WO2017170874A1 - ウイルス除去膜及びウイルス除去膜の製造方法 - Google Patents
ウイルス除去膜及びウイルス除去膜の製造方法 Download PDFInfo
- Publication number
- WO2017170874A1 WO2017170874A1 PCT/JP2017/013277 JP2017013277W WO2017170874A1 WO 2017170874 A1 WO2017170874 A1 WO 2017170874A1 JP 2017013277 W JP2017013277 W JP 2017013277W WO 2017170874 A1 WO2017170874 A1 WO 2017170874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virus removal
- removal membrane
- virus
- less
- diameter
- Prior art date
Links
- 241000700605 Viruses Species 0.000 title claims abstract description 299
- 239000012528 membrane Substances 0.000 title claims abstract description 260
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title description 27
- 229920002678 cellulose Polymers 0.000 claims abstract description 46
- 239000001913 cellulose Substances 0.000 claims abstract description 46
- 238000001228 spectrum Methods 0.000 claims abstract description 20
- 238000006073 displacement reaction Methods 0.000 claims abstract description 19
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 17
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 148
- 239000000243 solution Substances 0.000 claims description 78
- 239000012510 hollow fiber Substances 0.000 claims description 57
- 238000009987 spinning Methods 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 238000005345 coagulation Methods 0.000 claims description 25
- 230000015271 coagulation Effects 0.000 claims description 25
- 239000011148 porous material Substances 0.000 claims description 25
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 24
- 230000032683 aging Effects 0.000 claims description 18
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 claims description 13
- 239000005751 Copper oxide Substances 0.000 claims description 13
- 229910000431 copper oxide Inorganic materials 0.000 claims description 13
- 229960004643 cupric oxide Drugs 0.000 claims description 13
- 235000012239 silicon dioxide Nutrition 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 229910021529 ammonia Inorganic materials 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 239000011550 stock solution Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000012466 permeate Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 abstract description 23
- 239000000084 colloidal system Substances 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract 2
- 238000001914 filtration Methods 0.000 description 44
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 14
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 13
- 235000011114 ammonium hydroxide Nutrition 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 11
- 239000000706 filtrate Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000001112 coagulating effect Effects 0.000 description 4
- 230000000120 cytopathologic effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000700721 Hepatitis B virus Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- -1 first Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000019795 sodium metasilicate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 235000019351 sodium silicates Nutrition 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 230000007847 structural defect Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- ZURAKLKIKYCUJU-UHFFFAOYSA-N copper;azane Chemical compound N.[Cu+2] ZURAKLKIKYCUJU-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001464 poly(sodium 4-styrenesulfonate) Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/10—Testing of membranes or membrane apparatus; Detecting or repairing leaks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0011—Casting solutions therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0016—Coagulation
- B01D67/00165—Composition of the coagulation baths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
- B01D67/00793—Dispersing a component, e.g. as particles or powder, in another component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/06—Flat membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/081—Hollow fibre membranes characterised by the fibre diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/087—Details relating to the spinning process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1218—Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/148—Organic/inorganic mixed matrix membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/10—Cellulose; Modified cellulose
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/02—Preparation of spinning solutions
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/24—Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
- D01F2/02—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts
- D01F2/04—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts from cuprammonium solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/14—Ageing features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
- B01D2325/023—Dense layer within the membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
- B01D2325/02833—Pore size more than 10 and up to 100 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
Definitions
- the present invention relates to a virus removal membrane for removing a virus from a solution and a method for producing the virus removal membrane.
- JP-A-1-148305 Japanese Patent Laid-Open No. 4-371221 International Publication No. 2015/156401 JP 2010-14564 A
- the virus removal membrane is required to have high virus removal performance, high filtration performance in which clogging of the membrane accompanying filtration is suppressed, and a small difference between products in virus removal performance and filtration time. Therefore, it is an object of the present invention to provide a virus removal membrane and a method for producing a virus removal membrane that have high safety due to small differences in filtration performance and products.
- a virus removal membrane for removing viruses from a solution containing protein.
- the virus removal membrane comprises cellulose, has a primary surface to which a protein-containing solution is supplied, and a secondary side surface from which a permeate that has permeated the virus removal membrane is discharged.
- the point is 0.5 MPa or more and 1.0 MPa or less, and a solution containing gold colloid with a diameter of 30 nm is supplied to the virus removal membrane from the primary side to capture the gold colloid with the virus removal membrane.
- the thickness of the portion where the gold colloid having a diameter of 30 nm or more and 40 nm or less is captured is 17.0 ⁇ m or more and 20.0 ⁇ m or less in a wet state.
- the logarithmic removal rate of a gold colloid with a diameter of 40 nm is 1.00 or more
- the logarithmic removal rate of a gold colloid with a diameter of 30 nm is 1.00 or more
- the logarithmic removal rate of a gold colloid with a diameter of 20 nm. May be less than 0.10. Gold colloid with a diameter of 20 nm may not be captured.
- the pore diameter may be 32.0 nm or more and 38.0 nm or less.
- the pore diameter may decrease and then increase from the primary side toward the secondary side.
- the site where the gold colloid having a diameter of 30 nm is captured may include a site where the pore diameter is minimized.
- the dry film thickness of the virus removal membrane may be 25.0 ⁇ m or more and 45.0 ⁇ m or less.
- the standard deviation of the film thickness may be 5.0 ⁇ m or less.
- the bubble point may be 0.7 MPa or more and 1.0 MPa or less.
- the pure water permeation rate may be 100 L / m 2 /hrs/0.1 MPa or more and 500 L / m 2 /hrs/0.1 MPa or less.
- the above-mentioned virus removal membrane may be a flat membrane.
- the virus removal membrane may be a hollow fiber membrane.
- the inner diameter may be 250 ⁇ m to 400 ⁇ m in a dry state.
- the standard deviation of the inner diameter may be 15.0 ⁇ m or less.
- the method includes an aging step of maintaining a spinning stock solution containing cellulose, copper, and silicon dioxide at 30 ° C. or more and 40 ° C. or less, and a film forming step of forming a film using the spinning stock solution.
- a method for producing a virus removal membrane is provided.
- the aging process may be performed for 45 hours or more and 100 hours or less.
- the concentration of cellulose may be 6.0% by weight or more and 8.5% by weight or less.
- the ratio of the copper concentration to the cellulose concentration may be 0.30 or more and 0.40 or less.
- the concentration of silicon dioxide may be 5 ppm or more and 100 ppm or less.
- the spinning dope may further comprise ammonia, and the ratio of the ammonia concentration to the cellulose concentration in the film forming step may be 0.6 or more and 1.0 or less.
- the spinning solution may be discharged into the coagulation solution.
- the spinning dope may be discharged using an annular spinning outlet.
- the spinning solution may be cast on a support and then immersed in a coagulation solution.
- the present invention it is possible to provide a virus removal membrane and a method for producing a virus removal membrane that are highly safe due to small differences in filtration performance and products.
- a virus removal membrane 10 for removing a virus from a protein-containing solution includes a primary-side surface 1 to which a protein-containing solution is supplied, and the virus removal membrane. 10 and the secondary surface 2 from which the permeate that has passed through 10 is discharged.
