[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017141806A1 - イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス - Google Patents

イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス Download PDF

Info

Publication number
WO2017141806A1
WO2017141806A1 PCT/JP2017/004704 JP2017004704W WO2017141806A1 WO 2017141806 A1 WO2017141806 A1 WO 2017141806A1 JP 2017004704 W JP2017004704 W JP 2017004704W WO 2017141806 A1 WO2017141806 A1 WO 2017141806A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic compound
lithium
electrolytic solution
mass
ppm
Prior art date
Application number
PCT/JP2017/004704
Other languages
English (en)
French (fr)
Inventor
永倉 直人
佐藤 誠
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2017141806A1 publication Critical patent/WO2017141806A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/36Compounds containing oxirane rings with hydrocarbon radicals, substituted by nitrogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel ionic compound, a novel non-aqueous electrolyte containing the ionic compound, and a novel electricity storage device using the non-aqueous electrolyte.
  • an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent is used as the electrolytic solution used in these power storage devices.
  • a non-aqueous solvent for example, a mixed solvent containing at least a non-aqueous solvent such as ethylene carbonate, propylene carbonate, and diethyl carbonate is generally used.
  • the lithium salt LiPF 6 , LiBF 4 or the like is used.
  • a negative electrode active material of a lithium ion secondary battery in an electricity storage device a carbonaceous material capable of occluding and releasing lithium ions, and a metal or alloy using silicon or tin aiming at high capacity Materials such as carbonaceous materials are known, and at present, carbonaceous natural graphite, artificial graphite, amorphous carbon and the like are mainly used.
  • a transition metal composite oxide capable of inserting and extracting lithium ions is used. Typical examples of transition metals are cobalt, nickel, manganese, iron and the like.
  • lithium ion secondary battery uses a highly active positive electrode and negative electrode, it is known that the charge / discharge capacity is reduced by repeated use due to a side reaction between the electrode and the electrolytic solution. In particular, there is a problem that the capacity decreases or the resistance increases when stored at high temperature. Further, it is known that the capacity of a lithium ion secondary battery decreases when used at a low temperature. Therefore, in the lithium ion secondary battery, various studies have been made on a non-aqueous solvent, an electrolyte, and the like that are components of the electrolytic solution in order to improve battery characteristics.
  • a protective film called SEI Solid Electrolyte Interface
  • a cyclic carbonate such as vinyl carbonate that can also be used as a non-aqueous solvent is currently used for forming the protective film.
  • vinyl carbonate it is known that vinyl carbonate is decomposed (or polymerized) in the negative electrode, and the decomposed product (or polymerized product) helps to form a good SEI film (Non-patent Document). 1).
  • additives for example, vinyl carbonate and cyclic sulfonic acid ester
  • vinyl carbonate and cyclic sulfonic acid ester are less effective if the amount is too small, and if they are too much, they may adversely affect physical properties such as lithium ion conductivity in the electrolytic solution.
  • vinyl carbonate is said to affect the formation of SEI films on positive and negative electrodes, but it is a kind of non-aqueous solvent that does not have conductivity.
  • cyclic sulfonic acid esters have an effect on the positive electrode, but are said to have no effect on the negative electrode, and increasing the amount of addition does not improve the negative electrode.
  • a lithium salt is known, and it is known that the lithium salt does not deteriorate the physical properties of the electrolytic solution. Although this lithium salt is not clear, it is said to form a protective film, and since it is a conductive substance, the decrease in lithium ion conductivity can be reduced. As a result, a decrease in physical properties of the electrolyte can be suppressed.
  • LiFSi and LiBF 2 CN 2 are known as additives.
  • improved performance it is known that LiFSi can be added to prevent swelling of a lithium ion secondary battery during high temperature storage (see, for example, Patent Document 2).
  • the addition of LiBF 2 (CN) 2 can extend the life of lithium ion secondary batteries when used at high temperatures and improve low-temperature characteristics (see, for example, Patent Document 3).
  • the addition of the lithium salt can exhibit excellent characteristics.
  • an additive composed of an ionic compound is considered. If it is an ionic compound, it is thought that the SEI film
  • Patent Document 4 although an alkali metal cyanoborate represented by M + [B (CN 4 )] ⁇ (M is an alkali metal) is proposed as an ionic compound, a vinyl group, an epoxy group, or the like is proposed. Compounds having the following reactive groups are not taught.
  • the present invention solves the above-mentioned problems of the prior art, and an object thereof is to provide a novel ionic compound, in particular, a novel ionic compound that can improve the performance of an electricity storage device. . Furthermore, it is an object to provide a nonaqueous electrolytic solution containing the ionic compound and an electricity storage device using the nonaqueous electrolytic solution.
  • the present inventors have intensively studied to solve the above problems.
  • Various studies were conducted on ionic compounds in which cations are involved in the formation of a protective film on the surface of the negative electrode and anions are involved in the formation of the protective film on the surface of the positive electrode by being decomposed at the positive electrode and the negative electrode.
  • an ionic compound comprising a polymerizable group (reactive group), an organic cation having both moderate hydrophilicity and hydrophobicity, and a cyanofluoroborate-based anion can solve the above-mentioned problems. It came to complete.
  • R 1 is a vinyl group or an epoxy group
  • R 2 and R 3 are each an alkyl group having 1 to 3 carbon atoms
  • a is an integer of 1 to 3
  • b is an integer of 1 to 2
  • c is an integer of 1 to 3
  • k is an integer of 1 to 3
  • b + k is an integer of 2 to 4
  • the ionic compound according to [1] At least one non-aqueous solvent selected from the group consisting of a chain carbonate, a cyclic carbonate, a chain ester, a lactone, and an ether; and A nonaqueous electrolytic solution comprising at least one lithium compound that is soluble in the nonaqueous solvent.
  • the present invention it is possible to provide an ionic compound that can be suitably blended in an electricity storage device. And the non-aqueous electrolyte containing the ionic compound of this invention turns into a non-aqueous electrolyte which can improve the suppression of the resistance rise after a high temperature preservation, especially the conductivity at low temperature.
  • the electrical storage device using this non-aqueous electrolyte can be provided.
  • the non-aqueous electrolyte of the present invention is suitably used as a non-aqueous electrolyte for a vehicle-mounted power storage device or the like, or a non-aqueous electrolyte for a large battery for storing natural energy, and the electrochemical properties at high temperatures are unlikely to deteriorate.
  • An electric storage device such as a lithium battery, a lithium ion battery, or a lithium ion capacitor that operates even in a low-temperature environment can be obtained.
  • FIG. 1 shows the measurement results of the initial charge / discharge characteristics of Example 4.
  • FIG. 2 shows the measurement results of the initial charge / discharge characteristics of Example 5.
  • FIG. 3 shows the measurement results of the initial charge / discharge characteristics of Example 6.
