[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017130991A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017130991A1
WO2017130991A1 PCT/JP2017/002424 JP2017002424W WO2017130991A1 WO 2017130991 A1 WO2017130991 A1 WO 2017130991A1 JP 2017002424 W JP2017002424 W JP 2017002424W WO 2017130991 A1 WO2017130991 A1 WO 2017130991A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
carrier
transmission
tti
user terminal
Prior art date
Application number
PCT/JP2017/002424
Other languages
English (en)
French (fr)
Inventor
一樹 武田
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201780008514.3A priority Critical patent/CN108605344B/zh
Priority to EP17744221.7A priority patent/EP3410802A4/en
Priority to JP2017564283A priority patent/JP6938390B2/ja
Priority to US16/072,918 priority patent/US11063736B2/en
Publication of WO2017130991A1 publication Critical patent/WO2017130991A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE Advanced also referred to as LTE Rel.10, 11 or 12
  • LTE Rel.8 the successor system
  • LTE Rel.13 or later the successor system
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Cell Center
  • FDD frequency division duplex
  • DL downlink
  • UL uplink
  • TDD Time division duplex
  • a transmission time interval (TTI: Transmission Time Interval) applied to DL transmission and UL transmission between the radio base station and the user terminal is set to 1 ms and controlled.
  • the transmission time interval is also called a transmission time interval, and the TTI in the LTE system (Rel. 8-12) is also called a subframe length.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Rel In wireless communication systems after 13 (for example, 5G), communication in high frequency bands such as tens of GHz, IoT (Internet of Things), MTC (Machine Type Communication), M2M (Machine To Machine), etc. It is assumed that communication with a small amount of data is performed. There is also an increasing demand for D2D (Device To Device) and V2V (Vehicular To Vehicular) communications that require low-latency communication.
  • D2D Device To Device
  • V2V Vehicle To Vehicular
  • TTI Transmission Time Interval
  • LTE Rel. 8-12 LTE Rel. 8-12
  • the present invention has been made in view of such a point, and an object thereof is to provide a user terminal, a radio base station, and a radio communication method capable of appropriately performing communication even when a shortened TTI is applied. One of them.
  • One aspect of the user terminal according to the present invention is a user terminal that communicates with a plurality of carriers including a TDD carrier to which a shortened TTI having a transmission time interval (TTI) length of less than 1 ms is applied. And a control unit that controls transmission of the UL signal for the DL signal, and the control unit is configured to control the DL signal transmitted for each TTI of the TDD carrier. Control is performed such that at least a part of the UL signal is transmitted at a predetermined timing using another carrier.
  • TTI transmission time interval
  • communication can be performed appropriately even when a shortened TTI is applied.
  • TTI transmission time interval
  • 3A and 3B are diagrams illustrating a configuration example of the shortened TTI.
  • FIG. 4A to FIG. 4C are diagrams showing examples of setting the normal TTI and the shortened TTI. It is a figure explaining UL / DL structure of TDD. It is a figure explaining the structure of the special sub-frame of TDD. It is a figure explaining the interference which arises between normal TTI from which UL / DL structure differs by the same carrier, and shortened TTI.
  • 8A and 8B are diagrams illustrating an example of UL transmission control according to the present embodiment.
  • 9A and 9B are diagrams illustrating another example of UL transmission control according to the present embodiment.
  • 10A and 10B are diagrams showing another example of UL transmission control in the present embodiment.
  • 11A and 11B are diagrams illustrating an example of a special subframe configuration according to the present embodiment.
  • 12A and 12B are diagrams illustrating another example of UL transmission control according to the present embodiment.
  • 13A and 13B are diagrams illustrating another example of the special subframe configuration according to the present embodiment. It is a figure which shows the other example of UL transmission control in this Embodiment. It is a schematic block diagram which shows an example of schematic structure of the radio
  • FIG. 1 is an explanatory diagram of an example of a transmission time interval (TTI) in the existing system (LTE Rel. 8-12).
  • TTI transmission time interval
  • LTE Rel. 8-12 LTE Rel.
  • the TTI in 8-12 (hereinafter referred to as “normal TTI”) has a time length of 1 ms.
  • a normal TTI is also called a subframe and is composed of two time slots.
  • TTI is a transmission time unit of one channel-coded data packet (transport block), and is a processing unit such as scheduling and link adaptation.
  • the normal TTI is configured to include 14 OFDM (Orthogonal Frequency Division Multiplexing) symbols (7 OFDM symbols per slot).
  • Each OFDM symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI is configured to include 14 SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols (7 SC-FDMA symbols per slot).
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Each SC-FDMA symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI may be configured to include 12 OFDM symbols (or 12SC-FDMA symbols).
  • each OFDM symbol or each SC-FDMA symbol
  • wireless interfaces suitable for high frequency bands such as tens of GHz, IoT (Internet of Things), MTC (Machine Type Communication), M2M (Machine To Machine) Wireless interfaces that minimize delay are desired for D2D (Device To Device) and V2V (Vehicular To Vehicular) services.
  • FIG. 2 shows a cell (CC # 1) that uses a normal TTI (1 ms) and a cell (CC # 2) that uses a shortened TTI. Further, when using a shortened TTI, it is conceivable to change the subcarrier interval from the subcarrier of the normal TTI (for example, increase the subcarrier interval).
  • shortened TTI When using a TTI having a time length shorter than a normal TTI (hereinafter referred to as “shortened TTI”), a time margin for processing (for example, encoding, decoding, etc.) in a user terminal or a radio base station increases, and therefore processing delay Can be reduced. Further, when the shortened TTI is used, the number of user terminals that can be accommodated per unit time (for example, 1 ms) can be increased.
  • the configuration of the shortened TTI will be described.
  • the shortened TTI has a time length (TTI length) smaller than 1 ms.
  • the shortened TTI may be one or a plurality of TTI lengths with a multiple of 1 ms, such as 0.5 ms, 0.25 ms, 0.2 ms, and 0.1 ms.
  • a normal TTI in the case of a normal CP, includes 14 symbols, so that it is one or a plurality of TTI lengths that are integer multiples of 1/14 ms, such as 7/14 ms, 4/14 ms, 3/14 ms, and 1/14 ms. May be.
  • a normal TTI since a normal TTI includes 12 symbols, it is one or a plurality of TTI lengths that are integral multiples of 1/12 ms such as 6/12 ms, 4/12 ms, 3/12 ms, and 1/12 ms. May be.
  • the normal CP or the extended CP can be configured by higher layer signaling such as broadcast information or RRC signaling. This makes it possible to introduce a shortened TTI while maintaining compatibility (synchronization) with a normal TTI of 1 ms.
  • the shortened TTI only needs to have a shorter time length than the normal TTI, and may have any configuration such as the number of symbols, the symbol length, and the CP length in the shortened TTI.
  • an OFDM symbol is used for DL and an SC-FDMA symbol is used for UL will be described, but the present invention is not limited to this.
  • FIG. 3A is a diagram illustrating a first configuration example of the shortened TTI.
  • the physical layer signal configuration (RE arrangement, etc.) of normal TTI can be used.
  • the same amount of information (bit amount) as that of normal TTI can be included in the shortened TTI.
  • the symbol time length is different from that of the normal TTI symbol, it is difficult to frequency multiplex the shortened TTI signal and the normal TTI signal shown in FIG. 3A in the same system band (or cell, CC). It becomes.
  • the symbol length and the subcarrier interval are inversely related to each other, when the symbol length is shortened as shown in FIG.
  • the subcarrier interval becomes wide, it is possible to effectively prevent channel-to-channel interference due to Doppler shift during movement of the user terminal and transmission quality deterioration due to phase noise of the user terminal receiver.
  • a high frequency band such as several tens of GHz, it is possible to effectively prevent deterioration in transmission quality by widening the subcarrier interval.
  • FIG. 3B is a diagram illustrating a second configuration example of the shortened TTI.
  • the shortened TTI can be configured in symbol units in the normal TTI.
  • a shortened TTI can be configured by using a part of 14 symbols included in one subframe.
  • the shortened TTI is composed of 7 OFDM symbols (SC-FDMA symbols), which is half of the normal TTI.
  • the information amount (bit amount) included in the shortened TTI can be reduced as compared with the normal TTI.
  • the user terminal can perform reception processing (for example, demodulation, decoding, etc.) of information included in the shortened TTI in a time shorter than normal TTI, and the processing delay can be shortened.
  • the shortened TTI signal and the normal TTI signal shown in FIG. 3B can be frequency-multiplexed within the same system band (or cell, CC), and compatibility with the normal TTI can be maintained.
  • FIG. 4 is a diagram illustrating a setting example of the normal TTI and the shortened TTI. In addition, FIG. 4 is only an illustration and is not restricted to these.
  • FIG. 4A is a diagram illustrating a first setting example of the shortened TTI.
  • the normal TTI and the shortened TTI may be mixed in time within the same component carrier (CC) (frequency domain).
  • the shortened TTI may be set in a specific subframe (or a specific radio frame) of the same CC.
  • a shortened TTI is set in five consecutive subframes in the same CC, and a normal TTI is set in other subframes.
  • the specific subframe may be a subframe in which an MBSFN subframe can be set, or a subframe including (or not including) a specific signal such as an MIB or a synchronization channel. Note that the number and position of subframes in which the shortened TTI is set are not limited to those illustrated in FIG. 4A.
  • FIG. 4B is a diagram illustrating a second setting example of the shortened TTI.
  • carrier aggregation (CA) or dual connectivity (DC) may be performed by integrating the normal TTI CC and the shortened TTI CC.
  • the shortened TTI may be set in a specific CC (more specifically, in the DL and / or UL of the specific CC).
  • a shortened TTI is set in the DL of a specific CC
  • a normal TTI is set in the DL and UL of another CC. Note that the number and position of CCs for which the shortened TTI is set are not limited to those shown in FIG. 4B.
  • the shortened TTI may be set to a specific CC (primary (P) cell or / and secondary (S) cell) of the same radio base station.
  • the shortened TTI may be set to a specific CC (P cell or / and S cell) in the master cell group (MCG) formed by the first radio base station, or the second May be set to a specific CC (primary secondary (PS) cell or / and S cell) in the secondary cell group (SCG) formed by the wireless base station.
  • MCG master cell group
  • PS primary secondary
  • SCG secondary cell group
  • FIG. 4C is a diagram illustrating a third setting example of the shortened TTI.
  • the shortened TTI may be set to either DL or UL.
  • FIG. 4C shows a case where a normal TTI is set in the UL and a shortened TTI is set in the DL in the TDD system.
  • a specific DL or UL channel or signal may be assigned (set) to the shortened TTI.
  • the uplink control channel (PUCCH: Physical Uplink Control Channel) may be assigned to a normal TTI
  • the uplink shared channel (PUSCH: Physical Uplink Shared Channel) may be assigned to a shortened TTI.
  • the user terminal performs transmission of PUCCH by normal TTI and transmission of PUSCH by shortened TTI.
  • LTE Rel A multi-access scheme different from OFDM (or SC-FDMA), which is the multi-access scheme of 8-12, may be assigned (set) to the shortened TTI.
  • shortened TTI As described above, when a cell using a shortened TTI is set for the user terminal, the user terminal sets the shortened TTI based on an implicit or explicit notification from the radio base station. Can be set (or / and detected).
  • a notification example of a shortened TTI applicable in the present embodiment (1) in the case of implicit notification, or (2) broadcast information or RRC (Radio Resource Control) signaling, The case of explicit notification by at least one of (Access Control) signaling and (4) PHY (Physical) signaling will be described.
  • the user terminal transmits an LBT (Listen in frequency band (for example, 5G band, unlicensed band, etc.), system bandwidth (for example, 100 MHz, etc.), LAA (License Assisted Access). Applicability of Before Talk, type of data to be transmitted (eg control data, voice, etc.), logical channel, transport block, RLC (Radio Link Control) mode, C-RNTI (Cell-Radio. Network Temporary Identifier) Based on the above, a shortened TTI may be set (for example, it is determined that a cell, a channel, a signal, or the like for communication is a shortened TTI).
  • LBT Listen in frequency band (for example, 5G band, unlicensed band, etc.), system bandwidth (for example, 100 MHz, etc.), LAA (License Assisted Access). Applicability of Before Talk, type of data to be transmitted (eg control data, voice, etc.), logical channel, transport block, RLC (Radio Link Control) mode, C-RNTI (Cell-
  • control information (DCI) addressed to the terminal itself is detected in the PDCCH mapped to the first 1, 2, 3, or 4 symbols of the normal TTI and / or 1 ms of the EPDCCH
  • 1 ms including the PDCCH / EPDCCH is normally used.
  • Control information (DCI) destined for the terminal is detected using PDCCH / EPDCCH (for example, PDCCH mapped to other than the first 1 to 4 symbols of TTI and / or EPDCCH less than 1 ms) having a configuration other than that determined as TTI
  • a predetermined time interval of less than 1 ms including the PDCCH / EPDCCH may be determined as the shortened TTI.
  • the control information (DCI) addressed to the own terminal can be detected based on the CRC check result for the blind-decoded DCI.
  • the shortened TTI may be set based on setting information notified from the radio base station (for example, the first cell) to the user terminal by the broadcast information or RRC signaling.
  • the setting information indicates, for example, information on CCs and / or subframes using the shortened TTI, information on channels or / and signals using the shortened TTI, information on the TTI length of the shortened TTI, and the like.
  • the user terminal sets the shortened TTI to semi-static based on the setting information from the radio base station. Note that mode switching between the shortened TTI and the normal TTI may be performed by an RRC reconfiguration procedure, an intra-cell handover (HO) in the P cell, and a CC (S cell in the S cell. ) Removal / addition procedure.
  • the shortened TTI set based on the setting information notified by RRC signaling may be validated or deactivated (activate or de-activate) by MAC signaling.
  • the user terminal enables or disables the shortened TTI based on the MAC control element from the radio base station.
  • the user terminal is set in advance with a timer indicating the activation period of the shortened TTI by higher layer signaling such as RRC.
  • the UL / DL allocation of the shortened TTI for a predetermined period is performed. If not done, the shortened TTI may be invalidated.
  • Such a shortened TTI invalidation timer may count in units of normal TTI (1 ms), or may count in units of shortened TTI (for example, 0.25 ms).
  • the S cell when switching the mode between the shortened TTI and the normal TTI in the S cell, the S cell may be de-activated once, or it may be considered that the TA (Timing Advance) timer has expired. Thereby, the communication stop period at the time of mode switching can be provided.
  • the shortened TTI set based on the setting information notified by RRC signaling may be scheduled by PHY signaling.
  • the user terminal performs a shortened TTI based on information contained in the received and detected downlink control channel (PDCCH: Physical Downlink Control Channel or EPDCCH: Enhanced Physical Downlink Control Channel, hereinafter referred to as PDCCH / EPDCCH).
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • control information (DCI) for assigning transmission or reception in normal TTI and shortened TTI includes different information elements, and (4-1) the user terminal performs control including information elements for assigning transmission / reception in shortened TTI.
  • DCI control information
  • a predetermined time interval including the timing at which the PDCCH / EPDCCH is detected may be recognized as a shortened TTI.
  • the user terminal can blind-decode control information (DCI) that allocates transmission or reception of both normal TTI and shortened TTI in PDCCH / EPDCCH.
  • the user terminal detects downlink control information (DCI: Downlink) transmitted by the PDCCH / EPDCCH (when the control information (DCI) including an information element to which transmission / reception with the shortened TTI is allocated is detected)
  • DCI downlink control information
  • a predetermined time interval including the timing at which PDSCH or PUSCH scheduled by Control Information)) is transmitted / received may be recognized as a shortened TTI.
  • the PDSCH or PUSCH scheduled by the PDCCH / EPDCCH (DCI transmitted by the PDCCH / EPDCCH) when the (DCI) including the information element that allocates transmission / reception with the shortened TTI is detected.
  • a predetermined time interval including timing for transmitting or receiving retransmission control information may be recognized as a shortened TTI.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement
  • ACK / NACK A / N, etc.
  • the control information (DCI) instructing transmission / reception with the shortened TTI may be transmitted / received a certain time before transmitting / receiving the shortened TTI.
  • the radio base station transmits control information (DCI) instructing transmission / reception with a shortened TTI at a predetermined timing, and when the user terminal receives the control information (DCI), after a predetermined time (for example, an integer having a TTI length) After a double time or an integer time of the subframe length), the shortened TTI is transmitted / received.
  • the user terminal changes the signal processing algorithm by transmitting / receiving control information (DCI) instructing transmission / reception with a shortened TTI a predetermined time before actually performing transmission / reception with the shortened TTI. Time to do.
  • DCI receiving control information
  • a method of switching to normal TTI transmission / reception may be applied when a shortened TTI is set by higher layer signaling such as RRC, and when control information (DCI) transmitted / received through a downlink control channel is instructed.
  • DCI control information
  • a shortened TTI that requires signal processing with a low delay requires a higher user processing capacity than a normal TTI. Therefore, by limiting the dynamic switching from the shortened TTI to the normal TTI, the signal processing burden on the user terminal accompanying the change in the TTI length is reduced as compared with the case where the dynamic switching from the normal TTI to the shortened TTI is allowed. be able to.
  • the user terminal may detect the shortened TTI based on the state of the user terminal (for example, Idle state or Connected state). For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • the state of the user terminal for example, Idle state or Connected state. For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • TTI transmission time interval
