merely an example, and the contents of the information element 30 can be changed as appropriate.
  • FIG. 13 is a diagram showing an information element 40 used for transmission of energy detection parameter information.
  • the information element 40 includes Element ID, Length, Report MAC Address, RSSI min level, Detect Counts, parameter information for each received signal, and the like.
  • RSSI min level is the lowest RSSI information.
  • Detect Counts is information on the number of signals to be reported.
  • the parameter information for each signal can include RSSI max and Duration, but can be changed as appropriate.
  • RSSI max is the highest RSSI information for each signal.
  • FIG. 13 is merely an example, and the contents of the information element 40 can be changed as appropriate.
  • Each information element shown in FIGS. 11 to 13 is stored in the Frame Body of FIG. 6 and transmitted. At this time, each information element may be stored alone in the Frame Body, or a plurality of information elements may be concatenated and stored in the Frame Body.
  • control unit 130 includes an operation control unit 131 and a signal control unit 132.
  • the operation control unit 131 controls processing related to transmission of parameter information. More specifically, the operation control unit 131 controls transmission processing of the parameter information of the own BSS, the parameter information of the OBSS, or the energy detection parameter information. For example, when the operation control unit 131 determines that an error having a predetermined frequency or more has occurred based on the error occurrence information provided from the reception processing unit 112, the operation control unit 131 controls each component to transmit each parameter information. To do. In addition, the operation control unit 131 controls each configuration so as to transmit each parameter information in the same manner when a predetermined time or more has elapsed from the previous transmission timing of the parameter information.
  • the operation control unit 131 similarly controls each configuration to transmit each parameter information.
  • the timing at which each parameter information is transmitted may be arbitrarily changed. With the above method, the operation control unit 131 can control each configuration so as to transmit each parameter information at an appropriate timing.
  • the signal control unit 132 controls the operation of the wireless communication unit 110. More specifically, the signal control unit 132 controls transmission / reception processing of the wireless communication unit 110. For example, the signal control unit 132 causes the wireless communication unit 110 to set control information for transmission and reception based on an instruction from the operation control unit 131.
  • the signal control unit 132 also controls idle channel detection processing such as CSMA / CA. For example, the signal control unit 132 determines signal transmission start or transmission standby based on the carrier sense result and the backoff time.
  • the AP 200 can have the same configuration as the STA 100. Of course, the AP 200 may appropriately include a configuration that the STA 100 does not include.
  • the wireless communication unit 210 includes an antenna control unit 211, a reception processing unit 212, and a transmission processing unit 213, and functions as a reception unit and a reporting unit. Since the function of each component is the same as that of the STA 100, description thereof is omitted.
  • the data processing unit 220 includes a reception frame analysis unit 221, a reception buffer 222, an interface unit 223, a transmission buffer 224, a parameter information storage unit 225, and a transmission frame construction unit 226.
  • a reception frame analysis unit 221 As shown in FIG. 9, the data processing unit 220 includes a reception frame analysis unit 221, a reception buffer 222, an interface unit 223, a transmission buffer 224, a parameter information storage unit 225, and a transmission frame construction unit 226.
  • a reception frame analysis unit 221 As shown in FIG. 9, the data processing unit 220 includes a reception frame analysis unit 221, a reception buffer 222, an interface unit 223, a transmission buffer 224, a parameter information storage unit 225, and a transmission frame construction unit 226.
  • the received frame analysis unit 221 functions as a generation unit, and performs processing related to analysis of received frames, parameter information, and aggregate parameter information. More specifically, when a frame including each parameter information is received from the STA 100, the received frame analysis unit 221 analyzes the frame and acquires parameter information. Then, the received frame analysis unit 221 generates aggregate parameter information based on the parameter information, and stores the aggregate parameter information in the parameter information storage unit 225. At this time, the received frame analysis unit 221 causes the parameter information storage unit 225 to store the aggregate parameter information in association with the identification information of the STA 100 that is the transmission source. Further, as described above, the received frame analysis unit 221 may generate aggregate parameter information by editing parameter information transmitted from the STA 100.
  • the received frame analysis unit 221 When aggregate parameter information transmitted from another AP 200 is received, the received frame analysis unit 221 sends the aggregate parameter information to the parameter information storage unit 225 in a state in which the identification information of the AP 200 that is the transmission source is associated.
  • the received frame analysis unit 221 may edit the aggregate parameter information transmitted from another AP 200 and store the edited aggregate parameter information in the parameter information storage unit 225.
  • the parameter information storage unit 225 stores aggregate parameter information provided from the received frame analysis unit 221.
  • the transmission frame construction unit 226 generates a transmission frame. For example, the transmission frame construction unit 226 generates a parameter information report request frame under the control of the operation control unit 231. Further, the transmission frame construction unit 226 generates a frame including the aggregate parameter information under the control of the operation control unit 231.
  • control unit 230 includes an operation control unit 231 and a signal control unit 232.
  • operation control unit 231 includes an operation control unit 231 and a signal control unit 232.
  • signal control unit 232 includes an operation control unit 231 and a signal control unit 232.
  • the operation control unit 231 controls processing related to parameter information, aggregate parameter information, and interference control.
  • the operation control unit 231 controls processing related to a parameter information report request.
  • the operation control unit 231 controls each component so as to generate and transmit a frame for a parameter information report request.
  • the timing at which the parameter information report request is made is arbitrary.
  • the operation control unit 231 may make a parameter information report request after a predetermined time has elapsed since the last time the parameter information report request was made. Further, the operation control unit 231 may make a parameter information report request when determining that the error occurrence frequency is equal to or higher than a predetermined threshold based on the error occurrence information provided from the reception processing unit 212.
  • the operation control unit 231 controls processing for reporting the aggregate parameter information to other APs 200.
  • the operation control unit 231 generates a frame including the aggregate parameter information stored in the parameter information storage unit 225 and controls each configuration so as to report the frame to other APs 200.
  • the timing at which the aggregation parameter information is reported is arbitrary.
  • the operation control unit 231 may report the aggregate parameter information after a predetermined time has elapsed since the previous report of the aggregate parameter information. Further, the operation control unit 231 may report aggregate parameter information when it is determined that the error occurrence frequency is equal to or higher than a predetermined threshold based on the error occurrence information provided from the reception processing unit 212.
  • the operation control unit 231 performs processing related to interference control. More specifically, the operation control unit 231 performs interference control based on aggregate parameter information generated using parameter information from the STA 100 or aggregate parameter information received from another AP 200. For example, when the operation control unit 231 determines that the communication environment is inferior based on the aggregate parameter information, the operation control unit 231 changes the modulation method to a modulation method with low transmission efficiency (such as BPSK) that enables more reliable communication. Or change to a higher transmission power than allowed by the standard. Further, the operation control unit 231 may change the setting so as to use a frequency band different from the frequency band used in the OBSS.
  • a modulation method with low transmission efficiency such as BPSK
  • the operation control unit 231 may perform interference control based on information on the priority of data included in the aggregate parameter information. More specifically, when the operation control unit 231 confirms that high-priority data such as Voice is being communicated in the OBSS based on the type included in the aggregate parameter information, the OBSS Each parameter may be changed so that the above communication is preferentially performed. In addition, when the operation control unit 231 can confirm that high-priority data communication is not performed in the OBSS based on the type included in the aggregate parameter information, the operation control unit 231 performs communication of the own BSS preferentially. Each parameter may be changed as shown. Alternatively, in this case, the operation control unit 231 may make a new determination after changing each parameter of the OBSS without changing each parameter of the own BSS.
  • FIGS. 14A and 14B are flowcharts showing an operation in which the STA 100 according to the present embodiment acquires parameter information.
  • the operation described in FIG. 14A and FIG. 14B may be performed similarly to the STA 100.
  • step S1300 the wireless communication unit 110 detects a signal having an RSSI greater than a predetermined threshold.
  • the reception processing unit 112 detects the preamble of the wireless LAN by the correlation calculation between the predetermined signal pattern and the reception signal (step S1304 / Yes)
  • the reception frame analysis unit 121 displays the PLCP Header information in step S1308. Extract.
  • the received frame analysis unit 121 acquires a parameter (MCS index) related to MCS included in the PLCP header.
  • step S1316 the received frame analysis unit 121 analyzes the header configuration or the version information included in the header.
  • the signal header conforms to the corresponding standard of the device (standard including Tx Power, BSS Color, etc.) (step S1316 / Yes)
  • step S1320 the received frame analysis unit 121 transmits from the PLCP header. Get the parameter (Tx Power) related to power.
  • step S1324 the received frame analysis unit 121 acquires a parameter (BSS Color) related to the BSS Color from the PLCP Header.
  • BSS Color parameter
  • step S1328 if the received frame analysis unit 121 determines that the acquired BSS Color information is the BSS Color information of the own BSS (Yes in step S1328), the received frame analysis unit 121 displays the acquired parameter information. It is stored in the parameter information storage unit 125 as parameter information of the own BSS. In step S1328, when the received frame analysis unit 121 determines that the acquired BSS Color information is not the BSS Color information of the own BSS (No in step S1328), the received frame analysis unit 121 displays the acquired parameter information as OBSS. Parameter information is stored in the parameter information storage unit 125.
  • step S1316 if the signal header does not conform to the corresponding standard of the device itself (step S1316 / No), in step S1332, the reception frame analysis unit 121 obtains MAC header address information (Address1 to Address4). To do.
  • the received frame analysis unit 121 uses the acquired parameter information as the parameter information of the own BSS. It is stored in the parameter information storage unit 125.
  • the received frame analysis unit 121 uses the acquired parameter information as the OBSS parameter information, The information is stored in the information storage unit 125.
  • the reception processing unit 112 cannot detect the preamble of the wireless LAN (step S1304 / No)
  • the reception frame analysis unit 121 uses the acquired parameter information as energy detection parameter information and sets the parameter The information is stored in the information storage unit 125.
  • the reception frame analysis unit 121 acquires information related to RSSI from the reception processing unit 112, and stores the information in the parameter information storage unit 125.
  • reception frame analysis section 121 acquires information on transmission path usage time from reception processing section 112 and stores the information in parameter information storage section 125.
  • step S1360 If no FCS error has occurred in a series of frames (step S1360 / Yes), the process ends.
  • step S1360 when an FCS error occurs in a series of frames (step S1360 / No), the reception processing unit 112 provides error occurrence information to the operation control unit 131, and the operation control unit 131 stores the information in a storage unit ( (Not shown), and the process ends.
  • FIGS. 15A and 15B are flowcharts showing an operation in which the STA 100 according to the present embodiment reports parameter information to the AP 200.
  • step S1400 the operation control unit 131 acquires error occurrence information from the reception processing unit 112. Then, in step S1404, if an error having a predetermined frequency or more has occurred (step S1404 / Yes), the parameter information reporting operation after step S1416 is performed. Further, even when an error with a predetermined frequency or more has not occurred in Step S1404 (Step S1404 / No), when a predetermined time or more has elapsed since the last time the parameter information was reported (Step S1404) (S1408 / Yes), processing for reporting parameter information is performed.
  • step S1412 / Yes if the parameter information report request from the AP 200 is received (step S1412 / Yes), the parameters Processing to report information is performed. If the parameter information report request from the AP 200 has not been received in step S1412 (step S1412 / No), the process moves to step S1400. As described above, these parameter information reporting operation triggers may be changed as appropriate. Further, the process of step S1400 may be omitted.
  • step S1420 the transmission frame construction unit 126 selects the unreported own BSS. Parameter information is acquired from the parameter information storage unit 125. In step S1424, the transmission frame construction unit 126 constructs its own BSS parameter report frame. If the parameter information storage unit 125 does not store parameter information of the unreported BSS in step S1416 (step S1416 / No), the process moves to step S1428.
  • step S1428 If the parameter information storage unit 125 stores unreported OBSS parameter information in step S1428 (step S1428 / Yes), the transmission frame construction unit 126 performs unreported OBSS parameter information in step S1432. Is obtained from the parameter information storage unit 125. In step S1436, the transmission frame construction unit 126 constructs a BSS parameter report frame. If the parameter information storage unit 125 does not store unreported OBSS parameter information in step S1428 (step S1428 / No), the process moves to step S1440.
  • step S1440 If parameter information storage unit 125 stores unreported energy detection parameter information in step S1440 (step S1440 / Yes), transmission frame construction unit 126 performs unreported energy detection parameter information in step S1444. Is obtained from the parameter information storage unit 125. In step S1448, the transmission frame construction unit 126 constructs an energy detection parameter report frame. In step S1440, if parameter information storage unit 125 does not store unreported energy detection parameter information (step S1440 / No), the process moves to step S1452.
  • control section 130 transmits the generated parameter report frame at step S1456.
  • the wireless communication unit 110 is controlled.
  • control unit 130 records the transmission time of the parameter report frame, and the process ends. If the parameter information storage unit 125 does not store each parameter information that has not been reported in step S1452 (step S1452 / No), the process ends.
