[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017212556A1 - 回転電機冷却装置 - Google Patents

回転電機冷却装置 Download PDF

Info

Publication number
WO2017212556A1
WO2017212556A1 PCT/JP2016/066965 JP2016066965W WO2017212556A1 WO 2017212556 A1 WO2017212556 A1 WO 2017212556A1 JP 2016066965 W JP2016066965 W JP 2016066965W WO 2017212556 A1 WO2017212556 A1 WO 2017212556A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical member
discharge port
annular
flow path
rotating electrical
Prior art date
Application number
PCT/JP2016/066965
Other languages
English (en)
French (fr)
Inventor
直哉 佐藤
夏樹 本池
加藤 健次
愛 岡本
佳樹 岡田
大輔 川口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680005961.9A priority Critical patent/CN107710564A/zh
Priority to PCT/JP2016/066965 priority patent/WO2017212556A1/ja
Priority to JP2017517810A priority patent/JP6261818B1/ja
Priority to TW105127241A priority patent/TWI616054B/zh
Publication of WO2017212556A1 publication Critical patent/WO2017212556A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to a rotating electrical machine cooling device for cooling a rotating electrical machine.
  • Patent Document 1 a laminated iron core in which steel plates are laminated, and is fixed by flowing a cooling liquid through the frame, a stator core around which a stator coil is wound, a frame provided in contact with the outer peripheral surface of the stator core
  • a rotating electrical machine having a cooling device that cools a child
  • the frame of the rotating electrical machine described in Patent Document 1 includes a first frame provided on the outer peripheral surface of the stator core, and a second frame provided in contact with the outer peripheral surface of the first frame.
  • a minute annular gap is formed on the surface of the frame that contacts the second frame so as to extend in the circumferential direction, and the minute annular gap of the surface that contacts the second frame of the first frame serves as a coolant groove. It is trying to become.
  • the rotating electric machine equipped with the cooling device as in Patent Document 1 gradually develops the temperature boundary layer as the coolant flows through the flow path of the coolant groove, so that the cooling capacity decreases. Therefore, when the axial length of the stator core is increased, the flow path of the coolant groove is increased, and a necessary cooling capacity cannot be obtained.
  • the present invention has been made in view of the above, and an object thereof is to provide a rotating electrical machine cooling device having a high cooling capacity.
  • the present invention includes a first cylindrical member disposed on an outer peripheral surface of a stator core, an outer peripheral surface of the first cylindrical member, and an annular shape.
  • a second cylindrical member disposed with a gap therebetween, and a supply port provided on one end side of the second cylindrical member, and the second cylindrical member through the annular gap.
  • a cooling flow path through which the coolant passes to a discharge port provided on the end side, and the cooling flow path communicates with an annular supply port-side header flow path communicating with the supply port and the discharge port It has an annular outlet-side header flow path and a circular annular groove provided on the outer peripheral surface of the first cylindrical member.
  • FIG. 1 The perspective view of the 1st cylindrical member of the rotary electric machine cooling device which concerns on Embodiment 1.
  • gap formed from the 1st cylindrical member which provided the annular groove which concerns on Embodiment 1, and a 2nd cylindrical member The partial expanded sectional view which shows a mode that a cooling fluid passes the annular space
  • the graph which showed the influence which the ratio (w / h) of the width w and the depth h of the annular groove which concerns on Embodiment 1 has on cooling capacity Sectional drawing of the supply port side header flow path which concerns on Embodiment 1, an annular space
  • FIG. 1 Comparison diagram of numerical analysis results by finite volume method for cooling capacity in Embodiment 1 and Embodiment 2 and conventional structure Sectional drawing which shows the rotary electric machine cooling device which concerns on Embodiment 3.
  • FIG. 1 Comparison diagram of numerical analysis results by finite volume method for cooling capacity in Embodiment 1 and Embodiment 2 and conventional structure Sectional drawing which shows the rotary electric machine cooling device which concerns on Embodiment 3.
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine cooling apparatus according to Embodiment 1.
  • the rotating electrical machine includes a cylindrical stator core 11 provided with a stator coil 11 a and a rotor (not shown) that is rotatably supported inside the stator core 11.
  • the rotating electrical machine has a rotating electrical machine cooling device 10 that suppresses heat generation of the stator coil 11 a and the stator core 11.
  • the rotating electrical machine cooling device 10 cools the stator core 11.
  • the rotating electrical machine cooling device 10 includes a first cylindrical member 12, a second cylindrical member 13, and a cooling flow path 20.
  • the first cylindrical member 12 is disposed on the outer peripheral surface 11P of the stator core 11.
  • a part of the second cylindrical member 13 is disposed with a part of the outer peripheral surface 12P of the first cylindrical member 12 and an annular gap 23 therebetween.
  • the coolant 16 flows from the supply port 14 provided on the one end side 13TF of the second cylindrical member 13 to the discharge port 15 provided on the other end side 13TS of the second cylindrical member 13 through the annular gap 23. pass.
  • the cooling flow path 20 includes an annular supply port side header flow path 21 connected to the supply port 14, an annular discharge port side header flow path 22 connected to the discharge port 15, and a supply port side header flow path 21.
  • An annular gap 23 that connects the outlet-side header flow path 22 and through which the coolant 16 passes, and a circular annular groove 24 provided on the outer peripheral surface 12P of the first tubular member 12.
  • the annular groove 24 is formed on the surface of the first cylindrical member 12 on the annular gap 23 side, and extends along the circumferential direction of the first cylindrical member 12. A plurality of annular grooves 24 are arranged.
  • the plurality of annular grooves 24 extend in a direction orthogonal to the direction parallel to the direction of the axis Zr of the first tubular member 12, but are not limited thereto.
  • the plurality of annular grooves 24 may extend in a direction intersecting the direction parallel to the axis Zr direction of the first tubular member 12.
  • the supply port side header flow path 21 is formed in the second cylindrical member 13 and communicates with the supply port 14.
  • the discharge port side header flow path 22 is formed in the second cylindrical member 13 and communicates with the discharge port 15.
  • the annular gap 23 is a minute gap formed in a cylindrical shape between the first cylindrical member 12 and the second cylindrical member 13.
  • the annular gap 23 is a cylindrical gap centered on the axis Zr of the first cylindrical member 12.
  • the annular gap 23 allows the coolant 16 to pass from the supply port side header flow path 21 on one end side of the first cylindrical member 12 to the discharge port side header flow path 22 on the other end side.
  • the annular groove 24 is formed on a surface on the annular gap 23 side that is the outer peripheral surface 12 ⁇ / b> P of the first cylindrical member 12.
  • the plurality of annular grooves 24 are minute groove groups that are parallel and independent of each other. That is, a plurality of annular grooves 24 are formed on the outer peripheral surface 12 ⁇ / b> P of the first tubular member 12 and extend along the circumferential direction of the first tubular member 12.
  • the plurality of annular grooves 24 are arranged in the direction of the axis Zr of the first cylindrical member 12.
  • a plurality of circular grooves are provided as the annular groove 24.
  • the present invention is not limited to this, and the annular groove 24 may be provided with at least one circular groove. Good.
  • the shape of the annular groove 24 may be a quadrangle as shown in FIG. 1, a V shape, a U shape, or other shapes. Good.
  • the coolant 16 supplied to the supply port 14 passes through the supply port side header channel 21, the annular gap 23, and the discharge port side header channel 22 and is discharged from the discharge port 15. .
  • the coolant 16 exchanges heat with the first tubular member 12 to cool the first tubular member 12.
  • produced in the stator core 11 which is a heat generating source is cooled, and the overheating of a rotary electric machine is suppressed.
  • the first cylindrical member 12 is provided with grooves 26 for attaching O-rings as seal members 25 on both sides in the axis Zr direction of the surface facing the second cylindrical member 13.
  • a seal member 25 is disposed in the groove 26.
  • the seal member 25 seals the gap between the first tubular member 12 and the second tubular member 13. That is, the rotating electrical machine is a gap between the first cylindrical member 12 and the second cylindrical member 13 and is in the direction of the axis Zr in the region where the annular gap 23 of the cooling channel 20 is provided. Seal members 25 are provided on both sides of the. With this structure, the rotating electrical machine can suppress the leakage of the coolant 16 flowing through the annular gap 23.