  • the present invention is a novel ionic compound comprising a polymerizable group (reactive group), a cation having both moderate hydrophilicity and hydrophobicity, and a cyanofluoroborate-based anion. It is an ionic compound represented by (1).
  • the ionic compound of the present invention is represented by the following formula (1).
  • R 1 is a vinyl group or an epoxy group
  • R 2 and R 3 are each an alkyl group having 1 to 3 carbon atoms
  • a is an integer of 1 to 3
  • b is an integer of 1 to 2
  • c is an integer of 1 to 3
  • k is an integer of 1 to 3
  • b + k is an integer of 2 to 4
  • R 1 is a vinyl group or an epoxy group.
  • the group enclosed by (R 1 —CH 2 ) — is an allyl group (when R 1 is a vinyl group) or a glycidyl group (when R 1 is an epoxy group).
  • R 2 and R 3 are each an alkyl group having 1 to 3 carbon atoms. Specific examples include a methyl group, an ethyl group, an N-propyl group, and an i-propyl group. Among these, a methyl group is preferable in consideration of expression of effects, productivity of the ionic compound itself, and the like.
  • a is an integer of 1 to 3
  • b is an integer of 1 to 2
  • c is an integer of 1 to 3
  • k is an integer of 1 to 3
  • b + k is 2 to It is an integer of 4.
  • the ionic compound of the present invention exhibits an excellent effect is not clear, but the cation moiety has a polymerizable group (reactive group) and has an appropriate hydrophilicity. It is estimated that. That is, the presence of R 1 makes it easier to form a protective film on the negative electrode surface, and at the same time, it relates to hydrophobicity.
  • c is related to hydrophilicity
  • b is related to a polymerizable group (reactive group), and these balances ensure that the protective film formed on the negative electrode surface is stable even at high temperatures. It is considered that the lithium ion permeability is improved. As a result, it is estimated that an excellent effect is exhibited. Therefore, b is 1 to 2.
  • C is preferably 1 to 2.
  • K represents the number of the hydrophilic groups and is an integer of 1 to 3. Although k is considered to have an optimum value depending on the number of c, k is an integer of 1 to 3 in order to maintain the balance between hydrophilicity and hydrophobicity in the ionic compound.
  • a is an integer of 1 to 3, and among them, a is preferably an integer of 1 to 2 in order to exert more effect.
  • the ionic compound may be solid or liquid at room temperature, but is preferably liquid for the following reasons. When it is a liquid, it is easily dissolved in the non-aqueous organic solvent described in detail below, and even when the electrolyte containing the ionic compound is held at a low temperature (for example, a temperature of 0 ° C. or lower), It becomes difficult to deposit in the electrolytic solution as compared with a solid one. Many of the ionic compounds of the present invention become liquid at room temperature.
  • the ionic compound of the present invention is not particularly limited, but can be produced by the following method.
  • an ionic compound having an allyl group or a glycidyl group (R 1 is a vinyl group or an epoxy group)
  • the molecule has one or two allyl groups or glycidyl groups.
  • An organic ammonium halide is synthesized by reacting a primary amine and a halogenated ether (corresponding to a compound forming (— (C 2 H 4 O) c R 2 ) k ).
  • the cyanofluoroborate metal salt for example, LiBF 2 (CN) 2 , NaBF 2 (CN) 2 , KBF 2 (CN) 2 , LiBF (CN) 3 , And a compound such as NaBF (CN) 3 , KBFCN 3, etc.
  • the ionic compound can be extracted by performing an extraction treatment with a hydrophobic solvent such as methylene chloride or chloroform.
  • a tertiary amine having a desired ether group ((— (C 2 H 4 O) c R 2 ) k ) is reacted with an allyl halide compound or a halogenated glycidyl compound. Synthesize organic ammonium halides.
  • the cyanofluoroborate metal salt for example, LiBF 2 (CN) 2 , NaBF 2 (CN) 2 , KBF 2 (CN) 2 , LiBF (CN) 3 , NaBF (CN) 3 , KBF (CN) 3 compound
  • the ionic compound can be extracted by performing an extraction treatment with a hydrophobic solvent such as methylene chloride or chloroform.
  • the ionic compound produced by the above method can be identified by the following method. That is, a 1 H-NMR spectrum may be measured in a deuterated solvent to confirm a peak corresponding to a predetermined cation.
  • R 1 —CH 2 — is an allyl group, 5.7 to 5.8, 5.9 to 6.0, 6.0 to 6.1 ppm, multiple lines derived from a vinyl group, and 4.3 A double line derived from a methylene group exists at ⁇ 4.4 ppm.
  • R 1 —CH 2 — is a glycidyl group, 2.8 ppm, 3.1 to 3.2 ppm have multiple lines derived from an epoxy group, and 3.4 and 3.6 ppm have multiple lines derived from a methylene group To do.
  • R 3 is a methyl group
  • R 3 ethyl group there is a quadruple line derived from a methylene group near 3.7 ppm and a triple line derived from a methyl group near 1.4 ppm.
  • (-(C 2 H 4 O) c R 2 ) k may be identified by confirming a triplet derived from —NCH 2 — at 3.9 ppm, a multiplet near 3.5 ppm, and a singlet at 3.4 ppm. .
  • the anion can be identified by measuring 19 F-NMR. Specifically, in the 19 F-NMR spectrum, when the anion is BF 2 (CN) 2 — , the concentration is ⁇ 153 to ⁇ 152 ppm, and when the anion is BF (CN) 3 — , the concentration is 11 B to ⁇ 121 to ⁇ 120 ppm. A characteristic quadruple line due to coupling with can be confirmed.
  • the anion can be identified by measuring 13 C-NMR. Specifically, in the 13 C-NMR spectrum, a peak derived from carbon (C) of BF a CN 4-a can be confirmed in the vicinity of 128 to 133 ppm.
  • the peak derived from carbon (C) of BF a (CN) 4-a is characteristically split from the coupling by 19 F and 11 B.
  • 12 peaks 4 by 11 B
  • LC-MS liquid chromatography-mass spectrometer
  • a mass peak corresponding to the molecular weight obtained by adding one or more compounds to the anion is detected.
  • LC-MS liquid chromatography-mass spectrometer
  • the cation is an ion having a “C” molecular weight and the anion is an ion having an “A” molecular weight
  • a mass peak corresponding to (A + 2C), (2A + 3C), or the like is detected.
  • the molecular weight of the salt and the cation or the molecular weight of the anion can be identified and identified from the difference between the peaks that appear periodically.
  • a lithium compound used as an electrolyte for example, LiPF 6 or the like has an influence, so that positive ions and ionic properties of the present invention can be obtained.
  • a mass peak in which LiPF 6 and lithium cyanofluoroborate are added to the cation of the cation portion of the compound is detected.
  • the negative ion a peak of mass obtained by adding LiPF 6 and lithium cyanofluoroborate to the cyanofluoroborate anion is detected.