  • FIG. 16 is a diagram illustrating a configuration of a wireless LAN system according to the first modification.
  • 1st modification is a case where it is difficult for AP200 to communicate directly.
  • the STA 100b belonging to the BSS 10a can communicate with the STA 100c belonging to the BSS 10b that is the OBSS, but the AP 200a cannot communicate with the AP 200b.
  • the AP 200 exchanges aggregate parameter information with other APs 200 via the STA 100.
  • the STA 100 in the first modification controls processing related to the transfer of aggregate parameter information. More specifically, when the received frame analysis unit 121 of the STA 100 analyzes the received frame and determines that the aggregate parameter information from the AP 200 has been received, the received frame analysis unit 121 provides the information to the operation control unit 131. Thereafter, the operation control unit 131 controls each configuration so as to transfer a frame including the aggregate parameter information.
  • FIG. 17 is a sequence diagram showing an operation of each AP 200 exchanging aggregate parameter information in the first modification.
  • the AP 200a transmits aggregate parameter information, and the STA 100b receives the aggregate parameter information.
  • the STA 100b transfers the aggregate parameter information, and the STA 100c receives the aggregate parameter information.
  • the STA 100c transfers the aggregate parameter information, and the AP 200b receives the aggregate parameter information.
  • step S1512 the AP 200b transmits aggregate parameter information, and the STA 100c receives the aggregate parameter information.
  • step S1516 the STA 100c transfers the aggregate parameter information, and the STA 100b receives the aggregate parameter information.
  • step S1520 the STA 100b transfers the aggregate parameter information, and the AP 200a receives the aggregate parameter information.
  • the AP 200 can exchange the aggregate parameter information with a different AP 200 via the STA 100. For example, even in a situation where communication between different APs 200 cannot always be performed normally, such as when the location of the AP 200 can be changed, the AP 200 can exchange aggregate parameter information with a different AP 200.
  • FIG. 18 is a diagram illustrating a configuration of a wireless LAN system according to the second modification.
  • the second modification is a case where a controller and a plurality of APs 200 are connected via a wired network.
  • the APs 200a and 200b and the controller are connected by a wired network.
  • the AP 200a, the AP 200b, and the controller may be connected by an Ethernet cable.
  • the AP 200 transmits aggregate parameter information to the controller via the wired network, and exchanges aggregate parameter information with other APs 200.
  • the interference control using the interference information may be performed by the controller or may be performed by each AP 200 as appropriate.
  • the present disclosure can be applied to wireless LAN systems having various network configurations.
  • the STA 100 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a mobile terminal such as a portable game terminal or a digital camera, a fixed terminal such as a television receiver, a printer, a digital scanner, or a network storage, or a car navigation device. It may be realized as an in-vehicle terminal.
  • the STA 100 is realized as a terminal (also referred to as a MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication such as a smart meter, a vending machine, a remote monitoring device, or a POS (Point Of Sale) terminal. May be.
  • the STA 100 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • the AP 200 may be realized as a wireless LAN access point (also referred to as a wireless base station) having a router function or not having a router function.
  • the AP 200 may be realized as a mobile wireless LAN router.
  • the AP 200 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these devices.
  • FIG. 19 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 913, an antenna switch 914, an antenna 915, A bus 917, a battery 918, and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU (Central Processing Unit) or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 901.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an imaging element such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 913 supports one or more wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and performs wireless communication.
  • the wireless communication interface 913 can communicate with other devices via a wireless LAN access point in the infrastructure mode.
  • the wireless communication interface 913 can directly communicate with other devices in an ad hoc mode or a direct communication mode such as Wi-Fi Direct (registered trademark).
  • Wi-Fi Direct unlike the ad hoc mode, one of two terminals operates as an access point, but communication is performed directly between the terminals.
  • the wireless communication interface 913 can typically include a baseband processor, an RF (Radio Frequency) circuit, a power amplifier, and the like.
  • the wireless communication interface 913 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
  • the wireless communication interface 913 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a cellular communication method in addition to the wireless LAN method.
  • the antenna switch 914 switches the connection destination of the antenna 915 among a plurality of circuits (for example, circuits for different wireless communication schemes) included in the wireless communication interface 913.
  • the antenna 915 includes a single antenna element or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the radio communication interface 913.
  • the smartphone 900 is not limited to the example in FIG. 19, and may include a plurality of antennas (for example, an antenna for a wireless LAN and an antenna for a proximity wireless communication method). In that case, the antenna switch 914 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 913, and auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 19 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the wireless communication unit 110, the data processing unit 120, and the control unit 130 described with reference to FIG. 9 may be implemented in the wireless communication interface 913.
  • at least a part of these functions may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 may operate as a wireless access point (software AP) when the processor 901 executes the access point function at the application level. Further, the wireless communication interface 913 may have a wireless access point function.
  • FIG. 20 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless communication interface 933, and an antenna switch. 934, an antenna 935, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports one or more wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and executes wireless communication.
  • the wireless communication interface 933 can communicate with other devices via a wireless LAN access point in the infrastructure mode.
  • the wireless communication interface 933 can directly communicate with other devices in an ad hoc mode or a direct communication mode such as Wi-Fi Direct.
  • the wireless communication interface 933 may typically include a baseband processor, an RF circuit, a power amplifier, and the like.
  • the wireless communication interface 933 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
  • the wireless communication interface 933 may support other types of wireless communication systems such as a short-range wireless communication system, a proximity wireless communication system, or a cellular communication system.
  • the antenna switch 934 switches the connection destination of the antenna 935 among a plurality of circuits included in the wireless communication interface 933.
  • the antenna 935 includes a single antenna element or a plurality of antenna elements, and is used for transmission and reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 is not limited to the example of FIG. 20, and may include a plurality of antennas. In that case, the antenna switch 934 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 20 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the wireless communication unit 110, the data processing unit 120, and the control unit 130 described with reference to FIG. 9 may be implemented in the wireless communication interface 933. Further, at least a part of these functions may be implemented in the processor 921.
  • the wireless communication interface 933 may operate as the above-described AP 200 and provide a wireless connection to a terminal of a user who gets on the vehicle.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942.
  • vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • FIG. 21 is a block diagram illustrating an example of a schematic configuration of a wireless access point 950 to which the technology according to the present disclosure can be applied.
  • the wireless access point 950 includes a controller 951, a memory 952, an input device 954, a display device 955, a network interface 957, a wireless communication interface 963, an antenna switch 964, and an antenna 965.
  • the controller 951 may be a CPU or a DSP (Digital Signal Processor), for example, and various functions (for example, access restriction, routing, encryption, firewall) of the IP (Internet Protocol) layer and higher layers of the wireless access point 950 And log management).
  • the memory 952 includes a RAM and a ROM, and stores programs executed by the controller 951 and various control data (for example, a terminal list, a routing table, an encryption key, security settings, and a log).
  • the input device 954 includes, for example, a button or a switch and receives an operation from the user.
  • the display device 955 includes an LED lamp and the like, and displays the operation status of the wireless access point 950.
  • the network interface 957 is a wired communication interface for connecting the wireless access point 950 to the wired communication network 958.
  • the network interface 957 may have a plurality of connection terminals.
  • the wired communication network 958 may be a LAN such as Ethernet (registered trademark), or may be a WAN (Wide Area Network).
  • the wireless communication interface 963 supports one or more of wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and provides a wireless connection as an access point to nearby terminals.
  • the wireless communication interface 963 may typically include a baseband processor, an RF circuit, a power amplifier, and the like.
  • the wireless communication interface 963 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
  • the antenna switch 964 switches the connection destination of the antenna 965 among a plurality of circuits included in the wireless communication interface 963.
  • the antenna 965 includes a single antenna element or a plurality of antenna elements, and is used for transmission and reception of a radio signal by the radio communication interface 963.
  • the wireless communication unit 210, the data processing unit 220, and the control unit 230 described with reference to FIG. 9 may be implemented in the wireless communication interface 963. In addition, at least a part of these functions may be implemented in the controller 951.
  • the STA 100 collects BSS or OBSS parameter information, but the collection process may not always be performed. For example, the STA 100 may not collect parameter information when the error occurrence frequency in the transmission / reception process is equal to or less than a predetermined threshold, but may collect parameter information when the error occurrence frequency is greater than the predetermined threshold. As a result, the STA 100 can reduce the amount of power consumed by trying to collect parameter information even when no interference occurs.
  • the STA 100 does not collect parameter information when the own device is not connected to a power source and is operated by a mobile battery, and collects parameter information when the own device is connected to a power source. Good. Accordingly, the STA 100 can prevent the mobile battery from being exhausted by collecting the parameter information.
  • the STA 100 when the STA 100 is moving, the interference status with the OBSS changes frequently, so there is a possibility that appropriate parameter information may not be acquired. Therefore, if the STA 100 determines that the device is carried by the user using a GPS (Global Positioning System) sensor or the like, the STA 100 does not collect parameter information and determines that the device is not moving. In this case, parameter information may be collected. Thereby, the STA 100 can collect appropriate parameter information, and can reduce the amount of power consumed by acquiring inappropriate parameter information.
  • GPS Global Positioning System
  • the AP 200 can grasp interference information without using a management device.
  • the AP 200 can exchange the interference information with another AP 200.
  • the AP 200 can appropriately perform interference control based on the interference information.
  • each step in the operation of the STA 100 according to the present embodiment does not necessarily have to be processed in time series in the order described as a flowchart.
  • the steps described in FIG. 3 to FIG. 5, FIG. 14A to FIG. 15B, and FIG. 18 may be processed in an order different from the order described in the figures, or may be processed in parallel.
  • steps S1000 to S1012 shown in FIG. 3 may be processed in different orders or in parallel.
  • a part of the configuration of the STA 100 can be provided outside the STA 100 as appropriate.
  • a part of the configuration of the AP 200 can be provided outside the AP 200 as appropriate.
  • control unit 130 may implement part of the functions of the wireless communication unit 110 or the data processing unit 120.
  • control unit 230 may embody part of the functions of the wireless communication unit 210 or the data processing unit 220.
  • the other network is an OBSS that overlaps the BSS.
  • the parameter information includes modulation scheme information, transmission power information, BSS identification information, RSSI information, version information, type information, or transmission path usage time information.
  • the other network is a cellular network.
  • the parameter information includes RSSI information and transmission path usage time information.
  • the station apparatus as described in said (4).
  • the acquisition unit acquires second parameter information related to a signal transmitted from the BSS,
  • the reporting unit reports the second parameter information to the access point device;
  • the station device according to any one of (1) to (5).
  • the receiving unit receives aggregate parameter information generated by the access point device by aggregating the parameter information or the second parameter information;
  • the reporting unit reports the aggregate parameter information to an access point apparatus that belongs to a BSS other than the BSS and performs interference control.
  • the station apparatus as described in said (6).
  • a determination unit that determines whether the signal is a signal transmitted from the BSS based on BSS identification information included in the parameter information;
  • the reporting unit reports the parameter information to the access point device as interference information based on the determination.
  • the station device according to any one of (1) to (3).
  • the acquisition unit acquires the parameter information when the station device is connected to a power source or when the station device is not moving.
  • the station device according to any one of (1) to (8).
  • a wireless control method executed by a computer.
  • the parameter information includes modulation scheme information, transmission power information, BSS identification information, RSSI information, version information, type information, or transmission path usage time information.
  • the other network is a cellular network.
  • the parameter information includes RSSI information and transmission path usage time information.
  • the receiving unit receives second parameter information related to a signal transmitted from the BSS from the station device, The control unit performs interference control based on the parameter information and the second parameter information.
  • a generating unit that generates aggregate parameter information in which the parameter information or the second parameter information is aggregated; A reporting unit for reporting the aggregate parameter information to an access point apparatus belonging to a BSS other than the BSS and performing interference control;
  • BSS 10
  • BSS 20
  • Information element used for transmission of BSS parameter information 30
  • Information element used for transmission of OBSS parameter information 40
  • Information element used for transmission of energy detection parameter information 100
  • STA 110 wireless communication unit 120 data processing unit 130 control unit 200
  • AP 210
  • wireless communication unit 220 data processing unit 230 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】管理装置を用いることなく、アクセスポイント装置が干渉情報を把握することを可能にする。 【解決手段】自装置が属するBSS以外の他ネットワークから送信された信号を受信する受信部と、前記信号に関するパラメータ情報を取得する取得部と、前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告する報告部と、を備える、ステーション装置を提供する。

