WO2017183693A1 - ターゲット、ターゲットの製造方法、及び中性子発生装置 - Google Patents
ターゲット、ターゲットの製造方法、及び中性子発生装置 Download PDFInfo
- Publication number
- WO2017183693A1 WO2017183693A1 PCT/JP2017/015906 JP2017015906W WO2017183693A1 WO 2017183693 A1 WO2017183693 A1 WO 2017183693A1 JP 2017015906 W JP2017015906 W JP 2017015906W WO 2017183693 A1 WO2017183693 A1 WO 2017183693A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- target
- graphite
- substrate
- neutrons
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G4/00—Radioactive sources
- G21G4/02—Neutron sources
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K5/00—Irradiation devices
- G21K5/04—Irradiation devices with beam-forming means
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K5/00—Irradiation devices
- G21K5/08—Holders for targets or for other objects to be irradiated
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H3/00—Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
- H05H3/06—Generating neutron beams
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H6/00—Targets for producing nuclear reactions
Definitions
- the present invention relates to a target, a method for manufacturing the target, and a neutron generator.
- Patent Document 1 discloses an accelerator neutron source for generating neutrons for boron neutron capture therapy.
- the accelerator neutron source disclosed in Patent Document 1 includes a plate-like metal target irradiated with a charged particle beam (proton beam), and a cooling device that cools the metal target. And the neutron is generated by irradiating the plate-shaped metal target with the charged particle beam accelerated by the accelerator. This metal target is cooled by a cooling device.
- Patent Documents 2 to 5 disclose targets for generating a neutron by irradiating a proton beam.
- the targets disclosed in the cited documents 2 to 5 are composite targets composed of a nonmetallic material and beryllium or lithium, and isotropic high density graphite is used as the nonmetallic material.
- the conventional target for generating neutrons with a metal target formed on the substrate as described above has a problem of low durability and heat resistance against the proton beam.
- a substrate made of a non-metallic material that supports a metal target is required to have high durability and heat resistance against the irradiated charged particle beam.
- the materials used for the conventional support substrate have sufficient durability and heat resistance against the irradiation proton beam.
- a target having a cooling mechanism for example, a flow path for flowing cooling water
- Aluminum is used as the material of the metal plate provided with the cooling mechanism. Aluminum has a half-life of 300,000 years and is extremely activated. Strongly activated targets cannot be handled by humans, making it difficult to irradiate and continuously use high-energy proton beams.
- Patent Documents 2, 4, and 5 disclose isotropic graphite materials. (Isotropic Graphite material), single crystal graphite, HOPG, glassy carbon, single crystal diamond, epitaxial diamond, etc. are exemplified.
- a target for generating neutrons is required to have a size necessary for practical use, and the size is, for example, about 10 mm to 500 mm in diameter.
- the carbon materials exemplified in the above-mentioned patent document from such a viewpoint single crystal graphite, HOPG, single crystal diamond, epitaxial diamond, etc.
- Isotropic graphite and glassy carbon are materials that can be obtained in the above areas, but their thermal conductivity is at most 70 to 150 W / mK for isotropic graphite and about 10 W / mK for glassy carbon. Therefore, there is a problem that heat is accumulated in the substrate, the temperature rises, and the durability is lowered.
- As a countermeasure it is necessary to increase the thickness of the substrate, and in the case of isotropic graphite, it is necessary to use a substrate having a thickness of about 2 mm to 50 mm.
- the required thickness of such an isotropic graphite substrate is selected from the viewpoint of durability and the viewpoint of a fast neutron moderator harmful to cancer treatment.
- the present invention has been made in view of the above problems, and its purpose is to have sufficient durability and heat resistance against a large amount of heat generated by irradiation with a proton beam, and to reduce the degree of activation. It is to realize a target that is much thinner than the conventional target, a method for manufacturing the target, and a neutron generator that can be made smaller.
- the target of one embodiment of the present invention includes at least a metal film made of a beryllium material or a lithium material and a substrate made of a graphite film, and accelerates protons into the metal film and the substrate surface.
- the thermal conductivity in the film surface direction of the graphite film is 1500 W / (m ⁇ K) or more, and the thermal conductivity in the film surface direction is the film thickness direction.
- the thermal conductivity of the graphite film is 100 times or more, and the thickness of the graphite film is 1 ⁇ m or more and 100 ⁇ m or less.
- a target manufacturing method includes a metal film made of a beryllium material or a lithium material, and one or more graphite films made of graphite.
- the target of one embodiment of the present invention has sufficient durability and heat resistance against irradiation with a proton beam, and has an effect that the degree of activation can be reduced. Since it can be made thinner, a low energy thermal / thermal neutrality optimal for medical applications such as cancer treatment can be generated by a proton beam with lower acceleration energy.
- Embodiment 1 As described above, conventionally, a carbon material, isotropic graphite, aluminum (Al), or the like has been used as a substrate for supporting a metal target.
- graphite having a relatively low degree of activation and heat resistance of 3000 ° C. in a vacuum is an ideal material, and conventionally, an isotropic graphite material has been used as a carbon substrate.
- an isotropic graphite substrate has sufficient durability and heat resistance for a high-energy proton beam for the reasons described above, and a target with higher durability has been strongly demanded.
- the inventors of the present application considered that the heat generated on the target substrate can be quickly diffused by providing anisotropy in the thermal conductivity characteristics of the graphite material and increasing the thermal conductivity in the target surface direction. . In this way, the development of a support substrate that prevents the temperature of the target substrate from rising and has sufficient durability and heat resistance against proton beam irradiation has been carried out.
- such a graphite substrate of the present invention has sufficient durability as a target substrate even with a film that is much thinner than the thickness of the substrate required for conventional isotropic graphite substrates.
- the greatest advantage of using a thin target substrate is that low-energy low-energy thermal neutrons and epithermal neutrons can be efficiently generated by irradiating a proton beam with lower acceleration energy than before. .
- Such thermal neutrons and epithermal neutrons are useful for medical applications such as cancer therapy.
- the second advantage of using a proton beam with low acceleration energy is that the degree of activation of the target by the proton beam can be suppressed, and the third advantage is that the accelerator itself can be miniaturized.
- the inventors of the present application have established a technique for producing a graphite film excellent in various properties such as thermal conductivity by repeating original research, and if it is in the range of 100 ⁇ m to 1 ⁇ m, the mechanical properties as a substrate are established. I found that strength could be realized.
- the target (A) includes a metal film 3 and a graphite film 4, and causes a proton beam 1 to collide with the film surfaces of the metal film 3 and the graphite film 4. This is for generating neutron 2.
- the surface of the metal film 3 and the surface of the graphite film 4 are in contact via a boundary surface. Thereby, the nuclear reaction heat by the collision of the proton beam can be shared between the two types of materials.
- the metal film 3 that causes the proton beam to collide with the film surface is made of a beryllium material or a lithium material. Thereby, the low energy neutron 2 can be generated by the collision with the low energy proton beam.
- a nuclear reaction 9 Be (p, n) reaction can be caused by collision of a proton beam of 3 MeV to 11 MeV.
- a nuclear reaction 6 Li (p, n) reaction or 7 Li (p, n) reaction can be caused by collision of a proton beam of 2 MeV to 4 MeV. .
- “Beryllium material” as used herein means a single element material of beryllium, a beryllium compound, a beryllium alloy, and a beryllium composite material.
- the “lithium material” means a single element material of lithium element (a simple metal of lithium element, hereinafter referred to as lithium), a lithium compound, a lithium alloy, and a composite material of lithium.
- beryllium, beryllium compounds, beryllium alloys, and beryllium composite materials are collectively referred to as beryllium materials
- lithium, lithium compounds, lithium alloys, and lithium composite materials are collectively referred to as lithium materials. This is because it is based on a unique nuclear reaction in elements.
