[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018051923A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2018051923A1
WO2018051923A1 PCT/JP2017/032542 JP2017032542W WO2018051923A1 WO 2018051923 A1 WO2018051923 A1 WO 2018051923A1 JP 2017032542 W JP2017032542 W JP 2017032542W WO 2018051923 A1 WO2018051923 A1 WO 2018051923A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
component
formula
aligning agent
Prior art date
Application number
PCT/JP2017/032542
Other languages
English (en)
French (fr)
Inventor
石川 和典
信郁 金
翔一朗 中原
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2018539689A priority Critical patent/JP7089227B2/ja
Priority to KR1020197010621A priority patent/KR102393693B1/ko
Priority to CN201780069120.9A priority patent/CN109923469B/zh
Publication of WO2018051923A1 publication Critical patent/WO2018051923A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a novel liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element.
  • Liquid crystal display elements are currently widely used as display devices that are thin and light. Usually, in this liquid crystal display element, a liquid crystal alignment film is used to determine the alignment state of the liquid crystal. *
  • polyimide polyimide, polyamide, polyamideimide and the like are known, and a liquid crystal alignment agent obtained by dissolving these polymers and their precursors in a solvent is generally used.
  • the brightness of the backlight (BL) used in the liquid crystal display element has been further increased, and the stability of the alignment of the liquid crystal alignment film and the electrical characteristics are excellent in light resistance far exceeding the conventional level. Mitigation properties are required.
  • the inventors of the present invention are composed of a polyimide precursor obtained by reacting a diamine component containing a diamine having a specific structure with a tetracarboxylic acid derivative component, and a polyimide obtained by ring-closing the polyimide precursor. It has been found that the above-mentioned problems can be achieved by a liquid crystal aligning agent containing a polymer selected from the group and a compound having a specific structure, and the present invention has been achieved. *
  • Component (A) selected from the group consisting of a polyimide precursor obtained by reacting a diamine component containing a diamine of formula (1) below with a tetracarboxylic acid derivative component, and a polyimide obtained by ring-closing the polyimide precursor. At least one polymer
  • R 1 represents hydrogen or a monovalent organic group.
  • Q 1 represents an alkylene having 1 to 5 carbon atoms.
  • Cy represents an aliphatic group composed of azetidine, pyrrolidine, piperidine, or hexamethyleneimine. It is a divalent group representing a tero ring, and a substituent may be bonded to these ring portions,
  • R 2 and R 3 are each independently a monovalent organic group, q and r are each Independently an integer of 0 to 4.
  • Component (B) a compound having two or more structures of the following formula (2) and having a molecular weight of 2,500 or less
  • R 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or * 3 —CH 2 —O—R 11
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • “* 3 ” represents a bond to the carbon atom to which R 2 and R 3 are bonded).
  • “* 1 ” and “* 2 ” represent a bond with another atom.
  • a second aspect of the present invention that achieves the above object is the liquid crystal aligning agent of the first aspect, wherein the diamine of the formula (1) is represented by the following formula (3). *
  • R 1 is a hydrogen atom, a methyl group, or a tert-butoxycarbonyl group
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group
  • Q 1 is (It is a linear alkylene having 1 to 5 carbon atoms.)
  • the content ratio of the diamine represented by the formula (1) is 1 mol% to 80 mol% with respect to 1 mol of the total diamine component.
  • the liquid crystal aligning agent of the second embodiment is 1 mol% to 80 mol% with respect to 1 mol of the total diamine component.
  • the liquid crystal according to any one of the first to third aspects, wherein the compound of the component (B) is at least one compound selected from the following formulae: In the alignment agent. *
  • the fifth aspect of the present invention that achieves the above object further includes the polyimide precursor containing a structural unit represented by the following formula (5) as the component (C), according to the first to fourth aspects.
  • the polyimide precursor containing a structural unit represented by the following formula (5) as the component (C), according to the first to fourth aspects.
  • the liquid crystal alignment agent In the liquid crystal alignment agent.
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 2 is a divalent organic group derived from a diamine
  • R 4 is a hydrogen atom or a carbon number of 1 to
  • Z 1 and Z 2 independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a carbon number. 2 to 10 alkynyl groups.
  • a sixth aspect of the present invention that achieves the above object is the liquid crystal aligning agent according to the fifth aspect, wherein X 2 in the formula (5) contains a polyimide precursor containing a structural unit having the following structure. is there.
  • a seventh aspect of the present invention that achieves the above object is a liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of the first to sixth aspects.
  • the eighth aspect of the present invention that achieves the above object is a liquid crystal display device comprising the liquid crystal alignment film of the seventh aspect.
  • liquid crystal aligning agent of the present invention a liquid crystal aligning film having excellent BL resistance, alignment stability and relaxation characteristics can be obtained.
  • the liquid crystal aligning agent of the present invention contains a component (A) and a component (B).
  • A component
  • B component
  • the component (A) contained in the liquid crystal aligning agent of the present invention is a polyimide obtained by reacting a diamine component containing a diamine of the following formula (1) (hereinafter also referred to as a specific diamine) and a tetracarboxylic acid derivative component. It is at least one polymer selected from the group consisting of a precursor and a polyimide obtained by ring-closing the polyimide precursor.
  • R 1 represents hydrogen or a monovalent organic group, preferably a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group. It is.
  • R 1 may be a protecting group that undergoes elimination reaction by heat and replaces a hydrogen atom. From the viewpoint of the storage stability of the liquid crystal aligning agent, this protecting group does not desorb at room temperature, and preferably desorbs at 80 ° C. or higher, more preferably 100 ° C. or higher, particularly preferably 150 to 200 ° C. It is preferable to become. Examples thereof include 1,1-dimethyl-2-chloroethoxycarbonyl group, 1,1-dimethyl-2-cyanoethoxycarbonyl group, tert-butoxycarbonyl group, and the like, preferably tert-butoxycarbonyl group.
  • Q 1 represents an alkylene group having 1 to 5 carbon atoms, and is preferably a straight-chain alkylene having 1 to 5 carbon atoms for ease of synthesis.
  • Cy is a divalent group representing an aliphatic heterocyclic ring composed of azetidine, pyrrolidine, piperidine, or hexamethyleneimine, and azetidine, pyrrolidine, or piperidine is preferable from the viewpoint of ease of synthesis.
  • a substituent may be bonded to these ring portions.
  • R 2 and R 3 are each independently a monovalent organic group, and q and r are each independently an integer of 0 to 4. However, when the sum of q and r is 2 or more, the plurality of R 2 and R 3 have the above definition. From the viewpoint of ease of synthesis, R 2 and R 3 are preferably methyl groups.
  • the bonding position of the amino group in the benzene ring constituting the diamine is not limited.
  • the amino group is 3-position or 4-position with respect to the nitrogen atom on Cy, and nitrogen in which Q 1 and R 1 are bonded. It is preferably in the 3rd or 4th position with respect to the atom, in the 4th position with respect to the nitrogen atom on Cy, and in the 4th position with respect to the nitrogen atom to which Q 1 and R 1 are bonded. Is more preferable.
  • the structure considered to be one of the factors that exert the effect of the present invention is considered to be a structure obtained by removing two primary amino groups from the diamine of the above formula (1) (hereinafter also referred to as a specific structure). Therefore, without using the diamine of the above formula (1), a diamine compound containing two or more specific structures or a tetracarboxylic dianhydride having a specific structure is used for the liquid crystal aligning agent of the present invention. Although it is considered that a specific structure may be introduced into the obtained polymer, it is preferable to use the diamine of the above formula (1) for the convenience of synthesis. *
  • the diamine represented by the above formula (1) of the present invention is preferably a compound represented by the following formula (3). *
  • R 1 is a hydrogen atom, a methyl group, or a tert-butoxycarbonyl group.
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group.
  • Q 1 is a linear alkylene having 1 to 5 carbon atoms.
  • diamine represented by the above formula (3) examples include diamines represented by the following formula (3-1) to the following formula (3-10).
  • Boc represents a tert-butoxycarbonyl group.
  • the component (B) contained in the liquid crystal aligning agent of the present invention is a compound having two or more structures of the following formula (2) and having a molecular weight of 2,500 or less.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or * 3 —CH 2 —O—R 11 (R 11 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).
  • R 11 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • * 3 represents a bond with the carbon atom to which R 2 and R 3 are bonded.
  • “* 1 ” and “* 2 ” are a bond with another atom. It represents that.
  • Examples of the alkyl group having 1 to 3 carbon atoms of R 1 and R 11 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • a hydrogen atom or a methyl group is preferable, and a hydrogen atom is more preferable.
  • R 1 and R 11 may be the same as or different from each other.
