WO2017155047A1 - 配電監視制御装置 - Google Patents
配電監視制御装置 Download PDFInfo
- Publication number
- WO2017155047A1 WO2017155047A1 PCT/JP2017/009515 JP2017009515W WO2017155047A1 WO 2017155047 A1 WO2017155047 A1 WO 2017155047A1 JP 2017009515 W JP2017009515 W JP 2017009515W WO 2017155047 A1 WO2017155047 A1 WO 2017155047A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- sensor
- voltage measurement
- representative sensor
- monitoring control
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
Definitions
- Embodiments of the present invention relate to a power distribution monitoring and control apparatus.
- the distribution system for supplying power to consumers is composed of, for example, a 6 to 20 kV class high voltage distribution system (MV system) and a 100 to 400 V class low voltage distribution system (LV system).
- the distribution system branches from the distribution substation feeder to a plurality of low-voltage distribution systems through the high-voltage distribution system, and supplies power to each low-voltage consumer through the low-voltage distribution system. In this distribution system, it is necessary to keep the voltage fluctuation of the low-voltage distribution system within 5 to 10%, for example.
- the voltage of the low-voltage distribution system is not directly monitored and controlled, but the voltage fluctuation of the high-voltage distribution system is maintained in a range of about 2 to 3%, for example, so that the voltage of the low-voltage distribution system is indirectly Monitoring and control are performed.
- smart meters By the way, the introduction of smart meters is being promoted at desired locations in each customer and distribution system, mainly for the purpose of improving the efficiency of the meter reading work for power consumption.
- MDMS Data Management System
- AMI Advanced Metering Infrastructure
- This AMI can collect power measurement values by a smart meter installed in each consumer, for example, at a sampling interval of 15 minutes to 60 minutes. For this reason, AMI is also being used for power saving support for consumers by “visualization” of power consumption.
- an AMI having a bidirectional communication function capable of instructing a smart meter from MDMS to start and stop the power supply operation of a consumer and to transmit a voltage measurement value or the like is also used.
- each customer's smart meter is used as a low voltage sensor for a low voltage distribution system and is used for voltage control.
- a technique for selecting a representative sensor on the basis of measuring a voltage deviation from a voltage management range of a low-voltage distribution system or measuring a maximum value or a minimum value of a voltage in a certain period is known.
- the measured value of the voltage by the representative sensor is acquired at a constant cycle using AMI that enables bidirectional communication, and the maximum and minimum values of the voltage distribution of the target distribution system are monitored, and this voltage is monitored.
- the voltage is adjusted by a low voltage regulator (LVR: Low Voltage Regulator) or a line voltage regulator (SVR: Step Voltage Regulator) so that the distribution is within the voltage management range.
- LVR Low Voltage Regulator
- SVR Step Voltage Regulator
- the problem to be solved by the present invention is to provide a distribution monitoring control device capable of selecting a representative sensor that outputs a voltage measurement value suitable for monitoring distribution voltage distribution or controlling voltage.
- the power distribution monitoring and control device of the embodiment includes an acquisition unit, a representative sensor selection unit, and a monitoring control unit.
- the acquisition unit acquires voltage measurement values measured by a plurality of sensors installed in the distribution system.
- the representative sensor selection unit refers to the voltage measurement value acquired by the acquisition unit, and selects, as a representative sensor, a sensor having high interlocking of the voltage measurement value with respect to another sensor among the plurality of sensors.
- the monitoring control unit monitors a voltage distribution in the distribution system based on a voltage measurement value of the representative sensor selected by the representative sensor selection unit.
- the function block diagram of the power distribution monitoring control apparatus 100 which concerns on 1st Embodiment. 6 is a flowchart illustrating an example of a flow of representative sensor selection processing according to the first embodiment.
- the flowchart which shows an example of the flow of the process performed by the monitoring control part 140 which concerns on 1st Embodiment.
- the function block diagram of the power distribution monitoring control apparatus 100 which concerns on 3rd Embodiment.
- the flowchart which shows an example of the flow of the selection process of the representative sensor which concerns on 3rd Embodiment.
- FIG. 1 is a diagram illustrating an example of a usage environment of the power distribution monitoring control device 100 according to the first embodiment.
- a power distribution system ES that is a target to be monitored and controlled by the power distribution monitoring and control apparatus 100 according to the embodiment includes a high-voltage distribution system (MV system) 10 and a low-voltage distribution system (LV system) 20.
- the power supplied from the backbone system RS is supplied to the low voltage distribution system 20 via the high voltage distribution system 10.
- the electric power supplied from the main system RS is sent to the pole transformer (LV transformer) 14 via the high-voltage distribution line 13 from the transformer feeder provided in the on-load tap switching device (LRT) 15. .
- a delivery point measuring instrument 12 is attached to the delivery point of the high-voltage distribution line 13.
- the electric power transformed to a low voltage by the pole transformer 14 is supplied to the low voltage consumer via the low voltage distribution line 21.
- a smart meter (sensor) 22 is installed in some or all of the low-pressure consumers.
- Each smart meter 22 automatically transmits measurement data to the bidirectional AMI system 30 at a sampling interval of 15 minutes, 30 minutes, or 60 minutes, for example.
- the bidirectional AMI system 30 includes a transmission path that connects the AMI control device 31 and the smart meter 22 in addition to the AMI control device 31 and the meter data management device (MDMS) 32.
- the AMI control device 31 collects the electric energy integration measurement data of each smart meter 22 using the AMI communication function.
- the measurement data of the smart meter 22 includes, for example, identification information of low-voltage consumers, measurement time, and electric energy integrated measurement value.
- the AMI control device 31 instructs each smart meter 22 to transmit the voltage measurement value
- the instructed smart meter 22 transmits the voltage measurement value to the AMI control device 31, and the AMI control device 31 transmits the voltage measurement value.
- the collection of the voltage measurement values is performed, for example, at a frequency of about once every several hours so that the communication load is not excessive.
- the AMI control device 31 is higher than the specific smart meter 22 (representative sensor) that has narrowed down from all the smart meters 22 in response to a request from the power distribution monitoring control device 100. Instructs the frequency to transmit the voltage measurement value.
- the smart meter 22 was illustrated as a means to measure a voltage within the power distribution system ES, not only this but a voltage sensor of any kind may be used.
- the measurement data of the smart meter 22 collected by the AMI control device 31 is sent to the meter data management device 32 and stored.
- the meter data management device 32 includes a storage device such as an HDD (Hard Disk Drive) or a flash memory, and stores various data acquired from the AMI control device 31.
- a load tap switching device (LRT) 15 On the upstream side of the delivery point of the high-voltage distribution line 13, a load tap switching device (LRT) 15 is attached.
- a line voltage regulator (SVR) 16 is attached to an arbitrary portion of the high voltage distribution line 13.
- SVC static reactive power compensator
- the on-load tap switching device 15 includes a transformer, a switching mechanism capable of switching the taps of the windings while the transformer is loaded, a switching mechanism drive device and an attached device.
- the voltage regulator 16 for the line can adjust the voltage by switching the tap of the transformer.
- the static reactive power compensator 17 controls the voltage of the high-voltage distribution line 13 by controlling reactive power (Reactive Power).
- the AMI control apparatus 31 transmits a control command value with respect to these structures which have a reception function.
- the on-load tap switching device 15, the line voltage regulator 16, and the static reactive power compensator 17 are collectively referred to as voltage regulators.
- the control command value given to the voltage adjustment device may be determined by the control of the AMI control device 31 or may be determined based on an instruction from the power distribution monitoring control device 100.
- FIG. 2 is a functional configuration diagram of the power distribution monitoring control device 100 according to the first embodiment.
- the power distribution monitoring control device 100 includes, for example, a communication interface 110, a power distribution area determination unit 120, a representative sensor selection unit 130, a monitoring control unit 140, an input / output unit 150, and a storage unit 160.
- the distribution area determination unit 120, the representative sensor selection unit 130, and the monitoring control unit 140 are software function units that function when a processor such as a CPU (Central Processing Unit) executes a program stored in the storage unit 160, for example.
- a processor such as a CPU (Central Processing Unit) executes a program stored in the storage unit 160, for example.
- some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
- the communication interface 110 is used to connect to a network such as a WAN (Wide Area Network) or a LAN (Local Area Network) constructed between the power distribution monitoring and control apparatus 100 and the AMI control apparatus 31 and the meter data management apparatus 32. It is a communication interface.