  • the cooling flow path 20 has the discharge port 15 and the supply port 14 connected to a circulation line (not shown).
  • a cooling facility for cooling the coolant 16 is arranged in the circulation line.
  • the coolant 16 absorbs the heat of the rotating electrical machine by flowing through the cooling flow path 20 and cools the rotating electrical machine.
  • the heated coolant 16 is cooled by a cooling facility.
  • the cooling liquid 16 is repeatedly circulated through the circulation line and the cooling flow path 20 to repeat cooling and heating.
  • FIG. 2 is a perspective view of the first tubular member of the rotating electrical machine cooling device according to the first embodiment.
  • FIG. 3 is a cross-sectional view of an annular gap formed by the first cylindrical member and the second cylindrical member provided with the annular groove according to the first embodiment.
  • FIG. 3 shows an enlarged cross section of the annular gap 23 and the annular groove 24.
  • the annular groove 24 is formed by a recessed groove from a first reference surface 41 (see FIG. 1) based on the cylindrical outer peripheral surface of the first cylindrical member 12.
  • the clearance height of the annular gap 23, that is, the distance in the radial direction of the first cylindrical member 12 is ⁇
  • w the depth of the annular groove 24, that is, the distance in the radial direction of the first cylindrical member 12, and the pitch of the annular groove 24, that is, the distance of the first cylindrical member 12 in the axis Zr direction is p.
  • the coolant 16 supplied from the supply port 14 flows in the circumferential direction 31 of the first cylindrical member 12 by flowing through the supply port side header flow path 21, and is supplied.
  • the mouth-side header channel 21 spreads over the entire circumference in the circumferential direction.
  • the coolant 16 that has spread all around in the supply port side header flow path 21 flows in the axial direction 32 of the first tubular member 12 in the annular gap 23. Then, in the discharge port side header flow path 22, the flow again collects from the circumferential direction 33 and is discharged from the discharge port 15.
  • FIG. 4 is a partial enlarged cross-sectional view showing a state in which the coolant passes through the annular gap and the annular groove according to the first embodiment.
  • the coolant 16 passing through the annular gap 23 having a gap height ⁇ has a film-like temperature boundary layer 51 on the surface of the first cylindrical member 12, and is along the flow. , The thickness of the layer increases and develops.
  • the thickness of the temperature boundary layer 51 is large, the heat transfer coefficient is lowered and the cooling performance is lowered.
  • the developed temperature boundary layer 51 is divided, and after passing through the annular groove 24, the surface of the first tubular member 12 is formed. From the thickness 0, the temperature boundary layer 52 is regenerated. Since the thickness of the temperature boundary layer is reduced before and after passing through the annular groove 24, the heat transfer rate is increased and the cooling performance is improved.
  • FIG. 5 is a graph showing the influence of the gap height of the annular gap on the cooling capacity in the cooling flow path according to the first embodiment.
  • FIG. 5 shows an example of a result obtained by calculation regarding the influence of the gap height ⁇ of the annular gap 23 on the cooling capacity.
  • the temperature was obtained by dividing the supply port side header flow channel 21, the discharge port side header flow channel 22 and the annular gap 23 in the circumferential direction, and calculating the balance between the flow rate and pressure between the divided flow channels.
  • the flow rate was calculated from the flow rate of each divided flow path, and the temperature was calculated from the flow rate using a formula for calculating the heat transfer coefficient.
  • the vertical axis is the cooling capacity and the horizontal axis is the gap height ⁇ (mm).
  • the gap height ⁇ (mm) is the width of the annular gap 23 and is the distance of the annular gap 23 in the direction perpendicular to the axial direction of the stator core 11.
  • the cooling capacity (W / K) is defined here as a ratio determined by the amount of heat generated by the rotating electrical machine (W) / the stator core temperature rise value (K).
  • FIG. 5 shows the relationship when the value obtained by dividing the heat generation amount of the rotating electrical machine by the temperature rise value of the stator core 11 is 100 when the gap height ⁇ of the annular gap 23 is 1.0 mm. . According to the result of FIG.
  • the gap height ⁇ which is the width in the direction perpendicular to the axial direction of the stator core 11, is 1.0 mm or less. Further, when the gap height ⁇ was 0.5 mm or less, higher cooling performance was exhibited. From these results, the clearance height ⁇ of the annular gap 23 can exhibit cooling performance when the radial distance of the concentric circles is 1.0 mm or less, more preferably 0.5 mm or less. confirmed.
  • FIG. 6 is a graph showing the influence of the ratio (w / h) between the width w and the depth h of the annular groove according to the first embodiment on the cooling capacity.
  • FIG. 6 shows an example of the result obtained by numerical analysis by the finite volume method with respect to the ratio (w / h) between the width w and the depth h of the annular groove 24.
  • the ratio (w / h) between the width w and the depth h of the annular groove 24 is 10
  • the ratio between the depth h of the annular groove 24 and the gap height ⁇ of the annular gap 23 When (h / ⁇ ) is 1.0, the relationship when the value obtained by dividing the amount of heat generated by the rotating electrical machine by the temperature rise value of the stator core 11 is 100 is shown.
  • FIG. 7 is a cross-sectional view of the supply port side header flow path, the annular gap, and the discharge port side header flow path according to the first embodiment.
  • 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • the cross-sectional area of the supply port side header flow path 21 or the discharge port side header flow path 22 is A, and in FIG.
  • the cross-sectional area A is the area of the shaded portion in FIG.
  • the cross-sectional area B is the area of the white portion in FIG.
  • FIG. 9 is a graph showing the influence of the channel cross-sectional area ratio on the flow velocity ratio in the annular gap in the first embodiment.
  • FIG. 6 shows an example of a result obtained by the same calculation method as in FIG. 5 with respect to the influence of the channel cross-sectional area ratio (A / B) on the flow rate ratio in the annular gap 23.
  • the flow rate ratio in the annular gap 23 is a value obtained by dividing the maximum flow rate of the flow rate distribution generated in the circumferential direction by the minimum flow rate.
  • the flow rate ratio was approximately 1 when the channel cross-sectional area ratio (A / B) was 0.2.
  • FIG. 10 is a cross-sectional view of the stepped cylindrical structure of the rotating electrical machine cooling apparatus according to the first embodiment.
  • the stepped cylindrical structure has a protruding stepped portion 12A and a cutout portion 13A.
  • the projecting stepped portion 12A is formed on the discharge port 15 side of the first cylindrical member 12, and is stepped in the circumferential direction in the outer circumferential direction orthogonal to the axis Zr direction on the second cylindrical member 13 side. Protruding.
  • the cutout portion 13A is formed on the discharge port 15 side of the second cylindrical member 13.
  • the cutout portion 13 ⁇ / b> A is cutout in the circumferential direction of the second cylindrical member 13.
  • a stepped cylindrical structure is formed by contacting and fixing the inner end surface 12B of the protruding stepped portion 12A and the outer end surface 13B of the cutout portion 13A in the axis Zr direction. .
  • the rotating electric machine has a structure with good assemblability, and the assembling work can be simplified.
  • the pitch p of the annular groove 24 is equal, but the pitch p of the annular groove 24 may be non-uniform. Moreover, the cross-sectional area of the supply port side header flow path 21 and the cross-sectional area of the discharge port side header flow path 22 may not be equal.
  • the gap height ⁇ of the annular gap 23 is set to a constant value in the direction of the axis Zr of the cylinder, but the gap height is not limited to this.
  • the annular gap 23 may have a position where the gap height ⁇ differs in the direction of the axis Zr. Moreover, you may make it become a taper structure or a stepped structure which has an unequal value along the axis Zr direction of a cylinder.
  • the cooling flow path 20 of the rotating electrical machine cooling device 10 includes an annular supply port side header flow path 21 and a discharge port side header flow path 22 that communicate with the supply port 14 and the discharge port 15, respectively.
  • the supply port side header flow path 21 and the discharge port side header flow path 22 are connected to each other and formed in an annular gap 23 through which the coolant 16 passes and an annular gap 23 surface of the first cylindrical member 12.