  • Examples of the alkyl group having 1 to 3 carbon atoms of R 2 and R 3 include the groups exemplified for R 1 above.
  • a hydrogen atom, * 3 —CH 2 —OH, or * 3 —CH 2 —OCH 3 is preferred.
  • R 2 and R 3 may be the same as or different from each other.
  • R 4 examples of the group bonded to the nitrogen atom in the formula (2) include, for example, a hydrogen atom, a monovalent organic group, or a carbonyl group in the formula (2) and the nitrogen. And divalent organic groups bonded to the atom.
  • R 4 is the divalent organic group to form a ring structure with the nitrogen atom and the carbonyl groups of formula (2).
  • the number of structures represented by the above formula (2) in the compound of the component (B) of the present invention may be 2 or more, preferably 2 to 8, more preferably 2 to 6 It is.
  • the number of the group “* 4 —CH 2 —O—R 1 (“ * 4 ”indicates a bond with a carbon atom. R 1 has the same meaning as above.)” Included in the compound (B) is The number is preferably 2 or more per molecule, more preferably 3 to 8, and still more preferably 3 to 6.
  • Preferred examples of the structure of the above formula (2) include compounds represented by the following formulas (2-1) to (2-6), for example. *
  • “* 1” represents a bond.
  • R 5 is an alkyl group having 1 to 3 carbon atoms.
  • “* 1 ” and “* 5 ” indicate a bond that is bonded to a group that forms a ring together with the nitrogen atom and carbonyl group in the above formula (2-6). .
  • Compound (B) has a molecular weight of 2,500 or less. From the viewpoint of improving the solubility in a solvent and the coating property of the liquid crystal aligning agent, the molecular weight is preferably 2,000 or less, and more preferably 1,200 or less. *
  • the compounding ratio of the compound (B) is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the total polymer components contained in the liquid crystal aligning agent.
  • the minimum of the more preferable mixture ratio of a compound (B) is 1 weight part or more with respect to a total of 100 weight part of the polymer component contained in a liquid crystal aligning agent, More preferably, it is 3 weight part or more.
  • about the upper limit of the said mixture ratio More preferably, it is 50 weight part or less, More preferably, it is 20 weight part or less.
  • a compound (B) can be used individually by 1 type or in combination of 2 or more types.
  • the polyimide precursor contained in the liquid crystal aligning agent of this invention is a polyimide precursor obtained by reaction of the diamine component containing the diamine represented by the said Formula (1), and a tetracarboxylic-acid derivative component.
  • the polyimide precursor is a polyamic acid or a polyamic acid ester.
  • tetracarboxylic acid derivatives include acid dianhydrides, dicarboxylic acid diesters, diester dicarboxylic acid chlorides, and the like. *
  • the polyamic acid is obtained by reacting a diamine component with an acid dianhydride, and the polyamic acid ester is obtained by reacting the diamine component with a dicarboxylic acid diester or diester dicarboxylic acid chloride.
  • the polyimide contained in the liquid crystal aligning agent of the present invention is a polyimide obtained by ring-closing these polyimide precursors, and both are useful as a polymer for obtaining a liquid crystal aligning film.
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention is a polymer containing a structural unit represented by the following formula (4). *
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from the diamine of formula (1)
  • R 4 is a hydrogen atom. Or an alkyl group having 1 to 5 carbon atoms.
  • R 4 is preferably a hydrogen atom, a methyl group or an ethyl group.
  • the content ratio of the diamine represented by the above formula (1) is not limited, but the more the effects of the present invention can be obtained.
  • the proportion of the diamine represented by the above formula (1) is preferably 1 mol% to 80 mol%, more preferably 5 mol% to 60 mol%, still more preferably 10 mol%, based on 1 mol of all diamine components. Mol% to 40 mol%. *
  • X 1 is not particularly limited as long as it is a tetravalent organic group. Two or more kinds of X 1 may be mixed in the polyimide precursor.
  • X 1 examples include structures of the following formula (X1-1) to the following formula (X1-44). From the viewpoint of availability, the following formulas (X1-1) to (X1-14) are more preferable.
  • R 5 to R 25 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms.
  • R 5 to R 25 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • Specific examples of the structure of the above formula (X1-1) include structures represented by the following formulas (X1-1-1) to (X1-1-6). The following formula (X1-1-1) is particularly preferable from the viewpoint of liquid crystal alignment and photoreaction sensitivity.
  • the polyimide precursor of the present invention may contain a structural unit represented by the following formula (5) as long as the effects of the present invention are not impaired.
  • the liquid crystal aligning agent of this invention contains polyimide precursors other than the polyimide precursor containing the structural unit represented by the said Formula (4), it is a structural unit represented by following formula (5). May be a polyimide precursor.
  • R 4 has the same definition as in the above formula (4).
  • X 2 is a tetravalent organic group, including the preferred examples, and has the same definition as X 1 in formula (4).
  • the liquid crystal aligning agent of this invention contains the polyimide precursor containing the structural unit of said Formula (5) other than the polyimide precursor containing the structural unit represented by said Formula (4), it is obtained. From the viewpoint of manifesting the effect of the liquid crystal alignment film obtained, the above formula (X1-8) is particularly preferable.
  • Z 1 and Z 2 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms. is there.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, octyl group, decyl group, cyclopentyl group, cyclohexyl group, and bicyclohexyl group. Is mentioned.
  • alkenyl group having 2 to 10 carbon atoms examples include those in which one or more CH 2 —CH 2 present in the alkyl group is replaced with CH ⁇ CH. More specifically, vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group And cyclohexenyl group.
  • alkynyl group having 2 to 10 carbon atoms examples include those in which one or more CH 2 —CH 2 present in the alkyl group is replaced with C ⁇ C. More specifically, an ethynyl group, 1-propynyl group, 2-propynyl group and the like can be mentioned.
  • the alkyl group having 1 to 10 carbon atoms, the alkenyl group having 2 to 10 carbon atoms, and the alkynyl group having 2 to 10 carbon atoms can be substituted within a range in which the total carbon number including the substituent does not exceed 10.
  • the ring structure may be formed by a substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure. *
  • substituents include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like. *
  • Z 1 and Z 2 have a hydrogen atom or a substituent. More preferred is an alkyl group having 1 to 5 carbon atoms, particularly preferably a hydrogen atom, a methyl group or an ethyl group.
  • Y 2 is a divalent organic group derived from a diamine component other than the above formula (1), and its structure is not particularly limited. Specific examples of Y 2 include the following formula (Y-1) to the following formula (Y-49) and the following formula (Y-57) to the following formula (Y-114). Two or more diamine components may be mixed.
  • n is an integer of 1 to 6.
  • Boc represents a tert-butoxycarbonyl group.
  • the polyamic acid which is a polyimide precursor used in the liquid crystal aligning agent of the present invention can be obtained by reacting the diamine component containing the diamine of the present invention with a tetracarboxylic acid derivative component.
  • the organic solvent is not particularly limited as long as the generated polyamic acid is soluble. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, ⁇ -butyrolactone and the like.
  • the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formula (D-1) to the following formula (D-3).
  • An organic solvent can be used. *
  • D 1 represents an alkyl group having 1 to 3 carbon atoms.
  • D 2 represents an alkyl group having 1 to 3 carbon atoms.
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • a method of mixing a diamine component and tetracarboxylic dianhydride in an organic solvent a solution in which diamine is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic dianhydride is dispersed as it is or in an organic solvent.
  • a method of adding by dissolving a method of adding diamine to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, or alternately or simultaneously with tetracarboxylic dianhydride and diamine in an organic solvent. The method of adding etc. is mentioned, Any of these methods may be sufficient.
  • the temperature during the synthesis of the polyamic acid can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C, more preferably 0 ° C to 80 ° C. . *
  • the reaction time can be arbitrarily selected in the range longer than the time during which the polymerization of the polyamic acid is stabilized, but is preferably 30 minutes to 24 hours, more preferably 1 hour to 12 hours.
  • the reaction can be carried out at any concentration. However, if the concentrations of the raw material diamine component and tetracarboxylic dianhydride are too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the reaction solution The viscosity becomes too high and uniform stirring becomes difficult, so the content is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 20% by mass.
  • the initial reaction may be carried out at a high concentration, and then an organic solvent may be added. *
  • the ratio of the number of moles of tetracarboxylic dianhydride to the number of moles of the diamine component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring into a poor solvent while thoroughly stirring the reaction solution. In addition, by performing precipitation several times, washing with a poor solvent, and then drying at normal temperature or heat, a purified polyamic acid powder can be obtained.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyamic acid ester which is the polyimide precursor of this invention can be manufactured with the manufacturing method of [1], [2] or [3] shown below.