- the power distribution monitoring control device 100 and the AMI control device 31 and the meter data management device 32 may be connected by a dedicated line such as a serial bus. Further, the power distribution monitoring control device 100 may be integrated into the AMI control device 31 or the meter data management device 32.
- the distribution area determining unit 120 refers to the voltage measurement value measured by the smart meter 22 acquired by the communication interface 110, and in the distribution system ES, the distribution area which is a unit area to be monitored by the monitoring control unit 140. decide.
- the representative sensor selection unit 130 refers to the voltage measurement value measured by the smart meter 22 acquired by the communication interface 110, and from the one or more smart meters 22 installed in the distribution area in the distribution system ES, One or more representative sensors having a high degree of similarity in voltage measurement values with the sensors are selected.
- the monitoring control unit 140 monitors the voltage of the distribution system ES by monitoring the voltage measurement value by the representative sensor selected by the representative sensor selection unit 130.
- the input / output unit 150 includes, for example, a display unit such as an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence) display device, and an input unit such as a keyboard, a mouse, or a touch panel.
- the input / output unit 150 may include an audio output unit such as a speaker or a buzzer.
- the storage unit 160 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD, a flash memory, and the like. At least a part of the storage unit 160 may be an external device viewed from the power distribution monitoring control device 100 using a NAS (Network Attached Storage) device or the like.
- NAS Network Attached Storage
- FIG. 3 is a flowchart illustrating an example of a flow of representative sensor selection processing according to the first embodiment. The processing of this flowchart is performed, for example, at a frequency of about once every several months, automatically or according to an execution instruction given to the input / output unit 150.
- the power distribution area determination unit 120 acquires time series data of voltage measurement values of the smart meter 22 stored by the meter data management device 32 (S200).
- S200 meter data management device 32
- n the sampling number.
- the voltage measurement values may be used as they are, or they may be converted to values suitable for processing by performing normalization processing.
- the power distribution monitoring and control apparatus 100 may perform the following processing by excluding the measured time series data for the smart meter 22 in which some or all of the time series data is missing.
- Time series data of voltage measurement values of the first smart meter 22 X 11 , X 12 ,..., X 1n
- Time series data of voltage measurement values of the second smart meter 22 X 21 , X 22 ,..., X 2n .
- Time series data of voltage measurement values of the mth smart meter 22 X m1 , X m2 ,..., X mn
- the power distribution area determination unit 120 calculates the similarity between the time series data of the voltage measurement values of the smart meter 22 (S202).
- the representative sensor selection unit 130 calculates the Pearson product moment correlation coefficient R ij as the similarity between the time-series data of the voltage measurement values of the smart meter 22.
- the Pearson product-moment correlation coefficient R ij is expressed by Equation (1).
- the arguments i and j indicate what number the smart meter 22 is.
- those lines on the X i or X j is attached, the arithmetic mean of the X i or X j, i.e. i-th or voltage measurement value of the j-th smart meter 22 the arithmetic mean of the (time-series data) Show.
- a geometric average or a harmonic average may be used instead of the arithmetic average.
- the distribution area determination unit 120 converts the Pearson product moment correlation coefficient R ij represented by the formula (1), the equation (2), the index value D ij indicating the dissimilarity.
- the power distribution area determination unit 120 performs cluster analysis using the index value D ij to group time series data with high similarity, thereby grouping the smart meters 22 related to time series data. . Thereby, the power distribution area determination unit 120 determines a power distribution area that is a unit area to be monitored by the monitoring control unit 140 in the power distribution system ES (S204).
- the power distribution area determination unit 120 may perform either hierarchical cluster analysis or non-hierarchical cluster analysis. However, for a distribution system ES in which an urban center with a short average electrical distance and a suburb with a relatively long average electrical distance are mixed, a hierarchical cluster that can be classified by the level of voltage fluctuation Analysis is preferably used.
- Pearson's product moment correlation coefficient Rij is exemplified as an index value indicating dissimilarity, but Euclidean distance, Manhattan distance, Mahalanobis general distance, etc. are calculated as index values indicating dissimilarity, and calculated. The index value thus obtained may be used for determining the distribution area. However, in order to reflect the dissimilarity between the time-series data of the voltage measurement values, the Pearson product-moment correlation coefficient R ij represented by Equation (2) is preferably used.
- FIG. 4 is a diagram illustrating an example of the power distribution area EA determined by the power distribution area determination unit 120 according to the first embodiment.
- two power distribution areas EA (1) and EA (2) are determined.
- the distribution area EA may extend over a plurality of low-voltage distribution systems or may be included in one low-voltage distribution system.
- the representative sensor selection unit 130 and the monitoring control unit 140 execute the processes of steps S206 and S208 for each power distribution area EA.
- the representative sensor selection unit 130 selects a representative sensor in the power distribution area EA (S206).
- the representative sensor selection unit 130 determines the magnitude of the local voltage fluctuation component in the low voltage distribution system 20. calculate. Further, the representative sensor selection unit 130 selects a representative sensor based on the calculated magnitude of the local voltage fluctuation component.
- the voltage detection values of all smart meters 22 in each distribution area EA with similar voltage fluctuations are defined by equation (3).
- the representative sensor selection unit 130 calculates a local voltage fluctuation component in the low-voltage distribution system 20 by applying factor analysis to Expression (3).
- f p from the voltage fluctuation component f 1 indicates a common voltage fluctuation component of p species contained in all the smart meter 22 with the voltage fluctuations in the high-voltage distribution system 10, in the distribution area EA.
- the coefficients a 11 to amp are the ratio of the common voltage fluctuation component in the voltage fluctuation of each smart meter 22.
- E m from the voltage fluctuation component e 1 shows a voltage variation component which is not common between the smart meter 22.
- X m from the voltage measurement value X 1 measured by the smart meter 22 is indicated by these linear combinations.
- the representative sensor selection unit 130 assumes that the correlation coefficient (equation (1)) between f and e is 0, so that the coefficient a of the common voltage fluctuation component f and the voltage fluctuation component e not common Is estimated.
- Voltage fluctuation component e i which is not common between the smart meter 22 in the formula (3) shows the local voltage fluctuation component of the low-voltage distribution system 20. Therefore, a representative sensor selection unit 130 calculates a voltage fluctuation component e i by performing a factor analysis, the calculated variance sigma i of the voltage fluctuation component e i, local voltage fluctuation component of the low-voltage distribution system 20 Is calculated as the size of.
- the magnitude of the local voltage fluctuation component (variance ⁇ i ) is used as an index indicating the linkage of the voltage measurement values to the other smart meters 22.
- the representative sensor selection unit 130 determines that the interlock is high as the variance ⁇ i is small, and the interlock is low as the variance ⁇ i is large.
- the representative sensor selection unit 130 determines the minimum value among the smart meters 22 in which the magnitude of the local voltage fluctuation component (variance ⁇ i ) obtained by performing the factor analysis is equal to or less than a predetermined value set in advance.
- the smart meter 22 having the highest frequency is selected as the representative sensor. Note that, when only one representative sensor is selected, the representative sensor selection unit 130 may select the smart meter 22 having the smallest local voltage fluctuation component magnitude (variance ⁇ i ) as the representative sensor.
- the representative sensor selection unit 130 calculates the voltage fluctuation component f common to the plurality of smart meters 22 and the voltage fluctuation component e not common to the plurality of smart meters 22, and the magnitude of the voltage fluctuation component e (
- a smart meter 22 having a small variance ( ⁇ i ) (a smart meter having high voltage measurement value linkage to other smart meters) is selected as a representative sensor.
- a representative sensor that outputs a voltage measurement value suitable for monitoring the distribution of the distribution voltage can be selected.
- the smart meter 22 having high linkage with the voltage measurement values for the other smart meters 22 tends to output voltage measurement values that vary typically or on average in the group of smart meters 22. If the representative sensor selection unit 130 monitors the voltage measurement value of the smart meter 22 selected as the representative sensor, the voltage measurement value of the smart meter 22 that is not the representative sensor can be estimated to some extent accurately.
- the monitoring control unit 140 uses the measured voltage values x Rp1 , x Rp2 ,... Of the representative voltage sensors Rp1, Rp2,... As explanatory variables, and the measured value x i of each smart meter 22 other than the representative voltage sensor as an objective variable.