- the principle of neutron generation by irradiating the target with an accelerated proton beam is based on a physical nuclear reaction between the proton beam and an atom of a specific element contained in the target.
- neutrons are generated by a nuclear reaction similar to the case of the specific element alone.
- beryllium and lithium in addition to beryllium and lithium, beryllium compounds, beryllium alloys, and beryllium composite materials, lithium compounds, lithium alloys, and lithium composite materials can be used.
- elements other than the specific element (beryllium element and lithium element) contained in the compound or composite material should not be activated by protons or neutrons.
- the element does not generate harmful substances by reaction with by-product hydrogen atoms. Examples of such elements include, but are not limited to, carbon, silicon, nitrogen, phosphorus, oxygen, sulfur and the like.
- the surface of the metal film 3 on the side opposite to the graphite film 4 faces the direction in which the protons travel.
- the thickness of the metal film 3 is made thinner than the theoretical range of the protons, thereby causing a nuclear reaction by some protons in the process of the protons passing through the metal film 3, and the remaining It can be designed to cause a nuclear reaction by protons in the process of passing through the graphite film 4. Therefore, since the heat load due to the nuclear reaction does not concentrate on one kind of material, the heat load borne by the material can be reduced.
- the thickness of the metal film 3 in the target (A) can be made much thinner than the theoretical range in proton beryllium or lithium. This is because the graphite film 4 functions as a support material and a coolant for the metal film 3, and the thermal load borne by each material of the metal film 3 and the graphite film 4 is reduced.
- the theoretical range of 11 MeV protons in beryllium is about 0.94 mm. Therefore, when the target substrate is composed only of the metal film 3 made of beryllium material, the metal film 3 made of beryllium material needs to have a thickness of 1 mm or more. On the other hand, the metal film 3 in the target (A) according to the present embodiment can be made considerably thinner than 1 mm.
- the thickness of the metal film 3 is preferably 10 ⁇ m or more and less than 1 mm. More preferably, the thickness of the metal film 3 is 20 ⁇ m or more and 0.5 mm or less. When the thickness of the metal film 3 is less than 10 ⁇ m, the heat resistance decreases.
- the theoretical range of 1 MeV protons in lithium is about 2 mm. Therefore, when the metal film 3 is made of a lithium material, the metal film 3 in the target (A) can be made considerably thinner than 2 mm.
- the thickness of the metal film 3 is preferably 10 ⁇ m or more and less than 1 mm. More preferably, the thickness of the metal film 3 is 20 ⁇ m or more and 0.5 mm or less. When the thickness of the metal film 3 is less than 10 ⁇ m, the heat resistance decreases.
- the surface area of the proton irradiation surface in the metal film 3 can be appropriately set according to the proton output setting.
- the maximum value of the heat load per unit area of the target substrate is regarded as a value obtained by dividing the proton output by the proton irradiation area. Therefore, the heat removal capability from the surface of the metal film 3 is designed to be higher than the heat load of the target (A).
- the proton output necessary for generating medical neutrons such as BNCT is estimated to be about 30 kW at the maximum.
- the heat load is about 10 MW / m 2 .
- this heat load is equal to increasing the beryllium temperature by about 3000 ° C. per second.
- the surface area of the metal film 3 is preferably set to a value equal to or larger than the plane area perpendicular to the traveling direction of protons in order to reduce the large heat load described above. For example, if the surface area of the metal film 3 can be made twice as large as the plane area perpendicular to the traveling direction of protons, the heat load per irradiation plane area of the metal film 3 can be reduced to half or less.
- the surface of the metal film 3 is made uneven, the metal film 3 is supported on a graphite film 4 as a substrate having an uneven surface, the metal film 3 is powder processed, etc. It is possible by the method.
- the surface processing of the beryllium material can be performed by a method such as laser ablation, etching, or molding.
- the “planar area” means an area of the flat surface when the proton irradiation surface of the metal film 3 is a flat surface.
- neutrons are generated by colliding low energy protons against the target (A) composed of the metal film 3 and the graphite film 4.
- a nuclear reaction 9 Be (p, n) reaction occurs on the metal film 3 side in the target (A).
- a nuclear reaction 6 Li (p, n) reaction or 7 Li (p, n) reaction occurs on the metal film 3 side in the target (A).
- a nuclear reaction 12 C (p, n) reaction occurs on the graphite film 4 side in the target (A).
- the substrate (hereinafter also referred to as a target substrate) that supports the metal film 3 is a thin graphite film 4 having a thickness of 1 ⁇ m or more and 100 ⁇ m or less. Since the graphite film 4 has a small heat capacity, energy loss is reduced and neutron generation efficiency is improved.
- the graphite film 4 is a material suitable for generating low-energy neutrons that are reduced by irradiation protons and generated neutrons to reduce harmful and high activation fast neutrons.
- Graphite is a material that has high neutron generation efficiency and is difficult to be activated, has little absorption of thermal and epithermal neutrons, and has a high neutron moderating effect.
- the graphite film 4 has a thermal conductivity in the film surface direction of 1500 W / (m ⁇ K) or more, and other configurations are not particularly limited as long as the thickness is 1 ⁇ m or more and 100 ⁇ m or less. Such a graphite film 4 is preferable because it has the required mechanical strength as a target and high thermal conductivity in the film surface direction.
- the film thickness here refers to the length of the graphite film 4 in the traveling direction of protons.
- the target (A) composed of such a metal film 3 and a graphite film 4 has sufficient durability and heat resistance against irradiation with the proton beam 1 even though it is much thinner than the conventional target. Yes. In such a target, the effect of decelerating the generated neutrons is low. Therefore, it is possible to obtain desired low-energy thermal and epithermal neutrons by irradiation with the low-energy proton beam 1.
- the metal film 3 and its peripheral members are activated, there is a risk that the operator may be exposed if the target (A) is taken out from the neutron generator, and when these members are activated, Treatment as radioactive waste is a problem.
- the target of the present invention it is possible to use a low-energy proton beam for generating neutrons, so that the degree of activation can be dramatically reduced.
- Method for producing graphite film 4 is not specifically limited, For example, the method of producing the graphite film 4 by heat-processing a polymer film, such as baking, is mentioned. This method makes it possible to produce a large-area film-like graphite. For example, a film having an area of 300 mm ⁇ can be easily produced. Therefore, compared with carbon materials such as HOPG, single crystal graphite, and diamond described in the above-mentioned patent documents as the target substrate, this is a production method having no problem at all from a practical viewpoint.
- the manufacturing method of the graphite film 4 as an example of this embodiment includes a carbonization step of carbonizing the aromatic polyimide film and a graphitization step of graphitizing the carbonized aromatic polyimide film.
- the aromatic polyimide film which is a starting material, is carbonized by preheating under reduced pressure or in nitrogen gas.
- the heat treatment temperature for carbonization is preferably 500 ° C. or higher, more preferably 600 ° C. or higher and 700 ° C. or higher.
- Graphitization process In the graphitization step, after carbonized polyimide film is taken out once, it may be transferred to a graphitization furnace and then graphitization may be performed, or carbonization and graphitization may be performed continuously. Graphitization is performed under reduced pressure or in an inert gas, and argon and helium are suitable as the inert gas.
- the heat treatment temperature (firing temperature) is 2400 ° C. or higher, preferably 2600 ° C. or higher, more preferably 2800 ° C. or higher.
- Wrinkles may occur during the carbonization process and graphitization process. However, this wrinkle is not a problem for the application of the present invention.
- the surface of the metal film 3 increases due to the surface unevenness caused by the wrinkles when the graphite film 4 is wrinkled. As a result, the irradiation area of the proton beam 1 is improved, and the neutron generation efficiency is increased, which is preferable.
- the graphite film 4 having good graphite orientation / crystallinity and excellent thermal conductivity can be obtained.