- the bubble point measured by the virus removal film 10 is 0.5 MPa or more and 1.0 MPa or less, 0.6 MPa or more and 1.0 MPa or less, or 0.7 MPa or more and 1.0 MPa or less.
- the virus removed by the virus removal film 10 has a diameter of, for example, 30 nm or more, 35 nm or more, or 40 nm or more, or 50 nm or more, 200 nm or less, 150 nm or less, or 100 nm or less, or alternatively 70 nm or less.
- viruses include bovine viral diarrhea virus (BVDV) and hepatitis B virus.
- BVDV bovine viral diarrhea virus
- Hepatitis B virus has a diameter of about 42 nm.
- the virus removal film 10 has a virus trapping site where the virus is trapped in the cross section.
- the amount of virus trapped at the virus trapping site is uniform in the cross section regardless of the location on the filtration surface (primary side surface 1) through which the solution enters. This is because, when the virus trapping amount of the virus removal membrane 10 is non-uniform depending on the location on the filtration surface, the solution concentrates on a certain location on the filtration surface, and the virus load on that location partially. This is because if a large volume of filtration is performed under high pressure conditions, there is a possibility that the virus may leak from that location.
- the amount of virus trapped at the virus trapping site is not uniform as shown in FIG. 2 in the circumferential direction in the cross section perpendicular to the yarn length direction. It is preferable that it is uniform as shown in FIG.
- the thickness of the site where the virus is captured is uniform within the virus capture site.
- the virus removal membrane 10 has a hollow fiber membrane shape, it is preferable that the thickness of the virus capturing site is uniform in the circumferential direction. This is because if the thickness of the virus-capturing site is uniform, the solution spreads uniformly in the circulation direction and the possibility of virus leakage decreases.
- the structure of the virus removal membrane 10 is preferably an asymmetric structure that starts to increase after the pore diameter decreases from the primary side to the secondary side.
- the virus capturing site includes a site where the pore diameter is minimum.
- a structure including a site where the pore diameter is minimum tends to have high virus removal performance.
- colloidal gold is easy to visually detect because it has the same diameter as a virus but does not transmit light. Therefore, for example, after the solution containing the gold colloid is filtered through the virus removal film 10, the relative luminance of the gold colloid capturing portion of the virus removal film 10 that has captured the gold colloid in the cross section of the virus removal film 10 is measured. Thus, the characteristics of the virus removal film 10 can be evaluated.
- the values indicating the coefficient of variation are 0.01 or more and 0.30 or less, 0.01 or more and 0.29 or less, 0.01 or more and 0.28 or less, 0.01 It is 0.27 or less, 0.01 or more and 0.26 or less, or 0.01 or more and 0.25 or less.
- less than 0.01 is the measurement limit.
- the coefficient of variation is greater than 0.30, the solution may concentrate in at least one place in the circumferential direction of the membrane, and thus there is a possibility that viruses will leak.
- the virus is uniformly trapped at the virus trapping portion of the membrane (circular direction for the hollow fiber membrane), and the virus is loaded on the virus removal membrane. High virus removal performance can be maintained even when the total amount (spike amount or total filtration amount of the virus protein preparation) is increased.
- the above coefficient of variation is measured, for example, by the following method.
- a section is cut out from the virus removal membrane after the colloidal gold solution is filtered, and the luminance profile of a plurality of portions of the section stained with the gold colloid is measured with an optical microscope. Since colloidal gold absorbs light, the luminance displacement depends on the amount of colloidal gold captured. Note that background noise may be removed from the luminance profile as necessary. Thereafter, a graph having a film thickness on the horizontal axis and a luminance displacement on the vertical axis is created, and the area of the spectrum of the luminance displacement appearing on the graph is calculated.
- the value obtained by dividing the standard deviation of the area of the luminance displacement spectrum at a plurality of locations by the average of the area of the luminance displacement spectrum at the plurality of locations is the amount of gold colloid trapped at the gold colloid capturing site in the virus removal film 10. Is calculated as a value indicating the coefficient of variation.
- the thickness of the site that captures the gold colloid having a diameter of 30 nm to 40 nm is 17.0 ⁇ m to 20.0 ⁇ m, 17.5 ⁇ m to 19.8 ⁇ m, or 18.0 ⁇ m. Above 19.6 ⁇ m. If the thickness of the colloidal gold capture site is greater than 20.0 ⁇ m, not only the colloidal gold-containing solution but also the filtration efficiency of the virus-containing solution tends to decrease. On the other hand, if the thickness is less than 17.0 ⁇ m, the virus may leak when the total amount of virus loaded on the virus removal membrane (the spike amount or the total filtration amount with respect to the virus protein preparation) increases.
- the average value of the values A is calculated as the first achievement level.
- the average value of B is calculated as the second achievement level.
- the site where the gold colloid having a diameter of 50 nm is captured in the cross section of the wet virus removal membrane 10 is measured by an optical microscope, for example, From the surface 1 on the primary side, it is 5% to 35% of the film thickness, or 6% to 30%.
- the site where the gold colloid having a diameter of 50 nm is captured at a site less than 5% of the film thickness from the surface on the primary side viruses and impurities are captured at a position close to the surface on the primary side of the film, which may cause clogging. Increases nature.
- the target virus is captured at a position close to the surface on the secondary side of the film. May not be captured.
- the target virus is captured at a position close to the surface on the secondary side of the film. May not be captured.
- the site where the gold colloid with a diameter of 30 nm is captured in the cross section of the virus removal membrane 10 in a wet state is measured with an optical microscope. It is 10% or more and 80% or less, or 15% or more and 70% or less of the film thickness from the surface 1 on the primary side.
- viruses and impurities may be captured at a position close to the surface on the primary side of the film, causing clogging. Becomes higher.
- the target virus is captured at a position close to the secondary side surface of the film, and the virus is May not be captured.
- the gold colloid captured by the film is measured. Therefore, the gold colloid that is not captured by the membrane and permeated through the membrane is not measured. That is, the capture position is not measured for all the gold colloids permeated through the film, but the capture position on the film is measured for the gold colloid captured by the film.
- the gold colloid with a diameter of 20 nm is hardly captured on the cross section of the virus removal membrane 10. This can be confirmed from the fact that the luminance spectrum cannot be detected as a significant value by observation using an optical microscope (Biozero, BZ8100, manufactured by Keyence Corporation). It can also be confirmed from the fact that the logarithmic removal rate is low.
- colloidal gold of 20 nm in diameter is not captured means that while removing viruses, not only useful proteins with a diameter of about 10 nm such as IgG (molecular weight of about 150,000), but also fibrinogen (molecular weight of 340000), IgM (molecular weight of 900,000), etc. It shows that even a useful protein having a large molecular weight can permeate with high transmittance.
- the material of the virus removal membrane 10 is made of cellulose.
- cellulose regenerated cellulose, natural cellulose, cellulose acetate and the like can be used.
- the method for producing regenerated cellulose include a method of preparing from a copper ammonia cellulose solution (copper ammonium method) and a method of preparing cellulose acetate by saponification with alkali (saponification method).