  • a plurality of annular grooves 24 that are perpendicular to the axis Zr direction of the first cylindrical member 12 and independent. With this structure, the supplied coolant 16 flows in the circumferential direction 31 of the first cylindrical member 12 in the supply port side header flow path 21.
  • the coolant 16 that has spread all around the supply port side header flow path 21 flows in the axial direction 32 of the first tubular member 12 through the annular gap 23. Then, it flows again in the circumferential direction 33 in the discharge port side header flow path 22 and is discharged from the discharge port 15.
  • the cooling flow path 20 of the rotating electrical machine cooling device 10 according to the first embodiment it is possible to provide the rotating electrical machine cooling device 10 capable of cooling with high cooling capacity while suppressing an increase in pressure loss and processing cost. it can.
  • the shape of the recess of the annular groove 24 is not limited to the rectangular cross section as in the first embodiment, but may be a triangular cross section or a semicircular cross section. Further, the recess of the annular groove 24 may be a mixture of these shapes.
  • the depth h of the annular groove 24 is not constant and may be different. For example, the downstream annular groove 24 where the cooling capacity tends to decrease may be deeper than the upstream annular groove 24.
  • the pitch p between the grooves of the annular grooves 24 may be evenly or unevenly arranged. Furthermore, the tendency of the heat generation distribution may be obtained in advance, and cooling may be performed by changing the pitch p of the annular groove 24 so as to correspond to the heat generation distribution for which the tendency has been obtained.
  • FIG. 11 is a cross-sectional view of an annular gap formed by a first cylindrical member and a second cylindrical member provided with an annular groove according to a modification of the first embodiment.
  • the pitch p of the plurality of annular grooves 24 formed on the surface of the first cylindrical member 12 on the annular gap 23 side is set to the outlet 15 side than the supply port 14 side. It changes so that it may become narrow.
  • the pitch p of the arrangement of the annular grooves 24 from the supply port side header flow path 21 side of the coolant 16 is set to a pitch p 1 having a relatively wide interval in the first supply port 14 side region.
  • the pitch p 3 In the region on the outlet 15 side, the pitch p 3 is relatively narrow, and in the center region, the pitch p 2 is intermediate between the pitch p 1 and the pitch p 3 so that the coolant 16 crosses the annular groove 24.
  • the frequency of suppression of the development of the temperature boundary layer during flow is varied. Accordingly, the heat transfer rate is low in the region on the supply port 14 side, the heat transfer rate is high in the region on the discharge port 15 side, and the heat transfer rate is intermediate in the central region.
  • the annular groove 24 is a groove that continuously makes a circle.
  • the thickness of the temperature boundary layer remains large at the intermittent location, so that the effect of the present embodiment cannot be sufficiently obtained.
  • the annular groove 24 is a groove that continuously makes a circle, but when the annular groove 24 is provided in a spiral shape, the flow path of the coolant 16 is a spiral groove. It changes spirally along. As a result, the pressure loss increases and the load on the cooling pump increases. Moreover, in order to form a spiral groove, processing cost becomes high.
  • the annular groove 24 that continuously makes a circle is provided, an effect of improving the cooling performance while suppressing an increase in pressure loss and processing cost is obtained. It is done.
  • FIG. FIG. 12 is a cross-sectional view showing the rotating electrical machine cooling apparatus according to the second embodiment.
  • the rotating electrical machine cooling device 10 a according to Embodiment 2 forms a supply port side header flow path 21 and a discharge port side header flow path 22 at both ends of the second tubular member 13. It is.
  • the first tubular member 12 needs to have a certain thickness to ensure strength.
  • a groove is formed to form the supply port side header flow path 21 and the discharge port side header flow path 22 from the relationship of ensuring strength.
  • the supply port side header flow path 21 and the discharge port side header flow path 22 cannot be processed deeper than the second reference surface 42 that is the processing depth limit.
  • annular supply port side header flow path 21 and discharge port side header flow path 22 communicating with the supply port 14 and the discharge port 15 are provided on the inner surface side of the second cylindrical member 13.
  • a header supply channel is formed.
  • the processed surface of the annular groove 24 formed in the annular gap 23 can be formed near the second reference surface 42 by the structure that forms the supply flow path for the header.
  • the distance L of heat conduction between the stator core 11 serving as a heat generation source and the annular gap 23 is reduced, so that the cooling performance is improved. Therefore, since the distance L between the annular gap 23 and the heat generation source approaches, the thermal resistance between the coolant 16 and the heat generation source decreases, and the cooling performance can be improved.
  • FIG. 13 is a comparison diagram of the results of numerical analysis using the finite volume method for the cooling capacity in the first and second embodiments and the conventional structure.
  • the conventional structure does not have the annular groove 24.
  • the first embodiment can cool the rotating electrical machine more efficiently than the conventional structure, and can suppress pressure loss and processing cost increase.
  • the heat conduction distance L can be reduced, and the cooling capacity can be further improved as compared with the first embodiment.
  • FIG. 14 is a cross-sectional view showing the rotating electrical machine cooling apparatus according to the third embodiment.
  • the rotating electrical machine cooling apparatus 10b according to the third embodiment processes a part of the first cylindrical member 12 and the second cylindrical member 13 to produce first and second stages.
  • a cylindrical structure is formed.
  • the first stepped cylindrical structure has a protruding stepped portion 12A and a cutout portion 13A.
  • the protruding stepped portion 12A is formed in the first cylindrical member 12, and the outer peripheral side surface which is the inner end surface 12B on the discharge port 15 side is formed to protrude toward the second cylindrical member 13 side.
  • the protruding stepped portion 12A protrudes from the second reference surface 42 along the direction orthogonal to the axis Zr direction, that is, the radial direction of the first cylindrical member 12 over the circumferential direction.
  • the cutout portion 13A is formed in the second cylindrical member 13, and a recess is formed on the inner peripheral side surface that is the outer end surface 13B on the discharge port 15 side.
  • the diameter of the discharge port 15 is shorter than the distance between the outer peripheral side surface that is the inner end surface 12B of the protruding stepped portion 12A and the inner peripheral side surface that is the outer end surface 13B of the notch 13A.
  • the second stepped cylindrical structure has a second protruding stepped portion 13C and a notch 12C.
  • the second protruding stepped portion 13C is formed in the supply port 14 of the second cylindrical member 13, and a recess is formed in the outer peripheral side surface that is the inner end surface 13D on the supply port 14 side.
  • the second protruding stepped portion 13C protrudes toward the second reference surface 42 over the circumferential direction in the inner circumferential direction orthogonal to the axis Zr direction.
  • an inner peripheral side surface 12D on the supply port 14 side of the first cylindrical member 12 is formed over the circumferential direction.
  • the outer peripheral side surface of the inner end surface 13D on the supply port 14 side of the second protruding stepped portion 13C is separated from the inner peripheral side surface 12D on the supply port 14 side in the axis Zr direction of the notch portion 12C.
  • a flat supply port side header flow path 21 on the supply side is formed.
  • the flat flow path which enlarged the length of the supply port side header flow path 21 in the axis Zr direction is formed.
  • the annular gap 23 can be formed near the second reference plane 42 at the groove processing depth limit as in the second embodiment.
  • the distance L of heat conduction between the annular gaps 23 is reduced, and the cooling performance is improved.
  • the supply port side header flow path 21 is provided, it is not necessary to groove the inner surface side of the second cylindrical member 13, so that the processing cost can be reduced.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 固定子鉄心11の外周面11Pに配設された第1の筒状部材12と、第1の筒状部材12の外周面12Pと円環状の空隙23を隔てて配設された第2の筒状部材13と、第2の筒状部材13の一端側に設けられた供給口14から、円環状の空隙23を通じて第2の筒状部材13の他端側に設けられた排出口15へ冷却液16が通過する冷却流路20と、を備え、冷却流路20は、供給口14に連通する環状の供給口側ヘッダ流路21と、第1の筒状部材12の外周面12Pに設けられた円状の環状溝24と、を有する。

