WO2018047479A1 - 硬化性樹脂組成物、それを用いた燃料電池およびシール方法 - Google Patents
硬化性樹脂組成物、それを用いた燃料電池およびシール方法 Download PDFInfo
- Publication number
- WO2018047479A1 WO2018047479A1 PCT/JP2017/026445 JP2017026445W WO2018047479A1 WO 2018047479 A1 WO2018047479 A1 WO 2018047479A1 JP 2017026445 W JP2017026445 W JP 2017026445W WO 2018047479 A1 WO2018047479 A1 WO 2018047479A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- curable resin
- component
- fuel cell
- flanges
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
- C08F290/042—Polymers of hydrocarbons as defined in group C08F10/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0284—Organic resins; Organic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/10—Acylation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1545—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5313—Phosphinic compounds, e.g. R2=P(:O)OR'
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/14—Sealings between relatively-stationary surfaces by means of granular or plastic material, or fluid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2003/1034—Materials or components characterised by specific properties
- C09K2003/1062—UV-curable materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/10—Applications of fuel cells in buildings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a curable resin composition that is excellent in surface curability and deep curability by irradiation with active energy rays such as ultraviolet rays while maintaining sealing properties.
- a fuel cell is a power generator that extracts electricity by chemically reacting hydrogen and oxygen.
- a fuel cell is a clean next-generation power generation device because it has high energy efficiency during power generation and water is generated by the reaction of hydrogen and oxygen.
- fuel cells There are four types of fuel cells: solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells.
- solid polymer fuel cells have an operating temperature. Since it has a relatively low temperature (around 80 ° C.) and high power generation efficiency, it is expected to be used in applications such as a power source for automobiles, a household power generator, a small power source for electronic devices such as a mobile phone, and an emergency power source.
- the cell 1 of the polymer electrolyte fuel cell is an electrolyte membrane electrode assembly 5 (MEA) having a structure in which a polymer electrolyte membrane 4 is sandwiched between an air electrode 3a and a fuel electrode 3b. ), A frame 6 that supports the MEA, and a separator 2 in which a gas flow path is formed.
- MEA electrolyte membrane electrode assembly 5
- Patent Documents 5 and 6 disclose photocurable sealants containing polyisobutylene diacrylate, a (meth) acrylic monomer, and a photoinitiator.
- Patent Documents 5 and 6 are derived from polyisobutylene di (meth) acrylate and oxygen inhibition occurs during curing by irradiation with active energy rays, the surface curability is remarkably inferior. Furthermore, the deep part curability is also inferior, and there has been a problem in using it as a sealant.
- the present invention has been made in view of the above situation, and provides a curable resin composition having excellent surface curability and deep curability by irradiation with active energy rays such as ultraviolet rays while maintaining sealing properties. With the goal.
- a curable resin composition comprising the following components (A) to (D): Component (A): Polymer having a polyisobutylene skeleton containing at least one (meth) acryloyl group and containing a — [CH 2 C (CH 3 ) 2 ] — unit Component (B): radical polymerization initiator (C) component: Triarylphosphine or triarylphosphine derivative (D) component: xanthone or xanthone derivative [2]
- R 1 represents a monovalent or polyvalent aromatic hydrocarbon group, or a monovalent or polyvalent aliphatic hydrocarbon group
- PIB represents the above-mentioned — [CH 2 C (CH 3 ) 2
- R 4 represents a divalent hydrocarbon group having 2 to 6 carbon atoms which may contain an oxygen atom
- R 2 and R 3 each independently represents a hydrogen atom or a carbon number of 1
- R 5 represents a hydrogen atom, a methyl group or an ethyl group
- n is an integer of 1 to 6.
- the fuel cell curable sealant is a member in a fuel cell, a separator, a frame, an electrolyte, a fuel electrode, an air electrode, a curable sealant for a fuel cell for the periphery of a member of the group consisting of an electrolyte membrane electrode assembly
- the fuel cell curable sealant is a sealant between adjacent separators in a fuel cell, or a sealant between a fuel cell frame and an electrolyte membrane or an electrolyte membrane electrode assembly.
- the sealing agent as described in.
- the sealing agent according to any one of [6] to [8], wherein the fuel cell is a solid polymer fuel cell.
- a fuel cell comprising any one of the group consisting of a seal between adjacent separators in a fuel cell and a seal between a fuel cell frame and an electrolyte membrane or an electrolyte membrane electrode assembly, A fuel cell, wherein the seal contains the cured product according to [10].
- a method of sealing at least a portion between at least two flanges of a part to be sealed having at least two flanges, wherein at least one of the flanges can transmit active energy rays, and at least one of the flanges The step of applying the curable resin composition according to any one of [1] to [5] on the surface, the one flange and the other flange coated with the curable resin composition being the curable resin
- a method for sealing at least a part between at least two flanges of a part to be sealed having at least two flanges, wherein at least one of the flanges is provided with any one of the above [1] to [5] The step of applying the curable resin composition according to the item, irradiating the applied curable resin composition with active energy rays to cure the curable resin composition, and from the cured product of the curable resin composition Forming the gasket, wherein the other flange is disposed on the gasket, the one flange coated with the curable resin composition and the other flange are pressure-bonded via the gasket, and the at least two flanges Sealing at least a portion of the sealing method.
- [15] A method for sealing at least a portion between at least two flanges of a part to be sealed having at least two flanges, the step of disposing a gasket forming mold on at least one of the flanges, the gasket A step of injecting the curable resin composition according to any one of [1] to [5] into at least a part of a gap between a forming mold and a flange on which the mold is disposed; Irradiating the curable resin composition with the active energy ray to cure the curable resin composition to form a gasket made of a cured product of the curable resin composition, and removing the mold from the one flange A step of disposing the other flange on the gasket, crimping the one flange and the other flange through the gasket, and Both sealing method which comprises a step, to seal at least a portion between the two flanges.
- a photocurable resin composition comprising the following components (A) to (D): Component (A): Polymer having a polyisobutylene skeleton containing at least one (meth) acryloyl group and having a — [CH 2 C (CH 3) 2] — unit Component (B): Photoradical polymerization initiator (C) Component: Triaryl Phosphine or triarylphosphine derivative (D) component: xanthone or xanthone derivative [2b] The light according to [1b], wherein the component (A) is a polymer having a polyisobutylene skeleton represented by the general formula (1) Curable resin composition.
- a photocurable sealant for a fuel cell comprising the photocurable resin composition according to any one of [1b] to [5b].
- the fuel cell photocurable sealant is a member for a fuel cell for peripheral members of any one of the group consisting of a separator, a frame, an electrolyte, a fuel electrode, an air electrode, and an electrolyte membrane electrode assembly that are members in a fuel cell
- the sealing agent according to [6b] which is a photocurable sealing agent.
- the photocurable sealant for a fuel cell is a sealant between adjacent separators in a fuel cell, or a sealant between a fuel cell frame and an electrolyte membrane or an electrolyte membrane electrode assembly.
- a method for sealing at least a portion between at least two flanges of a part to be sealed having at least two flanges, wherein at least one of the flanges can transmit light of active energy rays A step of applying the photocurable resin composition according to any one of [1b] to [5b] to at least one surface of the flange; one flange applied with the photocurable resin composition; Bonding the flange with the photocurable resin composition, and irradiating an active energy ray through the light-transmittable flange to cure the photocurable resin composition; Sealing at least a portion of the sealing method.
- the step of applying the photocurable resin composition according to claim 1, irradiating the applied photocurable resin composition with active energy rays to cure the photocurable resin composition, and the photocurable resin Forming a gasket made of a cured product of the composition, placing the other flange on the gasket, and crimping the one flange coated with the photocurable resin composition and the other flange through the gasket; And sealing at least a part between the at least two flanges.
- a method of sealing at least a part between at least two flanges of a part to be sealed having at least two flanges the step of disposing a gasket forming mold on at least one of the flanges Injecting the photocurable resin composition according to any one of [1b] to [5b] into at least a part of a gap between the gasket forming mold and the flange on which the mold is disposed.
- the present invention provides a photo-curable resin composition that is excellent in surface curability and deep curability by irradiation with active energy rays such as ultraviolet rays while maintaining sealing properties.
- the component (A) used in the present invention is particularly limited as long as it is a polymer having at least one (meth) acryloyl group and having a polyisobutylene skeleton containing a — [CH 2 C (CH 3 ) 2 ] — unit. It is not a thing.
- the component (A) may have, for example, a — [CH 2 C (CH 3 ) 2 ] — unit (polyisobutylene skeleton), and other than “— [CH 2 C (CH 3 ) 2 ] — units”. It may be a polymer containing “a structural unit”.
- the component (A) contains — [CH 2 C (CH 3 ) 2 ] — units, for example, 70% by mass or more, preferably 75% by mass or more, more preferably 80% by mass or more, relative to the total amount of the structural units. It is appropriate to include.
- the component (A) includes — [CH 2 C (CH 3 ) 2 ] — units, for example, 100% by mass or less, in another aspect, 95% by mass or less, and in another aspect, 90% by mass or less. Is appropriate.
- the component (A) preferably has 1 to 6 (meth) acryloyl groups, more preferably 2 to 4, more preferably 2 to 3, and particularly preferably 2 (meth) acryloyl groups.
- the polymer is not limited by theory, but can be defined as, for example, a compound having a repeating unit of a monomer in the main chain of the polymer and comprising 100 or more repeating units.
- the component (A) is preferably a polymer having a polyisobutylene skeleton represented by the general formula (1) from the viewpoint of excellent active energy ray curability and adhesion to an electrolyte membrane.
- Specific examples of the component (A) include polyisobutylene polymers having a (meth) acryloyloxyalkoxyphenyl group.
- the main skeleton of the component (A) in the present invention is a polyisobutylene skeleton, but as the monomer constituting the polyisobutylene skeleton, other than the main use of isobutylene, there is no limitation as long as the effects of the present invention are not impaired. These monomers may be copolymerized.
- (A) component is liquid at normal temperature (25 degreeC +/- 10 degreeC) from the application
- R 1 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group, preferably a polyvalent aromatic hydrocarbon group, particularly preferably. It is a divalent phenylene group.
- n 2
- the group other than R 1 of the formula (1) bonded to R 1 may be bonded at any position of ortho, meta, and para, but preferably bonded at the para position.
- PIB represents a polyisobutylene skeleton containing the above-mentioned — [CH 2 C (CH 3 ) 2 ] — units (or composed of — [CH 2 C (CH 3 ) 2 ] — units).