- the polymer film used in this embodiment is aromatic polyimide, aromatic polyamide, polyoxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazole, polyparaphenylene vinylene, polybenzimidazole. , At least one polymer film selected from polybenzobisimidazole and aromatic polythiazole.
- an aromatic polyimide film is preferable as a raw material film for the graphite film 4 in the present embodiment.
- the thermal conductivity in the film surface direction of the graphite film 4 is 1500 W / (m ⁇ K) or more, preferably 1600 W / (m ⁇ K) or more, and preferably 1700 W / (m ⁇ K) or more. More preferably.
- a graphite film 4 having a thermal conductivity in the film surface direction of 1500 W / (m ⁇ K) or more is used, a graphite laminate having higher heat dissipation can be obtained. Since the graphite film 4 having a thermal conductivity in the film surface direction of 1500 W / (m ⁇ K) or more has a much higher thermal conductivity than the metal film 3, the heat generated in the metal film 3 is prompt. It can be diffused in the direction of the film surface and guided to a frame having a cooling function (see FIGS. 3 and 4).
- the graphite film 4 preferably has an anisotropy (orientation) in which the thermal conductivity in the film surface direction is 100 times or more larger than the thermal conductivity in the film thickness direction.
- the thermal conductivity in the film surface direction of the graphite film 4 is calculated by the following equation (1).
- A ⁇ ⁇ d ⁇ Cp (1)
- A is the thermal conductivity in the film surface direction of the graphite film 4
- ⁇ is the thermal diffusivity in the film surface direction of the graphite film 4
- d is the density of the graphite film 4
- Cp is the specific heat capacity of the graphite film 4. It represents.
- the density, thermal diffusivity, and specific heat capacity in the film surface direction of the graphite film 4 are determined by the methods described below.
- the density of the graphite film 4 is obtained by measuring the weight and thickness of a sample cut into a shape of 100 mm ⁇ 100 mm, and dividing the measured weight value by the calculated volume value (100 mm ⁇ 100 mm ⁇ thickness). To calculate.
- the specific heat capacity of the graphite film 4 is measured from 20 ° C. to 260 ° C. under a temperature rising condition of 10 ° C./min using a differential scanning calorimeter DSC220CU which is a thermal analysis system manufactured by SII Nano Technology.
- thermal conductivity in the film thickness direction of the graphite film 4 can be similarly calculated by using ⁇ as the thermal diffusivity in the film thickness direction of the graphite film 4 in the above formula (1).
- the thermal diffusivity in the film surface direction of the graphite film 4 is a thermal diffusivity measuring device (for example, ULVAC Riko Co., Ltd.) based on a commercially available optical alternating current method. ("LaserPit").
- a sample of the graphite film 4 cut into a shape of 4 mm ⁇ 40 mm is measured in a 20 ° C. atmosphere at a laser frequency of 10 Hz.
- the thermal diffusivity in the film surface direction of the graphite film 4 is difficult to accurately measure with a commercially available apparatus, and thus is measured by a newly developed periodic heating method. .
- the thermal diffusivity in the film thickness direction of the graphite film 4 is measured by a pulse heating method using a laser.
- the temperature response (temperature change) on the back side of the film after heating with a laser irradiated on one side of the film is measured, and the half time (t 1/2 ) of the time (t) until the temperature reaches a certain temperature.
- ⁇ is the thermal diffusivity
- ⁇ 0 is the thermal diffusion time
- d is the sample thickness
- t 1/2 is the half time
- 0.1388 is the apparatus constant of the apparatus used.
- the thickness of the graphite film 4 in this embodiment is 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 100 ⁇ m or less. In the case of such a thickness, it has sufficient mechanical strength as a substrate, and can achieve high thermal conductivity (1500 W / mK or more) in the surface direction.
- the thickness of the graphite film 4 is measured by the following method. Using a thickness gauge (HEIDENH: AIN-CERTO, manufactured by HEIDENHAIN Co., Ltd.), a sample of the graphite film 4 cut into a 50 mm ⁇ 50 mm shape was measured at any 10 points in a constant temperature room at 25 ° C. The thickness of the graphite film 4 is calculated as an average value of the measured values.
- a thickness gauge HEIDENH: AIN-CERTO, manufactured by HEIDENHAIN Co., Ltd.
- the electrical conductivity in the film surface direction of the graphite film 4 in this embodiment is preferably 16000 S / cm or more, more preferably 17000 S / cm or more, and most preferably 18000 S / cm or more.
- the graphite film 4 preferably has anisotropy (orientation) in which the electric conductivity in the film surface direction is 100 times or more the electric conductivity in the film thickness direction.
- the electrical conductivity of the graphite film 4 is measured by applying a constant current by a four-probe method (for example, Loresta GP manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
- Density of graphite film 4 The higher the density of the graphite film 4, the better the self-supporting property and the mechanical strength characteristics. Further, the higher the density of the graphite film 4, the higher the interaction with the charged particle beam, and the higher the neutron moderating effect. Moreover, in the high-density graphite film 4, there is no gap between the constituting graphite layers, so that the thermal conductivity tends to increase. When the density of the graphite film 4 is low, the speed reduction efficiency of the charged particle beam is poor, and the thermal conductivity is also lowered due to the influence of the air layer between the graphite layers to constitute, which is not preferable.
- the density of the graphite film 4 is preferably large. Specifically, preferably 1.60 g / cm 3 or more, preferably 1.70 g / cm 3 or more, more preferably 1.80 g / cm 3 or more, 2.00 g / cm 3 or more, more preferably, 2.10 g / Cm 3 or more is most preferable. Further, the upper limit of the density of the graphite film 4, the density of the graphite film 4 is 2.26 g / cm 3 or less is a theoretical value, may be 2.25 g / cm 3 or less.
- the density of the graphite film 4 was determined by measuring the weight and thickness of a sample of the graphite film 4 cut into a shape of 100 mm ⁇ 100 mm, and calculating the measured weight value as the calculated volume value (100 mm ⁇ 100 mm ⁇ Calculate by dividing by (thickness).
- the mechanical strength of the graphite film 4 can be estimated by the MIT bending resistance test when the film thickness is 100 ⁇ m or less.
- the number of bends in the MIT test is preferably 500 times or more, more preferably 1000 times or more, and still more preferably 2000 times or more.
- the MIT bending resistance test of the graphite film 4 is performed as follows. Three test pieces of 1.5 ⁇ 10 cm are extracted. Using a MIT fatigue resistance tester model D manufactured by Toyo Seiki Co., Ltd., the test load is 100 gf (0.98 N), the speed is 90 times / minute, and the radius of curvature R of the bending clamp is 2 mm. In an atmosphere of 23 ° C., the number of bending until the bending angle is 135 degrees to the left and right is measured.
- the graphite substrate having a thickness of 100 ⁇ m or more has a sufficient mechanical strength, and the mechanical strength is not a problem.
- the target (A) As shown in FIG. 1, the target (A) according to the present embodiment has a structure in which the surface of the metal film 3 and the surface of the graphite film 4 are in contact via a boundary surface. That is, the graphite film 4 and the metal film 3 are directly joined.
- the metal film 3 is relatively thick, such a structure can be produced by, for example, subjecting one surface of the graphite film 4 to hot pressing or HIP treatment with beryllium.
- the metal film 3 is relatively thin beryllium, for example, it can be produced by vapor-depositing beryllium on one side of the graphite film 4.
- FIG. 2 is a cross-sectional view showing a modification of the target according to the present embodiment.
- the target (B) as the first modification includes a target support frame 5.
- the target support frame 5 is a frame that supports at least the peripheral edge of the graphite film 4 and is preferably made of metal.
- the metal is preferable because it is a material excellent in mechanical strength, thermal conductivity, and durability.
- the target (B) of Modification 1 is supported by the target support frame 5. Therefore, a cartridge type structure (cassette type structure) in which the target (B) can be easily attached and detached can be obtained.
