[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2017183693A1 - ターゲット、ターゲットの製造方法、及び中性子発生装置 - Google Patents

ターゲット、ターゲットの製造方法、及び中性子発生装置 Download PDF

Info

Publication number
JPWO2017183693A1
JPWO2017183693A1 JP2018513212A JP2018513212A JPWO2017183693A1 JP WO2017183693 A1 JPWO2017183693 A1 JP WO2017183693A1 JP 2018513212 A JP2018513212 A JP 2018513212A JP 2018513212 A JP2018513212 A JP 2018513212A JP WO2017183693 A1 JPWO2017183693 A1 JP WO2017183693A1
Authority
JP
Japan
Prior art keywords
film
target
graphite
substrate
neutrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018513212A
Other languages
English (en)
Inventor
村上 睦明
睦明 村上
篤 多々見
篤 多々見
正満 立花
正満 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2017183693A1 publication Critical patent/JPWO2017183693A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/02Neutron sources
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/08Holders for targets or for other objects to be irradiated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

加速器のターゲットとして利用するにあたって十分な耐久性、耐熱性を有し、放射化の程度を小さくし得るターゲットを実現する。本発明のターゲット(A)は、金属膜(3)と、グラファイト膜(4)から構成される基板と、を有し、グラファイト膜(4)の面方向の熱伝導度は、1600W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度の100倍以上であり、グラファイト膜(4)の厚さは、1μm以上、100μm以下である。