- Each regression equation (voltage estimation equation) is constructed (S208). For example, the monitoring control unit 140 obtains coefficients a 1i , a 2i ,... Of the regression equation represented by the equation (4).
- b i is an offset component that appears in the voltage measurement value of the i-th smart meter 22.
- FIG. 5 is a diagram illustrating a state in which the voltage measurement value y of the smart meter 22 that is not the representative sensor is obtained by a regression equation based on the voltage measurement value x of the smart meter 22 that is the representative sensor by single regression analysis.
- step S210 the monitoring control unit 140 shifts to monitoring using the representative sensor selected in step S206. That is, the monitoring control unit 140 replaces the representative sensor used in the monitoring control (S210).
- the process of step S210 is performed in a time zone where the fluctuation range of the distribution voltage is small (for example, late at night or early morning) in order to prevent discontinuity in the monitoring control.
- the monitoring control unit 140 monitors the voltage distribution for each power distribution area EA based on the voltage measurement value of the representative sensor selected as described above. For example, the monitoring control unit 140 estimates the voltage measurement value of the smart meter 22 that is not the representative sensor for each power distribution area EA. Thereafter, the monitoring control unit 140 monitors the voltage distribution for each power distribution area EA based on the voltage measurement value of the smart meter 22 that is the representative sensor and the estimated value of the voltage measurement value of the smart meter 22 that is not the representative sensor.
- FIG. 6 is a flowchart illustrating an example of a flow of processing executed by the monitoring control unit 140 according to the first embodiment. The process of this flowchart is performed more frequently than the representative sensor selection process (for example, every few minutes to several tens of minutes).
- the monitoring control unit 140 specifies the smart meter 22 that is a representative sensor to the AMI control device 31 via the communication interface 110, and requests acquisition of a voltage measurement value by the smart meter 22 that is the representative sensor (S300). ). As described above, the AMI control device 31 instructs the smart meter 22 that is the representative sensor designated by the monitoring control unit 140 to transmit the voltage measurement value. Thereafter, the AMI control device 31 transfers the voltage measurement value returned from the smart meter 22 to the power distribution monitoring control device 100.
- the monitoring control unit 140 acquires a voltage measurement value by the smart meter 22 as a representative sensor from the AMI control device 31 via the communication interface 110 (S302).
- the monitoring control unit 140 estimates a voltage measurement value by the smart meter 22 that is not the representative sensor, using the voltage estimation formula constructed in step S208 of the representative sensor selection process (S304). Then, the monitoring control unit 140 causes the input / output unit 150 to output information capable of recognizing both the voltage measurement value acquired in step S302 and the voltage measurement value estimated in step S304 (S306). Note that the monitoring control unit 140 may cause the input / output unit 150 to output information capable of recognizing the voltage measurement value estimated in step S304. For example, the input / output unit 150 displays the voltage measurement value (including both the actual measurement value and the estimated value) for each smart meter 22 in the form of a graph or the like on the display unit.
- the monitoring control unit 140 includes, for example, a voltage measurement value (both an actual measurement value and an estimated value) for the smart meter 22 including both the smart meter 22 that is a representative sensor and the smart meter 22 that is not a representative sensor. ) Controls the input / output unit 150 to perform alert display or audio output when the upper limit value is exceeded or below the lower limit value. As a result, the distribution voltage in the distribution area can be controlled to fall within a desired range.
- the monitoring control unit 140 controls the input / output unit 150 to perform alert display or audio output when the voltage measurement value by the smart meter 22 as a representative sensor exceeds the upper limit value or falls below the lower limit value. May be.
- the upper limit value and the lower limit value are preferably set within a range narrower than the upper limit value and the lower limit value provided for both the actual measurement value and the estimated value. Accordingly, it is possible to easily control the distribution voltage in the distribution area to be within a desired range by using the voltage measurement value by the smart meter 22 as the representative sensor.
- the supervisory control unit 140 controls the voltage adjustment device (load tap switching) so that the voltage measurement value of the representative voltage sensor and the estimated value of the voltage measurement value of the smart meter 22 that is not the representative sensor do not deviate from a desired range.
- the device 15, the line voltage regulator 16, and the static reactive power compensator 17) are controlled (S308).
- the monitoring control unit 140 for example, for the smart meter 22 including both the smart meter 22 that is a representative sensor and the smart meter 22 that is not a representative sensor, voltage measurement values (including both actual measurement values and estimated values).
- the AMI control device 31 When either exceeds the upper limit value or falls below the lower limit value, the AMI control device 31 is configured to output a control command value to some or all of the voltage adjusting devices so as to adjust the voltage of the high voltage distribution line 13. Instruct. As a result, the distribution voltage in the distribution area can be controlled to fall within a desired range.
- a representative sensor that outputs a voltage measurement value suitable for monitoring the distribution voltage distribution can be selected.
- the smart meter 22 and the two-way AMI system 30 are utilized without using detailed information regarding the configuration of the power distribution system, power flow calculation, or the like, and the low voltage power distribution. System voltage can be monitored.
- the distribution voltage distribution can be monitored in more detail by estimating the voltage measurement value of the smart meter 22 that is not the representative sensor by regression analysis.
- the number of representative sensors can be made smaller than the number of smart meters 22. For this reason, even when there is a restriction on the communication load, voltage monitoring with good responsiveness can be performed by shortening the monitoring cycle.
- a predetermined area (or input by an operator) may be handled as the distribution area EA, and the distribution area determination unit 120 may be omitted.
- the representative sensor selection unit 130 calculates a voltage fluctuation component f common to the plurality of smart meters 22 and a voltage fluctuation component e not common to the plurality of smart meters 22, and A sensor with a small size was selected as the representative sensor.
- the representative sensor selection unit 130 calculates an average value of a plurality of voltage measurement values measured by each of the plurality of smart meters 22, and a difference between the voltage measurement value and the average value. A sensor having a small variance of the change amount is selected as a representative sensor.
- the representative sensor selection unit 130 calculates a local voltage fluctuation component common to the plurality of smart meters 22 based on the equation (5). Since the common voltage fluctuation component in the distribution area EA is a voltage fluctuation component that appears in many smart meters 22 in the distribution area EA, the representative sensor selection unit 130 determines the average value of the voltage measurement values of the plurality of smart meters 22. V ave is calculated as a common voltage fluctuation component in the power distribution area EA. Further, the representative sensor selection unit 130 uses the variance ⁇ i of the change amount of the difference between the voltage measurement value X i and the average value V ave of each smart meter 22 as the magnitude of the voltage fluctuation component corresponding to the local voltage change. calculate.
- the magnitude of the local voltage fluctuation component (variance ⁇ i ) is used as an index indicating the linkage of the voltage measurement values to the other smart meters 22.
- the representative sensor selection unit 130 determines that the interlock is high as the variance ⁇ i is small, and the interlock is low as the variance ⁇ i is large.
- the representative sensor selection unit 130 selects, as a representative sensor, the smart meter 22 in which the magnitude of the local voltage fluctuation component (dispersion ⁇ i ) obtained using Expression (5) is equal to or less than a predetermined value set in advance. To do. Note that, when only one representative sensor is selected, the representative sensor selection unit 130 may select the smart meter 22 having the smallest local voltage fluctuation component magnitude (variance ⁇ i ) as the representative sensor.
- the representative sensor selection unit 130 calculates an average value V ave of the plurality of voltage measurement value X i measured by each of the plurality of smart meters 22, the voltage measurement value X i and the average value V ave
- the smart meter 22 having a small variance ⁇ i of the difference in the difference between the two is selected as the representative sensor.
- a representative sensor that outputs a voltage measurement value suitable for monitoring the distribution of the distribution voltage can be selected.
- the power distribution monitoring and control apparatus 100 includes a sensor failure determination unit 170 that determines that the smart meter 22 is out of order when the interlock of the smart meter 22 is less than a predetermined value.
- a sensor failure determination unit 170 that determines that the smart meter 22 is out of order when the interlock of the smart meter 22 is less than a predetermined value.
- FIG. 7 is a functional configuration diagram of the power distribution monitoring control device 100 according to the third embodiment.
- the power distribution monitoring control device 100 includes a sensor failure determination unit. 170.