- R 4 represents a divalent hydrocarbon group having 2 to 6 carbon atoms which may contain an oxygen atom, preferably a divalent hydrocarbon group having 2 or 3 carbon atoms.
- R 2 and R 3 each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom.
- R 5 represents a hydrogen atom, a methyl group or an ethyl group, preferably a hydrogen atom or a methyl group.
- n is an integer of 1 to 6, particularly preferably an integer of 2 to 4.
- the molecular weight of the component (A) in the present invention is not particularly limited, but the number average molecular weight by chromatographic measurement is preferably, for example, 200 to 500,000 from the viewpoint of fluidity and physical properties after curing, Preferably it is 1,000 to 100,000, and particularly preferably 3,000 to 50,000. Unless otherwise specified, the number average molecular weight was calculated by a standard polystyrene conversion method using size permeation chromatography (SEC).
- SEC size permeation chromatography
- the viscosity at 25 ° C. of the component (A) in the present invention is not particularly limited, but is 5 Pa ⁇ s or more, preferably 50 Pa ⁇ s or more, more preferably 100 Pa ⁇ s or more from the viewpoint of workability and the like. For example, it is 3000 Pa ⁇ s or less, preferably 2500 Pa ⁇ s or less, more preferably 2000 Pa ⁇ s or less. A particularly preferred viscosity is 1550 Pa ⁇ s. Unless otherwise specified, the viscosity was measured at 25 ° C. using a cone plate viscometer.
- a well-known method can be used. For example, Polymer Bulletin, Vol. 6, pages 135 to 141 (1981), T.M. P. Liao and J.A. P. Kennedy and Polymer Bulletin, Vol. 20, pages 253-260 (1988), Puskas et al. And a method obtained by reacting the terminal hydroxyl group polyisobutylene polymer disclosed in (1) with acryloyl chloride or methacryloyl chloride.
- a method obtained by reaction a method obtained by reacting a terminal hydroxyl group polyisobutylene polymer, a (meth) acryloyl group and a compound having an isocyanate group, or a compound having a terminal hydroxyl group polyisobutylene polymer and an isocyanate group
- the production method of the polyisobutylene polymer represented by the general formula (1) is not particularly limited, but preferably, the halogen-terminated polyisobutylene polymer disclosed in JP2013-216682A and the following general formula A method of reacting a compound having a (meth) acryloyl group and a phenoxy group as represented by (2) is mentioned.
- the halogen-terminated polyisobutylene polymer can be obtained by a known method, for example, by cationic polymerization, and more preferably by living cationic polymerization.
- R 2 , R 3 , R 4 , and R 5 may be as defined in formula (1) above.
- R 4 represents a divalent hydrocarbon group that may contain an oxygen atom having 2 to 6 carbon atoms.
- R 2 and R 3 each independently represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
- R 5 represents a hydrogen atom, a methyl group, or an ethyl group. Examples of the compound represented by the above formula (2) include phenoxymethyl acrylate, phenoxyethyl acrylate, and phenoxypropyl acrylate, and phenoxyethyl acrylate is preferable.
- the radical polymerization initiator that is the component (B) used in the present invention is not limited as long as it is a compound that generates a radical or the like that cures the component (A) of the present invention by irradiating active energy rays.
- active energy rays are radiation such as ⁇ rays and ⁇ rays, electromagnetic waves such as ⁇ rays and X rays, electron beams (EB), ultraviolet rays having a wavelength of about 100 to 400 nm, and visible rays having a wavelength of about 400 to 800 nm. In other words, it includes all light in a broad sense, such as ultraviolet rays.
- Examples of the component (B) include an acetophenone radical polymerization initiator, a benzoin radical polymerization initiator, a benzophenone radical polymerization initiator, a thioxanthone radical polymerization initiator, an acylphosphine oxide radical polymerization initiator, and a titanocene radical polymerization.
- acetophenone-based radical polymerization initiators and acylphosphine oxide-based radical polymerization initiators from the viewpoint that a cured product having excellent surface curability and deep-part curability can be obtained by irradiating active energy rays. Is preferred. Moreover, these may be used independently and 2 or more types may be used together.
- acetophenone-based radical polymerization initiator examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2- Hydroxy-2-propyl) ketone, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- ( 4-morpholinophenyl) butanone, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer and the like are exemplified, but not limited thereto.
- acetophenone radical polymerization initiators examples include IRGACURE 184, IRGACURE 1173, IRGACURE 2959, IRGACURE 127 (manufactured by BASF), and ESACURE KIP-150 (manufactured by Lamberti spa).
- acylphosphine oxide radical polymerization initiator examples include bis (2,4,6-trimethylbenzoyl) -phenyl-phosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and the like. But this is not the case.
- examples of commercially available acylphosphine oxide radical polymerization initiators include IRGACURE TPO, IRGACURE819, IRGACURE819DW (manufactured by BASF).
- the blending amount of the component (B) of the present invention is not particularly limited, but it is preferably 0.1 to 30 masses from the viewpoint of achieving both surface curability and deep curability with respect to 100 mass parts of the component (A). Part, more preferably 0.5 to 20 parts by weight, and particularly preferably 1 to 15 parts by weight.
- the component (C) of the present invention is not particularly limited as long as it is a triarylphosphine or a triarylphosphine derivative.
- the component (C) of the present invention can be used as a sensitizer in a curing reaction by active energy rays.
- active energy rays such as ultraviolet rays and Deep part curability
- the component (C) has a remarkable effect when used in combination with the component (D) described later.
- examples of the aryl group in the triarylphosphine or the triarylphosphine derivative include a phenyl group, a benzyl group, an (o-, m-, p-) tolyl group, and (o-, m-, p-) xylyl. Groups and the like.
- examples of the triarylphosphine derivative include tris (o-tolyl) phosphine, tris (p-tolyl) phosphine, and tris (m-tolyl) phosphine.
- the component (C) of the present invention is preferably triphenylphosphine. Moreover, these may be used independently and 2 or more types may be used together.
- the blending amount of the component (C) of the present invention is not particularly limited, but it is preferably 0.1 to 30 masses from the viewpoint of achieving both surface curability and deep curability with respect to 100 mass parts of the component (A). Part, more preferably 0.5 to 20 parts by weight, and particularly preferably 1 to 15 parts by weight.
- the mass ratio of the component (B) to the component (C) ((B) :( C)) is, for example, 8: 1 to 1: 8, preferably 5: 1 to 1: 5, more preferably Is from 4: 1 to 1: 4, particularly preferably from 3: 1 to 1: 3.
- the component (D) of the present invention is not particularly limited as long as it is xanthone or a xanthone derivative.
- the component (D) of the present invention can be used as a sensitizer in a curing reaction by active energy rays, and by combining with other components of the present invention, surface curability by irradiation with active energy rays such as ultraviolet rays and Deep part curability can be realized.
- the component (D) has a remarkable effect when used in combination with the component (C) described above.
- xanthone derivative of the component (D) examples include 3-hydroxyxanthone and diethoxyxanthone. Of these, xanthone is preferred as the component (D) of the present invention. Moreover, these may be used independently and 2 or more types may be used together.
- the blending amount of the component (D) of the present invention is not particularly limited, but it is preferably 0.1 to 30 masses from the viewpoint of achieving both surface curability and deep curability with respect to 100 mass parts of the component (A). Part, more preferably 0.5 to 20 parts by weight, and particularly preferably 1 to 15 parts by weight.
- the mass ratio of the component (B) to the component (D) ((B) :( D)) is preferably 5: 1 to 1: 5, more preferably 4: 1 to 1: 4. Particularly preferred is 3: 1 to 1: 3. By being within the above range, both surface curability and deep part curability can be achieved.
- the mass ratio of the component (C) to the component (D) ((C) :( D)) is preferably 5: 1 to 1: 5, more preferably 4: 1 to 1: 4. Particularly preferred is 3: 1 to 1: 3.
- the (meth) acrylate monomer that is the component (E) of the present invention is a compound that is polymerized by the radical species generated by the component (B) of the present invention, and is used as a reactive diluent.
- the component (A) of the present invention is excluded.
- the component (E) for example, monofunctional, difunctional, trifunctional and polyfunctional monomers can be used, and among these, the (A) component of the present invention is compatible and cured.
- a (meth) acrylate monomer having an alkyl group having 5 to 30 carbon atoms or an alicyclic group having 5 to 30 carbon atoms is preferable because of its excellent properties.
- carbon number it is 2 or more, for example, Preferably it is 3 or more, More preferably, it is 5 or more, More preferably, it is 7 or more, for example, 30 or less, Preferably it is 20 or less, More preferably, it is 15 or less. Preferably it is 10 or less.
- the (meth) acrylate monomer having an alkyl group having 5 to 30 carbon atoms is not particularly limited.
- Examples of the (meth) acrylate monomer having an alicyclic group having 5 to 30 carbon atoms include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentenyloxy.
- (Meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl di (meth) acrylate and the like can be mentioned, and the component (E) can be used alone or as a mixture of two or more.
- the amount of component (E) is preferably 3 to 300 parts by weight, more preferably 5 to 200 parts by weight, and particularly preferably 10 to 100 parts by weight with respect to 100 parts by weight of component (A). . If the component (E) is 3 parts by mass or more, the surface curability is not likely to decrease, and if it is 300 parts by mass or less, the moisture permeability of the curable resin composition does not decrease, which is preferable.
- an oligomer having a (meth) acryloyl group (not including the components (A) and (E) of the present invention), a thermal radical initiator, and a polythiol as long as the object of the present invention is not impaired.
- Compounds, tertiary amine compounds, various elastomers such as styrene copolymers, fillers, storage stabilizers, antioxidants, light stabilizers, adhesion promoters, plasticizers, pigments, flame retardants, surfactants, etc. Additives can be used.
- the oligomer having the (meth) acryloyl group (not including the components (A) and (E) of the present invention) is not particularly limited.
- Examples include hydrogenated isoprene-based (meth) acrylate, epoxy (meth) acrylate, (meth) acrylic group-containing acrylic polymer, and among others, because of excellent compatibility with the components (A) and (E) of the present invention, Urethane with polybutadiene skeleton (Meth
- the thermal radical initiator is not particularly limited, and examples thereof include ketone peroxide, peroxyketal, dialkyl peroxide, hydroperoxide, peroxyester, diacyl peroxide, and peroxydicarbonate. These compounds may be used alone or in combination of two or more.