Description

回転電機冷却装置
 本発明は、回転電機を冷却する回転電機冷却装置に関する。
 従来、鋼板が積層された積層鉄心であり、固定子コイルが巻き付けられた固定子鉄心と、固定子鉄心の外周面に接触して設けられたフレームと、冷却液をフレーム内に流すことにより固定子の冷却を行う冷却装置と、を有する回転電機がある(例えば、特許文献1)。特許文献1に記載の回転電機のフレームは、固定子鉄心の外周面に設けられた第1フレームと、第1フレームの外周面に接触して設けられた第2フレームとを有し、第1フレームの第2フレームに接触する面には、円周方向に伸びるように微小な環状の隙間が形成され、第1フレームの第2フレームに接触する面の微小な環状の隙間を冷却液溝となるようにしている。
特開2003-199291号公報
 しかしながら、特許文献1のような冷却装置を備えた回転電機は、冷却液が冷却液溝の流路を流れるにつれて徐々に温度境界層を発達させるので、冷却能力が低下する。従って、固定子鉄心の軸方向長さが大きくなると冷却液溝の流路が長くなり、必要な冷却能力が得られない、という問題があった。
 本発明は、上記に鑑みてなされたものであって、冷却能力の高い回転電機冷却装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、固定子鉄心の外周面に配設された第1の筒状部材と、前記第1の筒状部材の外周面と円環状の空隙を隔てて配設された第2の筒状部材と、前記第2の筒状部材の一端側に設けられた供給口から、前記円環状の空隙を通じて前記第2の筒状部材の他端側に設けられた排出口へ冷却液が通過する冷却流路と、を備え、前記冷却流路は、前記供給口に連通する環状の供給口側ヘッダ流路と、前記排出口に連通する環状の排出口側ヘッダ流路と、前記第1の筒状部材の外周面に設けられた円状の環状溝と、を有することを特徴とする。
 本発明によれば、冷却能力の高い回転電機冷却装置を提供することができる。
実施の形態1に係る回転電機冷却装置を示す断面図 実施の形態1に係る回転電機冷却装置の第1の筒状部材の斜視図 実施の形態1に係る環状溝を設けた第1の筒状部材と第2の筒状部材とから形成される円環状の空隙の断面図 実施の形態1に係る円環状の空隙と環状溝とに冷却液が通過する様子を示す部分拡大断面図 実施の形態1に係る冷却流路において、円環状の空隙の隙間高さが冷却能力に与える影響を示したグラフ 実施の形態1に係る環状溝の幅wと深さhとの比(w/h)が冷却能力に与える影響を示したグラフ 実施の形態1に係る供給口側ヘッダ流路、円環状の空隙及び排出口側ヘッダ流路の断面図 図7のVIII-VIII線断面図 実施の形態1に係る円環状の空隙内の流速比に与える流路断面積比の影響を示したグラフ 実施の形態1に係る回転電機冷却装置の段付き円筒状構造の断面図 実施の形態1に係る変形例の環状溝を設けた第1の筒状部材と第2の筒状部材とから形成される円環状の空隙の断面図 実施の形態2に係る回転電機冷却装置を示す断面図 実施の形態1及び実施の形態2と従来の構造における冷却能力について有限体積法による数値解析結果の比較図 実施の形態3に係る回転電機冷却装置を示す断面図
 以下に、本発明の実施の形態に係る回転電機冷却装置を図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る回転電機冷却装置を示す断面図である。回転電機は、固定子コイル11aを備えた筒状の固定子鉄心11と、固定子鉄心11の内側に回転可能に支持される図示しないロータとを有する。回転電機は、固定子コイル11a及び固定子鉄心11の発熱を抑える回転電機冷却装置10を有する。回転電機冷却装置10は、固定子鉄心11を冷却する。回転電機冷却装置10は、第1の筒状部材12と、第2の筒状部材13と、冷却流路20と、を備える。
 第1の筒状部材12は、固定子鉄心11の外周面11Pに配置されている。第2の筒状部材13の一部は、第1の筒状部材12の外周面12Pの一部と円環状の空隙23を隔てて配設される。第2の筒状部材13の一端側13TFに設けられた供給口14から、円環状の空隙23を通じて第2の筒状部材13の他端側13TSに設けられた排出口15へ冷却液16が通過する。
 冷却流路20は、供給口14と接続する円環状の供給口側ヘッダ流路21と、排出口15と接続する円環状の排出口側ヘッダ流路22と、供給口側ヘッダ流路21と排出口側ヘッダ流路22とを接続し、かつ冷却液16が通過する円環状の空隙23と、第1の筒状部材12の外周面12Pに設けられた円状の環状溝24と、を有する。本実施の形態において、環状溝24は、第1の筒状部材12の円環状の空隙23側の面に形成されて、第1の筒状部材12の円周方向に沿って延びる、互いに独立な複数の環状溝24を配置している。この複数の環状溝24は、第1の筒状部材12の軸Zr方向と平行な方向に対して直交する方向に延びるが、限定されない。複数の環状溝24は、第1の筒状部材12の軸Zr方向と平行な方向に対して交差する方向に延びてもよい。
 供給口側ヘッダ流路21は、第2の筒状部材13に形成され、供給口14と連通している。排出口側ヘッダ流路22は、第2の筒状部材13に形成され、排出口15と連通している。
 円環状の空隙23は、第1の筒状部材12と第2の筒状部材13との間に円筒状に形成された、微小な空隙である。円環状の空隙23は、第1の筒状部材12の軸Zrを中心とする円筒状の空隙である。円環状の空隙23は、第1の筒状部材12の一端側の供給口側ヘッダ流路21から他端側の排出口側ヘッダ流路22に冷却液16を通過させる。
 環状溝24は、図1に示すように、第1の筒状部材12の外周面12Pである円環状の空隙23側の面に形成されている。複数の環状溝24は、互いに平行かつ独立の微小な溝群である。つまり環状溝24は、第1の筒状部材12の外周面12Pに複数形成されており、第1の筒状部材12の円周方向に沿って延びている。また、複数の環状溝24は、第1の筒状部材12の軸Zr方向に並んでいる。本実施の形態では、環状溝24として複数の円状の溝を備えているが、本発明はこれに限定されるものではなく、少なくとも一周する円状の溝を一つ備えるものであってもよい。
 環状溝24の形状は、断面が図1に示すように四角形であってもよいし、V字型であってもよいし、U字型であってもよいし、その他の形状であってもよい。