Description

アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラム
 本開示は、アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラムに関する。
 近年、IEEE802.11のワーキンググループなどによって、新たな無線LANの規格化が検討されている。例えば、干渉制御に用いられる干渉情報の収集方法および使用方法等が検討されている。例えば、特許文献1には、データベースサーバが干渉情報を収集し、アクセスポイント装置がデータベースサーバから干渉情報を取得し、干渉制御に使用する方法が開示されている。また、特許文献2には、監視サーバが干渉情報を収集し、電力制御装置が監視サーバから干渉情報を取得し、干渉制御に使用する方法が開示されている。
特許第5356364号公報 特許第5360653号公報
 しかし、特許文献1および特許文献2の方法では、データベースサーバまたは監視サーバのような管理装置を用いることなく、アクセスポイント装置が干渉情報を把握することができなかった。
 そこで、本開示は、上記に鑑みてなされたものであり、本開示は、管理装置を用いることなく、アクセスポイント装置が干渉情報を把握することが可能な、新規かつ改良されたアクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラムを提供する。
 本開示によれば、自装置が属するBSS以外の他ネットワークから送信された信号を受信する受信部と、前記信号に関するパラメータ情報を取得する取得部と、前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告する報告部と、を備える、ステーション装置が提供される。
 また、本開示によれば、自装置が属するBSS以外の他ネットワークから送信された信号を受信することと、前記信号に関するパラメータ情報を取得することと、前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告することと、を有する、コンピュータにより実行される無線制御方法が提供される。
 また、本開示によれば、自装置が属するBSS以外の他ネットワークから送信された信号を受信することと、前記信号に関するパラメータ情報を取得することと、前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告することと、をコンピュータに実現させるためのプログラムが提供される。
 また、本開示によれば、自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信する受信部と、前記パラメータ情報に基づいて干渉制御を行う制御部と、を備える、アクセスポイント装置が提供される。
 また、本開示によれば、自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信することと、前記パラメータ情報に基づいて干渉制御を行うことと、を有する、コンピュータにより実行される通信制御方法が提供される。
 また、本開示によれば、自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信することと、前記パラメータ情報に基づいて干渉制御を行うことと、をコンピュータに実現させるためのプログラムが提供される。
 以上説明したように本開示によれば、管理装置を用いることなく、アクセスポイント装置が干渉情報を把握することが可能になる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る無線LANシステムの構成を示す図である。 先行文献1に係る無線LANシステムの構成を示す図である。 本実施形態に係るSTAがパラメータ情報を取得する動作を示すシーケンス図である。 本実施形態に係るSTAがAPへパラメータ情報を送信する動作を示すシーケンス図である。 本実施形態に係る各APが集約パラメータ情報を交換する動作を示すシーケンス図である。 本実施形態に係る無線LANシステムにおいて送受信されるフレームの構成を示す図である。 図6におけるPLCP Headerの構成を示す図である。 図6におけるMAC Headerの構成を示す図である。 本実施形態に係るSTAおよびAPの構成を示す図である。 本実施形態に係るパラメータ情報記憶部が記憶するパラメータ情報の一例を示す図である。 BSSのパラメータ情報の送信に用いられる情報エレメントを示す図である。 OBSSのパラメータ情報の送信に用いられる情報エレメントを示す図である。 エネルギー検知パラメータ情報の送信に用いられる情報エレメントを示す図である。 本実施形態に係るSTAがパラメータ情報を取得する動作を示すフローチャートである。 本実施形態に係るSTAがパラメータ情報を取得する動作を示すフローチャートである。 本実施形態に係るSTAがAPに対してパラメータ情報を報告する動作を示すフローチャートである。 本実施形態に係るSTAがAPに対してパラメータ情報を報告する動作を示すフローチャートである。 第1の変形例に係る無線LANシステムの構成を示す図である。 第1の変形例において、各APが集約パラメータ情報を交換する動作を示すシーケンス図である。 第2の変形例に係る無線LANシステムの構成を示す図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である 無線アクセスポイントの概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.無線LANシステムの概要
 2.装置の構成
 3.装置の動作
 4.変形例
 5.応用例
 6.補足事項
 7.むすび
  <1.無線LANシステムの概要>
 本開示の一実施形態は、無線LANシステムに関する。まず、図1~図8を参照し、本開示の一実施形態に係る無線LANシステムの概要について説明する。
 (1-1.無線LANシステムの構成)
 図1は、本開示の一実施形態に係る無線LANシステムの構成を示す図である。図1に示すように、本開示の一実施形態に係る無線LANシステムは、アクセスポイント装置(以降、便宜的に「AP(Access Point)」と呼称する)200と、ステーション装置(以降、便宜的に「STA(Station)」と呼称する)100と、を備える。そして、1台のAP200と、1台以上のSTA100と、によって基本サービスセット(以降、便宜的に「BSS(Basic Service Set)」と呼称する)10が構成される。
 本開示の一実施形態に係る無線LANシステムは、任意の場所に設置され得る。例えば、本実施形態に係る無線LANシステムは、オフィスビル、住宅、商業施設または公共施設等に設置され得る。
 また、本実施形態に係るBSS10のエリアは、使用される周波数チャネルがオーバーラップする他のBSS10(以降、便宜的に「OBSS(Overlap Basic Service Set)」と呼称する)のエリアと重複する場合があり、その場合、重複エリアに位置するSTA100から送信される信号は、OBSSから送信される信号と干渉する場合がある。図1の例を用いて説明すると、BSS10aのエリアは、OBSSであるBSS10bのエリアの一部と重複しており、その重複エリアにSTA100bおよびSTA100cが位置している。この場合、BSS10aに所属しているSTA100bから送信される信号は、BSS10bに所属するAP200bまたはSTA100cから送信される信号と干渉する場合がある。また、BSS10bに所属しているSTA100cから送信される信号は、BSS10aに所属するAP200aまたはSTA100bから送信される信号と干渉する場合がある。
 本実施形態に係るAP200は、外部ネットワークと接続され、STA100に、当該外部ネットワークとの間の通信を提供する。例えば、AP200は、インターネットと接続され、STA100とインターネット上の装置またはインターネットを介して接続される装置との通信を提供する。
 本実施形態に係るSTA100は、AP200と通信を行う無線装置である。STA100は、任意の無線装置でよい。例えば、STA100は表示機能を有するディスプレイ、記憶機能を有するメモリ、入力機能を有するキーボードおよびマウス、音出力機能を有するスピーカ、高度な計算処理を実行する機能を有するスマートフォンでもよい。
 (1-2.背景)
 次いで、本開示の背景について説明する。無線LANシステムが広く普及するまでは、APは、使用する周波数帯域が他のBSSと重複しないように周波数チャネルを設定し各BSSを運用することで、各BSSから送信された信号同士が干渉する可能性は低かった。しかし、近年、無線LANシステムの普及に伴い、隣接する複数のBSSにおいて使用される周波数帯域が重複するケースが増加しているため、各BSSから送信された信号同士が干渉する可能性が高くなっている。
 このような状況に対応するために、APが、OBSSから送信された信号のパラメータ情報等の干渉情報を取得し、当該干渉情報に基づいて自装置が所属するBSS(以降、便宜的に「自BSS」と呼称する)での通信における各パラメータを変更することで干渉の発生を防ぐという方法が考えられている。例えば、APが、OBSSとの干渉情報に基づいて送信電力を低い値に変更し、電波到達範囲を小さくすることで、干渉の発生を防ぐ方法が挙げられる。
 ここで、先行文献1の開示および先行文献2の開示においては、干渉情報の収集、管理および使用方法の一例が開示されている。そこで、続いては図2を参照して、先行文献1の開示について説明する。図2は、先行文献1に係る無線LANシステムの構成を示す図である。図2に示すように、先行文献1に係る無線LANシステムにおいては、AP1、STA1およびSTA2によってBSS1が構成され、AP2、STA3およびSTA4によってBSS2が構成されている。そして、BSS1のエリアは、OBSSであるBSS2のエリアの一部と重複しており、その重複エリアにSTA2およびSTA3が位置している。
 また、先行文献1に係る無線LANシステムは、AP1およびAP2とネットワークで接続されたデータベースを備えている。当該無線LANシステムにおいて、当該データベースは、各APから、干渉情報を取得し管理する。そして、各APは、データベースから干渉情報を取得し、当該干渉情報に基づいて自BSSでの通信における各パラメータを変更することで干渉の発生を防ぐ。
 また、図示していないが、先行文献2の開示においては、各APとネットワークで接続されている監視サーバが干渉情報をAPから受信し管理する。そして、監視サーバと接続されている電力制御装置が、監視サーバから干渉情報を取得し、当該干渉情報に基づいて各APの送信電力を決定する。
 以上のように、先行文献1の開示および先行文献2の開示においては、干渉情報を収集し管理する管理装置(先行文献1においてはデータベースを指し、先行文献2においては監視サーバを指す)がAPとは別に存在し、APは管理装置から干渉情報を取得している。ここで、例えば、無線LANの数が少ない場合においてまで、わざわざ管理装置を設けることは費用対効果の観点で適切ではないと考えられる。また、別の観点から考えると、管理装置と各APを接続するネットワークに障害が発生した場合、各APは、管理装置から干渉情報を取得することができないため、干渉制御を行うことができない。
 そこで、本件の開示者は、上記事情に着眼して本開示を創作するに至った。本開示の一実施形態に係るAP200は、管理装置を用いることなく干渉情報を把握することができる。そして、AP200は、他のAP200と当該干渉情報を交換することができる。さらに、AP200は、当該干渉情報に基づいて適切に干渉制御を行うことができる。以下に、本開示の一実施形態に係る無線LANシステムの機能概要、構成、動作、変形例および応用例について説明する。
 (1-3.無線LANシステムの機能概要)
 上記では、本開示の背景について説明した。続いて、本開示の一実施形態に係る無線LANシステムの機能概要について説明する。
 本実施形態に係る無線LANシステムにおけるSTA100は、自BSSまたはOBSSの信号を受信した場合、これらの信号に関するパラメータ情報を、先行文献のような管理装置ではなくAP200へ報告する。より具体的に説明すると、STA100は、自BSSまたはOBSSの信号を受信した場合、変調方式、送信電力、BSS識別子、RSSI(Received Signal Strength Indicator)または伝送路利用時間等に関するパラメータ情報を、自BSSまたはOBSSの区別をつけた状態で記憶し、かつ、AP200へ報告する。
 ここで、図3を参照して、STA100がパラメータ情報を取得する動作の概要について説明する。図3は、本実施形態に係るSTA100がパラメータ情報を取得する動作を示すシーケンス図である。
 ステップS1000にて、STA100aがAP200aに対して信号を送信した場合、AP200aだけでなくSTA100bも当該信号を受信したとする。この場合、STA100bは、当該信号のパラメータ情報を、自BSSのパラメータ情報として記憶する。なお、当該信号を受信したAP200aも、当該信号のパラメータ情報を、自BSSのパラメータ情報として記憶する。
 ステップS1004では、STA100bがAP200aに対して信号を送信する。そして、AP200aだけでなくSTA100cも当該信号を受信したとする。この場合、STA100cは、当該信号のパラメータ情報を、OBSSのパラメータ情報として記憶する。なお、当該信号を受信したAP200aは、当該信号のパラメータ情報を、自BSSのパラメータ情報として記憶する。
 ステップS1008では、STA100cがAP200bに対して信号を送信する。そして、AP200bだけでなくSTA100bも当該信号を受信したとする。この場合、STA100bは、当該信号のパラメータ情報を、OBSSのパラメータ情報として記憶する。なお、当該信号を受信したAP200bは、当該信号のパラメータ情報を、自BSSのパラメータ情報として記憶する。
 ステップS1012では、STA100dがAP200bに対して信号を送信する。そして、AP200bだけでなくSTA100cも当該信号を受信したとする。この場合、STA100cは、当該信号のパラメータ情報を、自BSSのパラメータ情報として記憶する。なお、当該信号を受信したAP200bも、当該信号のパラメータ情報を、自BSSのパラメータ情報として記憶する。
 以上のように、各STA100は、自BSSのパラメータ情報またはOBSSのパラメータ情報を取得する。続いて、図4を参照して、STA100がパラメータ情報をAP200へ報告する動作の概要について説明する。図4は、本実施形態に係るSTA100がAP200へパラメータ情報を送信する動作を示すシーケンス図である。
 ステップS1100では、STA100bが、自BSSまたはOBSSのパラメータ情報を含むフレームを生成し、当該フレームをAP200aに対して送信する。これにより、AP200aは、OBSSが存在することおよびSTA100bがOBSSの信号を受信していることを把握することができる。これにより、AP200aは、送信電力、変調方式または周波数帯域等のパラメータを変更することによって干渉制御を行うことができる。また、ステップS1104にて、STA100cは、パラメータ情報がSTA100bからAP200aへ報告されたことを把握することができる。これにより、例えば、パラメータ情報がSTA100bからAP200aへ報告されたことをトリガに、STA100cがAP200bへパラメータ情報を報告してもよい。
 ステップS1108では、STA100cが、自BSSまたはOBSSのパラメータ情報を含むフレームを生成し、当該フレームをAP200bに対して送信する。これにより、AP200bは、OBSSが存在することおよびSTA100cがOBSSの信号を受信していることを把握することができる。これによりAP200bは、上述と同様に、送信電力、変調方式または使用周波数帯域等のパラメータを変更することによって干渉制御を行うことができる。また、ステップS1112にて、STA100bは、上述と同様に、パラメータ情報がSTA100cからAP200bへ報告されたことを把握することができる。
 以上のように、AP200は、各STA100から自BSSまたはOBSSの信号のパラメータ情報を取得することができる。そして、AP200は、これらのパラメータ情報を、取得元であるSTA100の識別情報を対応付けて記憶する。以降では、AP200が各STA100から取得し、記憶するパラメータ情報を集約パラメータ情報と呼称する。集約パラメータ情報は、各STA100から報告されたパラメータ情報が編集された情報であってもよいし、もちろん、各STA100から報告されたパラメータ情報に取得元であるSTA100の識別情報を対応付けただけの情報であってもよい。
 そして、各AP200は、それぞれが記憶している集約パラメータ情報を交換することによって、異なるBSSに設定されているパラメータ情報およびBSS間の干渉状況を把握する。続いて、図5を参照して、各AP200が集約パラメータ情報を交換する動作の概要について説明する。図5は、本実施形態に係る各AP200が集約パラメータ情報を交換する動作を示すシーケンス図である。
 ステップS1200では、AP200aが集約パラメータ情報を送信し、AP200bが当該集約パラメータ情報を受信する。これにより、AP200bは、BSS10aにおいて設定されているパラメータ情報およびBSS10aの装置が受けている干渉の影響を把握することができる。これにより、AP200bは、パラメータ情報を変更することで適切に干渉制御を行うことができる。また、ステップS1204では、AP200bが集約パラメータ情報を送信し、AP200aが当該集約パラメータ情報を受信する。これにより、AP200aは、上述と同様に、BSS10bにおいて設定されているパラメータ情報およびBSS10bの装置が受けている干渉の影響を把握することができ、パラメータ情報を変更することで適切に干渉制御を行うことができる。
 以上のように、本実施形態に係る無線LANシステムにおいては、STA100が自BSSまたはOBSSのパラメータ情報をAP200へ報告することによって、AP200は、管理装置を用いることなく干渉情報を把握することができる。また、AP200は、STA100から報告されたパラメータ情報を集約し、AP200間で集約パラメータ情報を交換することによって、異なるBSSにおいて設定されているパラメータ情報およびBSS間の干渉状況を把握することができる。そして、AP200は、集約パラメータ情報に基づいて自BSSのパラメータ情報を変更することによって適切に干渉制御を行うことができる。
 (1-4.フレーム構成)
 上記では、本開示の一実施形態に係る無線LANシステムの機能概要について説明した。続いて、図6~図8を参照して、本実施形態に係る無線LANシステムによって送受信されるフレームの構成について説明する。
 図6は、本実施形態に係る無線LANシステムにおいて送受信されるフレームの構成を示す図である。図6に示すように、本実施形態に係る無線LANシステムによって送受信されるフレームは、Preamble、PLCP HeaderおよびMPDUを有するPPDUである。PLCP Headerは、L-SIGおよびHE-SIGを有する。MPDUは、MAC Header、Frame BodyおよびFCS(Frame Check Sequence)を有する。