- the virus removal membrane 10 has, for example, a hollow fiber membrane shape.
- the virus removal membrane 10 may have a flat membrane shape as shown in FIG. If it is a hollow fiber membrane, even if the membrane area is large, it is possible to make a small filter by loading the membrane into a container.
- the film thickness of the virus removal film 10 shown in FIG. 1 is, for example, 25.0 ⁇ m or more and 45.0 ⁇ m or less, or 30.0 ⁇ m or more and 40.0 ⁇ m or less in a dry state.
- the standard deviation of the film thickness is 5.0 ⁇ m or less, or 4.0 ⁇ m or less. If the film thickness is less than 25 ⁇ m, the strength of the film may be reduced and it may not be able to withstand the filtration pressure, and if it is greater than 45 ⁇ m, the filtration rate may be decreased. If the standard deviation of the film thickness is larger than 5.0 ⁇ m, the film thickness unevenness tends to be large and the uniformity tends to be lowered.
- the inner diameter of the virus removal membrane 10 is, for example, 250 ⁇ m or more and 400 ⁇ m or less, or 300 ⁇ m or more and 360 ⁇ m or less in a dry state.
- the standard deviation of the inner diameter is 15.0 ⁇ m or less, or 10.0 ⁇ m or less. If the inner diameter is smaller than 250 ⁇ m, pressure loss at the inlet of the hollow fiber or inside the hollow fiber is increased, and the filtration rate may be reduced. If the inner diameter is larger than 400 ⁇ m, the volume of the hollow portion that is a dead space increases. It tends to increase in size. On the other hand, when the standard deviation of the inner diameter is larger than 15.0 ⁇ m, the structure of the hollow fiber membrane is uneven and the uniformity of the gold colloid capturing position tends to be lowered.
- the pore diameter of the virus removal film 10 is, for example, 32.0 nm to 38.0 nm, or 32.0 nm to 37.0 nm. If the pore size is smaller than 32 nm, the filtration rate may decrease, and if it is larger than 38 nm, the virus may leak. In the cross section of the virus removal film 10, the pore diameter decreases from decreasing to increasing from the primary side to the secondary side.
- the virus capturing site includes a site where the pore diameter is minimum. For example, a site where a gold colloid having a diameter of 30 nm is captured is a site where the pore diameter is minimum.
- the pure water permeation rate measured by the virus removal membrane 10 is, for example, 100 L / m 2 /hrs/0.1 MPa or more and 500 L / m 2 /hrs/0.1 MPa or less, 100 L / m 2 /hrs/0.1 MPa or more. It is 400 L / m 2 /hrs/0.1 MPa or less, or 150 L / m 2 /hrs/0.1 MPa or more and 300 L / m 2 /hrs/0.1 MPa or less.
- the logarithmic removal rate (LRV) of gold colloid having a diameter of 40 nm by the virus removal film 10 is, for example, 1.00 or more, 1.20 or more, or 1.40 or more.
- the logarithmic removal rate of the gold colloid having a diameter of 30 nm by the virus removal film 10 is, for example, 1.00 or more, 1.20 or more, or 1.40 or more.
- the logarithmic removal rate of the gold colloid having a diameter of 20 nm by the virus removal film 10 is, for example, less than 0.10.
- the burst strength of the virus removal film 10 is, for example, 0.28 MPa or more, 0.30 MPa or more, or 0.32 MPa or more. In the case of 0.28 MPa or less, there is a possibility that the filtration pressure cannot be endured. In addition, when the bursting strength is low, the pore structure may be deformed by the filtration pressure, and the virus capturing performance may be reduced.
- the virus removal membrane according to the embodiment having the characteristics described above is manufactured, for example, by the method described below.
- cellulose is dissolved in a copper ammonia solution, and the cellulose concentration is, for example, 6.0 wt% or more and 8.5 wt% or less, or 7.0 wt%.
- a cellulose copper ammonia solution of 8.5 wt% or less, or 7.0 wt% or more and 8.0 wt% or less is prepared, and silicate is added thereto to obtain a spinning dope.
- the addition of the silicate may be performed before or simultaneously with dissolving the cellulose in the copper ammonia solution.
- silicates sodium, potassium, calcium, and magnesium silicates can be used. Of these, sodium and potassium silicates are preferred, and sodium metasilicate is more preferred.
- the amount of silicate added is such that the silicon dioxide concentration in the cellulose copper ammonia solution is, for example, 5 ppm to 100 ppm, 5 ppm to 70 ppm, or 5 ppm to 60 ppm.
- the ratio of the copper concentration to the cellulose concentration is, for example, 0.30 or more and 0.40 or less.
- the ratio of the ammonia concentration to the cellulose concentration is, for example, 0.6 or more and 1.0 or less.
- the spinning dope is heated at a constant temperature, and the spinning dope is aged.
- the aging temperature is 30 ° C. to 40 ° C., 30 ° C. to 37 ° C., or 30 ° C. to 35 ° C., and the aging time is 45 hours to 100 hours, more preferably 48 hours to 96 hours.
- the aging temperature is constant within the above range, for example.
- the heating method include a method of setting room temperature to the aging temperature and a method of using a heat exchanger.
- microphase separation occurs with respect to the spinning dope which does not have a hydroxyl group, has a solubility in a 28 wt% ammonia aqueous solution of 10 wt% or more, and contains at least one organic solvent that does not swell cellulose.
- the coagulation liquid consists of acetone, ammonia, and water.
- the acetone concentration is about 40 wt% or more and about 60 wt% or less, and the ammonia concentration is about 0.5 wt% or more and about 1.0 wt% or less.
- the acetone concentration is about 30 wt% or more and about 50 wt% or less, and the ammonia concentration is about 0 wt% or more and about 0.2 wt% or less.
- the spinning stock solution is discharged from the annular double nozzle at a fixed amount of 1.5 cc / min to 8.0 cc / min, and at the same time, from the central nozzle provided in the center of the annular double nozzle.
- the coagulation liquid is discharged.
- the discharged spinning solution and the internal coagulation liquid are immediately immersed in the external coagulation liquid in the coagulation bath.
- microphase separation occurs in the spinning dope due to the action of the internal and external coagulating liquids.
- Microphase separation means that a cellulose concentrated phase is separated from a solvent or a cellulose diluted phase as particles having a diameter of 0.01 to several ⁇ m, and dispersed and stabilized.
- Microphase separation initially occurs at the interface between the spinning dope and the internal and external coagulating liquids, and gradually occurs inside the spinning dope.
- Particles formed by microphase separation form large particles while repeating collision and fusion.
- the particles are gradually solidified by the action of the coagulation liquid, and a hollow fiber membrane having a polymer porous structure in which the particles are three-dimensionally connected is formed.
- the formed hollow fiber membrane is wound up.
- the cellulose copper ammonia solution is oxidized and disintegrated by contact with the air brought into the cellulose dissolution and oxygen contained in the copper ammonia solution, resulting in a decrease in the degree of polymerization and a decrease in the viscosity. Therefore, uneven viscosity occurs in the spinning dope being fed through the pipe. If viscosity unevenness occurs in the spinning dope, pulsation occurs in the flow of the spinning dope, affecting the discharge stability of the spinning dope from the annular double nozzle, and the yarn length of the hollow fiber membrane to be formed The film thickness in the direction and the hollow fiber diameter vary, and as a result, thread breakage may occur.