- the target support frame 5 is made of metal, the heat generated in the target (B) can be easily guided to a separately provided cooling mechanism through the target support frame 5.
- FIG. 3 is a cross-sectional view showing another modification of the target according to the present embodiment.
- a refrigerant flow path 6 as a cooling mechanism is provided inside the target support frame 5.
- a liquid having high thermal conductivity such as cooling water or a gas is used as the refrigerant flowing through the refrigerant flow path 6.
- the refrigerant flow path 6 is provided inside the target support frame 5, the heat generated in the target (C) is quickly cooled by the refrigerant flow path 6 as a cooling mechanism provided in the target support frame 5. Is done. Therefore, the durability of the target (C) is improved and the efficiency of the nuclear reaction is increased.
- FIG. 4 is a cross-sectional view showing still another modification of the target according to the present embodiment.
- the graphite film 4 in the target (D) as the modified example 3 according to the present embodiment has a radiation-resistant / corrosion-resistant metal material film 7 entirely exposed to the outside as desired. It may be coated. Examples of the material of the metal material film 7 include titanium. According to the configuration shown in FIG. 4, by placing the entire target (D) under vacuum, it is possible to prevent oxidative degradation in an oxidizing atmosphere due to contact with the atmosphere.
- protons as charged particles pass through the graphite film 4, but charged particles (in this case, the graphite film 4) of the target substance (graphite film 4).
- the collision stopping power (energy loss) for protons is expressed by the following Bethe equation (3).
- e is the elementary charge of the electron
- m is the mass of the electron
- v is the velocity of the electron
- z is the number of nuclear charges of the incident particle
- Z is the atomic number of the target substance
- N is the number of atoms in the unit volume of the target substance.
- I is the average excitation potential of the target substance
- ⁇ is v / c, where c is the speed of light.
- FIG. 5 is a graph showing the relationship between the stopping power based on Bethe's formula (3) and the kinetic energy of the particles.
- the collision stopping power (energy loss) of the target substance with respect to the charged particles increases from A to B where the kinetic energy of the particles is low, and becomes maximum at B. And it decreases in proportion to I / v 2 from B to C, and becomes the minimum at C. Then, from C to D, the logarithmic term of Bethe's formula (3) becomes effective and gradually increases.
- the proton subject to the present invention is a charged particle beam in the energy range of B to C, and has a relatively low energy.
- the energy of the charged particle beam in B is MeV order (for example, 2 MeV)
- the energy in C is GeV order (for example, 3 GeV).
- the blocking ability of the target substance in B is about 100 times higher than the blocking ability of the target substance in C.
- the stopping power decreases as the particle energy increases. Therefore, the lower energy particles lose energy in a narrow target area and become heat after entering the target. That is, the thermal load of the substrate per unit volume of the target in the low energy region where the stopping power is large is larger than the thermal load due to particle irradiation in the high energy region. That is, the heat generated by irradiation with an accelerated proton beam is not reduced even when the acceleration energy of the proton beam is reduced. Therefore, even in the case of low energy proton beam irradiation, high durability for the target is required.
- the neutron generation method according to the present embodiment low-energy neutrons with reduced harmful and high-activation fast neutrons are generated by colliding low energy protons under vacuum with a target.
- a substrate composed of the graphite film 4 having the above-described characteristics and a metal film 3 having a thickness of 10 ⁇ m or more and less than 1 mm attached to one surface of the graphite film 4 is used as a target.
- the neutron generation method according to the present embodiment can reduce the level of activation compared to heavy metals, and can reduce the generation efficiency of low energy neutrons in which fast neutrons that are harmful and have high activation ability are reduced. Further, since the thermal load accompanying the nuclear reaction can be reduced by the graphite substrate, the cooling mechanism can be made compact.
- the acceleration energy of protons used in the neutron generation method in this embodiment is preferably 3 MeV or more and less than 11 MeV, more preferably 4 MeV or more and 8 MeV or less.
- the proton acceleration energy used in the present invention is preferably 3 MeV or more.
- the acceleration energy of the proton is 11 MeV or more, not only the activation of the member becomes remarkable, but also the generation of fast neutrons or the generation of radioactive materials such as highly toxic tritium may occur.
- the acceleration energy of is preferably less than 11 MeV. More preferable proton acceleration energy is 4 MeV or more and 8 MeV or less in order to reduce the activation of the member and selectively generate low energy neutrons with reduced harmful and high activation fast neutrons.
- the acceleration energy of the proton used in the neutron generation method in this embodiment is 2 MeV or more and 4 MeV or less. Since the threshold value of the 7 Li (p, n) reaction of lithium is about 2 MeV, the generation efficiency of neutrons is remarkably lowered when the acceleration energy of protons is less than 2 MeV. Further, when the acceleration energy of the proton exceeds 4 MeV, not only the activation of the member becomes remarkable, but also the generation of fast neutrons increases. Therefore, the acceleration energy of the proton is preferably 4 MeV or less.
- protons collide with the target under vacuum.
- the surface of the metal film 3 formed on the target surface so as to face the traveling direction of protons. This is because a nuclear reaction between protons and metal occurs first.
- the neutrons that can be generated by the neutron generation method in this embodiment are low-energy neutrons that contain a large amount of thermal neutrons or epithermal neutrons.
- Low-energy neutrons are neutrons that are reduced from harmful and high activation fast neutrons.
- Fast neutrons are biologically harmful and have a very high activation ability because their energy is two orders of magnitude higher than thermal neutrons or epithermal neutrons.
- Neutron types include fast neutrons, epithermal neutrons, thermal neutrons, and cold neutrons. These neutrons are not clearly separated in terms of energy, and the energy classification varies depending on the fields such as reactor physics, shielding, dosimetry, analysis, and medicine.
- Fast neutrons are those that have a large momentum among fast neutrons (fast neutrons), and this value varies depending on fields such as reactor physics, shielding, and dosimetry.
- fast neutrons it is common for fast neutrons to be 0.5 MeV or higher ".
- epithermal neutrons are generally neutrons in the range of 1 eV to 10 keV
- thermal neutrons are generally neutrons of 0.5 eV or less.
- the low energy neutron referred to in the present invention means a neutron in which fast neutrons of 0.5 MeV or more are reduced.
- the irradiation proton energy exceeds 8 MeV, neutrons of 0.5 MeV or more may be included, but the degree can be considerably reduced as compared with the conventional primary neutrons.
- the neutron generator according to the present embodiment includes a target, a hydrogen ion generator, a linear accelerator, and a proton irradiation unit.
- the accelerator for generating protons in the neutron generator is a linear accelerator.
- large accelerators such as synchrotrons and cyclotrons have been used to use high-energy protons of 11 MeV or higher as protons for colliding with a target.
- protons of 2 MeV or more and less than 11 MeV are mainly used, so that a sufficiently large proton can be generated even with a linear accelerator.
- a hydrogen ion generator is provided at one end of the linear accelerator. Hydrogen ions from the hydrogen ion generator enter the acceleration cavity through the charged particle conversion film and are accelerated.
- the hydrogen ion generator is not particularly limited, and a conventional proton generator, negative hydrogen ion generator, or the like can be used.
- a high-frequency acceleration cavity a DC acceleration cavity, a normal conduction acceleration cavity, a superconductivity acceleration cavity, or the like can be used.
- the proton beam irradiation unit is provided on the opposite side of the hydrogen ion generator in the linear accelerator.
- the proton beam irradiation unit is disposed between the linear accelerator and the target.
- the proton irradiation unit is not particularly limited, and a conventional proton irradiation unit including a quadrupole electromagnet and a deflection electromagnet can be used.
- the proton accelerated by the linear accelerator is guided to the proton irradiation unit connected to the tip of the linear accelerator, and collides with a target provided at the tip of the proton irradiation unit. Low energy neutrons are generated through this collision.