Description

本発明は、ターゲット、ターゲットの製造方法、及び中性子発生装置に関する。
中性子は、結晶による中性子線の回折現象を利用した物質の結晶構造や磁気構造を知るための手段として、あるいはガン治療などの医療用途、等に使用されている。中でも、近年、選択的ながん治療としてホウ素中性子捕捉療法(BCNT:Boron Neutron Capture Therapy)が期待されており、その様な目的に使用される中性子発生装置の重要性が大きくなっている。例えば特許文献1には、ホウ素中性子捕捉療法のための中性子を発生するための加速器中性子源が開示されている。特許文献1に開示された加速器中性子源は、荷電粒子ビーム(陽子ビーム)が照射される板状の金属ターゲットと、金属ターゲットを冷却する冷却装置と、を備えている。そして、加速器により加速された荷電粒子ビームを板状の金属ターゲットに照射することにより中性子を発生させている。この金属ターゲットは、冷却装置によって冷却される。
陽子ビームを照射し中性子を発生させるためのターゲットは、例えば、特許文献2〜5に開示されている。引用文献2〜5に開示されたターゲットは、非金属材料及びベリリウム若しくはリチウムから構成される複合型ターゲットであり、非金属材料として等方性高密度黒鉛が使用されている。
特開2006−196353号公報 特開2012−119062号公報 特開2012−186012号公報 特開2012−243640号公報 特開2013−206726号公報
しかしながら、上述のような、基板上に金属ターゲットが形成され、中性子を発生させるための従来のターゲットには、陽子ビームに対する耐久性・耐熱性が低いという問題がある。
陽子ビームは、金属ターゲットに入射すると、金属ターゲットには、通常10〜20MW/m以上に及ぶ極めて大量の熱が発生する。すなわち、金属ターゲットを支持する非金属材料からなる基板には、照射される荷電粒子線に対する高い耐久性・耐熱性が要求される。しかし、従来の支持基板に使用される材料は、照射陽子ビームに対し十分な耐久性・耐熱性を有するとは言い難い。
また、特に、高エネルギーの陽子ビームの照射による発熱量が極めて大きい場合、通常、冷却機構(例えば冷却水を流す流路)を備えたターゲットが用いられる。冷却機構を備えた金属板の材料には、アルミニウムが用いられる。アルミニウムの半減期は30万年であり、極めて放射化の度合いが強い。強く放射化したターゲットは、人が取り扱うことができなくなるので、高エネルギーの陽子ビームの照射や連続使用が困難になる。
この様な、放射化を低減するための手法として、ターゲット基板に放射化し難い炭素材料を用いる事が検討されており、具体例として、特許文献2、4、5には、等方性グラファイト材料(Isotropic Graphite material)、単結晶グラファイト、HOPG、ガラス状炭素、単結晶ダイヤモンド、エピタキシャルダイヤモンド、等が例示されている。しかしながら、現実的には中性子発生のためのターゲットには実用上必要な大きさである事が要求され、その大きさは、例えば直径10mm〜500mm程度である。この様な観点から上記特許文献において例示された炭素材料を見ると、単結晶グラファイト、HOPG、単結晶ダイヤモンド、エピタキシャルダイヤモンド等は、必要とされる面積、入手が困難である事、価格、等の面から見て現実的な素材でない事は明らかである。また、等方性グラファイト及びガラス状炭素は、前記面積の入手が可能な素材ではあるが、その熱伝導度は等方性グラファイトでせいぜい70〜150W/mK、ガラス状炭素では10W/mK程度であり、そのため熱が基板内部に蓄積されて温度が上昇し、その耐久性が低下すると言う課題があった。その対策として、基板を厚くし、等方性グラファイトの場合では2mm〜50mm程度の厚さの基板を用いる必要があった。この様な等方性グラファイト基板の必要厚さは、耐久性の観点とガン治療に有害な速中性子減速材としての観点、から選択される。
本発明は、前記の問題点に鑑みてなされたものであり、その目的は、陽子ビームの照射により発生する大量の熱に対し、十分な耐久性、耐熱性を有し、放射化の程度を小さくし得る、従来よりも遥かに薄いターゲット、ターゲットの製造方法、及び中性子発生装置を実現することにある。
本発明の一態様のターゲットは、少なくとも、ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイト膜から構成される基板と、を有し、加速された陽子を、前記金属膜及び前記基板面に衝突させて中性子を発生させるためのターゲットであって、前記グラファイト膜の膜面方向の熱伝導度は、1500W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度の100倍以上であり、前記グラファイト膜の厚さは、1μm以上、100μm以下であることを特徴としている。
本発明の他の態様のターゲットの製造方法は、ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイトから構成される1または複数のグラファイト膜と、を有し、陽子を前記金属膜及び前記グラファイト膜の膜面にて衝突させ中性子を発生させるためのターゲットの製造方法であって、前記グラファイト膜を、高分子膜を焼成することにより作製することを特徴としている。
本発明の一態様のターゲットは、陽子ビームの照射に対し十分な耐久性、耐熱性を有し、放射化の程度を小さくし得るという効果を奏し、さらには、従来のターゲットに比べて非常に薄くする事が可能であるので、より低い加速エネルギーの陽子ビームによって、ガン治療などの医療用途として最適な低エネルギーの熱・熱外中性を発生させることができる。
本発明の実施形態1に係るターゲット(A)の概略構成を示す断面図である。グラファイト膜のa−b面はターゲット基板の膜面方向に形成されており、膜面方向に熱は拡散する。 本発明の実施形態1に係る保持のための枠機構を備えたターゲット(B)の概略構成を示す断面図である。 本発明の実施形態1に係る保持のための枠構造と冷却機構を備えたターゲット(C)の概略構成を示す断面図である。 本発明の実施形態1に係るターゲット(D)の概略構成を示す概略図である。 Betheの式(3)に基づく阻止能と粒子の運動エネルギーとの関係を示すグラフである。 複数枚のグラファイト膜の積層によって膜厚を制御したターゲット基板(E)の概略構成を示す断面図である。
〔実施形態1〕
上述のとおり、従来、金属ターゲットを支持する基板として、炭素材料、等方性グラファイト、アルミニウム(Al)等が用いられてきた。特に、放射化の程度が比較的小さく、かつ真空中にて3000℃の耐熱性を有するグラファイトは理想的な材料であり、従来、炭素基板として等方性グラファイト材料が用いられてきた。しかしながら、等方性グラファイト基板は、先に述べた理由により高エネルギーの陽子ビームに対し十分な耐久性・耐熱性を有するとは言い難く、より高い耐久性を持つターゲットが強く要望されていた。
そこで、本願発明者らはグラファイト材料の熱伝導特性に異方性を持たせ、ターゲット面方向の熱伝導率を高くすることによって、ターゲット基板上で発生した熱を速やかに拡散させる事を考えた。これによってターゲット基板の温度上昇を防ぎ、陽子ビームの照射に対し十分な耐久性・耐熱性を有する支持基板の開発を目指して鋭意開発を行なった。
その結果、特定の特性を有し、かつ所定の寸法としたグラファイトを用いることにより、放射化の程度を小さくするとともに、陽子ビームの照射に対し十分な耐久性・耐熱性を有する支持基板を開発することに成功した。具体的には、グラファイトの熱伝導特性に異方性を持たせ、ターゲット面方向の熱伝導度を高くする事で発生する熱を速やかに拡散させて、基板の温度上昇を防止する。
このような本発明のグラファイト基板では、従来の等方性グラファイト基板等において必要とされていた基板の厚さよりも遥かに薄い膜でも、ターゲット基板として十分な耐久性を有する事が分かった。薄いターゲット基板とする事の最大のメリットは、従来よりも低い加速エネルギーの陽子ビームの照射によって、有害性の低い低エネルギーの熱中性子・熱外中性子を効率的に発生させる事が出来る点にある。この様な熱中性子・熱外中性子はガン治療などの医療用途として有用である。また、低加速エネルギーの陽子ビームを用いる第二のメリットとして、陽子ビームによるターゲットの放射化の程度を抑制できること、第三のメリットとして加速器自体を小型化できること、を挙げる事ができる。
通常は、陽子ビームの加速エネルギーが小さくなると、その様なビーム照射による発熱量も減少するだろうと考えられるが、加速ビーム照射による発熱の場合にはそうではなく、陽子ビームの加速エネルギーが低い場合でも、エネルギーが高い場合と全く同様な耐熱性が要求される。これについては後に詳しく解説するが(陽子ビームの加速エネルギーと発熱の項)、グラファイト基板の膜厚を小さくすると、物理的な強度が弱くなるのみでなく、陽子ビームの照射による単位体積あたりの熱負荷は大きくなるので、要求される耐久性・耐熱性に関しては同等の性能が要求されるのである。そのため、厚みの薄い炭素・あるいはグラファイトは中性子発生基板としては耐えられない、と考えることが従来の知見となっていた。
しかしながら、本願発明者らは、独自の研究を重ねることにより、熱伝導度等の諸特性に優れたグラファイト膜を製造する技術を確立し、さらに100μm〜1μmの範囲であれば基板としての機械的強度も実現できる事を発見した。
本願発明者らは、さらに研究開発を進め、驚くべきことに、かかるグラファイト膜であれば厚さ100μm以下であっても、陽子ビーム照射による熱負荷にも耐え得るという新規知見を見出した。この様な極めて薄いグラファイト膜が厚い膜と同等の高い耐熱特性を持つ理由は、放熱が固体の熱伝導のみによるのではなく、輻射による放熱効果が大きくなり、熱容量の小さなグラファイト薄膜を有効に冷却し得ることによると考えられる。