  • transmission timing is controlled based on a UL / DL configuration in which UL subframes and DL subframes are defined in units of 1 ms (see FIG. 5).
  • FIG. 5 shows a plurality of frame configurations (UL / DL configuration (UL / DL configuration)) with different transmission ratios between UL subframes and DL subframes.
  • UL / DL configurations 0 to 6 seven frame configurations of UL / DL configurations 0 to 6 are defined, subframes # 0 and # 5 are allocated to the downlink, and subframe # 2 is allocated to the uplink.
  • UL / DL configurations 0, 1, 2, and 6 the period of change from the DL subframe to the UL subframe (up / down link switching cycle) is 5 ms, and in UL / DL configurations 3, 4, and 5, The link switching cycle is 10 ms.
  • FIG. 6 shows a special subframe configuration (Sp-SF Config) of the existing system.
  • 10 types of normal CP Normal CP
  • 8 types of extended CP Extended CP
  • SIB1 system information
  • SCell secondary cell
  • the numbers listed in the table of FIG. 6 represent the number of OFDM (or SC-FDMA) symbols.
  • the maximum uplink time interval (UpPTS) is set to 2 symbols at maximum. Therefore, transmission of user data transmitted using an uplink shared channel (for example, PUSCH) or uplink control signal (UCI) transmitted using an uplink control channel (for example, PUCCH) in the UL subframe is a special subframe. Not supported. In the special subframe of the existing system, only transmission of PRACH and SRS is supported as UL transmission.
  • synchronization is important in order to suppress interference between the upper and lower links. For example, synchronous control not only between user terminals connected to the same TDD cell (wireless base station) but also between multiple TDD cells and between adjacent TDD carriers (operators) is effective in suppressing interference between uplink and downlink. It becomes the target.
  • FIG. 7 shows a case where a user terminal using the UL / DL configuration of an existing system and a user terminal using a configuration with a UL-DL switching period of 2 ms communicate on the same carrier.
  • a period in which uplink / downlink interference occurs between a user terminal to which the UL / DL configuration of the existing system is applied and a user terminal to which the UL / DL configuration for shortened TTI is applied may occur, and communication quality may be deteriorated. is there.
  • the user terminal using the shortened TTI also controls communication (for example, UL transmission) using the UL / DL configuration of the existing system.
  • the shortened TTI is defined on the premise of UL / DL switching with a period of 5 ms or 10 ms, the delay reduction effect cannot be obtained sufficiently.
  • a shortened TTI is applied to a cell (TDD carrier) using TDD, how to control transmission (for example, UL transmission) becomes a problem, and a method for realizing delay reduction is desired.
  • the present inventors when communicating with a plurality of carriers including a TDD carrier to which a shortened TTI is applied, the present inventors perform at least part of UL transmission corresponding to each shortened TTI of the TDD carrier. Inspired to transmit using other carriers.
  • the user terminal controls to transmit at least a part of a UL signal (for example, uplink data, uplink control signal, etc.) for each shortened TTI DL signal of the TDD carrier at a predetermined timing using another carrier.
  • a transmission timing shorter than the UL transmission timing of the existing system transmission timing for shortened TTI
  • transmission timing for shortened TTI can be applied.
  • a TTI of 1 ms may be referred to as a normal TTI, normal TTI, long TTI, normal subframe, normal subframe, or long subframe.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a shortened subframe, or a short subframe.
  • the configuration shown in FIGS. 1 to 4 can be applied to the shortened TTI of the present embodiment.
  • an LTE system is taken as an example, but the present embodiment is not limited to this, and any system that uses a shortened TTI with a TDD carrier can be applied.
  • a plurality of modes described below may be implemented alone or in combination as appropriate.
  • HARQ-ACK acknowledgment signal
  • ACK / NACK ACK / NACK
  • a / N DL transmission of a TDD carrier using a shortened TTI
  • HARQ timing the timing for feeding back A / N for DL transmission
  • the HARQ timing is not limited to 1 ms, and can be appropriately changed based on the shortened TTI length or the like.
  • FIG. 8 shows a case where A / N for a DL signal of a TDD carrier that uses a shortened TTI is transmitted using another carrier.
  • the other carrier may be a carrier (or cell, CC) set as a pair band, may be an FDD UL, or may be another TDD carrier. Further, the other carrier may be a carrier to which normal TTI is applied, or may be a carrier to which shortened TTI is applied. When another carrier uses a shortened TTI, it may be the same as the shortened TTI length of the TDD carrier, or may be a carrier using a different TTI length.
  • FIG. 8A shows a case where the other carrier is an FDD UL. That is, the user terminal can feed back the A / N for each DL signal of the shortened TTI of the TDD carrier by using the FDD UL after a predetermined timing (here, 1 ms).
  • a predetermined timing here, 1 ms.
  • the UL period / DL period similar to the UL / DL configuration of the TDD of the existing system is set, and the A / N transmission timing in the TDD carrier is set to the transmission timing of the existing system. (For example, 4 ms or more).
  • FIG. 8B shows a case where the other carrier is another TDD carrier (here, UL / DL configuration # 0). That is, the user terminal can feed back the A / N for the DL signal of the TDD carrier using the shortened TTI using a UL subframe of another TDD carrier after a predetermined timing.
  • the TDD carrier uses the UL / DL configuration # 2 and the other TDD carrier uses the UL / DL configuration # 0 is shown here, the present invention is not limited thereto.
  • the UL / DL configuration applied by other TDD carriers may be the same as or different from the UL / DL configuration of a TDD carrier (A / N transmission source) that uses a shortened TTI.
  • the UL / DL configuration UL subframe ratio applied by other TDD carriers should be set higher than the A / N source TDD carrier. Is preferred. In this case, in other TDD carriers, UL resources that can be used for A / N transmission with respect to DL allocation of the TDD carrier of the A / N transmission source can be increased.
  • a pair band (another carrier) that performs A / N transmission of a TDD carrier using a shortened TTI can be set in a user terminal using higher layer signaling (for example, RRC signaling) notified to each UE.
  • higher layer signaling for example, RRC signaling
  • the radio base station can be configured to notify the user terminal of at least one of the following information (a1) to (e1) by higher layer signaling: .
  • A1 Information about TDD carrier using shortened TTI (b1) Information about shortened TTI to be applied (c1) Information about HARQ timing to be applied (d1) Information about carrier used as pair band (e1) About subframe to which shortened TTI is applied information
  • the user terminal can determine which TDD carrier uses the shortened TTI when using a plurality of TDD carriers. Further, by receiving the information (b1), it is possible to determine what shortened TTI is used (for example, 0.5 ms or 0.25 ms, or 7 symbols or 3 symbols). Further, by receiving the information (c1), it is possible to determine what HARQ timing is applied (for example, 1 ms or 2 ms). In addition, by receiving the information (d1), it is possible to determine which carrier is used as a pair band (for example, a band number). Further, by receiving the information (e1), it is possible to determine in which subframe the shortened TTI is applied.
  • FIG. 8 shows a case where the entire A / N for DL transmission of each TTI in the TDD carrier to which the shortened TTI is applied is transmitted using another carrier
  • the present embodiment is not limited to this.
  • a / N with respect to each DL transmission of a TDD carrier is demonstrated about the case where transmission is controlled using the said TDD carrier (own carrier) and another carrier.
  • the user terminal performs control so that A / N for a predetermined DL allocation is transmitted in a pair band in a TDD carrier using a shortened TTI, and other A / N is transmitted in the UL of the TDD carrier (own carrier). Can do.
  • the user terminal assigns each DL assignment based on the position of the TTI (DL transmission timing) where DL assignment is performed in the TDD carrier and the UL resource position (UL transmission timing) of the TDD carrier and / or the pair band.
  • a / N transmission carriers for can be determined.
  • FIG. 9 shows the transmission of A / N for DL assignment based on the position of TTI where DL assignment is performed in the TDD carrier and the UL resource position of UL of the TDD carrier and / or other carrier that is paired with the band.
  • the case of selecting a carrier is shown.
  • FIG. 9A shows a case where another carrier that becomes a pair band is an FDD UL
  • FIG. 9B shows that another carrier that becomes a pair band is another TDD carrier (here, UL / DL configuration # 0). Shows the case.
  • a / N for DL allocation when A / N for DL allocation is transmitted after a predetermined timing (here, 1 ms), the user terminal performs A / N transmission on a TDD carrier 1 ms after TTI in which DL allocation is performed. Is possible (there is UL resource). If A / N transmission is possible on the TDD carrier after 1 ms, the user terminal performs A / N transmission on the TDD carrier. On the other hand, if there is no UL resource in the TDD carrier after 1 ms, the user terminal performs A / N transmission using the UL of the FDD carrier.
  • the user terminal determines whether A / N transmission is possible on the TDD carrier 1 ms after the TTI in which DL allocation is performed. To do. If A / N transmission is possible on the TDD carrier after 1 ms, the user terminal performs A / N transmission on the TDD carrier. On the other hand, if the UL resource does not exist in the TDD carrier after 1 ms and the UL resource exists in another TDD carrier, the user terminal performs A / N transmission using the UL resource of the other TDD carrier.
  • a / N for a predetermined DL allocation is selectively transmitted in a pair band, and the other A / N is transmitted by a TDD carrier (own carrier), thereby improving the frequency utilization efficiency of the own carrier.
  • the predetermined DL allocation may be a DL allocation in which no UL resource exists on the TDD carrier after a predetermined timing.
  • the user terminal may determine an A / N transmission carrier (UL resource) for a DL signal of a TDD carrier that uses a shortened TTI based on downlink control information.
  • the radio base station explicitly indicates to the user terminal including information on the A / N transmission carrier for the DL signal in a predetermined bit area of the downlink control information (DCI) transmitted with the shortened TTI of the TDD carrier.
  • DCI downlink control information
  • the downlink control information for example, a DCI format (DL assignment) for performing downlink assignment can be used.
  • the user terminal can select a carrier for A / N transmission based on a predetermined bit area of downlink control information received by each shortened TTI of the TDD carrier.
  • the predetermined bit area of the downlink control information can include information on a carrier that performs A / N transmission (for example, information on a carrier such as a band number, information on a UL resource, and the like).
  • the user terminal may be controlled to transmit A / N using the UpPTS of the special subframe. For example, when a special subframe exists after a predetermined timing (for example, 1 ms) from the shortened TTI in which DL assignment is performed in the TDD carrier, the user terminal assigns A / N to the special subframe (UpPTS) and transmits the special subframe. .
  • a predetermined timing for example, 1 ms
  • UpPTS special subframe
  • FIG. 10 shows the transmission of A / N for DL assignment based on the position of TTI where DL assignment is performed in the TDD carrier and the UL resource position of UL of the TDD carrier and / or other carrier that is paired with the band.
  • the case of selecting a carrier is shown.
  • a special subframe (UpPTS) is also included in the UL resource position of the TDD carrier.
  • FIG. 10A shows a case where another carrier that becomes a pair band is an FDD UL
  • FIG. 10B shows that another carrier that becomes a pair band is another TDD carrier (here, UL / DL configuration # 0). Shows the case.
  • the user terminal when the user terminal transmits A / N for DL allocation after 1 ms, it determines whether A / N transmission is possible on the TDD carrier 1 ms after TTI in which DL allocation is performed. To do.
  • a UL subframe or a special subframe (UpPTS) exists on the TDD carrier after 1 ms, the user terminal performs A / N transmission on the TDD carrier.
  • UpPTS UL subframe and / or special subframe
  • the user terminal performs A / N transmission using UL resources of other TDD carriers.
  • the frequency utilization efficiency of the own carrier can be further improved as compared with FIG.
  • a / N transmission is not supported in UpPTS (maximum 2 symbols) of special subframes in the existing system. Therefore, when A / N feedback is performed using UpPTS of an existing special subframe, it is necessary to transmit A / N with one or two symbols.
  • a PUCCH format new PUCCH format capable of transmitting A / N with 1 or 2 symbols is defined, and PUCCH allocation control for 1 or 2 symbols of UpPTS can be performed (see FIG. 11A).
  • the new PUCCH format used in UpPTS may be applied to PUCCH transmission of a shortened TTI in the UL subframe.
  • the same PUCCH format can be used for the UL subframe (shortened TTI) of the TDD carrier and the UpPTS in the special subframe.
  • the above-mentioned new PUCCH format needs to reduce the delay by suppressing the TTI length, it is preferably shorter than the previous TTI length (1 ms).
  • the shorter the TTI length the worse the A / N reception quality.
  • the shortened TTI is realized by reducing the number of OFDM symbols included in the TTI length, the number of signal samples used for A / N transmission is reduced, so that A / N bit energy that can be secured when transmitting with the same transmission power Will decrease.
  • the shortened TTI is realized by shortening the OFDM symbol length while maintaining the number of OFDM symbols included in the TTI length, since the subcarrier interval is widened, the number of samples per OFDM symbol is reduced, so transmission is performed with the same transmission power.
  • the A / N bit energy that can be secured decreases. A decrease in A / N bit energy will cause degradation of the bit error rate or block error rate.
  • the new PUCCH format transmitted by shortened TTI or UpPTS has (1) transmission power boost (increase transmission power compared to transmission of other PUCCH formats) and (2) to secure A / N bit energy.
  • One or a plurality of transmissions using a plurality of resource blocks (transmission using a plurality of continuous frequency resource blocks) and (3) transmission antenna diversity may be applied.
  • the user terminal that supports the new PUCCH format may support any or all of the above (1) to (3).
  • FIG. 11B shows a case where DwPTS is configured with 5 symbols, gaps are configured with 2 symbols, and UpPTS is configured with 7 symbols, the configuration of the special subframe is not limited to this.
  • the UL resource (UL subframe) is generated after a predetermined timing from the DL assignment of the shortened TTI.
  • a non-existent case occurs.
  • the DL allocation in the TDD carrier is not limited. Therefore, a configuration may be adopted in which the A / N feedback timing of DL assignment without UL resources in the own carrier and / or pair band after a predetermined timing is set longer than a predetermined timing (for example, 1 ms) (see FIG. 12A).
  • a predetermined timing for example, 1 ms
  • DL allocation is permitted even for a paired band (other TDD carrier) after a predetermined timing and / or a shortened TTI in which there is no corresponding UL resource in its own carrier.
  • the user terminal extends the A / N feedback timing for the DL assignment (allows delay) and controls to transmit using the UL resource of the own carrier or another TDD carrier. Thereby, even when the pair band is another TDD carrier, DL allocation can be performed regardless of the UL resource position of the other TDD carrier.
  • FIG. 12A shows a case where A / N for a DL assignment for which no UL resource exists after 1 ms is assigned to the next earliest UL subframe, but the UL resource to which an A / N with an extended feedback timing is assigned. Not limited.
  • the user terminal may use the A / N for DL allocation in which UL resources do not exist in the pair band and / or its own carrier after a predetermined timing as a subframe for performing DL allocation with normal TTI (see FIG. 12B). ).
  • the HARQ timing for DL allocation using the normal TTI may use the timing defined by the normal TTI.
  • an uplink control channel for example, PUCCH
  • a uplink shared channel for example, PUSCH
  • PUCCH uplink control channel
  • PUSCH uplink shared channel
  • a / N when transmitting the A / N of the TDD carrier with another carrier, when there is no uplink data transmission in any carrier, A / N may be multiplexed on the uplink control channel of a predetermined carrier.
  • the predetermined carrier can also be referred to as a PCell, PSCell, or PUCCH cell.
  • the A / N when transmitting the A / N of the TDD carrier on another carrier and there is uplink data transmission on any carrier, the A / N is multiplexed on the PUSCH of the carrier on which the uplink data transmission is transmitted. May be.
  • a UL transmission method based on a UL transmission instruction (UL grant) included in a DL signal of a TDD carrier that uses a shortened TTI will be described. Further, in the following description, a case where the UL transmission timing for the UL grant is 1 ms after UL allocation (when UL grant is received) will be described as an example. Of course, the UL transmission timing is not limited to 1 ms, and can be appropriately changed based on the shortened TTI length or the like.
  • the user terminal When receiving a UL grant using a shortened TTI on a TDD carrier, the user terminal performs control so that at least a part of UL transmission for the UL grant of each TTI is performed using another carrier set as a pair band. (See FIG. 8).
  • UL transmission includes UL data (eg, PUSCH) transmission, aperiodic CSI transmission, and the like.
  • the other carrier may be a carrier (or cell, CC) set as a pair band, may be an FDD UL, or may be another TDD carrier.
  • the other carrier may be a carrier to which normal TTI is applied, or may be a carrier to which a shortened TTI (same TTI length or different TTI length) is applied.
  • FIG. 8A shows a case where the other carrier is an FDD UL.
  • the user terminal can transmit uplink data for a DL signal (UL grant) of a TDD carrier that uses a shortened TTI after a predetermined timing (here, 1 ms) using the UL of the FDD.
  • a DL signal UL grant
  • a predetermined timing here, 1 ms
  • the present invention is not limited to this.
  • the UL period / DL period similar to the UL / DL configuration of the TDD of the existing system is set, and the transmission timing of the uplink data in the TDD carrier is set to the transmission timing of the existing system ( For example, it can be shorter than 4 ms).
  • FIG. 8B shows a case where another carrier is another TDD carrier (UL / DL configuration # 0).
  • the user terminal can transmit the uplink data for the UL grant of the TDD carrier using the shortened TTI using a UL subframe (for example, PUSCH) of another TDD carrier after a predetermined timing.
  • a UL subframe for example, PUSCH
  • the present invention is not limited thereto.