- the present inventors have found that the generation of copper oxide due to aging can be suppressed by adding silicon dioxide to the cellulose copper ammonia solution.
- silicon dioxide When the spinning dope is heated during aging, copper oxide is generated. Since copper oxide is a solid foreign matter, when a film is formed while copper oxide is mixed in the spinning dope, copper oxide is dissolved in a step of regenerating with an acid later, resulting in a defect in the film structure. Therefore, copper oxide causes variation in the hole diameter in the circumferential direction. In extreme cases, pinholes may be formed in the film, and structural defects such as macrovoids may occur. Therefore, it is possible to stably manufacture the virus removal membrane according to this embodiment by performing both aging of the cellulose copper ammonia solution and addition of silicon dioxide.
- the film thickness of the virus removal film to be formed is uniform, the film strength is improved, and it is possible to suppress the occurrence of leakage during filtration and pressurization.
- silicon dioxide may become a foreign substance, so the concentration of silicon dioxide is preferably 100 ppm or less.
- the flat membrane-like virus removal membrane is produced by, for example, the following method.
- a silicate is added to and mixed with the copper ammonia cellulose solution to obtain a film forming solution. Subsequently, after aging the film forming solution, the film forming solution is filtered and degassed.
- the film-forming solution is cast and cast on a support that runs in a coagulation bath to coagulate it.
- the moving speed of the support is about 1.0 to 10.0 m / min.
- the formed flat membrane is regenerated with an acid, drawn through an additional water bath, and then dried using a dryer.
- the hollow fiber manufactured by the method described above and the flat membrane virus removal membrane create a filter in which the primary space on the filtrate inlet side and the secondary space on the filtrate outlet side are partitioned by a membrane. Can be used.
- the copper ammonia cellulose solution was aged at the temperature and residence time shown in FIG. 6 in a jacket-type heatable storage tank. Thereafter, the copper ammonia cellulose solution was defoamed to obtain a spinning dope.
- the spinning dope is discharged from the outer spinning outlet of the annular double nozzle at 3.65 cc / min.
- the internal coagulation liquid consisting of water was discharged at 1.8 cc / min.
- the spinning dope and the internal coagulation liquid discharged from the annular double nozzle are introduced into a coagulation bath filled with an external coagulation liquid composed of acetone / ammonia / water at a weight ratio shown in FIG. 6 to form a hollow fiber membrane.
- the film was wound at a winding speed (spinning speed) of 10 m / min.
- As the coagulation bath a U-shaped funnel capillary having a diameter of 7 mm described in JP-A-4-371221 was used, and the flow rate of the external coagulation liquid was 2.6 m / min.
- the winding of the hollow fiber membrane was performed in water at 30 ° C. After winding the hollow fiber membrane for 120 minutes, the wound hollow fiber membrane was immersed in another 30 ° C. water for 60 minutes. Thereafter, the cellulose of the hollow fiber membrane was regenerated with a 3% by weight aqueous sulfuric acid solution and further washed with water. Furthermore, the water in the hollow fiber membrane bundle was replaced with methanol. Thereafter, both ends of the hollow fiber membrane bundle were fixed, and the hollow fiber membrane bundle was vacuum-dried under conditions of 50 ° C. and 3 kPa with the hollow fiber membrane bundle stretched 5.0%.
- the hollow fiber membrane obtained by the above method was used as the virus removal membrane according to the example. Moreover, as shown in FIG. 6, the virus removal film
- the primary side which is the liquid supply side of the membrane, and the secondary side where the filtrate is discharged are filled with pure water, and then the transmembrane pressure difference of 20 kPa with pure water at a temperature of 25 ° C.
- the amount of pure water permeating from the primary side to the secondary side was calculated in terms of units of L / hrs / 0.1 MPa per 1 m 2 of dry hollow fiber membrane area.
- Pure water refers to water purified by ultrafiltration.
- the pure water permeation rates of the virus removal membranes according to the obtained Examples and Comparative Examples were as shown in FIG.
- the porosity Pr was calculated by the following method. Using the following equation (2), the apparent density ⁇ a of the hollow fiber was determined from the measured values of the film thickness, area, and weight, and the porosity Pr (%) was determined using the following equation (3).
- ⁇ a is the apparent density (g / cm 3 ) of the hollow fiber
- Wd is the absolute dry weight (g) of the hollow fiber
- Vw is the apparent volume of the hollow fiber (cm 3 )
- l is the length of the hollow fiber (cm )
- Do represents the outer diameter (cm) of the hollow fiber
- Di represents the inner diameter (cm) of the hollow fiber
- ⁇ p represents the density (g / cm 3 ) of cellulose.
- the bubble point was defined as the pressure (MPa) at the time when 3.0 mL / min of quantitative continuous bubbles were generated per 1 cm 2 of membrane area. Further, perfluorocarbon (FX3250, manufactured by Sumitomo 3M Limited) having a surface tension of 0.012 (N / m) was used as the wetting liquid, and nitrogen was used as the pressurized gas.
- FX3250 perfluorocarbon
- N / m perfluorocarbon having a surface tension of 0.012 (N / m) was used as the wetting liquid, and nitrogen was used as the pressurized gas.
- the measurement method described above was based on the measurement method described in International Publication No. 2001/014047.
- the bubble points of the virus removal membranes according to the measured examples and comparative examples were as shown in FIG.
- a module composed of one yarn having an effective length of 9 cm was produced.
- the produced module was immersed in water at 25 ° C., one end of the hollow fiber membrane was closed, and the other end was pressurized with nitrogen. The pressure applied was gradually increased, and the pressure when the hollow fiber was ruptured was defined as the hollow fiber rupture strength.
- the burst strength of the virus removal membranes according to the measured examples and comparative examples was as shown in FIG.
- a value obtained by multiplying the average value C AVE of the average value C 40 of the film thickness was calculated as the thickness T of the gold colloid trapping site in the virus removal film. The results are shown in FIG.
- the thickness of the dense layer was measured using at least two virus removal membranes, a virus removal membrane obtained by filtering a gold colloid having a diameter of 30 nm and a virus removal membrane obtained by filtering a gold colloid having a diameter of 40 nm. .
- a gold colloid solution containing both gold colloids with a diameter of 30 nm and 40 nm is filtered using one virus removal membrane.
- a colloidal gold solution having a diameter of 30 nm is filtered using a single virus removal membrane, and then a colloidal gold solution having a diameter of 40 nm is filtered.
- a first distance a from the primary side surface of the virus removal membrane to the portion closest to the primary side surface of the site where the gold colloid was captured was measured.
- a second distance b from the primary side surface of the virus removal membrane to the portion closest to the secondary side surface of the site where the gold colloid was captured was measured.
- the value A (%) expressed as a percentage by dividing the first distance a by the film thickness c of the wet virus removal membrane was calculated, and the value A (%) at 240 locations was calculated.