 図7は、図6におけるPLCP Headerの構成を示す図である。図7に示すように、PLCP Headerは、BSS Color、Tx Power、MCS IndexおよびUplink Indicator等を含む。BSS Colorとは、送受信される信号のBSSを識別するための情報である。例えば、あるBSS内で送受信される信号のBSS Colorには、当該BSSに対応するBSS Color情報が格納され、異なるBSS間で送受信される集約パラメータ情報等のBSS Colorには、ワイルドカードBSS Color情報が格納される。信号を受信したSTA100またはAP200は、BSS Colorに基づいて、当該信号が自BSSの信号であるか否か、または、BSS間を跨いで通信される信号であるか否かを判定する。また、Tx Powerとは、送信電力情報である。また、MCS Indexとは、変調方式、符号化率等の組み合わせをIndex化したものである。また、Uplink Indicatorとは、信号の送信方向であり、例えば、Uplink Indicatorが1の場合は当該信号が上り方向の信号であることを示し、0の場合は当該信号が下り方向の信号であることを示す。
 図8は、図6におけるMAC Headerの構成を示す図である。図8に示すように、MAC Headerは、Frame Control、Address1~Address4、Sequence Control、Qos ControlおよびHT Control等を含む。Frame Controlには、プロトコルバージョンまたはフレームタイプ等の情報が格納され、Address1~Address4には、BSSID、送信元アドレスまたは宛先アドレス等の情報が格納される。Sequence Controlにはシーケンス番号が格納され、Qos Controlには、Qosパラメータが格納され、HT Controlには、高速通信パラメータが格納される。
  <2.装置の構成>
 上記では、本開示の一実施形態に係る無線LANシステムの機能概要について説明した。続いて、図9を参照して、本実施形態に係るSTA100およびAP200の構成について説明する。図9は、本実施形態に係るSTA100およびAP200の構成を示す図である。
 (2-1.STAの構成)
 まず、STA100の構成について説明する。STA100は、図9に示すように、無線通信部110と、データ処理部120と、制御部130と、を備える。
 (無線通信部)
 無線通信部110は、図9に示すように、アンテナ制御部111と、受信処理部112と、送信処理部113と、を備え、受信部および報告部として機能する。
 アンテナ制御部111は、少なくとも1つのアンテナを介した信号の送受信を制御する。より具体的に説明すると、アンテナ制御部111は、アンテナを介して受信される信号を受信処理部112に提供し、アンテナを介して、送信処理部113によって生成される信号を送信する。
 受信処理部112は、アンテナ制御部111から提供される信号に基づいてフレームの受信処理を行う。例えば、受信処理部112は、アンテナから得られる信号について、アナログ処理およびダウンコンバージョンを施すことにより、ベースバンドの受信信号を出力する。そして、受信処理部112は、所定の信号パターンと受信信号との相関を、演算の対象とする受信信号を時間軸上でシフトさせながら算出し、相関のピークの出現に基づいてプリアンブルを検出する。これにより、受信処理部112は、自BSSの信号またはOBSSの信号等を検出することができる。また、受信処理部112は、ベースバンドの受信信号について復調およびデコード等を行うことによりフレームを取得し、取得されるフレームを受信フレーム解析部121に提供する。また、受信処理部112は、受信処理の成否に関する情報を動作制御部131に提供する。例えば、受信処理部112は、復調等の受信処理に失敗した場合、エラー発生情報を動作制御部131に提供する。また、受信処理部112は、所定の信号パターンとの相関演算では検出できない信号(すなわち、無線LAN規格のプリアンブルを含んでいない信号)を受信した場合には、その情報を受信フレーム解析部121に提供する。
 送信処理部113は、送信フレーム構築部126から提供されるフレームの送信処理を行う。より具体的に説明すると、送信処理部113は、送信フレーム構築部126から提供されるフレームおよび信号制御部132からの指示により設定されるパラメータに基づいて、送信信号を生成する。例えば、送信処理部113は、送信フレーム構築部126から提供されるフレームについて、信号制御部132によって指示されるコーディングおよび変調方式等に従って、エンコード、インタリーブおよび変調を行うことによりベースバンドの送信信号を生成する。また、送信処理部113は、前段の処理によって得られるベースバンドの送信信号にアップコンバージョンを施す。
 (データ処理部)
 データ処理部120は、図9に示すように、受信フレーム解析部121と、受信バッファ122と、インタフェース部123と、送信バッファ124と、パラメータ情報記憶部125と、送信フレーム構築部126と、を備える。
 受信フレーム解析部121は、判定部および取得部として機能し、受信されたフレームの解析またはパラメータ情報の取得等を行う。より具体的に説明すると、受信フレーム解析部121は、無線通信部110によって受信されたフレームに含まれるPLCP HeaderおよびMAC Header等を解析する。そして、受信フレーム解析部は、識別情報であるBSS ColorまたはBSSIDに基づいて、受信信号が自BSSの信号であるか否かを判定する。
 受信信号が自BSSの信号であると判定された場合、受信フレーム解析部121は、各パラメータを取得し、自BSSのパラメータ情報(第2のパラメータ情報を指す)としてパラメータ情報記憶部125へ記憶させる。また、受信信号が自BSSの信号でないと判定された場合、受信フレーム解析部121は、各パラメータを取得し、OBSSのパラメータ情報としてパラメータ情報記憶部125へ記憶させる。また、無線LAN規格のプリアンブルを含んでいない信号が受信されたという情報が受信処理部112から提供された場合、受信フレーム解析部121は、各パラメータを取得し、エネルギー検知パラメータ情報としてパラメータ情報記憶部125へ記憶させる。
 また、AP200からのパラメータ情報の報告要求が受信された場合、その情報を動作制御部131へ提供する。また、AP200からの集約パラメータ情報が受信された場合、その情報を動作制御部131へ提供する。さらに、受信フレーム解析部121は、フレームの宛先に自装置が含まれる場合、フレームからデータ等を取得し、受信バッファ122に記憶させる。
 受信バッファ122は、受信されたフレームに含まれるデータを記憶する。
 インタフェース部123は、STA100に備えられる他の構成と接続されるインタフェースである。より具体的に説明すると、インタフェース部123は、当該他の構成、例えばアプリケーションまたはユーザインタフェースからの、送信が所望されるデータの受け取り、またはアプリケーションまたはユーザインタフェースへの受信データの提供等を行う。
 送信バッファ124は、インタフェース部123から提供される、送信用のデータを記憶する。
 パラメータ情報記憶部125は、受信フレーム解析部121から提供される、自BSSのパラメータ情報、OBSSのパラメータ情報、エネルギー検知パラメータ情報を記憶する。ここで、図10を参照して、パラメータ情報記憶部125が記憶する情報の一例について説明する。図10は、本実施形態に係るパラメータ情報記憶部125が記憶するパラメータ情報の一例を示す図である。
 図10に示すように、パラメータ情報記憶部125は、受信信号毎にレコードを作成し、各パラメータ情報を記憶する。そして、パラメータ情報記憶部125は、受信信号の送信元ネットワークの情報も付加する。より具体的に説明すると、パラメータ情報記憶部125は、レコード中の「BSS/OverLap BSSカラム」に自BSSまたはOBSSの情報を格納することによって、受信信号が自BSSの信号なのか、OBSSの信号なのかを区別できるようにしている(自BSSのパラメータ情報においては、「自BSS」ではなく「BSS」と記載している)。例えば、図10のレコード10、レコード11およびレコード13は、OBSSの信号のパラメータ情報であり、レコード12は、自BSSの信号のパラメータ情報である。図示していないが、受信信号が、セルラーネットワーク等の無線LAN以外のネットワークの信号である場合、「BSS/OverLap BSSカラム」には、「N/A」等が格納されてもよいし、何らかの識別情報が格納されてもよい。例えば、無線LANのバージョン情報、フレームタイプ形式、サブタイプ形式、アグリゲーション形式、QoSパラメータとして例えばEDCAによって定義された種別等が格納されてもよい。
 送信フレーム構築部126は、送信フレームを生成する。例えば、送信フレーム構築部126は、パラメータ情報記憶部125に格納されるパラメータ情報と、動作制御部131によって設定される制御情報に基づいてパラメータ報告フレームを生成する。送信フレーム構築部126は、パラメータ情報記憶部125から取得される送信用のパラメータ情報からフレーム(パケット)を生成し、生成されるフレームにメディアアクセス制御(MAC:Media Access Control)のためのMACヘッダの付加および誤り検出符号の付加等の処理を行う。また、送信フレーム構築部126は、送信バッファ124に格納される送信データを用いて送信フレームを生成してもよい。
 ここで、図11~13を参照して、送信フレーム構築部126が生成するパラメータ報告フレームの一例について説明する。図11は、自BSSのパラメータ情報の送信に用いられる情報エレメント20を示す図である。図11に示すように、当該情報エレメント20は、Element ID、Length、Report MAC Address、BSS STA Countsおよび受信信号毎のパラメータ情報等を含む。Element IDは情報エレメントの種類の情報であり、Lengthは情報エレメント20の長さの情報であり、Report MAC Addressは報告先アドレスの情報であり、BSS STA Countsは、報告される自BSS信号数の情報である。また、自BSS信号毎のパラメータ情報は、RSSI、MCS、TypeおよびDuration等を含むことができるが、適宜変更され得る。ここで、Typeとはデータの種類を示す情報であり、Typeには、例えば、無線LANフレームのバージョン情報、フレームの種類としてアグリゲートして構成されているか否かに関する情報、またはデータに含まれるVoiceまたはVideo等に関する情報が含まれ得る。また、Durationは、伝送路利用時間に関する情報である。図11はあくまで一例であり、情報エレメント20の内容は適宜変更され得る。
 図12は、OBSSのパラメータ情報の送信に用いられる情報エレメント30を示す図である。図12に示すように、当該情報エレメント30は、Element ID、Length、Report MAC Address、OBSS Countsおよび受信信号毎のパラメータ情報等を含む。OBSS Countsは、報告されるOBSS信号数の情報である。その他の情報については、図11の情報エレメント20と同様であるため、説明を省略する。図12はあくまで一例であり、情報エレメント30の内容は適宜変更され得る。
 図13は、エネルギー検知パラメータ情報の送信に用いられる情報エレメント40を示す図である。図13に示すように、当該情報エレメント40は、Element ID、Length、Report MAC Address、RSSI min level、Detect Countsおよび受信信号毎のパラメータ情報等を含む。RSSI min levelは、最も低いRSSIの情報である。Detect Countsは、報告される信号数の情報である。また、信号毎のパラメータ情報は、RSSI maxおよびDurationを含むことができるが、適宜変更され得る。ここで、RSSI maxは、信号毎の最も高いRSSIの情報である。図13はあくまで一例であり、情報エレメント40の内容は適宜変更され得る。
 図11~図13に示す各情報エレメントは、図6のFrame Bodyに格納されて送信される。この時、各情報エレメントが単独でFrame Bodyに格納されてもよいし、複数の情報エレメントが連結されてFrame Bodyに格納されてもよい。
 (制御部)
 制御部130は、図9に示すように、動作制御部131と、信号制御部132と、を備える。
 動作制御部131は、パラメータ情報の送信に関する処理を制御する。より具体的に説明すると、動作制御部131は、自BSSのパラメータ情報、OBSSのパラメータ情報または、エネルギー検知パラメータ情報の送信処理を制御する。例えば、動作制御部131は、受信処理部112から提供されるエラー発生情報に基づいて、所定の頻度以上のエラーが発生していると判定した場合、各パラメータ情報を送信するよう各構成を制御する。また、動作制御部131は、前回、パラメータ情報を送信したタイミングから所定の時間以上が経過した場合、同様に各パラメータ情報を送信するよう各構成を制御する。また、動作制御部131は、AP200からのパラメータ情報の報告要求が受信されたという情報が受信処理部112から提供された場合、同様に各パラメータ情報を送信するよう各構成を制御する。これらの各パラメータ情報が送信されるタイミングは、任意に変更されてもよい。上記の方法により、動作制御部131は、適切なタイミングで各パラメータ情報を送信するよう各構成を制御することができる。
 信号制御部132は、無線通信部110の動作を制御する。より具体的に説明すると、信号制御部132は、無線通信部110の送受信処理を制御する。例えば、信号制御部132は、動作制御部131の指示に基づいて送信および受信のための制御情報を無線通信部110に設定させる。また、信号制御部132は、CSMA/CAのような空きチャネル検出処理を制御する。例えば、信号制御部132は、キャリアセンスの結果およびバックオフ時間に基づいて信号の送信開始または送信待機を決定する。
 (2-2.APの構成)
 AP200は、STA100と同様の構成を備え得る。もちろん、AP200は、STA100が備えていない構成を適宜備えてもよい。
 (無線通信部)
 無線通信部210は、図9に示すように、アンテナ制御部211と、受信処理部212と、送信処理部213と、を備え、受信部および報告部として機能する。各構成の機能はSTA100の構成と同様であるため、説明を省略する。
 (データ処理部)
 データ処理部220は、図9に示すように、受信フレーム解析部221と、受信バッファ222と、インタフェース部223と、送信バッファ224と、パラメータ情報記憶部225と、送信フレーム構築部226と、を備える。以下では、各構成の機能において、STA100の構成と同様の機能については説明を省略する。
 受信フレーム解析部221は、生成部として機能し、受信フレームの解析、パラメータ情報および集約パラメータ情報に関する処理を行う。より具体的に説明すると、STA100から各パラメータ情報が含まれるフレームが受信された場合、受信フレーム解析部221は、当該フレームを解析し、パラメータ情報を取得する。そして、受信フレーム解析部221は、当該パラメータ情報に基づいて集約パラメータ情報を生成し、当該集約パラメータ情報をパラメータ情報記憶部225へ記憶させる。この時、受信フレーム解析部221は、集約パラメータ情報に、送信元であるSTA100の識別情報を対応付けた状態でパラメータ情報記憶部225へ記憶させる。また、上述のとおり、受信フレーム解析部221は、STA100から送信されたパラメータ情報を編集して集約パラメータ情報を生成してもよい。
 また、他のAP200から送信された集約パラメータ情報が受信された場合、受信フレーム解析部221は、集約パラメータ情報を、送信元であるAP200の識別情報を対応付けた状態でパラメータ情報記憶部225へ記憶させる。また、受信フレーム解析部221は、他のAP200から送信された集約パラメータ情報を編集して、編集後の集約パラメータ情報をパラメータ情報記憶部225へ記憶させてもよい。
 パラメータ情報記憶部225は、受信フレーム解析部221から提供される、集約パラメータ情報を記憶する。
 送信フレーム構築部226は、送信フレームを生成する。例えば、送信フレーム構築部226は、動作制御部231に制御されることによって、パラメータ情報の報告要求フレームを生成する。また、送信フレーム構築部226は、動作制御部231に制御されることによって、集約パラメータ情報が含まれるフレームを生成する。
 (制御部)
 制御部230は、図9に示すように、動作制御部231と、信号制御部232と、を備える。以下では、各構成の機能において、STA100の構成と同様の機能については説明を省略する。
 動作制御部231は、パラメータ情報、集約パラメータ情報および干渉制御に関する処理を制御する。例えば、動作制御部231は、パラメータ情報の報告要求に関する処理を制御する。動作制御部231は、パラメータ情報の報告要求のためのフレームを生成し、送信するよう各構成を制御する。ここで、パラメータ情報の報告要求が行われるタイミングは任意である。例えば、動作制御部231は、前回、パラメータ情報の報告要求が行われたタイミングから所定の時間が経過した後、パラメータ情報の報告要求を行っても良い。また、動作制御部231は、受信処理部212から提供されるエラー発生情報に基づいて、エラーの発生頻度が所定の閾値以上であると判定した場合、パラメータ情報の報告要求を行っても良い。
 また、動作制御部231は、集約パラメータ情報を他のAP200に報告する処理を制御する。動作制御部231は、パラメータ情報記憶部225が記憶している集約パラメータ情報を含むフレームを生成し、他のAP200に報告するよう各構成を制御する。ここで、集約パラメータ情報の報告が行われるタイミングは任意である。例えば、動作制御部231は、前回、集約パラメータ情報の報告を行ったタイミングから所定の時間が経過した後に、集約パラメータ情報の報告を行っても良い。また、動作制御部231は、受信処理部212から提供されるエラー発生情報に基づいて、エラーの発生頻度が所定の閾値以上であると判定した場合、集約パラメータ情報の報告を行っても良い。
 また、動作制御部231は、干渉制御に関する処理を行う。より具体的に説明すると、動作制御部231は、STA100からのパラメータ情報を用いて生成した集約パラメータ情報、または、他のAP200から受信した集約パラメータ情報に基づいて干渉制御を行う。例えば、動作制御部231は、集約パラメータ情報に基づいて通信環境が劣悪であると判断した場合、変調方式を、より確実に通信が可能な伝送効率の低い変調方式(BPSK等)へ変更したり、規格で許容されたより高い送信電力へ変更したりする。また、動作制御部231は、OBSSで用いられる周波数帯域と異なる周波数帯域を使用するように設定変更を行っても良い。
 また、動作制御部231は、集約パラメータ情報に含まれるデータの優先度に関する情報に基づいて干渉制御を行っても良い。より具体的に説明すると、動作制御部231は、集約パラメータ情報に含まれるTypeに基づいて、OBSSにてVoice等の優先度の高いデータの通信が行われていることを確認できた場合、OBSSの通信が優先的に行われるように各パラメータを変更してもよい。また、動作制御部231は、集約パラメータ情報に含まれるTypeに基づいて、OBSSにて優先度の高いデータの通信が行われていないことを確認できた場合、自BSSの通信が優先的に行われるように各パラメータを変更してもよい。または、この場合、動作制御部231は、自BSSの各パラメータを変更せず、OBSSの各パラメータが変更されてから改めて判断をしてもよい。
  <3.装置の動作>
 上記では、本実施形態に係るSTA100およびAP200の構成について説明した。続いて、図14Aおよび図14Bを参照して、パラメータ情報の取得動作について説明する。図14Aおよび図14Bは、本実施形態に係るSTA100がパラメータ情報を取得する動作を示すフローチャートである。ここで、AP200がパラメータ情報を取得する場合も、STA100と同様に、図14Aおよび図14Bに記載の動作を行ってもよい。