- polythiol compound examples include, but are not limited to, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptobutyrate), Trimethylol ethane tris (3-mercaptobutyrate), trimethylol ethane tris (3-mercaptobutyrate), ethylene glycol bis (3-mercaptoglycolate), butanediol bis (3-mercaptoglycolate), trimethylolpropane tris (3-mercaptoglycolate), pentaerythritol tetrakis (3-mercaptoglycolate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, penta Lithritol tetrakis (3-mercaptopropionate), tetraethylene glycol bis (3-
- polythiol compounds examples include TMTP, PETP (manufactured by Sakai Chemical Co., Ltd.), TEMPIC, TMMP, PEMP, PEMP-II-20P, DPMP (manufactured by SC Organic Chemical Co., Ltd.), MTNR1, MTBD1, MTPE1 (Showa) But not limited to these. These compounds may be used alone or in combination of two or more.
- a tertiary amine compound may be blended for the purpose of improving curability with respect to the present invention.
- the tertiary amine compound is not particularly limited.
- a styrene copolymer may be blended for the purpose of adjusting the rubber physical properties of the cured product.
- the styrene copolymer is not particularly limited.
- styrene-butadiene copolymer styrene-isoprene copolymer (SIP), styrene-butadiene copolymer (SB), styrene-ethylene-butylene-styrene copolymer.
- SEBS polymer
- SIBS styrene-isobutylene-styrene copolymer
- AS acrylonitrile-styrene copolymer
- ABS styrene-butadiene-acrylonitrile copolymer
- a filler that does not impair storage stability may be added to the present invention.
- Specific examples include organic powders, inorganic powders, and metallic powders.
- Inorganic powder fillers include glass, spherical silica, fumed silica, alumina, mica, ceramics, silicone rubber powder, calcium carbonate, aluminum nitride, carbon powder, kaolin clay, dry clay minerals, dry diatomaceous earth, silane compounds Etc.
- the blending amount of the inorganic powder is preferably about 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A). If it is larger than 0.1 parts by mass, the effect is not reduced, and if it is 100 parts by mass or less, sufficient fluidity of the curable resin composition is obtained, and good workability is obtained.
- Fumed silica can be blended for the purpose of adjusting the viscosity of the curable resin composition or improving the mechanical strength of the cured product.
- those hydrophobized with organochlorosilanes, polyorganosiloxane, hexamethyldisilazane and the like can be used.
- Specific examples of fumed silica include commercially available products such as trade names Aerosil R974, R972, R972V, R972CF, R805, R812, R812S, R816, R8200, RY200, RX200, RY200S, and R202 manufactured by Nippon Aerosil. .
- the organic powder filler examples include polyethylene, polypropylene, nylon, crosslinked acrylic, crosslinked polystyrene, polyester, polyvinyl alcohol, polyvinyl butyral, and polycarbonate.
- the blending amount of the organic powder is preferably about 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A). If it is larger than 0.1 parts by mass, the effect is not reduced, and if it is 100 parts by mass or less, sufficient fluidity of the curable resin composition is obtained, and good workability is obtained.
- the filler for the metallic powder include gold, platinum, silver, copper, indium, palladium, nickel, alumina, tin, iron, aluminum, and stainless steel.
- the blending amount of the metallic powder is preferably about 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A).
- a storage stabilizer may be added to the present invention.
- a radical absorbent such as benzoquinone, hydroquinone, hydroquinone monomethyl ether, a metal chelating agent such as ethylenediaminetetraacetic acid or its 2-sodium salt, oxalic acid, acetylacetone, o-aminophenol, etc. may be added. it can.
- An antioxidant may be added to the present invention.
- the antioxidant include ⁇ -naphthoquinone, 2-methoxy-1,4-naphthoquinone, methyl hydroquinone, hydroquinone, hydroquinone monomethyl ether, mono-tert-butyl hydroquinone, 2,5-di-tert-butyl hydroquinone, p Quinone compounds such as benzoquinone, 2,5-diphenyl-p-benzoquinone, 2,5-di-tert-butyl-p-benzoquinone; phenothiazine, 2,2-methylene-bis (4-methyl-6-tert- Butylphenol), catechol, tert-butylcatechol, 2-butyl-4-hydroxyanisole, 2,6-di-tert-butyl-p-cresol, 2-tert-butyl-6- (3-tert-butyl-2- Hydroxy-5-methylbenzyl) -4-methyl Phenyl acrylate
- a light stabilizer may be added to the present invention.
- the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and 4-benzoyl.
- An adhesion-imparting agent may be added to the present invention.
- adhesion promoter 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane , Methacryloxyoctyltrimethoxysilane, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris ( ⁇ -methoxyethoxy) silane, ⁇ -chloropropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ) Ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -amino
- hydroxyethyl methacrylate phosphate, methacryloxyoxyethyl acid phosphate, methacryloxyoxyethyl acid phosphate monoethylamine half salt, 2-hydroxyethyl methacrylate phosphate and the like are preferable.
- the content of the adhesion-imparting agent is preferably 0.05 to 30 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the component (A).
- the curable resin composition of the present invention can be produced by a conventionally known method. For example, a predetermined amount of the components (A) to (E) and other optional components are blended, and using a mixing means such as a mixer, preferably at a temperature of 10 to 70 ° C., preferably 0.1 to 5 It can be produced by mixing for a period of time, more preferably by mixing for 0.5 to 2 hours at room temperature (25 ° C. ⁇ 10 ° C.). In addition, it is preferable to manufacture in a light-shielding (active energy ray) environment.
- a mixing means such as a mixer
- ⁇ Application method> As a method for applying the curable resin composition of the present invention to an adherend, known sealing agents and adhesive methods are used. For example, methods such as dispensing, spraying, inkjet, screen printing, gravure printing, dipping, spin coating using an automatic coater can be used. In addition, it is preferable that the curable resin composition of this invention is liquid at normal temperature (25 degreeC +/- 10 degreeC) from an applicability viewpoint.
- the light source and the active energy ray source for curing the curable resin composition of the present invention by irradiating light such as ultraviolet rays and visible light and active energy rays are not particularly limited.
- the low pressure mercury lamp, the medium pressure mercury lamp, High pressure mercury lamp, ultra high pressure mercury lamp, black light lamp, microwave excitation mercury lamp, metal halide lamp, sodium lamp, halogen lamp, xenon lamp, LED, fluorescent lamp, sunlight, electron beam irradiation device and the like can be mentioned.
- the irradiation amount of light or the like is preferably 10 kJ / m 2 or more, more preferably 15 kJ / m 2 or more from the viewpoint of the properties of the cured product.
- the curing by irradiation with the active energy ray can be performed not only at a high temperature condition up to about 100 ° C. but also at normal temperature (25 ° C. ⁇ 10 ° C.).
- the cured product of the present invention is formed by irradiating the curable resin composition of the present invention with active energy rays such as ultraviolet rays by the above curing method.
- active energy rays such as ultraviolet rays
- any curing method may be used.
- the curable resin composition of the present invention or the cured product thereof is a rubber elastic body excellent in low gas permeability, low moisture permeability, heat resistance, acid resistance, and flexibility.
- the curable resin composition of the present invention or the cured product thereof is a rubber elastic body excellent in low gas permeability, low moisture permeability, heat resistance, acid resistance, and flexibility.
- fuel cells solar cells, dye-sensitized solar cells, lithium ion batteries, electrolytic capacitors, liquid crystal displays, organic EL displays, electronic paper, LEDs, hard disk devices, photodiodes, optical communication / circuits, electric wires / cables / optical fibers Laminates such as optical isolators and IC cards, sensors, substrates, pharmaceutical / medical instruments and devices, and the like.
- the curable resin composition of the present invention is rapidly cured by irradiation with active energy rays such as ultraviolet rays, and has excellent adhesion to an electrolyte membrane that is a difficult-to-adhere material. Use is particularly preferred.
- a fuel cell is a power generator that extracts electricity by chemically reacting hydrogen and oxygen.
- fuel cells there are four types of fuel cells: solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells. Since the operating temperature is relatively low (around 80 ° C.) and high power generation efficiency, it is used for applications such as automobile power sources, household power generators, small power supplies for electronic devices such as mobile phones, and emergency power supplies.
- a cell 1 of a typical polymer electrolyte fuel cell is an electrolyte membrane electrode assembly having a structure in which a polymer electrolyte membrane 4 is sandwiched between an air electrode 3a and a fuel electrode 3b. 5 (MEA), a frame 6 that supports the MEA, and a separator 2 in which a gas flow path is formed.
- fuel gas hydrogen gas
- oxidizing gas oxygen gas
- the cooling water flows through the cooling water passage 9 for the purpose of relaxing the heat generation during power generation.
- a package in which several hundreds of cells are stacked is called a cell stack 10 as shown in FIG.
- a sealing agent is frequently used for the purpose of preventing leakage of fuel gas, oxygen gas and the like. Specifically, a sealant is used between adjacent separators, between the separator and the frame, between the frame and the electrolyte membrane or MEA, and the like.
- the polymer electrolyte membrane examples include a cation exchange membrane having ion conductivity, preferably a chemically stable and strong operation at a high temperature, and examples thereof include a fluorine polymer having a sulfonic acid group. It is done.
- examples of commercially available products include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Kasei Corporation, and Aciplex (registered trademark) manufactured by Asahi Glass Co., Ltd.
- the polymer electrolyte membrane is a material that hardly adheres, but can be adhered by using the curable resin composition of the present invention.
- the fuel electrode is called a hydrogen electrode or an anode, and a known one is used.
- a catalyst such as platinum, nickel, ruthenium or the like is supported
- the air electrode is called an oxygen electrode or a cathode, and a known one is used.
- carbon in which a catalyst such as platinum or an alloy is supported is used.
- a gas diffusion layer having a function of promoting gas diffusion and moisture retention of the electrolyte may be provided on the surface of each electrode.
- a known gas diffusion layer is used, and examples thereof include carbon paper, carbon cloth, and carbon fiber.
- the separator 2 has a fine flow path with irregularities, through which fuel gas and oxidizing gas pass and are supplied to the electrodes.
- the separator is made of aluminum, stainless steel, titanium, graphite, carbon, or the like.
- the frame is used to support and reinforce a thin electrolyte membrane or MEA so as not to be broken.
- the material of the frame include thermoplastic resins such as polyvinyl chloride, polyethylene naphthalate, polyethylene terephthalate, polypropylene, and polycarbonate.
- the member in order to bond a member using the curable resin composition of the present invention or a cured product thereof, the member preferably transmits light or active energy rays.