このような薄いターゲットを用いれば、先に述べたように加速エネルギーの低い陽子ビーム(2MeV〜6MeV程度)を用いる事も可能であり、それによってターゲットの放射化の程度を小さくする事ができる。さらには、この様な低加速エネルギーの陽子で作製した中性子線は有害な速中性子を含まないために、ガン治療などの医療用の中性子発生ターゲット、あるいは装置として最適なものとなる。かかる知見に基づく本願発明の技術思想は、従来の知見を覆すものであり、従来の知見から予測できるものではなく、本願発明者らが独自に完成させたものである。
以下、本発明の実施の形態について、詳細に説明する。
図1に示されるように、本実施形態に係るターゲット(A)は、金属膜3と、グラファイト膜4と、からなり、陽子ビーム1を金属膜3及びグラファイト膜4の膜面にて衝突させ中性子2を発生させるためのものである。金属膜3の表面とグラファイト膜4の表面とは、境界面を介して接している。これにより、陽子ビームの衝突による核反応熱を2種類の材料に分担させることができる。
(金属膜3について)
陽子ビームを膜面にて衝突させる金属膜3は、ベリリウム材料またはリチウム材料により構成されている。これにより、低エネルギーの陽子ビームとの衝突によって、低エネルギーの中性子2を発生させることができる。
具体的には、金属膜3がベリリウム材料により構成されている場合、3MeV〜11MeVの陽子ビームの衝突により、核反応Be(p,n)反応を起こさせることができる。また、金属膜3がリチウム材料により構成されている場合、2MeV〜4MeVの陽子ビームの衝突により、核反応Li(p,n)反応またはLi(p,n)反応を起こさせることができる。
ここでいう「ベリリウム材料」とは、ベリリウム元素の単一元素材料、ベリリウム化合物、ベリリウム合金、及びベリリウム複合材料のことを意味する。また、「リチウム材料」とは、リチウム元素の単一元素材料(リチウム元素の単体金属であり、以後、リチウムという)、リチウム化合物、リチウム合金、及びリチウムの複合材料のことを意味する。ここで、ベリリウム、ベリリウム化合物、ベリリウム合金、及びベリリウム複合材料をベリリウム材料と総称し、リチウム、リチウム化合物、リチウム合金、及びリチウム複合材料をリチウム材料と総称したのは、中性子発生の原理が、特定元素における特有の核反応に基づいているからである。すなわち、ターゲットへの加速陽子ビームの照射による中性子発生の原理は、陽子ビームとターゲットに含まれている特定元素の原子との物理的な核反応に基づくものであるので、ターゲットが特定元素の化合物及び複合材料である場合も、該特定元素の単体の場合と同様の核反応によって中性子を生ずるからである。すなわち、本発明では、ベリリウムやリチウム以外に、ベリリウム化合物、ベリリウム合金、及びベリリウム複合材料、リチウム化合物、リチウム合金、及びリチウム複合材料を用いることができる。ターゲット材料として上記特定元素の化合物や複合材料を用いる場合には、該化合物や複合材料に含まれる特定元素(ベリリウム元素及びリチウム元素のこと)以外の元素が陽子や中性子による放射化を受けないような、また副生水素原子との反応によって有害物質を生じないような元素であることが望ましい。このような元素としては、例えば、炭素、ケイ素、窒素、りん、酸素、硫黄等を挙げることができるが、これらに限定するものではない。
金属膜3におけるグラファイト膜4と反対側の表面は、陽子の進行方向に対面している。このように配置した構成では、金属膜3の厚さを陽子の理論的飛程よりも薄くすることによって、陽子が金属膜3を通過する過程で一部の陽子による核反応を起こさせ、残りの陽子による核反応をグラファイト膜4の通過過程で起こすように設計することができる。したがって、核反応による熱負荷が一種類の材料に集中することがないので、材料が負担する熱負荷を軽減することができる。
ターゲット(A)における金属膜3の厚さは、陽子のベリリウムまたはリチウム中での理論的飛程よりもかなり薄くすることができる。なぜなら、グラファイト膜4が金属膜3の支持材及び冷却材として機能し、金属膜3及びグラファイト膜4の各材料が負担する熱負荷を軽減されるからである。
例えば、11MeVの陽子のベリリウム中での理論的飛程は約0.94mmである。それゆえ、ターゲット基板をベリリウム材料からなる金属膜3のみにより構成した場合、ベリリウム材料からなる金属膜3は1mm以上の厚みが必要であった。一方、本実施形態に係るターゲット(A)における金属膜3は、1mmよりもかなり薄くすることが可能である。金属膜3がベリリウム材料からなる場合、金属膜3の厚さは、好ましくは10μm以上であり1mm未満である。さらに好ましくは、金属膜3の厚さは、20μm以上であり0.5mm以下である。金属膜3の厚さが10μm未満である場合、耐熱性が低下する。
また、1MeVの陽子のリチウム中での理論的飛程は約2mmである。それゆえ、金属膜3がリチウム材料からなる場合、ターゲット(A)における金属膜3は、2mmよりもかなり薄くすることが可能である。金属膜3がリチウム材料からなる場合、金属膜3の厚さは、好ましくは10μm以上であり1mm未満である。さらに好ましくは、金属膜3の厚さは、20μm以上であり0.5mm以下である。金属膜3の厚さが10μm未満である場合、耐熱性が低下する。
また、金属膜3における陽子の照射面の表面積は、陽子の出力設定に応じて適宜設定することができる。通常、ターゲット基板の単位面積当たりの熱負荷の最大値は、陽子の出力を陽子の照射面積で割った値とみなされる。それゆえ、金属膜3の表面からの除熱能力は、ターゲット(A)の熱負荷以上に設計される。例えば、BNCT等の医療用の中性子を発生するために必要な陽子の出力は、最大約30kWであると試算されているので、例えば、ターゲットとなる金属膜の表面積が30cmであるとすると、熱負荷は、約10MW/mになる。この熱負荷は、中性子生成ターゲットとなる金属膜として厚さ1mm、表面積30cmのベリリウム膜を用いた場合、ベリリウムの温度を毎秒約3000℃上昇させるのに等しい熱負荷である。
金属膜3の表面積は、上述した大きな熱負荷を低減させるために、陽子の進行方向に対して垂直な平面積以上の値にすることが好ましい。例えば、金属膜3の表面積を陽子の進行方向に対して垂直な平面積の2倍に出来れば、金属膜3の照射平面積当たりの熱負荷を2分の1以下に軽減することができる。金属膜3の表面積を大きくするには、例えば、金属膜3表面に凹凸を施す、表面に凹凸のある基板としてのグラファイト膜4に金属膜3を担持させる、金属膜3を粉末加工する、等の方法によって可能である。金属膜3がベリリウム材料から構成されている場合、ベリリウム材料の表面加工は、例えば、レーザーアブレーション、エッチング、鋳型成形、等の方法によって可能である。なお、ここでいう「平面積」とは、金属膜3における陽子の照射面を平面としたときの、該平坦面の面積を意味する。
このように、本実施形態では、金属膜3と、グラファイト膜4と、からなるターゲット(A)に対し、低エネルギーの陽子を衝突させることによって中性子を発生させている。金属膜3がベリリウム材料から構成されている場合、ターゲット(A)における金属膜3側では核反応Be(p,n)反応が起きる。金属膜3がリチウム材料から構成されている場合、ターゲット(A)における金属膜3側では核反応Li(p,n)反応またはLi(p,n)反応が起こる。また、ターゲット(A)におけるグラファイト膜4側では核反応12C(p,n)反応が起きる。
(グラファイト膜4について)
本実施形態において、金属膜3を支持する基板(以下、ターゲット基板ともいう)は1μm以上、100μm以下という薄いグラファイト膜4である。グラファイト膜4は、熱容量が小さいので、エネルギーロスが低減し、中性子の発生効率が向上する。
グラファイト膜4は、照射陽子及び発生中性子による放射化を軽減して、有害且つ放射化能の高い速中性子が低減された低エネルギー中性子を発生させる上で好適な材料である。グラファイトは、中性子発生効率が高く且つ放射化されにくい材料であり、熱・熱外中性子の吸収が少なく、中性子減速効果が高い。
グラファイト膜4は、膜面方向の熱伝導度は、1500W/(m・K)以上であり、厚さが、1μm以上、100μm以下であれば、その他の構成は特に限定されない。かかるグラファイト膜4は、ターゲットして必要な機械的強度を有し、かつ、膜面方向に高い熱伝導性を有しているので、好ましい。なお、ここでいう膜厚とは、グラファイト膜4の陽子の進行方向における長さをいう。
この様な金属膜3とグラファイト膜4とからなるターゲット(A)は、従来のターゲットよりも遥かに薄いにもかかわらず、陽子ビーム1の照射に対し十分な耐久性・耐熱性を有している。かかるターゲットにおいては、発生した中性子を減速させる効果は低いが、それゆえに低エネルギーの陽子ビーム1の照射によって、所望の低エネルギーの熱・熱外中性子を得る事が可能になる。
また、金属膜3、およびその周辺の部材が放射化している場合、中性子発生装置からターゲット(A)を取出すと作業者が被曝するおそれがあり、さらに、これらの部材が放射化した場合、その放射性廃棄物としての処理などが問題となる。しかしながら、本発明のターゲットであれば、中性子発生のために低エネルギーの陽子ビームの利用が可能となるので放射化の程度を画期的に低減する事ができる。
(グラファイト膜4の製造方法)
本実施形態におけるグラファイト膜4の製造方法は、特に限定されないが、例えば、高分子膜を焼成等の熱処理することによって、グラファイト膜4を作製する方法が挙げられる。この方法では大面積膜状のグラファイトの作製が可能であり、例えば、300mmΦの面積の膜も容易に作製する事が出来る。したがって、ターゲット基板として上記特許文献に記載されているHOPG、単結晶グラファイト、ダイヤモンドなどの炭素材料と比較して、実用的な観点からは全く問題のない製造方法である。
本実施形態の一例のグラファイト膜4の製造方法は、芳香族ポリイミドフィルムを炭化する炭化工程と、炭化した芳香族ポリイミドフィルムを黒鉛化する黒鉛化工程とを含む。