 ステップS1300では、無線通信部110が、所定の閾値より大きいRSSIを有する信号を検知する。受信処理部112が、所定の信号パターンと受信信号との相関演算によって、無線LANのプリアンブルを検知した場合(ステップS1304/Yes)、ステップS1308にて、受信フレーム解析部121がPLCP Headerの情報を抽出する。そして、ステップS1312にて、受信フレーム解析部121がPLCP Headerに含まれるMCSに関するパラメータ(MCS Index)を取得する。
 そして、ステップS1316にて、受信フレーム解析部121は、ヘッダ構成、または、ヘッダに含まれるバージョン情報を解析する。信号のヘッダが自装置の対応規格(Tx Power、BSS Color等がヘッダに含まれる規格)に準じている場合(ステップS1316/Yes)、ステップS1320では、受信フレーム解析部121が、PLCP Headerから送信電力に関するパラメータ(Tx Power)を取得する。ステップS1324では、受信フレーム解析部121が、PLCP HeaderからBSS Colorに関するパラメータ(BSS Color)を取得する。
 ステップS1328にて、受信フレーム解析部121が、取得したBSS Color情報が、自BSSのBSS Color情報であると判定した場合(ステップS1328/Yes)、受信フレーム解析部121は、取得したパラメータ情報を自BSSのパラメータ情報として、パラメータ情報記憶部125へ記憶させる。ステップS1328にて、受信フレーム解析部121が、取得したBSS Color情報が、自BSSのBSS Color情報でないと判定した場合(ステップS1328/No)、受信フレーム解析部121は、取得したパラメータ情報をOBSSのパラメータ情報として、パラメータ情報記憶部125へ記憶させる。
 ステップS1316にて、信号のヘッダが自装置の対応規格に準じていない場合(ステップS1316/No)、ステップS1332にて、受信フレーム解析部121が、MAC Headerのアドレス情報(Address1~Address4)を取得する。MAC Headerのアドレス情報に、自BSSのBSSIDとして、AP200のMACアドレス情報が含まれている場合(ステップS1336/Yes)、受信フレーム解析部121は、取得したパラメータ情報を自BSSのパラメータ情報として、パラメータ情報記憶部125へ記憶させる。
 MAC Headerのアドレス情報に、自BSSのBSSIDとして、AP200のMACアドレス情報が含まれていない場合(ステップS1336/No)、受信フレーム解析部121は、取得したパラメータ情報をOBSSのパラメータ情報として、パラメータ情報記憶部125へ記憶させる。ステップS1304にて、受信処理部112が、無線LANのプリアンブルを検知できない場合(ステップS1304/No)、ステップS1348にて、受信フレーム解析部121は、取得したパラメータ情報をエネルギー検知パラメータ情報として、パラメータ情報記憶部125へ記憶させる。
 ステップS1352では、受信フレーム解析部121は、受信処理部112からRSSIに関する情報を取得し、当該情報をパラメータ情報記憶部125へ記憶させる。また、ステップS1356では、受信フレーム解析部121は、受信処理部112から伝送路利用時間に関する情報を取得し、当該情報をパラメータ情報記憶部125へ記憶させる。
 一連のフレームにFCSエラーが発生しなかった場合(ステップS1360/Yes)、処理が終了する。ステップS1360にて、一連のフレームにFCSエラーが発生した場合(ステップS1360/No)、受信処理部112が動作制御部131へエラー発生情報を提供し、動作制御部131は当該情報を記憶部(図示なし)へ記憶させて、処理が終了する。
 上記では、パラメータ情報の取得動作について説明した。続いて、図15Aおよび図15Bを参照して、パラメータ情報の報告動作について説明する。図15Aおよび図15Bは、本実施形態に係るSTA100がAP200に対してパラメータ情報を報告する動作を示すフローチャートである。
 ステップS1400にて、動作制御部131が、受信処理部112からエラー発生情報を取得する。そして、ステップS1404にて、所定の頻度以上のエラーが発生した場合(ステップS1404/Yes)、ステップS1416以降の、パラメータ情報の報告動作が行われる。また、ステップS1404にて、所定の頻度以上のエラーが発生していない場合であっても(ステップS1404/No)、前回、パラメータ情報が報告されたタイミングから所定の時間以上が経過した場合(ステップS1408/Yes)、パラメータ情報を報告する処理が行われる。パラメータ情報が報告されたタイミングから所定の時間以上が経過していない場合であっても(ステップS1408/No)、AP200からのパラメータ情報の報告要求が受信された場合(ステップS1412/Yes)、パラメータ情報を報告する処理が行われる。ステップS1412にて、AP200からのパラメータ情報の報告要求が受信されていない場合(ステップS1412/No)、処理がステップS1400へ移動する。上述のとおり、これらの、パラメータ情報の報告動作のトリガは、適宜変更されてもよい。また、ステップS1400の処理は省略されてもよい。
 ステップS1416にて、パラメータ情報記憶部125が未報告の自BSSのパラメータ情報を記憶している場合(ステップS1416/Yes)、ステップS1420にて、送信フレーム構築部126は、未報告の自BSSのパラメータ情報をパラメータ情報記憶部125から取得する。ステップS1424では、送信フレーム構築部126が自BSSパラメータ報告フレームを構築する。ステップS1416にて、パラメータ情報記憶部125が未報告の自BSSのパラメータ情報を記憶していない場合(ステップS1416/No)、処理がステップS1428へ移動する。
 ステップS1428にて、パラメータ情報記憶部125が未報告のOBSSのパラメータ情報を記憶している場合(ステップS1428/Yes)、ステップS1432にて、送信フレーム構築部126は、未報告のOBSSのパラメータ情報をパラメータ情報記憶部125から取得する。ステップS1436では、送信フレーム構築部126がBSSパラメータ報告フレームを構築する。ステップS1428にて、パラメータ情報記憶部125が未報告のOBSSのパラメータ情報を記憶していない場合(ステップS1428/No)、処理がステップS1440へ移動する。
 ステップS1440にて、パラメータ情報記憶部125が未報告のエネルギー検知パラメータ情報を記憶している場合(ステップS1440/Yes)、ステップS1444にて、送信フレーム構築部126は、未報告のエネルギー検知パラメータ情報をパラメータ情報記憶部125から取得する。ステップS1448では、送信フレーム構築部126がエネルギー検知パラメータ報告フレームを構築する。ステップS1440にて、パラメータ情報記憶部125が未報告のエネルギー検知パラメータ情報を記憶していない場合(ステップS1440/No)、処理がステップS1452へ移動する。
 ステップS1452にて、パラメータ情報記憶部125が、未報告の各パラメータ情報を記憶している場合(ステップS1452/Yes)、ステップS1456にて、制御部130が、生成されたパラメータ報告フレームを送信するよう無線通信部110を制御する。ステップS1460では、制御部130がパラメータ報告フレームの送信時刻を記録し、処理が終了する。ステップS1452にて、パラメータ情報記憶部125が、未報告の各パラメータ情報を記憶していない場合(ステップS1452/No)、処理が終了する。
  <4.変形例>
 上記では、パラメータ情報の報告動作について説明した。続いて、図16~図18を参照して、本開示の変形例について説明する。
 (4-1.第1の変形例)
 まず、図16および図17を参照して、本開示の第1の変形例について説明する。図16は、第1の変形例に係る無線LANシステムの構成を示す図である。
 第1の変形例は、AP200同士が直接通信を行うことが困難であるケースである。図16に示すように、BSS10aに所属するSTA100bは、OBSSであるBSS10bに所属するSTA100cと通信を行うことができるが、AP200aは、AP200bと通信を行うことができない。第1の変形例において、AP200は、STA100を経由することで他のAP200と集約パラメータ情報の交換を行う。
 すなわち、第1の変形例におけるSTA100は、集約パラメータ情報の転送に関する処理を制御する。より具体的に説明すると、STA100の受信フレーム解析部121は、受信フレームを解析し、AP200からの集約パラメータ情報が受信されたと判定した場合、その情報を動作制御部131へ提供する。その後、動作制御部131は、当該集約パラメータ情報を含むフレームを転送するように各構成を制御する。
 続いて、図17を参照して、第1の変形例における、集約パラメータ情報の交換動作の一例について説明する。図17は、第1の変形例において、各AP200が集約パラメータ情報を交換する動作を示すシーケンス図である。ステップS1500では、AP200aが集約パラメータ情報を送信し、STA100bが集約パラメータ情報を受信する。ステップS1504では、STA100bが集約パラメータ情報を転送し、STA100cが集約パラメータ情報を受信する。ステップS1508では、STA100cが集約パラメータ情報を転送し、AP200bが集約パラメータ情報を受信する。
 ステップS1512では、AP200bが集約パラメータ情報を送信し、STA100cが集約パラメータ情報を受信する。ステップS1516では、STA100cが集約パラメータ情報を転送し、STA100bが集約パラメータ情報を受信する。ステップS1520では、STA100bが集約パラメータ情報を転送し、AP200aが集約パラメータ情報を受信する。
 このように、第1の変形例によって、AP200同士が直接通信を行うことができない場合であっても、AP200は、STA100を経由することによって、集約パラメータ情報を異なるAP200と交換することができる。例えば、AP200の場所が変更され得る場合などの、異なるAP200同士の通信が正常に行えるとは限らない状況においても、AP200は集約パラメータ情報を異なるAP200と交換することができる。
 (4-2.第2の変形例)
 続いて、図18を参照して、本開示の第2の変形例について説明する。図18は、第2の変形例に係る無線LANシステムの構成を示す図である。
 第2の変形例は、コントローラと複数のAP200が有線ネットワークで接続されているケースである。図18に示すように、AP200a、AP200bおよびコントローラが、有線ネットワークで接続されている。例えば、AP200a、AP200bおよびコントローラが、イーサネットケーブルで接続されてもよい。第2の変形例において、AP200は、有線ネットワークを経由することでコントローラへ集約パラメータ情報を送信したり、他のAP200と集約パラメータ情報の交換を行ったりする。第2の変形例において、干渉情報を用いた干渉制御は、コントローラが行っても良いし、適宜各AP200が行っても良い。
 第2の変形例に示すように、本開示は、様々なネットワーク構成の無線LANシステムに適用され得る。
  <5.応用例>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、STA100は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末若しくはデジタルカメラなどのモバイル端末、テレビジョン受像機、プリンタ、デジタルスキャナ若しくはネットワークストレージなどの固定端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、STA100は、スマートメータ、自動販売機、遠隔監視装置又はPOS(Point Of Sale)端末などの、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、STA100は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
 一方、例えば、AP200は、ルータ機能を有し又はルータ機能を有しない無線LANアクセスポイント(無線基地局ともいう)として実現されてもよい。また、AP200は、モバイル無線LANルータとして実現されてもよい。さらに、AP200は、これら装置に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
 (5-1.第1の応用例)
 図19は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース913、アンテナスイッチ914、アンテナ915、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU(Central Processing Unit)又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース913は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、無線通信を実行する。無線通信インタフェース913は、インフラストラクチャーモードにおいては、他の装置と無線LANアクセスポイントを介して通信し得る。また、無線通信インタフェース913は、アドホックモード又はWi-Fi Direct(登録商標)等のダイレクト通信モードにおいては、他の装置と直接的に通信し得る。なお、Wi-Fi Directでは、アドホックモードとは異なり2つの端末の一方がアクセスポイントとして動作するが、通信はそれら端末間で直接的に行われる。無線通信インタフェース913は、典型的には、ベースバンドプロセッサ、RF(Radio Frequency)回路及びパワーアンプなどを含み得る。無線通信インタフェース913は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。無線通信インタフェース913は、無線LAN方式に加えて、近距離無線通信方式、近接無線通信方式又はセルラ通信方式などの他の種類の無線通信方式をサポートしてもよい。アンテナスイッチ914は、無線通信インタフェース913に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ915の接続先を切り替える。アンテナ915は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース913による無線信号の送信及び受信のために使用される。
 なお、図19の例に限定されず、スマートフォン900は、複数のアンテナ(例えば、無線LAN用のアンテナ及び近接無線通信方式用のアンテナ、など)を備えてもよい。その場合に、アンテナスイッチ914は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース913及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図19に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図19に示したスマートフォン900において、図9を用いて説明した、無線通信部110、データ処理部120および制御部130は、無線通信インタフェース913において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。
 なお、スマートフォン900は、プロセッサ901がアプリケーションレベルでアクセスポイント機能を実行することにより、無線アクセスポイント(ソフトウェアAP)として動作してもよい。また、無線通信インタフェース913が無線アクセスポイント機能を有していてもよい。
 (5-2.第2の応用例)
 図20は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPSモジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、アンテナスイッチ934、アンテナ935及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、無線通信を実行する。無線通信インタフェース933は、インフラストラクチャーモードにおいては、他の装置と無線LANアクセスポイントを介して通信し得る。また、無線通信インタフェース933は、アドホックモード又はWi-Fi Direct等のダイレクト通信モードにおいては、他の装置と直接的に通信し得る。無線通信インタフェース933は、典型的には、ベースバンドプロセッサ、RF回路及びパワーアンプなどを含み得る。無線通信インタフェース933は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、無線LAN方式に加えて、近距離無線通信方式、近接無線通信方式又はセルラ通信方式などの他の種類の無線通信方式をサポートしてもよい。アンテナスイッチ934は、無線通信インタフェース933に含まれる複数の回路の間でアンテナ935の接続先を切り替える。アンテナ935は、単一の又は複数のアンテナ素子を有し、無線通信インタフェース933による無線信号の送信及び受信のために使用される。
 なお、図20の例に限定されず、カーナビゲーション装置920は、複数のアンテナを備えてもよい。その場合に、アンテナスイッチ934は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図20に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図20に示したカーナビゲーション装置920において、図9を用いて説明した、無線通信部110、データ処理部120および制御部130は、無線通信インタフェース933において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ921において実装されてもよい。
 また、無線通信インタフェース933は、上述したAP200として動作し、車両に乗るユーザが有する端末に無線接続を提供してもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 (5-3.第3の応用例)
 図21は、本開示に係る技術が適用され得る無線アクセスポイント950の概略的な構成の一例を示すブロック図である。無線アクセスポイント950は、コントローラ951、メモリ952、入力デバイス954、表示デバイス955、ネットワークインタフェース957、無線通信インタフェース963、アンテナスイッチ964及びアンテナ965を備える。
 コントローラ951は、例えばCPU又はDSP(Digital Signal Processor)であってよく、無線アクセスポイント950のIP(Internet Protocol)レイヤ及びより上位のレイヤの様々な機能(例えば、アクセス制限、ルーティング、暗号化、ファイアウォール及びログ管理など)を動作させる。メモリ952は、RAM及びROMを含み、コントローラ951により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、ルーティングテーブル、暗号鍵、セキュリティ設定及びログなど)を記憶する。
 入力デバイス954は、例えば、ボタン又はスイッチなどを含み、ユーザからの操作を受け付ける。表示デバイス955は、LEDランプなどを含み、無線アクセスポイント950の動作ステータスを表示する。
 ネットワークインタフェース957は、無線アクセスポイント950が有線通信ネットワーク958に接続するための有線通信インタフェースである。ネットワークインタフェース957は、複数の接続端子を有してもよい。有線通信ネットワーク958は、イーサネット(登録商標)などのLANであってもよく、又はWAN(Wide Area Network)であってもよい。
 