  • the polyamic acid ester can be produced by esterifying the polyamic acid produced as described above.
  • the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be manufactured.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit. *
  • organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone.
  • solubility of the polyimide precursor in the solvent is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas (D-1) to (D- The solvent shown by 3) can be used.
  • Solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer. These may be used alone or in combination of two or more. Also good.
  • the concentration at the time of production is preferably 1% by mass to 30% by mass, more preferably 5% by mass to 20% by mass, from the viewpoint that polymer precipitation hardly occurs and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be produced from a diamine component containing tetracarboxylic acid diester dichloride and the diamine of the present invention.
  • tetracarboxylic acid diester dichloride and diamine are -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C, in the presence of a base and an organic solvent, for 30 minutes to 24 hours, preferably 1 hour. It can be produced by reacting for ⁇ 4 hours.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint that it can be easily removed and a high molecular weight product is easily obtained. 3 times mole is more preferable.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone from the viewpoint of the solubility of the monomer and polymer, and these may be used alone or in combination. . *
  • the polymer concentration at the time of production is preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the solvent used for the production of polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent external air from being mixed in a nitrogen atmosphere.
  • Polyamic acid ester can be produced by polycondensing a tetracarboxylic acid diester and a diamine component containing the diamine of the present invention.
  • a tetracarboxylic acid diester and a diamine are mixed in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 It can be produced by reacting for a time to 15 hours.
  • the condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like can be used.
  • the addition amount of the condensing agent is preferably 2 to 3 times mol, more preferably 2 to 2.5 times mol with
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 times mol to 4 times mol, more preferably 2.5 times mol to 3.5 times mol with respect to the diamine component, from the viewpoint of easy removal and high molecular weight. Is more preferable. *
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0-fold to 1.0-fold mole, more preferably 0-fold to 0.7-fold mole with respect to the diamine component.
  • the production method [1] or [2] is particularly preferred because a high molecular weight polyamic acid ester is obtained.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the polyimide precursor.
  • the cyclization rate (imidization rate) of the amic acid group or the amic acid ester group is not necessarily 100%, and may be arbitrarily adjusted according to the use and purpose.
  • Examples of the method for ring-closing the polyimide precursor include thermal imidization in which the polyimide precursor is heated without using a catalyst and catalytic imidation in which a catalyst is used.
  • the polyimide precursor solution is heated to 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., while removing water or alcohol generated by the imidization reaction from the system. It is preferable to do this.
  • Catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. .
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times the amic acid group, The amount is preferably 3 mole times to 30 mole times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. *
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among these, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. It is preferable that the polymer precipitated in a poor solvent is recovered by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • a liquid crystal aligning agent is a coating liquid for producing a liquid crystal aligning film, and the main component thereof is a composition containing a resin component for forming a resin film and an organic solvent for dissolving the resin component. .
  • the resin component at least one polymer selected from the group consisting of the polyimide precursor described above and a polyimide obtained by ring-closing the polyimide precursor is used.
  • the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed.
  • the content is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less.
  • the concentration of the polymer is particularly preferably 2% by mass to 8% by mass.
  • All the resin components in the liquid crystal aligning agent may be the polymer of the present invention, or other polymers other than the polymer of the present invention may be mixed.
  • examples of such other polymers include polyimide precursors and polyimides obtained by using diamines other than those represented by the above formula (1) as the diamine component.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent may contain a solvent for improving the coating film uniformity when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol.
  • the above solvent is a poor solvent with low resin solubility.
  • These solvents are preferably 5% by mass to 60% by mass and more preferably 10% by mass to 50% by mass of the organic solvent contained in the liquid crystal alignment treatment agent.
  • the polymer other than the polymer of the present invention the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film A dielectric or conductive material, a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the film when it is made into a liquid crystal alignment film,
  • the imidation promoter for the purpose of making the imidation of a polyimide precursor advance efficiently.
  • the amount thereof is preferably 0.1% by mass to 30 parts by mass with respect to 100 parts by mass of the resin component.
  • the amount is preferably 1% by mass to 20 parts by mass, and particularly preferably 1% by mass to 10% by mass.
  • the liquid crystal alignment film is a film obtained by applying the liquid crystal aligning agent to a substrate, drying, and baking.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used.
  • a substrate on which an ITO electrode or the like for driving a liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque object such as a silicon wafer can be used only on one side of the substrate.
  • a material that reflects light such as aluminum can be used for the electrode.
  • Examples of the method for applying the liquid crystal aligning agent include a spin coating method, a printing method, and an ink jet method.
  • a method using a coating liquid there are a dip, a roll coater, a slit coater, a spinner and the like, and these may be used according to the purpose.
  • the drying and baking steps after applying the liquid crystal aligning agent can be selected at any temperature and time. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 ° C. to 120 ° C., preferably 50 ° C. to 80 ° C. for 1 minute to 10 minutes, preferably 3 minutes to 5 minutes, and then Firing is carried out at 150 ° C. to 300 ° C., preferably 200 ° C. to 240 ° C. for 5 minutes to 120 minutes, preferably 10 minutes to 40 minutes. *
  • the thickness of the fired coating film is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 nm to 300 nm, preferably 10 nm to 200 nm. *
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • a rubbing method rayon cloth, nylon cloth, cotton cloth or the like can be used. Since the liquid crystal alignment film for vertical alignment is difficult to obtain a uniform alignment state by rubbing treatment, it can be used without rubbing when used as a liquid crystal aligning agent for vertical alignment.
  • the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, heat treatment is performed at a temperature of 150 ° C. to 250 ° C. to impart liquid crystal alignment ability.
  • a method is mentioned.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 ° C. to 250 ° C. *
  • the dose of radiation is preferably from 1mJ / cm 2 ⁇ 10,000mJ / cm 2, 100mJ / cm 2 ⁇ 5,000mJ / cm 2 is particularly preferred.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from water and organic solvents.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves decomposition products generated by light irradiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination. *
  • At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable.
  • 1-methoxy-2-propanol or ethyl lactate is particularly preferred.
  • the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is performed by a treatment such that the film and the liquid are sufficiently in contact, such as an immersion treatment or a spraying treatment. It is preferable. Among them, a method of immersing the film in a solution containing an organic solvent, preferably 10 seconds to 1 hour, more preferably 1 minute to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 ° C. to 80 ° C., more preferably at 20 ° C. to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary. *
  • the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
  • the heating temperature is preferably 150 ° C to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 ° C. to 250 ° C., and particularly preferably 200 ° C. to 230 ° C. *
  • the heating time is too short, the effects of the present invention may not be obtained. If the heating time is too long, the molecular chain may be decomposed, and is preferably 10 seconds to 30 minutes, and preferably 1 minute to 10 minutes. Is more preferable.
  • the liquid crystal display element is a liquid crystal display element obtained by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention. .
  • a liquid crystal display element having a passive matrix structure As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a switching element such as a TFT (Thin Film Transistor)
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing material through the opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal can be filled by dropping a liquid crystal after drawing a sealing material on the substrate and bonding the liquid crystal under reduced pressure.
  • liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a negative liquid crystal material having a voltage holding ratio lower than that of a positive liquid crystal material is used, the afterimage characteristics are excellent if the liquid crystal alignment film of the present invention is used.
  • liquid crystal display element of this invention uses the liquid crystal alignment film obtained by the method for producing a liquid crystal alignment film of the present invention as the liquid crystal alignment film, the liquid crystal display element has excellent afterimage characteristics and a high-definition multifunctional mobile phone. (Smartphones), tablet computers, liquid crystal televisions, and the like.
  • DA-7 1,3-bis (4-aminophenethyl) urea
  • DA-8 4- (2-methylaminoethyl) aniline
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • GBL ⁇ -butyrolactone
  • ⁇ Viscosity> the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed on the substrate.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. *
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
  • the rubbing directions are combined so that they are antiparallel, the periphery is sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 ⁇ m is formed.
  • a liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • the afterimage was evaluated using the following optical system and the like.
  • the prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • VT curve voltage-transmittance curve
  • the afterimage evaluation according to the above-described method was performed under a temperature condition in which the temperature of the liquid crystal cell was 23 ° C.
  • the liquid crystal cell After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated. Then, the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • the value of the angle ⁇ of the liquid crystal cell exceeded 0.1 degree, it was defined as “defective” and evaluated.
  • the value of the angle ⁇ of the liquid crystal cell did not exceed 0.1 degree, it was defined as “good” and evaluated.