  • the UL / DL configuration applied by other TDD carriers may be the same as or different from the UL / DL configuration of a TDD carrier (uplink data transmission source) using a shortened TTI.
  • the UL subframe ratio of the UL / DL configuration applied by other TDD carriers may be set to be higher than the TDD carrier of the upstream data transmission source. preferable. In this case, in other TDD carriers, UL resources that can be used for uplink data transmission for the UL grant of the TDD carrier of the uplink data transmission source can be increased.
  • a pair band (another carrier) that performs uplink data transmission of a TDD carrier that uses a shortened TTI can be set in a user terminal using higher layer signaling (for example, RRC signaling) that is notified to each UE.
  • higher layer signaling for example, RRC signaling
  • the radio base station can be configured to notify the user terminal of at least one of the following information (a2) to (e2) by higher layer signaling: .
  • A2 Information on TDD carrier using shortened TTI
  • b2 Information on shortened TTI to be applied
  • c2 Information on UL transmission (for example, uplink data transmission) timing to be applied
  • d2) Information on carrier used as pair band
  • e2 Information about subframe to which shortened TTI is applied
  • the user terminal can determine which TDD carrier uses the shortened TTI when using a plurality of TDD carriers. Also, by receiving the information (b2), it is possible to determine what shortened TTI is used (for example, 0.5 ms or 0.25 ms, or 7 symbols or 3 symbols). In addition, by receiving the information (c2), it is possible to determine what UL transmission timing is applied (for example, 1 ms or 2 ms). Further, by receiving the information (d2), it is possible to determine which carrier is used as a pair band (for example, a band number or the like). Also, by receiving the information (e2), it is possible to determine in which subframe the shortened TTI is applied.
  • FIG. 8 shows a case where all the uplink data for the UL grant of each TTI in the TDD carrier to which the shortened TTI is applied is transmitted using another carrier
  • the present embodiment is not limited to this.
  • the case where transmission of uplink data for the UL grant of each TTI of the TDD carrier is controlled using the TDD carrier (own carrier) and another carrier will be described below.
  • the user terminal may control to transmit a UL transmission for a predetermined UL grant in a pair band in a TDD carrier using a shortened TTI, and transmit other UL transmissions using the UL resource of the TDD carrier (own carrier). It can. For example, the user terminal can determine each UL based on the TTI position (UL grant reception timing) where UL allocation is performed in the TDD carrier and the UL resource position (UL transmission timing) of the TDD carrier and / or the pair band. A carrier for UL transmission for assignment can be determined.
  • FIG. 9 selects the uplink data transmission carrier for UL allocation based on the position of the TTI where UL allocation is performed in the TDD carrier and the UL resource position of the TDD carrier and / or other carriers that are paired with the band. Shows when to do.
  • FIG. 9A shows a case where another carrier that becomes a pair band is an FDD UL
  • FIG. 9B shows that another carrier that becomes a pair band is another TDD carrier (here, UL / DL configuration # 0). Shows the case.
  • the user terminal when the uplink data for the UL allocation is transmitted after a predetermined timing (here, 1 ms), the user terminal can transmit the uplink data on the TDD carrier 1 ms after the TTI in which the UL allocation is performed. It is determined whether (UL resource is present). If uplink data transmission is possible on the TDD carrier after 1 ms, the user terminal performs uplink data transmission on the TDD carrier. On the other hand, if there is no UL resource in the TDD carrier after 1 ms, the user terminal performs uplink data transmission using the UL of the FDD carrier.
  • a predetermined timing here, 1 ms
  • the user terminal can transmit the uplink data on the TDD carrier 1 ms after the TTI in which the UL allocation is performed. It is determined whether (UL resource is present). If uplink data transmission is possible on the TDD carrier after 1 ms, the user terminal performs uplink data transmission on the TDD carrier. On the other hand, if there is no UL resource in the TDD carrier
  • the user terminal determines whether uplink data transmission is possible on the TDD carrier 1 ms after the TTI in which the UL allocation is performed. If uplink data transmission is possible on the TDD carrier after 1 ms, the user terminal performs uplink data transmission on the TDD carrier. On the other hand, if there is no UL resource in the TDD carrier after 1 ms and the UL resource exists in another TDD carrier, the user terminal performs uplink data transmission using the UL resource of the other TDD carrier.
  • the uplink data for a predetermined UL allocation is selectively transmitted in a pair band, and the other uplink data is transmitted on the TDD carrier (own carrier), thereby improving the frequency utilization efficiency of the own carrier.
  • the predetermined UL allocation may be a UL allocation in which no UL resource exists on the TDD carrier after a predetermined timing.
  • the user terminal may determine the UL transmission carrier (UL resource) for the UL grant of the TDD carrier using the shortened TTI based on the downlink control information.
  • the radio base station explicitly notifies the user terminal of the predetermined bit area of the downlink control information (DCI) transmitted with the TDD carrier shortened TTI, including information on the uplink data transmission carrier for the UL grant.
  • DCI downlink control information
  • the downlink control information for example, a DCI format for performing uplink allocation can be used.
  • the user terminal can select a carrier that performs uplink data transmission based on a predetermined bit area of downlink control information received by each shortened TTI of the TDD carrier.
  • the predetermined bit area of the downlink control information can include information related to a carrier performing uplink data transmission (for example, information related to a carrier such as a band number, information related to UL resources, etc.).
  • the user terminal may perform control to transmit uplink data (for example, PUSCH) using the UpPTS of the special subframe. For example, when a special subframe exists after a predetermined timing (for example, 1 ms) from the shortened TTI in which UL assignment is performed in the TDD carrier, the user terminal assigns uplink data to the special subframe (UpPTS) and transmits the special subframe.
  • uplink data for example, PUSCH
  • UpPTS special subframe
  • FIG. 10 selects the uplink data transmission carrier for UL allocation based on the position of the TTI where UL allocation is performed in the TDD carrier and the UL resource position of the TDD carrier and / or another carrier that is paired with the band. Shows when to do.
  • a special subframe (UpPTS) is also included in the UL resource position of the TDD carrier.
  • 10A shows a case where another carrier that becomes a pair band is an FDD UL
  • FIG. 10B shows that another carrier that becomes a pair band is another TDD carrier (here, UL / DL configuration # 0). The case is shown.
  • the user terminal when the uplink data for UL allocation is transmitted 1 ms later, the user terminal can transmit uplink data on the TDD carrier 1 ms after the TTI for which UL allocation is performed (there is UL resource). Judge if there is. When a UL subframe or a special subframe (UpPTS) exists on the TDD carrier after 1 ms, the user terminal performs uplink data transmission on the TDD carrier. On the other hand, if there is no UL subframe or special subframe (UpPTS) in the TDD carrier after 1 ms, the user terminal performs uplink data transmission using the UL of the FDD carrier.
  • UpPTS special subframe
  • the user terminal determines whether uplink data transmission is possible on the TDD carrier 1 ms after the TTI in which UL allocation is performed. If there is no UL subframe or special subframe (UpPTS) in the TDD carrier after 1 ms and UL resources (UL subframe and / or special subframe (UpPTS)) exist in other TDD carriers, the user terminal Uplink data transmission is performed using UL resources of other TDD carriers.
  • UpPTS special subframe
  • the frequency utilization efficiency of the own carrier can be further improved as compared with FIG.
  • uplink data transmission is not supported in UpPTS (maximum 2 symbols) of special subframes in the existing system. Accordingly, when uplink data transmission is performed using UpPTS of an existing special subframe, it is necessary to transmit uplink data with one or two symbols.
  • UpPTS maximum 2 symbols
  • the new PUSCH configuration used in UpPTS may be applied to the PUSCH transmission of the shortened TTI in the UL subframe.
  • the same PUSCH configuration can be used for the UL subframe (shortened TTI) of the TDD carrier and the UpPTS in the special subframe.
  • the number of PUSCH configurations that the user terminal must newly implement by introducing the shortened TTI can be reduced, and the terminal implementation cost can be reduced.
  • the PUSCH configuration described here includes the mapping order of UL data to resource elements, DMRS mapping location, SRS mapping location, and UCI (CQI / PMI, UCI within PUSCH resources when UCI on PUSCH is applied) RI, HARQ-ACK) mapping rule.
  • FIG. 13B shows a case where DwPTS is configured with 5 symbols, a gap is configured with 2 symbols, and UpPTS is configured with 7 symbols, the configuration of the special subframe is not limited thereto.
  • a pair band for UL transmission of a shortened TTI is set, even if UL-CA is not set, a configuration for performing UL transmission using the pair band is allowed.
  • the UL transmission of the TDD carrier (own carrier) may not be performed (restricted) at the timing when UL transmission exists in the pair band used for UL transmission of the TDD carrier.
  • another carrier used for UL transmission (A / N, uplink data, etc.) of a TDD carrier is an FDD UL.
  • the user terminal performs control so as not to perform the UL transmission of the TDD carrier at the timing when there is UL transmission in the pair band (in this case, every subframe (TTI)) (see FIG. 14).
  • the user terminal drops the UL transmission of the own carrier (no transmission). Transmission).
  • CQI reporting on a TDD carrier may be performed using another carrier (for example, a pair band).
  • the user terminal controls to perform transmission / reception using the TDD carrier (own carrier) when performing transmission / reception using the normal TTI. can do.
  • the HARQ timing and the UL transmission timing may use the same timing as that of the existing system.
  • a user terminal that does not have CA capability for example, UL-CA capability
  • CA capability for example, UL-CA capability
  • UL transmission using a pair band can be performed.
  • signaling independent of CA or UL-CA capability may be defined as user capability (UE capability) signaling for performing UL transmission using a pair band.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 15 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • a radio communication system 1 shown in FIG. 15 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, six or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells. In addition, it can be set as the structure by which the TDD carrier which applies shortening TTI is contained in either of several cells.
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the uplink.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. Including. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel shared by each user terminal 20
  • an uplink control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 16 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception unit 103 includes a transmission unit and a reception unit.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit (transmission unit) 103 transmits a DL signal (downlink control information, downlink data, etc.) to the user terminal using a shortened TTI.
  • the transmission / reception unit (reception unit) 103 receives a UL signal for DL transmission.
  • the transmission / reception unit (reception unit) 103 can receive at least a part of the UL signal for the DL signal transmitted for each shortened TTI of the TDD carrier at a predetermined timing using another carrier (see FIG. 8). ).
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 17 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 17, the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304. .
  • the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit (scheduler) 301 controls scheduling (for example, resource allocation) of downlink data signals transmitted on PDSCH and downlink control signals transmitted on PDCCH and / or EPDCCH. It also controls scheduling of system information, synchronization signals, paging information, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), and the like. Further, scheduling of uplink reference signals, uplink data signals transmitted on PUSCH, uplink control signals transmitted on PUCCH and / or PUSCH, and the like is controlled.
  • the control unit 301 can control transmission / reception of the transmission / reception unit (transmission unit) 103.
  • the control unit 301 controls reception of user terminal uplink control information and uplink data.
  • the control unit 301 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a downlink data signal and a downlink control signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • transmission signal generation section 302 generates a downlink data signal (PDSCH) including user data and outputs it to mapping section 303.
  • the transmission signal generation unit 302 generates a downlink control signal (PDCCH / EPDCCH) including DCI (UL grant) and outputs the downlink control signal (PDCCH / EPDCCH) to the mapping unit 303.
  • the transmission signal generation unit 302 generates downlink reference signals such as CRS and CSI-RS, and outputs them to the mapping unit 303.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the UL signal (HARQ-ACK, PUSCH, etc.) transmitted from the user terminal 20.
  • the processing result is output to the control unit 301.
  • the reception signal processing unit 304 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device, which are described based on common recognition in the technical field according to the present invention. it can.
  • FIG. 18 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception unit 203 may include a transmission unit and a reception unit.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit (reception unit) 203 receives a DL signal (for example, downlink control information, downlink data, etc.) transmitted from the radio base station.
  • the transmission / reception unit (transmission unit) 203 transmits uplink control information and uplink data for the received DL signal.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 19 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 19 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 19, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a determination unit 405. I have.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • the control unit 401 can control the transmission signal generation unit 402, the mapping unit 403, and the reception signal processing unit 404.
  • the control unit 401 can control to transmit at least a part of the UL signal for the DL signal transmitted for each TDD carrier shortened TTI at a predetermined timing using another carrier (see FIG. 8).
  • the other carrier may be an FDD UL configured as a TDD pair band, or another TDD carrier.
  • the UL signal for the DL signal may be HARQ-ACK for the DL signal and / or UL data (including aperiodic CSI) instructed to be transmitted by the DL signal.
  • control unit 401 transmits a UL signal to be transmitted using another carrier, a shortened TTI that has received the DL signal in the TDD carrier, a UL transmission timing of the TDD carrier, and / or a UL transmission timing of another carrier, Can be determined based on Or the control part 401 can determine the carrier which transmits UL signal based on the control information contained in the DL signal of a TDD carrier.
  • control unit 401 transmits a part of the UL signal for the DL signal of the TDD carrier using another carrier, and transmits the other UL signal using the UpPTS included in the UL subframe and / or the special subframe of the TDD carrier. It can be controlled to transmit (see FIGS. 9 and 10).
  • the control unit 401 uses a new PUCCH format (new PUSCH configuration) and / or a special subframe configuration having UpPTS of three symbols or more. (See FIGS. 11 and 13).
  • the control unit 401 performs the DL of the TDD carrier. It is possible to control the UL signal corresponding to the signal to be transmitted at a transmission timing longer than a predetermined timing (see FIG. 14).
  • the control unit 401 can be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal based on an instruction from the control unit 401 and outputs the UL signal to the mapping unit 403. For example, the transmission signal generation unit 402 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401.
  • HARQ-ACK delivery confirmation signal
  • CSI channel state information
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the uplink signal (uplink control signal and / or uplink data) generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio resource to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (for example, downlink control signal transmitted from the radio base station, downlink data signal transmitted by PDSCH, etc.). I do.
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401 and the determination unit 405.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are described based on common recognition in the technical field according to the present invention. it can. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the determination unit 405 performs retransmission control determination (ACK / NACK) based on the decoding result of the received signal processing unit 404 and outputs the determination result to the control unit 401.
  • ACK / NACK retransmission control determination
  • ACK / NACK retransmission control determination
  • the determination part 405 can be comprised from the determination circuit or determination apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 20 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each function in the radio base station 10 and the user terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation, and communication by the communication device 1004, This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, and may be configured by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like, for example.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium, and may be composed of at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk, and a flash memory, for example. .
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input.
  • the output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a slot may be composed of one or more symbols (OFDM symbols, SC-FDMA symbols, etc.) in the time domain.
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal.
  • Different names may be used for the radio frame, the subframe, the slot, and the symbol.
  • one subframe may be referred to as a transmission time interval (TTI)
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. Also good.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of one slot, one subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, symbol, and the like is merely an example.
  • the configuration such as the cyclic prefix (CP) length can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • MAC CE Control Element
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), other suitable wireless communication methods and / or based on them It may be applied to an extended next generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