- the sensor failure determination unit 170 is a software function unit that functions when a processor such as a CPU executes a program stored in the storage unit 160, for example.
- the sensor failure determination unit 170 may be a hardware function unit such as an LSI or an ASIC.
- FIG. 8 is a flowchart illustrating an example of the flow of representative sensor selection processing according to the third embodiment.
- the difference from the first embodiment (FIG. 3) is that the sensor failure determination unit 170 performs the process of step S405.
- Steps S400 to S404 and S406 to S410 are the same as steps S200 to S204 and S206 to S210 shown in FIG.
- the representative sensor selection unit 130 calculates the magnitude of the local voltage fluctuation component in the low voltage distribution system 20 for each smart meter 22.
- the representative sensor selection unit 130 a variance sigma i in the first exemplary variance sigma i or the second embodiment in the form, calculated as the magnitude of local voltage fluctuation component.
- the magnitude of the local voltage fluctuation component (variance ⁇ i ) is used as an index indicating the linkage of the voltage measurement values to the other smart meters 22.
- the representative sensor selection unit 130 determines that the interlock is high as the variance ⁇ i is small, and the interlock is low as the variance ⁇ i is large.
- the sensor failure determination unit 170 determines whether the smart meter 22 has failed (S405). For example, the sensor failure determination unit 170 is smart when the local voltage fluctuation component magnitude (variance ⁇ i ) of the smart meter 22 is larger than a predetermined value (when the interlock of the smart meter 22 is less than the predetermined value). It is determined that the meter 22 has failed.
- the representative sensor selection unit 130 selects a representative sensor in the power distribution area EA (S406). Since the method for selecting a representative sensor in the present embodiment is the same as that in the first embodiment or the second embodiment, description thereof is omitted. In the present embodiment, the representative sensor selection unit 130 excludes the smart meter 22 that has been determined to be defective by the sensor failure determination unit 170 from the representative sensor candidates. As a result, the distribution monitoring control device 100 can monitor the distribution of the distribution voltage in the low-voltage distribution system 20 more stably by using a representative sensor that does not fail.
- the monitoring control unit 140 uses the voltage measurement value of the smart meter 22 determined to be defective by the sensor failure determination unit 170 as the voltage adjustment device (the on-load tap switching device 15, the line voltage regulator 16, and It is not used to control the static reactive power compensator 17). As a result, the distribution monitoring control device 100 can control the distribution of the distribution voltage in the low-voltage distribution system 20 more stably by using a representative sensor that is not out of order.
- the power distribution monitoring control device 100 includes the communication interface 110, the representative sensor selection unit 130, and the monitoring control unit 140.
- the communication interface 110 acquires voltage measurement values measured by the plurality of smart meters 22 installed in the distribution system.
- the representative sensor selection unit 130 refers to the voltage measurement value acquired by the communication interface 110, and uses the smart meter 22 having a high linkage of the voltage measurement value with respect to the other smart meter 22 among the plurality of smart meters 22 as a representative sensor. select.
- the monitoring control unit 140 monitors the voltage distribution in the distribution system based on the measured voltage value of the representative sensor selected by the representative sensor selecting unit 130.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
実施形態の配電監視制御装置は、取得部と、代表センサ選択部と、監視制御部とを持つ。前記取得部は、配電系統内に設置された複数のセンサによって計測された電圧計測値を取得する。前記代表センサ選択部は、前記取得部によって取得された前記電圧計測値を参照し、前記複数のセンサのうちの他のセンサに対する電圧計測値の連動性が高いセンサを代表センサとして選択する。前記監視制御部は、前記代表センサ選択部によって選択された前記代表センサの電圧計測値に基づいて、前記配電系統内の電圧分布を監視する。
Description
本発明の実施形態は、配電監視制御装置に関する。
電力を需要家に供給する配電系統は、例えば、6~20kV級の高圧配電系統(MV系統)と、100~400V級の低圧配電系統(LV系統)とで構成される。また、配電系統は、配電用変電所フィーダから高圧配電系統を通じて複数の低圧配電系統に分岐し、低圧配電系統を通じて各低圧需要家へ電力を供給する。この配電系統において、低圧配電系統の電圧変動を、例えば5~10%以内にすることが必要である。しかしながら、実際は、低圧配電系統の電圧を直接的に監視制御するのではなく、高圧配電系統の電圧変動を、例えば2~3%程度の範囲に維持することで、低圧配電系統の電圧を間接的に監視制御することが行われている。
近年、配電系統には太陽光や風力などの再生可能エネルギーを利用した小型分散電源の導入が進んでおり、これに伴って配電系統の電圧変動は拡大する傾向にある。また、需要家内の省エネルギー活動を支援するエネルギー管理システムの導入や電気自動車の充電設備の増加は、配電系統内に予測が難しい電圧変動をもたらす要因となり得る。