<炭化工程>
炭化工程は、出発物質である芳香族ポリイミドフィルムを減圧下もしくは窒素ガス中で予備加熱処理して炭化を行う。炭化の熱処理温度としては、500℃以上である事が好ましく、より好ましくは600℃以上、700℃以上で熱処理することが最も好ましい。
<黒鉛化工程>
黒鉛化工程では、炭化したポリイミドフィルムを一度取り出した後、黒鉛化用の炉に移し変えてから黒鉛化を行ってもよいし、炭化から黒鉛化を連続的に行ってもよい。黒鉛化は、減圧下もしくは不活性ガス中で行われるが、不活性ガスとしてはアルゴン、ヘリウムが適当である。熱処理温度(焼成温度)としては2400℃以上、好ましくは2600℃以上、更に好ましくは2800℃以上まで処理するとよい。
炭素化処理の過程や黒鉛化過程ではシワが発生する事がある。しかし、本発明の用途には、このシワは全く問題にならない。先に述べた様に、グラファイト膜4をターゲット(A)の基板として使用する場合、むしろグラファイト膜4にシワがある方が、シワによる表面凹凸により金属膜3の表面積が増大する。その結果、陽子ビーム1の照射面積が向上し、中性子発生効率が上がるので好ましい。
上記の方法によれば、良好なグラファイト配向性・結晶性を有し、かつ熱伝導性に優れたグラファイト膜4を得ることができる。
本実施形態で使用する高分子膜は、芳香族ポリイミド、芳香族ポリアミド、ポリオキサジアゾール、ポリベンゾチアゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリベンゾビスオキサゾール、ポリパラフェニレンビニレン、ポリベンゾイミダゾール、ポリベンゾビスイミダゾール、芳香族ポリチアゾールのうちから選ばれた少なくとも一種類以上の高分子フィルムである。特に、本実施形態におけるグラファイト膜4の原料フィルムとして好ましいのは、芳香族ポリイミドフィルムである。
(グラファイト膜4の膜面方向の熱伝導度)
本実施形態におけるグラファイト膜4の膜面方向の熱伝導度は、1500W/(m・K)以上であり、1600W/(m・K)以上であることが好ましく、1700W/(m・K)以上であることがさらに好ましい。
膜面方向の熱伝導度が1500W/(m・K)以上のグラファイト膜4を用いれば、より高い放熱性を有するグラファイト積層体を得ることができる。膜面方向の熱伝導度が1500W/(m・K)以上のグラファイト膜4は、金属膜3に比べて遥かに高い熱伝導性を有しているので、金属膜3において発生する熱をすみやかに膜面方向に拡散して、冷却機能もつ枠(図3、図4参照)へ導くことができる。
また、グラファイト膜4は、膜面方向の熱伝導度が膜厚方向の熱伝導度と比較して100倍以上大きい異方性(配向性)を有していることが好ましい。
グラファイト膜4の膜面方向の熱伝導度は、次式(1)によって算出する。
A=α×d×Cp ・・・・(1)
ここで、Aは、グラファイト膜4の膜面方向の熱伝導度、αはグラファイト膜4の膜面方向の熱拡散率、dはグラファイト膜4の密度、Cpはグラファイト膜4の比熱容量をそれぞれ表わしている。なお、グラファイト膜4の膜面方向の密度、熱拡散率、および比熱容量は、以下に述べる方法で求める。
グラファイト膜4の密度は、100mm×100mmの形状に切り取られたサンプルについて重量および厚さを測定し、測定された重量の値を算出された体積の値(100mm×100mm×厚さ)にて割ること、により算出する。
グラファイト膜4の比熱容量は、エスアイアイナノテクノロジー株式会社製の熱分析システムである示差走査熱量計DSC220CUを用い、20℃から260℃まで10℃/minの昇温条件下で測定する。
なお、グラファイト膜4の膜厚方向の熱伝導度は、上記式(1)において、αをグラファイト膜4の膜厚方向の熱拡散率として、同様に算出することができる。
ここで、グラファイト膜4の膜面方向の熱拡散率は、グラファイト膜4の厚さが3μmを超える場合には、市販の光交流法に基づく熱拡散率測定装置(例えば、アルバック理工(株)社の「LaserPit」)を用いて測定することができる。例えば、4mm×40mmの形状に切り取られたグラファイト膜4のサンプルについて、20℃の雰囲気下、レーザー周波数10Hzにおいて測定する。一方、グラファイト膜4の厚さが3μm以下である場合、グラファイト膜4の膜面方向の熱拡散率は、市販の装置での正確な測定は難しいので、新たに開発した周期加熱法によって測定する。
また、グラファイト膜4の膜厚方向の熱拡散率はレーザーによるパルス加熱法によって測定する。この方法では膜の片方の面に照射したレーザーによる加熱後の膜裏面における温度応答(温度変化)を測定し、温度が一定温度に達するまでの時間(t)のハーフタイム(t1/2)を以下の式(2)を用いて算出する。
Figure 2017183693
式(2)において、αは熱拡散率、τ0は熱拡散時間、dは試料厚さ、t1/2はハーフタイム、0.1388は用いた装置の装置定数である。
(グラファイト膜4の厚さ)
本実施形態におけるグラファイト膜4の厚さは、1μm以上、100μm以下であり、より好ましくは2μm以上、100μm以下であり、特に好ましくは10μm以上、100μm以下である。この様な厚さの場合、基板として十分な機械的強度を有し、面方向の高い熱伝導特性(1500W/mK、以上)を実現することができる。
グラファイト膜4の厚さは、次の方法で測定する。厚さゲージ(ハイデンハイン(株)社製、HElDENH:AIN−CERTO)を用い、50mm×50mmの形状に切り取られたグラファイト膜4のサンプルについて、25℃の恒温室にて任意の10点における厚さを測定し、当該測定値の平均値として、グラファイト膜4の厚さを算出する。
(グラファイト膜4の膜面方向の電気伝導度)
本実施形態におけるグラファイト膜4の膜面方向の電気伝導度は、16000S/cm以上であることが好ましく、17000S/cm以上であることが好ましく、18000S/cm以上であることが最も好ましい。
また、グラファイト膜4は、膜面方向の電気伝導度が膜厚方向の電気伝導度の100倍以上である異方性(配向性)を有していることが好ましい。
グラファイト膜4の電気伝導度は、4探針法で定電流を印加(例えば、(株)三菱化学アナリテック製ロレスタGP)することによって測定する。
(グラファイト膜4の密度)
グラファイト膜4の密度は、高いほど自己支持性、機械的強度特性に優れるので好ましい。また、グラファイト膜4の密度が高いほど荷電粒子線との相互作用が高くなり、中性子の減速効果が高くなる。また、高密度のグラファイト膜4では、構成するグラファイト層間に隙間がないために、熱伝導度が高くなる傾向がある。グラファイト膜4の密度が低い場合、荷電粒子線の減速効率が悪く、さらに構成するグラファイト層間の空気層の影響により熱伝導度も低下してしまうため好ましくない。また、空気層としての空洞部分では、熱伝導性が悪くなることにより熱が蓄積しやすくなる、あるいは、加熱による温度上昇により空洞部分に存在する空気層の膨張が起こると考えられる。それゆえ、低密度のグラファイト膜4は劣化・破壊しやすい。これらのことから、グラファイト膜4の密度は大きいことが好ましい。具体的には、1.60g/cm以上が好ましく、1.70g/cm以上が好ましく、1.80g/cm以上がより好ましく、2.00g/cm以上がより好ましく、2.10g/cm以上が最も好ましい。また、グラファイト膜4の密度の上限について、グラファイト膜4の密度は、理論値である2.26g/cm以下であり、2.25g/cm以下であってもよい。
グラファイト膜4の密度は、100mm×100mmの形状に切り取られたグラファイト膜4のサンプルについて、重量および厚さを測定し、測定された重量の値を、算出された体積の値(100mm×100mm×厚さ)にて割ることにより、算出する。
(グラファイト膜4の機械的強度)
グラファイト膜4の機械的強度は、膜厚が100μm以下である場合には、そのMIT耐屈曲試験によって推定する事ができる。MIT試験における屈曲回数は、500回以上が好ましく、より好ましくは1000回以上、更に好ましくは2000回以上であるとよい。グラファイト膜4のMIT耐屈曲試験は次のとおり行う。1.5×10cmの試験片3枚を抜き出す。東洋精機(株)製のMIT耐揉疲労試験機型式Dを用いて、試験荷重100gf(0.98N)、速度90回/分、折り曲げクランプの曲率半径Rは2mmで行う。23℃の雰囲気下、折り曲げ角度は左右へ135度で切断するまでの折り曲げ回数を測定する。
なお、本実施形態において100μm以上の厚さのグラファイト基板は十分な機械的強度を有しており、機械的強度は問題にならない。
(ターゲットの構成)
図1に示されるように、本実施形態に係るターゲット(A)は、金属膜3の表面とグラファイト膜4の表面とが境界面を介して接している構造を有する。すなわち、グラファイト膜4と金属膜3とが直接接合された構造である。このような構造は、金属膜3が比較的厚い場合には、例えば、グラファイト膜4の片面にベリリウムをホットプレスやHIP処理を施すことによって作製することができる。また、金属膜3が比較的薄いベリリウムの場合には、例えば、グラファイト膜4の片面にベリリウムを蒸着することによって作製することができる。
また、図2は、本実施形態に係るターゲットの変形例を示す断面図である。図2に示されるように、変形例1としてのターゲット(B)は、ターゲット支持枠5を備えている。ターゲット支持枠5は、少なくともグラファイト膜4の周縁部を支持する枠であり、金属により構成されていることが好ましい。金属が好ましい理由は、機械的強度、熱伝導性、及び耐久性に優れた材料であるためである。
このように、変形例1のターゲット(B)は、ターゲット支持枠5により支持された構成である。それゆえ、ターゲット(B)を容易に着脱可能とするカートリッジ型構造(カセット型構造)とすることができる。また、ターゲット支持枠5が金属からなる場合、ターゲット(B)にて発生する熱を、ターゲット支持枠5を通して、容易に別途設けられた冷却機構へ導くことができる。