  • the ionic compound of the present invention can be suitably blended in the non-aqueous electrolyte of the electricity storage device. Next, the nonaqueous electrolytic solution containing the ionic compound will be described.
  • Non-aqueous electrolyte When the ionic compound of the present invention is used as a non-aqueous electrolyte, the following formulation is preferable. Specifically, a nonaqueous electrolytic solution containing the ionic compound represented by the formula (1), a lithium compound, and a nonaqueous solvent is preferable. In addition, this non-aqueous electrolyte refers to the electrolyte which does not contain water. As the ionic compound represented by the formula (1), those described in the previous section may be used.
  • Non-aqueous solvent As the nonaqueous solvent constituting the nonaqueous electrolytic solution according to the present invention, a known organic solvent can be used without limitation. Specifically, it contains at least one selected from the group consisting of a chain carbonate, a cyclic carbonate, a chain ester, a lactone, and an ether. This non-aqueous solvent does not contain water. Examples of the organic solvent that can be used in the present invention include the following organic solvents (nonaqueous solvents).
  • chain carbonate a chain carbonate having 3 to 6 carbon atoms is preferable.
  • Specific examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
  • cyclic carbonate a cyclic carbonate having 3 to 6 carbon atoms is preferable.
  • Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate.
  • the chain ester is preferably a chain ester having 3 to 6 carbon atoms.
  • Specific examples of the chain ester include ethyl propionate, methyl propionate, ethyl acetate, and methyl acetate.
  • lactones examples include lactones having 3 to 6 carbon atoms.
  • Specific examples of the lactone include ⁇ -butyrolactone.
  • the ether is preferably an ether having 3 to 8 carbon atoms.
  • Specific ethers include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, and triethylene glycol dimethyl ether.
  • organic solvents nonaqueous solvents
  • those that are solid when the electrolytic solution is prepared or used are mixed with the above-mentioned other organic solvents (nonaqueous solvents) that are liquid. It can be used as a mixed solvent.
  • Organic solvents other than the above are usually unsuitable as electrolytes because of insufficient electrochemical stability, low solubility of electrolyte salts, high viscosity and low electrical conductivity.
  • the above solvents may be used alone or in combination of two or more.
  • a high dielectric constant solvent such as cyclic carbonate
  • a low viscosity solvent such as chain carbonate and chain ester.
  • a cyclic carbonate in terms of forming a protective film. Furthermore, considering the solubility of the lithium compound and the performance of the resulting electrolyte (excellent electrical conductivity and electrochemical stability), a mixed solvent of chain carbonate and cyclic carbonate is used as the non-aqueous solvent. It is preferable to do.
  • the viscosity of the electrolytic solution can be easily adjusted and the electrical conductivity can be increased when the linear carbonate content in the mixed solvent is 15% or more by volume% (23 ° C.). Therefore, it is suitable.
  • the chain carbonate content is 90% or less in terms of volume% (23 ° C.)
  • a decrease in electrical conductivity due to a decrease in the dielectric constant of the solvent can be reduced.
  • the chain carbonate content is preferably 15% to 90%
  • the cyclic carbonate content is preferably 10% to 85%
  • the chain carbonate content is 20% to 85%.
  • the cyclic carbonate content is 15% to 80%, the chain carbonate content is 25% to 80%, and the cyclic carbonate content is 20% to 75%. Preferred (however, the total volume% of the chain carbonate and cyclic carbonate at 23 ° C. is 100%).
  • the linear carbonate is 40% to 85% and the ethylene carbonate is 15% to 60% as volume% (23 ° C.).
  • the chain carbonate is more preferably 45% to 80%, and the ethylene carbonate is more preferably 20% to 55%.
  • lithium compound constituting the non-aqueous electrolyte a known compound can be used, and a lithium compound that dissolves in the above-described non-aqueous solvent can be used.
  • the lithium compound according to the present invention may be dissolved in the nonaqueous solvent constituting the nonaqueous electrolytic solution, and may be dissolved in at least one of the above nonaqueous solvents. It does not have to be dissolved in an aqueous solvent.
  • LiPF 6 LiBF 4 , CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropanedi Sulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , lithium bisoxalatoborate, lithium difluorooxalatoborate, lithium tetrafluorooxalatophosphate, lithium difluorobis oxa Lato phosphate, LiBF 3 CF 3, LiBF 3 C 2 F 5, LiPF 3 (CF
  • LiPF 6 in order to exert an excellent effect, it is preferably at least one lithium compound selected from the group consisting of LiPF 6 , LiBF 4 , LiBF 2 CN 2 , and LiBFCN 3 , and LiPF 6 , and / or LiBF 4 is more preferable. Furthermore, considering the solubility in an organic solvent (nonaqueous solvent) and conductivity, LiPF 6 is particularly preferable.
  • the non-aqueous electrolyte of the present invention may contain other components in addition to the above-described ionic compound, non-aqueous solvent and lithium compound as long as the object of the present invention is not impaired.
  • the additive used for the electrolyte solution of a double layer capacitor may be included.
  • the electrolyte for a lithium ion battery contains various additives for the purpose of flame retardancy and cycle characteristics improvement, but the existing additive can be used as it is for the non-aqueous electrolyte. Examples of the additive include unsaturated carbonates containing double bonds and fluorinated carbonates.
  • the unsaturated carbonate containing a double bond include vinylene carbonate and vinyl ethylene carbonate.
  • the fluorinated carbonate include a fluorinated dimethyl carbonate derivative and a fluorinated ethyl methyl carbonate derivative. And fluorinated diethyl carbonate derivatives.
  • the preferred blending ratio of the nonaqueous electrolytic solution is not particularly limited, but is preferably the following blending ratio.
  • the ionic compound represented by the formula (1) is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the nonaqueous solvent. By satisfying this range, it is considered that a high-performance protective film can be efficiently formed on both electrode surfaces.
  • the ionic compound represented by the formula (1) is preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the non-aqueous solvent, and 0.5 to 2.5 parts by mass. More preferably, it is part by mass.
  • the concentration of the lithium compound is preferably 0.3 to 4 mol / L in the nonaqueous electrolytic solution. Usually 0.3 mol / L or more, more preferably 0.5 mol / L or more, still more preferably 0.7 mol / L or more, usually 4 mol / L or less, more preferably 3 mol / L or less, more preferably 1.5 mol. / L or less. If it is this density
  • the nonaqueous electrolytic solution of the present embodiment is obtained, for example, by adding the electrolyte salt to the nonaqueous solvent and adding a predetermined amount of an ionic compound represented by the formula (1) as an additive. It is done. At this time, it is preferable that the organic solvent, the electrolyte salt, the ionic compound represented by the formula (1), other additives, and the like are purified in advance and used with as few impurities as possible. Moreover, it is desirable to carry out in a low moisture environment such as a dry room in order to avoid mixing of moisture.