  • ⁇ Evaluation of BL resistance> The produced liquid crystal cell was aged for 1 week on 2000 nits BL. After aging, a voltage of 1 V was applied to the cell at a temperature of 60 ° C. for 60 ⁇ sec, the voltage after 100 msec was measured, and the voltage holding ratio was evaluated.
  • Example 1 In a 20 ml sample tube containing a stir bar, 1.33 g of PAA-3 and 4.27 g of PAA-6 were taken, 4.40 g of NMP, 5.36 g of GBL, 4.00 g of BCS, and 1 AD-2. 0.64 g of a GBL solution containing 5% by weight was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (B-1).
  • Example 2 In a 20 ml sample tube containing a stir bar, 1.33 g of PAA-3 and 4.27 g of PAA-6 were taken, 4.16 g of NMP, 5.36 g of GBL, 4.00 g of BCS, and 1 AD-2. 0.64 g of a GBL solution containing 10% by weight and 0.24 g of an NMP solution containing 10% by weight of AD-3 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (B-2).
  • B-2 liquid crystal aligning agent
  • Example 3 In a 20 ml sample tube containing a stir bar, 1.33 g of PAA-3 and 4.27 g of PAA-7 were taken, 4.40 g of NMP, 5.36 g of GBL, 4.00 g of BCS, and 1 AD-2. 0.64 g of GBL solution containing wt% was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (B-3).
  • Example 4 In a 20 ml sample tube containing a stir bar, 1.33 g of PAA-3 and 4.27 g of PAA-7 were taken, 4.16 g of NMP, 5.36 g of GBL, 4.00 g of BCS, and 1 AD-2. 0.64 g of a GBL solution containing 10% by weight and 0.24 g of an NMP solution containing 10% by weight of AD-3 were added and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (B-4). Using the liquid crystal aligning agent obtained above, BL resistance, relaxation characteristics of accumulated charge, stability of liquid crystal alignment, and rubbing resistance were evaluated. The results are shown in Table 1 below.
  • the liquid crystal alignment film of the present invention showed good results in any of rubbing resistance, BL resistance evaluation, liquid crystal alignment stability evaluation, and afterimage disappearance time evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記(A)成分及び(B)成分を含有する液晶配向剤。なお、下記各式中の記号の定義は、明細書に記載の通りである。 (A)成分:下記式(1)のジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分を反応させて得られるポリイミド前駆体、及び該ポリイミド前駆体を閉環させて得られるポリイミドからなる群から選ばれる少なくとも1種の重合体 (B)成分:下記式(2)で表される部分構造を2個以上有し、かつ分子量が2,500以下である化合物

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、新規な液晶配向剤、液晶配向膜及び液晶表示素子に関する。
 液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在広く使用されている。通常この液晶表示素子には、液晶の配向状態を決定づける為に液晶配向膜が使用されている。 
 液晶配向膜に使用されるポリマーとしては、ポリイミド、ポリアミド、ポリアミドイミドなどが知られており、これらのポリマーやその前駆体を溶剤に溶解させた液晶配向剤が一般的に使用されている。 
 近年では大画面で高精細の液晶テレビが広く実用化されており、このような用途における液晶表示素子では、過酷な使用環境での長期使用に耐えうる特性が要求されている。従って、そこに使用される液晶配向膜は従来よりも信頼性の高いものが必要となっている。このような課題に対し、特定の添加剤を用いた液晶配向剤が提案されている(特許文献1参照)。
国際公開第2010/074269号
 最近では、液晶表示素子に使用されるバックライト(BL)の輝度が更にアップしており、液晶配向膜の配向安定性や、電気特性についても、従来のレベルをはるかに超える優れた耐光性や緩和特性が要求されている。
 本発明者らは、鋭意検討を行った結果、特定構造のジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分を反応させて得られるポリイミド前駆体、及び該ポリイミド前駆体を閉環させたポリイミドからなる群から選ばれる重合体及び特定構造の化合物を含有する液晶配向剤により、上記の課題を達成し得ることを見出し、本発明に至った。 
 上記目的を達成する本発明の第1の態様は、下記(A)成分及び(B)成分を含有する液晶配向剤にある。
(A)成分:下記式(1)のジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分を反応させて得られるポリイミド前駆体、及び該ポリイミド前駆体を閉環させて得られるポリイミドからなる群から選ばれる少なくとも1種の重合体 
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは水素、又は1価の有機基を表す。Qは炭素数1乃至5のアルキレンを表す。Cyはアゼチジン、ピロリジン、ピペリジン又はヘキサメチレンイミンからなる脂肪族へテロ環を表す2価の基であり、これらの環部分に置換基が結合されていてもよい。R及びRは、それぞれ独立に1価の有機基である。q及びrは、それぞれ独立に0~4の整数である。但し、qとrの合計が2以上の場合、複数のR及びRは、上記定義を有する。)
(B)成分:下記式(2)の構造を2つ以上有し、かつ分子量が2,500以下である化合物
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Rは水素原子又は炭素数1~3のアルキル基、R及びRは、それぞれ独立に、水素原子、炭素数1~3のアルキル基、又は*-CH-O-R11(R11は水素原子又は炭素数1~3のアルキル基を表し、「*」は、R及びRが結合する炭素原子との結合手を表す。)を表し、「*」及び「*」は、他の原子との結合手であることを表す。)
 上記目的を達成する本発明の第2の態様は、前記式(1)のジアミンが、下記式(3)で表される、第1の態様の液晶配向剤にある。 
Figure JPOXMLDOC01-appb-C000009
(式(3)中、Rは、水素原子、メチル基、又はtert-ブトキシカルボニル基であり、RおよびRは、それぞれ独立して、水素原子又はメチル基であり、Qは、炭素数1~5の直鎖アルキレンである。)
 上記目的を達成する本発明の第3の態様は、前記式(1)で表されるジアミンの含有割合が、全ジアミン成分1モルに対して、1モル%~80モル%である、第1の態様または第2の態様の液晶配向剤にある。
 上記目的を達成する本発明の第4の態様は、前記(B)成分の化合物が、下記式から選ばれる少なくとも1種の化合物である、第1の態様から第3の態様のいずれかの液晶配向剤にある。 
Figure JPOXMLDOC01-appb-C000010
 上記目的を達成する本発明の第5の態様は、さらに、(C)成分として、下記式(5)の構造単位を含有するポリイミド前駆体を含有する、第1の態様から第4の態様の液晶配向剤にある。
Figure JPOXMLDOC01-appb-C000011
(式(5)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yはジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基であり、Z及びZは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基又は炭素数2~10のアルキニル基である。)
 上記目的を達成する本発明の第6の態様は、前記式(5)中のXが、下記構造である構造単位を含有するポリイミド前駆体を含有する、第5の態様の液晶配向剤にある。
 上記目的を達成する本発明の第7の態様は、第1の態様から第6の態様のいずれかの液晶配向剤から得られる液晶配向膜にある。
 上記目的を達成する本発明の第8の態様は、第7の態様の液晶配向膜を具備する液晶表示素子にある。
 本発明の液晶配向剤によればBL耐性、配向安定性、緩和特性が優れる液晶配向膜が得られる。
 本発明の液晶配向剤は、(A)成分及び(B)成分を含有する。以下、各構成要件につき詳述する。
<(A)成分>
 本発明の液晶配向剤に含有される(A)成分とは、下記式(1)のジアミン(以下、特定ジアミンとも称する)を含有するジアミン成分とテトラカルボン酸誘導体成分を反応させて得られるポリイミド前駆体、及び該ポリイミド前駆体を閉環させて得られるポリイミドからなる群から選ばれる少なくとも1種の重合体である。 
Figure JPOXMLDOC01-appb-C000012
 上記式(1)中、Rは、水素又は1価の有機基を表し、好ましくは、水素原子、又は炭素数1~3の直鎖アルキル基であり、より好ましくは水素原子、又はメチル基である。 
 また、Rは、熱により脱離反応を生じ、水素原子に置き換わる保護基であってもよい。液晶配向剤の保存安定性の点から、この保護基は、室温においては脱離せず、好ましくは、80℃以上、より好ましくは100℃以上、特に好ましくは150~200℃で脱離し、水素原子になるのが好適である。例えば、1,1-ジメチル-2-クロロエトキシカルボニル基、1,1-ジメチル-2-シアノエトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられ、好ましくはtert-ブトキシカルボニル基である。 
 Qは、炭素数1~5のアルキレン基を表し、合成の簡便さから、好ましくは、炭素数1~5の直鎖アルキレンである。Cyは、アゼチジン、ピロリジン、ピペリジン、又はヘキサメチレンイミンからなる脂肪族へテロ環を表す2価の基であり、合成の簡便さから、アゼチジン、ピロリジン、又はピペリジンが好ましい。また、これらの環部分に置換基が結合されていてもよい。
 R及びRは、それぞれ独立に、1価の有機基であり、q、rは、それぞれ独立に0~4の整数である。但し、qとrの合計が2以上の場合、複数のR及びRは、上記定義を有する。合成の簡便さから、好ましくは、R及びRは、メチル基である。 
 また、上記ジアミンを構成するベンゼン環におけるアミノ基の結合位置は限定されないが、アミノ基がそれぞれ、Cy上の窒素原子に対して3位、又は、4位、QとRが結合する窒素原子に対して3位、又は、4位の位置にあることが好ましく、Cy上の窒素原子に対して4位、QとRが結合する窒素原子に対して4位の位置にあることがより好ましい。 
 本発明の効果を奏する要因の一つと考えられる構造は、上記式(1)のジアミンから、2つの1級アミノ基を除いた構造(以下、特定構造とも称する)であると考えられる。よって、上記式(1)のジアミンを用いずとも、特定構造を2つ以上含有するジアミン化合物や、特定構造を有するテトラカルボン酸二無水物を用いるなどして、本発明の液晶配向剤に用いられる重合体に、特定構造を導入しても良いと考えられるが、合成の都合上は、上記式(1)のジアミンを用いることが好ましい。 
 本発明の上記式(1)で表されるジアミンは、下記式(3)で表される化合物であることが好ましい。 
Figure JPOXMLDOC01-appb-C000013