ところで、電力使用量の検針業務の効率化を主目的に、各需要家や配電系統における所望の箇所にスマートメータを導入することが進められている。また、スマートメータと、データ管理システムであるMDMS(Meter Data Management System)、並びにこれらを接続する伝送路を含む通信インフラであるAMI(Advanced Metering Infrastructure)が開発されている。このAMIは、例えば15分~60分のサンプリング間隔で、各需要家等に設置されたスマートメータによる電力量計測値を収集することができる。このため、AMIは、電力消費量の「見える化」による需要家の節電支援などにも活用が進められている。また、需要家の電力供給の開始および停止操作の機能や、電圧計測値の送信などをMDMSからスマートメータに指示できる双方向通信の機能をもつAMIも用いられるようになっている。
このような背景において、各需要家のスマートメータを低圧配電系統の低圧電圧センサとして用い、電圧制御に利用する技術が知られている。例えば、低圧配電系統の電圧管理範囲からの電圧逸脱や、ある期間における電圧の最大値あるいは最小値を計測したことを基準として、代表センサを選択する技術が知られている。この技術においては、双方向で通信を可能とするAMIを使用して代表センサによる電圧の計測値を一定周期で取得し、対象配電系統の電圧分布の最大値と最小値を監視し、この電圧分布が電圧管理範囲内となるように低圧電圧調整変圧器(LVR:Low Voltage Regulator)や線路用電圧調節器(SVR:Step Voltage Regulator)などで電圧を調整する。
しかしながら、従来の技術では、最大値や最小値を計測したスマートメータを代表センサとして選択するため、一群のスマートメータの中で標準的な計測値を出力する傾向にあるものを選択することができない。このため、配電電圧の分布を監視したり、電圧を制御したりするのに適した計測値を得ることができない場合があった。
本発明が解決しようとする課題は、配電電圧の分布の監視または電圧の制御に適した電圧計測値を出力する代表センサを選択することができる配電監視制御装置を提供することである。
実施形態の配電監視制御装置は、取得部と、代表センサ選択部と、監視制御部とを持つ。前記取得部は、配電系統内に設置された複数のセンサによって計測された電圧計測値を取得する。前記代表センサ選択部は、前記取得部によって取得された前記電圧計測値を参照し、前記複数のセンサのうちの他のセンサに対する電圧計測値の連動性が高いセンサを代表センサとして選択する。前記監視制御部は、前記代表センサ選択部によって選択された前記代表センサの電圧計測値に基づいて、前記配電系統内の電圧分布を監視する。
以下、実施形態の配電監視制御装置を、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態に係る配電監視制御装置100の使用環境の一例を示す図である。実施形態の配電監視制御装置100が監視制御する対象である配電系統ESは、高圧配電系統(MV系統)10と低圧配電系統(LV系統)20とを含む。基幹系統RSから供給される電力は、高圧配電系統10を介して低圧配電系統20に供給される。
図1は、第1の実施形態に係る配電監視制御装置100の使用環境の一例を示す図である。実施形態の配電監視制御装置100が監視制御する対象である配電系統ESは、高圧配電系統(MV系統)10と低圧配電系統(LV系統)20とを含む。基幹系統RSから供給される電力は、高圧配電系統10を介して低圧配電系統20に供給される。
基幹系統RSから供給される電力は、負荷時タップ切替装置(LRT)15に設けられた変圧器の送出しフィーダから高圧配電線13を介して柱上変圧器(LV変圧器)14に送られる。高圧配電線13の送出点には、送出点計測器12が取り付けられている。柱上変圧器14によって低圧に変圧された電力は、低圧配電線21を介して低圧需要家に供給される。低圧需要家のうち一部または全部には、スマートメータ(センサ)22が設置される。
各スマートメータ22は、例えば、15分、30分、60分のいずれかのサンプリング間隔で、双方向AMIシステム30に計測データを自動的に送信する。双方向AMIシステム30は、AMI制御装置31と、メータデータ管理装置(MDMS)32との他、AMI制御装置31とスマートメータ22とを接続する伝送路を備える。AMI制御装置31は、AMI通信機能を用いて各スマートメータ22の電力量積算計測データを収集する。スマートメータ22の計測データには、例えば、低圧需要家の識別情報、計測時刻、電力量積算計測値が含まれる。
また、AMI制御装置31が各スマートメータ22に電圧計測値の送信を指示すると、指示されたスマートメータ22は、電圧計測値をAMI制御装置31に送信し、AMI制御装置31はこの電圧計測値を収集する。この電圧計測値の収集は、通信負荷が過大とならないように、例えば、数時間に1回程度の頻度で行われる。
更に、本実施形態の場合、AMI制御装置31は配電監視制御装置100からの要求に応じて、全てのスマートメータ22から絞り込みを行った特定のスマートメータ22(代表センサ)に対して、より高頻度に電圧計測値の送信を指示する。なお、配電系統ES内で電圧を測定する手段としてスマートメータ22を例示したが、これに限らず、如何なる種類の電圧センサを用いてもよい。
AMI制御装置31により収集されたスマートメータ22の計測データは、メータデータ管理装置32に送られて保存される。メータデータ管理装置32は、HDD(Hard Disk Drive)やフラッシュメモリ等の記憶装置を備え、AMI制御装置31から取得した各種データを記憶する。
高圧配電線13の送出点よりも上流側には、負荷時タップ切替装置(LRT)15が取り付けられている。高圧配電線13の任意の箇所には、線路用電圧調節器(SVR)16が取り付けられている。高圧配電線13の終端付近には、静止型無効電力補償装置(SVC)17が取り付けられている。
負荷時タップ切替装置15は、変圧器と、変圧器の負荷をかけた状態で巻線のタップを切り換え可能な切替機構と、切替機構の駆動装置および付属装置とを備える。線路用電圧調節器16も同様に、変圧器のタップを切換えて電圧を調整することができる。静止型無効電力補償装置17は、無効電力(Reactive Power)を制御することで、高圧配電線13の電圧を制御する。そして、AMI制御装置31は、受信機能を有するこれらの構成に対して制御指令値を送信する。以下、負荷時タップ切替装置15、線路用電圧調節器16、および静止型無効電力補償装置17を、電圧調整機器と総称する。電圧調整機器に対して与えられる制御指令値は、AMI制御装置31の制御によって決定されてもよいし、配電監視制御装置100からの指示に基づいて決定されてもよい。
図2は、第1の実施形態に係る配電監視制御装置100の機能構成図である。配電監視制御装置100は、例えば、通信インターフェース110と、配電エリア決定部120と、代表センサ選択部130と、監視制御部140と、入出力部150と、記憶部160とを備える。配電エリア決定部120、代表センサ選択部130および監視制御部140は、例えば、記憶部160に格納されたプログラムをCPU(Central Processing Unit)等のプロセッサが実行することで機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。
通信インターフェース110は、配電監視制御装置100と、AMI制御装置31やメータデータ管理装置32との間で構築されるWAN(Wide Area Network)やLAN(Local Area Network)等のネットワークに接続するための通信インターフェースである。なお、配電監視制御装置100と、AMI制御装置31やメータデータ管理装置32との間は、シリアルバス等の専用線で接続されてもよい。また、配電監視制御装置100は、AMI制御装置31またはメータデータ管理装置32に統合されてもよい。
配電エリア決定部120は、通信インターフェース110により取得された、スマートメータ22により計測された電圧計測値を参照し、配電系統ESにおいて、監視制御部140が監視対象とする単位エリアである配電エリアを決定する。
代表センサ選択部130は、通信インターフェース110により取得された、スマートメータ22により計測された電圧計測値を参照し、配電系統ESにおける配電エリア内に設置された1以上のスマートメータ22から、他のセンサとの間で電圧計測値の類似度が高い1つ以上の代表センサを選択する。
監視制御部140は、代表センサ選択部130により選択された代表センサによる電圧計測値を監視することで、配電系統ESの電圧監視を行う。
入出力部150は、例えば、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)表示装置等の表示部と、キーボードやマウス、タッチパネル等の入力部とを備える。また、入出力部150は、スピーカやブザー等の音声出力部を含んでもよい。
記憶部160は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)、HDD、フラッシュメモリ等を含む。なお、記憶部160のうち少なくとも一部は、NAS(Network Attached Storage)装置等を利用した、配電監視制御装置100から見た外部装置であってもよい。
[代表センサの選択]
以下、配電エリア決定部120、代表センサ選択部130および監視制御部140の機能について説明する。図3は、第1の実施形態に係る代表センサの選択処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、数か月に1回程度の頻度で、自動的に或いは入出力部150に対してなされた実行指示に従って行われる。
以下、配電エリア決定部120、代表センサ選択部130および監視制御部140の機能について説明する。図3は、第1の実施形態に係る代表センサの選択処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、数か月に1回程度の頻度で、自動的に或いは入出力部150に対してなされた実行指示に従って行われる。
まず、配電エリア決定部120は、メータデータ管理装置32により保存されたスマートメータ22の電圧計測値の時系列データを取得する(S200)。以下、m個のスマートメータ22が存在すると仮定し、下記のような定義を用いて説明を行う。式中、nはサンプリング数である。計測サンプリング間隔を15分として24時間分のデータを取得した場合は、n=96となる。これらの時系列データは、電圧計測値がそのまま使用されてもよいが、正規化処理を行って処理に適した値に変換されたものであってもよい。また、配電監視制御装置100は、時系列データの一部または全部に欠落等があるスマートメータ22に関しては、その計測した時系列データを除外して、以下の処理を行ってもよい。