- the targets (B) to (D) include the metal film 3, the graphite film 4, and the target support frame 5 that also functions as a cooling function. Therefore, a cartridge type structure in which the metal film 3, the graphite film 4, and the target support frame 5 are integrated can be obtained.
- the neutron generator according to the present embodiment may have a configuration in which the targets (B) to (D) having a cartridge type structure are provided at the tip portion of the proton irradiation unit via a vacuum flange having a semi-automatic desorption structure. . Thereby, when the target is deteriorated, it is possible to easily attach and detach the new target by remote control.
- the target (A) to (D) can be used for a low-energy proton beam, generation of harmful fast neutrons is reduced.
- a deceleration mechanism for decelerating the generated neutrons is provided. Can be downsized. Therefore, the neutron generator according to the present embodiment can be installed in a small medical institution as a medical neutron generator for generating medical neutrons such as BNCT.
- the target of the present invention can generate low energy thermal neutrons and epithermal neutrons useful for cancer treatment, and simultaneously reduce activation of the target.
- Such a feature of the present invention is epoch-making as a neutron generation target for cancer treatment.
- FIG. 6 is a cross-sectional view showing a schematic configuration of the target (E) according to the present embodiment.
- the target (E) according to the present embodiment is different from the first embodiment in that the substrate that supports the metal film 3 is a graphite laminate 8 in which the graphite film 4 is laminated.
- the substrate that supports the metal film 3 may be composed of the graphite laminate 8 as in this embodiment.
- the film thickness of the graphite film 4 is 1 ⁇ m or more and 100 ⁇ m or less.
- the graphite laminate 8 can be produced by joining a plurality of graphite films 4 by heating under pressure or by pressure under heating. That is, the graphite laminate 8 is a pressure bonded product or a heated bonded product of a plurality of graphite films 4.
- the substrate that supports the metal film 3 is composed of the graphite laminate 8, the durability and heat resistance against proton beam irradiation are increased.
- the film thickness of the graphite laminate 8 as the target substrate is 100 ⁇ m or more and 20 mm or less, more preferably 200 ⁇ m or more and 10 mm or less.
- coolant flow path 6 as a cooling mechanism is attached as needed, as FIG. 6 shows. .
- stacking a plurality of graphite films 4 as in the second embodiment is useful when the energy of the accelerated proton beam is relatively high. If the energy of the accelerated proton beam is high and the target is too thin, the proton beam will pass through the target. Therefore, not only the neutron generation efficiency is remarkably lowered but also the generated neutrons and proton beams are mixed, which is not preferable. Furthermore, even when the proton beam is interrupted, if neutrons are generated using a high-energy proton beam, fast neutrons that are harmful to medical applications such as cancer treatment may be mixed.
- the target for neutron generation should be a target with a thickness that matches the energy of the proton beam to be irradiated and the intended use of the generated neutrons. is there.
- the heat conduction and the electric conduction characteristics are basically not impaired, and basically any thickness is obtained. It is possible to produce a target substrate, which is an extremely excellent method.
- Method of pressure lamination There is no particular limitation on a method for manufacturing a substrate having a desired thickness by laminating a plurality of graphite films 4, but considering that the substrate is exposed to an extremely high temperature, the plurality of graphite films 4 are formed. It is preferable that the graphite laminate 8 is formed by pressure bonding by direct pressure and heat treatment without using an adhesive.
- the conditions of pressure and heat is not particularly limited as long as it can form a graphite laminate 8 with sufficient bonding strength, range of temperature of 200 ° C. ⁇ 3000 ° C. the heating, the applied pressure is 10 4 Pascal or It is preferable to pressurize and heat in a vacuum or an inert gas such as argon or nitrogen.
- the graphite film 4 used for the graphite laminate 8 is not necessarily completely graphitized, and is carbonized at a temperature of 600 ° C. or higher, more preferably 800 ° C. or higher, and most preferably 1000 ° C. or higher. It may be a film. By stacking the carbonized films in this way and heating and pressurizing at a temperature of, for example, 2800 ° C. or higher, the target substrate can be obtained.
- a target according to an embodiment of the present invention includes at least a metal film made of a beryllium material or a lithium material, and a substrate made of a graphite film, and accelerated protons are used for the metal film and the metal film.
- a target for generating neutrons by colliding with a substrate surface wherein the thermal conductivity in the film surface direction of the graphite film is 1500 W / (m ⁇ K) or more, and the thermal conductivity in the film surface direction is a film
- the thermal conductivity in the thickness direction is 100 times or more, and the thickness of the graphite film is 1 ⁇ m or more and 100 ⁇ m or less.
- the substrate is made of a graphite film
- the degree of activation of the substrate can be reduced.
- the thermal conductivity in the film surface direction of the graphite film is 1500 W / (m ⁇ K) or more, and the thermal conductivity in the film surface direction is more than 100 times larger than the thermal conductivity in the film thickness direction. Since the heat generated by the irradiation of the proton beam can be quickly moved to the cooling section, it has sufficient durability.
- the thickness of the graphite film is 1 ⁇ m or more and 100 ⁇ m or less. Although the graphite film having such a thickness is very thin, the graphite film has a necessary mechanical strength as a substrate for supporting the metal film.
- the electric conductivity in the film surface direction of the graphite film is 16000 S / cm or more, and the electric conductivity in the film surface direction is 100 times or more of the electric conductivity in the film thickness direction. It is preferable that
- Measurement of electrical conductivity is much easier than measurement of thermal conductivity characteristics, and the electrical conductivity characteristics and thermal conductivity characteristics are in good proportion to each other. Can be managed properly.
- the substrate is preferably composed of a graphite laminate in which a plurality of the graphite films are laminated, and the thickness of the substrate is preferably 100 ⁇ m or more and 20 mm or less.
- the substrate is composed of a graphite laminate in which a plurality of the graphite films are laminated, a thicker substrate can be realized without impairing heat conduction characteristics.
- a substrate made of a plurality of graphite films has sufficient durability despite being thinner than a conventional substrate made of isotropic graphite.
- durability and heat resistance against irradiation of relatively high energy proton beams are improved, and not only proton beams in the energy range currently used for medical purposes but also neutron generation using higher energy proton beams. Can respond.
- the graphite laminate may be a bonded product of a plurality of the graphite films by heating under pressure, or a bonded product by applying pressure under heating. preferable.
- a thick substrate can be obtained without using an adhesive or the like, so that durability and heat resistance against proton beam irradiation can be improved, and low radiation can be realized.
- the density of the graphite film is preferably 1.60 g / cm 3 or more and 2.26 g / cm 3 or less.
- the target of the present invention preferably has a structure in which the graphite film and the metal film are directly bonded.
- the “metal film made of metal laminated on the graphite film” herein means a metal film directly bonded to the graphite film.
- the target according to an embodiment of the present invention preferably includes a support frame that supports the target.
- the support frame for supporting the target since the support frame for supporting the target is provided, the mechanical strength and durability of the target can be improved.
- the support frame preferably includes a cooling mechanism for cooling the target.
- a neutron generator includes an accelerator for accelerating protons, and a proton irradiation unit for irradiating the above target with protons accelerated by the accelerator. It is characterized by.
- a method for manufacturing a target according to an embodiment of the present invention includes a metal film made of a beryllium material or a lithium material, and one or more graphite films made of graphite.