短縮TTIが適用される場合であっても、通信を適切に行うこと。送信時間間隔(TTI:Transmission Time Interval)長が1msより短い短縮TTIを適用するTDDキャリアを含む複数のキャリアと通信を行うユーザ端末であって、無線基地局から送信されるDL信号を受信する受信部と、前記DL信号に対するUL信号の送信を制御する制御部と、を有し、前記制御部は、前記TDDキャリアのTTI毎に送信されるDL信号に対するUL信号の少なくとも一部を、他のキャリアを用いて所定タイミングで送信するように制御する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTE(LTE Rel.8ともいう)からのさらなる広帯域化および高速化を目的として、LTEアドバンスト(LTE Rel.10、11又は12ともいう)が仕様化され、後継システム(LTE Rel.13以降)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、Inter-eNB CAなどとも呼ばれる。
 また、既存システム(LTE Rel.8-12)では、下り(DL:Downlink)送信と上り(UL:Uplink)送信とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、DL送信とUL送信とを同じ周波数帯で時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。例えば、TDDでは、各サブフレームを上りリンク(UL:Uplink)に用いるか下りリンク(DL:Downlink)に用いるかが、UL/DL構成(UL/DL configuration)に基づいて厳密に定められている。
 以上のような既存システムでは、無線基地局とユーザ端末間のDL送信及びUL送信に適用される送信時間間隔(TTI:Transmission Time Interval)は1msに設定されて制御される。送信時間間隔は伝送時間間隔とも呼ばれ、LTEシステム(Rel.8-12)におけるTTIはサブフレーム長とも呼ばれる。
 LTE Rel.13以降の無線通信システム(例えば、5G)では、数十GHzなどの高周波数帯での通信や、IoT(Internet of Things)、MTC(Machine Type Communication)、M2M(Machine To Machine)など相対的にデータ量が小さい通信を行うことが想定される。また、低遅延通信が要求されるD2D(Device To Device)やV2V(Vehicular To Vehicular)通信に対する需要も高まっている。
 このような将来の無線通信システムで十分な通信サービスを提供するために、通信遅延の低減(latency reduction)が検討されている。例えば、スケジューリングの最小時間単位である送信時間間隔(TTI:Transmission Time Interval)を、既存のLTEシステム(LTE Rel.8-12)の1msより短縮したTTI(例えば、短縮TTIと呼ばれてもよい)を利用して通信を行うことが検討されている。
 既存のLTEシステムでは、サブフレーム(1ms)単位で通信のタイミング制御が行われているが、短縮TTIを利用して通信を行う場合にどのようにタイミング制御を行うかが問題となる。特に、TDDを利用するセル(CC、TDDキャリアとも呼ぶ)では、1ms単位でULサブフレームとDLサブフレームが規定されたUL/DL構成に基づいて送信タイミングが制御されている。そのため、TDDキャリアで短縮TTIを利用する場合、送信タイミングをどのように制御して通信を行うかが問題となる。
 本発明はかかる点に鑑みてなされたものであり、短縮TTIが適用される場合であっても、通信を適切に行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の一とする。
 本発明のユーザ端末の一態様は、送信時間間隔(TTI:Transmission Time Interval)長が1msより短い短縮TTIを適用するTDDキャリアを含む複数のキャリアと通信を行うユーザ端末であって、無線基地局から送信されるDL信号を受信する受信部と、前記DL信号に対するUL信号の送信を制御する制御部と、を有し、前記制御部は、前記TDDキャリアのTTI毎に送信されるDL信号に対するUL信号の少なくとも一部を、他のキャリアを用いて所定タイミングで送信するように制御することを特徴とする。
 本発明によれば、短縮TTIが適用される場合であっても、通信を適切に行うことができる。
既存のLTEシステム(Rel.8-12)における送信時間間隔(TTI)の一例を示す図である。 通常TTIと短縮TTIを説明する図である。 図3A及び図3Bは、短縮TTIの構成例を示す図である。 図4A-図4Cは、通常TTIと短縮TTIの設定例を示す図である。 TDDのUL/DL構成を説明する図である。 TDDの特別サブフレームの構成を説明する図である。 同一キャリアでUL/DL構成が異なる通常TTIと短縮TTI間に生じる干渉を説明する図である。 図8A及び図8Bは、本実施の形態におけるUL送信制御の一例を示す図である。 図9A及び図9Bは、本実施の形態におけるUL送信制御の他の例を示す図である。 図10A及び図10Bは、本実施の形態におけるUL送信制御の他の例を示す図である。 図11A及び図11Bは、本実施の形態における特別サブフレーム構成の一例を示す図である。 図12A及び図12Bは、本実施の形態におけるUL送信制御の他の例を示す図である。 図13A及び図13Bは、本実施の形態における特別サブフレーム構成の他の例を示す図である。 本実施の形態におけるUL送信制御の他の例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す概略構成図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 図1は、既存システム(LTE Rel.8-12)における送信時間間隔(TTI)の一例の説明図である。図1に示すように、LTE Rel.8-12におけるTTI(以下、「通常TTI」という)は、1msの時間長を有する。通常TTIは、サブフレームとも呼ばれ、2つの時間スロットで構成される。TTIは、チャネル符号化された1データ・パケット(トランスポートブロック)の送信時間単位であり、スケジューリング、リンクアダプテーション(Link Adaptation)などの処理単位となる。
 図1に示すように、下りリンク(DL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14OFDM(Orthogonal Frequency Division Multiplexing)シンボル(スロットあたり7OFDMシンボル)を含んで構成される。各OFDMシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 また、上りリンク(UL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル(スロットあたり7SC-FDMAシンボル)を含んで構成される。各SC-FDMAシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 なお、拡張CPの場合、通常TTIは、12OFDMシンボル(又は12SC-FDMAシンボル)を含んで構成されてもよい。この場合、各OFDMシンボル(又は各SC-FDMAシンボル)は、66.7μsの時間長を有し、16.67μsの拡張CPが付加される。
 一方、Rel.13以降のLTEや5Gなどの将来の無線通信システムでは、数十GHzなどの高周波数帯に適した無線インターフェースや、IoT(Internet of Things)、MTC(Machine Type Communication)、M2M(Machine To Machine)、D2D(Device To Device)、V2V(Vehicular To Vehicular)サービス向けに、遅延を最小化する無線インターフェースが望まれている。
 そのため、将来の通信システムでは、TTIを1msより短縮した短縮TTIを利用して通信を行うことが考えられる(図2参照)。図2では、通常TTI(1ms)を利用するセル(CC#1)と、短縮TTIを利用するセル(CC#2)を示している。また、短縮TTIを利用する場合、サブキャリア間隔を通常TTIのサブキャリアから変更(例えば、サブキャリア間隔を拡大)することが考えられる。
 通常TTIよりも短い時間長のTTI(以下、「短縮TTI」という)を用いる場合、ユーザ端末や無線基地局における処理(例えば、符号化、復号など)に対する時間的マージンが増加するため、処理遅延を低減できる。また、短縮TTIを用いる場合、単位時間(例えば、1ms)当たりに収容可能なユーザ端末数を増加させることができる。以下に、短縮TTIの構成等について説明する。
(短縮TTIの構成例)
 短縮TTIの構成例について図3を参照して説明する。図3A及び図3Bに示すように、短縮TTIは、1msより小さい時間長(TTI長)を有する。短縮TTIは、例えば、0.5ms、0.25ms、0.2ms、0.1msなど、倍数が1msとなるTTI長の1つ又は複数であってもよい。あるいは、通常CPの場合に通常TTIは14シンボルを含むことから、7/14ms、4/14ms、3/14ms、1/14msなど1/14msの整数倍となるTTI長の1つまたは複数であってもよい。また、拡張CPの場合に通常TTIは12シンボルを含むことから、6/12ms、4/12ms、3/12ms、1/12msなど1/12msの整数倍となるTTI長の1つまたは複数であってもよい。なお、短縮TTIにおいても、従前のLTEと同様に、通常CPか拡張CPかは報知情報やRRCシグナリング等の上位レイヤシグナリングでConfigureすることができる。これにより、1msである通常TTIとの互換性(同期)を保ちながら、短縮TTIを導入できる。
 なお、図3A及び図3Bでは、通常CPの場合を一例として説明するが、これに限られない。短縮TTIは、通常TTIよりも短い時間長であればよく、短縮TTI内のシンボル数、シンボル長、CP長などの構成はどのようなものであってもよい。また、以下では、DLにOFDMシンボル、ULにSC-FDMAシンボルが用いられる例を説明するが、これらに限られるものではない。
 図3Aは、短縮TTIの第1の構成例を示す図である。図3Aに示すように、第1の構成例では、短縮TTIは、通常TTIと同一数の14OFDMシンボル(又はSC-FDMAシンボル)で構成され、各OFDMシンボル(各SC-FDMAシンボル)は、通常TTIのシンボル長(=66.7μs)よりも短いシンボル長を有する。
 図3Aに示すように、通常TTIのシンボル数を維持してシンボル長を短くする場合、通常TTIの物理レイヤ信号構成(RE配置等)を流用することができる。また、通常TTIのシンボル数を維持する場合、短縮TTIにおいても通常TTIと同一の情報量(ビット量)を含めることができる。一方で、通常TTIのシンボルとはシンボル時間長が異なることから、図3Aに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(または、セル、CC)内に周波数多重することが困難となる。
 また、シンボル長とサブキャリア間隔とは互いに逆数の関係にあるため、図3Aに示すようにシンボル長を短くする場合、サブキャリア間隔は、通常TTIの15kHzよりも広くなる。サブキャリア間隔が広くなると、ユーザ端末の移動時のドップラー・シフトによるチャネル間干渉や、ユーザ端末の受信機の位相雑音による伝送品質劣化を効果的に防止できる。特に、数十GHzなどの高周波数帯においては、サブキャリア間隔を広げることにより、伝送品質の劣化を効果的に防止できる。
 図3Bは、短縮TTIの第2の構成例を示す図である。図3Bに示すように、第2の構成例では、短縮TTIは、通常TTIよりも少ない数のOFDMシンボル(又はSC-FDMAシンボル)で構成され、各OFDMシンボル(各SC-FDMAシンボル)は、通常TTIと同一のシンボル長(=66.7μs)を有する。この場合、短縮TTIは、通常TTIにおけるシンボル単位で構成することができる。例えば、1サブフレームに含まれる14シンボルのうちの一部のシンボルを利用して短縮TTIを構成することができる。図3Bでは、短縮TTIは、通常TTIの半分の7OFDMシンボル(SC-FDMAシンボル)で構成される。
 図3Bに示すように、シンボル長を維持してシンボル数を削減する場合、短縮TTIに含める情報量(ビット量)を通常TTIよりも削減できる。このため、ユーザ端末は、通常TTIよりも短い時間で、短縮TTIに含まれる情報の受信処理(例えば、復調、復号など)を行うことができ、処理遅延を短縮できる。また、図3Bに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(またはセル、CC)内で周波数多重でき、通常TTIとの互換性を維持できる。
(短縮TTIの設定例)
 短縮TTIの設定例について説明する。短縮TTIを適用する場合、既存システム(LTE Rel.8-12)との互換性を有するように、通常TTI及び短縮TTIの双方をユーザ端末に設定する構成とすることも可能である。図4は、通常TTI及び短縮TTIの設定例を示す図である。なお、図4は、例示にすぎず、これらに限られるものではない。
 図4Aは、短縮TTIの第1の設定例を示す図である。図4Aに示すように、通常TTIと短縮TTIとは、同一のコンポーネントキャリア(CC)(周波数領域)内で時間的に混在してもよい。具体的には、短縮TTIは、同一のCCの特定のサブフレーム(或いは、特定の無線フレーム)に設定されてもよい。例えば、図4Aでは、同一のCC内の連続する5サブフレームにおいて短縮TTIが設定され、その他のサブフレームにおいて通常TTIが設定される。例えば、特定のサブフレームとして、MBSFNサブフレームの設定できるサブフレームや、MIBや同期チャネル等特定の信号を含む(あるいは含まない)サブフレームであってもよい。なお、短縮TTIが設定されるサブフレームの数や位置は、図4Aに示すものに限られない。
 図4Bは、短縮TTIの第2の設定例を示す図である。図4Bに示すように、通常TTIのCCと短縮TTIのCCとを統合して、キャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)が行われてもよい。具体的には、短縮TTIは、特定のCCに(より具体的には、特定のCCのDL及び/又はULに)、設定されてもよい。例えば、図4Bでは、特定のCCのDLにおいて短縮TTIが設定され、他のCCのDL及びULにおいて通常TTIが設定される。なお、短縮TTIが設定されるCCの数や位置は、図4Bに示すものに限られない。
 また、CAの場合、短縮TTIは、同一の無線基地局の特定のCC(プライマリ(P)セル又は/及びセカンダリ(S)セル)に設定されてもよい。一方、DCの場合、短縮TTIは、第1の無線基地局によって形成されるマスターセルグループ(MCG)内の特定のCC(Pセル又は/及びSセル)に設定されてもよいし、第2の無線基地局によって形成されるセカンダリセルグループ(SCG)内の特定のCC(プライマリセカンダリ(PS)セル又は/及びSセル)に設定されてもよい。
 図4Cは、短縮TTIの第3の設定例を示す図である。図4Cに示すように、短縮TTIは、DL又はULのいずれかに設定されてもよい。例えば、図4Cでは、TDDシステムにおいて、ULに通常TTIが設定され、DLに短縮TTIが設定される場合を示している。
 また、DL又はULの特定のチャネルや信号が短縮TTIに割り当てられ(設定され)てもよい。例えば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)は、通常TTIに割り当てられ、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)は、短縮TTIに割り当てられてもよい。例えばこの場合、ユーザ端末は、PUCCHの送信は通常TTIで行い、PUSCHの送信は短縮TTIで行う。
 また、LTE Rel.8-12のマルチアクセス方式であるOFDM(あるいはSC-FDMA)とは異なるマルチアクセス方式が短縮TTIに割り当てられ(設定され)てもよい。
(短縮TTIの通知例)
 上述したように、ユーザ端末に対して短縮TTIを利用するセルを設定する場合、ユーザ端末は、無線基地局からの黙示的(implicit)又は明示的(explicit)な通知に基づいて、短縮TTIを設定(又は/及び検出)することができる。以下では、本実施の形態で適用可能な短縮TTIの通知例について、(1)黙示的な通知の場合、又は、(2)報知情報又はRRC(Radio Resource Control)シグナリング、(3)MAC(Medium Access Control)シグナリング、(4)PHY(Physical)シグナリングの少なくとも一つによる明示的な通知の場合について説明する。
 (1)黙示的な通知の場合、ユーザ端末は、周波数帯(例えば、5G向けのバンド、アンライセンスドバンドなど)、システム帯域幅(例えば、100MHzなど)、LAA(License Assisted Access)におけるLBT(Listen Before Talk)の適用有無、送信されるデータの種類(例えば、制御データ、音声など)、論理チャネル、トランスポートブロック、RLC(Radio Link Control)モード、C-RNTI(Cell-Radio. Network Temporary Identifier)などに基づいて、短縮TTIを設定(例えば、通信を行うセル、チャネル、信号などが短縮TTIであることを判断)してもよい。
 また、通常TTIの先頭1、2、3、または4シンボルにマッピングされるPDCCH及び/又は1msのEPDCCHで自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1msを通常TTIと判断し、それ以外の構成を取るPDCCH/EPDCCH(例えば通常TTIの先頭1~4シンボル以外にマッピングされるPDCCH及び/又は1ms未満のEPDCCH)で自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1ms未満の所定の時間区間を短縮TTIと判断してもよい。ここで、自端末宛の制御情報(DCI)の検出は、ブラインド復号したDCIに対するCRCのチェック結果に基づいて行うことができる。
 (2)報知情報又はRRCシグナリングの場合、報知情報又はRRCシグナリングにより無線基地局(例えば、第1のセル)からユーザ端末に通知される設定情報に基づいて、短縮TTIが設定されてもよい。当該設定情報は、例えば、短縮TTIを利用するCC又は/及びサブフレームに関する情報、短縮TTIを利用するチャネル又は/及び信号に関する情報、短縮TTIのTTI長に関する情報などを示す。ユーザ端末は、無線基地局からの設定情報に基づいて、短縮TTIを準静的(semi-static)に設定する。なお、短縮TTIと通常TTIとのモード切り替えは、RRCの再構成(RRC Reconfiguration)手順で行われてもよいし、Pセルでは、Intra-cellハンドオーバ(HO)、Sセルでは、CC(Sセル)のremoval/addition手順により行われてもよい。