- the average value was calculated as the first achievement level.
- the value B (%) expressed as a percentage by dividing the second distance b by the film thickness c of the wet virus removal membrane was calculated, and the average of the values B (%) at 240 locations was calculated.
- the value was calculated as the second achievement level.
- FIG. 8 shows the average value of the first achievement and the average value of the second achievement for each of the gold colloids having a diameter of 30 nm, 40 nm and 50 nm.
- the filtrate of the virus-containing antibody solution 10-fold by 10% HS / D-MEM, 10 2 -fold, 10 3 fold to prepare a 10 4 fold and 105-fold dilutions.
- the original solution (virus-containing antibody solution) collected immediately before filtration is also diluted 10 2 times, 10 3 times, 10 4 times, 10 5 times, 10 6 times and 10 7 times with 10% HS / D-MEM.
- a liquid was prepared.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
Description
T=(B30-A40)×CAVE (1)
コットンリンター(平均分子量1.44×105)とメタケイ酸ナトリウム(キシダ化学株式会社)を公知の方法で調製した銅アンモニア溶液中に溶解せしめ、二酸化ケイ素濃度が図6に記載のとおりであり、セルロース濃度が7.0重量%、アンモニア濃度が4.5重量%、銅濃度が2.5重量%の銅アンモニアセルロース溶液を調製した。セルロース濃度に対する銅濃度の比は0.36であった。セルロース濃度に対するアンモニア濃度の比は0.64であった。
(1)内径及び膜厚(乾燥中空糸)
120分間巻き取った糸束内の任意の乾燥中空糸10本のそれぞれの糸長方向に垂直な断面切片を投影機(V‐12B、Nikon社製)で観察し、一つの中空糸断面に対し縦方向及び横方向の内径2カ所及び膜厚4ヶ所を測定し、それぞれ平均したものを内径及び膜厚の測定値とした。得られた実施例及び比較例に係るウイルス除去膜の平均内径、内径の標準偏差、平均膜厚、及び膜厚の標準偏差は、図7に示すとおりであった。
膜の液供給側である一次側とろ液が排出される二次側の両方を純水で満たし、その後温度25℃の純水を20kPaの膜間差圧でろ過して、一次側から二次側に出てくる純水透過量を乾燥中空糸の膜面積1m2当たりL/hrs/0.1MPaの単位に換算した値を算出した。なお、純水とは、限外ろ過により精製した水をいう。得られた実施例及び比較例に係るウイルス除去膜の純水透過速度は、図7に示すとおりであった。
空孔率Prは以下の方法で算出した。下記(2)式を用いて、膜厚、面積、及び重量の測定値から中空糸の見掛け密度ρaを求め、さらに下記(3)式を用いて、空孔率Pr(%)を求めた。
ρa=Wd/Vw=4Wd/πl(Do2-Di2) (2)
Pr(%)=(1-ρa/ρp)×100 (6) (3)
ここで、ρaは中空糸の見掛け密度(g/cm3)、Wdは中空糸の絶乾重量(g)、Vwは中空糸の見かけ体積(cm3)、lは中空糸の長さ(cm)、Doは中空糸の外径(cm)、Diは中空糸の内径(cm)、ρpはセルロースの密度(g/cm3)を示す。
2r=2×103×√(V・d・μ/P・A・Pr) (4)
ここで、2rは平均孔径(nm)、Vは透水量(mL/分)、dは膜厚(μm)、μは水の粘度(cp)、Pは圧力差(mmHg)、Aは膜面積(cm2)、Prは空孔率(%)を示す。以上の測定方法は、特許第2707274号公報に記載の測定方法を参考にした。得られた実施例及び比較例に係るウイルス除去膜の平均孔径は、図7に示すとおりであった。
表面張力γ(N/m)の液体で膜を湿潤させた後、その膜に、気体で徐々に圧力をかけていくと、ある圧力で膜表面から連続的に気泡が発生するようになる。この時の気体圧力は、バブルポイント(MPa)と呼ばれている。バブルポイントの公知の測定方法はいずれも、連続気泡の発生を目視確認した時点での圧力をバブルポイントとしている。しかし、この判定法は、膜面積が小さい場合には気泡の発生量が少なく、見過ごす恐れがあること、及び、加圧以前から膜表面に付着していた気泡(界面破壊現象によって生じたものではない)の膜表面からの離脱を界面破壊現象による気泡であると見誤る恐れがあることから、誤差がでやすい。
実施例及び比較例に係るウイルス除去膜を用いて、9cmの有効長さを有する1本の糸からなるモジュールを作製した。作製したモジュールを25℃の水中に浸漬し、中空糸膜の一端を閉塞させ、他端から窒素で加圧した。加圧する圧力を徐々に上げていき、中空糸が破裂した時の圧力を中空糸破裂強度とした。計測された実施例及び比較例に係るウイルス除去膜の破裂強度は、図7に示すとおりであった。
(1)金コロイド溶液の調製
粒径が20、30、40、及び50nmの金コロイドをそれぞれ含む溶液(Cytodiagnostics社製)を購入した。次に、紫外・可視分光光度計(UVmini-1240、島津製作所製)で測定した各金コロイド溶液の金コロイドに応じた最大吸収波長における吸光度が0.25になるよう、金コロイド溶液を、注射用蒸留水、ポリオキシエチレン-ナフチルエーテル(1.59vol%)、及びポリ(4-スチレンスルホン酸ナトリウム)(0.20vol%)で希釈した。
調製した金コロイド溶液のそれぞれ40mLを、78.4kPaの加圧下にて、製造した実施例及び比較例に係るウイルス除去膜でろ過した。ウイルス除去膜のろ過面積は、0.001m2であった。なお、一つのウイルス除去膜に対して、一つの種類の金コロイド溶液を流した。
紫外・可視分光光度計UVmini-1240(島津製作所製)を用いて、金コロイド溶液のそれぞれについて、金コロイドの最大吸収波長におけるろ過前の金コロイド溶液の吸光度Aと、ろ液の吸光度Bと、を測定し、下記(5)式で与えられる、実施例及び比較例に係るウイルス除去膜による金コロイドの対数除去率(LRV)を算出した。結果を、図8に示す。
LRV=log10(A/B) (5)
金コロイド溶液をろ過した後の実施例及び比較例に係るウイルス除去膜から切片(厚みは8μm)を切り出し、切片の断面において金コロイドによって染まった部分240カ所の輝度プロファイルを、光学顕微鏡(Biozero、BZ8100、キーエンス社製)で測定した。次に、定数(255)から測定した輝度プロファイルを引いた。その後、横軸に膜厚(100分率)、縦軸に輝度の変位を有するグラフを作成し、グラフに現れた輝度の変位のスペクトルの面積を算出した。さらに、240カ所における輝度の変位のスペクトルの面積の標準偏差を、240カ所における輝度の変位のスペクトルの面積の平均で除した値を、実施例及び比較例に係るウイルス除去膜における金コロイド捕捉部位の金コロイドの捕捉量の変動係数を示す値として算出した。直径30nmの金コロイドのみを流したときの結果を、図8に示す。比較例に係るウイルス除去膜と比較して、実施例に係るウイルス除去膜のほうが、変動係数の値が小さい傾向にあった。よって、実施例に係るウイルスの除去膜における金コロイド捕捉部位における金コロイドの捕捉量の均一性が高いことが示された。これは、実施例に係るウイルスの除去膜のウイルス捕捉量の均一性が高いことを示している。
30及び40nmの金コロイド溶液をそれぞれろ過した湿潤状態のウイルス除去膜から切片(厚みは8μm)を切り出した。湿潤状態の切片の断面において金コロイドによって染まった部分240カ所の輝度プロファイルを、光学顕微鏡(Biozero、BZ8100、キーエンス社製)で測定した。ここで、膜厚方向において、ウイルス除去膜の一次側の表面から、金コロイドが捕捉された部位の最も一次側の表面に近い部分までの第1の距離aを測定した。また、膜厚方向において、ウイルス除去膜の一次側の表面から、金コロイドが捕捉された部位の最も二次側の表面に近い部分までの第2の距離bを測定した。
T=(B1-A1)×C (6)
直径30nm、40nm及び50nmの金コロイド溶液をそれぞれろ過したウイルス除去膜から切片(厚みは8μm)を切り出した。湿潤状態のウイルス除去膜の膜厚は、光学顕微鏡(Biozero、BZ8100、キーエンス社製)用いて測定した。切片の断面において金コロイドによって染まった部分240カ所の輝度プロファイルを、光学顕微鏡(Biozero、BZ8100、キーエンス社製)で測定した。ここで、膜厚方向において、ウイルス除去膜の一次側の表面から、金コロイドが捕捉された部位の最も一次側の表面に近い部分までの第1の距離aを測定した。また、膜厚方向において、ウイルス除去膜の一次側の表面から、金コロイドが捕捉された部位の最も二次側の表面に近い部分までの第2の距離bを測定した。