- the fuel cell of the present invention is a fuel cell characterized by being sealed with the curable resin composition of the present invention or a cured product thereof.
- the member that needs to be sealed in the fuel cell include a separator, a frame, an electrolyte, a fuel electrode, an air electrode, and an MEA. More specific seal locations include between adjacent separators, between separators and frames, between frames and electrolyte membranes or MEAs, and the like.
- the purpose of the main seal “between the separator and the frame” or “between the polymer electrolyte membrane or MEA and the frame” is to prevent gas mixing and leakage, and between the adjacent separators.
- the purpose of the seal is to prevent gas leakage and to prevent cooling water from leaking from the cooling water flow path to the outside. In addition, since it becomes a strong acid atmosphere with the acid generated from the electrolyte membrane, the sealant is required to have acid resistance.
- the sealing method using the curable resin composition of the present invention is not particularly limited.
- FIPG form in place gasket
- CIPG cure in place gasket
- MIPG mold in place gasket
- Examples include liquid injection molding.
- FIPG means that the curable resin composition of the present invention is applied to the flange of the part to be sealed by an automatic application device or the like, and is bonded to the other flange so that it can transmit active energy rays such as ultraviolet rays. It is a method of irradiating and curing the curable resin composition and adhesively sealing.
- a method of sealing at least a part between at least two flanges of a sealed part having at least two flanges, wherein at least one of the flanges is capable of transmitting active energy rays The step of applying the curable resin composition described above to at least one surface of the flange, and bonding the one flange coated with the curable resin composition and the other flange through the curable resin composition. And irradiating active energy rays through the permeable flange to cure the curable resin composition and seal at least a portion between the at least two flanges. It is a sealing method.
- CIPG is a bead coating of the curable resin composition of the present invention on the flange of a part to be sealed with an automatic coating apparatus, etc., and irradiating active energy rays such as ultraviolet rays to cure the curable resin composition. Form. And it is the technique of pasting together and compressing and sealing with the other flange. More specifically, a method for sealing at least a part between at least two flanges of a part to be sealed having at least two flanges, wherein at least one of the flanges has the curable resin composition described above.
- the flange is disposed on the gasket, one flange to which the curable resin composition is applied and the other flange are pressure-bonded via the gasket, and at least a part between the at least two flanges is sealed.
- a mold is pressed against a flange of a part to be sealed in advance, a curable resin composition is injected into a cavity formed between the mold made of a material capable of transmitting active energy rays and the flange, and active such as ultraviolet rays. It is irradiated with energy rays and cured to form a gasket. And it is the technique of pasting together and compressing and sealing with the other flange.
- die is a material which can permeate
- a release agent such as a fluorine type or a silicone type in advance to the mold in order to facilitate removal from the mold after the gasket is formed. More specifically, a method for sealing at least a part between at least two flanges of a part to be sealed having at least two flanges, wherein a gasket forming mold is disposed on at least one of the flanges. A step of injecting the curable resin composition described above into at least a part of a gap between the gasket forming mold and the flange on which the mold is disposed, and the active energy in the curable resin composition.
- the curable resin composition of the present invention is poured into a mold made of a material capable of transmitting active energy rays with a specific pressure and cured by irradiating active energy rays such as ultraviolet rays to form a gasket. And it is the technique of pasting together and compressing and sealing with the other flange.
- die is a material which can permeate
- a release agent such as a fluorine type or a silicone type in advance to the mold in order to facilitate removal from the mold after the gasket is formed.
- the product was dissolved in 3000 ml of n-hexane, washed three times with 3000 ml of pure water, reprecipitated from methanol, and then the solvent was reduced in pressure.
- the polyisobutylene polymer (a1) which has acryloyloxyethoxyphenyl group was obtained by distilling down and vacuum-drying the obtained polymer at 80 degreeC for 24 hours.
- A1 contains a — [CH 2 C (CH 3 ) 2 ] — unit and contains two acryloyl groups. More specifically, a1 are the compounds of formula (1), R 1 represents a phenylene group, PIB represents a polyisobutylene backbone, R 4 represents a hydrocarbon group having 2 carbon atoms, R 2 and R 3 Each independently represents a hydrogen atom, R 5 represents a hydrogen atom, and n is a polyisobutylene polymer of 2, specifically, a polymer represented by the following general formula (3).
- the number average molecular weight (chromatography method, polystyrene conversion) of the a1 component is 11,100
- the viscosity (25 ° C.) of the a1 component measured using a cone plate viscometer is compliant with JIS K 7117. 1550 Pa ⁇ s.
- test methods used in the examples and comparative examples of Table 1a and Table 1b are as follows.
- Each curable resin composition is put into a metal tube (stainless steel, diameter 3 mm ⁇ , height 8 mm) having a depth of 5 mm, and irradiated with ultraviolet rays for 20 seconds so as to obtain an integrated light amount of 45 kJ / m 2 using an ultraviolet irradiator. And cured to obtain a cured product. Then, the uncured portion was removed with a solvent (type: toluene), and the thickness of the cured portion was measured with calipers to calculate the deep curability.
- Table 1a and Table 1b The results are summarized in Table 1a and Table 1b.
- the deep curability of 1 mm or more is preferable from the viewpoint of being effective for bonding different materials.
- the present invention is excellent in surface curability and deep curability by irradiation with active energy rays such as ultraviolet rays.
- the comparative examples 1 and 2 of Table 1b are compositions which (D) component of this invention does not contain, it turns out that surface curability is inferior.
- the comparative example 3 is a composition which does not contain the (C) component of this invention, it turns out that surface curability is inferior.
- Comparative Examples 4 and 5 are compositions using 2-ethylanthraquinone and 9-fluorenone instead of the component (D) of the present invention, but it is found that the surface curability is inferior.
- the comparative example 6 is a composition using benzophenone instead of the component (D) of the present invention, it can be seen that the deep curability is inferior.
- Comparative Examples 7 and 8 are compositions using 2-ethylanthraquinone and 9-fluorenone instead of the component (C) of the present invention, but it is found that the surface curability is inferior.
- the comparative example 9 is a composition using benzophenone instead of the component (C) of the present invention, it can be seen that the deep curability is inferior.
- Comparative Example 10 A comparative example 10 was obtained in the same manner as in Example 3, except that polybutadiene skeleton urethane dimethacrylate (TE-2000, manufactured by Nippon Soda Co., Ltd.) was used instead of the component (A) in Example 3. It was.
- polybutadiene skeleton urethane dimethacrylate TE-2000, manufactured by Nippon Soda Co., Ltd.
- Example 3 a preparation was made in the same manner as in Example 3 except that a polyether skeleton urethane diacrylate (UXF-4002, manufactured by Nippon Explosives Co., Ltd.) was used instead of the component (A). Obtained.
- a polyether skeleton urethane diacrylate UXF-4002, manufactured by Nippon Explosives Co., Ltd.
- the moisture permeability (g / m 2 ⁇ 24h) was calculated and evaluated based on the following evaluation criteria. The results are shown in Table 2. The detailed test method conforms to JIS Z 0208. The moisture permeability is preferably less than 50 g / m 2 ⁇ 24 h when used as a curable sealant for fuel cells.
- ⁇ Hydrogen gas barrier test> The curable resin compositions of Examples 3 and 6 and Comparative Examples 10 and 11 were irradiated with ultraviolet rays for 20 seconds using an ultraviolet irradiator so as to obtain an integrated light amount of 45 kJ / m 2, and a sheet-like sheet having a thickness of 1.0 mm. A cured product was created. Next, using a sheet-like cured product, the permeability of hydrogen gas was measured in accordance with JIS K7126-1: 2006 (Plastics—Film and Sheet—Gas Permeability Test Method—Part 1: Differential Pressure Method).
- the type of test was the pressure sensor method, the conditions were 23 ° C., the test gas (hydrogen gas) on the high pressure side was measured at 100 kPa, and the evaluation was made based on the following evaluation criteria.
- the results are shown in Table 2.
- the hydrogen gas barrier property is preferably less than 1 ⁇ 10 ⁇ 15 mol ⁇ m / m 2 ⁇ s ⁇ Pa when used as a curable sealant for fuel cells.
- Evaluation criteria Good: Less than 1 ⁇ 10 ⁇ 15 mol ⁇ m / m 2 ⁇ s ⁇ Pa
- Defects 1 ⁇ 10 ⁇ 15 mol ⁇ m / m 2 ⁇ s ⁇ Pa or more
- Comparative Example 10 uses urethane diacrylate having a polybutadiene skeleton in place of the component (A), but has a result that moisture permeability and hydrogen gas barrier properties are inferior.