 無線通信インタフェース963は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、近傍の端末へアクセスポイントとして無線接続を提供する。無線通信インタフェース963は、典型的には、ベースバンドプロセッサ、RF回路及びパワーアンプなどを含み得る。無線通信インタフェース963は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。アンテナスイッチ964は、無線通信インタフェース963に含まれる複数の回路の間でアンテナ965の接続先を切り替える。アンテナ965は、単一の又は複数のアンテナ素子を有し、無線通信インタフェース963による無線信号の送信及び受信のために使用される。
 図21に示した無線アクセスポイント950において、図9を用いて説明した、無線通信部210、データ処理部220および制御部230は、無線通信インタフェース963において実装されてもよい。また、これら機能の少なくとも一部は、コントローラ951において実装されてもよい。
  <6.補足事項>
 上記では、本開示の応用例について説明した。続いて、STA100によるパラメータ情報の収集処理の補足事項について説明する。
 上記のように、STA100は、BSSまたはOBSSのパラメータ情報を収集するが、当該収集処理を常時行わなくてもよい。例えば、STA100は、送受信処理におけるエラーの発生頻度が所定の閾値以下である場合にはパラメータ情報を収集せず、エラーの発生頻度が所定の閾値より大きい場合にパラメータ情報を収集してもよい。これによって、STA100は、干渉が発生していない場合においてもパラメータ情報を収集しようとすることによって消費される電力量を削減することができる。
 また、STA100は、自装置が電源に接続されておらずモバイルバッテリによって動作している場合にはパラメータ情報を収集せず、自装置が電源に接続されている場合にパラメータ情報を収集してもよい。これによって、STA100は、パラメータ情報を収集することによってモバイルバッテリが枯渇することを防ぐことができる。
 また、STA100が移動している場合はOBSSとの干渉状況が頻繁に変わるため、適切なパラメータ情報が取得されない可能性がある。したがって、STA100は、GPS(Global Positioning System)センサ等を用いて、自装置がユーザに携帯され移動していると判定した場合にはパラメータ情報を収集せず、自装置が移動していないと判定した場合にパラメータ情報を収集してもよい。これにより、STA100は適切なパラメータ情報を収集することができ、かつ、不適切なパラメータ情報を取得することによって消費される電力量を削減することができる。
  <7.むすび>
 以上説明したように、本開示の一実施形態に係るAP200は、管理装置を用いることなく干渉情報を把握することができる。そして、AP200は、他のAP200と当該干渉情報を交換することができる。さらに、AP200は、当該干渉情報に基づいて適切に干渉制御を行うことができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、本実施形態に係るSTA100の動作における各ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、図3~図5、図14A~図15Bおよび図18に記載された各ステップは、適宜、図に記載された順序と異なる順序で処理されても、並列的に処理されてもよい。例えば、図3に記載されたステップS1000~ステップS1012は、異なる順序で処理されても、並列的に処理されてもよい。
 また、STA100の構成の一部は、適宜STA100外に設けられ得る。同様に、AP200の構成の一部は、適宜AP200外に設けられ得る。
 また、STA100の機能の一部が、制御部130よって具現されてもよい。すなわち、制御部130が、無線通信部110またはデータ処理部120の機能の一部を具現してもよい。同様に、AP200の機能の一部が、制御部230によって具現されてもよい。すなわち、制御部230が、無線通信部210またはデータ処理部220の機能の一部を具現してもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 自装置が属するBSS以外の他ネットワークから送信された信号を受信する受信部と、
 前記信号に関するパラメータ情報を取得する取得部と、
 前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告する報告部と、を備える、
 ステーション装置。
(2)
 前記他ネットワークは、前記BSSにオーバーラップするOBSSである、
 前記(1)に記載のステーション装置。
(3)
 前記パラメータ情報は、変調方式情報、送信電力情報、BSS識別情報、RSSI情報、バージョン情報、タイプ情報または伝送路利用時間情報を含む、
 前記(2)に記載のステーション装置。
(4)
 前記他ネットワークは、セルラーネットワークである、
 前記(1)に記載のステーション装置。
(5)
 前記パラメータ情報は、RSSI情報、伝送路利用時間情報を含む、
 前記(4)に記載のステーション装置。
(6)
 前記受信部は、前記BSSから送信された信号を受信した場合、
 前記取得部は、前記BSSから送信された信号に関する第2のパラメータ情報を取得し、
 前記報告部は、前記第2のパラメータ情報を前記アクセスポイント装置へ報告する、
 前記(1)から(5)のいずれか1項に記載のステーション装置。
(7)
 前記受信部は、前記アクセスポイント装置が前記パラメータ情報または前記第2のパラメータ情報を集約して生成した集約パラメータ情報を受信し、
 前記報告部は、前記集約パラメータ情報を、前記BSS以外の他BSSに所属し干渉制御を行うアクセスポイント装置へ報告する、
 前記(6)に記載のステーション装置。
(8)
 前記パラメータ情報に含まれるBSS識別情報に基づいて、前記信号が前記BSSから送信された信号であるか否かの判定を行う判定部をさらに備え、
 前記報告部は、前記判定に基づいて前記パラメータ情報を干渉情報として前記アクセスポイント装置へ報告する、
 前記(1)から(3)のいずれか1項に記載のステーション装置。
(9)
 前記取得部は、前記ステーション装置が電源に接続されている場合、または、前記ステーション装置が移動していない場合に前記パラメータ情報を取得する、
 前記(1)から(8)のいずれか1項に記載のステーション装置。
(10)
 自装置が属するBSS以外の他ネットワークから送信された信号を受信することと、
 前記信号に関するパラメータ情報を取得することと、
 前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告することと、を有する、
 コンピュータにより実行される無線制御方法。
(11)
 自装置が属するBSS以外の他ネットワークから送信された信号を受信することと、
 前記信号に関するパラメータ情報を取得することと、
 前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告することと、
 をコンピュータに実現させるためのプログラム。
(12)
 自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信する受信部と、
 前記パラメータ情報に基づいて干渉制御を行う制御部と、を備える、
 アクセスポイント装置。
(13)
 前記他ネットワークは、前記BSSにオーバーラップするOBSSである、
 前記(12)に記載のアクセスポイント装置。
(14)
 前記パラメータ情報は、変調方式情報、送信電力情報、BSS識別情報、RSSI情報、バージョン情報、タイプ情報または伝送路利用時間情報を含む、
 前記(13)に記載のアクセスポイント装置。
(15)
 前記他ネットワークは、セルラーネットワークである、
 前記(12)に記載のアクセスポイント装置。
(16)
 前記パラメータ情報は、RSSI情報、伝送路利用時間情報を含む、
 前記(15)に記載のアクセスポイント装置。
(17)
 前記受信部は、前記BSSから送信された信号に関する第2のパラメータ情報を前記ステーション装置から受信し、
 前記制御部は、前記パラメータ情報および前記第2のパラメータ情報に基づいて干渉制御を行う、
 前記(12)から(16)のいずれか1項に記載のアクセスポイント装置。
(18)
 前記パラメータ情報または前記第2のパラメータ情報を集約した集約パラメータ情報を生成する生成部と、
 前記集約パラメータ情報を、前記BSS以外の他BSSに所属し干渉制御を行うアクセスポイント装置へ報告する報告部をさらに備える、
 前記(17)に記載のアクセスポイント装置。
(19)
 自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信することと、
 前記パラメータ情報に基づいて干渉制御を行うことと、を有する、
 コンピュータにより実行される通信制御方法。
(20)
 自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信することと、
 前記パラメータ情報に基づいて干渉制御を行うことと、
 をコンピュータに実現させるためのプログラム。
 10  BSS
 20  BSSのパラメータ情報の送信に用いられる情報エレメント
 30  OBSSのパラメータ情報の送信に用いられる情報エレメント
 40  エネルギー検知パラメータ情報の送信に用いられる情報エレメント
 100  STA
 110  無線通信部
 120  データ処理部
 130  制御部
 200  AP
 210  無線通信部
 220  データ処理部
 230  制御部