 冷却流路20は、供給口14に供給された冷却液16が、供給口側ヘッダ流路21、円環状の空隙23、及び排出口側ヘッダ流路22を通り、排出口15から排出される。冷却液16は、冷却流路20を通過する時に、第1の筒状部材12と熱交換を行い、第1の筒状部材12を冷却する。これにより、発熱源である固定子鉄心11で発生した熱で加熱された第1の筒状部材12を冷却し、回転電機の過熱を抑制する。
 第1の筒状部材12は、第2の筒状部材13と対向する面の軸Zr方向の両側に、各々シール部材25であるOリングを取り付けるための溝26が形成されている。溝26には、シール部材25が配置されている。シール部材25は、第1の筒状部材12と第2の筒状部材13との隙間をシールしている。つまり、回転電機は、第1の筒状部材12と第2の筒状部材13との間の隙間であって、冷却流路20の円環状の空隙23が設けられている領域の軸Zr方向における両側にシール部材25が設けられている。本構造により、回転電機は、円環状の空隙23を流れる冷却液16の液漏れを抑制できる。また、冷却流路20は、排出口15と供給口14とが、図示しない循環ラインに接続される。循環ラインは、冷却液16を冷却する冷却設備が配置されている。冷却液16は、冷却流路20を流れることで回転電機の熱を吸収して、回転電機を冷却する。加熱された冷却液16は、冷却設備で冷却される。冷却液16は、循環ラインと冷却流路20とを繰り返し循環することで、冷却と加熱とが繰り返される。
 図2は、実施の形態1に係る回転電機冷却装置の第1の筒状部材の斜視図である。図3は、実施の形態1に係る環状溝を設けた第1の筒状部材と第2の筒状部材とから形成される円環状の空隙の断面図である。図3は、円環状の空隙23及び環状溝24を拡大した断面を示す。図2及び図3を用いて冷却流路20を流れる冷却液16の流れを説明する。図3に示すように、環状溝24は、第1の筒状部材12の円筒外周面を基準とする第1の基準面41(図1参照)からの窪んだ溝により形成される。ここで、円環状の空隙23の隙間高さ、すなわち第1の筒状部材12の径方向における距離をδ、環状溝24の幅、すなわち第1の筒状部材12の軸Zr方向における距離をw、環状溝24の深さ、すなわち第1の筒状部材12の径方向における距離をh、環状溝24のピッチ、すなわち第1の筒状部材12の軸Zr方向における距離をpとする。
 図2及び図3に示すように、供給口14より供給された冷却液16は、供給口側ヘッダ流路21を流れることで、第1の筒状部材12の円周方向31に流れ、供給口側ヘッダ流路21の円周方向の全周に広がる。供給口側ヘッダ流路21内において全周に広がった冷却液16は、円環状の空隙23では第1の筒状部材12の軸方向32に流れる。そして、排出口側ヘッダ流路22では再び円周方向33から集められるように流れ、排出口15から排出される。
 図4は、実施の形態1に係る円環状の空隙と環状溝とに冷却液が通過する様子を示す部分拡大断面図である。図4に示すように、隙間高さδの円環状の空隙23を通過する冷却液16には、第1の筒状部材12の面に膜状の温度境界層51があり、流れに沿って、当該層の厚さが大きくなり、発達する。温度境界層51の厚さが大きいと熱伝達率が低下し、冷却性能が低下する。ここで、一定間隔毎に設けられた複数の独立した環状溝24を横切って流れる際、発達した温度境界層51が分断され、環状溝24を通過後、第1の筒状部材12の面に厚さ0から温度境界層52が再生される。環状溝24の通過前後で温度境界層の厚さが小さくなるため、熱伝達率が上昇し、冷却性能が向上する。
 図5は、実施の形態1に係る冷却流路において、円環状の空隙の隙間高さが冷却能力に与える影響を示したグラフである。図5は、円環状の空隙23の隙間高さδが冷却能力に与える影響について、計算で得られた結果の一例を示す。温度は、供給口側ヘッダ流路21及び排出口側ヘッダ流路22及び円環状の空隙23を円周方向に分割し、各分割流路間の流量及び圧力のバランス計算を行い、得られた各分割流路の流量から流速を算出し、流速から熱伝達率の計算式を用いて温度を算出した。
 図5においては、冷却能力を縦軸とすると共に、隙間高さδ(mm)を横軸とした。ここで、隙間高さδ(mm)は、円環状の空隙23の幅であり、固定子鉄心11の軸方向と垂直な方向における円環状の空隙23の距離である。冷却能力(W/K)は、回転電機発熱量(W)/固定子鉄心温度上昇値(K)によって求められる比率であると、ここでは定義する。図5は、円環状の空隙23の隙間高さδが1.0mmのとき、回転電機の発熱量を固定子鉄心11の温度上昇値で除算した値を100としたときの関係を示している。図5の結果によれば、固定子鉄心11の軸方向と垂直な方向の幅である隙間高さδが1.0mm以下のときに高い冷却性能を発揮することが確認された。また、隙間高さδが0.5mm以下のときにさらに高い冷却性能が発揮された。これらの結果から、円環状の空隙23の隙間高さδは、同心円の径方向の距離が1.0mm以下、より好ましくは0.5mm以下の値とすることで、冷却性能が発揮することが確認された。
 図6は、実施の形態1に係る環状溝の幅wと深さhとの比(w/h)が冷却能力に与える影響を示したグラフである。図6では、環状溝24の幅wと深さhとの比(w/h)について、有限体積法による数値解析で得られた結果の一例を示す。図6に示すように、環状溝24の幅wと深さhとの比(w/h)が10、かつ環状溝24の深さhと円環状の空隙23の隙間高さδとの比(h/δ)が1.0のときにおいて、回転電機発熱量を固定子鉄心11の温度上昇値で除算した値を100としたときの関係を示している。
 図6によれば、環状溝24の幅wと深さhとの比(w/h)が5から10の間の条件が5≦(w/h)≦10で、かつ環状溝24の深さhと隙間高さδの比(h/δ)が1.0から1.8の間の条件、すなわち1.0≦(h/δ)≦1.8において、高い冷却効果を発揮することが確認された。
 よって、環状溝24の幅wと深さhとの比(w/h)が5から10の間の範囲において、環状溝24の深さhと隙間高さδとの比(h/δ)を1.0から1.8の間の範囲とすることで、高い冷却性能が発揮されることが確認された。