- Comparative Example 11 uses the polyether frame
- the present invention is excellent in surface curability and deep curability by irradiation with active energy rays such as ultraviolet rays while maintaining sealing properties, it can be used for various sealing applications. In particular, it is industrially useful because it is effective as a curable sealant for fuel cells.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Development (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Sealing Material Composition (AREA)
- Fuel Cell (AREA)
Abstract
Description
〔1〕
下記の(A)~(D)成分を含有することを特徴とする硬化性樹脂組成物。
(A)成分:(メタ)アクリロイル基を1以上有する、-[CH2C(CH3)2]-単位を含むポリイソブチレン骨格を有するポリマー
(B)成分:ラジカル重合開始剤
(C)成分:トリアリールホスフィンまたはトリアリールホスフィン誘導体
(D)成分:キサントンまたはキサントン誘導体
〔2〕
前記(A)成分が、一般式(1)で表されるポリイソブチレン骨格を有するポリマーである、前記〔1〕に記載の硬化性樹脂組成物。
(式(1)中、R1は、一価もしくは多価芳香族炭化水素基、または一価もしくは多価脂肪族炭化水素基を示し、PIBは前記-[CH2C(CH3)2]-単位を含むポリイソブチレン骨格を示し、R4は酸素原子を含んでもよい炭素数2~6の2価の炭化水素基を表し、R2及びR3はそれぞれ独立して水素原子又は炭素数1~20の1価の炭化水素基を表し、R5は水素原子、メチル基、エチル基を表し、nは1~6のいずれかの整数である。)
〔3〕
更に(E)成分として、(メタ)アクリレートモノマーを含有する、前記〔1〕または〔2〕に記載の硬化性樹脂組成物。
〔4〕
前記(E)成分が、炭素数5~30のアルキル基または炭素数5~30の脂環式基を有する(メタ)アクリレートモノマーである、前記〔3〕に記載の硬化性樹脂組成物。
〔5〕
前記(A)成分100質量部に対して、(C)成分を0.1~30質量部、(D)成分を0.1~30質量部含む、前記〔1〕~〔4〕のいずれか1項に記載の硬化性樹脂組成物。
〔6〕
前記〔1〕~〔5〕のいずれか1項に記載の硬化性樹脂組成物を含む、燃料電池用硬化性シール剤。
〔7〕
前記燃料電池用硬化性シール剤が、燃料電池における部材であるセパレーター、フレーム、電解質、燃料極、空気極、電解質膜電極接合体からなる群のいずれかの部材周辺用燃料電池用硬化性シール剤である、前記〔6〕に記載のシール剤。
〔8〕
前記燃料電池用硬化性シール剤が、燃料電池における隣り合うセパレーター同士との間のシール剤、燃料電池のフレームと電解質膜または電解質膜電極接合体との間のシール剤である、前記〔6〕に記載のシール剤。
〔9〕
前記燃料電池が、固体高分子形燃料電池である、前記〔6〕~〔8〕のいずれか1項に記載のシール剤。
〔10〕
前記〔1〕~〔5〕のいずれか1項に記載の硬化性樹脂組成物または前記〔6〕~〔9〕のいずれか1項に記載のシール剤を硬化してなる硬化物。
〔11〕
燃料電池における隣り合うセパレーター同士との間のシール、及び燃料電池のフレームと電解質膜または電解質膜電極接合体との間のシールからなる群のいずれかを含む燃料電池であって、前記いずれかのシールが、前記〔10〕に記載の硬化物を含む、燃料電池。
〔12〕
前記燃料電池が、固体高分子形燃料電池である、前記〔11〕に記載の燃料電池。
〔13〕
少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方が活性エネルギー線を透過可能であり、前記フランジの少なくとも一方の表面に、前記〔1〕~〔5〕のいずれか1項に記載の硬化性樹脂組成物を塗布する工程、前記硬化性樹脂組成物を塗布した一方のフランジと他方のフランジとを前記硬化性樹脂組成物を介して貼り合わせる工程、及び、活性エネルギー線を前記透過可能なフランジを通して照射して前記硬化性樹脂組成物を硬化させ、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とする前記シール方法。
〔14〕
少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方のフランジに、前記〔1〕~〔5〕のいずれか1項に記載の硬化性樹脂組成物を塗布する工程、前記塗布した硬化性樹脂組成物に活性エネルギー線を照射して前記硬化性樹脂組成物を硬化させ、前記硬化性樹脂組成物の硬化物からなるガスケットを形成する工程、他方のフランジを前記ガスケット上に配置して、硬化性樹脂組成物を塗布した一方のフランジと前記他方のフランジとを前記ガスケットを介して圧着し、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とする前記シール方法。
〔15〕
少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方のフランジ上にガスケット形成用金型を配置する工程、前記ガスケット形成用金型と該金型を配置したフランジとの間の空隙の少なくとも一部に前記〔1〕~〔5〕のいずれか1項に記載の硬化性樹脂組成物を注入する工程、前記硬化性樹脂組成物に前記活性エネルギー線を照射して前記硬化性樹脂組成物を硬化させ、前記硬化性樹脂組成物の硬化物からなるガスケットを形成する工程、前記金型を前記一方のフランジから取り外す工程、他方のフランジを前記ガスケット上に配置して、前記一方のフランジと前記他方のフランジとを前記ガスケットを介して圧着し、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とするシール方法。
[1b]下記の(A)~(D)成分を含有することを特徴とする光硬化性樹脂組成物。
(A)成分:(メタ)アクリロイル基を1以上有する、-[CH2C(CH3)2]-単位を含むポリイソブチレン骨格を有するポリマー
(B)成分:光ラジカル重合開始剤
(C)成分:トリアリールホスフィンまたはトリアリールホスフィン誘導体
(D)成分:キサントンまたはキサントン誘導体
[2b]前記(A)成分が、一般式(1)で表されるポリイソブチレン骨格を有するポリマーである、[1b]に記載の光硬化性樹脂組成物。
[3b]更に(E)成分として、(メタ)アクリレートモノマーを含有する、[1b]または[2b]に記載の光硬化性樹脂組成物。
[4b]前記(E)成分が、炭素数5~30のアルキル基または炭素数5~30の脂環式基を有する(メタ)アクリレートモノマーである、[3b]に記載の光硬化性樹脂組成物。
[5b]前記(A)成分100質量部に対して、(C)成分0.1~30質量部、(D)成分0.1~30質量部含むことを特徴とする[1b]~[4b]のいずれか1項に記載の光硬化性樹脂組成物。
[6b][1b]~[5b]のいずれか1項に記載の光硬化性樹脂組成物を含む、燃料電池用光硬化性シール剤。
[7b]前記燃料電池用光硬化性シール剤が、燃料電池における部材であるセパレーター、フレーム、電解質、燃料極、空気極、電解質膜電極接合体からなる群のいずれかの部材周辺用燃料電池用光硬化性シール剤である、[6b]に記載のシール剤。
[8b]前記燃料電池用光硬化性シール剤が、燃料電池における隣り合うセパレーター同士との間のシール剤、燃料電池のフレームと電解質膜または電解質膜電極接合体との間のシール剤である、[6b]に記載のシール剤。
[9b]前記燃料電池が、固体高分子形燃料電池である、[6b]~[8b]のいずれか1項に記載のシール剤。
[10b][1b]~[5b]のいずれか1項に記載の光硬化性樹脂組成物または[6b]~[9b]のいずれか1項に記載のシール剤を光硬化してなる硬化物。
[11b]燃料電池における隣り合うセパレーター同士との間のシール、及び燃料電池のフレームと電解質膜または電解質膜電極接合体との間のシールからなる群のいずれかを含む燃料電池であって、前記いずれかのシールが、[10b]に記載の硬化物を含む、燃料電池。
[12b]前記燃料電池が、固体高分子形燃料電池である、[11b]に記載の燃料電池。
[13b]少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方が活性エネルギー線の光を透過可能であり、前記フランジの少なくとも一方の表面に、[1b]~[5b]のいずれか1項に記載の光硬化性樹脂組成物を塗布する工程、前記光硬化性樹脂組成物を塗布した一方のフランジと他方のフランジとを前記光硬化性樹脂組成物を介して貼り合わせる工程、及び、活性エネルギー線を前記光透過可能なフランジを通して照射して前記光硬化性樹脂組成物を硬化させ、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とする前記シール方法。
[14b]少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方のフランジに、[1b]~[5b]のいずれか1項に記載の光硬化性樹脂組成物を塗布する工程、前記塗布した光硬化性樹脂組成物に活性エネルギー線を照射して前記光硬化性樹脂組成物を硬化させ、前記光硬化性樹脂組成物の硬化物からなるガスケットを形成する工程、他方のフランジを前記ガスケット上に配置して、光硬化性樹脂組成物を塗布した一方のフランジと前記他方のフランジとを前記ガスケットを介して圧着し、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とする前記シール方法。
[15b]少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方のフランジ上にガスケット形成用金型を配置する工程、前記ガスケット形成用金型と該金型を配置したフランジとの間の空隙の少なくとも一部に[1b]~[5b]のいずれか1項に記載の光硬化性樹脂組成物を注入する工程、前記光硬化性樹脂組成物に前記活性エネルギー線を照射して前記光硬化性樹脂組成物を硬化させ、前記光硬化性樹脂組成物の硬化物からなるガスケットを形成する工程、前記金型を前記一方のフランジから取り外す工程、他方のフランジを前記ガスケット上に配置して、前記一方のフランジと前記他方のフランジとを前記ガスケットを介して圧着し、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とするシール方法。
<(A)成分>
本発明に用いられる(A)成分とは、(メタ)アクリロイル基を1以上有する、-[CH2C(CH3)2]-単位を含むポリイソブチレン骨格を有するポリマーであれば特に限定されるものではない。(A)成分としては、例えば、-[CH2C(CH3)2]-単位(ポリイソブチレン骨格)を有すればよく、「-[CH2C(CH3)2]-単位以外の他の構成単位」を含むポリマーであってもよい。(A)成分は、-[CH2C(CH3)2]-単位を、構成単位全量に対して、例えば70質量%以上含み、好ましくは75質量%以上含み、より好ましくは80質量%以上含むことが適当である。また、(A)成分は、-[CH2C(CH3)2]-単位を、例えば100質量%以下含み、別の態様では95質量%以下含み、また別の態様では90質量%以下含むことが適当である。(A)成分は、(メタ)アクリロイル基を、好ましくは1~6個、より好ましくは2~4個、さらに好ましくは2~3個、特に好ましくは2個有することが適当である。なお、本発明において、ポリマーとは、理論にとらわれないが、例えば、ポリマーの主鎖にモノマーの繰り返し単位を伴う構造で、100以上の繰り返し単位からなる化合物を指すと定義できる。
本発明に用いられる(B)成分であるラジカル重合開始剤は、活性エネルギー線を照射することにより、本発明の(A)成分を硬化せしめるラジカル等を発生させる化合物であれば限定されるものではない。ここで活性エネルギー線とは、α線やβ線等の放射線、γ線やX線等の電磁波、電子線(EB)、波長が100~400nm程度の紫外線、波長が400~800nm程度の可視光線等の広義の光全てを含むものであり、好ましくは紫外線である。(B)成分としては、例えば、アセトフェノン系ラジカル重合開始剤、ベンゾイン系ラジカル重合開始剤、ベンゾフェノン系ラジカル重合開始剤、チオキサントン系ラジカル重合開始剤、アシルホスフィンオキサイド系ラジカル重合開始剤、チタノセン系ラジカル重合開始剤等が挙げられ、この中でも、活性エネルギー線を照射することにより表面硬化性および深部硬化性に優れる硬化物が得られるという観点からアセトフェノン系ラジカル重合開始剤、アシルホスフィンオキサイド系ラジカル重合開始剤が好ましい。またこれらは単独で用いてもよく、2種以上が併用されてもよい。
本発明の(C)成分は、トリアリールホスフィンまたはトリアリールホスフィン誘導体であれば、特に限定されない。本発明の(C)成分は、活性エネルギー線による硬化反応における増感剤として使用され得るものであり、本発明のその他成分と組み合わせることにより、紫外線等の活性エネルギー線の照射による表面硬化性および深部硬化性を実現させることができるものである。特に(C)成分は後述する(D)成分と併用することにより、顕著な効果を有する。