- the present invention can be used for a medical neutron generator for generating medical neutrons such as BNCT, for example.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Particle Accelerators (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
上述のとおり、従来、金属ターゲットを支持する基板として、炭素材料、等方性グラファイト、アルミニウム(Al)等が用いられてきた。特に、放射化の程度が比較的小さく、かつ真空中にて3000℃の耐熱性を有するグラファイトは理想的な材料であり、従来、炭素基板として等方性グラファイト材料が用いられてきた。しかしながら、等方性グラファイト基板は、先に述べた理由により高エネルギーの陽子ビームに対し十分な耐久性・耐熱性を有するとは言い難く、より高い耐久性を持つターゲットが強く要望されていた。
陽子ビームを膜面にて衝突させる金属膜3は、ベリリウム材料またはリチウム材料により構成されている。これにより、低エネルギーの陽子ビームとの衝突によって、低エネルギーの中性子2を発生させることができる。
本実施形態において、金属膜3を支持する基板(以下、ターゲット基板ともいう)は1μm以上、100μm以下という薄いグラファイト膜4である。グラファイト膜4は、熱容量が小さいので、エネルギーロスが低減し、中性子の発生効率が向上する。
本実施形態におけるグラファイト膜4の製造方法は、特に限定されないが、例えば、高分子膜を焼成等の熱処理することによって、グラファイト膜4を作製する方法が挙げられる。この方法では大面積膜状のグラファイトの作製が可能であり、例えば、300mmΦの面積の膜も容易に作製する事が出来る。したがって、ターゲット基板として上記特許文献に記載されているHOPG、単結晶グラファイト、ダイヤモンドなどの炭素材料と比較して、実用的な観点からは全く問題のない製造方法である。
炭化工程は、出発物質である芳香族ポリイミドフィルムを減圧下もしくは窒素ガス中で予備加熱処理して炭化を行う。炭化の熱処理温度としては、500℃以上である事が好ましく、より好ましくは600℃以上、700℃以上で熱処理することが最も好ましい。
黒鉛化工程では、炭化したポリイミドフィルムを一度取り出した後、黒鉛化用の炉に移し変えてから黒鉛化を行ってもよいし、炭化から黒鉛化を連続的に行ってもよい。黒鉛化は、減圧下もしくは不活性ガス中で行われるが、不活性ガスとしてはアルゴン、ヘリウムが適当である。熱処理温度(焼成温度)としては2400℃以上、好ましくは2600℃以上、更に好ましくは2800℃以上まで処理するとよい。
本実施形態におけるグラファイト膜4の膜面方向の熱伝導度は、1500W/(m・K)以上であり、1600W/(m・K)以上であることが好ましく、1700W/(m・K)以上であることがさらに好ましい。
ここで、Aは、グラファイト膜4の膜面方向の熱伝導度、αはグラファイト膜4の膜面方向の熱拡散率、dはグラファイト膜4の密度、Cpはグラファイト膜4の比熱容量をそれぞれ表わしている。なお、グラファイト膜4の膜面方向の密度、熱拡散率、および比熱容量は、以下に述べる方法で求める。
本実施形態におけるグラファイト膜4の厚さは、1μm以上、100μm以下であり、より好ましくは2μm以上、100μm以下であり、特に好ましくは10μm以上、100μm以下である。この様な厚さの場合、基板として十分な機械的強度を有し、面方向の高い熱伝導特性(1500W/mK、以上)を実現することができる。
本実施形態におけるグラファイト膜4の膜面方向の電気伝導度は、16000S/cm以上であることが好ましく、17000S/cm以上であることが好ましく、18000S/cm以上であることが最も好ましい。
グラファイト膜4の密度は、高いほど自己支持性、機械的強度特性に優れるので好ましい。また、グラファイト膜4の密度が高いほど荷電粒子線との相互作用が高くなり、中性子の減速効果が高くなる。また、高密度のグラファイト膜4では、構成するグラファイト層間に隙間がないために、熱伝導度が高くなる傾向がある。グラファイト膜4の密度が低い場合、荷電粒子線の減速効率が悪く、さらに構成するグラファイト層間の空気層の影響により熱伝導度も低下してしまうため好ましくない。また、空気層としての空洞部分では、熱伝導性が悪くなることにより熱が蓄積しやすくなる、あるいは、加熱による温度上昇により空洞部分に存在する空気層の膨張が起こると考えられる。それゆえ、低密度のグラファイト膜4は劣化・破壊しやすい。これらのことから、グラファイト膜4の密度は大きいことが好ましい。具体的には、1.60g/cm3以上が好ましく、1.70g/cm3以上が好ましく、1.80g/cm3以上がより好ましく、2.00g/cm3以上がより好ましく、2.10g/cm3以上が最も好ましい。また、グラファイト膜4の密度の上限について、グラファイト膜4の密度は、理論値である2.26g/cm3以下であり、2.25g/cm3以下であってもよい。
グラファイト膜4の機械的強度は、膜厚が100μm以下である場合には、そのMIT耐屈曲試験によって推定する事ができる。MIT試験における屈曲回数は、500回以上が好ましく、より好ましくは1000回以上、更に好ましくは2000回以上であるとよい。グラファイト膜4のMIT耐屈曲試験は次のとおり行う。1.5×10cmの試験片3枚を抜き出す。東洋精機(株)製のMIT耐揉疲労試験機型式Dを用いて、試験荷重100gf(0.98N)、速度90回/分、折り曲げクランプの曲率半径Rは2mmで行う。23℃の雰囲気下、折り曲げ角度は左右へ135度で切断するまでの折り曲げ回数を測定する。
図1に示されるように、本実施形態に係るターゲット(A)は、金属膜3の表面とグラファイト膜4の表面とが境界面を介して接している構造を有する。すなわち、グラファイト膜4と金属膜3とが直接接合された構造である。このような構造は、金属膜3が比較的厚い場合には、例えば、グラファイト膜4の片面にベリリウムをホットプレスやHIP処理を施すことによって作製することができる。また、金属膜3が比較的薄いベリリウムの場合には、例えば、グラファイト膜4の片面にベリリウムを蒸着することによって作製することができる。
ターゲット(A)~(D)、及び後述する実施形態2のターゲット(E)においては、荷電粒子としての陽子はグラファイト膜4を通過するが、標的物質(ここではグラファイト膜4)の荷電粒子(陽子)に対する衝突阻止能(エネルギー損失)は、下記のBetheの式(3)によって表される。
本実施形態に係る中性子発生方法では、ターゲットに対し低エネルギーの陽子を真空下で衝突させることによって、有害且つ放射化能の高い速中性子が低減された低エネルギー中性子を発生させる。本実施形態では、ターゲットとして、上述した特性を有するグラファイト膜4、及び該グラファイト膜4の片面に付着された厚さ10μm以上1mm未満の金属膜3から構成される基板を用いる。これにより、本実施形態に係る中性子発生方法は、重金属に比べ放射化のレベルを低減でき、有害且つ放射化能の高い速中性子が低減された低エネルギー中性子の発生効率を小さくする事が出来る。また、核反応に伴う熱負荷をグラファイト基板によって軽減できるので、冷却機構をコンパクトにすることができる。
本実施形態に係る中性子発生装置は、ターゲットと、水素イオン発生器と、線形加速器と、陽子照射部とを備えている。中性子発生装置における陽子を発生させるための加速器は、線形加速器である。従来は、ターゲットに衝突させるための陽子として11MeV以上の高エネルギー陽子を用いるためにシンクロトロンやサイクロトロン等の大型加速器が用いられていた。本実施形態では、主に2MeV以上11MeV未満の陽子を用いるので、線形加速器でも十分に所要とする大電流の陽子を発生することができる。
本発明の他の実施形態について図6に基づいて説明すれば、以下のとおりである。図6は、本実施形態に係るターゲット(E)の概略構成を示す断面図である。図6に示されるように、本実施形態に係るターゲット(E)は、金属膜3を支持する基板が、グラファイト膜4が積層されたグラファイト積層体8である点が、前記実施形態1と異なる。照射される加速陽子ビームのエネルギーが比較的高く、照射による発熱量が極めて大きい場合、本実施形態のように、金属膜3を支持する基板をグラファイト積層体8により構成してもよい。
複数枚のグラファイト膜4を積層して、希望する厚さの基板を作製する方法は、特に制限はないが、基板が極めて高い温度に曝されることを考えると、複数枚のグラファイト膜4を、接着剤を用いる事無く、直接加圧・加熱処理によって圧着してグラファイト積層体8を形成することが好ましい。加圧・加熱の条件については、十分な接合強度を持つグラファイト積層体8を形成することができれば特に制限はないが、加熱の温度は200℃~3000℃の範囲、印加圧力は104パスカル以上であり、真空、またはアルゴンや窒素などの不活性ガス中にて加圧・加熱を行うことが好ましい。特に、加圧しながら加熱する、あるいは加熱しながら加圧することは積層体作製の方法として好ましい。また、グラファイト積層体8に用いられるグラファイト膜4は必ずしも完全にグラファイト化されたものである必要はなく、600℃以上、より好ましくは800℃以上、最も好ましくは1000℃以上の温度で炭素化した膜であっても構わない。このように炭素化した膜を積層し、例えば2800℃以上の温度で加熱、加圧すれば目的のターゲット基板を得ることができる。
本発明の一実施形態に係るターゲットは、少なくとも、ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイト膜から構成される基板と、を有し、加速された陽子を、前記金属膜及び前記基板面に衝突させて中性子を発生させるためのターゲットであって、前記グラファイト膜の膜面方向の熱伝導度は、1500W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度の100倍以上であり、前記グラファイト膜の厚さは、1μm以上、100μm以下であることを特徴としている。
2 中性子
3 金属膜
4 グラファイト膜(基板)
5 ターゲット支持枠(支持枠)
6 冷媒流路(冷却機構)
7 金属材料膜
8 グラファイト積層体
(A)~(E) ターゲット
Claims (10)
- 少なくとも、ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイト膜から構成される基板と、を有し、加速された陽子を前記金属膜及び前記基板の面に衝突させて中性子を発生させるためのターゲットであって、
前記グラファイト膜の膜面方向の熱伝導度は、1500W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度の100倍以上であり、
前記グラファイト膜の厚さは、1μm以上、100μm以下であることを特徴とするターゲット。 - 前記グラファイト膜の膜面方向の電気伝導度は、16000S/cm以上であり、膜面方向の電気伝導度が膜厚方向の電気伝導度の100倍以上であることを特徴とする請求項1に記載のターゲット。
- 前記基板は、前記グラファイト膜が複数枚積層されたグラファイト積層体から構成され、
前記基板の厚さは、100μm以上、20mm以下であることを特徴とする請求項1または2に記載のターゲット。 - 前記グラファイト積層体は、複数枚の前記グラファイト膜の加圧下での加熱による接合物、または加熱下での加圧による接合物であることを特徴とする請求項3に記載のターゲット。