Claims (20)

  1.  自装置が属するBSS以外の他ネットワークから送信された信号を受信する受信部と、
     前記信号に関するパラメータ情報を取得する取得部と、
     前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告する報告部と、を備える、
     ステーション装置。
  2.  前記他ネットワークは、前記BSSにオーバーラップするOBSSである、
     請求項1に記載のステーション装置。
  3.  前記パラメータ情報は、変調方式情報、送信電力情報、BSS識別情報、RSSI情報、バージョン情報、タイプ情報または伝送路利用時間情報を含む、
     請求項2に記載のステーション装置。
  4.  前記他ネットワークは、セルラーネットワークである、
     請求項1に記載のステーション装置。
  5.  前記パラメータ情報は、RSSI情報、伝送路利用時間情報を含む、
     請求項4に記載のステーション装置。
  6.  前記受信部は、前記BSSから送信された信号を受信した場合、
     前記取得部は、前記BSSから送信された信号に関する第2のパラメータ情報を取得し、
     前記報告部は、前記第2のパラメータ情報を前記アクセスポイント装置へ報告する、
     請求項1に記載のステーション装置。
  7.  前記受信部は、前記アクセスポイント装置が前記パラメータ情報または前記第2のパラメータ情報を集約して生成した集約パラメータ情報を受信し、
     前記報告部は、前記集約パラメータ情報を、前記BSS以外の他BSSに所属し干渉制御を行うアクセスポイント装置へ報告する、
     請求項6に記載のステーション装置。
  8.  前記パラメータ情報に含まれるBSS識別情報に基づいて、前記信号が前記BSSから送信された信号であるか否かの判定を行う判定部をさらに備え、
     前記報告部は、前記判定に基づいて前記パラメータ情報を干渉情報として前記アクセスポイント装置へ報告する、
     請求項1に記載のステーション装置。
  9.  前記取得部は、前記ステーション装置が電源に接続されている場合、または、前記ステーション装置が移動していない場合に前記パラメータ情報を取得する、
     請求項1に記載のステーション装置。
  10.  自装置が属するBSS以外の他ネットワークから送信された信号を受信することと、
     前記信号に関するパラメータ情報を取得することと、
     前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告することと、を有する、
     コンピュータにより実行される無線制御方法。
  11.  自装置が属するBSS以外の他ネットワークから送信された信号を受信することと、
     前記信号に関するパラメータ情報を取得することと、
     前記パラメータ情報を、前記BSS内の、干渉制御を行うアクセスポイント装置へ報告することと、
     をコンピュータに実現させるためのプログラム。
  12.  自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信する受信部と、
     前記パラメータ情報に基づいて干渉制御を行う制御部と、を備える、
     アクセスポイント装置。
  13.  前記他ネットワークは、前記BSSにオーバーラップするOBSSである、
     請求項12に記載のアクセスポイント装置。
  14.  前記パラメータ情報は、変調方式情報、送信電力情報、BSS識別情報、RSSI情報、バージョン情報、タイプ情報または伝送路利用時間情報を含む、
     請求項13に記載のアクセスポイント装置。
  15.  前記他ネットワークは、セルラーネットワークである、
     請求項12に記載のアクセスポイント装置。
  16.  前記パラメータ情報は、RSSI情報、伝送路利用時間情報を含む、
     請求項15に記載のアクセスポイント装置。
  17.  前記受信部は、前記BSSから送信された信号に関する第2のパラメータ情報を前記ステーション装置から受信し、
     前記制御部は、前記パラメータ情報および前記第2のパラメータ情報に基づいて干渉制御を行う、
     請求項12に記載のアクセスポイント装置。
  18.  前記パラメータ情報または前記第2のパラメータ情報を集約した集約パラメータ情報を生成する生成部と、
     前記集約パラメータ情報を、前記BSS以外の他BSSに所属し干渉制御を行うアクセスポイント装置へ報告する報告部をさらに備える、
     請求項17に記載のアクセスポイント装置。
  19.  自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信することと、
     前記パラメータ情報に基づいて干渉制御を行うことと、を有する、
     コンピュータにより実行される通信制御方法。
  20.  自装置が属するBSS以外の他ネットワークから送信された信号に関するパラメータ情報をステーション装置から受信することと、
     前記パラメータ情報に基づいて干渉制御を行うことと、
     をコンピュータに実現させるためのプログラム。
PCT/JP2017/027072 2016-09-26 2017-07-26 アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラム WO2018055901A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP24192504.9A EP4436244A3 (en) 2016-09-26 2017-07-26 Control device, methods, and program
US16/334,380 US11438778B2 (en) 2016-09-26 2017-07-26 Access point device, station device, wireless control method, communication control method, and program
KR1020197007441A KR102334600B1 (ko) 2016-09-26 2017-07-26 액세스 포인트 장치, 스테이션 장치, 무선 제어 방법, 통신 제어 방법 및 프로그램
EP17852682.8A EP3518571A4 (en) 2016-09-26 2017-07-26 ACCESS POINT DEVICE, STATION DEVICE, WIRELESS CONTROL METHOD, COMMUNICATION CONTROL METHOD, AND PROGRAM
JP2018540663A JP7205228B2 (ja) 2016-09-26 2017-07-26 アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラム
US17/870,859 US11943650B2 (en) 2016-09-26 2022-07-22 Acquiring interference information using OBSS and without management device
US18/599,268 US20240251277A1 (en) 2016-09-26 2024-03-08 Acquiring interference information using obss and without management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016186401 2016-09-26
JP2016-186401 2016-09-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/334,380 A-371-Of-International US11438778B2 (en) 2016-09-26 2017-07-26 Access point device, station device, wireless control method, communication control method, and program
US17/870,859 Continuation US11943650B2 (en) 2016-09-26 2022-07-22 Acquiring interference information using OBSS and without management device