また、図3は、本実施形態に係るターゲットの他の変形例を示す断面図である。図3に示されるように、変形例2としてのターゲット(C)では、ターゲット支持枠5内部に、冷却機構としての冷媒流路6が設けられている。また、冷媒流路6に流す冷媒として冷却水等の熱伝導性が高い液体、あるいは気体が用いられる。
このように、ターゲット支持枠5内部に冷媒流路6が設けられているので、ターゲット(C)に発生する熱は、ターゲット支持枠5に設けられた冷却機構として冷媒流路6によって速やかに冷却される。それゆえ、ターゲット(C)の耐久性が向上すると共に核反応の効率が上がる。
また、図4は、本実施形態に係るターゲットのさらに他の変形例を示す断面図である。図4に示すように、本実施形態に係る変形例3としてのターゲット(D)におけるグラファイト膜4は、所望に応じて、外部に露出した全面が放射線耐性・耐腐食性の金属材料膜7により被覆されていてもよい。金属材料膜7の材料としては、例えばチタン等が挙げられる。図4に示す構成によれば、ターゲット(D)全体を真空下に置くことにより、大気に接することによる酸化性の雰囲気での酸化劣化を防止することができる。
(陽子ビームの加速エネルギーと発熱)
ターゲット(A)〜(D)、及び後述する実施形態2のターゲット(E)においては、荷電粒子としての陽子はグラファイト膜4を通過するが、標的物質(ここではグラファイト膜4)の荷電粒子(陽子)に対する衝突阻止能(エネルギー損失)は、下記のBetheの式(3)によって表される。
Figure 2017183693
ここで、eは電子の素電荷、mは電子の質量、vは電子の速度、zは入射粒子の核電荷数、Zは標的物質の原子番号、Nは標的物質の単位体積中の原子数、Iは標的物質の平均励起ポテンシャル、βはcを光速度としてv/cを表す。
図5は、Betheの式(3)に基づく阻止能と粒子の運動エネルギーとの関係を示すグラフである。図5に示されるように、標的物質の荷電粒子に対する衝突阻止能(エネルギー損失)は、粒子の運動エネルギーが低いAからBまで阻止能が増加し、Bにて最大になる。そして、BからCまでI/vに比例して減少し、Cにて最小になる。そして、CからDまで、Betheの式(3)の対数項が実効的になり、緩やかに増加する。
本発明の対象となる陽子は、B〜Cのエネルギー範囲にある荷電粒子線であり、比較的低エネルギーである。Bにおける荷電粒子線のエネルギーはMeVオーダー(例えば2MeV)であり、CにおけるエネルギーはGeVオーダー(例えば3GeV)である。そして、Bにおける標的物質の阻止能は、Cにおける標的物質の阻止能と比較して100倍程度高い。
発明の主要用途であるガン治療やBNCT(ホウ素中性子補足療法)用の小型加速器のエネルギー領域1〜100MeVにおいては、粒子エネルギーの増加に従って阻止能は低下する。従って、より低いエネルギーの粒子はターゲットに入射後、狭いターゲット領域でエネルギーを失い熱となる。すなわち、阻止能の大きな低エネルギー領域でのターゲットの単位体積あたりの基板の熱負荷は、高エネルギー領域の粒子照射による熱負荷よりも大きくなる。すなわち、加速陽子ビーム照射による発熱は陽子ビームの加速エネルギーが小さくなっても低減されず、従って低エネルギー陽子ビーム照射の場合でも、ターゲットに対する高い耐久性が要求される。
(中性子発生方法)
本実施形態に係る中性子発生方法では、ターゲットに対し低エネルギーの陽子を真空下で衝突させることによって、有害且つ放射化能の高い速中性子が低減された低エネルギー中性子を発生させる。本実施形態では、ターゲットとして、上述した特性を有するグラファイト膜4、及び該グラファイト膜4の片面に付着された厚さ10μm以上1mm未満の金属膜3から構成される基板を用いる。これにより、本実施形態に係る中性子発生方法は、重金属に比べ放射化のレベルを低減でき、有害且つ放射化能の高い速中性子が低減された低エネルギー中性子の発生効率を小さくする事が出来る。また、核反応に伴う熱負荷をグラファイト基板によって軽減できるので、冷却機構をコンパクトにすることができる。
金属膜3がベリリウムにより構成されている場合、本実施形態における中性子発生方法において使用する陽子の加速エネルギーは3MeV以上11MeV未満であることが好ましく、より好ましくは4MeV以上8MeV以下である。陽子の加速エネルギーが3MeV未満であると中性子の発生効率が著しく低下するので、本発明において使用する陽子の加速エネルギーは3MeV以上であることが好ましい。また、陽子の加速エネルギーが11MeV以上であると部材の放射化が著しくなるだけでなく、速中性子の発生が多くなったり、毒性の高いトリチウム等の放射性物質が副生することもあるので、陽子の加速エネルギーは11MeV未満であることが好ましい。部材の放射化を低減させ、有害且つ放射化能の高い速中性子が低減された低エネルギー中性子を選択的に発生するためにより好ましい陽子の加速エネルギーは、4MeV以上8MeV以下である。
また、金属膜3がリチウムにより構成されている場合、本実施形態における中性子発生方法において使用する陽子の加速エネルギーは2MeV以上4MeV以下であることが好ましい。リチウムのLi(p,n)反応の閾値が約2MeVであるため、陽子の加速エネルギーが2MeV未満であると中性子の発生効率が著しく低下する。また、陽子の加速エネルギーが4MeVを超えると部材の放射化が著しくなるだけでなく、速中性子の発生が多くなるので、陽子の加速エネルギーは4MeV以下であることが好ましい。
なお、本実施形態に係る中性子発生方法において、陽子のターゲットへの衝突は真空下で行う。
本実施形態において、ターゲット表面に形成された金属膜3の表面は陽子の進行方向に対面するように設ける事が好ましい。これは、最初に陽子と金属との核反応を起こすためである。
本実施形態における中性子発生方法によって発生させることができる中性子は、熱中性子又は熱外中性子を多く含む低エネルギー中性子である。低エネルギー中性子とは、有害且つ放射化能の高い速中性子が低減された中性子のことである。速中性子は、熱中性子又は熱外中性子に比べてエネルギーが二桁以上高いので生物学的に有害であり且つ放射化能が極めて高い。中性子の種類には、速中性子、熱外中性子、熱中性子、及び冷中性子がある。これらの中性子は、エネルギー的に明確に区分されているものではなく、炉物理、遮へい、線量計測、分析、医療などの分野によってエネルギー区分が異なる。例えば、原子力防災基礎用語によれば、「速中性子とは、中性子のうち、大きな運動量をもつものを速中性子(高速中性子)とよび、炉物理、遮へい、線量計測などの分野によってこの値は異なるが、0.5MeV以上を速中性子というのが一般的である」と記述されている。また、医療分野では熱外中性子とは、1eV〜10keVの範囲の中性子というのが一般的であり、熱中性子とは、0.5eV以下の中性子というのが一般的である。本発明でいう低エネルギー中性子とは、0.5MeV以上の速中性子が低減された中性子のことをいう。照射陽子のエネルギーが8MeVを超えると0.5MeV以上の中性子が含まれることもあるが、その程度は従来の一次中性子に比べてかなり低減することができる。
(中性子発生装置)
本実施形態に係る中性子発生装置は、ターゲットと、水素イオン発生器と、線形加速器と、陽子照射部とを備えている。中性子発生装置における陽子を発生させるための加速器は、線形加速器である。従来は、ターゲットに衝突させるための陽子として11MeV以上の高エネルギー陽子を用いるためにシンクロトロンやサイクロトロン等の大型加速器が用いられていた。本実施形態では、主に2MeV以上11MeV未満の陽子を用いるので、線形加速器でも十分に所要とする大電流の陽子を発生することができる。
線形加速器の一端には水素イオン発生器が設けられている。水素イオン発生器からの水素イオンは荷電粒子変換膜を通して加速空洞に入射し、加速される。
水素イオン発生器は、特に限定されるものではなく、従来のプロトン発生器、負水素イオン発生器、等を用いることができる。加速空洞としては、高周波加速空洞、DC加速空洞、常伝導加速空洞、超伝導加速空洞等を用いることができる。
陽子ビーム照射部は、線形加速器における水素イオン発生器と反対側に設けられている。陽子ビーム照射部は、線形加速器とターゲットとの間に配されている。陽子照射部としては、特に限定されるものではなく、従来の四重極電磁石及び偏向電磁石を備える陽子照射部を用いることができる。
線形加速器にて加速された陽子は、線形加速器の先端部に連結された陽子照射部に導かれ、陽子照射部の先端に設けられたターゲットに衝突する。この衝突を経て低エネルギー中性子が発生する。
上述したように、ターゲット(B)〜(D)は、金属膜3、グラファイト膜4、および冷却機能を兼ねたターゲット支持枠5を備えた構成となっている。それゆえ、金属膜3、グラファイト膜4、およびターゲット支持枠5が一体化したカートリッジ型構造とすることが可能である。本実施形態に係る中性子発生装置は、カートリッジ型構造を有するターゲット(B)〜(D)が半自動脱着構造を有する真空フランジを介して陽子照射部の先端部分に設けられた構成であってもよい。これにより、ターゲットの劣化に際して、新品との着脱交換を遠隔操作によって簡易に行うことができる。
また、ターゲット(A)〜(D)では低エネルギー陽子ビームに使用が可能である事から、有害な速中性子の発生が低減されるので、本実施形態では発生中性子を減速させるための減速機構が小型化できる。したがって、本実施形態に係る中性子発生装置は、BNCT等の医療用の中性子を発生するための医療用中性子発生装置として、小規模の医療機関においても設置可能である。