- 前記グラファイト膜は、1.60g/cm3以上、2.26g/cm3以下であることを特徴とする請求項1~4の何れか1項に記載のターゲット。
- 前記グラファイト膜と前記金属膜とが直接接合された構造であることを特徴とする請求項1~5の何れか1項に記載のターゲット。
- 前記ターゲットを支持する支持枠を備えたことを特徴とする請求項1~6の何れか1項に記載のターゲット。
- 前記支持枠は、前記ターゲットを冷却する冷却機構を備えたことを特徴とする請求項7に記載のターゲット。
- 陽子を加速するための加速器と、
請求項1~8の何れか1項に記載のターゲットに対して、前記加速器によって加速された陽子を照射するための陽子照射部と、を備えたことを特徴とする中性子発生装置。 - ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイトから構成される1または複数のグラファイト膜と、を有し、陽子を前記金属膜及び前記グラファイト膜の膜面にて衝突させ中性子を発生させるためのターゲットの製造方法であって、
前記グラファイト膜を、高分子膜を焼成することにより作製することを特徴とするターゲットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/092,986 US20190122780A1 (en) | 2016-04-21 | 2017-04-20 | Target, target production method, and neutron generation device |
EP17786030.1A EP3447773B1 (en) | 2016-04-21 | 2017-04-20 | Target, target production method, and neutron generation device |
JP2018513212A JPWO2017183693A1 (ja) | 2016-04-21 | 2017-04-20 | ターゲット、ターゲットの製造方法、及び中性子発生装置 |
CN201780024720.3A CN109074890B (zh) | 2016-04-21 | 2017-04-20 | 靶、靶的制造方法、及中子发生装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-085302 | 2016-04-21 | ||
JP2016085302 | 2016-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183693A1 true WO2017183693A1 (ja) | 2017-10-26 |
Family
ID=60116133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015906 WO2017183693A1 (ja) | 2016-04-21 | 2017-04-20 | ターゲット、ターゲットの製造方法、及び中性子発生装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190122780A1 (ja) |
EP (1) | EP3447773B1 (ja) |
JP (1) | JPWO2017183693A1 (ja) |
CN (1) | CN109074890B (ja) |
WO (1) | WO2017183693A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108550411A (zh) * | 2018-05-29 | 2018-09-18 | 河南太粒科技有限公司 | 一种镶嵌式靶结构 |
JP2019160418A (ja) * | 2018-03-07 | 2019-09-19 | 株式会社アルバック | リチウムターゲットの製造方法及び製造装置 |
DE102018007843B3 (de) * | 2018-10-01 | 2020-01-16 | Forschungszentrum Jülich GmbH | Verfahren zum Auffinden eines Targetmaterials und Targetmaterial für eine Neutronenquelle |
JP2020020714A (ja) * | 2018-08-02 | 2020-02-06 | 国立研究開発法人理化学研究所 | ターゲット構造及びターゲット装置 |
JP2021530689A (ja) * | 2018-07-09 | 2021-11-11 | アドバンスド アクセレレーター アプリケーションズ | 中性子アクティベータ、当該中性子アクティベータを含む中性子放射化システム、および当該中性子アクティベータが実行する中性子放射化方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3447774B1 (en) * | 2016-04-21 | 2020-05-27 | Kaneka Corporation | Support substrate for radioisotope production, target plate for radioisotope production, and production method for support substrate |
CN108780670B (zh) | 2016-04-28 | 2022-04-05 | 株式会社钟化 | 束流强度转换膜以及束流强度转换膜的制造方法 |
CN117859412A (zh) * | 2021-04-02 | 2024-04-09 | Tae技术公司 | 用于保护目标材料的材料和配置 |
WO2023284772A1 (zh) * | 2021-07-16 | 2023-01-19 | 中硼(厦门)医疗器械有限公司 | 用于粒子束产生装置的靶材 |
WO2024054607A2 (en) * | 2022-09-09 | 2024-03-14 | The Regents Of The University Of California | Deuteron breakup neutron target for isotope production |
WO2024077094A1 (en) * | 2022-10-05 | 2024-04-11 | Tae Technologies, Inc. | Lithium target with intermediate layer |
CN115499993B (zh) * | 2022-10-21 | 2024-02-20 | 国重医疗科技(重庆)有限公司 | 中子靶系统 |
CN116913573B (zh) * | 2023-08-01 | 2024-01-23 | 烟台大学 | 一种中子聚束器 |
CN118390012B (zh) * | 2024-06-27 | 2024-08-30 | 中国科学院近代物理研究所 | 一种以自支撑碳膜为衬底的镉靶及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08222239A (ja) * | 1995-02-10 | 1996-08-30 | Tanaka Kikinzoku Kogyo Kk | 燃料電池用カーボンプレート及びその製造方法 |
US5920601A (en) * | 1996-10-25 | 1999-07-06 | Lockheed Martin Idaho Technologies Company | System and method for delivery of neutron beams for medical therapy |
JP2006196353A (ja) | 2005-01-14 | 2006-07-27 | Hitachi Ltd | 加速器中性子源及びこれを用いたホウ素中性子捕捉療法システム |
JP2012119062A (ja) | 2010-11-29 | 2012-06-21 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP2012186012A (ja) | 2011-03-04 | 2012-09-27 | High Energy Accelerator Research Organization | 複合型ターゲット |
JP2012243640A (ja) | 2011-05-20 | 2012-12-10 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP2013054889A (ja) * | 2011-09-02 | 2013-03-21 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP3185065U (ja) * | 2012-04-20 | 2013-08-01 | グラフテック インターナショナル ホールディングス インコーポレーテッド | 熱管理された航空機部品及び複合材品 |
JP3186199U (ja) * | 2010-09-21 | 2013-09-26 | グラフテック インターナショナル ホールディングス インコーポレーテッド | 複合ヒートスプレッダ |
JP2013206726A (ja) | 2012-03-28 | 2013-10-07 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09142820A (ja) * | 1995-11-21 | 1997-06-03 | Matsushita Electric Ind Co Ltd | 異方性黒鉛薄膜基板、並びにそれを用いた応用装置及び応用素子 |
JP3950389B2 (ja) * | 2002-08-14 | 2007-08-01 | 浜松ホトニクス株式会社 | X線管 |
WO2013154177A1 (ja) * | 2012-04-12 | 2013-10-17 | 大学共同利用機関法人 高エネルギー加速器研究機構 | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP6113453B2 (ja) * | 2012-07-13 | 2017-04-12 | 株式会社八神製作所 | 中性子発生装置用のターゲットとその製造方法 |
CN104561906B (zh) * | 2014-12-24 | 2017-03-08 | 武汉理工大学 | 一种梯度碳化硼薄膜及其制备方法 |
-
2017
- 2017-04-20 WO PCT/JP2017/015906 patent/WO2017183693A1/ja active Application Filing
- 2017-04-20 EP EP17786030.1A patent/EP3447773B1/en active Active
- 2017-04-20 US US16/092,986 patent/US20190122780A1/en not_active Abandoned
- 2017-04-20 CN CN201780024720.3A patent/CN109074890B/zh active Active