  • the non-aqueous electrolyte can be used for power storage devices such as lithium batteries (lithium primary batteries), lithium ion batteries (lithium secondary batteries), and lithium ion capacitors. Among these, it is more preferable to use as a lithium battery and a lithium ion battery, and it is most preferable to use as a lithium ion battery. Further, the nonaqueous electrolytic solution may be used in a gel form as well as in a liquid form. Furthermore, the non-aqueous electrolyte of the present invention can be used for a solid polymer electrolyte.
  • the electricity storage device of the present invention contains the ionic compound represented by the formula (1), an increase in resistance after high-temperature storage can be suppressed and a decrease in discharge capacity at low temperatures can be reduced.
  • the lithium battery includes a negative electrode, a positive electrode, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolytic solution of the present invention.
  • the lithium battery has the same configuration as the known lithium battery except for the non-aqueous electrolyte.
  • the positive electrode and the negative electrode are laminated through a porous film impregnated with the non-aqueous electrolyte, and these are the cases. It has the form stored in. Therefore, the shape of the lithium battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • At least one selected from the group consisting of lithium and lithium alloys is used as an active material.
  • the positive electrode contains a positive electrode active material, and preferably further contains a conductive material and a binder.
  • a positive electrode active material materials commonly used in the field of lithium batteries can be used as they are, and among them, metal oxides such as manganese dioxide, graphite fluoride, thionyl chloride and the like can be preferably used.
  • Manganese dioxide is particularly preferable because of its good discharge characteristics.
  • the nonaqueous electrolytic solution of the present invention containing the ionic compound represented by the formula (1) can suppress an increase in resistance after high temperature storage and can reduce a decrease in discharge capacity at a low temperature.
  • the lithium ion battery includes a negative electrode and a positive electrode that can occlude and release lithium ions, a separator disposed between the positive electrode and the negative electrode, and the nonaqueous electrolytic solution of the present invention.
  • the lithium ion battery is the same as the known lithium ion battery in terms of the configuration other than the non-aqueous electrolyte, and usually the positive electrode and the negative electrode are laminated through the porous film impregnated with the non-aqueous electrolyte, These have the form accommodated in the case. Therefore, the shape of the lithium ion battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • a negative electrode used for a lithium ion battery has a negative electrode active material layer on a current collector.
  • the negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.
  • the positive electrode active material is preferably a material containing lithium and at least one transition metal. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds. These positive electrode active materials may be used alone or in any combination of two or more.
  • the nonaqueous electrolytic solution of the present invention containing the ionic compound represented by the formula (1) can suppress an increase in resistance after high temperature storage and can reduce a decrease in discharge capacity at a low temperature.
  • a lithium ion capacitor is a power storage device that uses a carbon material such as graphite as a negative electrode and stores energy using lithium ion intercalation thereto.
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, those using a ⁇ -conjugated polymer electrode doping / dedoping reaction, and the like.
  • the LIC can reduce resistance increase after high temperature storage and output decrease at low temperature.
  • NMR measurement 10 to 20 mg of the ionic compound produced in the example was dissolved in about 1 ml of CDCl 3, and 1 H, 19 F-NMR was measured by JEOL nuclear magnetic resonance apparatus JNM-ECA400II.
  • the chemical shift value of the 1 H-NMR spectrum was determined using the tetramethylsilane peak (0 ppm) in the solvent as the standard value.
  • the chemical shift value of the 19 F-NMR spectrum was determined using the KF peak (-125.3 ppm) in the aqueous solution as a standard value.
  • Example 1 In a 200 ml three-necked flask, 80 ml of acetonitrile was added, and 4.0 g of N-allyl-N, N-dimethylamine was further added. Subsequently, 5.2 g of 1-bromo-2- (2-methoxyethoxy) ethane was added and stirred at 62 to 65 ° C. for 8 hours. The obtained product was vacuum-dried to remove the solvent, and then treated with a column to which 15 ml of methylene chloride was added and 25 g of activated alumina was packed. The collected solution was vacuum-dried to obtain 8.75 g (69.4%) of a solid (N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium bromide) as pale yellow.
  • N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium bromide (6.00 g) and tricyanofluoroborate lithium salt (2.50 g) were dissolved in 5 ml of ion-exchanged water.
  • An aqueous solution of N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium bromide was placed in the flask, and an aqueous solution of lithium tricyanofluoroborate was added dropwise. After the addition, the solution separated into two layers. 10 ml of methylene chloride was added thereto, and the methylene chloride layer was separated.
  • Example 2 80 ml of acetonitrile was placed in a 200 ml three-necked flask, and 2.0 g of N-allyl-N-methylamine was further added. Next, 8.0 g of 1-bromo-2-methoxyethane was added, and the mixture was stirred at 62 to 65 ° C. for 8 hours. The obtained product was dried under reduced pressure, the solvent was removed, 15 ml of methylene chloride was added, and the mixture was treated with a column filled with 25 g of activated alumina.
  • the mass spectrometry measurement results are as follows: detected mass number 484 (cation mass number 188 + compound mass number 296), detected mass number 780 (cation mass number 188 + compound mass number ⁇ 2 (592)), detection The mass number was 1076 (the mass number of the cation 188 + the mass number of the compound ⁇ 3 (888)).
  • Example 3 A 200 ml three-necked flask was charged with 80 ml of acetonitrile and further 2.5 g of diallylamine. Next, 8.0 g of 1-bromo-2-methoxyethane was added, and the mixture was stirred at 62 to 65 ° C. for 8 hours. The resulting product was dried under reduced pressure to remove the solvent, treated with a column filled with 15 ml of methylene chloride and filled with 25 g of activated alumina, and the collected solution was dried under reduced pressure to give 3.76 g (49.7%) of pale yellow. ) Liquid (N, N-diallyl-N, N-dimethoxyethylammonium bromide) was obtained (becomes solid after standing for 1 day).
  • N, N-diallyl-N, N-dimethoxyethylammonium bromide (3.50 g) and tricyanofluoroborate lithium salt (1.36 g) were dissolved in 5 ml of ion-exchanged water.
  • An aqueous solution of N, N-diallyl-N, N-dimethoxyethylammonium bromide was placed in a flask, and an aqueous solution of lithium tricyanofluoroborate was added dropwise. After the addition, the solution separated into two layers. 10 ml of methylene chloride was added thereto, and the methylene chloride layer was separated.
  • the results of mass spectrometry were detected mass number 536 (cation mass number 214 + compound mass number 322), detected mass number 858 (cation mass number 214 + compound mass number ⁇ 2 (644)). .
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • LiPF 6 was 1 mol / L
  • N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium tricyanofluoroborate (ionic compound) was 0. It was 085 mol / L.
  • this non-aqueous electrolyte was 2.3 mass parts of ionic compounds with respect to 100 mass parts of non-aqueous solvents.
  • the obtained non-aqueous electrolyte was used as a battery by the following method (3) and evaluated by conducting the tests (4) and (5).