 図7は、実施の形態1に係る供給口側ヘッダ流路、円環状の空隙及び排出口側ヘッダ流路の断面図である。図8は、図7のVIII-VIII線断面図である。図7において、供給口側ヘッダ流路21又は排出口側ヘッダ流路22の断面積をAとし、図8において、円環状の空隙23の断面積をBとする。断面積Aは、図7中の網掛け部分の面積である。断面積Bは、図8中の白抜き部分の面積である。
 図9は、実施の形態1において、円環状の空隙内の流速比に与える流路断面積比の影響を示したグラフである。円環状の空隙23内の流速比に与える流路断面積比(A/B)の影響について図5と同様の計算方法によって得られた結果の一例を示したものである。ここで、円環状の空隙23内の流速比とは、円周方向に生じる流速分布の最大流速を最小流速で除算した値である。
 図9に示すように、流路断面積比(A/B)が0.2の場合に流速比が概ね1になることが確認された。流速比を1に近づけることで回転電機を円周方向に均一かつ効率的に冷却することができる。なお、円環状の空隙23の隙間高さδは、δ=1.00mm(図9中の菱形黒印)及びδ=0.15mm(図9中の×印)とした。
 実施の形態1において、第1の筒状部材12と第2の筒状部材13との一部を段加工して段付き円筒状構造を形成している。図10は、実施の形態1に係る回転電機冷却装置の段付き円筒状構造の断面図である。図10に示すように、段付き円筒状構造は、突出段付部12Aと、切欠部13Aとを有している。突出段付部12Aは、第1の筒状部材12の排出口15側に形成されて、軸Zr方向と直交する外周方向で円周方向にわたって段加工して第2の筒状部材13側に突出する。切欠部13Aは、第2の筒状部材13の排出口15側に形成される。切欠部13Aは、第2の筒状部材13の円周方向にわたって切欠き加工される。回転電機を組み立てる際には、突出段付部12Aの内側端面12Bと、切欠部13Aの軸Zr方向の外側端面13Bとを接触させてから固定することにより、段付き円筒状構造が形成される。
 すなわち、第1の筒状部材12の突出段付部12Aの内側端面12Bと、第2の筒状部材13の切欠部13Aの外側端面13Bとを接触させてから固定することにより、排出口側ヘッダ流路22の流路を形成する際における位置決めを容易にすることが可能となる。従って、回転電機は組立性が良好な構造となるので、組立作業の簡素化を図ることができる。
 実施の形態1に係る冷却流路20は、環状溝24のピッチpが均等となるが、環状溝24のピッチpは不均等であってもよい。また、供給口側ヘッダ流路21の断面積及び排出口側ヘッダ流路22の断面積は等しくなくてもよい。
 実施の形態1に係る冷却流路20は、円環状の空隙23の隙間高さδを円筒の軸Zr方向に一定の値としたが、隙間高さはこれに限定されるものではない。円環状の空隙23は、軸Zr方向に隙間高さδが異なる位置を有してもよい。また、円筒の軸Zr方向に沿って不等の値を持つテーパ構造又は段付構造となるようにしてもよい。
 実施の形態1に係る回転電機冷却装置10の冷却流路20は、供給口14と排出口15とに各々連通する円環状の供給口側ヘッダ流路21及び排出口側ヘッダ流路22と、供給口側ヘッダ流路21及び排出口側ヘッダ流路22を結び、冷却液16が通過する円環状の空隙23と、第1の筒状部材12の円環状の空隙23面に形成されて、第1の筒状部材12の軸Zr方向に対して垂直で独立な複数の環状溝24と、を有する。本構造により、供給された冷却液16は、供給口側ヘッダ流路21において第1の筒状部材12の円周方向31に流れる。供給口側ヘッダ流路21内の全周に広がった冷却液16は、円環状の空隙23では第1の筒状部材12の軸方向32に流れる。そして、排出口側ヘッダ流路22では再び円周方向33に流れ、排出口15から排出される。
 円環状の空隙23を通過する冷却液16は、一定間隔に設けられた複数の独立した環状溝24を横切って流れる際に、各環状溝24で温度境界層51,52の発達が抑制され、熱伝達率が上昇するので冷却性能が向上する。また、流路形状が単純であるので、圧力損失の増加を抑制できる上、加工コストの増加を抑制できる。従って、実施の形態1に係る回転電機冷却装置10の冷却流路20によれば、圧力損失及び加工コストの増加を抑えながら、冷却能力の高い冷却ができる回転電機冷却装置10を提供することができる。固定子鉄心11の軸Zr方向の長さが大きくなり、円環状の空隙23の流路が長くなった場合も、複数の独立した環状溝24により温度境界層51,52の発達が抑制されるので、冷却能力を向上させることができる。
 環状溝24の窪みの形状は、実施の形態1のような断面矩形状に限定されず、断面三角形状、又は断面半円形状とすることもできる。また、環状溝24の窪みは、これらの形状を混合したものとすることもできる。環状溝24の深さhも一定とせず、異なる深さとするようにしてもよい。例えば、冷却能力の低下しやすい下流側の環状溝24を上流側の環状溝24に比べて深くしてもよい。
 環状溝24同士の溝間のピッチpが均等配置又は不均等配置となるようにしてもよい。さらに、予め発熱分布の傾向を求め、傾向を求めた発熱分布に対応するように、環状溝24のピッチpを変化させるようにして冷却してもよい。
 図11は、実施の形態1に係る変形例の環状溝を設けた第1の筒状部材と第2の筒状部材とから形成される円環状の空隙の断面図である。図11に示すように、変形例では、第1の筒状部材12の円環状の空隙23側の面に形成される複数の環状溝24のピッチpを供給口14側よりも排出口15側で狭くなるように変更するようにしている。本変形例では、冷却液16の供給口側ヘッダ流路21側からの環状溝24の配置のピッチpを、最初の供給口14側の領域では相対的に間隔を広いピッチp1とし、排出口15側の領域では相対的に間隔を狭いピッチp3とし、中央の領域ではピッチp1とピッチpとの中間のピッチp2とすることで、冷却液16が環状溝24を横切って流れる際の温度境界層の発達の抑制の頻度を異ならせている。従って、供給口14側の領域では熱伝達率は低く、排出口15側の領域は熱伝達率が高く、中央の領域では熱伝達率は中間程度となる。