 (3)MACシグナリングの場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、MACシグナリングにより有効化又は無効化(activate又はde-activate)されてもよい。具体的には、ユーザ端末は、無線基地局からのMAC制御要素に基づいて、短縮TTIを有効化又は無効化する。ユーザ端末は、RRC等の上位レイヤシグナリングによりあらかじめ短縮TTIの有効化期間を示すタイマを設定されていて、L2制御信号で短縮TTIが有効化されたのち所定の期間短縮TTIのUL/DL割当がなされなかった場合、短縮TTIを無効化するものとしてもよい。このような短縮TTI無効化タイマは、通常TTI(1ms)を単位としてカウントするものとしてもよいし、短縮TTI(例えば0.25ms)を単位としてカウントするものとしてもよい。
 なお、Sセルにおいて短縮TTIと通常TTIとのモードを切り替える場合、Sセルは、一旦de-activateされるものとしてもよいし、TA(Timing Advance)タイマが満了したものとみなされてもよい。これにより、モード切り替え時の通信停止期間を設けることができる。
 (4)PHYシグナリングの場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、PHYシグナリングによりスケジューリングされてもよい。具体的には、ユーザ端末は、受信及び検出した下り制御チャネル(PDCCH:Physical Downlink Control Channel又はEPDCCH:Enhanced Physical Downlink Control Channel、以下、PDCCH/EPDCCHという)に含まれる情報に基づいて、短縮TTIを検出する。
 例えば、通常TTIと短縮TTIでの送信または受信を割り当てる制御情報(DCI)は異なる情報要素を含むものとしておき、(4-1)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCHが検出されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。ユーザ端末は、PDCCH/EPDCCHにおいて、通常TTIと短縮TTI、両方の送信または受信を割り当てる制御情報(DCI)をブラインド復号することができる。或いは、(4-2)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCH(により伝送される下り制御情報(DCI:Downlink Control Information))によりスケジューリングされるPDSCH又はPUSCHが送信/受信されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。或いは、(4-3)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む(DCI)が検出された場合に、そのPDCCH/EPDCCH(により伝送されるDCI)によりスケジューリングされるPDSCH又はPUSCHに対する再送制御情報(HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement)、ACK/NACK、A/Nなどともいう)を送信又は受信するタイミングを含む所定の時間区間を短縮TTIと認識してもよい。
 下り制御チャネルに含まれる情報に基づいて短縮TTIを検出する場合、短縮TTIでの送受信を指示する制御情報(DCI)は、短縮TTIの送受信を行うよりも一定時間前に送受信されるものとしてもよい。すなわち、無線基地局は、所定のタイミングにおいて短縮TTIでの送受信を指示する制御情報(DCI)を送信し、ユーザ端末は当該制御情報(DCI)を受信したら、所定時間後(例えばTTI長の整数倍時間後またはサブフレーム長の整数時間後)に、短縮TTIの送受信を行う。短縮TTIと通常TTIとでは、適する信号処理アルゴリズム(例えばチャネル推定や誤り訂正復号)が異なる可能性がある。このように、短縮TTIでの送受信を指示する制御情報(DCI)を、実際に短縮TTIでの送受信を行うよりも所定時間前に送受信しておくことにより、ユーザ端末が前記信号処理アルゴリズムを変更する時間を確保することができる。
 RRC等の上位レイヤシグナリングで短縮TTIを設定しておき、下り制御チャネルで送受信される制御情報(DCI)の指示がなされた場合に、通常TTIでの送受信に切り替える方法を適用してもよい。一般に、低遅延での信号処理が求められる短縮TTIの方が、通常TTIよりも高いユーザ処理能力を必要とする。したがって、動的な切り替えを短縮TTIから通常TTIに限定することにより、通常TTIから短縮TTIへの動的な切り替えを許容する場合に比べ、TTI長変更に伴うユーザ端末の信号処理負担を緩和することができる。
 また、ユーザ端末は、ユーザ端末の状態(例えば、Idle状態又はConnected状態)に基づいて、短縮TTIを検出してもよい。例えば、ユーザ端末は、Idle状態である場合、全てのTTIを通常TTIとして認識し、1msの通常TTIの先頭1~4シンボルに含まれるPDCCHのみをブラインド復号するものとしてもよい。また、ユーザ端末は、Connected状態である場合、上述の通知例(1)-(4)の少なくとも一つに基づいて、短縮TTIを設定(又は/及び検出)してもよい。
 以上のように、将来の無線通信では、通常TTIより送信時間間隔(TTI)長が短縮された短縮TTIをUL送信及び/又はDL送信に適用して通信を行うことが想定される。一方で、既存のLTEシステムでは、サブフレーム(1ms)単位で通信のタイミング制御が行われている。
 例えば、既存システムにおけるTDDでは、1ms単位でULサブフレームとDLサブフレームが規定されたUL/DL構成に基づいて送信タイミングが制御されている(図5参照)。図5は、ULサブフレームとDLサブフレーム間の送信比率が異なる複数のフレーム構成(UL/DL configuration(UL/DL構成))を示している。
 既存システムのTDDでは、UL/DL構成0~6の7つのフレーム構成が規定されており、サブフレーム#0と#5は下りリンクに割当てられ、サブフレーム#2は上りリンクに割当てられる。また、UL/DL構成0、1、2、6では、DLサブフレームからULサブフレームへの変更点の周期(上下リンクの切替周期)が5ms、UL/DL構成3、4、5では、上下リンクの切替周期が10msとなっている。
 図6は、既存システムの特別サブフレーム構成(Sp-SF Config)を示している。既存システムでは、特別サブフレーム構成として、通常CP(Normal CP)で10種類、拡張CP(Extended CP)で8種類が定義されている。また、特別サブフレーム構成に関する情報は、プライマルセル(PCell)においてはシステム情報(SIB1)を用いてユーザ端末に通知され、セカンダリセル(SCell)においてはRRCシグナリングを用いてユーザ端末に通知される。
 図6の表に記載された数字はOFDM(またはSC-FDMA)シンボル数を表す。既存システムの特別サブフレーム構成では、上り時間区間(UpPTS)が最大で2シンボルまでしか設定されない。そのため、ULサブフレームにおいて上り共有チャネル(例えば、PUSCH)を用いて送信するユーザデータや、上り制御チャネル(例えば、PUCCH)を用いて送信する上り制御信号(UCI)等の送信は特別サブフレームでサポートされていない。既存システムの特別サブフレームでは、UL伝送としてPRACHとSRSの送信のみサポートされている。
 また、TDDでは、上下リンク間の干渉を抑制するために同期が重要となる。例えば、同一のTDDセル(無線基地局)に接続するユーザ端末間だけでなく、複数TDDセル間、隣接TDDキャリア(オペレータ)間においても同期して制御することが上下リンク間の干渉抑制に効果的となる。
 既存のLTEシステムの機能で通信を行うユーザ端末(レガシー端末)が同一キャリアに存在することを考慮した場合、短縮TTIで通信を行うユーザ端末がUL-DLの切替周期を短縮して適用すると上下リンク干渉が生じるおそれがある。例えば、短縮TTIを利用するユーザ端末がUL-DLの切替周期を2msに早めた構成を適用する場合を想定する(図7参照)。図7では、既存システムのUL/DL構成を利用するユーザ端末と、UL-DLの切替周期が2msの構成を利用するユーザ端末が同一キャリアで通信を行う場合を示している。
 この場合、既存システムのUL/DL構成を適用するユーザ端末と、短縮TTI用のUL/DL構成を適用するユーザ端末間で上下リンク干渉が発生する期間が発生し、通信品質が劣化するおそれがある。かかる問題を解決するために、短縮TTIを利用するユーザ端末も既存システムのUL/DL構成を利用して通信(例えば、UL送信等)を制御することが考えられる。
 しかし、5ms又は10ms周期のUL/DL切替を前提に短縮TTIを規定した場合、遅延削減効果は十分に得られない。このように、TDDを利用するセル(TDDキャリア)で短縮TTIを適用する場合、送信(例えば、UL送信)をどのように制御するかが問題となり、遅延削減を実現するための方法が望まれる。
 そこで、本発明者等は、本発明の一態様として、短縮TTIを適用するTDDキャリアを含む複数キャリアと通信を行う場合に、当該TDDキャリアの各短縮TTIに対応するUL送信の少なくとも一部を他のキャリアを用いて送信することを着想した。
 例えば、ユーザ端末は、TDDキャリアの各短縮TTIのDL信号に対するUL信号(例えば、上りデータ、上り制御信号等)の少なくとも一部を他のキャリアを用いて所定タイミングで送信するように制御する。所定タイミングとして、既存システムのUL送信タイミングより短い送信タイミング(短縮TTI用の送信タイミング)を適用することができる。これにより、TDDキャリアで短縮TTIを利用する場合であってもUL/DL構成は既存システムと同様に設定することができるため、上下リンク干渉の発生を抑制することができる。また、短縮TTIのDL信号に対応するUL送信を既存より短い送信タイミングで送信することができるため、TDDキャリアにおける遅延を削減することが可能となる。
 以下に本実施の形態について詳細に説明する。以下の説明では、短縮TTIとして、既存システムにおける1サブフレーム(1ms)を3分割する場合(0.33ms)を例に挙げて説明するが、適用可能な短縮TTI長はこれに限られない。なお、1msとなるTTIを、通常TTI、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームと呼んでもよい。通常TTIより短いTTIを、短縮TTI、ショートTTI、短縮のサブフレーム、又はショートサブフレームと呼んでもよい。また、本実施の形態の短縮TTIに対して上記図1-図4で示した構成を適用することができる。
 また、以下の説明ではLTEシステムを例に挙げるが本実施の形態はこれに限られず、TDDキャリアで短縮TTIを利用するシステムであれば適用することができる。また、以下に説明する複数の態様はそれぞれ単独で実施してもよいし、適宜組み合わせて実施することも可能である。
(第1の態様)
 第1の態様では、短縮TTIを利用するTDDキャリアのDL送信に対する送達確認信号(HARQ-ACK、ACK/NACK、A/N)の送信方法について説明する。また、以下の説明では、DL送信に対するA/Nをフィードバックするタイミング(HARQタイミング)が、DL割当て(DL信号受信時)から1ms後とする場合を例に挙げて説明する。もちろんHARQタイミングは1msに限られず、短縮TTI長等に基づいて適宜変更することができる。
 ユーザ端末は、TDDキャリアで短縮TTIを用いてDL受信を行う場合、各TTIのDL受信に対するUL送信の少なくとも一部を、ペアバンドとして設定(Configure)される他のキャリアを用いて行うように制御する。図8では、短縮TTIを利用するTDDキャリアのDL信号に対するA/Nを他のキャリアを利用して送信する場合を示している。
 他のキャリアとしては、ペアバンドとして設定されるキャリア(又は、セル、CC)であればよく、FDDのULでもよいし、他のTDDキャリアでもよい。また、他のキャリアは、通常TTIを適用するキャリアであってもよいし、短縮TTIを適用するキャリアであってもよい。他のキャリアが短縮TTIを利用する場合、TDDキャリアの短縮TTI長と同じであってもよいし、異なるTTI長を利用するキャリアであってもよい。
 図8Aは、他のキャリアがFDDのULである場合を示している。つまり、ユーザ端末は、TDDキャリアの各短縮TTIのDL信号に対するA/NをFDDのULを利用して所定タイミング(ここでは、1ms)後にフィードバックすることができる。なお、ここでは、TDDキャリアがUL/DL構成#2を利用する場合を示しているが、これに限られない。
 この場合、短縮TTIを利用するTDDキャリアにおいて、既存システムのTDDのUL/DL構成と同様のUL期間・DL期間を設定すると共に、当該TDDキャリアにおけるA/Nの送信タイミングを既存システムの送信タイミング(例えば、4ms以上)より短くすることができる。
 図8Bは、他のキャリアが別のTDDキャリア(ここでは、UL/DL構成#0)である場合を示している。つまり、ユーザ端末は、短縮TTIを利用するTDDキャリアのDL信号に対するA/Nを他のTDDキャリアのULサブフレームを用いて所定タイミング後にフィードバックすることができる。なお、ここでは、TDDキャリアがUL/DL構成#2を利用し、他のTDDキャリアがUL/DL構成#0を利用する場合を示しているが、これに限られない。
 他のTDDキャリアが適用するUL/DL構成は、短縮TTIを利用するTDDキャリア(A/Nの送信元)のUL/DL構成と同じ構成であってもよいし、異なる構成としてもよい。TDDキャリア間で異なるUL/DL構成とする場合、A/N送信元のTDDキャリアと比較して、他のTDDキャリアが適用するUL/DL構成のULサブフレーム比率が高くなるように設定することが好ましい。この場合、他のTDDキャリアにおいて、A/N送信元のTDDキャリアのDL割当てに対するA/N送信に利用できるULリソースを増加することができる。
 短縮TTIを利用するTDDキャリアのA/N送信を行うペアバンド(他のキャリア)は、UE個別に通知される上位レイヤシグナリング(例えば、RRCシグナリング)を用いてユーザ端末に設定することができる。例えば、あるTDDキャリアで短縮TTIを用いて通信を行う場合、無線基地局は、下記(a1)~(e1)の少なくとも一つの情報を上位レイヤシグナリングでユーザ端末に通知する構成とすることができる。
(a1)短縮TTIを用いるTDDキャリアに関する情報
(b1)適用する短縮TTIに関する情報
(c1)適用するHARQタイミングに関する情報
(d1)ペアバンドとして用いるキャリアに関する情報
(e1)短縮TTIを適用するサブフレームに関する情報
 ユーザ端末は、情報(a1)を受信することにより、複数TDDキャリアを利用する場合等に、どのTDDキャリアで短縮TTIを用いるか判断することができる。また、情報(b1)を受信することにより、どのような短縮TTIを用いるか(例えば、0.5ms又は0.25ms、あるいは、7シンボル又は3シンボル等)を判断することができる。また、情報(c1)を受信することにより、どのようなHARQタイミングを適用するか(例えば、1ms又は2ms等)を判断することができる。また、情報(d1)を受信することにより、どのキャリアをペアバンドとして用いるか(例えば、バンド番号等)を判断することができる。また、情報(e1)を受信することにより、どのサブフレームで短縮TTIを適用するか判断することができる。
 上記図8では、短縮TTIを適用するTDDキャリアにおける各TTIのDL送信に対するA/Nの全部を他のキャリアを用いて送信する場合を示したが、本実施の形態はこれに限られない。例えば、当該TDDキャリアにおける各TTIに対応するA/Nの一部を他のキャリアを用いて送信し、所定のA/Nを当該TDDキャリア(自キャリア)で送信するように制御することができる。以下に、TDDキャリアの各DL送信に対するA/Nを、当該TDDキャリア(自キャリア)と他のキャリアを利用して送信を制御する場合について説明する。
<DL割当てTTI位置とULリソース位置>
 ユーザ端末は、短縮TTIを用いるTDDキャリアにおいて、所定のDL割当てに対するA/Nをペアバンドで送信し、その他のA/Nを当該TDDキャリア(自キャリア)のULで送信するように制御することができる。例えば、ユーザ端末は、TDDキャリアにおいてDL割当てが行われたTTIの位置(DL送信タイミング)と、当該TDDキャリア及び/又はペアバンドのULリソース位置(UL送信タイミング)とに基づいて、各DL割当てに対するA/Nの送信キャリアを決定することができる。
 図9は、TDDキャリアにおいてDL割当てが行われたTTIの位置と、当該TDDキャリア及び/又はペアバンドとなる他のキャリアのULのULリソース位置とに基づいて、DL割当てに対するA/Nの送信キャリアを選択する場合を示している。図9Aは、ペアバンドとなる他のキャリアがFDDのULである場合を示し、図9Bは、ペアバンドとなる他のキャリアが別のTDDキャリア(ここでは、UL/DL構成#0)である場合を示している。
 図9Aの場合、ユーザ端末は、DL割当てに対するA/Nが所定タイミング(ここでは、1ms)後に送信されるとした場合に、DL割当てが行われたTTIの1ms後にTDDキャリアでA/N送信が可能(ULリソースがある)であるか判断する。1ms後にTDDキャリアでA/N送信が可能であれば、ユーザ端末は、当該TDDキャリアでA/N送信を行う。一方で、1ms後に当該TDDキャリアにULリソースがない場合、ユーザ端末は、FDDキャリアのULでA/N送信を行う。
 図9Bの場合も、ユーザ端末は、DL割当てに対するA/Nが1ms後に送信されるとした場合に、DL割当てが行われたTTIの1ms後にTDDキャリアでA/N送信が可能であるか判断する。1ms後にTDDキャリアでA/N送信が可能であれば、ユーザ端末は、当該TDDキャリアでA/N送信を行う。一方で、1ms後に当該TDDキャリアにULリソースが存在せず、他のTDDキャリアでULリソースが存在する場合、ユーザ端末は、他のTDDキャリアのULリソースでA/N送信を行う。
 このように、所定のDL割当てに対するA/Nを選択的にペアバンドで送信し、その他のA/NはTDDキャリア(自キャリア)で送信することにより、自キャリアの周波数利用効率を向上することができる。所定のDL割当ては、所定タイミング後にTDDキャリアにULリソースが存在しないDL割当てとすることができる。
<下り制御情報を利用した通知>
 ユーザ端末は、短縮TTIを利用するTDDキャリアのDL信号に対するA/N送信キャリア(ULリソース)を下り制御情報に基づいて決定してもよい。この場合、無線基地局は、TDDキャリアの短縮TTIで送信される下り制御情報(DCI)の所定ビット領域に、当該DL信号に対するA/Nの送信キャリアに関する情報を含めてユーザ端末に明示的に通知する。下り制御情報として、例えば、下り割当てを行うDCIフォーマット(DL assignment)を利用することができる。