(1)ウイルス含有抗体溶液の調製
ポリクローナル抗体(ヒトIgG)(ヴェノグロブリン-IH、日本血液製剤機構製)を用いて、抗体濃度が10mg/mLになるようにダルベッコPBS(-)で希釈した抗体溶液を得た。得られた抗体溶液に、牛ウイルス性下痢ウイルス(BVDV)を5.0vol%添加し、十分に撹拌して、ウイルス含有抗体溶液を得た。
78.4kPaのろ過圧力で、製造した膜面積0.001m2のウイルス除去膜を用いて、ろ過量が100L/m2に到達するまで、ウイルス含有抗体溶液のデッドエンドろ過を行った。ろ過圧力は供給液容器側に圧力計を設置して測定した。
JCRB細胞バンクより入手し、培養したMDBK(NBL-1)細胞(JCRB 9028)を用意した。また、56℃の水浴で30分間加熱し非働化させた後の馬血清(HS、Gibco社製)10vol%と、ペニシリン/ストレプトマイシン(+10000 Units/mL ペニシリン、+10000μg/mL ストレプトマイシン、インビトロジェン製)1vol%含有D-MEM(インビトロジェン製、高グルコース)と、の混合液を用意した。以下、この混合液を、10vol%HS/D-MEMという。次に、MDBK細胞を10vol%HS/D-MEMで希釈し、細胞濃度2.0×105(細胞/mL)の希釈細胞懸濁液を調製した。その後、96ウェル平底細胞培養プレート(Falcon社製)の全てのウェルに、希釈細胞懸濁液を100μLずつ分注した。
LRV=log10(C0/CF) (7)
ここで、C0は、ウイルス除去膜でろ過する前の元液(ウイルス含有抗体溶液)中の感染価を表し、CFはウイルス除去膜でろ過した後のろ過液中の感染価を表す。
2 二次側の表面
10 ウイルス除去膜
Claims (26)
- タンパク質を含有する溶液からウイルスを除去するためのウイルス除去膜であって、
当該ウイルス除去膜は、
セルロースを備え、
前記タンパク質を含有する溶液が供給される一次側の表面と、
当該ウイルス除去膜を透過した透過液が排出される二次側の表面と、
を有し、
バブルポイントが0.5MPa以上1.0MPa以下であり、
前記一次側から当該ウイルス除去膜に直径30nmの金コロイドを含有する溶液を供給して当該ウイルス除去膜で前記金コロイドを捕捉し、当該ウイルス除去膜の断面において輝度を測定すると、前記輝度の変位のスペクトルの面積値の標準偏差を前記輝度の変位のスペクトルの面積値の平均値で除した値が0.01以上0.30以下であり、
当該ウイルス除去膜の断面において、直径30nm以上直径40nm以下の金コロイドが捕捉される部位の厚さが、湿潤状態で、17.0μm以上20.0μm以下である、
ウイルス除去膜。 - 湿潤状態の当該ウイルス除去膜の断面において、
直径50nmの金コロイドが捕捉される部位が、前記一次側から当該ウイルス除去膜の膜厚の5%以上35%以下のところにあり、
直径40nmの金コロイドが捕捉される部位が、前記一次側から前記膜厚の8%以上50%以下のところにあり、
直径30nmの金コロイドが捕捉される部位が、前記一次側から前記膜厚の10%以上80%以下のところにある、
請求項1に記載のウイルス除去膜。 - 直径40nmの金コロイドの対数除去率が1.00以上であり、
直径30nmの金コロイドの対数除去率が1.00以上であり、
直径20nmの金コロイドの対数除去率が0.10未満である、
請求項1又は2に記載のウイルス除去膜。 - 直径20nmの金コロイドが捕捉されない、請求項1から3のいずれか1項に記載のウイルス除去膜。
- 孔径が32.0nm以上38.0nm以下である、請求項1から4のいずれか1項に記載のウイルス除去膜。
- 当該ウイルス除去膜の断面において、前記一次側から前記二次側に向けて、孔径が減少した後増加に転じる、請求項1から5のいずれか1項に記載のウイルス除去膜。
- 前記直径30nmの金コロイドが捕捉される部位が、前記孔径が最小となる部位を含む、請求項6に記載のウイルス除去膜。
- 乾燥状態で膜厚が25.0μm以上45.0μm以下である、請求項1から7のいずれか1項に記載のウイルス除去膜。
- 前記膜厚の標準偏差が5.0μm以下である、請求項8に記載のウイルス除去膜。
- バブルポイントが0.7MPa以上1.0MPa以下である、請求項1から9のいずれか1項に記載のウイルス除去膜。
- 純水透過速度が、100L/m2/hrs/0.1MPa以上500L/m2/hrs/0.1MPa以下である、請求項1から10のいずれか1項に記載のウイルス除去膜。
- 平膜である、請求項1から11のいずれか1項に記載のウイルス除去膜。
- 中空糸膜である、請求項1から11のいずれか1項に記載のウイルス除去膜。
- 乾燥状態で内径が250μmから400μmである、請求項13に記載のウイルス除去膜。
- 前記内径の標準偏差が15.0μm以下である、請求項14に記載のウイルス除去膜。
- 40nm以上のウイルスの対数除去率(LRV)が4.0以上である、請求項1から15のいずれか1項に記載のウイルス除去膜。
- 牛ウイルス性下痢ウイルス(BVDV)の対数除去率(LRV)が4.0以上である、請求項1から16のいずれか1項に記載のウイルス除去膜。
- セルロース、銅、及び二酸化ケイ素を含む紡糸原液を30℃以上40℃以下に保つエイジング工程と、
前記紡糸原液を用いて製膜する製膜工程と、
を備える、ウイルス除去膜の製造方法。 - 前記エイジング工程を、45時間以上100時間以下行う、請求項18に記載のウイルス除去膜の製造方法。
- 前記製膜工程においてセルロースの濃度が6.0重量%以上8.5重量%以下である、請求項18又は19に記載のウイルス除去膜の製造方法。
- 前記製膜工程においてセルロースの濃度に対する銅の濃度の比が0.30以上0.40以下である、請求項18から20のいずれか1項に記載のウイルス除去膜の製造方法。
- 前記製膜工程において二酸化ケイ素の濃度が5ppm以上100ppm以下である、請求項18から21のいずれか1項に記載のウイルス除去膜の製造方法。
- 前記紡糸原液がアンモニアを更に備え、前記製膜工程においてセルロース濃度に対するアンモニアの濃度の比が0.6以上1.0以下である、請求項18から22のいずれか1項に記載のウイルス除去膜の製造方法。
- 前記製膜工程において、凝固液に前記紡糸原液を吐出する、請求項18から23のいずれか1項に記載のウイルス除去膜の製造方法。
- 前記製膜工程において、前記紡糸原液を、環状紡出口を用いて吐出する、請求項18から24のいずれか1項に記載のウイルス除去膜の製造方法。
- 前記製膜工程において、支持体上に前記紡糸原液をキャスティングした後、凝固液に浸漬する、請求項18から24のいずれか1項に記載のウイルス除去膜の製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2017245025A AU2017245025B2 (en) | 2016-03-31 | 2017-03-30 | Virus removal membrane and method for manufacturing virus removal membrane |
JP2018509440A JP6576546B2 (ja) | 2016-03-31 | 2017-03-30 | ウイルス除去膜及びウイルス除去膜の製造方法 |
KR1020187018371A KR102106410B1 (ko) | 2016-03-31 | 2017-03-30 | 바이러스 제거막 및 바이러스 제거막의 제조 방법 |
RU2018134166A RU2718981C1 (ru) | 2016-03-31 | 2017-03-30 | Мембрана для удаления вирусов и способ для производства мембраны для удаления вирусов |
EP17775408.2A EP3437725A4 (en) | 2016-03-31 | 2017-03-30 | VIRUS ELIMINATION MEMBRANE AND METHOD FOR MANUFACTURING VIRUS ELIMINATION MEMBRANE |
CN201780009989.4A CN108602026B (zh) | 2016-03-31 | 2017-03-30 | 去除病毒的膜及去除病毒的膜的制造方法 |
US16/088,347 US11491446B2 (en) | 2016-03-31 | 2017-03-30 | Virus removal membrane and method for manufacturing virus removal membrane |
CA3018047A CA3018047C (en) | 2016-03-31 | 2017-03-30 | Virus removal membrane and method for manufacturing virus removal membrane |
US17/960,556 US20230026019A1 (en) | 2016-03-31 | 2022-10-05 | Virus removal membrane and method for manufacturing virus removal membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-072468 | 2016-03-31 | ||