  • the positive electrode was made into a slurry form of LiNi 1/3 Co 1/3 MN 1/3 O293 parts as an active material, 4 parts of acetylene black as a conductive material, and 3 parts of polyvinylidene fluoride as a binder,
  • the current collector foil was coated with an applicator, dried at 120 ° C. for 10 minutes, and then pressed.
  • the negative electrode was prepared in the same process as the positive electrode, using 93 parts of graphite as an active material, 2 parts of acetylene black as a conductive material, and 5 parts of polyvinylidene fluoride as a binder.
  • the separator used was a polyethylene microporous membrane (thickness 20 ⁇ m, porosity 40%).
  • the positive electrode and negative electrode prepared above were punched out to 30 ⁇ 50 mm 2 , dried at 170 ° C. for 10 hours, respectively, opposed to each other through a separator, and inserted into an aluminum laminate.
  • the electrolyte was injected, impregnated under reduced pressure, and vacuum sealed to produce a single-layer laminate cell (battery) for battery performance evaluation.
  • the initial charging / discharging characteristics (charging capacity and discharging capacity) of the battery prepared in (3) and the discharging capacity measured by evaluation of low temperature operability were measured by the following methods.
  • the charge capacity and discharge capacity measured in the evaluation of the initial charge / discharge characteristics, and the discharge capacity measured in the evaluation of low temperature operability were measured with a charge / discharge test apparatus (HJ0501SD8 manufactured by Hokuto Denko).
  • the conditions of the charge / discharge test were as follows: CCCV charge (0.05C cut) to 4.2V at a current corresponding to 0.2C at room temperature 23 ° C, and then discharged to 2.7V at a current corresponding to 0.2C. .
  • Charging / discharging was repeated under these conditions, and the third result was defined as initial charge / discharge characteristics.
  • Table 1 summarizes the evaluation results, components used, and amounts used. The measurement results of the initial charge / discharge characteristics are shown in FIG.
  • Example 5 instead of N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium tricyanofluoroborate used in Example 4, N-allyl-N-methyl-N, N-dimethoxy prepared in Example 2 was used. A non-aqueous electrolyte was prepared in the same manner as in Example 4 except that ethylammonium / tricyanofluoroborate was used. Further, a single-layer laminate cell for battery performance evaluation was prepared in the same manner, and the battery characteristics were evaluated. . The evaluation results, the components used, and the amounts used are summarized in Table 1. Moreover, the measurement result of the initial stage charge / discharge characteristic was shown in FIG.
  • Example 6 N, N-diallyl-N, N-dimethoxyethylammonium prepared in Example 3 instead of N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium / tricyanofluoroborate used in Example 4
  • a non-aqueous electrolyte was prepared in the same manner as in Example 4 except that tricyanofluoroborate was used, and a single-layer laminate cell for battery performance evaluation was prepared in the same manner, and the battery characteristics were evaluated.
  • the evaluation results, the components used, and the amounts used are summarized in Table 1. The measurement results of the initial charge / discharge characteristics are shown in FIG.
  • N-allyl-N N-dimethyl-N-methoxyethoxyethylammonium tricyanofluoroborate used in Example 4
  • N, N-diethyl-N-methyl-N— prepared by the above method was used.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 4 except that methoxyethylammonium tricyanofluoroborate was used.
  • a single-layer laminate cell for battery performance evaluation was prepared in the same manner, and the battery characteristics were evaluated. The evaluation results, the components used, and the amounts used are summarized in Table 2.
  • Example 2 A single-layer laminate cell for battery performance evaluation was prepared in the same manner as in Example 4 except that the commercially available electrolytic solution used in Example 4 was used as it was as a nonaqueous electrolytic solution, and the battery characteristics were evaluated. The evaluation results, the components used, and the amounts used are summarized in Table 2.
  • Example 3 The same procedure as in Example 4 was performed except that tricyanofluoroborate / lithium salt was used instead of N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium / tricyanofluoroborate used in Example 4. Then, an electrolytic solution was prepared, and a single-layer laminate cell for battery performance evaluation was prepared, and battery characteristics were evaluated. The evaluation results, the components used, and the amounts used are summarized in Table 2.
  • Example 7 In the same manner as in Example 1, except that 2.35 g of dicyanodifluoroborate lithium salt was used instead of 2.50 g of tricyanofluoroborate lithium salt, 6.3 g of N-allyl-N, N-dimethyl-N-methoxyethoxyethyl was used. Ammonium dicyanodifluoroborate (liquid) was obtained.
  • liquid obtained was N-allyl-N-dimethyl-N, N-methoxyethoxyethylammonium dicyanodifluoroborate.
  • Example 8 Commercially available epichlorohydrin (5.0 ml, 5.9 g) was placed in a 100 ml three-necked flask, and commercial 50% dimethylamine (6.0 ml, 5.2 g) was added dropwise and stirred while cooling in a water bath. After stirring for 6 hours, 6.7 ml (9.6 g) of 40% aqueous sodium hydroxide solution was added dropwise and stirred for 1 hour. After stirring, 3 ml of ion exchange water was added and the mixture was allowed to stand to extract the organic layer. In addition, 5 ml of diethyl ether was added to the aqueous layer, and after stirring well, the organic layer was separated and the diethyl ether was removed under reduced pressure.
  • the remaining layer was combined with the organic layer shown on the left, and 4.8 g of glycidyldimethylamine (recovery rate 81%) was added. Obtained.
  • the resulting glycidyldimethylamine (4.0 g) was placed in a 100 ml three-necked flask, 10 ml of acetone was added, and 6.6 g of commercially available 1-bromo-2- (2-methoxyethoxy) ethane was added dropwise at room temperature with stirring. The reaction was performed for 2 hours.
  • N-glycidyl prepared by dissolving 6.0 g of the synthesized N-glycidyl-N, N-dimethyl-N- (2-methoxyethoxy) ethylammonium bromide and 2.4 g of tricyanofluoroborate lithium salt in 5 ml of ion-exchanged water, respectively.
  • An aqueous solution of —N, N-dimethyl-N- (2-methoxyethoxy) ethylammonium bromide was put in a flask, and an aqueous solution of lithium tricyanofluoroborate was added dropwise. After the addition, the solution separated into two layers.
  • the result of mass spectrometry was mass number 516 (cation mass number 204 + compound mass number 312).
  • Example 9 The same procedure was carried out as in Example 8, except that 2.3 g of dicyanodifluoroborate lithium salt was used instead of 2.4 g of tricyanofluoroborate lithium salt, and 5.1 g (80%) of N-glycidyl-N, N-dimethyl-N- (2-methoxyethoxy) ethylammonium dicyanodifluoroborate (liquid) was obtained.
  • Example 10 instead of N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium tricyanofluoroborate used in Example 4, N-allyl-N, N-dimethyl-N-methoxy prepared in Example 7 was used. A non-aqueous electrolyte was prepared in the same manner as in Example 4 except that ethoxyethylammonium dicyanodifluoroborate was used. Further, a single-layer laminate cell for battery performance evaluation was prepared in the same manner, and the battery characteristics were evaluated. . Table 3 summarizes the evaluation results, the components used, and the amounts used.