また、従来のターゲット基板よりもはるかに薄いターゲット基板が実現できれば、より小型の加速器を用いて(すなわち、より加速エネルギーの低い陽子ビームを用いて)、中性子を発生させる事が可能になる。この様な低エネルギー陽子によって発生させた中性子は、ガン治療用として有害性な速中性子を含まない。したがって、本発明のターゲットによって、ガン治療に有益な低エネルギーの熱中性子・熱外中性子を発生させ、同時にターゲットの放射化を低減させることができる。このような本発明の特徴は、ガン治療用の中性子発生ターゲットとして画期的である。
〔実施形態2〕
本発明の他の実施形態について図6に基づいて説明すれば、以下のとおりである。図6は、本実施形態に係るターゲット(E)の概略構成を示す断面図である。図6に示されるように、本実施形態に係るターゲット(E)は、金属膜3を支持する基板が、グラファイト膜4が積層されたグラファイト積層体8である点が、前記実施形態1と異なる。照射される加速陽子ビームのエネルギーが比較的高く、照射による発熱量が極めて大きい場合、本実施形態のように、金属膜3を支持する基板をグラファイト積層体8により構成してもよい。
グラファイト膜4の膜厚は、1μm以上、100μm以下である。グラファイト積層体8は、複数のグラファイト膜4を加圧下での加熱による接合、または加熱下での加圧による接合により作製することが可能である。すなわち、グラファイト積層体8は、複数枚のグラファイト膜4の加圧接合物または加熱接合物である。このように、金属膜3を支持する基板がグラファイト積層体8により構成されているので、陽子ビームの照射に対する耐久性・耐熱性が増す。
ターゲット基板としてのグラファイト積層体8の膜厚は、100μm以上、20mm以下であり、より好ましくは200μm以上、10mm以下である。
また、本実施形態にかかるターゲット(E)においても、必要に応じて、図6に示されるように、冷却機構としての冷媒流路6を備えたターゲット支持枠5が取り付けられている事が好ましい。
ここで、実施形態2の様に複数のグラファイト膜4を積層することは、加速陽子ビームのエネルギーが比較的高い場合に有用である。加速陽子ビームのエネルギーが高くターゲットが薄すぎる場合には陽子ビームがターゲットを通過してしまう。そのために中性子生成効率が著しく低下するばかりで無く、発生した中性子と陽子ビームが混在することになり好ましくない。さらに、陽子ビームが遮断されるような場合でも、高エネルギーの陽子ビームを用いて中性子を発生させる場合には、ガン治療などの医療用途には有害な速中性子が混じることがある。ターゲット基板は、この様な中性子を減速させる役割も担う場合もあるため、中性子発生用ターゲットには、照射する陽子ビームのエネルギーと発生させる中性子の使用目的にあった厚さのターゲットとする必要がある。
本実施形態2では、厚さ1μm〜100μmの範囲の複数枚のグラファイト膜4を積層して作製するので、基本的に熱伝導や電気伝導特性を損なう事が無く、基本的にどの様な厚さのターゲット基板の作製も可能であり、極めて優れた方法であるといえる。
(圧着積層の方法)
複数枚のグラファイト膜4を積層して、希望する厚さの基板を作製する方法は、特に制限はないが、基板が極めて高い温度に曝されることを考えると、複数枚のグラファイト膜4を、接着剤を用いる事無く、直接加圧・加熱処理によって圧着してグラファイト積層体8を形成することが好ましい。加圧・加熱の条件については、十分な接合強度を持つグラファイト積層体8を形成することができれば特に制限はないが、加熱の温度は200℃〜3000℃の範囲、印加圧力は10パスカル以上であり、真空、またはアルゴンや窒素などの不活性ガス中にて加圧・加熱を行うことが好ましい。特に、加圧しながら加熱する、あるいは加熱しながら加圧することは積層体作製の方法として好ましい。また、グラファイト積層体8に用いられるグラファイト膜4は必ずしも完全にグラファイト化されたものである必要はなく、600℃以上、より好ましくは800℃以上、最も好ましくは1000℃以上の温度で炭素化した膜であっても構わない。このように炭素化した膜を積層し、例えば2800℃以上の温度で加熱、加圧すれば目的のターゲット基板を得ることができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
〔まとめ〕
本発明の一実施形態に係るターゲットは、少なくとも、ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイト膜から構成される基板と、を有し、加速された陽子を、前記金属膜及び前記基板面に衝突させて中性子を発生させるためのターゲットであって、前記グラファイト膜の膜面方向の熱伝導度は、1500W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度の100倍以上であり、前記グラファイト膜の厚さは、1μm以上、100μm以下であることを特徴としている。
上記の構成によれば、前記基板はグラファイト膜から構成されているので、基板の放射化の程度を小さくする事ができる。また、前記グラファイト膜の膜面方向の熱伝導度は、1500W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度と比較して100倍以上大きいので、陽子ビームの照射によって発生する熱を速やかに冷却部に移動させる事が出来るため、十分な耐久性を有している。
また、前記グラファイト膜の厚さは、1μm以上、100μm以下である。この様な厚さを有するグラファイト膜は、非常に薄いにも関わらず、金属膜を支持する基板としての必要な機械的強度を具備している。
さらに、この様な薄いターゲットであれば、従来よりも加速エネルギーの低い低放射化の陽子ビームを用いて、医療用途に最適な低エネルギーの熱中性子・熱外中性子を発生させる事が出来る。
本発明の一実施形態に係るターゲットにおいて、前記グラファイト膜の膜面方向の電気伝導度は、16000S/cm以上であり、膜面方向の電気伝導度が膜厚方向の電気伝導度の100倍以上であることが好ましい。
電気伝導度の測定は、熱伝導度特性の測定と比べて極めて容易であり、電気伝導特性と熱伝導特性は良く比例しているので、電気伝導特性の測定によって、グラファイト膜の基板としての性能を適正に管理することができる。
本発明の一実施形態に係るターゲットにおいて、前記基板は、前記グラファイト膜が複数枚積層されたグラファイト積層体から構成され、前記基板の厚さは、100μm以上、20mm以下であることが好ましい。
上記の構成によれば、前記基板は、前記グラファイト膜が複数枚積層されたグラファイト積層体から構成されているので、熱伝導特性を損なうことなく、より厚い基板を実現することができる。このような、複数枚のグラファイト膜からなる基板は、従来の等方性グラファイトからなる基板よりも薄いにも関わらず、十分な耐久性を有している。これによって比較的高いエネルギーの陽子ビーム照射に対する耐久性、耐熱性が向上し、現在もっぱら医療用に使用されているエネルギー領域の陽子ビームのみならず、さらに高いエネルギーの陽子ビームを用いた中性子発生に対応することができる。
また、本発明の一実施形態に係るターゲットにおいて、前記グラファイト積層体は、複数枚の前記グラファイト膜の、加圧下での加熱による接合物、または加熱下での加圧による接合物であることが好ましい。
これによって、接着剤等を使用する事無く厚い基板が得られるので、陽子ビームの照射に対する耐久性、耐熱性が向上し、低放射化を実現することができる。
本発明の一実施形態に係るターゲットにおいて、前記グラファイト膜の密度は、1.60g/cm以上、2.26g/cm以下であることが好ましい。
本発明のターゲットにおいて、前記グラファイト膜と前記金属膜とが直接接合された構造であることが好ましい。換言すると、前記グラファイト膜に積層された金属からなる金属膜を含むことが好ましい。ここでいう「前記グラファイト膜に積層された金属からなる金属膜」は、前記グラファイト膜に直接接合された金属膜を意味する。
本発明の一実施形態に係るターゲットにおいて、前記ターゲットを支持する支持枠を備えたことが好ましい。
上記の構成によれば、前記ターゲットを支持する支持枠を備えたので、ターゲットの機械的強度、耐久性を向上させることができる。
本発明の一実施形態に係るターゲットにおいて前記支持枠は、前記ターゲットを冷却する冷却機構を備えたことが好ましい。
これにより、陽子ビームの照射によりターゲットに熱が発生すると、支持枠の冷却機構によって速やかに冷却されるので、ターゲットの耐久性が向上すると共に核反応の効率が上がる。
本発明の一実施形態に係る中性子発生装置は、陽子を加速するための加速器と、上述のターゲットに対して、前記加速器によって加速された陽子を照射するための陽子照射部と、を備えたことを特徴としている。
これにより、陽子ビームの照射に対し十分な耐久性、耐熱性を有し、放射化の程度を小さくし得る中性子発生装置を実現することができる。
本発明の一実施形態に係るターゲットの製造方法は、ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイトから構成される1または複数のグラファイト膜と、を有し、陽子を前記金属膜及び前記グラファイト膜の膜面にて衝突させ中性子を発生させるためのターゲットの製造方法であって、前記グラファイト膜を、高分子膜を焼成することにより作製することを特徴としている。
上記の構成のように、高分子膜を焼成することにより、前記特性(熱伝導度、電気伝導度、機械的強度、等)を持ち、1μm〜100μmの範囲の厚さのグラファイト膜を得ることができる。これにより、陽子ビームの照射に対し十分な耐久性、耐熱性を有し、放射化の程度を小さくし得るターゲットの製造方法を実現することができる。
本発明は、例えば、BNCT等の医療用の中性子を発生するための医療用中性子発生装置に利用することができる。
1 陽子ビーム(陽子)
2 中性子
3 金属膜
4 グラファイト膜(基板)
5 ターゲット支持枠(支持枠)
6 冷媒流路(冷却機構)
7 金属材料膜
8 グラファイト積層体
(A)〜(E) ターゲット