JP2016072468 | 2016-03-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/088,347 A-371-Of-International US11491446B2 (en) | 2016-03-31 | 2017-03-30 | Virus removal membrane and method for manufacturing virus removal membrane |
US17/960,556 Division US20230026019A1 (en) | 2016-03-31 | 2022-10-05 | Virus removal membrane and method for manufacturing virus removal membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017170874A1 true WO2017170874A1 (ja) | 2017-10-05 |
Family
ID=59964712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013277 WO2017170874A1 (ja) | 2016-03-31 | 2017-03-30 | ウイルス除去膜及びウイルス除去膜の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (2) | US11491446B2 (ja) |
EP (1) | EP3437725A4 (ja) |
JP (1) | JP6576546B2 (ja) |
KR (1) | KR102106410B1 (ja) |
CN (1) | CN108602026B (ja) |
AU (1) | AU2017245025B2 (ja) |
CA (1) | CA3018047C (ja) |
RU (1) | RU2718981C1 (ja) |
WO (1) | WO2017170874A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118943A1 (ja) | 2020-12-04 | 2022-06-09 | 旭化成メディカル株式会社 | 多孔質中空糸膜及び完全性試験方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220098491A (ko) * | 2021-01-04 | 2022-07-12 | 이승범 | 차단막 제공 장치 및 이를 포함하는 시스템 |
CN115025630A (zh) * | 2021-06-02 | 2022-09-09 | 赛普(杭州)过滤科技有限公司 | 一种中空纤维素除病毒过滤膜的制备方法及产品 |
US11826711B2 (en) * | 2022-02-23 | 2023-11-28 | Hamilton Sundstrand Corporation | Regenerable organic contaminant controller in space application |
CN115770490B (zh) * | 2022-12-16 | 2023-05-09 | 杭州科百特过滤器材有限公司 | 一种不对称纤维素除病毒滤膜及其制备工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58114702A (ja) * | 1981-12-28 | 1983-07-08 | Kuraray Co Ltd | ポリスルホン中空繊維膜 |
JPH01250408A (ja) * | 1988-03-30 | 1989-10-05 | Asahi Chem Ind Co Ltd | 再生セルロース多孔膜中空糸の製法 |
JPH09285723A (ja) * | 1996-04-22 | 1997-11-04 | Nippon Sanso Kk | ポリエーテルスルホン非対称膜およびその製造方法 |
JP2008284471A (ja) * | 2006-11-28 | 2008-11-27 | Toyobo Co Ltd | 高分子多孔質中空糸膜 |
WO2015156403A1 (ja) * | 2014-04-11 | 2015-10-15 | 旭化成メディカル株式会社 | ウイルス除去膜 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE7829409U1 (de) * | 1978-10-02 | 1986-07-31 | Akzo Gmbh, 5600 Wuppertal | Dialysemembranhohlfaden mit größerer Austauschfläche |
JPS57102205A (en) | 1980-12-19 | 1982-06-25 | Asahi Chem Ind Co Ltd | Dialysis membrane made of regenerated cellulose of cuprammonium process and its production |
US4581140A (en) * | 1981-11-25 | 1986-04-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Porous regenerated cellulose membrane and process for the preparation thereof |
JPS5889627A (ja) * | 1981-11-25 | 1983-05-28 | Asahi Chem Ind Co Ltd | 再生セルロ−ス微多孔膜 |
JPS59225708A (ja) * | 1983-06-03 | 1984-12-18 | Terumo Corp | セルロ−ス透過膜の製造方法 |
US4808315A (en) | 1986-04-28 | 1989-02-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Porous hollow fiber membrane and a method for the removal of a virus by using the same |
JPS6388007A (ja) * | 1986-10-02 | 1988-04-19 | Asahi Chem Ind Co Ltd | ウイルスフリ−モジユ−ル |
US4857196A (en) * | 1987-08-07 | 1989-08-15 | Asahi Kasei Kogyo Kabushiki Kaisha | Porous hollow fiber membrane and a method for the removal of a virus by using the same |
EP0474267A2 (en) * | 1987-08-08 | 1992-03-11 | Asahi Kasei Kogyo Kabushiki Kaisha | A porous hollow fiber membrane and a method for the removal of a virus by using the same |
CN1009901B (zh) * | 1987-08-28 | 1990-10-10 | 武汉大学 | 铜氨法制备再生纤维素多孔膜 |
DE68919142T3 (de) * | 1988-07-20 | 1998-03-26 | Asahi Chemical Ind | Hohlfasermembran. |
JP3093821B2 (ja) | 1991-06-19 | 2000-10-03 | 旭化成工業株式会社 | 銅アンモニア法再生セルロース多孔性中空糸膜の製造方法 |
DK1206961T3 (da) * | 1999-08-20 | 2007-04-02 | Asahi Kasei Medical Co Ltd | Filtermembraner til fysiologisk aktive stoffer |
ES2537513T3 (es) * | 2003-07-17 | 2015-06-09 | Asahi Kasei Medical Co., Ltd. | Utilización de una solución coloidal metálica para ensayar la integridad de una membrana de eliminación de virus, procedimiento para la producción de dicha solución y procedimiento para ensayar la integridad de dicha membrana |
EP2476480A1 (en) * | 2006-03-02 | 2012-07-18 | Manabe, Sei-ichi | A regenerated cellulose porous membrane and its preparation |