1番目のスマートメータ22の電圧計測値の時系列データ:X11,X12,…,X1n
2番目のスマートメータ22の電圧計測値の時系列データ:X21,X22,…,X2n…
m番目のスマートメータ22の電圧計測値の時系列データ:Xm1,Xm2,…,Xmn
2番目のスマートメータ22の電圧計測値の時系列データ:X21,X22,…,X2n…
m番目のスマートメータ22の電圧計測値の時系列データ:Xm1,Xm2,…,Xmn
次に、配電エリア決定部120は、スマートメータ22の電圧計測値の時系列データ同士の類似度を算出する(S202)。代表センサ選択部130は、例えば、ピアソンの積率相関係数Rijを、スマートメータ22の電圧計測値の時系列データ同士の類似度として算出する。ピアソンの積率相関係数Rijは、式(1)で表される。なお、引数iおよびjは、何番目のスマートメータ22であるかを示している。また、XiまたはXjの上に線が付されたものは、XiまたはXjの算術平均、すなわちi番目またはj番目のスマートメータ22の電圧計測値(時系列データ)の算術平均を示している。なお、算術平均に代えて幾何平均や調和平均を用いてもよい。
次に、配電エリア決定部120は、式(1)で示されるピアソンの積率相関係数Rijを、式(2)により、非類似性を示す指標値Dijに変換する。
そして、配電エリア決定部120は、例えば、指標値Dijを用いたクラスタ分析を行って、類似度が高い時系列データをグループ化することで、時系列データに係るスマートメータ22をグループ化する。これにより、配電エリア決定部120は、配電系統ESにおいて監視制御部140が監視対象とする単位エリアである配電エリアを決定する(S204)。
配電エリア決定部120は、階層型のクラスタ分析と、非階層型のクラスタ分析のいずれを行ってもよい。しかしながら、平均的な電気的な距離が短い都心部と、相対的に平均的な電気的な距離が長い郊外が混在する配電系統ESに対しては、電圧変動のレベルで分類できる階層型のクラスタ分析が好適に用いられる。また、非類似性を示す指標値として、ピアソンの積率相関係数Rijを例示したが、ユークリッド距離、マンハッタン距離、マハラノビスの汎距離等を、非類似性を示す指標値として算出し、算出した指標値を配電エリアの決定に用いてもよい。但し、電圧計測値の時系列データ同士の非類似性を反映することを可能とするためには、式(2)に示されるピアソンの積率相関係数Rijが好適に用いられる。
図4は、第1の実施形態に係る配電エリア決定部120により決定される配電エリアEAの一例を示す図である。図4においては、配電エリアEA(1)とEA(2)の二つが決定されている。図4に示されるように、配電エリアEAは、複数の低圧配電系統に跨る場合や、1つの低圧配電系統内に含まれる場合がある。
次に、代表センサ選択部130および監視制御部140が、ステップS206およびS208の処理を配電エリアEA毎に実行する。まず、代表センサ選択部130は、配電エリアEA内における代表センサを選択する(S206)。
代表センサ選択部130は、配電エリア決定部120により決定された各配電エリアEA内の各スマートメータ22の電圧計測値に基づいて、低圧配電系統20内の局所的な電圧変動成分の大きさを算出する。また、代表センサ選択部130は、算出した局所的な電圧変動成分の大きさに基づいて代表センサを選択する。
例えば、電圧変動が類似する各配電エリアEA内の全スマートメータ22の電圧検出値は、式(3)により定義される。代表センサ選択部130は、式(3)に因子分析を適用することで、低圧配電系統20内の局所的な電圧変動成分を算出する。
式(3)において、電圧変動成分f1からfpは、高圧配電系統10の電圧変動等、配電エリアEA内にある全てのスマートメータ22に含まれるp種の共通の電圧変動成分を示す。係数a11からampは、各スマートメータ22の電圧変動における共通の電圧変動成分の割合である。電圧変動成分e1からemは、各スマートメータ22の間で共通しない電圧変動成分を示す。各スマートメータ22によって計測された電圧計測値X1からXmは、これらの線形結合により示される。代表センサ選択部130は、因子分析において、fとeの相関係数(式(1))が0と仮定することで、共通の電圧変動成分fの係数aと、共通しない電圧変動成分eとを推定する。
式(3)における各スマートメータ22の間で共通しない電圧変動成分eiは、低圧配電系統20内の局所的な電圧変動成分を示す。このため、代表センサ選択部130は、因子分析を行うことにより電圧変動成分eiを算出し、算出した電圧変動成分eiの分散σiを、低圧配電系統20内の局所的な電圧変動成分の大きさとして算出する。ここで、局所的な電圧変動成分の大きさ(分散σi)は、他のスマートメータ22に対する電圧計測値の連動性を示す指標として用いられる。例えば、代表センサ選択部130は、分散σiが小さいほど連動性が高く、分散σiが大きいほど連動性が低いと判断する。
代表センサ選択部130は、因子分析を行うことによって得られた局所的な電圧変動成分の大きさ(分散σi)が、予め設定された規定値以下となるスマートメータ22のうち、最小値となる頻度が最も高いスマートメータ22を代表センサとして選択する。なお、代表センサ選択部130は、代表センサを一つだけ選択する場合、局所的な電圧変動成分の大きさ(分散σi)が最も小さいスマートメータ22を代表センサとして選択してもよい。
このように、代表センサ選択部130は、複数のスマートメータ22に共通する電圧変動成分fと、複数のスマートメータ22に共通しない電圧変動成分eとを算出し、電圧変動成分eの大きさ(分散σi)が小さいスマートメータ22(他のスマートメータに対する電圧計測値の連動性が高いスマートメータ)を、代表センサとして選択する。
係る処理によって、配電電圧の分布を監視するのに適した電圧計測値を出力する代表センサを選択することができる。他のスマートメータ22に対する電圧計測値の連動性が高いスマートメータ22は、スマートメータ22群の中で代表的または平均的に変動する電圧計測値を出力する傾向を有する。代表センサ選択部130は、代表センサとして選択されたスマートメータ22の電圧計測値を監視すれば、代表センサでないスマートメータ22の電圧計測値を、ある程度正確に推定することができる。
次に、監視制御部140が、代表電圧センサRp1、Rp2、…の電圧計測値xRp1、xRp2、…を説明変数とし、代表電圧センサ以外の各スマートメータ22の計測値xiを目的変数とする回帰式(電圧推定式)をそれぞれ構築する(S208)。例えば、監視制御部140は、式(4)で表される回帰式の係数a1i、a2i、…を求める。式(4)中、biは、i番目のスマートメータ22の電圧計測値に現れるオフセット成分である。
ここで、代表電圧センサが1つである場合には、電圧推定式は、単回帰分析による回帰式となる。一方、代表センサが2つ以上存在する場合や、配電エリアEAへの潮流が計測できる場合には、電圧推定式は、重回帰分析を用いた回帰式であってもよい。図5は、単回帰分析によって、代表センサであるスマートメータ22の電圧計測値xに基づいて、代表センサでないスマートメータ22の電圧計測値yが回帰式で求められる様子を示す図である。
次に、監視制御部140は、ステップS206で選択された代表センサを用いた監視に移行する。すなわち、監視制御部140は、監視制御において使用する代表センサの入れ替えを行う(S210)。ステップS210の処理は、監視制御に不連続が生じるのを防止するために、配電電圧の変動幅が小さい時間帯(例えば深夜や早朝等)に行われる。
[監視制御]
監視制御部140は、上記のように選択された代表センサの電圧計測値に基づいて、配電エリアEA毎の電圧分布を監視する。監視制御部140は、例えば、配電エリアEA毎に、代表センサでないスマートメータ22の電圧計測値を推定する。その後、監視制御部140は、代表センサであるスマートメータ22の電圧計測値と、代表センサでないスマートメータ22の電圧計測値の推定値とに基づいて、配電エリアEA毎の電圧分布を監視する。
監視制御部140は、上記のように選択された代表センサの電圧計測値に基づいて、配電エリアEA毎の電圧分布を監視する。監視制御部140は、例えば、配電エリアEA毎に、代表センサでないスマートメータ22の電圧計測値を推定する。その後、監視制御部140は、代表センサであるスマートメータ22の電圧計測値と、代表センサでないスマートメータ22の電圧計測値の推定値とに基づいて、配電エリアEA毎の電圧分布を監視する。
図6は、第1の実施形態に係る監視制御部140により実行される処理の流れの一例を示すフローチャートである。本フローチャートの処理は、代表センサの選択処理よりも高頻度に(例えば数分から数十分毎に)行われる。
まず、監視制御部140は、通信インターフェース110を介してAMI制御装置31に、代表センサであるスマートメータ22を指定して、代表センサであるスマートメータ22による電圧計測値の取得を要求する(S300)。前述したようにAMI制御装置31は、監視制御部140により指定された代表センサであるスマートメータ22に対して電圧計測値の送信を指示する。その後、AMI制御装置31は、スマートメータ22から返信される電圧計測値を配電監視制御装置100に転送する。
次に、監視制御部140は、通信インターフェース110を介してAMI制御装置31から、代表センサであるスマートメータ22による電圧計測値を取得する(S302)。
次に、監視制御部140は、代表センサの選択処理のステップS208で構築しておいた電圧推定式を用いて、代表センサでないスマートメータ22による電圧計測値を推定する(S304)。そして、監視制御部140は、ステップS302で取得した電圧計測値と、ステップS304で推定した電圧計測値との双方を認識可能な情報を入出力部150に出力させる(S306)。なお、監視制御部140は、ステップS304で推定した電圧計測値を認識可能な情報を入出力部150に出力させてもよい。入出力部150は、例えば、スマートメータ22毎の電圧計測値(実計測値と推定値との双方を含む)を、グラフ等の形式で表示部によって表示する。
また、監視制御部140は、例えば、代表センサであるスマートメータ22と、代表センサでないスマートメータ22との双方を含むスマートメータ22について、電圧計測値(実計測値と推定値との双方を含む)のいずれかが上限値を超え、または下限値を下回った場合に、アラート表示または音声出力を行うように入出力部150を制御する。これによって、配電エリア内の配電電圧が所望の範囲内に収まるように制御することができる。
また、監視制御部140は、代表センサであるスマートメータ22による電圧計測値が上限値を超え、または下限値を下回った場合に、アラート表示または音声出力を行うように入出力部150を制御してもよい。この場合、上限値および下限値は、実計測値と推定値との双方に対して設けられる上限値および下限値よりも狭い範囲内で設定されると好適である。これによって、代表センサであるスマートメータ22による電圧計測値を用いて、簡易的に、配電エリア内の配電電圧が所望の範囲内に収まるように制御することができる。