Publications (1)

Publication Number Publication Date
WO2018055901A1 true WO2018055901A1 (ja) 2018-03-29

Family

ID=61690378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027072 WO2018055901A1 (ja) 2016-09-26 2017-07-26 アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラム

Country Status (5)

Country Link
US (3) US11438778B2 (ja)
EP (2) EP3518571A4 (ja)
JP (1) JP7205228B2 (ja)
KR (1) KR102334600B1 (ja)
WO (1) WO2018055901A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149744A (ja) * 2018-02-28 2019-09-05 株式会社国際電気通信基礎技術研究所 無線基地局および無線通信方法
WO2020085254A1 (ja) * 2018-10-24 2020-04-30 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置
CN112567782A (zh) * 2018-08-16 2021-03-26 索尼公司 无线通信装置和无线通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809745A4 (en) * 2018-06-21 2021-11-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. MEASUREMENT CONTROL METHOD AND DEVICE AS WELL AS TERMINAL DEVICE
JP7225177B2 (ja) * 2020-09-29 2023-02-20 任天堂株式会社 通信システム、通信方法、通信装置、および通信プログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058836A (ja) * 2011-09-07 2013-03-28 Canon Inc 送信装置、送信方法およびプログラム
JP5360653B2 (ja) 2009-08-20 2013-12-04 株式会社国際電気通信基礎技術研究所 電力制御装置およびそれを備えた通信ネットワークシステム
JP5356364B2 (ja) 2010-12-21 2013-12-04 日本電信電話株式会社 無線lan優先制御方法、無線lanシステムおよびアクセスポイント装置
US20150195777A1 (en) * 2012-07-16 2015-07-09 Broadcom Corporation Method and apparatus for providing improved detection of overlapping networks
JP2016501465A (ja) * 2012-11-08 2016-01-18 インターデイジタル パテント ホールディングス インコーポレイテッド ワイヤレスローカルエリアネットワークにおける均一な複数のアクセスポイントカバレージのための媒体アクセス制御のための方法および装置
JP2016503244A (ja) * 2012-12-11 2016-02-01 パナソニック株式会社 無線通信システムにおける重複チャンネルによって引き起こされる干渉を減少させる方法
JP2016507183A (ja) * 2013-01-11 2016-03-07 インターデイジタル パテント ホールディングス インコーポレイテッド Wlanオーバラッピング基本サービスセットのネットワーク内での通信のための方法および装置
WO2016112306A1 (en) * 2015-01-09 2016-07-14 Interdigital Patent Holdings, Inc. Bss-color enhanced transmission in wlans (bss-cet)
JP2016524377A (ja) * 2013-05-03 2016-08-12 インターデイジタル パテント ホールディングス インコーポレイテッド WiFiセクタ化MAC強化のための方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039017B2 (en) * 2001-12-28 2006-05-02 Texas Instruments Incorporated System and method for detecting and locating interferers in a wireless communication system
US8520617B2 (en) * 2009-11-06 2013-08-27 Motorola Mobility Llc Interference mitigation in heterogeneous wireless communication networks
US8681660B2 (en) * 2010-10-01 2014-03-25 Clearwire Ip Holdings Llc Enabling coexistence between FDD and TDD wireless networks
US9544811B2 (en) * 2012-11-19 2017-01-10 Qualcomm Incorporated Systems and methods for beacon timing adjustment in wireless networks
US9432854B2 (en) * 2013-09-13 2016-08-30 Nokia Corporation Interference avoidance between overlapping wireless networks
US9838940B2 (en) * 2013-09-18 2017-12-05 Qualcomm, Incorporated Packet transmission deferral based on BSSID information
US9820162B2 (en) * 2014-01-24 2017-11-14 Mediatek Singapore Pte Ltd. Adaptive CCA and TX power level adjustment for dense deployment of wireless networks
US9622189B2 (en) * 2014-03-28 2017-04-11 Zte Corporation Techniques for fast delivery of radio information
US20160081042A1 (en) * 2014-09-12 2016-03-17 Nokia Corporation Communication Efficiency
US10051588B2 (en) 2014-11-27 2018-08-14 Mediatek Inc. Collaborative OBSS interference mitigation for wireless communication systems
WO2016167438A1 (ko) * 2015-04-15 2016-10-20 엘지전자 주식회사 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
US10278022B2 (en) * 2015-05-06 2019-04-30 Qualcomm Incorporated Communication deferral policies to increase reuse
BR112019007966A2 (pt) * 2016-10-28 2019-07-02 Sony Corp dispositivo de comunicação, método de controle de comunicação executado por um computador, e, programa.
US10973052B2 (en) * 2017-11-07 2021-04-06 Mediatek Singapore Pte. Ltd. Transmission between basic service sets in wireless networks considering spatial reuse
US10736143B2 (en) * 2018-09-17 2020-08-04 Cisco Technology, Inc. Threshold optimization for overlapping basic service sets in a wireless network
US11012469B2 (en) * 2019-01-22 2021-05-18 Cisco Technology, Inc. Detecting and preventing denial of service attacks due to fraudulent BSS color collision events
US11678326B2 (en) * 2019-07-12 2023-06-13 Mediatek Singapore Pte. Ltd. Multi-access point uplink collaboration
WO2021177587A1 (ko) * 2020-03-02 2021-09-10 엘지전자 주식회사 공간 재사용을 이용한 멀티 ap 전송에서 송신 전력
KR20220149515A (ko) * 2020-03-04 2022-11-08 소니그룹주식회사 무선 기지국 및 무선 단말기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360653B2 (ja) 2009-08-20 2013-12-04 株式会社国際電気通信基礎技術研究所 電力制御装置およびそれを備えた通信ネットワークシステム
JP5356364B2 (ja) 2010-12-21 2013-12-04 日本電信電話株式会社 無線lan優先制御方法、無線lanシステムおよびアクセスポイント装置
JP2013058836A (ja) * 2011-09-07 2013-03-28 Canon Inc 送信装置、送信方法およびプログラム
US20150195777A1 (en) * 2012-07-16 2015-07-09 Broadcom Corporation Method and apparatus for providing improved detection of overlapping networks
JP2016501465A (ja) * 2012-11-08 2016-01-18 インターデイジタル パテント ホールディングス インコーポレイテッド ワイヤレスローカルエリアネットワークにおける均一な複数のアクセスポイントカバレージのための媒体アクセス制御のための方法および装置
JP2016503244A (ja) * 2012-12-11 2016-02-01 パナソニック株式会社 無線通信システムにおける重複チャンネルによって引き起こされる干渉を減少させる方法
JP2016507183A (ja) * 2013-01-11 2016-03-07 インターデイジタル パテント ホールディングス インコーポレイテッド Wlanオーバラッピング基本サービスセットのネットワーク内での通信のための方法および装置
JP2016524377A (ja) * 2013-05-03 2016-08-12 インターデイジタル パテント ホールディングス インコーポレイテッド WiFiセクタ化MAC強化のための方法
WO2016112306A1 (en) * 2015-01-09 2016-07-14 Interdigital Patent Holdings, Inc. Bss-color enhanced transmission in wlans (bss-cet)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3518571A4
YUSUKE ASAI ET AL.: "Frame Sequence of Interference Management Using Beamforming Technique in OBSS Environment", IEEE 802.11-10/ 0831R0, 12 July 2010 (2010-07-12), pages 16 - 21, XP017676564, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/ dcn/10/11-10-0831-00-00ac-frame-sequence-of- interference-management-using-beamforming- technique-in-obss-environment.ppt> [retrieved on 20170929] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149744A (ja) * 2018-02-28 2019-09-05 株式会社国際電気通信基礎技術研究所 無線基地局および無線通信方法
JP7178685B2 (ja) 2018-02-28 2022-11-28 株式会社国際電気通信基礎技術研究所 無線基地局および無線通信方法
CN112567782A (zh) * 2018-08-16 2021-03-26 索尼公司 无线通信装置和无线通信方法
EP3840446A4 (en) * 2018-08-16 2021-11-03 Sony Group Corporation WIRELESS COMMUNICATION DEVICE AND WIRELESS COMMUNICATION METHOD
US11930511B2 (en) 2018-08-16 2024-03-12 Sony Corporation Wireless communication apparatus and wireless communication method
CN112567782B (zh) * 2018-08-16 2024-08-23 索尼公司 无线通信装置和无线通信方法
WO2020085254A1 (ja) * 2018-10-24 2020-04-30 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置
JP2020068470A (ja) * 2018-10-24 2020-04-30 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置
JP7077914B2 (ja) 2018-10-24 2022-05-31 日本電信電話株式会社 無線lan通信品質推定方法、無線lan通信品質推定システム、情報収集装置および無線lan通信品質推定装置

Also Published As

Publication number Publication date
KR20190055083A (ko) 2019-05-22
KR102334600B1 (ko) 2021-12-06
US11438778B2 (en) 2022-09-06
JP7205228B2 (ja) 2023-01-17
EP4436244A2 (en) 2024-09-25
EP4436244A3 (en) 2024-10-09
US11943650B2 (en) 2024-03-26
US20240251277A1 (en) 2024-07-25
EP3518571A1 (en) 2019-07-31
US20220361031A1 (en) 2022-11-10
JPWO2018055901A1 (ja) 2019-07-04
EP3518571A4 (en) 2019-08-21
US20210314799A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2018079025A1 (ja) 通信装置、通信制御方法およびプログラム
JP7205228B2 (ja) アクセスポイント装置、ステーション装置、無線制御方法、通信制御方法およびプログラム
US20210185561A1 (en) Communication device, communication method, and program
JP2021192560A (ja) 通信装置、通信制御方法およびプログラム
JP7200934B2 (ja) 通信装置および通信システム
JP2018042016A (ja) 無線装置、通信装置、無線制御方法、通信制御方法およびプログラム
WO2018116578A1 (ja) 通信装置及び通信制御方法
JPWO2017212807A1 (ja) 無線通信装置
CN111903172B (zh) 无线通信设备和无线通信方法
JPWO2017081906A1 (ja) 通信装置および通信方法
WO2018116564A1 (ja) 通信装置、通信制御方法およびプログラム
JPWO2019097881A1 (ja) 通信装置、通信システム
TW201939982A (zh) 無線通訊裝置及無線通訊方法
JP7088015B2 (ja) ステーション装置、無線制御方法およびプログラム
WO2016139862A1 (ja) 通信装置、通信方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540663

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007441

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017852682

Country of ref document: EP