本発明の(D)成分は、キサントンまたはキサントン誘導体であれば、特に限定されない。本発明の(D)成分は、活性エネルギー線による硬化反応における増感剤として使用され得るものであり、本発明のその他成分と組み合わせることにより、紫外線等の活性エネルギー線の照射による表面硬化性および深部硬化性を実現させることができるものである。特に(D)成分は前述した(C)成分と併用することにより、顕著な効果を有する。
前記(C)成分と前記(D)成分の質量比率((C):(D))が、好ましくは5:1~1:5であり、さらに好ましくは4:1~1:4であり、特に好ましくは、3:1~1:3である。上記の範囲内であることで、活性エネルギー線による硬化反応における増感剤として、特に本発明の(B)成分であるラジカル重合開始剤による硬化反応における増感剤として、顕著な効果を奏することが可能となる。
本発明の(E)成分である(メタ)アクリレートモノマーとは、本発明の(B)成分が発生するラジカル種により重合する化合物であり、反応性希釈剤として用いられる。但し、本発明の(A)成分を除くものとする。(E)成分としては、例えば単官能性、二官能性、三官能性及び多官能性のモノマー等を使用することができ、これらの中でも、本発明の(A)成分と相溶し、硬化性が優れることから、炭素数5~30のアルキル基または炭素数5~30の脂環式基を有する(メタ)アクリレートモノマーが好ましい。ここで、上記炭素数としては、例えば2以上、好ましくは3以上、より好ましくは5以上、さらに好ましくは7以上であり、また、例えば30以下、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下である。
本発明の組成物に対し、本発明の目的を損なわない範囲で、(メタ)アクリロイル基を有するオリゴマー(本発明の(A)成分と(E)成分を含まない)、熱ラジカル開始剤、ポリチオール化合物、3級アミン化合物、スチレン系共重合体等の各種エラストマー、充填材、保存安定剤、酸化防止剤、光安定剤、密着付与剤、可塑剤、顔料、難燃剤、及び界面活性剤等の添加剤を使用することができる。
金属質粉体の充填材としては、例えば、金、白金、銀、銅、インジウム、パラジウム、ニッケル、アルミナ、錫、鉄、アルミニウム、ステンレスなどが挙げられる。金属質粉体の配合量は、(A)成分100質量部に対し、0.1~100質量部程度が好ましく、より好ましくは1~50質量部である。
本発明の硬化性樹脂組成物は、従来公知の方法により製造することができる。例えば、(A)成分~(E)成分及びその他の任意成分の所定量を配合して、ミキサー等の混合手段を使用して、好ましくは10~70℃の温度で好ましくは0.1~5時間混合することにより、より好ましくは常温(25℃±10℃)で0.5~2時間混合することにより、製造することができる。また、好ましくは遮光(遮活性エネルギー線)環境下で製造することが適当である。
本発明の硬化性樹脂組成物を被着体への塗布する方法としては、公知のシール剤や接着剤の方法が用いられる。例えば、自動塗布機を用いたディスペンシング、スプレー、インクジェット、スクリーン印刷、グラビア印刷、ディッピング、スピンコートなどの方法を用いることができる。なお、本発明の硬化性樹脂組成物は、塗布性の観点から常温(25℃±10℃)で液状であることが好ましい。
本発明の硬化性樹脂組成物を紫外線、可視光等の光や活性エネルギー線に照射することにより硬化させるに際しての光源や活性エネルギー線源は特に限定されず、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LED、蛍光灯、太陽光、電子線照射装置等が挙げられる。光等の照射の照射量は硬化物の特性の観点から10kJ/m2以上であることが好ましく、より好ましくは15kJ/m2以上である。なお、本発明の硬化性樹脂組成物の硬化には、加熱を要しない。従って、上記活性エネルギー線の照射による硬化は、100℃程度までの高温条件下のみならず、常温(25℃±10℃)で行うことができる。
本発明の硬化物は、本発明の硬化性樹脂組成物に対し、上記硬化方法によって紫外線等の活性エネルギー線を照射することにより硬化させてなる。本発明の硬化物は、本発明の硬化性樹脂組成物が硬化したものであれば、その硬化方法の如何は問わない。
シール剤の具体的な用途としては、本発明の硬化性樹脂組成物またはその硬化物は、低気体透過性、低透湿性、耐熱性、耐酸性、可とう性に優れるゴム弾性体であることから、燃料電池、太陽電池、色素増感型太陽電池、リチウムイオン電池、電解コンデンサ、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー、LED、ハードディスク装置、フォトダイオード、光通信・回路、電線・ケーブル・光ファイバー、光アイソレータ、ICカード等の積層体、センサー、基板、医薬・医療用器具・機器等が挙げられる。これらの用途の中でも、本発明の硬化性樹脂組成物は、紫外線等の活性エネルギー線の照射により速やかに硬化し、難接着な材質である電解質膜に対する接着力に優れていることから、燃料電池用途が特に好ましい。
燃料電池とは、水素と酸素を化学的に反応させることにより電気を取り出す発電装置である。また、燃料電池には、固体高分子形燃料電池、りん酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池の4つの方式があるが、中でも固体高分子形燃料電池は、運転温度が比較的低温(80℃前後)でありながら高発電効率であるので、自動車用動力源、家庭用発電装置、携帯電話などの電子機器用小型電源、非常電源等の用途に用いられる。
燃料極(アノード電極):H2→2H++2e-
空気極(カソード電極):1/2O2+2H++2e-→H2O
ナフィオン(登録商標)
本発明の硬化性樹脂組成物を用いたシール手法としては、特に限定されないが、代表的には、FIPG(フォームインプレイスガスケット)、CIPG(キュアーインプレイスガスケット)、MIPG(モールドインプレイスガスケット)、液体射出成形などが挙げられる。
各成分を表1a及び表1bに示す質量部で採取し、活性エネルギー線を遮断した環境下にてプラネタリーミキサーで60分間、常温(18℃)で混合し、硬化性樹脂組成物を調製し、各種物性に関して次のようにして測定した。尚詳細な調製量は表1a及び表1bに従い、数値は全て質量部で表記する。
5Lのセパラブルフラスコの容器内を窒素置換した後、n-ヘキサン200mL及び塩化ブチル2000mLを加え、窒素雰囲気下で攪拌しながら-70℃まで冷却した。次いで、イソブチレン840mL(9mol))、p-ジクミルクロライド12g(0.05mol)及び2-メチルピリジン1.1g(0.012mol)を加えた。反応混合物が-70℃まで冷却された後で、四塩化チタン5.0mL(0.05mol)を加えて重合を開始した。重合開始3時間後に、フェノキシエチルアクリレート(ライトアクリレートPO-A、共栄社化学株式会社製)40gと四塩化チタン110mlを添加した。その後、-70℃で4時間攪拌を続けた後、メタノール1000mlを添加して反応を停止させた。反応溶液から上澄み液を分取し、溶剤等を留去した後、生成物をn-ヘキサン3000mlに溶解させ、3000mlの純水で3回水洗を行い、メタノールから再沈殿した後、溶媒を減圧下に留去して、得られた重合体を80℃で24時間真空乾燥することにより、アクリロイルオキシエトキシフェニル基を有するポリイソブチレンポリマー(a1)を得た。
b1:2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(IRGACURE1173、BASF社製)
b2:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IRGACURE819、BASF社製)
<(C)成分>
c1:トリフェニルホスフィン(試薬、東京化成工業株式会社製)
<(D)成分>
d1:キサントン(試薬、東京化成工業株式会社製)
<(C)成分または(D)成分ではない増感剤>
・2-エチルアントラキノン(試薬、純正化学株式会社製)
・9-フルオレノン(試薬、純正化学株式会社製)
・ベンゾフェノン(試薬、純正化学株式会社製)
<(E)成分>
e1:イソボルニルメタクリレート(SR423、サートマー社製)
e2:ジシクロペンタニルメタクリレート(FA-513M、日立化成株式会社製)
10mm×10mmのガラス板に実施例及び比較例の各組成物を500μmの厚みになるようにそれぞれ塗布する。次に、紫外線照射機を用いて45kJ/m2の積算光量になるように紫外線を20秒間照射し硬化させた。その後、硬化物に対してフッ素樹脂製棒(PTFE製、外径5mmφ、長さ100mmの円柱、接触面積9mm2)による接触試験で下記基準に基づき評価した。
[評価基準]
良:硬化物がフッ素樹脂製棒に付着せず、持ち上がらない
不良:硬化物がフッ素樹脂製棒に付着する。または、硬化物がフッ素樹脂製棒に付着しないが、一時的に持ち上がる
各硬化性樹脂組成物を深さ5mmの金属筒(ステンレス製、直径3mmφ、高さ8mm)に入れ、紫外線照射機を用いて45kJ/m2の積算光量になるように紫外線を20秒間照射し、硬化させ、硬化物を得た。そして、未硬化部分を溶剤(種類:トルエン)で除去し、硬化部分の厚さをノギスで測定することにより、深部硬化性を算出した。その結果を表1a及び表1bにまとめた。なお、燃料電池用硬化性シール剤に適用するためには、異種材料接着に有効であるという観点で1mm以上の深部硬化性が好ましい。
[評価基準]
良:深部硬化性が1mm以上
不良:深部硬化性が1mm未満
実施例3において、(A)成分の代わりにポリブタジエン骨格のウレタンジメタクリレート(TE-2000、日本曹達株式会社製)にした以外は、実施例3と同様にして、調製し、比較例10を得た。
実施例3において、(A)成分の代わりにポリエーテル骨格のウレタンジアクリレート(UXF-4002、日本火薬株式会社製)にした以外は、実施例3と同様にして、調製し、比較例11を得た。
200mm×200mm×1.0mmの枠に実施例3、6と比較例10、11の硬化性樹脂組成物を流し込んだ。その後、紫外線照射機により積算光量45kJ/m2になるように紫外線を20秒間照射し、厚さ1.0mmのシート状の硬化物を作成した。塩化カルシウム(無水)5gを直径30mmの開口部を有するアルミニウム製カップに入れて、前記硬化物をカップの開口部に隙間なくセットした。「初期の全質量」(g)を測定した後、雰囲気温度40℃で相対湿度95%に保たれた恒温恒湿槽に24時間放置し、「放置後の全質量」(g)を測定して、透湿度(g/m2・24h)を計算し、下記評価基準に基づき評価した。結果を表2に示す。詳細な試験方法はJIS Z 0208に準拠する。なお、透湿度は、燃料電池用硬化性シール剤として使用する場合、50g/m2・24h未満であることが好ましい。
[評価基準]
良:透湿度が、10g/m2・24h未満
可:透湿度が、10g/m2・24h以上、50g/m2・24h未満
不良:透湿度が、50g/m2・24h以上
実施例3、6と比較例10、11の硬化性樹脂組成物を用いて紫外線照射機により積算光量45kJ/m2になるように紫外線を20秒間照射し、厚さ1.0mmのシート状の硬化物を作成した。次にシート状の硬化物を用いて、JIS K7126-1:2006(プラスチック-フィルム及びシート-ガス透過度試験方法-第1部:差圧法)に準拠し、水素ガスの透過度を測定した。尚、試験の種類は圧力センサ法であり、条件は23℃、高圧側の試験ガス(水素ガス)は100kPaにて測定し、下記評価基準に基づき評価した。結果を表2に示す。なお、水素ガスバリア性は、燃料電池用硬化性シール剤として使用する場合、1×10-15mol・m/m2・s・Pa未満であることが好ましい。
[評価基準]
良:1×10-15mol・m/m2・s・Pa未満
不良:1×10-15mol・m/m2・s・Pa以上
2 セパレーター
3a 空気極(カソード)
3b 燃料極(アノード)
4 高分子電解質膜
5 電解質膜電極接合体(MEA)
6 フレーム
7 接着剤またはシール剤
8a 酸化ガス流路
8b 燃料ガス流路
9 冷却水流路
10 セルスタック
11 固体高分子形燃料電池
Claims (15)
- 下記の(A)~(D)成分を含有することを特徴とする硬化性樹脂組成物。
(A)成分:(メタ)アクリロイル基を1以上有する、-[CH2C(CH3)2]-単位を含むポリイソブチレン骨格を有するポリマー
(B)成分:ラジカル重合開始剤
(C)成分:トリアリールホスフィンまたはトリアリールホスフィン誘導体
(D)成分:キサントンまたはキサントン誘導体 - 更に(E)成分として、(メタ)アクリレートモノマーを含有する、請求項1または2に記載の硬化性樹脂組成物。
- 前記(E)成分が、炭素数5~30のアルキル基または炭素数5~30の脂環式基を有する(メタ)アクリレートモノマーである、請求項3に記載の硬化性樹脂組成物。
- 前記(A)成分100質量部に対して、(C)成分を0.1~30質量部、(D)成分を0.1~30質量部含む、請求項1~4のいずれか1項に記載の硬化性樹脂組成物。
- 請求項1~5のいずれか1項に記載の硬化性樹脂組成物を含む、燃料電池用硬化性シール剤。
- 前記燃料電池用硬化性シール剤が、燃料電池における部材であるセパレーター、フレーム、電解質、燃料極、空気極、電解質膜電極接合体からなる群のいずれかの部材周辺用燃料電池用硬化性シール剤である、請求項6に記載のシール剤。