 上記式(3)において、Rは、水素原子、メチル基、又はtert-ブトキシカルボニル基である。RおよびR3はそれぞれ独立して、水素原子又はメチル基である。Qは、炭素数1~5の直鎖アルキレンである。 
 上記式(3)で表されるジアミンの具体例としては、例えば、下記式(3-1)~下記式(3-10)で表されるジアミンを挙げることができる。下記式において、Bocはtert-ブトキシカルボニル基を表す。 
Figure JPOXMLDOC01-appb-C000014
<(B)成分>
 本発明の液晶配向剤に含有される(B)成分とは、下記式(2)の構造を2つ以上有し、かつ分子量が2,500以下である化合物である。 
Figure JPOXMLDOC01-appb-C000015
 上記式(2)中、Rは水素原子又は炭素数1~3のアルキル基を表す。 
 R及びRは、それぞれ独立に、水素原子、炭素数1~3のアルキル基、又は*-CH-O-R11(R11は水素原子又は炭素数1~3のアルキル基を表し、「*」は、R及びRが結合する炭素原子との結合手であることを表す。)であり、「*」及び「*」は、他の原子との結合手であることを表す。 
 R及びR11の炭素数1~3のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。好ましくは水素原子又はメチル基であり、より好ましくは水素原子である。なお、R及びR11は、互いに同じでも異なっていてもよい。 
 R及びRの炭素数1~3のアルキル基としては、上記Rで例示した基が挙げられる。好ましくは水素原子、*-CH-OH、又は*-CH-OCHである。なお、R及びRは、互いに同じでも異なっていてもよい。 
 上記式(2)中の窒素原子に結合する基(以下、「R」と示す。)としては、例えば水素原子、1価の有機基、又は上記式(2)中のカルボニル基と該窒素原子とに結合する2価の有機基が挙げられる。なお、Rが上記2価の有機基である場合、上記式(2)中の窒素原子及びカルボニル基と共に環構造を形成する。 
 本発明の(B)成分の化合物における上記式(2)で表される構造の数は、2つ以上であればよく、好ましくは2個~8個であり、より好ましくは2個~6個である。化合物(B)が有する基「*-CH-O-R(「*」は炭素原子との結合手であることを示す。Rは上記と同義である。)」の数は、1分子あたり2個以上であることが好ましく、3個~8個であることがより好ましく、3個~6個であることがさらに好ましい。 
 上記式(2)の構造の好ましい具体例としては、例えば下記式(2-1)~下記式(2-6)のそれぞれで表される化合物等が挙げられる。 
Figure JPOXMLDOC01-appb-C000016
 上記式(2-1)~上記式(2-5)中、「*1」は結合手であることを示す。式(2-5)中、Rは炭素数1~3のアルキル基である。上記式(2-6)中の「*」及び「*」は、上記式(2-6)中の窒素原子及びカルボニル基と共に環を形成する基に結合する結合手であることを示す。
 化合物(B)の分子量は2,500以下である。溶剤に対する溶解性及び液晶配向剤の塗布性を良好にする観点から、当該分子量は2,000以下であることが好ましく、1,200以下であることがさらに好ましい。 
 化合物(B)の具体例としては、例えば下記式で表される化合物等が挙げられる。 
Figure JPOXMLDOC01-appb-C000017
 化合物(B)の配合割合は、液晶配向剤中に含有される重合体成分の合計100重量部に対して、0.1重量部~100重量部とすることが好ましい。化合物(B)の、より好ましい配合割合の下限は、液晶配向剤中に含有される重合体成分の合計100重量部に対して1重量部以上であり、さらに好ましくは3重量部以上である。また、当該配合割合の上限については、より好ましくは50重量部以下であり、さらに好ましくは20重量部以下である。なお、化合物(B)は、1種を単独で又は2種以上を組み合わせて使用できる。
<ポリイミド前駆体及びポリイミド>
 本発明の液晶配向剤に含有されるポリイミド前駆体は、上記式(1)で表されるジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分との反応によって得られるポリイミド前駆体である。ここで、ポリイミド前駆体は、ポリアミック酸又はポリアミック酸エステルである。 
 テトラカルボン酸誘導体は、酸二無水物や、ジカルボン酸ジエステル、ジエステルジカルボン酸クロリド等を挙げることができる。 
 ポリアミック酸は、ジアミン成分と酸二無水物を反応することによって得られ、ポリアミック酸エステルは、ジアミン成分とジカルボン酸ジエステル又はジエステルジカルボン酸クロリドとの反応によって得られる。 
 本発明の液晶配向剤に含有されるポリイミドは、これらポリイミド前駆体を閉環させて得られるポリイミドであり、共に液晶配向膜を得るための重合体として有用である。 
 本発明の液晶配向剤に含有されるポリイミド前駆体は、下記式(4)で表される構造単位を含有する重合体である。 
Figure JPOXMLDOC01-appb-C000018
 上記式(4)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(1)のジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。加熱によるイミド化のしやすさの点から、Rは、水素原子、メチル基又はエチル基が好ましい。 
 上記ポリイミド前駆体を得るためのジアミン成分において、上記式(1)で表されるジアミンの含有割合に制限はないが、多いほうが本発明の効果が得られやすい。上記式(1)で表されるジアミンの割合は、全ジアミン成分1モルに対して、1モル%~80モル%が好ましく、より好ましくは、5モル%~60モル%、さらに好ましくは、10モル%~40モル%である。 
 Xは4価の有機基である限り、特に限定されるものではない。ポリイミド前駆体中、Xは2種類以上が混在していてもよい。 
 Xの具体例を示すならば、下記式(X1-1)~下記式(X1-44)の構造が挙げられる。入手性の点から、下記式(X1-1)~下記式(X1-14)がより好ましい。 
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記式(X1-1)~上記式(X1-4)において、RからR25は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、RからR25は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。上記式(X1-1)の具体的な構造としては、下記式(X1-1-1)~下記式(X1-1-6)で表される構造が挙げられる。液晶配向性及び光反応の感度の観点から、下記式(X1-1-1)が特に好ましい。 
Figure JPOXMLDOC01-appb-C000025
 また、本発明のポリイミド前駆体は、上記式(4)の他に、本発明の効果を損なわない範囲において、下記式(5)で表される構造単位を含んでいてもよい。なお、本発明の液晶配向剤が、上記式(4)で表される構造単位を含有するポリイミド前駆体以外のポリイミド前駆体を含有する場合、それが下記式(5)で表される構造単位を有するポリイミド前駆体であっても良い。 
Figure JPOXMLDOC01-appb-C000026
 上記式(5)中、Rは、上記式(4)の定義と同じである。Xは4価の有機基であり、好ましい例も含めて、上記式(4)中のXと定義と同じである。ただし、本発明の液晶配向剤が、上記式(4)で表される構造単位を含有するポリイミド前駆体以外に、上記式(5)の構造単位を含有するポリイミド前駆体を含有する場合、得られる液晶配向膜の効果発現の観点から、上記式(X1-8)がとりわけ好ましい。Z及びZは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基又は炭素数2~10のアルキニル基である。 
 炭素数1~10のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基等が挙げられる。
 炭素数2~10のアルケニル基としては、上記アルキル基に存在する1つ以上のCH-CHをCH=CHに置き換えたものが挙げられる。より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。 
 炭素数2~10のアルキニル基としては、上記アルキル基に存在する1つ以上のCH-CHをC≡Cに置き換えたものが挙げられる。より具体的には、エチニル基、1-プロピニル基、2-プロピニル基等が挙げられる。 
 上記炭素数1~10のアルキル基、炭素数2~10のアルケニル基、及び炭素数2~10のアルキニル基は、置換基を含めて合計の炭素数が10を超えない範囲内で置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。 
 置換基の例としては、ハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基等を挙げることができる。 
 ポリイミド前駆体において、一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、Z及びZとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。 
 上記式(5)において、Yは上記式(1)以外のジアミン成分に由来する二価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記式(Y-1)~下記式(Y-49)及び下記式(Y-57)~下記式(Y-114)が挙げられる。また、ジアミン成分は2種以上が混在していてもよい。 
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 上記式(Y-158)、上記式(Y-162)~上記式(Y-165)中、nは、1~6の整数である。 
Figure JPOXMLDOC01-appb-C000046
 上記式(Y-174)、上記式(Y-175)、上記式(Y-178)及び上記式(Y-179)中のBocは、tert-ブトキシカルボニル基を表す。
<ポリアミック酸の製造方法>
 本発明の液晶配向剤に用いられるポリイミド前駆体であるポリアミック酸は、本発明のジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分を反応させて得ることができる。 
 具体的には、テトラカルボン酸二無水物とジアミンを、有機溶媒の存在下で反応させることによって合成できる。 
 有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、γ-ブチロラクトン等である。また、ポリイミド前駆体の溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式(D-1)~下記式(D-3)で示される有機溶媒を用いることができる。 
Figure JPOXMLDOC01-appb-C000047
 上記式(D-1)中、Dは炭素数1~3のアルキル基を示し、上記式(D-2)中、Dは炭素数1~3のアルキル基を示し、上記式(D-3)中、Dは炭素数1~4のアルキル基を示す。 
 これらは単独で使用しても、混合して使用してもよい。さらには、単独ではポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒は、なるべく脱水乾燥させたものを用いることが好ましい。 
 有機溶媒中でジアミン成分とテトラカルボン酸二無水物とを混合する方法としては、ジアミンを有機溶媒に分散あるいは溶解させた溶液を撹拌し、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、テトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液に、ジアミンを添加する方法、テトラカルボン酸二無水物とジアミンとを有機溶媒に交互に、又は同時に添加する方法等が挙げられ、これらのいずれの方法であってもよい。 
 ポリアミック酸の合成時の温度は、-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲であり、より好ましくは0℃~80℃である。 
 また、反応時間はポリアミック酸の重合が安定する時間より長い範囲で、任意に選択することができるが、好ましくは30分~24時間であり、より好ましくは1時間~12時間である。 
 反応は任意の濃度で行うことができるが、原料のジアミン成分とテトラカルボン酸二無水物の濃度が低すぎると、高分子量の重合体を得ることが難しくなり、濃度が高すぎると、反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、好ましくは1質量%~50質量%、より好ましくは5質量%~20質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加しても構わない。 
 ポリアミック酸の合成反応において、ジアミン成分のモル数に対する、テトラカルボン酸二無水物のモル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど、生成するポリアミック酸の分子量は大きくなる。 
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで、精製されたポリアミック酸の粉末を得ることができる。 
 貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノール等が好ましい。
<ポリアミック酸エステルの製造>
 本発明のポリイミド前駆体であるポリアミック酸エステルは、以下に示す[1]、[2]又は[3]の製法で製造することができる。