US8881915B2 (en) | 2006-04-26 | 2014-11-11 | Toyo Boseki Kabushiki Kaisha | Polymeric porous hollow fiber membrane |
RU2440181C2 (ru) * | 2006-08-10 | 2012-01-20 | Курарэй Ко., Лтд. | Пористая мембрана из винилиденфторидной смолы и способ ее получения |
WO2008111510A1 (ja) * | 2007-03-08 | 2008-09-18 | Asahi Kasei Medical Co., Ltd. | 微多孔膜のインテグリティテスト方法 |
JP2010014564A (ja) | 2008-07-04 | 2010-01-21 | Asahi Kasei Medical Co Ltd | 高分子膜の粒子捕捉の評価方法 |
CA2760391A1 (en) * | 2010-04-16 | 2011-10-20 | Asahi Kasei Chemicals Corporation | Deformed porous hollow fiber membrane, production method of deformed porous hollow fiber membrane, and module, filtration device, and water treatment method in which deformed porous hollow fiber membrane is used |
WO2015156401A1 (ja) * | 2014-04-11 | 2015-10-15 | 旭化成メディカル株式会社 | ウイルス除去膜 |
-
2017
- 2017-03-30 CA CA3018047A patent/CA3018047C/en active Active
- 2017-03-30 CN CN201780009989.4A patent/CN108602026B/zh active Active
- 2017-03-30 KR KR1020187018371A patent/KR102106410B1/ko active IP Right Grant
- 2017-03-30 AU AU2017245025A patent/AU2017245025B2/en active Active
- 2017-03-30 EP EP17775408.2A patent/EP3437725A4/en active Pending
- 2017-03-30 RU RU2018134166A patent/RU2718981C1/ru active
- 2017-03-30 WO PCT/JP2017/013277 patent/WO2017170874A1/ja active Application Filing
- 2017-03-30 JP JP2018509440A patent/JP6576546B2/ja active Active
- 2017-03-30 US US16/088,347 patent/US11491446B2/en active Active
-
2022
- 2022-10-05 US US17/960,556 patent/US20230026019A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58114702A (ja) * | 1981-12-28 | 1983-07-08 | Kuraray Co Ltd | ポリスルホン中空繊維膜 |
JPH01250408A (ja) * | 1988-03-30 | 1989-10-05 | Asahi Chem Ind Co Ltd | 再生セルロース多孔膜中空糸の製法 |
JPH09285723A (ja) * | 1996-04-22 | 1997-11-04 | Nippon Sanso Kk | ポリエーテルスルホン非対称膜およびその製造方法 |
JP2008284471A (ja) * | 2006-11-28 | 2008-11-27 | Toyobo Co Ltd | 高分子多孔質中空糸膜 |
WO2015156403A1 (ja) * | 2014-04-11 | 2015-10-15 | 旭化成メディカル株式会社 | ウイルス除去膜 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3437725A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118943A1 (ja) | 2020-12-04 | 2022-06-09 | 旭化成メディカル株式会社 | 多孔質中空糸膜及び完全性試験方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20180087381A (ko) | 2018-08-01 |
EP3437725A4 (en) | 2019-05-01 |
EP3437725A1 (en) | 2019-02-06 |
CA3018047A1 (en) | 2017-10-05 |
JP6576546B2 (ja) | 2019-09-18 |
AU2017245025A1 (en) | 2018-10-04 |
JPWO2017170874A1 (ja) | 2018-09-06 |
RU2718981C1 (ru) | 2020-04-15 |
US11491446B2 (en) | 2022-11-08 |
CN108602026B (zh) | 2021-12-28 |
KR102106410B1 (ko) | 2020-05-04 |
US20200298182A1 (en) | 2020-09-24 |
CA3018047C (en) | 2022-07-26 |
CN108602026A (zh) | 2018-09-28 |
US20230026019A1 (en) | 2023-01-26 |
AU2017245025B2 (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6220447B2 (ja) | ウイルス除去膜 | |
US20230026019A1 (en) | Virus removal membrane and method for manufacturing virus removal membrane | |
JP5403444B1 (ja) | 多孔質中空糸膜 | |
JP6024660B2 (ja) | 多孔質中空糸膜 | |
US9795932B2 (en) | Porous hollow fiber membrane and a porous hollow fiber membrane for the treatment of a protein-containing liquid | |
JP5720249B2 (ja) | 中空糸膜およびその製造方法および血液浄化モジュール | |
JP2012019891A (ja) | 血液処理用の中空糸膜の製造方法 | |
JP2005021510A (ja) | 高透水性中空糸型血液浄化器 | |
JP2011020071A (ja) | ポリスルホン系中空糸膜の製造方法 | |
JP5126459B2 (ja) | セルロースエステル中空糸膜およびその製造方法 | |
WO2024128243A1 (ja) | 多孔質膜および精製方法 | |
JP5299617B2 (ja) | 中空糸膜の製造方法 | |
JPH0523554A (ja) | セルロース系中空糸 | |
JP2005342139A (ja) | ポリスルホン系選択透過性中空糸膜 | |
JP5109083B2 (ja) | チューブインオリフィス型ノズルの検査方法および中空糸膜の製造方法 | |
JP2012019890A (ja) | 血液処理用中空糸膜、及び、中空糸膜型血液処理器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018509440 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187018371 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3018047 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017245025 Country of ref document: AU Date of ref document: 20170330 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017775408 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017775408 Country of ref document: EP Effective date: 20181031 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17775408 Country of ref document: EP Kind code of ref document: A1 |