 例えば、本実施の形態を用いない場合、供給口14側から排出口15側に向かって冷却液16の温度が上がるのに伴って熱伝導率が低下し、供給口14側に比べて排出口15側で固定子鉄心11の熱が冷却されにくいとする。このような場合に、供給口14側に比べて排出口15側で環状溝24のピッチpを狭くすることによって、固定子鉄心11の熱が冷却されにくい排出口15側の熱伝導率が高くなり、排出口15側の固定子鉄心11の冷却を促進することができる。このように、冷却性能を領域毎に制御することもできる。
 尚、本実施の形態では、環状溝24は円状に連続して一周する溝とした。環状溝24が円状に一部断続している場合、その断続する箇所において温度境界層の厚さが大きいままとなるため、本実施の形態の効果が十分得られない。
 また、本実施の形態では、環状溝24は円状に連続して一周する溝としたが、環状溝24が螺旋状に設けられている場合、冷却液16の流路が螺旋状の溝に沿って螺旋状に変化してしまう。そのため、圧力損失が大きくなり、冷却ポンプの負荷が大きくなってしまう。また、螺旋状の溝を形成するためには、加工コストが高くなる。
 本実施の形態に係る回転電機冷却装置10によれば、円状に連続して一周する環状溝24を備えたので、圧力損失及び加工コストの増加を抑制しながら冷却性能を向上する効果が得られる。
実施の形態2.
 図12は、実施の形態2に係る回転電機冷却装置を示す断面図である。図12に示すように、実施の形態2に係る回転電機冷却装置10aは、第2の筒状部材13の両端部に供給口側ヘッダ流路21及び排出口側ヘッダ流路22を形成するものである。第1の筒状部材12は、強度を確保するため、肉厚をある程度大きくする必要がある。例えば図1に示すように、実施の形態1の第1の筒状部材12においては、強度確保の関係から供給口側ヘッダ流路21及び排出口側ヘッダ流路22を形成するには、溝加工深さ限界である第2の基準面42よりも供給口側ヘッダ流路21及び排出口側ヘッダ流路22を深く加工することができない。
 実施の形態2においては、第2の筒状部材13の内面側に、供給口14と排出口15とに連通する円環状の供給口側ヘッダ流路21及び排出口側ヘッダ流路22を設けて、ヘッダ用の供給流路を形成する。ヘッダ用の供給流路を形成する構造により、円環状の空隙23に形成される環状溝24の加工面を第2の基準面42の近くに形成することができる。これにより、発熱源である固定子鉄心11と円環状の空隙23との間における熱伝導の距離Lが小さくなるので、冷却性能が向上する。従って、円環状の空隙23と発熱源との距離Lが接近するので、冷却液16と発熱源との間の熱抵抗が減少し、冷却性能の向上を図ることができる。
 図13は、実施の形態1及び実施の形態2と従来の構造とにおける冷却能力について、有限体積法を用いて数値解析した結果の比較図である。なお、従来の構造は、環状溝24を有さない。図13に示すように、実施の形態1は、従来の構造よりも回転電機を効率よく冷却でき、圧力の損失及び加工コストの増加を抑制できる。また、実施の形態2は熱伝導の距離Lを小さくすることができ、実施の形態1よりもさらに冷却能力の向上を図ることができる。
実施の形態3.
 図14は、実施の形態3に係る回転電機冷却装置を示す断面図である。図14に示すように、実施の形態3に係る回転電機冷却装置10bは、第1の筒状部材12と第2の筒状部材13との一部を加工して第1及び第2の段付き円筒状構造を形成している。第1の段付き円筒状構造は、突出段付部12Aと、切欠部13Aとを有する。突出段付部12Aは、第1の筒状部材12に形成され、排出口15側の内側端面12Bである外周側面が第2の筒状部材13側に突出して形成される。すなわち、突出段付部12Aは、円周方向にわたって、軸Zr方向と直交する方向、すなわち第1の筒状部材12の径方向に沿って、第2の基準面42から突出する。切欠部13Aは、第2の筒状部材13に形成され、排出口15側の外側端面13Bである内周側面に凹みが形成される。そして、第1の筒状部材12の突出段付部12Aの排出口15側の内側端面12Bの外周側面と、第2の筒状部材13の切欠部13Aの排出口15側の外側端面13Bである内周側面と、が排出口側ヘッダ流路22を介して対向するように固定される。突出段付部12A及び切欠部13Aが、円周方向にわたって切欠き加工される回転電機が組み立てられる際には、突出段付部12Aの内側端面12Bの外周側面と、軸Zr方向における切欠部13Aの外側端面13Bである内周側面と、を排出口15の径よりも離して対向させて組み合わせる。組立後、排出口側ヘッダ流路22が形成される。
 よって、排出口15の径は、突出段付部12Aの内側端面12Bである外周側面と、切欠部13Aの外側端面13Bである内周側面と、の間の距離よりも短いものとなる。
 また、第2の段付き円筒状構造は、第2突出段付部13Cと、切欠部12Cとを有する。第2突出段付部13Cは、第2の筒状部材13の供給口14に形成され、供給口14側の内側端面13Dである外周側面に凹みが形成される。第2突出段付部13Cは、軸Zr方向と直交する内周方向に円周方向にわたって、第2の基準面42側へ突出する。切欠部12Cは、第1の筒状部材12の供給口14側の内周側面12Dが円周方向にわたって形成される。回転電機が組み立てられる際には、第2突出段付部13Cの供給口14側の内側端面13Dの外周側面と、切欠部12Cの軸Zr方向の供給口14側の内周側面12Dとを離して、供給側の扁平な供給口側ヘッダ流路21が形成される。これにより、軸Zr方向における供給口側ヘッダ流路21の長さを大きくした扁平の流路が形成されている。
 実施の形態3の回転電機冷却装置10bは、実施の形態2と同様に、円環状の空隙23を溝加工深さ限界の第2の基準面42近くに形成できるので、固定子鉄心11と円環状の空隙23間との熱伝導の距離Lが小さくなり冷却性が向上する。また、実施の形態2とは異なり、供給口側ヘッダ流路21を設ける際、第2の筒状部材13の内面側を溝加工する必要がないので、加工コストが低減できる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10 回転電機冷却装置、11 固定子鉄心、12 第1の筒状部材、13 第2の筒状部材、14 供給口、15 排出口、16 冷却液、20 冷却流路、21 供給口側ヘッダ流路、22 排出口側ヘッダ流路、23 円環状の空隙、24 環状溝、31,33 円周方向、32 軸方向、41 第1の基準面、42 第2の基準面。