[1]ポリアミック酸から製造する場合
 ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。 
 具体的には、ポリアミック酸とエステル化剤を、有機溶剤の存在下で、-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって製造することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリド等が挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2モル当量~6モル当量が好ましい。 
 有機溶剤としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒への溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は前記式(D-1)~前記式(D-3)で示される溶媒を用いることができる。 
 溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。 
 上記の反応に用いる溶媒は、ポリマーの溶解性から、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。
[2]テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドと本発明のジアミンを含有するジアミン成分から製造することができる。 
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶剤の存在下で、-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって製造することができる。 
 塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2倍モル~4倍モルであることが好ましく、2倍モル~3倍モルがより好ましい。 
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性の点からは、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。 
 製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。 
 また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒は、できるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
[3]テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルと本発明のジアミンを含有するジアミン成分を、重縮合することにより製造することができる。 
 具体的には、テトラカルボン酸ジエステルとジアミンを、縮合剤、塩基、及び有機溶剤の存在下で、0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3時間~15時間反応させることによって製造することができる。 
 縮合剤としては、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル等が使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2倍モル~3倍モルが好ましく、2倍モル~2.5倍モルがより好ましい。 
 塩基としては、ピリジン、トリエチルアミン等の3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミン成分に対して2倍モル~4倍モルが好ましく、2.5倍モル~3.5倍モルがより好ましい。 
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量は、ジアミン成分に対して0倍モル~1.0倍モルが好ましく、0倍モル~0.7倍モルがより好ましい。
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記[1]又は上記[2]の製法が特に好ましい。 
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄した後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリイミド前駆体をイミド化することにより製造することができる。 
 本発明のポリイミドにおいて、アミック酸基、又はアミック酸エステル基の閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整すればよい。 
 ポリイミド前駆体を閉環させる方法としては、触媒を使用せずにポリイミド前駆体を加熱する熱イミド化、触媒を使用する触媒イミド化が挙げられる。
 ポリイミド前駆体を熱イミド化させる場合は、ポリイミド前駆体の溶液を、100℃~400℃、好ましくは120℃~250℃に加熱し、イミド化反応により生成する水又はアルコールを系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミック酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。 
 塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができ、中でも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。 
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも、無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 
 ポリイミドの反応溶液から、ポリマー成分を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して、乾燥することが好ましい。
<液晶配向剤>
 液晶配向剤は、液晶配向膜を作製するための塗布液であり、その主成分が、樹脂被膜を形成するための樹脂成分と、この樹脂成分を溶解させる有機溶媒とを含有する組成物である。本発明の液晶配向剤は、樹脂成分として、上記したポリイミド前駆体、及び該ポリイミド前駆体を閉環させて得られるポリイミドからなる群から選ばれる少なくとも1種の重合体が使用される。 
 液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2質量%~8質量%である。 
 液晶配向剤中の樹脂成分は、全てが本発明の重合体であってもよく、また、本発明の重合体以外の他の重合体が混合されていてもよい。かかる他の重合体としては、ジアミン成分として、上記式(1)で表される以外のジアミンを使用して得られるポリイミド前駆体又はポリイミドが挙げられる。 
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。 
 液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に、上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコージメチルエーテル、ダイアセトンアルコール、ジエチレングリコールジエチルエーテル、2,6-ジメチル-4-ヘプタノール、ジイソブチルケトン、4-メトキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ブタノン及び2-メチル-2-ヘキサノール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は、2種以上を併用してもよい。 
 上記溶媒は、樹脂の溶解性が低い貧溶媒となる。これらの溶媒は、液晶配向処理剤に含有される有機溶媒の5質量%~60質量%であることが好ましく、より好ましくは10質量%~50質量%である。 
 液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、本発明の重合体以外の重合体、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには、塗膜を焼成する際にポリイミド前駆体のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 
 官能性シラン含有化合物やエポキシ基含有化合物などの架橋性化合物を含有させる場合、その量は、いずれも樹脂成分100質量部に対して0.1質量%~30質量部であることが好ましく、より好ましくは1質量%~20質量部であり、特に好ましくは1質量%~10質量部である。
<液晶配向膜の製造方法>
 液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。 
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができる。特に、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の観点から好ましい。 
 また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミニウム等の光を反射する材料も使用できる。 
 液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法等が挙げられる。その他、塗布液を用いる方法としては、ディップ、ロールコーター、スリットコーター、スピンナー等があり、目的に応じてこれらを用いてもよい。 
 液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために、50℃~120℃、好ましくは50℃~80℃で、1分~10分、好ましくは3分~5分で乾燥させ、その後、150℃~300℃、好ましくは200℃~240℃で、5分~120分、好ましくは10分~40分で焼成する。 
 焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5nm~300nm、好ましくは10nm~200nmである。 
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法等が挙げられる。ラビング処理には、レーヨン布、ナイロン布、コットン布等を使用することができる。垂直配向用の液晶配向膜は、ラビング処理によって均一な配向状態を得ることが難しいので、垂直配向用液晶配向剤として用いる場合には、ラビングせずに用いることもできる。 
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によっては、さらに150℃~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。 
 また、液晶配向性を改善するために、塗膜基板を50℃~250℃で加熱しつつ、放射線を照射してもよい。 
 放射線の照射量は、1mJ/cm~10,000mJ/cmが好ましく、100mJ/cm~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。 
 上記で、偏光された放射線を照射した膜は、次いで、水及び有機溶媒から選ばれる少なくとも1種類を含む溶媒で接触処理してもよい。 
 接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。これらの溶媒は、2種以上を併用してもよい。 
 汎用性や安全性の観点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。1-メトキシ-2-プロパノール又は乳酸エチルが特に好ましい。
 本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理等の、膜と液とが十分に接触するような処理で行なわれることが好ましい。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1分~30分浸漬処理する方法が好ましい。接触処理は、常温でも加温してもよいが、好ましくは10℃~80℃、より好ましくは20℃~50℃で実施される。また、必要に応じて、超音波等の接触を高める手段を施すことができる。 
 上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等の低沸点溶媒による、すすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。 
 さらに、溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に、150℃以上で加熱してもよい。 
 加熱の温度としては、150℃~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると、分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180℃~250℃がより好ましく、200℃~230℃が特に好ましい。 
 加熱する時間は、短すぎると本発明の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1分~10分がより好ましい。
<液晶表示素子>
 液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。 