- 前記燃料電池用硬化性シール剤が、燃料電池における隣り合うセパレーター同士との間のシール剤、燃料電池のフレームと電解質膜または電解質膜電極接合体との間のシール剤である、請求項6に記載のシール剤。
- 前記燃料電池が、固体高分子形燃料電池である、請求項6~8のいずれか1項に記載のシール剤。
- 請求項1~5のいずれか1項に記載の硬化性樹脂組成物または請求項6~9のいずれか1項に記載のシール剤を硬化してなる硬化物。
- 燃料電池における隣り合うセパレーター同士との間のシール、及び燃料電池のフレームと電解質膜または電解質膜電極接合体との間のシールからなる群のいずれかを含む燃料電池であって、前記いずれかのシールが、請求項10に記載の硬化物を含む、燃料電池。
- 前記燃料電池が、固体高分子形燃料電池である、請求項11に記載の燃料電池。
- 少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方が活性エネルギー線を透過可能であり、前記フランジの少なくとも一方の表面に、請求項1~5のいずれか1項に記載の硬化性樹脂組成物を塗布する工程、前記硬化性樹脂組成物を塗布した一方のフランジと他方のフランジとを前記硬化性樹脂組成物を介して貼り合わせる工程、及び、活性エネルギー線を前記透過可能なフランジを通して照射して前記硬化性樹脂組成物を硬化させ、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とする前記シール方法。
- 少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方のフランジに、請求項1~5のいずれか1項に記載の硬化性樹脂組成物を塗布する工程、前記塗布した硬化性樹脂組成物に活性エネルギー線を照射して前記硬化性樹脂組成物を硬化させ、前記硬化性樹脂組成物の硬化物からなるガスケットを形成する工程、他方のフランジを前記ガスケット上に配置して、硬化性樹脂組成物を塗布した一方のフランジと前記他方のフランジとを前記ガスケットを介して圧着し、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とする前記シール方法。
- 少なくとも2つのフランジを有する被シール部品の当該少なくとも2つのフランジの間の少なくとも一部をシールする方法であって、前記フランジの少なくとも一方のフランジ上にガスケット形成用金型を配置する工程、前記ガスケット形成用金型と該金型を配置したフランジとの間の空隙の少なくとも一部に請求項1~5のいずれか1項に記載の硬化性樹脂組成物を注入する工程、前記硬化性樹脂組成物に前記活性エネルギー線を照射して前記硬化性樹脂組成物を硬化させ、前記硬化性樹脂組成物の硬化物からなるガスケットを形成する工程、前記金型を前記一方のフランジから取り外す工程、他方のフランジを前記ガスケット上に配置して、前記一方のフランジと前記他方のフランジとを前記ガスケットを介して圧着し、前記少なくとも2つのフランジの間の少なくとも一部をシールする工程、を含むことを特徴とするシール方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018538263A JP6960078B2 (ja) | 2016-09-06 | 2017-07-21 | 硬化性樹脂組成物、それを用いた燃料電池およびシール方法 |
EP17848424.2A EP3511352A4 (en) | 2016-09-06 | 2017-07-21 | CURABLE RESIN COMPOSITION, FUEL CELL THEREFOR AND SEALING METHOD THEREFOR |
KR1020197003153A KR102324203B1 (ko) | 2016-09-06 | 2017-07-21 | 경화성 수지 조성물, 그것을 이용한 연료 전지 및 밀봉 방법 |
US16/324,041 US11165072B2 (en) | 2016-09-06 | 2017-07-21 | Curable resin composition, fuel cell using same, and sealing method using same |
CA3033168A CA3033168C (en) | 2016-09-06 | 2017-07-21 | Curable resin composition, fuel cell using same, and sealing method using same |
CN201780050669.3A CN109641997B (zh) | 2016-09-06 | 2017-07-21 | 固化性树脂组合物、使用该固化性树脂组合物的燃料电池和密封方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-174050 | 2016-09-06 | ||
JP2016174050 | 2016-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018047479A1 true WO2018047479A1 (ja) | 2018-03-15 |
Family
ID=61561795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026445 WO2018047479A1 (ja) | 2016-09-06 | 2017-07-21 | 硬化性樹脂組成物、それを用いた燃料電池およびシール方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11165072B2 (ja) |
EP (1) | EP3511352A4 (ja) |
JP (1) | JP6960078B2 (ja) |
KR (1) | KR102324203B1 (ja) |
CN (1) | CN109641997B (ja) |
CA (1) | CA3033168C (ja) |
WO (1) | WO2018047479A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10245785B2 (en) | 2017-06-16 | 2019-04-02 | Holo, Inc. | Methods for stereolithography three-dimensional printing |
WO2019124252A1 (ja) * | 2017-12-18 | 2019-06-27 | 株式会社スリーボンド | 硬化性樹脂組成物、それを用いた燃料電池およびシール方法 |
US10421233B2 (en) | 2017-05-15 | 2019-09-24 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
JP2021021012A (ja) * | 2019-07-29 | 2021-02-18 | アイカ工業株式会社 | 光硬化型ガスケット樹脂組成物 |
US10935891B2 (en) | 2017-03-13 | 2021-03-02 | Holo, Inc. | Multi wavelength stereolithography hardware configurations |
JP2021134327A (ja) * | 2020-02-28 | 2021-09-13 | アイカ工業株式会社 | ハードディスクドライブ用光硬化型ガスケット樹脂組成物及びハードディスクドライブ |
US11141919B2 (en) | 2015-12-09 | 2021-10-12 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
JP6956840B1 (ja) * | 2020-09-30 | 2021-11-02 | 住友理工株式会社 | 燃料電池用部材およびその製造方法 |
US11351735B2 (en) | 2018-12-26 | 2022-06-07 | Holo, Inc. | Sensors for three-dimensional printing systems and methods |
US11925982B2 (en) | 2019-02-11 | 2024-03-12 | Holo, Inc. | Methods and systems for three-dimensional printing |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3763788A4 (en) * | 2018-03-07 | 2021-11-17 | Toagosei Co., Ltd. | CURING COMPOSITION FOR POLYMERIC ELECTROLYTE, AND LAMINATE |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61293204A (ja) * | 1985-06-21 | 1986-12-24 | Asahi Chem Ind Co Ltd | 感光性組成物 |
JPH0288614A (ja) | 1988-08-05 | 1990-03-28 | Edison Polymer Innov Corp | 重合体組成物 |
JPH034226A (ja) * | 1989-06-01 | 1991-01-10 | Asahi Chem Ind Co Ltd | 耐熱性を有するパターンの形成方法 |
JPH04183702A (ja) * | 1990-11-17 | 1992-06-30 | Kanegafuchi Chem Ind Co Ltd | 官能性末端を有するイソブチレン系ポリマーの製造法 |
JP2004075824A (ja) | 2002-08-15 | 2004-03-11 | Shin Etsu Chem Co Ltd | 硬化性フルオロポリエーテル系ゴム組成物及びゴム製品 |
JP2004111146A (ja) | 2002-09-17 | 2004-04-08 | Mitsui Chemicals Inc | 燃料電池シール部品用重合体組成物、燃料電池シール部品、燃料電池シール部品の製造方法、および燃料電池 |
JP2007100099A (ja) | 2002-12-05 | 2007-04-19 | Daikin Ind Ltd | 含フッ素ポリマー組成物及び硬化体 |
JP2009531516A (ja) * | 2006-03-29 | 2009-09-03 | ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション | 放射線−硬化性ゴム系接着剤/シーラント |
JP2010024295A (ja) * | 2008-07-16 | 2010-02-04 | Fujifilm Corp | 光硬化性組成物、インク組成物、及び該インク組成物を用いたインクジェット記録方法 |
JP2011124258A (ja) | 2009-12-08 | 2011-06-23 | Furukawa Electric Co Ltd:The | 窒化物系ダイオード |
JP2011215375A (ja) * | 2010-03-31 | 2011-10-27 | Taiyo Holdings Co Ltd | 感光性樹脂組成物 |
WO2013047314A1 (ja) * | 2011-09-27 | 2013-04-04 | 株式会社カネカ | (メタ)アクリロイル末端ポリイソブチレン系重合体、その製造方法、および活性エネルギー線硬化性組成物 |
JP2013216782A (ja) | 2012-04-09 | 2013-10-24 | Kaneka Corp | 硬化性組成物およびその用途 |
JP2014225456A (ja) * | 2006-01-17 | 2014-12-04 | ヘンケル コーポレイションHenkel Corporation | 接着燃料電池アセンブリ、接着燃料電池アセンブリを製造するための方法、システムおよびシーラント組成物 |
WO2017018546A1 (ja) * | 2015-07-30 | 2017-02-02 | 株式会社スリーボンド | 光硬化性樹脂組成物、燃料電池およびシール方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5171760A (en) | 1988-08-05 | 1992-12-15 | Edison Polymer Innovation Corp. | UV curable polymer formulation |
EP1964858B1 (en) | 2002-12-05 | 2015-04-22 | Daikin Industries, Ltd. | Fluorine-containing polymer |
JP4269984B2 (ja) | 2003-06-19 | 2009-05-27 | セイコーエプソン株式会社 | 駆動制御システム |
JP4165325B2 (ja) * | 2003-07-23 | 2008-10-15 | Jsr株式会社 | 放射線硬化性樹脂組成物、その硬化膜及び積層体 |
KR20040075824A (ko) | 2004-08-09 | 2004-08-30 | 엘지전자 주식회사 | 광기록매체 및 결함 영역 관리 방법 |