次に、監視制御部140は、代表電圧センサの電圧計測値と、代表センサでないスマートメータ22の電圧計測値の推定値とが所望の範囲を逸脱しないように、電圧調整機器(負荷時タップ切替装置15、線路用電圧調節器16、および静止型無効電力補償装置17)を制御する(S308)。
監視制御部140は、例えば、代表センサであるスマートメータ22と、代表センサでないスマートメータ22との双方を含むスマートメータ22について、電圧計測値(実計測値と推定値との双方を含む)のいずれかが上限値を超え、または下限値を下回った場合に、高圧配電線13の電圧を調整するように電圧調整機器の一部または全部に制御指令値を出力するようにAMI制御装置31に指示する。これによって、配電エリア内の配電電圧が所望の範囲内に収まるように制御することができる。
以上説明した第1の実施形態の配電監視制御装置100によれば、配電電圧の分布を監視するのに適した電圧計測値を出力する代表センサを選択することができる。
また、第1の実施形態の配電監視制御装置100によれば、配電系統の構成に関する詳しい情報や潮流計算等を用いることなく、スマートメータ22と双方向AMIシステム30とを活用して、低圧配電系統の電圧監視を行うことができる。
また、第1の実施形態の配電監視制御装置100によれば、回帰分析により代表センサでないスマートメータ22の電圧測定値を推定することで、より詳細に配電電圧の分布を監視することができる。
また、第1の実施形態の配電監視制御装置100によれば、代表センサの数をスマートメータ22の数よりも少なくすることできる。このため、通信負荷に制約がある場合であっても、監視周期を短縮して応答性のよい電圧監視が可能になる。
なお、第1の実施形態において、予め定められた(あるいはオペレータによって入力された)エリアが配電エリアEAとして扱われるものとし、配電エリア決定部120を省略した構成としてもよい。
(第2の実施形態)
第1の実施形態において、代表センサ選択部130は、複数のスマートメータ22に共通する電圧変動成分fと、複数のスマートメータ22に共通しない電圧変動成分eとを算出し、電圧変動成分eの大きさが小さいセンサを、代表センサとして選択した。これに対し、第2の実施形態において、代表センサ選択部130は、複数のスマートメータ22のそれぞれによって計測された複数の電圧計測値の平均値を算出し、電圧計測値と平均値との差分の変化量の分散が小さいセンサを、代表センサとして選択する。以下、第1の実施形態との相違点を中心に説明し、第1の実施形態との共通点については説明を省略する。
第1の実施形態において、代表センサ選択部130は、複数のスマートメータ22に共通する電圧変動成分fと、複数のスマートメータ22に共通しない電圧変動成分eとを算出し、電圧変動成分eの大きさが小さいセンサを、代表センサとして選択した。これに対し、第2の実施形態において、代表センサ選択部130は、複数のスマートメータ22のそれぞれによって計測された複数の電圧計測値の平均値を算出し、電圧計測値と平均値との差分の変化量の分散が小さいセンサを、代表センサとして選択する。以下、第1の実施形態との相違点を中心に説明し、第1の実施形態との共通点については説明を省略する。
図3のステップS206において、代表センサ選択部130は、式(5)に基づいて複数のスマートメータ22に共通する局所的な電圧変動成分を算出する。配電エリアEA内における共通の電圧変動成分は、配電エリアEA内の多くのスマートメータ22に現れる電圧変動成分であるため、代表センサ選択部130は、複数のスマートメータ22の電圧計測値の平均値Vaveを、配電エリアEA内における共通の電圧変動成分として算出する。また、代表センサ選択部130は、各スマートメータ22の電圧計測値Xiと平均値Vaveとの差分の変化量の分散σiを、局所的な電圧変化分の電圧変動成分の大きさとして算出する。ここで、局所的な電圧変動成分の大きさ(分散σi)は、他のスマートメータ22に対する電圧計測値の連動性を示す指標として用いられる。例えば、代表センサ選択部130は、分散σiが小さいほど連動性が高く、分散σiが大きいほど連動性が低いと判断する。
代表センサ選択部130は、式(5)を用いて得られた局所的な電圧変動成分の大きさ(分散σi)が、予め設定された規定値以下となるスマートメータ22を代表センサとして選択する。なお、代表センサ選択部130は、代表センサを一つだけ選択する場合、局所的な電圧変動成分の大きさ(分散σi)が最も小さいスマートメータ22を代表センサとして選択してもよい。
以上説明したように、代表センサ選択部130は、複数のスマートメータ22のそれぞれによって計測された複数の電圧計測値Xiの平均値Vaveを算出し、電圧計測値Xiと平均値Vaveとの差分の変化量の分散σiが小さいスマートメータ22(他のスマートメータに対する電圧計測値の連動性が高いスマートメータ)を、代表センサとして選択する。これによって、配電電圧の分布を監視するのに適した電圧計測値を出力する代表センサを選択することができる。
(第3の実施形態)
第3の実施形態において、配電監視制御装置100は、スマートメータ22の連動性が所定値未満である場合、スマートメータ22は故障していると判定するセンサ故障判定部170を備える。以下、第1および第2の実施形態との相違点を中心に説明し、第1および第2の実施形態との共通点については説明を省略する。
第3の実施形態において、配電監視制御装置100は、スマートメータ22の連動性が所定値未満である場合、スマートメータ22は故障していると判定するセンサ故障判定部170を備える。以下、第1および第2の実施形態との相違点を中心に説明し、第1および第2の実施形態との共通点については説明を省略する。
図7は、第3の実施形態に係る配電監視制御装置100の機能構成図である。配電監視制御装置100は、通信インターフェース110と、配電エリア決定部120と、代表センサ選択部130と、監視制御部140と、入出力部150と、記憶部160とに加えて、センサ故障判定部170を備える。センサ故障判定部170は、例えば、記憶部160に格納されたプログラムをCPU等のプロセッサが実行することで機能するソフトウェア機能部である。また、センサ故障判定部170は、LSIやASIC等のハードウェア機能部であってもよい。
図8は、第3の実施形態に係る代表センサの選択処理の流れの一例を示すフローチャートである。第1の実施形態(図3)との違いは、センサ故障判定部170がステップS405の処理を行う点である。ステップS400からS404、およびS406からS410は、図3に示されるステップS200からS204、およびS206からS210と同様であるので、説明を省略する。
図8のステップS405において、代表センサ選択部130は、各スマートメータ22に対して、低圧配電系統20内の局所的な電圧変動成分の大きさを算出する。例えば、代表センサ選択部130は、第1の実施形態における分散σiまたは第2の実施形態における分散σiを、局所的な電圧変動成分の大きさとして算出する。ここで、局所的な電圧変動成分の大きさ(分散σi)は、他のスマートメータ22に対する電圧計測値の連動性を示す指標として用いられる。例えば、代表センサ選択部130は、分散σiが小さいほど連動性が高く、分散σiが大きいほど連動性が低いと判断する。
センサ故障判定部170は、スマートメータ22の局所的な電圧変動成分の大きさ(分散σi)に基づいて、スマートメータ22が故障したか否かを判定する(S405)。例えば、センサ故障判定部170は、スマートメータ22の局所的な電圧変動成分の大きさ(分散σi)が所定値より大きい場合(スマートメータ22の連動性が所定値未満である場合)、スマートメータ22は故障していると判定する。
次に、代表センサ選択部130は、配電エリアEA内における代表センサを選択する(S406)。本実施形態における代表センサの選択方法は、第1の実施形態または第2の実施形態と同様であるので説明を省略する。なお、本実施形態において、代表センサ選択部130は、センサ故障判定部170によって故障していると判定されたスマートメータ22を、代表センサの候補から外す。これによって、配電監視制御装置100は、故障していない代表センサを活用して、より安定的に低圧配電系統20内の配電電圧の分布を監視することができる。
なお、監視制御部140は、センサ故障判定部170によって故障していると判定されたスマートメータ22の電圧計測値を、電圧調整機器(負荷時タップ切替装置15、線路用電圧調節器16、および静止型無効電力補償装置17)の制御に用いない。これによって、配電監視制御装置100は、故障していない代表センサを活用して、より安定的に低圧配電系統20内の配電電圧の分布を制御することができる。
以上説明した少なくともひとつの実施形態によれば、配電監視制御装置100は、通信インターフェース110と、代表センサ選択部130と、監視制御部140とを持つ。通信インターフェース110は、配電系統内に設置された複数のスマートメータ22によって計測された電圧計測値を取得する。代表センサ選択部130は、通信インターフェース110によって取得された電圧計測値を参照し、複数のスマートメータ22のうちの他のスマートメータ22に対する電圧計測値の連動性が高いスマートメータ22を代表センサとして選択する。監視制御部140は、代表センサ選択部130によって選択された代表センサの電圧計測値に基づいて、配電系統内の電圧分布を監視する。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Claims (7)
- 配電系統内に設置された複数のセンサによって計測された電圧計測値を取得する取得部と、
前記取得部によって取得された前記電圧計測値を参照し、前記複数のセンサのうちの他のセンサに対する電圧計測値の連動性が高いセンサを代表センサとして選択する代表センサ選択部と、
前記代表センサ選択部によって選択された前記代表センサの電圧計測値に基づいて、前記配電系統内の電圧分布を監視する監視制御部と
を有する配電監視制御装置。 - 配電系統内に設置された複数のセンサによって計測された電圧計測値を取得する取得部と、
前記取得部によって取得された前記電圧計測値を参照し、前記複数のセンサのうちの他のセンサに対する電圧計測値の連動性が高いセンサを代表センサとして選択する代表センサ選択部と、
前記代表センサ選択部によって選択された前記代表センサの電圧計測値に基づいて、前記配電系統内の電圧を制御する監視制御部と
を有する配電監視制御装置。 - 前記監視制御部は、前記代表センサ選択部によって選択された前記代表センサの電圧計測値に基づいて、前記代表センサとは異なるセンサの電圧計測値を推定する
請求項1または2記載の配電監視制御装置。 - 前記代表センサ選択部は、前記複数のセンサに共通する第1の電圧変動成分と、前記複数のセンサに共通しない第2の電圧変動成分とを算出し、前記第2の電圧変動成分の大きさが小さいセンサを、前記代表センサとして選択する