 ユーザ端末は、TDDキャリアの各短縮TTIで受信した下り制御情報の所定ビット領域に基づいて、A/N送信を行うキャリアを選択することができる。下り制御情報の所定ビット領域には、A/Nの送信を行うキャリアに関する情報(例えば、バンド番号等のキャリアに関する情報、ULリソースに関する情報等)を含めることができる。
<特別サブフレームのUpPTS利用>
 ユーザ端末は、特別サブフレームのUpPTSを利用してA/Nを送信するように制御してもよい。例えば、ユーザ端末は、TDDキャリアにおいてDL割当てが行われた短縮TTIから所定タイミング(例えば、1ms)後に特別サブフレームが存在する場合、当該特別サブフレーム(UpPTS)にA/Nを割当てて送信する。
 図10は、TDDキャリアにおいてDL割当てが行われたTTIの位置と、当該TDDキャリア及び/又はペアバンドとなる他のキャリアのULのULリソース位置とに基づいて、DL割当てに対するA/Nの送信キャリアを選択する場合を示している。ここでは、TDDキャリアのULリソース位置に特別サブフレーム(UpPTS)も含まれる。図10Aは、ペアバンドとなる他のキャリアがFDDのULである場合を示し、図10Bは、ペアバンドとなる他のキャリアが別のTDDキャリア(ここでは、UL/DL構成#0)である場合を示している。
 図10Aの場合、ユーザ端末は、DL割当てに対するA/Nが所定タイミング(ここでは、1ms)後に送信されるとした場合に、DL割当てが行われたTTIの1ms後にTDDキャリアでA/N送信が可能(ULリソースがある)であるか判断する。1ms後にTDDキャリアでULサブフレーム又は特別サブフレーム(UpPTS)が存在する場合、ユーザ端末は、当該TDDキャリアでA/N送信を行う。一方で、1ms後に当該TDDキャリアにULサブフレーム又は特別サブフレーム(UpPTS)がない場合、ユーザ端末は、FDDキャリアのULでA/N送信を行う。
 図10Bの場合も、ユーザ端末は、DL割当てに対するA/Nが1ms後に送信されるとした場合に、DL割当てが行われたTTIの1ms後にTDDキャリアでA/N送信が可能であるか判断する。1ms後にTDDキャリアでULサブフレーム又は特別サブフレーム(UpPTS)が存在する場合、ユーザ端末は、当該TDDキャリアでA/N送信を行う。一方で、1ms後に当該TDDキャリアにULサブフレーム又は特別サブフレーム(UpPTS)が存在せず、他のTDDキャリアでULリソース(ULサブフレーム及び/又は特別サブフレーム(UpPTS))が存在する場合、ユーザ端末は、他のTDDキャリアのULリソースでA/N送信を行う。
 このように、特別サブフレームのUpPTSを利用してA/N送信を行うことにより、図9と比較して自キャリア(TDDキャリア)の周波数利用効率をさらに向上することができる。
 また、上記図6で示したように、既存システムにおける特別サブフレームのUpPTS(最大2シンボル)ではA/N送信がサポートされていない。したがって、既存の特別サブフレームのUpPTSを利用してA/Nフィードバックを行う場合、1又は2シンボルでA/Nを送信する必要がある。この場合、1又は2シンボルでA/Nを送信可能なPUCCHフォーマット(新規PUCCHフォーマット)を規定して、UpPTSの1又は2シンボルに対するPUCCHの割当て制御を行う構成とすることができる(図11A参照)。
 また、UpPTSで利用する新規PUCCHフォーマットは、ULサブフレームにおける短縮TTIのPUCCH送信にも適用する構成としてもよい。この場合、TDDキャリアのULサブフレーム(短縮TTI)と、特別サブフレームにおけるUpPTSに対して同じPUCCHフォーマットを利用することができる。これにより、短縮TTIの導入によりユーザ端末が新規に実装しなければならないPUCCHフォーマットの数を減らすことができ、端末実装コストを低減することができる。
 なお、上述の新規PUCCHフォーマットは、TTI長を抑えて遅延を削減する必要があるため、従前のTTI長(1ms)と比べて短い方が好ましい。一方で、TTI長を短くするほど、A/N受信品質は劣化する。例えば、TTI長に含まれるOFDMシンボル数を減らして短縮TTIを実現する場合、A/N送信に用いる信号のサンプル数が減ることから、同じ送信電力で送信した場合に確保できるA/Nビットエネルギーが減少することとなる。TTI長に含まれるOFDMシンボル数を保持したままOFDMシンボル長を短縮して短縮TTIを実現する場合、サブキャリア間隔が拡がるため、OFDMシンボルあたりのサンプル数が減ることから、同じ送信電力で送信した場合に確保できるA/Nビットエネルギーが減少することとなる。A/Nビットエネルギーの減少は、ビット誤り率またはブロック誤り率の劣化を引き起こすこととなる。
 そこで、短縮TTIまたはUpPTSで送信する新規PUCCHフォーマットは、A/Nビットエネルギーを確保するために、(1)送信電力ブースト(他のPUCCHフォーマットの送信と比較し送信電力を増加)、(2)複数リソースブロックでの送信(連続する複数の周波数リソースブロックを用いて送信)、(3)送信アンテナダイバーシチ、のいずれかまたは複数を適用するものとしてもよい。また、当該新規PUCCHフォーマットをサポートするユーザ端末は、前記(1)~(3)のいずれかまたは全てを必須でサポートするものとしてもよい。
 また、既存のTDDキャリアの特別サブフレームでは、UpPTSのシンボル数が最大2シンボルに制限されている。そこで、本実施の形態では、3シンボル以上のUpPTSを有する新規の特別サブフレーム構成を設定してもよい(図11B参照)。図11Bでは、DwPTSを5シンボル、ギャップを2シンボル、UpPTSを7シンボルで構成する場合を示しているが、特別サブフレームの構成はこれに限られない。
 この場合、短縮TTIで送信されるDL信号に対するA/Nを特別サブフレームのUpPTSに割当てしやすくすることができる。これにより、遅延削減を図ることが可能となる。
<所定HARQ-ACKの送信タイミング遅延制御>
 TDDキャリアのA/N送信に利用するペアバンドが別のTDDキャリアである場合(例えば、図8B、図9B、図10B)、短縮TTIのDL割当てから所定タイミング後にULリソース(ULサブフレーム)が存在しないケースが生じる。かかる場合、短縮TTIを利用するTDDキャリアにおいて、所定タイミング後にULリソースが存在しないDL割当て(DL送信)を行わないように制御することができる。
 一方で、TDDキャリアの無線リソース(例えば、DLリソース)の利用効率を向上する観点からは、当該TDDキャリアにおけるDL割当てが制限されない構成とすることが好ましい。そこで、所定タイミング後に自キャリア及び/又はペアバンドにおいてULリソースがないDL割当てのA/Nフィードバックタイミングを所定タイミング(例えば、1ms)より長く設定する構成としてもよい(図12A参照)。
 図12Aでは、所定タイミング後のペアバンド(他のTDDキャリア)及び/又は自キャリアにおいて対応するULリソースが存在しない短縮TTIに対してもDL割当てを許容する。ユーザ端末は、当該DL割当てに対するA/Nフィードバックタイミングを延長させ(遅延を許容し)、自キャリア又は他のTDDキャリアのULリソースを利用して送信するように制御する。これにより、ペアバンドが他のTDDキャリアの場合であっても、当該他のTDDキャリアのULリソース位置に関わらずDL割当てを行うことができる。
 図12Aでは、1ms後にULリソースが存在しないDL割当てに対するA/Nを、次に最も早いULサブフレームに割当てる場合を示しているが、フィードバックタイミングを延長したA/Nを割当てるULリソースはこれに限られない。
 あるいは、ユーザ端末は、所定タイミング後のペアバンド及び/又は自キャリアにおいてULリソースが存在しないDL割当てに対するA/Nを、通常TTIでDL割当てを行うサブフレームとして利用してもよい(図12B参照)。かかる場合、通常TTIを利用するDL割当てのHARQタイミングは、通常TTIで規定されたタイミングを利用してもよい。
 このように、所定タイミング後に対応するULリソースがないDL割当て(DL-TTI)に対するA/Nフィードバックタイミングを別途制御することにより、TDDキャリアのリソースの利用効率を向上することができる。
 なお、第1の態様では、ペアバンドとなる他のキャリアのULリソースとして、他のキャリアに設定される上り制御チャネル(例えば、PUCCH)及び/又は上り共有チャネル(例えば、PUSCH)を利用することができる。例えば、A/Nをペアバンドとなる他のキャリアに多重するタイミングにおいて、他のキャリアで上りデータ(例えば、PUSCH)送信がある場合、A/NをPUSCHに多重することができる。一方で、A/Nをペアバンドとなる他のキャリアに多重するタイミングにおいて、他のキャリアで上りデータ送信がない場合、A/Nを上り制御チャネル(例えば、PUCCH)PUSCHに多重することができる。
 また、ユーザ端末が複数のキャリア(又は、セル、CC)に接続する場合、TDDキャリアのA/Nを他のキャリアで送信する場合に、いずれのキャリアにも上りデータ送信が無い場合には、所定のキャリアの上り制御チャネルにA/Nを多重する構成としてもよい。所定のキャリアは、PCell、PSCell、PUCCHセルとも呼ぶことができる。あるいは、TDDキャリアのA/Nを他のキャリアで送信する場合に、いずれかのキャリアで上りデータ送信がある場合には、当該上りデータ送信があるキャリアのPUSCHにA/Nを多重して送信してもよい。
(第2の態様)
 第2の態様では、短縮TTIを利用するTDDキャリアのDL信号に含まれるUL送信指示(ULグラント)に基づくUL送信の方法について説明する。また、以下の説明では、ULグラントに対するUL送信のタイミングが、UL割当て(ULグラント受信時)から1ms後とする場合を例に挙げて説明する。もちろんUL送信のタイミングは1msに限られず、短縮TTI長等に基づいて適宜変更することができる。
 ユーザ端末は、TDDキャリアで短縮TTIを用いてULグラントを受信する場合、各TTIのULグラントに対するUL送信の少なくとも一部を、ペアバンドとして設定される他のキャリアを用いて行うように制御する(図8参照)。UL送信としては、ULデータ(例えば、PUSCH)送信、非周期的CSI送信等が含まれる。
 他のキャリアとしては、ペアバンドとして設定されるキャリア(又は、セル、CC)であればよく、FDDのULでもよいし、他のTDDキャリアでもよい。また、他のキャリアは、通常TTIを適用するキャリアであってもよいし、短縮TTI(同じTTI長又は異なるTTI長)を適用するキャリアであってもよい。
 図8Aは、他のキャリアがFDDのULである場合を示している。ユーザ端末は、短縮TTIを利用するTDDキャリアのDL信号(ULグラント)に対する上りデータをFDDのULを利用して所定タイミング(ここでは、1ms)後に送信することができる。なお、ここでは、TDDキャリアがUL/DL構成#2を利用する場合を示しているが、これに限られない。
 この場合、短縮TTIを利用するTDDキャリアにおいて、既存システムのTDDのUL/DL構成と同様のUL期間・DL期間を設定すると共に、当該TDDキャリアにおける上りデータの送信タイミングを既存システムの送信タイミング(例えば、4ms以上)より短くすることができる。
 図8Bは、他のキャリアが別のTDDキャリア(UL/DL構成#0)である場合を示している。ユーザ端末は、短縮TTIを利用するTDDキャリアのULグラントに対する上りデータを他のTDDキャリアのULサブフレーム(例えば、PUSCH)を用いて所定タイミング後に送信することができる。なお、ここでは、TDDキャリアがUL/DL構成#2を利用し、他のTDDキャリアがUL/DL構成#0を利用する場合を示しているが、これに限られない。
 他のTDDキャリアが適用するUL/DL構成は、短縮TTIを利用するTDDキャリア(上りデータの送信元)のUL/DL構成と同じ構成であってもよいし、異なる構成としてもよい。TDDキャリア間で異なるUL/DL構成とする場合、上りデータ送信元のTDDキャリアと比較して、他のTDDキャリアが適用するUL/DL構成のULサブフレーム比率が高くなるように設定することが好ましい。この場合、他のTDDキャリアにおいて、上りデータ送信元のTDDキャリアのULグラントに対する上りデータ送信に利用できるULリソースを増加することができる。
 短縮TTIを利用するTDDキャリアの上りデータ送信を行うペアバンド(他のキャリア)は、UE個別に通知される上位レイヤシグナリング(例えば、RRCシグナリング)を用いてユーザ端末に設定することができる。例えば、あるTDDキャリアで短縮TTIを用いて通信を行う場合、無線基地局は、下記(a2)~(e2)の少なくとも一つの情報を上位レイヤシグナリングでユーザ端末に通知する構成とすることができる。
(a2)短縮TTIを用いるTDDキャリアに関する情報
(b2)適用する短縮TTIに関する情報
(c2)適用するUL送信(例えば、上りデータ送信)タイミングに関する情報
(d2)ペアバンドとして用いるキャリアに関する情報
(e2)短縮TTIを適用するサブフレームに関する情報
 ユーザ端末は、情報(a2)を受信することにより、複数TDDキャリアを利用する場合等に、どのTDDキャリアで短縮TTIを用いるか判断することができる。また、情報(b2)を受信することにより、どのような短縮TTIを用いるか(例えば、0.5ms又は0.25ms、あるいは、7シンボル又は3シンボル等)を判断することができる。また、情報(c2)を受信することにより、どのようなUL送信タイミングを適用するか(例えば、1ms又は2ms等)を判断することができる。また、情報(d2)を受信することにより、どのキャリアをペアバンドとして用いるか(例えば、バンド番号等)を判断することができる。また、情報(e2)を受信することにより、どのサブフレームで短縮TTIを適用するか判断することができる。
 上記図8では、短縮TTIを適用するTDDキャリアにおける各TTIのULグラントに対する上りデータの全部を他のキャリアを用いて送信する場合を示しているが、本実施の形態はこれに限られない。例えば、当該TDDキャリアの各TTIで指示される上りデータの一部を他のキャリアを用いて送信し、所定の上りデータを当該TDDキャリア(自キャリア)で送信するように制御することができる。以下に、TDDキャリアの各TTIのULグラントに対する上りデータを、当該TDDキャリア(自キャリア)と他のキャリアを利用して送信を制御する場合について説明する。
<UL割当てTTI位置とULリソース位置>
 ユーザ端末は、短縮TTIを用いるTDDキャリアにおいて、所定のULグラントに対するUL送信をペアバンドで送信し、その他のUL送信を当該TDDキャリア(自キャリア)のULリソースで送信するように制御することができる。例えば、ユーザ端末は、TDDキャリアにおいてUL割当てが行われたTTIの位置(ULグラント受信タイミング)と、当該TDDキャリア及び/又はペアバンドのULリソース位置(UL送信タイミング)とに基づいて、各UL割当てに対するUL送信用のキャリアを決定することができる。
 図9は、TDDキャリアにおいてUL割当てが行われたTTIの位置と、当該TDDキャリア及び/又はペアバンドとなる他のキャリアのULリソース位置とに基づいて、UL割当てに対する上りデータの送信キャリアを選択する場合を示している。図9Aは、ペアバンドとなる他のキャリアがFDDのULである場合を示し、図9Bは、ペアバンドとなる他のキャリアが別のTDDキャリア(ここでは、UL/DL構成#0)である場合を示している。
 図9Aの場合、ユーザ端末は、UL割当てに対する上りデータが所定タイミング(ここでは、1ms)後に送信されるとした場合に、UL割当てが行われたTTIの1ms後にTDDキャリアで上りデータ送信が可能(ULリソースがある)であるか判断する。1ms後にTDDキャリアで上りデータ送信が可能であれば、ユーザ端末は、当該TDDキャリアで上りデータ送信を行う。一方で、1ms後に当該TDDキャリアにULリソースがない場合、ユーザ端末は、FDDキャリアのULで上りデータ送信を行う。
 図9Bの場合も、ユーザ端末は、UL割当てに対する上りデータが1ms後に送信されるとした場合に、UL割当てが行われたTTIの1ms後にTDDキャリアで上りデータ送信が可能であるか判断する。1ms後にTDDキャリアで上りデータ送信が可能であれば、ユーザ端末は、当該TDDキャリアで上りデータ送信を行う。一方で、1ms後に当該TDDキャリアにULリソースが存在せず、他のTDDキャリアでULリソースが存在する場合、ユーザ端末は、他のTDDキャリアのULリソースで上りデータ送信を行う。
 このように、所定のUL割当てに対する上りデータを選択的にペアバンドで送信し、その他の上りデータはTDDキャリア(自キャリア)で送信することにより、自キャリアの周波数利用効率を向上することができる。所定のUL割当ては、所定タイミング後にTDDキャリアにULリソースが存在しないUL割当てとすることができる。
<下り制御情報を利用した通知>
 ユーザ端末は、短縮TTIを利用するTDDキャリアのULグラントに対するUL送信キャリア(ULリソース)を下り制御情報に基づいて決定してもよい。この場合、無線基地局は、TDDキャリアの短縮TTIで送信される下り制御情報(DCI)の所定ビット領域に、当該ULグラントに対する上りデータの送信キャリアに関する情報を含めてユーザ端末に明示的に通知する。下り制御情報として、例えば、上り割当てを行うDCIフォーマットを利用することができる。
 ユーザ端末は、TDDキャリアの各短縮TTIで受信した下り制御情報の所定ビット領域に基づいて、上りデータ送信を行うキャリアを選択することができる。下り制御情報の所定ビット領域には、上りデータ送信を行うキャリアに関する情報(例えば、バンド番号等のキャリアに関する情報、ULリソースに関する情報等)を含めることができる。
<特別サブフレームのUpPTS利用>
 ユーザ端末は、特別サブフレームのUpPTSを利用して上りデータ(例えば、PUSCH)を送信するように制御してもよい。例えば、ユーザ端末は、TDDキャリアにおいてUL割当てが行われた短縮TTIから所定タイミング(例えば、1ms)後に特別サブフレームが存在する場合、当該特別サブフレーム(UpPTS)に上りデータを割当てて送信する。
 図10は、TDDキャリアにおいてUL割当てが行われたTTIの位置と、当該TDDキャリア及び/又はペアバンドとなる他のキャリアのULリソース位置とに基づいて、UL割当てに対する上りデータの送信キャリアを選択する場合を示している。ここでは、TDDキャリアのULリソース位置に特別サブフレーム(UpPTS)も含まれる。なお、図10Aは、ペアバンドとなる他のキャリアがFDDのULである場合を示し、図10Bは、ペアバンドとなる他のキャリアが別のTDDキャリア(ここでは、UL/DL構成#0)である場合を示している。