- 2017-04-20 JP JP2018513212A patent/JPWO2017183693A1/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08222239A (ja) * | 1995-02-10 | 1996-08-30 | Tanaka Kikinzoku Kogyo Kk | 燃料電池用カーボンプレート及びその製造方法 |
US5920601A (en) * | 1996-10-25 | 1999-07-06 | Lockheed Martin Idaho Technologies Company | System and method for delivery of neutron beams for medical therapy |
JP2006196353A (ja) | 2005-01-14 | 2006-07-27 | Hitachi Ltd | 加速器中性子源及びこれを用いたホウ素中性子捕捉療法システム |
JP3186199U (ja) * | 2010-09-21 | 2013-09-26 | グラフテック インターナショナル ホールディングス インコーポレーテッド | 複合ヒートスプレッダ |
JP2012119062A (ja) | 2010-11-29 | 2012-06-21 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP2012186012A (ja) | 2011-03-04 | 2012-09-27 | High Energy Accelerator Research Organization | 複合型ターゲット |
JP2012243640A (ja) | 2011-05-20 | 2012-12-10 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP2013054889A (ja) * | 2011-09-02 | 2013-03-21 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP2013206726A (ja) | 2012-03-28 | 2013-10-07 | High Energy Accelerator Research Organization | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 |
JP3185065U (ja) * | 2012-04-20 | 2013-08-01 | グラフテック インターナショナル ホールディングス インコーポレーテッド | 熱管理された航空機部品及び複合材品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3447773A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019160418A (ja) * | 2018-03-07 | 2019-09-19 | 株式会社アルバック | リチウムターゲットの製造方法及び製造装置 |
JP7061899B2 (ja) | 2018-03-07 | 2022-05-02 | 株式会社アルバック | リチウムターゲットの製造方法及び製造装置 |
CN108550411A (zh) * | 2018-05-29 | 2018-09-18 | 河南太粒科技有限公司 | 一种镶嵌式靶结构 |
JP2021530689A (ja) * | 2018-07-09 | 2021-11-11 | アドバンスド アクセレレーター アプリケーションズ | 中性子アクティベータ、当該中性子アクティベータを含む中性子放射化システム、および当該中性子アクティベータが実行する中性子放射化方法 |
JP7385644B2 (ja) | 2018-07-09 | 2023-11-22 | アドバンスド アクセレレーター アプリケーションズ | 中性子アクティベータ、当該中性子アクティベータを含む中性子放射化システム、および当該中性子アクティベータが実行する中性子放射化方法 |
JP2020020714A (ja) * | 2018-08-02 | 2020-02-06 | 国立研究開発法人理化学研究所 | ターゲット構造及びターゲット装置 |
WO2020027266A1 (ja) * | 2018-08-02 | 2020-02-06 | 国立研究開発法人理化学研究所 | ターゲット構造及びターゲット装置 |
EP3832666A4 (en) * | 2018-08-02 | 2021-10-13 | Riken | TARGET STRUCTURE AND TARGET DEVICE |
US11985755B2 (en) | 2018-08-02 | 2024-05-14 | Riken | Target structure and target device |
DE102018007843B3 (de) * | 2018-10-01 | 2020-01-16 | Forschungszentrum Jülich GmbH | Verfahren zum Auffinden eines Targetmaterials und Targetmaterial für eine Neutronenquelle |
Also Published As
Publication number | Publication date |
---|---|
CN109074890A (zh) | 2018-12-21 |
EP3447773A4 (en) | 2019-03-27 |
EP3447773A1 (en) | 2019-02-27 |
US20190122780A1 (en) | 2019-04-25 |
EP3447773B1 (en) | 2021-06-09 |
JPWO2017183693A1 (ja) | 2018-12-13 |
CN109074890B (zh) | 2023-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017183693A1 (ja) | ターゲット、ターゲットの製造方法、及び中性子発生装置 | |
WO2012073966A1 (ja) | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 | |
EP2874473B1 (en) | Target for neutron-generating device and manufacturing method therefor | |
JP6609041B2 (ja) | 放射性同位元素製造用の支持基板、放射性同位元素製造用ターゲット板、及び支持基板の製造方法 | |
JP2013206726A (ja) | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 | |
JP2012119062A (ja) | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 | |
JP5751673B2 (ja) | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 | |
Zhou et al. | Influence of a large oblique incident angle on energetic protons accelerated from solid-density plasmas by ultraintense laser pulses | |
JP6218174B2 (ja) | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 | |
US10420959B2 (en) | Energy degrader, charged particle beam emission system provided with same, and method of producing graphite film | |
JP5700536B2 (ja) | 複合型ターゲット | |
JP2012243640A (ja) | 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置 | |
Okihara et al. | Energetic proton generation in a thin plastic foil irradiated by intense femtosecond lasers | |
Singh et al. | Effect of graphene on thermal conductivity of laser cladded copper | |
WO2017188117A1 (ja) | ビーム強度変換膜、及びビーム強度変換膜の製造方法 | |
WO2023136238A1 (ja) | Bnct用リチウムターゲット及びbnct用リチウムターゲットを用いた中性子発生方法 | |
WO2008122205A1 (fr) | Procédé pour accélérer des ions au moyen d'un laser et appareil pour générer des ions | |
Torrisi et al. | Target normal sheath ion acceleration by fs laser irradiating metal/reduced graphene oxide targets | |
Artemov et al. | Interaction of H− ions with foil targets in the charge exchange system of a beam transport channel | |
JP2021103104A (ja) | 中性子発生用リチウムターゲット及びその製造方法 | |
Shi et al. | Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams | |
Cutroneo et al. | POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION | |
Xie et al. | Hydrogen Diffusion Layer within Solid-State Lithium Target for Compact Accelerator-Driven Neutron Source: Irradiation Damage, Thermal Properties and Fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018513212 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017786030 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017786030 Country of ref document: EP Effective date: 20181121 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17786030 Country of ref document: EP Kind code of ref document: A1 |