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)等のスイッチング素子が設けられた、アクティブマトリクス構造の液晶表示素子であってもよい。 
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成された、SiO-TiOからなる膜とすることができる。 
 次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を、互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。 
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。また、基板上にシール材を描画した後液晶を滴下し、減圧下で貼り合わせることによって、液晶を充填することもできる。 
 液晶材料としては、ポジ型液晶材料及びネガ型液晶材料のいずれを用いてもよい。特に、電圧保持率がポジ型液晶材料よりも低いネガ型液晶材料を用いた場合においても、本発明の液晶配向膜を用いれば、残像特性に優れたものとなる。 
 次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に、一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。この液晶表示素子は、液晶配向膜として、本発明の液晶配向膜の製造方法により得られた液晶配向膜を使用していることから、残像特性に優れたものとなり、高精細な多機能携帯電話(スマートフォン)や、タブレット型パソコン、液晶テレビ等に好適にされる。
 以下に実施例を挙げて、本発明をさらに具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されるものではない。以後で使用する化合物の略号、及び各特性の測定方法は、次のとおりである。
<化合物の略号>
 下記式DA-5及び下記式DA-6において「Boc」はtert-ブトキシカルボニル基である。 
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
<化合物の略号>
DA-7:1,3-ビス(4-アミノフェネチル)ウレア
DA-8:4-(2-メチルアミノエチル)アニリン
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
GBL:γ-ブチロラクトン
<粘度>
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<液晶表示素子の作製>
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。 
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成して膜厚60nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。 
 その後、上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入したのち、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから各評価に使用した。
<蓄積電荷の緩和特性の評価>
 以下の光学系等を用いて残像の評価を行った。作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。 
 次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。 
 残像評価では、相対透過率が23%となる周波数30Hzの交流電圧を印加して液晶セルを駆動させながら、同時に1Vの直流電圧を印加し、40分間駆動させた。その後、印加直流電圧値を0Vにして直流電圧の印加のみを停止し、その状態でさらに15分駆動した。 
 評価は、直流電圧の印加を開始した時点から45分間が経過するまでに、相対透過率が25%以下に低下した場合に、「良好」と定義して評価を行った。相対透過率が25%以下に低下するまでに45分間以上を要した場合には、「不良」と定義して評価した。 
 そして、上述した方法に従う残像評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
<液晶配向の安定性評価>
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。 
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が0.1度を越える場合には、「不良」と定義し評価した。この液晶セルの角度Δの値が0.1度を越えない場合には、「良好」と定義し評価した。
<BL耐性の評価>
 作製した液晶セルを2000nitのBLの上で1週間エージングした。エージング後にセルを60℃の温度下で1Vの電圧を60μsec印加し、100msec後の電圧を測定して、電圧保持率を評価した。
 その際、電圧保持率が80%以上を維持した場合に「良好」と定義し、80%未満の場合に「不良」と定義して評価した。
<ラビング耐性の評価>
 液晶配向剤を、ITO基板に塗布し、仮乾燥させた後、230℃のIR式オーブンにて焼成を行い、液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布でラビング(ローラー回転数:1000rpm、ステージ移動速度:20mm/sec、押し込み長:0.4mm)した。本基板を顕微鏡にて、観察を行い、膜面にラビングによるスジがみられなかったものを「良好」とし、スジが見られたものを「不良」として評価した。
<合成例>
(合成例1)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-3を34.36g(0.12mol)投入した後、NMPを335.12g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-1を22.77g(0.10mol)添加し、更にNMPを83.80g加え、50℃で12時間撹拌してポリアミック酸溶液(PAA-1)を得た。
(合成例2)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-3を25.20g(0.088mol)、及びDA-6を8.77g(0.022mol)投入した後、NMPを333.97g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-1を22.96g(0.11mol)添加し、更にNMPを326g加え、50℃で12時間撹拌してポリアミック酸溶液(PAA-2)を得た。
(合成例3)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-3を25.20g(0.088mol)、及びDA-5を8.72g(0.022mol)投入した後、NMPを334.28g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-1を23.06g(0.11mol)添加し、更にNMPを83.57g加え、50℃で12時間撹拌してポリアミック酸溶液(PAA-3)を得た。
(合成例4)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-4を19.13g(0.096mol)投入した後、溶剤(NMP:GBL=50wt%:50wt%)を232.72g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-2を14.12g(0.072mol)添加し、更に溶剤(NMP:GBL=50wt%:50wt%)を84.63g加えた後、2時間撹拌させた。その後DA-1を4.76g(0.024mol)投入した後、NMPを42.31g加えて撹拌して溶解させた。再び水冷下で撹拌しながら、CA-3を9.00g(0.03mol)添加し、更に溶剤(NMP:GBL=50wt%:50wt%)を326g加え、2時間撹拌後にポリアミック酸溶液(PAA-4)を得た。
(合成例5)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-4を23.91g(0.12mol)、及びDA-1を5.95g(0.03mol)投入した後、NMPを255.76g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-2を6.47g(0.033mol)添加し、更にNMPを73.01g加えた後、2時間撹拌させた。その後CA-4を28.15g(0.11mol)投入した後、NMPを36.54g加えて、50℃で12時間撹拌してポリアミック酸溶液(PAA-5)を得た。
(合成例6)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-4を23.91g(0.12mol)、及びDA-2を4.56g(0.03mol)投入した後、NMPを241.76g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-2を13.71g(0.070mol)添加し、更にNMPを69.07g加えた後、2時間撹拌させた。その後CA-4を18.77g(0.075mol)投入した後、NMPを34.54g加えて、50℃で12時間撹拌してポリアミック酸溶液(PAA-6)を得た。
(合成例7)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-4を28.69g(0.144mol)、及びDA-1を7.14g(0.036mol)投入した後、NMPを296.56g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-2を16.41g(0.084mol)添加し、更にNMPを84.73g加えた後、2時間撹拌させた。その後CA-4を22.52g(0.09mol)投入した後、NMPを42.37g加えて、50℃で12時間撹拌してポリアミック酸溶液(PAA-7)を得た。
(合成例8)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-5を18.98g(0.048mol)、及びDA-7を14.28g(0.048mol)投入した後、NMPを312.67g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-1を20.04g(0.092mol)添加し、更にNMPを78.17g加えた後、50℃で12時間撹拌してポリアミック酸溶液(PAA-8)を得た。
(合成例9)
 撹拌装置と窒素導入管付きの500mLフラスコに、DA-7を26.85g(0.09mol)、及びDA-8を9.01g(0.06mol)投入した後、NMPを289.28g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、CA-2を27.94g(0.14mol)添加し、更にNMPを72.32g加えた後、2時間撹拌してポリアミック酸溶液(PAA-9)を得た。
(比較例1)
 撹拌子を入れた20mlサンプル管に、PAA-1を1.51g、PAA-4を6.99g取り、NMPを1.51g、GBLを3.13g、BCSを6.00g、AD-1を1重量%含むGBL溶液を0.86g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-1)を得た。
(比較例2)
 撹拌子を入れた20mlサンプル管に、PAA-1を1.33g、PAA-5を4.27g取り、NMPを4.40g、GBLを5.36g、BCSを4.00g、AD-1を1重量%含むGBL溶液を0.64g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-2)を得た。
(比較例3)
 撹拌子を入れた20mlサンプル管に、PAA-2を1.33g、PAA-6を4.27g取り、NMPを4.40g、GBLを5.36g、BCSを4.00g、AD-2を1重量%含むGBL溶液を0.64g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-3)を得た。
(比較例4)
 撹拌子を入れた20mlサンプル管に、PAA-8を2.00g、PAA-9を6.40g取り、NMPを1.60g、GBLを5.04g、BCSを4.00g、AD-2を1重量%含むGBL溶液を0.96g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-4)を得た。
(実施例1)
 撹拌子を入れた20mlサンプル管に、PAA-3を1.33g、PAA-6を4.27g取り、NMPを4.40g、GBLを5.36g、BCSを4.00g、AD-2を1重量%含むGBL溶液を0.64g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-1)を得た。
(実施例2)
 撹拌子を入れた20mlサンプル管に、PAA-3を1.33g、PAA-6を4.27g取り、NMPを4.16g、GBLを5.36g、BCSを4.00g、AD-2を1重量%含むGBL溶液を0.64g、AD-3を10重量%含むNMP溶液を0.24g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-2)を得た。
(実施例3)
 撹拌子を入れた20mlサンプル管に、PAA-3を1.33g、PAA-7を4.27g取り、NMPを4.40g、GBLを5.36g、BCSを4.00g、AD-2を1重量%含むGBL溶液を0.64g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-3)を得た。