 図10Aの場合、ユーザ端末は、UL割当てに対する上りデータが1ms後に送信されるとした場合に、UL割当てが行われたTTIの1ms後にTDDキャリアで上りデータ送信が可能(ULリソースがある)であるか判断する。1ms後にTDDキャリアでULサブフレーム又は特別サブフレーム(UpPTS)が存在する場合、ユーザ端末は、当該TDDキャリアで上りデータ送信を行う。一方で、1ms後に当該TDDキャリアにULサブフレーム又は特別サブフレーム(UpPTS)がない場合、ユーザ端末は、FDDキャリアのULで上りデータ送信を行う。
 図10Bの場合も、ユーザ端末は、UL割当てに対する上りデータが1ms後に送信されるとした場合に、UL割当てが行われたTTIの1ms後にTDDキャリアで上りデータ送信が可能であるか判断する。1ms後に当該TDDキャリアにULサブフレーム又は特別サブフレーム(UpPTS)が存在せず、他のTDDキャリアでULリソース(ULサブフレーム及び/又は特別サブフレーム(UpPTS))が存在する場合、ユーザ端末は、他のTDDキャリアのULリソースで上りデータ送信を行う。
 このように、特別サブフレームのUpPTSを利用して上りデータ送信を行うことにより、図9と比較して自キャリア(TDDキャリア)の周波数利用効率をさらに向上することができる。
 また、上記図6で示したように、既存システムにおける特別サブフレームのUpPTS(最大2シンボル)では上りデータ送信がサポートされていない。したがって、既存の特別サブフレームのUpPTSを利用して上りデータ送信を行う場合、1又は2シンボルで上りデータを送信する必要がある。この場合、1又は2シンボルで上りデータを送信可能なPUSCH構成(新規PUSCH構成)を規定して、UpPTSの1又は2シンボルに対するPUSCHの割当て制御を行う構成とすることができる(図13A参照)。
 また、UpPTSで利用する新規PUSCH構成は、ULサブフレームにおける短縮TTIのPUSCH送信にも適用する構成としてもよい。この場合、TDDキャリアのULサブフレーム(短縮TTI)と、特別サブフレームにおけるUpPTSに対して同じPUSCH構成を利用することができる。これにより、短縮TTIの導入によりユーザ端末が新規に実装しなければならないPUSCH構成の数を減らすことができ、端末実装コストを低減することができる。なお、ここで述べているPUSCH構成とは、ULデータのリソース要素へのマッピング順序、DMRSのマッピング場所、SRSのマッピング場所、並びにUCI on PUSCH適用時のPUSCHリソース内でのUCI(CQI/PMI、RI、HARQ-ACK)マッピングルールを表す。
 また、既存のTDDキャリアの特別サブフレームでは、UpPTSのシンボル数が最大2シンボルに制限されている。そこで、本実施の形態では、3シンボル以上のUpPTSを有する新規の特別サブフレーム構成を設定してもよい(図13B参照)。図13Bでは、DwPTSを5シンボル、ギャップを2シンボル、UpPTSを7シンボルで構成する場合を示しているが、特別サブフレームの構成はこれに限られない。
 この場合、短縮TTIで送信されるULグラントに対する上りデータを特別サブフレームのUpPTSに割当てしやすくすることができる。これにより、遅延削減を図ることが可能となる。
(第3の態様)
 第3の態様では、上記第1の態様及び/又は第2の態様を上りのキャリアアグリゲーションの能力(UL-CA capability)をサポートしないユーザ端末に対しても適用する場合について説明する。
 ユーザ端末が複数のCC(又は、セル、キャリア)を利用してUL送信を行う場合、キャリアアグリゲーションの能力をサポートする必要がある。一方で、既存のユーザ端末(レガシー端末)の存在や、ユーザ端末の低コスト化等を考慮すると、UL-CAの能力を具備しないユーザ端末に対しても、短縮TTIを利用するTTDキャリアにおける通信をサポートすることが好ましい。
 例えば、短縮TTIのUL送信向けのペアバンドが設定されているが、UL-CAが設定されていない場合でも、当該ペアバンドを利用したUL送信を行う構成を許容する。具体的には、TDDキャリアのUL送信用に利用するペアバンドにおいてUL送信が存在するタイミングでは、当該TDDキャリア(自キャリア)のUL送信を行わない(制限する)構成とすればよい。
 例えば、TDDキャリアのUL送信(A/N、上りデータ等)に利用する他のキャリアがFDDのULである場合を想定する。かかる場合、ユーザ端末は、ペアバンドでUL送信があるタイミング(この場合、毎サブフレーム(TTI))において、TDDキャリアのUL送信を行わないように制御する(図14参照)。
 この場合、ペアバンドでUL送信が存在するタイミングにおいて、TDDキャリア(自キャリア)でCQI報告やSRS送信等のUL送信が設定されている場合、ユーザ端末は、自キャリアのUL送信はドロップ(無送信)するように制御することができる。なお、TDDキャリアにおけるCQI報告は、他のキャリア(例えば、ペアバンド)を利用して行ってもよい。
 また、ユーザ端末は、TDDキャリアにおいて短縮TTIが設定されている場合であっても、通常TTIを利用した送受信を行う場合には、当該TDDキャリア(自キャリア)を用いて送受信を行うように制御することができる。この場合、HARQタイミング、UL送信タイミングは既存システムと同じタイミングを利用してもよい。
 このように、ペアバンドでUL送信が存在するタイミングにおいて当該TDDキャリアのUL送信を行わない(制限する)構成とすることにより、CA能力(例えば、UL-CA能力)を有していないユーザ端末に対してもペアバンドを利用したUL送信を行うことができる。なお、この場合、ペアバンドを利用したUL送信を行うユーザ能力(UE capability)シグナリングとして、CAやUL-CA能力とは独立したシグナリングを規定してもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図15は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図15に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、6個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。なお、複数のセルのいずれかに短縮TTIを適用するTDDキャリアが含まれる構成とすることができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクにOFDMA(直交周波数分割多元接続)が適用され、上りリンクにSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、上りリンクでOFDMAが用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図16は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部で構成される。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 送受信部(送信部)103は、ユーザ端末に短縮TTIでDL信号(下り制御情報、下りデータ等)を送信する。送受信部(受信部)103は、DL送信に対するUL信号を受信する。例えば、送受信部(受信部)103は、TDDキャリアの短縮TTI毎に送信されるDL信号に対するUL信号の少なくとも一部を、他のキャリアを用いて所定タイミングで受信することができる(図8参照)。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図17は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図17では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図17に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、を備えている。
 制御部(スケジューラ)301は、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、システム情報、同期信号、ページング情報、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)等のスケジューリングの制御も行う。また、上り参照信号、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号等のスケジューリングを制御する。
 制御部301は、送受信部(送信部)103の送受信を制御することができる。例えば、制御部301は、ユーザ端末上り制御情報と上りデータの受信を制御する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(下りデータ信号、下り制御信号を含む)を生成して、マッピング部303に出力する。具体的には、送信信号生成部302は、ユーザデータを含む下りデータ信号(PDSCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、DCI(ULグラント)を含む下り制御信号(PDCCH/EPDCCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、CRS、CSI-RSなどの下り参照信号を生成して、マッピング部303に出力する。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(HARQ-ACK、PUSCH等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。処理結果は、制御部301に出力される。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図18は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 送受信部(受信部)203は、無線基地局から送信されるDL信号(例えば、下り制御情報、下りデータ等)を受信する。また、送受信部(送信部)203は、受信したDL信号に対する上り制御情報と上りデータを送信する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図19は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図19においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図19に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、判定部405と、を備えている。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。具体的には、制御部401は、送信信号生成部402、マッピング部403及び受信信号処理部404の制御を行うことができる。
 制御部401は、TDDキャリアの短縮TTI毎に送信されるDL信号に対するUL信号の少なくとも一部を、他のキャリアを用いて所定タイミングで送信するように制御することができる(図8参照)。他のキャリアは、TDDのペアバンドとして設定されるFDDのUL、又は他のTDDキャリアとすることができる。DL信号に対するUL信号は、DL信号に対するHARQ-ACK、及び/又はDL信号で送信が指示されるULデータ(非周期的CSI含んでもよい)とすることができる。
 また、制御部401は、他のキャリアを用いて送信するUL信号を、TDDキャリアおいてDL信号を受信した短縮TTIと、TDDキャリアのUL送信タイミング及び/又は他のキャリアのUL送信タイミングと、に基づいて決定することができる。あるいは、制御部401は、TDDキャリアのDL信号に含まれる制御情報に基づいてUL信号を送信するキャリアを決定することができる。
 また、制御部401は、TDDキャリアのDL信号に対するUL信号の一部を他のキャリアを用いて送信し、他のUL信号をTDDキャリアのULサブフレーム及び/又は特別サブフレームに含まれるUpPTSで送信するように制御することができる(図9、図10参照)。
 また、制御部401は、他のUL信号を前記特別サブフレームに含まれるUpPTSで送信する場合、新規PUCCHフォーマット(新規PUSCH構成)及び/又は3シンボル以上UpPTSを有する特別サブフレーム構成を利用することができる(図11、図13参照)。
 また、制御部401は、他のキャリアがTDDキャリアと異なる他のTDDキャリアであり、TDDキャリアのDL信号に対するUL信号の送信タイミングにおいて他のTDDキャリアでULリソースが存在しない場合、TDDキャリアのDL信号に対するUL信号を、所定タイミングより長い送信タイミングで送信するように制御することができる(図14参照)。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。
 また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号(上り制御信号及び/又は上りデータ)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号(例えば、無線基地局から送信された下り制御信号、PDSCHで送信された下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401、判定部405に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 判定部405は、受信信号処理部404の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に、判定結果を制御部401に出力する。複数CC(例えば、6個以上のCC)から下り信号(PDSCH)が送信される場合には、各CCについてそれぞれ再送制御判定(ACK/NACK)を行い制御部401に出力することができる。判定部405は、本発明に係る技術分野での共通認識に基づいて説明される判定回路又は判定装置から構成することができる。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク、フラッシュメモリなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウスなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカーなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDMシンボル、SC-FDMAシンボルなど)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームが送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプリフィクス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年1月27日出願の特願2016-013685に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  送信時間間隔(TTI:Transmission Time Interval)長が1msより短い短縮TTIを適用するTDDキャリアを含む複数のキャリアと通信を行うユーザ端末であって、
     無線基地局から送信されるDL信号を受信する受信部と、
     前記DL信号に対するUL信号の送信を制御する制御部と、を有し、
     前記制御部は、前記TDDキャリアの短縮TTI毎に送信されるDL信号に対するUL信号の少なくとも一部を、他のキャリアを用いて所定タイミングで送信するように制御することを特徴とするユーザ端末。
  2.  前記他のキャリアは、前記TDDのペアバンドとして設定されるFDDのUL、又は他のTDDキャリアであることを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、他のキャリアを用いて送信するUL信号を、前記TDDキャリアおいてDL信号を受信した短縮TTIと、前記TDDキャリアのUL送信タイミング及び/又は前記他のキャリアのUL送信タイミングと、に基づいて決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記TDDキャリアのDL信号に含まれる制御情報に基づいてUL信号を送信するキャリアを決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  5.  前記制御部は、前記TDDキャリアのDL信号に対するUL信号の一部を他のキャリアを用いて送信し、他のUL信号を前記TDDキャリアのULサブフレーム及び/又は特別サブフレームに含まれるUpPTSで送信するように制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  前記制御部は、前記他のUL信号を前記特別サブフレームに含まれるUpPTSで送信する場合、新規PUCCHフォーマット及び/又は3シンボル以上UpPTSを有する特別サブフレーム構成を利用することを特徴とする請求項5に記載のユーザ端末。
  7.  前記制御部は、前記他のキャリアが前記TDDキャリアと異なる他のTDDキャリアであり、前記TDDキャリアのDL信号に対するUL信号の送信タイミングにおいて前記他のTDDキャリアでULリソースが存在しない場合、前記TDDキャリアのDL信号に対するUL信号を、前記所定タイミングより長い送信タイミングで送信するように制御することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
  8.  前記DL信号に対するUL信号は、前記DL信号に対するHARQ-ACK、及び/又は前記DL信号で送信が指示されるULデータであることを特徴とする請求項1から請求項7のいずれかに記載のユーザ端末。
  9.  送信時間間隔(TTI:Transmission Time Interval)長が1msより短い短縮TTIを適用するTDDキャリアを含む複数のキャリアを用いて通信可能なユーザ端末と接続する無線基地局であって、
     前記ユーザ端末にDL信号を送信する送信部と、
     前記DL信号に対するUL信号を受信する受信部と、を有し、
     前記受信部は、前記TDDキャリアの短縮TTI毎に送信されるDL信号に対するUL信号の少なくとも一部を、他のキャリアを用いて所定タイミングで受信することを特徴とする無線基地局。
  10.  送信時間間隔(TTI:Transmission Time Interval)長が1msより短い短縮TTIを適用するTDDキャリアを含む複数のキャリアと通信を行うユーザ端末の無線通信方法であって、
     無線基地局から送信されるDL信号を受信する工程と、
     前記DL信号に対するUL信号を送信する工程と、を有し、
     前記TDDキャリアの短縮TTI毎に送信されるDL信号に対するUL信号の少なくとも一部を、他のキャリアを用いて所定タイミングで送信することを特徴とする無線通信方法。
     