Claims (10)

  1. 少なくとも、ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイト膜から構成される基板と、を有し、加速された陽子を前記金属膜及び前記基板の面に衝突させて中性子を発生させるためのターゲットであって、
    前記グラファイト膜の膜面方向の熱伝導度は、1500W/(m・K)以上であり、膜面方向の熱伝導度が膜厚方向の熱伝導度の100倍以上であり、
    前記グラファイト膜の厚さは、1μm以上、100μm以下であることを特徴とするターゲット。
  2. 前記グラファイト膜の膜面方向の電気伝導度は、16000S/cm以上であり、膜面方向の電気伝導度が膜厚方向の電気伝導度の100倍以上であることを特徴とする請求項1に記載のターゲット。
  3. 前記基板は、前記グラファイト膜が複数枚積層されたグラファイト積層体から構成され、
    前記基板の厚さは、100μm以上、20mm以下であることを特徴とする請求項1または2に記載のターゲット。
  4. 前記グラファイト積層体は、複数枚の前記グラファイト膜の加圧下での加熱による接合物、または加熱下での加圧による接合物であることを特徴とする請求項3に記載のターゲット。
  5. 前記グラファイト膜は、1.60g/cm以上、2.26g/cm以下であることを特徴とする請求項1〜4の何れか1項に記載のターゲット。
  6. 前記グラファイト膜と前記金属膜とが直接接合された構造であることを特徴とする請求項1〜5の何れか1項に記載のターゲット。
  7. 前記ターゲットを支持する支持枠を備えたことを特徴とする請求項1〜6の何れか1項に記載のターゲット。
  8. 前記支持枠は、前記ターゲットを冷却する冷却機構を備えたことを特徴とする請求項7に記載のターゲット。
  9. 陽子を加速するための加速器と、
    請求項1〜8の何れか1項に記載のターゲットに対して、前記加速器によって加速された陽子を照射するための陽子照射部と、を備えたことを特徴とする中性子発生装置。
  10. ベリリウム材料またはリチウム材料から構成される金属膜と、グラファイトから構成される1または複数のグラファイト膜と、を有し、陽子を前記金属膜及び前記グラファイト膜の膜面にて衝突させ中性子を発生させるためのターゲットの製造方法であって、
    前記グラファイト膜を、高分子膜を焼成することにより作製することを特徴とするターゲットの製造方法。
JP2018513212A 2016-04-21 2017-04-20 ターゲット、ターゲットの製造方法、及び中性子発生装置 Pending JPWO2017183693A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016085302 2016-04-21
JP2016085302 2016-04-21
PCT/JP2017/015906 WO2017183693A1 (ja) 2016-04-21 2017-04-20 ターゲット、ターゲットの製造方法、及び中性子発生装置