Claims (9)

  1.  固定子鉄心の外周面に配設された第1の筒状部材と、
     前記第1の筒状部材の外周面と円環状の空隙を隔てて配設された第2の筒状部材と、
     前記第2の筒状部材の一端側に設けられた供給口から、前記円環状の空隙を通じて前記第2の筒状部材の他端側に設けられた排出口へ冷却液が通過する冷却流路と、を備え、
     前記冷却流路は、前記供給口に連通する環状の供給口側ヘッダ流路と、
     前記排出口に連通する環状の排出口側ヘッダ流路と、
     前記第1の筒状部材の外周面に設けられた円状の環状溝と、を有することを特徴とする回転電機冷却装置。
  2.  前記環状溝は、複数設けられることを特徴とする請求項1に記載の回転電機冷却装置。
  3.  前記円環状の空隙は、前記固定子鉄心の軸方向と垂直な方向の幅が1.0mm以下であることを特徴とする請求項1又は2に記載の回転電機冷却装置。
  4.  複数の前記環状溝同士の溝間のピッチは均等であることを特徴とする請求項1から3のいずれか1項に記載の回転電機冷却装置。
  5.  複数の前記環状溝同士の溝間のピッチは不均等であることを特徴とする請求項1から3のいずれか1項に記載の回転電機冷却装置。
  6.  前記溝間のピッチは、前記供給口側よりも前記排出口側で狭いことを特徴とする請求項5に記載の回転電機冷却装置。
  7.  前記円環状の空隙は、軸方向に隙間の高さが異なる位置を有することを特徴とする請求項1から6のいずれか1項に記載の回転電機冷却装置。
  8.  前記第1の筒状部材は、前記排出口側の外周側面が前記第2の筒状部材側に突出して形成された突出段付部を有し、
     前記第2の筒状部材は、前記排出口側の内周側面が凹んだ切欠部を有し、
     前記排出口側の前記外周側面と、前記排出口側の前記内周側面とが前記排出口側ヘッダ流路を介して対向するように固定されたことを特徴とする請求項1に記載の回転電機冷却装置。
  9.  前記排出口の径は、前記排出口側の外周側面と前記排出口側の内周側面との間の距離よりも短いことを特徴とする請求項8に記載の回転電機冷却装置。
PCT/JP2016/066965 2016-06-07 2016-06-07 回転電機冷却装置 WO2017212556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680005961.9A CN107710564A (zh) 2016-06-07 2016-06-07 旋转电机冷却装置
PCT/JP2016/066965 WO2017212556A1 (ja) 2016-06-07 2016-06-07 回転電機冷却装置
JP2017517810A JP6261818B1 (ja) 2016-06-07 2016-06-07 回転電機冷却装置
TW105127241A TWI616054B (zh) 2016-06-07 2016-08-25 旋轉電機冷卻裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066965 WO2017212556A1 (ja) 2016-06-07 2016-06-07 回転電機冷却装置

Publications (1)

Publication Number Publication Date
WO2017212556A1 true WO2017212556A1 (ja) 2017-12-14

Family

ID=60578442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066965 WO2017212556A1 (ja) 2016-06-07 2016-06-07 回転電機冷却装置

Country Status (4)

Country Link
JP (1) JP6261818B1 (ja)
CN (1) CN107710564A (ja)
TW (1) TWI616054B (ja)
WO (1) WO2017212556A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233107A (ja) * 2001-01-31 2002-08-16 Aisin Seiki Co Ltd 回転電機の冷却構造
JP2010206994A (ja) * 2009-03-04 2010-09-16 Daikin Ind Ltd 電動機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07264810A (ja) * 1994-03-17 1995-10-13 Okuma Mach Works Ltd 液冷モータ
CN2754261Y (zh) * 2004-12-27 2006-01-25 上海连成(集团)有限公司 一种新型的电机冷却装置
JP4383398B2 (ja) * 2005-08-31 2009-12-16 三菱電機株式会社 車両用電動機の冷却装置
DE102005052364A1 (de) * 2005-11-02 2007-05-03 Siemens Ag Elektromotor
JP4882346B2 (ja) * 2005-11-10 2012-02-22 富士電機株式会社 永久磁石を備えた回転電気機械の冷却装置
JP2008193756A (ja) * 2007-01-31 2008-08-21 Jtekt Corp 回転機器
CN101499702A (zh) * 2009-02-27 2009-08-05 山西防爆电机(集团)有限公司 紧凑型水冷三相异步电动机
JP4648470B2 (ja) * 2009-07-03 2011-03-09 ファナック株式会社 電動機冷却装置
JP5492599B2 (ja) * 2010-02-26 2014-05-14 日立オートモティブシステムズ株式会社 回転電機システム
DE102010040399A1 (de) * 2010-09-08 2012-03-08 Siemens Aktiengesellschaft Gehäuse zur Aufnahme eines elektrischen Antriebs
CN102447342B (zh) * 2010-10-06 2014-07-16 本田技研工业株式会社 旋转电机的壳体
CN201940618U (zh) * 2011-03-04 2011-08-24 昆山森力玛电机有限公司 车床直驱电主轴
WO2013054811A1 (ja) * 2011-10-13 2013-04-18 三菱電機株式会社 回転電機
JP2013090405A (ja) * 2011-10-17 2013-05-13 Mitsubishi Electric Corp 回転電機
JP5642821B2 (ja) * 2013-02-26 2014-12-17 ファナック株式会社 冷媒を通過させるための溝部を有する冷却ジャケット、冷却ジャケットを備えた固定子、および、冷却ジャケットを備えた回転電機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233107A (ja) * 2001-01-31 2002-08-16 Aisin Seiki Co Ltd 回転電機の冷却構造
JP2010206994A (ja) * 2009-03-04 2010-09-16 Daikin Ind Ltd 電動機

Also Published As

Publication number Publication date
JPWO2017212556A1 (ja) 2018-06-14
CN107710564A (zh) 2018-02-16
TWI616054B (zh) 2018-02-21
JP6261818B1 (ja) 2018-01-17
TW201743540A (zh) 2017-12-16

Similar Documents

Publication Publication Date Title
JP4648470B2 (ja) 電動機冷却装置
JP6302736B2 (ja) 回転電機
EP3121938B1 (en) Electrical machines
US10523084B2 (en) Cooling system for an electric machine
US20130113311A1 (en) Internal cooling of magnetic core for electric machine
JP2013141334A (ja) 回転電機
WO2017082023A1 (ja) 回転電機
JP2019176648A (ja) 固定子枠、固定子及び回転電機
JP5962570B2 (ja) 回転電機
TWI649945B (zh) 旋轉電機及旋轉電機之定子
JP2015012792A (ja) 回転電機のステータ
JP6261818B1 (ja) 回転電機冷却装置
JP5955235B2 (ja) 電動機
KR102446038B1 (ko) 모터 장치
WO2022265009A1 (ja) 回転電機用ケース、及び回転電機
JP5652305B2 (ja) 回転電機用ステータ
JP7250214B2 (ja) 固定子および回転電機
JP2003125548A (ja) 回転電機のステータ
JP2024118089A (ja) 回転電機
JP6116365B2 (ja) 液冷モータ
WO2022259635A1 (ja) 回転電機
CN118316215A (zh) 定子铁芯、定子及电机
CN117895677A (zh) 定子铁芯及电机
CN117713428A (zh) 一种电机冷却结构
JP2020014354A (ja) 回転電機の冷却構成

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017517810

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904591

Country of ref document: EP

Kind code of ref document: A1