  • Example 11 instead of N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium tricyanofluoroborate used in Example 4, N-glycidyl-N, N-dimethyl-N-methoxy prepared in Example 8 was used. A non-aqueous electrolyte was prepared in the same manner as in Example 4 except that ethoxyethylammonium tricyanofluoroborate was used, and a single-layer laminate cell for battery performance evaluation was prepared in the same manner, and the battery characteristics were evaluated. did. Table 3 summarizes the evaluation results, the components used, and the amounts used.
  • Example 12 instead of N-allyl-N, N-dimethyl-N-methoxyethoxyethylammonium tricyanofluoroborate used in Example 4, N-glycidyl-N, N-dimethyl-N-methoxy prepared in Example 9 A non-aqueous electrolyte was prepared in the same manner as in Example 4 except that ethoxyethylammonium dicyanodifluoroborate was used. Further, a single-layer laminate cell for battery performance evaluation was prepared in the same manner, and the battery characteristics were evaluated. . Table 3 summarizes the evaluation results, the components used, and the amounts used.
  • Example 4 The same operation as in Example 1 was carried out except that 3.9 g of potassium hexafluorophosphate was used instead of 2.5 g of tricyanofluoroborate lithium salt, and 6.8 g of N-allyl-N, N-dimethyl was used. -N-methoxyethoxyethylammonium hexafluorophosphate (solid) was obtained.
  • N-allyl-N N-dimethyl-N-methoxyethoxyethylammonium tricyanofluoroborate used in Example 4
  • N-allyl-N, N-dimethyl-N— prepared by the above method was used.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 4 except that methoxyethoxyethylammonium hexafluorophosphate was used, and a single-layer laminate cell for battery performance evaluation was prepared in the same manner. Characteristics were evaluated. Table 3 summarizes the evaluation results, the components used, and the amounts used.
  • the ionic compound of the present invention can be suitably used particularly for non-aqueous electrolyte applications.
  • the non-aqueous electrolyte solution of the present invention can be suitably used as a non-aqueous electrolyte solution for power storage devices such as various electric devices and automobiles.
  • the electricity storage device of the present invention can be suitably used as a lithium battery, a lithium ion battery, a lithium ion capacitor, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の課題は、蓄電デバイスの非水電解液に好適に配合できる新規なイオン性化合物、該イオン性化合物を含む新規な非水電解液、及び該非水電解液を用いた蓄電デバイスを提供することにある。 本発明の蓄電デバイスは、下記式(1)で示されるイオン性化合物、及び該イオン性化合物を含む新規な非水電解液、及び該非水電解液を用いた蓄電デバイスである。 (式(1)中、R1は、ビニル基、又はエポキシ基であり、R2及びR3は、それぞれ、炭素数が1~3のアルキル基であり、aは、1~3の整数であり、bは、1~2の整数であり、cは、1~3の整数であり、kは、1~3の整数であり、ただし、b+kは、2~4の整数である)

Description

イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス
 本発明は、新規なイオン性化合物、該イオン性化合物を含む新規な非水電解液、及び該非水電解液を用いた新規な蓄電デバイスに関する。
 近年、携帯用電子機器、携帯電話、またはビデオカメラなどが急激に普及し、それらに用いられる軽量で高性能の二次電池の需要が大幅に増大した。また、車載用途や自然エネルギーの貯蔵用途などに向けて、より大容量の蓄電デバイス開発が進められている。大容量の蓄電デバイスとして使用する場合には、従来のものと比較して使用温度の領域がより広くなることが想定されている(より高温領域、及びより低温領域での使用が想定されている。)。
 これら蓄電デバイスに用いられている電解液には、多くの場合、非水溶媒にリチウム塩を溶解した電解液が使用されている。非水溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート等の非水溶媒を少なくとも含む混合溶媒が一般的に使用されている。そして、リチウム塩としては、LiPF6、LiBF4などが用いられている。
 また、蓄電デバイスにおいて、リチウムイオン二次電池の負極活物質としては、リチウムイオンを吸蔵・放出することができる炭素質材料、ならびに、高容量化を目指してシリコンまたはスズ等を用いた金属または合金系の材料などが知られ、現在は、炭素質系の天然黒鉛、人造黒鉛、非晶質炭素等が主に用いられている。一方、正極活物質としてはリチウムイオンを吸蔵・放出することができる遷移金属複合酸化物が用いられている。遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等である。