Publications (1)

Publication Number Publication Date
JPWO2017183693A1 true JPWO2017183693A1 (ja) 2018-12-13

Family

ID=60116133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018513212A Pending JPWO2017183693A1 (ja) 2016-04-21 2017-04-20 ターゲット、ターゲットの製造方法、及び中性子発生装置

Country Status (5)

Country Link
US (1) US20190122780A1 (ja)
EP (1) EP3447773B1 (ja)
JP (1) JPWO2017183693A1 (ja)
CN (1) CN109074890B (ja)
WO (1) WO2017183693A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116913573A (zh) * 2023-08-01 2023-10-20 烟台大学 一种中子聚束器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447774B1 (en) * 2016-04-21 2020-05-27 Kaneka Corporation Support substrate for radioisotope production, target plate for radioisotope production, and production method for support substrate
CN108780670B (zh) 2016-04-28 2022-04-05 株式会社钟化 束流强度转换膜以及束流强度转换膜的制造方法
JP7061899B2 (ja) * 2018-03-07 2022-05-02 株式会社アルバック リチウムターゲットの製造方法及び製造装置
CN108550411B (zh) * 2018-05-29 2024-08-16 河南太粒科技有限公司 一种镶嵌式靶结构
CN112567477B (zh) * 2018-07-09 2024-09-20 高级加速器应用公司 中子活化器、包含该中子活化器的中子活化系统以及实施该中子活化器的中子活化方法
JP7164161B2 (ja) * 2018-08-02 2022-11-01 国立研究開発法人理化学研究所 ターゲット構造、ターゲット装置、及びターゲット装置を備える装置
DE102018007843B3 (de) * 2018-10-01 2020-01-16 Forschungszentrum Jülich GmbH Verfahren zum Auffinden eines Targetmaterials und Targetmaterial für eine Neutronenquelle
CN117859412A (zh) * 2021-04-02 2024-04-09 Tae技术公司 用于保护目标材料的材料和配置
WO2023284772A1 (zh) * 2021-07-16 2023-01-19 中硼(厦门)医疗器械有限公司 用于粒子束产生装置的靶材
WO2024054607A2 (en) * 2022-09-09 2024-03-14 The Regents Of The University Of California Deuteron breakup neutron target for isotope production
WO2024077094A1 (en) * 2022-10-05 2024-04-11 Tae Technologies, Inc. Lithium target with intermediate layer
CN115499993B (zh) * 2022-10-21 2024-02-20 国重医疗科技(重庆)有限公司 中子靶系统
CN118390012B (zh) * 2024-06-27 2024-08-30 中国科学院近代物理研究所 一种以自支撑碳膜为衬底的镉靶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222239A (ja) * 1995-02-10 1996-08-30 Tanaka Kikinzoku Kogyo Kk 燃料電池用カーボンプレート及びその製造方法
JPH09142820A (ja) * 1995-11-21 1997-06-03 Matsushita Electric Ind Co Ltd 異方性黒鉛薄膜基板、並びにそれを用いた応用装置及び応用素子
US5920601A (en) * 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
JP2004079304A (ja) * 2002-08-14 2004-03-11 Hamamatsu Photonics Kk X線管
JP2013054889A (ja) * 2011-09-02 2013-03-21 High Energy Accelerator Research Organization 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP3185065U (ja) * 2012-04-20 2013-08-01 グラフテック インターナショナル ホールディングス インコーポレーテッド 熱管理された航空機部品及び複合材品
JP3186199U (ja) * 2010-09-21 2013-09-26 グラフテック インターナショナル ホールディングス インコーポレーテッド 複合ヒートスプレッダ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196353A (ja) 2005-01-14 2006-07-27 Hitachi Ltd 加速器中性子源及びこれを用いたホウ素中性子捕捉療法システム
JP2012243640A (ja) 2011-05-20 2012-12-10 High Energy Accelerator Research Organization 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP5700536B2 (ja) 2011-03-04 2015-04-15 大学共同利用機関法人 高エネルギー加速器研究機構 複合型ターゲット
JP5697021B2 (ja) 2010-11-29 2015-04-08 大学共同利用機関法人 高エネルギー加速器研究機構 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP2013206726A (ja) 2012-03-28 2013-10-07 High Energy Accelerator Research Organization 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
WO2013154177A1 (ja) * 2012-04-12 2013-10-17 大学共同利用機関法人 高エネルギー加速器研究機構 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP6113453B2 (ja) * 2012-07-13 2017-04-12 株式会社八神製作所 中性子発生装置用のターゲットとその製造方法
CN104561906B (zh) * 2014-12-24 2017-03-08 武汉理工大学 一种梯度碳化硼薄膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222239A (ja) * 1995-02-10 1996-08-30 Tanaka Kikinzoku Kogyo Kk 燃料電池用カーボンプレート及びその製造方法
JPH09142820A (ja) * 1995-11-21 1997-06-03 Matsushita Electric Ind Co Ltd 異方性黒鉛薄膜基板、並びにそれを用いた応用装置及び応用素子
US5920601A (en) * 1996-10-25 1999-07-06 Lockheed Martin Idaho Technologies Company System and method for delivery of neutron beams for medical therapy
JP2004079304A (ja) * 2002-08-14 2004-03-11 Hamamatsu Photonics Kk X線管
JP3186199U (ja) * 2010-09-21 2013-09-26 グラフテック インターナショナル ホールディングス インコーポレーテッド 複合ヒートスプレッダ
JP2013054889A (ja) * 2011-09-02 2013-03-21 High Energy Accelerator Research Organization 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP3185065U (ja) * 2012-04-20 2013-08-01 グラフテック インターナショナル ホールディングス インコーポレーテッド 熱管理された航空機部品及び複合材品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116913573A (zh) * 2023-08-01 2023-10-20 烟台大学 一种中子聚束器
CN116913573B (zh) * 2023-08-01 2024-01-23 烟台大学 一种中子聚束器

Also Published As

Publication number Publication date
CN109074890A (zh) 2018-12-21
EP3447773A4 (en) 2019-03-27
EP3447773A1 (en) 2019-02-27
US20190122780A1 (en) 2019-04-25
EP3447773B1 (en) 2021-06-09
WO2017183693A1 (ja) 2017-10-26
CN109074890B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2017183693A1 (ja) ターゲット、ターゲットの製造方法、及び中性子発生装置
EP2874473B1 (en) Target for neutron-generating device and manufacturing method therefor
WO2012073966A1 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP6609041B2 (ja) 放射性同位元素製造用の支持基板、放射性同位元素製造用ターゲット板、及び支持基板の製造方法
JP2013206726A (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP2012119062A (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
JP2016136499A (ja) 中性子発生用ターゲット、中性子発生装置、中性子発生用ターゲットの製造方法及び中性子発生方法
JP5751673B2 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
Zhou et al. Influence of a large oblique incident angle on energetic protons accelerated from solid-density plasmas by ultraintense laser pulses
JP6218174B2 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
US10420959B2 (en) Energy degrader, charged particle beam emission system provided with same, and method of producing graphite film
JP5700536B2 (ja) 複合型ターゲット
JP2012243640A (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
WO2017188117A1 (ja) ビーム強度変換膜、及びビーム強度変換膜の製造方法
WO2023136238A1 (ja) Bnct用リチウムターゲット及びbnct用リチウムターゲットを用いた中性子発生方法
Torrisi et al. Target normal sheath ion acceleration by fs laser irradiating metal/reduced graphene oxide targets
JP2021103104A (ja) 中性子発生用リチウムターゲット及びその製造方法
Mitchell et al. DT fusion neutron radiation strengthening of copper and niobium
RU2568305C2 (ru) Генератор быстрых моноэнергетических нейтронов
Artemov et al. Interaction of H− ions with foil targets in the charge exchange system of a beam transport channel
Xie et al. Hydrogen Diffusion Layer within Solid-State Lithium Target for Compact Accelerator-Driven Neutron Source: Irradiation Damage, Thermal Properties and Fabrication

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191220