PCT/JP2017/002424 2016-01-27 2017-01-25 ユーザ端末、無線基地局及び無線通信方法 WO2017130991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780008514.3A CN108605344B (zh) 2016-01-27 2017-01-25 用户终端、无线基站以及无线通信方法
EP17744221.7A EP3410802A4 (en) 2016-01-27 2017-01-25 USER UNIT, WIRELESS BASE STATION AND WIRELESS COMMUNICATION PROCESS
JP2017564283A JP6938390B2 (ja) 2016-01-27 2017-01-25 端末、無線通信方法、基地局及びシステム
US16/072,918 US11063736B2 (en) 2016-01-27 2017-01-25 User terminal, radio base station, and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016013685 2016-01-27
JP2016-013685 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130991A1 true WO2017130991A1 (ja) 2017-08-03

Family

ID=59398405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002424 WO2017130991A1 (ja) 2016-01-27 2017-01-25 ユーザ端末、無線基地局及び無線通信方法

Country Status (5)

Country Link
US (1) US11063736B2 (ja)
EP (1) EP3410802A4 (ja)
JP (1) JP6938390B2 (ja)
CN (1) CN108605344B (ja)
WO (1) WO2017130991A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215794A1 (ja) * 2018-05-07 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019220601A1 (ja) * 2018-05-17 2019-11-21 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110651514A (zh) * 2017-08-04 2020-01-03 Oppo广东移动通信有限公司 数据传输的方法、终端设备和网络设备
CN112154620A (zh) * 2018-03-23 2020-12-29 高通股份有限公司 新无线电非授权(nr-u)中自主上行链路的上行链路控制信息传输
JP2022512206A (ja) * 2018-12-17 2022-02-02 ホアウェイ・テクノロジーズ・カンパニー・リミテッド キャリアアグリゲーションシステムの通信方法、端末、およびネットワークデバイス

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424174A1 (en) * 2016-03-04 2019-01-09 Telefonaktiebolaget LM Ericsson (PUBL) Short tti within special subframes of ttd communication systems
WO2017166195A1 (en) 2016-03-31 2017-10-05 Panasonic Intellectual Property Corporation Of America Special subframe configuration for latency reduction
US10827384B2 (en) 2016-05-13 2020-11-03 Telefonaktiebolaget L M Ericsson (Publ) Subframe selection for introducing short TTIs in TDD
US10756868B2 (en) * 2016-07-01 2020-08-25 Qualcomm Incorporated Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot
JP2018026703A (ja) * 2016-08-10 2018-02-15 ソニー株式会社 通信装置、通信方法及び記録媒体
CN110268665B (zh) * 2017-02-05 2022-04-15 Lg 电子株式会社 在无线通信系统中支持多个传输时间间隔的方法和装置
US10531453B2 (en) * 2017-02-06 2020-01-07 Qualcomm Incorporated Resource management for low latency wireless communications
CN108631912B (zh) * 2017-03-23 2021-09-28 大唐移动通信设备有限公司 一种传输方法和装置
JP7293253B2 (ja) * 2018-11-22 2023-06-19 株式会社Nttドコモ 端末、無線通信方法及びシステム
US20220279543A1 (en) * 2019-07-29 2022-09-01 Ntt Docomo, Inc. Terminal and radio communication method
CN114316070B (zh) 2021-12-29 2022-11-15 上海勉亦生物科技有限公司 用于治疗肌营养不良症的转基因表达盒

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340382A (zh) * 2001-10-19 2009-01-07 美商内数位科技公司 用于下行链路的全非连续传输操作模式中改良省电功能的用户设备
WO2007093886A1 (en) * 2006-02-13 2007-08-23 Nokia Corporation Apparatus, method and computer program product providing in-band signaling and data structures for adaptive control and operation of segmentation
CN101415227A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 支持高速移动传输的传输时间间隔配置方法、装置及系统
EP2465314A4 (en) * 2009-08-14 2017-06-28 Lenovo Innovations Limited (Hong Kong) Method for configuring phich carrier linkage
JP5801694B2 (ja) * 2011-11-09 2015-10-28 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
US9160511B2 (en) * 2012-01-30 2015-10-13 Qualcomm Incorporated Cyclic prefix in evolved multimedia broadcast multicast service with high transmit power
KR101669701B1 (ko) * 2012-06-25 2016-10-26 주식회사 케이티 물리적 상향링크 데이터 채널 맵핑정보 제공방법 및 그 송수신포인트, 물리적 상향링크 데이터 채널의 전송방법, 그 단말
CN103516496B (zh) * 2012-06-27 2018-12-25 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
WO2014019213A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Subframe configurations for lte tdd systems
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
GB2507528A (en) * 2012-11-02 2014-05-07 Sony Corp Telecommunications apparatus and methods
EP2883404A4 (en) 2013-09-16 2016-06-22 Nec Corp METHOD AND DEVICE RELATED TO LTE FDD-TDD SYSTEM-TRANSMITTING SUPPORT AGGREGATION IN ADVANCED WIRELESS COMMUNICATION SYSTEMS
ES2538427B1 (es) * 2013-12-19 2016-05-19 Vodafone Espana Sau Un procedimiento, dispositivos y sistema para controlar la provisión de servicios de voz en redes de comunicaciones móviles
EP3609269A1 (en) * 2014-03-21 2020-02-12 Telefonaktiebolaget LM Ericsson (publ) Method and device for switching a transmission time interval
CN105099633B (zh) * 2014-04-25 2019-08-09 北京三星通信技术研究有限公司 物理下行共享信道的传输方法及装置
US11019620B2 (en) * 2014-05-19 2021-05-25 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals
US11357022B2 (en) 2014-05-19 2022-06-07 Qualcomm Incorporated Apparatus and method for interference mitigation utilizing thin control
CN104468030B (zh) * 2014-08-26 2018-06-05 上海华为技术有限公司 一种数据传输方法、用户设备及基站
JP6789211B2 (ja) * 2014-09-08 2020-11-25 インターデイジタル パテント ホールディングス インコーポレイテッド 異なる送信時間間隔(tti)持続時間により動作するシステムおよび方法
CN107852265B (zh) * 2015-12-18 2020-06-16 Oppo广东移动通信有限公司 用于数据传输的方法和终端

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on TTI shortening", 3GPP TSG- RAN WG1#83R1-157110, 7 November 2015 (2015-11-07), XP051042141 *
HUAWEI ET AL.: "Control signaling enhancements for short TTI", 3GPP TSG-RAN WG1#83 R1-156461, 7 November 2015 (2015-11-07), XP051022329 *
NTT DOCOMO: "On the need of PUCCH on multiple UL serving cells for TDD-FDD CA", 3GPP TSG-RAN WG1# 75 R1-135513, 2 November 2013 (2013-11-02), XP050751015 *
See also references of EP3410802A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651514A (zh) * 2017-08-04 2020-01-03 Oppo广东移动通信有限公司 数据传输的方法、终端设备和网络设备
CN110651514B (zh) * 2017-08-04 2020-12-15 Oppo广东移动通信有限公司 数据传输的方法、终端设备和网络设备
CN112154620A (zh) * 2018-03-23 2020-12-29 高通股份有限公司 新无线电非授权(nr-u)中自主上行链路的上行链路控制信息传输
CN112154620B (zh) * 2018-03-23 2023-08-01 高通股份有限公司 新无线电非授权(nr-u)中自主上行链路的上行链路控制信息传输
WO2019215794A1 (ja) * 2018-05-07 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN112385283A (zh) * 2018-05-07 2021-02-19 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2019220601A1 (ja) * 2018-05-17 2019-11-21 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2022512206A (ja) * 2018-12-17 2022-02-02 ホアウェイ・テクノロジーズ・カンパニー・リミテッド キャリアアグリゲーションシステムの通信方法、端末、およびネットワークデバイス
JP7243010B2 (ja) 2018-12-17 2023-03-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド キャリアアグリゲーションシステムの通信方法、通信装置、通信システム、コンピュータプログラム、およびコンピュータ可読記憶媒体
US11936572B2 (en) 2018-12-17 2024-03-19 Huawei Technologies Co., Ltd. Communication method for carrier aggregation system, terminal, and network device

Also Published As

Publication number Publication date
CN108605344B (zh) 2022-05-31
US20190036676A1 (en) 2019-01-31
EP3410802A4 (en) 2019-07-31
CN108605344A (zh) 2018-09-28
JPWO2017130991A1 (ja) 2018-11-22
EP3410802A1 (en) 2018-12-05
JP6938390B2 (ja) 2021-09-22
US11063736B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
JP7197660B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6681920B2 (ja) ユーザ端末及び無線基地局
JP7047037B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6878278B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6938390B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6954841B2 (ja) ユーザ端末及び無線基地局
JP7182876B2 (ja) 端末、無線通信方法、基地局及びシステム
JP2021029057A (ja) 端末、基地局、無線通信方法及びシステム
WO2017038894A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017131065A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017142031A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017126658A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018128183A1 (ja) ユーザ端末及び無線通信方法
WO2017164141A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7010696B2 (ja) 端末及び無線通信方法
WO2017164142A1 (ja) ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564283

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744221

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744221

Country of ref document: EP

Effective date: 20180827