 このようなリチウムイオン二次電池は、活性の高い正極と負極を使用しているため、電極と電解液との副反応により、繰り返し使用で充放電容量が低下することが知られている。特に、高温で保存する際に容量が低下したり、抵抗の増大することが問題となっている。また、リチウムイオン二次電池は、低温で使用する際に、容量が低下することが知られている。そのため、リチウムイオン二次電池は、電池特性を改良するために、電解液の構成要素である非水溶媒、電解質等について種々の検討がなされている。
 リチウムイオン二次電池では、電極表面で溶媒や電解質が分解し、SEI(Solid Electrolyte Interface)と呼ばれる保護膜が電極表面に形成され、該保護膜が電池性能に大きく影響を与えると言われている(例えば、非特許文献1参照。)。効果的な保護膜を形成するために、現在、非水溶媒としても使用できる炭酸ビニルのような環状カーボネートが保護膜形成に使用されている。例えば、炭酸ビニルを使用した場合には、負極において炭酸ビニルが分解(あるいは重合)し、その分解物(あるいは重合物)が良好なSEI膜を形成に役立つことが知られている(非特許文献1参照)。
 また、該保護膜をより高性能化するために、環状カーボネート以外の添加剤を配合する試みがなされている。例えば、マンガン酸化物を配合した正極を使用した場合には、電解液に環式スルホン酸エステルを配合すると、正極の表面に環式スルホン酸エステルからなるSEI膜が形成され、正極からマンガンの溶出を抑制する方法が知られている(例えば、特許文献1参照)。
 これら添加剤(例えば、炭酸ビニル、環式スルホン酸エステル)は、配合量が少なすぎると効果が小さく、多すぎると電解液中のリチウムイオン伝導性等の物性に悪影響を与える可能性がある。例えば、炭酸ビニルは、正極・負極のSEI膜形成に影響を与えると言われているが、伝導性を有さない非水溶媒の一種であるため、添加量が多いと電池性能を低下させるおそれがある。また、環式スルホン酸エステルは正極に影響を与えるが、負極には何ら影響を与えないと言われており、添加量を増やしても負極の改善にはならない。
 この他の添加剤として、リチウム塩が知られており、該リチウム塩は電解液物性を低下させないことが知られている。このリチウム塩は、明らかではないが保護膜を形成すると言われており、伝導性物質であるため、リチウムイオン伝導度の低下を少なくすることができる。その結果、電解液の物性低下を抑制できる。具体的には、LiFSi、LiBF2CN2が添加剤として知られている。具体的に性能が向上した例としては、LiFSiを添加することにより、リチウムイオン二次電池の高温保存時の膨れを防止できることが知られている(例えば、特許文献2参照)。また、LiBF2(CN)2を添加することにより、リチウムイオン二次電池の高温使用時の寿命を延ばし、かつ低温特性を向上できることが知られている(例えば、特許文献3参照)。このようにリチウム塩を添加することにより、優れた特性を発揮することができる。
 しかしながら、これらリチウム塩を使用した場合であっても、十分な特性を発揮する電池とするのが難しいのが現状であった。例えば、先のLiFSiを添加する系においては、リチウムイオン二次電池の膨れを防止できるが、高温に保存した場合、SEI膜が分解し易いと言われており、高温保存後に電圧が低下するという問題があった。また、LiFSi、LiBF2(CN)2共に、正極の改善は可能であるが、負極には影響を与えないと言われており、その点でも改善の余地があった。さらに、LiBF2(CN)2以外のその他のリチウム塩を添加した系においては、リチウム塩が低温で電解液中に析出する場合があり、電解液として使用できなくなるという問題もあった。
 以上のような問題を解決できる添加剤として、イオン性化合物からなる添加剤が考えられる。イオン性化合物であれば、有機カチオン・アニオン等の分子設計により、正極・負極に適したSEI膜を形成できると考えられる。イオン性化合物は、通常であれば、負極でカチオンが分解し、正極でアニオンが分解する。そのため、正極で好適なSEI膜を形成できるアニオンと、負極で好適なSEI膜を形成できるカチオンとを組み合わせたイオン性化合物を添加剤とすることにより、上記問題を解決できるものと考えられる。
 しかしながら、そのような特性を十分に発揮するイオン性化合物は提案されていないのが現状である。その理由としては、負極で有機カチオンから形成されるSEI膜の抵抗が大きくなることが原因だと考えられる。そのため、正極・負極で形成されるSEI膜の抵抗が低く、しかもリチウム導電性を低下させることのない添加剤を開発することができれば、蓄電デバイスの性能をより一層向上できる。
 なお特許文献4には、イオン性化合物として、M+[B(CN4)]-(Mはアルカリ金属)で表されるアルカリ金属シアノボレートが提案されてはいるが、ビニル基やエポキシ基等の反応性基を有する化合物は教示されていない。
特開2004-281368号公報 特開2014-199779号公報 特開2015-103288号公報 特表2006-517546号公報
「ぶんせき」特集 電池の開発、製造プロセスを支える分析評価技術 「リチウムイオン電池総論」 吉野 彰、2013年10号、580-584頁、社団法人 日本分析学会
 本発明は、上述の従来技術の問題点を解決するものであって、新規なイオン性化合物、特に、蓄電デバイスの性能を向上することができる新規なイオン性化合物を提供することを課題とする。さらには、該イオン性化合物を含む非水電解液、及び該非水電解液を使用した蓄電デバイスを提供することを課題とする。
 本発明者等は、上記課題を解決するため、鋭意検討を行った。そして、正極・負極で分解することにより、カチオンが負極表面で保護膜形成に関与し、アニオンが正極表面で保護膜形成に関与する、イオン性化合物について種々検討した。その結果、重合性基(反応性基)、及び適度な親水性・疎水性を併せ持つ有機カチオンと、シアノフルオロボレート系のアニオンとからなるイオン性化合物が、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の事項に関する。
〔1〕下記式(1)
Figure JPOXMLDOC01-appb-C000002
(式(1)中、
 R1は、ビニル基、又はエポキシ基であり、
 R2及びR3は、それぞれ、炭素数が1~3のアルキル基であり、
 aは、1~3の整数であり、
 bは、1~2の整数であり、
 cは、1~3の整数であり、
 kは、1~3の整数であって、
 b+kは、2~4の整数である)
で示されるイオン性化合物。
〔2〕前記〔1〕に記載のイオン性化合物、
 鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトン、及びエーテルよりなる群から選ばれる少なくとも1種の非水溶媒、および、
 前記非水溶媒に溶解する少なくとも1種のリチウム化合物
を含むことを特徴とする非水電解液。
〔3〕前記リチウム化合物が、LiPF6、LiBF4、LiBF2CN2、及びLiBFCN3よりなる群から選ばれる少なくとも1種のリチウム化合物を含むことを特徴とする前記〔2〕に記載の非水電解液。
〔4〕前記非水溶媒100質量部に対して、前記式(1)で示されるイオン性化合物が0.1~10質量部含まれることを特徴とする前記〔2〕または〔3〕に記載の非水電解液。
〔5〕前記リチウム化合物の濃度が、0.3~4mol/Lであることを特徴とする前記〔2〕~〔4〕のいずれかに記載の非水電解液。
〔6〕前記〔2〕~〔5〕のいずれかに記載の非水電解液を用いた蓄電デバイス。
〔7〕リチウム電池、リチウムイオン電池、またはリチウムイオンキャパシタであることを特徴とする前記〔6〕に記載の蓄電デバイス。
 本発明によれば、蓄電デバイスに好適に配合できるイオン性化合物を提供できる。そして、本発明のイオン性化合物を含む非水電解液は、高温保存後の抵抗上昇の抑制と特に低温での伝導度などとを向上できる非水電解液となる。
 そして、本発明によれば、該非水電解液を用いた蓄電デバイスを提供することができる。本発明の非水電解液は、車載用蓄電デバイス用等の非水電解液または自然エネルギー貯蔵用の大型電池の非水電解液として好適に使用され、高温での電気化学特性が低下しにくく、低温環境でも動作するリチウム電池、リチウムイオン電池、またはリチウムイオンキャパシタ等の蓄電デバイスを得ることができる。