(実施例4)
 撹拌子を入れた20mlサンプル管に、PAA-3を1.33g、PAA-7を4.27g取り、NMPを4.16g、GBLを5.36g、BCSを4.00g、AD-2を1重量%含むGBL溶液を0.64g、AD-3を10重量%含むNMP溶液を0.24g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-4)を得た。上記で得られた液晶配向剤を用いて、BL耐性、蓄積電荷の緩和特性、液晶配向の安定性、及びラビング耐性評価を行った。結果を下記表1に示す。 
Figure JPOXMLDOC01-appb-T000051
 以上のように、本発明の液晶配向膜は、ラビング耐性、BL耐性評価、液晶配向の安定性評価、残像消失時間の評価のいずれにおいても良好な結果を示した。

Claims (8)

  1.  下記(A)成分及び(B)成分を含有する液晶配向剤。
    (A)成分:下記式(1)のジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分を反応させて得られるポリイミド前駆体、及び該ポリイミド前駆体を閉環させて得られるポリイミドからなる群から選ばれる少なくとも1種の重合体
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素、又は1価の有機基を表す。Qは炭素数1乃至5のアルキレンを表す。Cyはアゼチジン、ピロリジン、ピペリジン又はヘキサメチレンイミンからなる脂肪族へテロ環を表す2価の基であり、これらの環部分に置換基が結合されていてもよい。R及びRは、それぞれ独立に1価の有機基である。q及びrは、それぞれ独立に0~4の整数である。但し、qとrの合計が2以上の場合、複数のR及びRは、上記定義を有する。)
    (B)成分:下記式(2)で表される部分構造を2個以上有し、かつ分子量が2,500以下である化合物
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは水素原子又は炭素数1~3のアルキル基、R及びRは、それぞれ独立に、水素原子、炭素数1~3のアルキル基、又は*-CH-O-R11(R11は水素原子又は炭素数1~3のアルキル基を表し、「*」は、R及びRが結合する炭素原子との結合手を表す。)を表し、「*」及び「*」は、他の原子との結合手であることを表す。)
  2.  前記式(1)のジアミンが、下記式(3)で表される、請求項1に記載の液晶配向剤。  
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Rは、水素原子、メチル基、又はtert-ブトキシカルボニル基であり、RおよびRは、それぞれ独立して、水素原子又はメチル基であり、Qは、炭素数1~5の直鎖アルキレンである。)
  3.  前記式(1)で表されるジアミンの含有割合が、全ジアミン成分1モルに対して、1モル%~80モル%である、請求項1または請求項2に記載の液晶配向剤。
  4.  前記(B)成分の化合物が、下記式から選ばれる少なくとも1種の化合物である、請求項1から請求項3のいずれか1項に記載の液晶配向剤。  
    Figure JPOXMLDOC01-appb-C000004
  5.  さらに、(C)成分として、下記式(5)の構造単位を含有するポリイミド前駆体を含有する、請求項1から請求項4のいずれか1項に記載の液晶配向剤。  
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yはジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基であり、Z及びZは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基又は炭素数2~10のアルキニル基である。)
  6.  前記式(5)中のXが、下記構造である構造単位を含有するポリイミド前駆体を含有する、請求項5に記載の液晶配向剤。  
    Figure JPOXMLDOC01-appb-C000006
  7.  請求項1から請求項6のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
  8.  請求項7の液晶配向膜を具備する液晶表示素子。
PCT/JP2017/032542 2016-09-13 2017-09-08 液晶配向剤、液晶配向膜及び液晶表示素子 WO2018051923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018539689A JP7089227B2 (ja) 2016-09-13 2017-09-08 液晶配向剤、液晶配向膜及び液晶表示素子
KR1020197010621A KR102393693B1 (ko) 2016-09-13 2017-09-08 액정 배향제, 액정 배향막 및 액정 표시 소자
CN201780069120.9A CN109923469B (zh) 2016-09-13 2017-09-08 液晶取向剂、液晶取向膜及液晶表示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178851 2016-09-13
JP2016-178851 2016-09-13

Publications (1)

Publication Number Publication Date
WO2018051923A1 true WO2018051923A1 (ja) 2018-03-22

Family

ID=61619101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032542 WO2018051923A1 (ja) 2016-09-13 2017-09-08 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP7089227B2 (ja)
KR (1) KR102393693B1 (ja)
CN (1) CN109923469B (ja)
TW (1) TW201823436A (ja)
WO (1) WO2018051923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022014470A1 (ja) * 2020-07-17 2022-01-20

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122413A1 (ja) * 2014-02-13 2015-08-20 日産化学工業株式会社 新規な液晶配向剤、ジアミン、及びポリイミド前駆体
WO2016063834A1 (ja) * 2014-10-20 2016-04-28 日産化学工業株式会社 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
WO2017090691A1 (ja) * 2015-11-25 2017-06-01 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656541B1 (ko) 2008-12-26 2016-09-09 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
WO2012101988A1 (ja) * 2011-01-28 2012-08-02 日東電工株式会社 熱伝導性フィルム及びその製造方法
US8933189B2 (en) * 2013-03-15 2015-01-13 E I Du Pont De Nemours And Company Polymers derived from renewably resourced lysinol
WO2015060357A1 (ja) * 2013-10-23 2015-04-30 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6447209B2 (ja) * 2014-05-12 2019-01-09 Jsr株式会社 重合体組成物、液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
TWI673301B (zh) 2014-05-30 2019-10-01 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜、及液晶顯示元件
CN105694912B (zh) * 2014-12-11 2019-11-19 捷恩智株式会社 光取向用液晶取向剂、液晶取向膜及使用其的液晶显示元件
JP6477039B2 (ja) 2014-12-22 2019-03-06 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122413A1 (ja) * 2014-02-13 2015-08-20 日産化学工業株式会社 新規な液晶配向剤、ジアミン、及びポリイミド前駆体
WO2016063834A1 (ja) * 2014-10-20 2016-04-28 日産化学工業株式会社 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
WO2017090691A1 (ja) * 2015-11-25 2017-06-01 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022014470A1 (ja) * 2020-07-17 2022-01-20
WO2022014470A1 (ja) * 2020-07-17 2022-01-20 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7311047B2 (ja) 2020-07-17 2023-07-19 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Also Published As

Publication number Publication date
JPWO2018051923A1 (ja) 2019-06-24
KR102393693B1 (ko) 2022-05-02
CN109923469A (zh) 2019-06-21
KR20190053904A (ko) 2019-05-20
JP7089227B2 (ja) 2022-06-22
TW201823436A (zh) 2018-07-01
CN109923469B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
JP5870487B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6627772B2 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP7276666B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6187457B2 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
JP7392646B2 (ja) 液晶配向剤、その製造方法、液晶配向膜、及び液晶表示素子
JP7107220B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6202006B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
TWI820011B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
TWI820010B (zh) 液晶配向膜之製造方法、液晶配向膜及液晶顯示元件
JP7196847B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2014084362A1 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2018038160A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN109923469B (zh) 液晶取向剂、液晶取向膜及液晶表示元件
JP7375759B2 (ja) 液晶配向剤、その製造方法、液晶配向膜、及び液晶表示素子
CN113423763A (zh) 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
JP7311047B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
CN111868619B (zh) 液晶取向剂、液晶取向膜及液晶表示元件
JP7193783B2 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP7193782B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2018040979A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010621

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17850825

Country of ref document: EP

Kind code of ref document: A1