US7687119B2 (en) * | 2005-04-04 | 2010-03-30 | Henkel Ag & Co. Kgaa | Radiation-curable desiccant-filled adhesive/sealant |
US20090162715A1 (en) | 2005-10-20 | 2009-06-25 | Henkel Corporation | Polyisobutylene compositions with improved reactivity and properties for bonding and sealing fuel cell components |
CA2637142A1 (en) | 2006-01-17 | 2008-02-07 | Henkel Corporation | Uv-curable fuel cell sealants and fuel cells formed therefrom |
EP1843421B1 (en) | 2006-04-06 | 2011-06-29 | Samsung SDI Germany GmbH | Fuel cell system |
US9708424B2 (en) | 2011-09-27 | 2017-07-18 | Kaneka Corporation | (Meth)acryloyl-terminated polyisobutylene polymer, method for producing the same, and active energy ray-curable composition |
JP5928578B2 (ja) * | 2012-04-20 | 2016-06-01 | 東亞合成株式会社 | 硬化膜を有する金属基材の製造方法 |
JP6288614B2 (ja) | 2013-07-11 | 2018-03-07 | パナソニックIpマネジメント株式会社 | 床材 |
-
2017
- 2017-07-21 CA CA3033168A patent/CA3033168C/en active Active
- 2017-07-21 EP EP17848424.2A patent/EP3511352A4/en active Pending
- 2017-07-21 WO PCT/JP2017/026445 patent/WO2018047479A1/ja unknown
- 2017-07-21 CN CN201780050669.3A patent/CN109641997B/zh active Active
- 2017-07-21 US US16/324,041 patent/US11165072B2/en active Active
- 2017-07-21 JP JP2018538263A patent/JP6960078B2/ja active Active
- 2017-07-21 KR KR1020197003153A patent/KR102324203B1/ko active IP Right Grant
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61293204A (ja) * | 1985-06-21 | 1986-12-24 | Asahi Chem Ind Co Ltd | 感光性組成物 |
JPH0288614A (ja) | 1988-08-05 | 1990-03-28 | Edison Polymer Innov Corp | 重合体組成物 |
JPH034226A (ja) * | 1989-06-01 | 1991-01-10 | Asahi Chem Ind Co Ltd | 耐熱性を有するパターンの形成方法 |
JPH04183702A (ja) * | 1990-11-17 | 1992-06-30 | Kanegafuchi Chem Ind Co Ltd | 官能性末端を有するイソブチレン系ポリマーの製造法 |
JP2004075824A (ja) | 2002-08-15 | 2004-03-11 | Shin Etsu Chem Co Ltd | 硬化性フルオロポリエーテル系ゴム組成物及びゴム製品 |
JP2004111146A (ja) | 2002-09-17 | 2004-04-08 | Mitsui Chemicals Inc | 燃料電池シール部品用重合体組成物、燃料電池シール部品、燃料電池シール部品の製造方法、および燃料電池 |
JP2007100099A (ja) | 2002-12-05 | 2007-04-19 | Daikin Ind Ltd | 含フッ素ポリマー組成物及び硬化体 |
JP2014225456A (ja) * | 2006-01-17 | 2014-12-04 | ヘンケル コーポレイションHenkel Corporation | 接着燃料電池アセンブリ、接着燃料電池アセンブリを製造するための方法、システムおよびシーラント組成物 |
JP2009531516A (ja) * | 2006-03-29 | 2009-09-03 | ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション | 放射線−硬化性ゴム系接着剤/シーラント |
JP2010024295A (ja) * | 2008-07-16 | 2010-02-04 | Fujifilm Corp | 光硬化性組成物、インク組成物、及び該インク組成物を用いたインクジェット記録方法 |
JP2011124258A (ja) | 2009-12-08 | 2011-06-23 | Furukawa Electric Co Ltd:The | 窒化物系ダイオード |
JP2011215375A (ja) * | 2010-03-31 | 2011-10-27 | Taiyo Holdings Co Ltd | 感光性樹脂組成物 |
WO2013047314A1 (ja) * | 2011-09-27 | 2013-04-04 | 株式会社カネカ | (メタ)アクリロイル末端ポリイソブチレン系重合体、その製造方法、および活性エネルギー線硬化性組成物 |
JP2013216782A (ja) | 2012-04-09 | 2013-10-24 | Kaneka Corp | 硬化性組成物およびその用途 |
WO2017018546A1 (ja) * | 2015-07-30 | 2017-02-02 | 株式会社スリーボンド | 光硬化性樹脂組成物、燃料電池およびシール方法 |
Non-Patent Citations (3)
Title |
---|
POLYER BULLETIN, vol. 20, 1988, pages 253 - 260 |
See also references of EP3511352A4 |
T. P. LIAO; J. P. KENNEDY, POLYMER BULLETIN, vol. 6, 1981, pages 135 - 141 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11141919B2 (en) | 2015-12-09 | 2021-10-12 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
US10935891B2 (en) | 2017-03-13 | 2021-03-02 | Holo, Inc. | Multi wavelength stereolithography hardware configurations |
US10882251B2 (en) | 2017-05-15 | 2021-01-05 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US10421233B2 (en) | 2017-05-15 | 2019-09-24 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US10464259B2 (en) | 2017-05-15 | 2019-11-05 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US11161301B2 (en) | 2017-05-15 | 2021-11-02 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US11400650B2 (en) | 2017-06-16 | 2022-08-02 | Holo, Inc. | Methods and systems for stereolithography three-dimensional printing |
US10245785B2 (en) | 2017-06-16 | 2019-04-02 | Holo, Inc. | Methods for stereolithography three-dimensional printing |
WO2019124252A1 (ja) * | 2017-12-18 | 2019-06-27 | 株式会社スリーボンド | 硬化性樹脂組成物、それを用いた燃料電池およびシール方法 |
US11351735B2 (en) | 2018-12-26 | 2022-06-07 | Holo, Inc. | Sensors for three-dimensional printing systems and methods |
US11925982B2 (en) | 2019-02-11 | 2024-03-12 | Holo, Inc. | Methods and systems for three-dimensional printing |
JP2021021012A (ja) * | 2019-07-29 | 2021-02-18 | アイカ工業株式会社 | 光硬化型ガスケット樹脂組成物 |
JP2021134327A (ja) * | 2020-02-28 | 2021-09-13 | アイカ工業株式会社 | ハードディスクドライブ用光硬化型ガスケット樹脂組成物及びハードディスクドライブ |
JP7335185B2 (ja) | 2020-02-28 | 2023-08-29 | アイカ工業株式会社 | ハードディスクドライブ用光硬化型ガスケット樹脂組成物及びハードディスクドライブ |
JP6956840B1 (ja) * | 2020-09-30 | 2021-11-02 | 住友理工株式会社 | 燃料電池用部材およびその製造方法 |
JP2022057075A (ja) * | 2020-09-30 | 2022-04-11 | 住友理工株式会社 | 燃料電池用部材およびその製造方法 |
WO2022070486A1 (ja) * | 2020-09-30 | 2022-04-07 | 住友理工株式会社 | 燃料電池用部材およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3511352A4 (en) | 2020-05-06 |
CN109641997A (zh) | 2019-04-16 |
US20190214659A1 (en) | 2019-07-11 |
JP6960078B2 (ja) | 2021-11-05 |
JPWO2018047479A1 (ja) | 2019-08-15 |
EP3511352A1 (en) | 2019-07-17 |
KR20190050966A (ko) | 2019-05-14 |
CN109641997B (zh) | 2021-12-28 |
CA3033168C (en) | 2024-02-20 |
US11165072B2 (en) | 2021-11-02 |
CA3033168A1 (en) | 2018-03-15 |
KR102324203B1 (ko) | 2021-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018047479A1 (ja) | 硬化性樹脂組成物、それを用いた燃料電池およびシール方法 | |
KR102604161B1 (ko) | 연료전지용 광경화성 밀봉제, 연료전지 및 밀봉 방법 | |
WO2017018547A1 (ja) | 光硬化性樹脂組成物、燃料電池およびシール方法 | |
JP6718176B2 (ja) | 光硬化性樹脂組成物、燃料電池およびシール方法 | |
WO2017038340A1 (ja) | 光硬化性樹脂組成物、燃料電池およびシール方法 | |
WO2018190421A1 (ja) | 光硬化性樹脂組成物、それを用いた燃料電池およびシール方法 | |
JP7149479B2 (ja) | 光硬化性樹脂組成物、それを用いた燃料電池およびシール方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17848424 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197003153 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3033168 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2018538263 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017848424 Country of ref document: EP Effective date: 20190408 |