請求項1から3のいずれか一項に記載の配電監視制御装置。 - 前記代表センサ選択部は、前記複数のセンサのそれぞれによって計測された複数の電圧計測値の平均値を算出し、前記電圧計測値と前記平均値との差分の変化量の分散が小さいセンサを、前記代表センサとして選択する
請求項1から3のいずれか一項に記載の配電監視制御装置。 - 前記取得部により取得された前記電圧計測値を参照し、前記電圧計測値の類似度が高いセンサをグループ化し、前記グループ化したセンサが設置されたエリアを配電エリアとして決定する配電エリア決定部を更に備え、
前記代表センサ選択部は、前記配電エリア決定部によって決定された前記配電エリア内に設置された前記複数のセンサのうちの、他のセンサに対する電圧計測値の連動性が高いセンサを、前記配電エリアにおける代表センサとして選択する
請求項1から5のいずれか一項に記載の配電監視制御装置。 - 前記センサの前記連動性が所定値未満である場合、前記センサは故障していると判定するセンサ故障判定部を更に備える
請求項1から6のいずれか一項に記載の配電監視制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016048294A JP2017163781A (ja) | 2016-03-11 | 2016-03-11 | 配電監視制御装置 |
JP2016-048294 | 2016-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017155047A1 true WO2017155047A1 (ja) | 2017-09-14 |
Family
ID=59789629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009515 WO2017155047A1 (ja) | 2016-03-11 | 2017-03-09 | 配電監視制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017163781A (ja) |
WO (1) | WO2017155047A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019176091A1 (ja) * | 2018-03-16 | 2019-09-19 | 三菱電機株式会社 | 電圧逸脱検出装置 |
CZ309907B6 (cs) * | 2022-07-15 | 2024-01-24 | Vysoká Škola Báňská - Technická Univerzita Ostrava | Adaptivní monitorovací systém pro rozsáhlé mřížové sítě elektrické distribuční soustavy a způsob jeho nastavení a provozování |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011176933A (ja) * | 2010-02-24 | 2011-09-08 | Fujitsu Ltd | 配電網推定装置および配電網推定方法 |
JP2012005277A (ja) * | 2010-06-18 | 2012-01-05 | Hitachi Ltd | 潮流計算機能を備えた無効電力補償装置、およびそのシステムと方法 |
JP2014087184A (ja) * | 2012-10-24 | 2014-05-12 | Chugoku Electric Power Co Inc:The | 監視装置、監視システム、プログラム |
JP2014233154A (ja) * | 2013-05-29 | 2014-12-11 | 株式会社東芝 | 配電系統監視システム及び配電系統監視装置 |
-
2016
- 2016-03-11 JP JP2016048294A patent/JP2017163781A/ja active Pending
-
2017
- 2017-03-09 WO PCT/JP2017/009515 patent/WO2017155047A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011176933A (ja) * | 2010-02-24 | 2011-09-08 | Fujitsu Ltd | 配電網推定装置および配電網推定方法 |
JP2012005277A (ja) * | 2010-06-18 | 2012-01-05 | Hitachi Ltd | 潮流計算機能を備えた無効電力補償装置、およびそのシステムと方法 |
JP2014087184A (ja) * | 2012-10-24 | 2014-05-12 | Chugoku Electric Power Co Inc:The | 監視装置、監視システム、プログラム |
JP2014233154A (ja) * | 2013-05-29 | 2014-12-11 | 株式会社東芝 | 配電系統監視システム及び配電系統監視装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019176091A1 (ja) * | 2018-03-16 | 2019-09-19 | 三菱電機株式会社 | 電圧逸脱検出装置 |
CZ309907B6 (cs) * | 2022-07-15 | 2024-01-24 | Vysoká Škola Báňská - Technická Univerzita Ostrava | Adaptivní monitorovací systém pro rozsáhlé mřížové sítě elektrické distribuční soustavy a způsob jeho nastavení a provozování |
Also Published As
Publication number | Publication date |
---|---|
JP2017163781A (ja) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6392155B2 (ja) | 配電監視制御装置 | |
EP2259403B1 (en) | Method and system for reducing feeder circuit loss using demand response | |
US8150557B2 (en) | Method and system for reducing feeder circuit loss using demand response | |
US9563218B2 (en) | Electric power system control with measurement of energy demand and energy efficiency using t-distributions | |
WO2016158198A1 (ja) | 系統安定化制御装置および電力系統制御システム | |
WO2016047203A1 (ja) | 電力系統監視装置および電力系統監視システム | |
EP2763261A1 (en) | Power system state estimation device and power system using same | |
US20180262010A1 (en) | Device for Controlling Load Frequency and Method for Controlling Load Frequency | |
CA2906025C (en) | Maximizing of energy delivery system compatibility with voltage optimization using ami-based data control and analysis | |
US20150168465A1 (en) | Method and apparatus for electric power system distribution state estimations | |
JP2010011554A (ja) | 配電系統の電圧管理方法、変圧器のタップ選定方法 | |
US9847639B2 (en) | Electric power system control with measurement of energy demand and energy efficiency | |
JP5923454B2 (ja) | 電力系統管理装置、及び方法 | |
US11353908B2 (en) | Centralized voltage control apparatus and centralized voltage control system | |
WO2017155047A1 (ja) | 配電監視制御装置 | |
Mokred et al. | Voltage stability assessment and contingency ranking in power systems based on modern stability assessment index | |
JP5959037B1 (ja) | 発電量算出装置、発電量算出方法および発電量算出プログラム | |
CN108334990A (zh) | 一种大电网无功补偿选址及容量优化方法及系统 | |
WO2016123327A1 (en) | Electric power system control with measurement of energy demand and energy efficiency | |
JP2017103862A (ja) | 電力推定装置、電力推定方法及び電力推定プログラム | |
WO2019097672A1 (ja) | 電力系統監視装置、電力系統監視方法およびプログラム | |
JP2019193387A (ja) | 電力系統監視装置および電力系統監視方法 | |
Lim et al. | Expert criteria based probabilistic power system health index model and visualization | |
CN106160019A (zh) | 基于效率和均流指标面积和最大的并联供电系统最优点确定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17763387 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17763387 Country of ref document: EP Kind code of ref document: A1 |