図1は、実施例4の初期充放電特性の測定結果を示す。 図2は、実施例5の初期充放電特性の測定結果を示す。 図3は、実施例6の初期充放電特性の測定結果を示す。
 以下、本発明について具体的に説明する。
 本発明は、重合性基(反応性基)、及び適度な親水性・疎水性を併せ持つカチオンと、シアノフルオロボレート系のアニオンとからなる新規なイオン性化合物であり、具体的には、前記式(1)で示されるイオン性化合物である。
 <イオン性化合物>
 本発明のイオン性化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、
 R1は、ビニル基、又はエポキシ基であり、
 R2及びR3は、それぞれ、炭素数が1~3のアルキル基であり、
 aは、1~3の整数であり、
 bは、1~2の整数であり、
 cは、1~3の整数であり、
 kは、1~3の整数であって、
 b+kは、2~4の整数である)
 式(1)において、R1は、ビニル基、又はエポキシ基である。リチウムイオン二次電池のような蓄電デバイスの非水電解液に使用した際、これら重合性基(反応性基)が存在することにより、負極表面と作用(反応)しやすく、効率よく保護膜が形成されるのではないかと考えられる。そのため、(R1-CH2)-で括られる基は、アリル基(R1がビニル基の場合)、又はグリシジル基(R1がエポキシ基の場合)となる。
 R2及びR3は、それぞれ、炭素数が1~3のアルキル基である。具体的には、メチル基、エチル基、N-プロピル基、i-プロピル基である。これらの中でも、効果の発現、イオン性化合物そのものの生産性等を考慮すると、メチル基であることが好ましい。
 式(1)において、aは1~3の整数であり、bは1~2の整数であり、cは1~3の整数であり、kは1~3の整数であり、b+kは2~4の整数である。
 本発明のイオン性化合物が優れた効果を発揮するのは、その理由は明らかではないが、カチオン部分が、重合性基(反応性基)を有し、適度な親水性を有しているからではないかと推定している。すなわち、R1が存在することにより、負極表面で保護膜を形成しやすくし、同時に疎水性に関わる。cは親水性に関わり、bは重合性基(反応性基)に関わるものであるが、これらのバランスがとれていることにより、負極表面で形成された保護膜が高温においても安定であるとともに、リチウムイオン透過性が向上するものと考えられる。この結果、優れた効果が発揮されるのではないかと推定している。そのため、bは1~2である。また、cは1~2であることが好ましい。
 R3は、上記の通り、疎水性のアルキル基であり、親水性基(-(C24O)c2kとのバランスを保つために働くものと考えられる。そのため、R3の基の数(4-b-k)は、0~2(b+k=2~4)である。
 kは、該親水性基の数を示すものであり、1~3の整数である。kは、cの数によっても最適値が存在するものと考えるが、イオン性化合物における親水性・疎水性のバランスを保つためには、kは1~3の整数である。
 一方、正極で保護膜形成に関わると考えられるアニオン部分において、aは1~3の整数であり、中でも、より効果を発揮するためには、aは1~2の整数であることが好ましい。
 本発明のイオン性化合物において、特に好ましい化合物を例示すると、
 N-アリル-N,N,N-トリメトキシエチルアンモニウムフルオロトリシアノボレート、N,N-ジアリル-N,N-ジメトキシエチルアンモニウムフルオロトリシアノボレート、N-アリル-N,N-ジメトキシエトキシエチル-N-メチルアンモニウムフルオロトリシアノボレート、N-グリシジル-N,N,N-トリメトキシエチルアンモニウムフルオロトリシアノボレート、N,N-ジグリシジル-N,N-ジメトキシエチルアンモニウムフルオロトリシアノボレート、N-グリシジル-N,N-ジメトキシエトキシエチル-N-メチルアンモニウムフルオロトリシアノボレート、N-アリル-N,N,N-トリメトキシエチルアンモニウムジフルオロジシアノボレート、N,N-ジアリル-N,N-ジメトキシエチルアンモニウムジフルオロジシアノボレート、N-アリル-N,N-ジメトキシエトキシエチル-N-メチルアンモニウムジフルオロジシアノボレート、N-グリシジル-N,N,N-トリメトキシエチルアンモニウムジフルオロジシアノボレート、N,N-ジグリシジル-N,N-ジメトキシエチルアンモニウムジフルオロジシアノボレート、N-グリシジル-N,N-ジメトキシエトキシエチル-N-メチルアンモニウムジフルオロジシアノボレート等
が挙げられる。これらの化合物は、リチウムを含有する蓄電デバイスにおいて、本発明の中でも優れた保護膜を形成できるものと考えられる。
 また、本発明において、イオン性化合物は、室温において、固体のものであっても、液体のものであってもよいが、以下の理由により液体であるものが好ましい。液体である場合には、下記に詳述する非水有機溶媒に溶解し易く、該イオン性化合物を含む電解液が低温(例えば、0℃以下の温度)で保持された場合であっても、固体のものと比較して、該電解液中に析出し難くなる。本発明のイオン性化合物は、室温において液体となるものが多い。
 (イオン性化合物の製造方法、及び同定方法)
 本発明のイオン性化合物は、特に制限されるものではないが、以下の方法により製造することができる。
 具体的には、先ず、アリル基又はグリシジル基(R1がビニル基又はエポキシ基)を有するイオン性化合物を製造するためには、分子内にアリル基又はグリシジル基を1つ或いは2つ有する3級アミンとハロゲン化エーテル((-(C24O)c2kを形成する化合物に該当)とを反応させて、有機アンモニウムハロゲン化物を合成する。次いで、得られた有機アンモニウムハロゲン化物とアニオン部分を構成するシアノフルオロボレート金属塩(例えば、LiBF2(CN)2,NaBF2(CN)2,KBF2(CN)2,LiBF(CN)3,NaBF(CN)3,KBFCN3等のような化合物)とを水中で反応させることにより製造できる。水中で反応させた後は、塩化メチレン、クロロホルムのような疎水性溶媒で抽出処理を行うことにより、イオン性化合物を取り出すことができる。
 その他の方法としては、先ず、所望とするエーテル基((-(C24O)c2k)を有する3級アミンと、ハロゲン化アリル化合物、又はハロゲン化グリシジル化合物を反応させて、有機アンモニウムハロゲン化物を合成する。次いで、得られた有機アンモニウムハロゲン化物とアニオン部分を構成するシアノフルオロボレート金属塩(例えば、LiBF2(CN)2,NaBF2(CN)2,KBF2(CN)2,LiBF(CN)3,NaBF(CN)3,KBF(CN)3の化合物)とを水中で反応させることにより製造できる。水中で反応させた後は、塩化メチレン、クロロホルムのような疎水性溶媒で抽出処理を行うことにより、イオン性化合物を取り出すことができる。
 以上のような方法で製造されたイオン性化合物は、以下の方法で同定することができる。すなわち、重水素化溶媒中で1H-NMRスペクトルを測定し、所定のカチオンに対応するピークを確認すればよい。
 例えば、R1-CH2-がアリル基の場合、5.7~5.8、5.9~6.0、6.0~6.1ppmにビニル基由来の多重線、そして、4.3~4.4ppmにメチレン基由来の二重線が存在する。また、R1-CH2-がグリシジル基の場合、2.8ppm、3.1~3.2ppmにエポキシ基由来の多重線、そして3.4と3.6ppmにメチレン基由来の多重線が存在する。
 R3がメチル基の場合には3.4ppmに一重線が、R3エチル基であれば3.7ppm付近にメチレン基由来の四重線と1.4ppm付近にメチル基由来の三重線が存在する。
 (-(C24O)c2kの同定は、3.9ppmに-NCH2-由来の三重線と3.5ppm付近に多重線と3.4ppmに一重線を確認すればよい。
 また、19F-NMRを測定することにより、アニオンの同定をすることができる。具体的には、19F-NMRスペクトルにおいて、アニオンがBF2(CN)2 -であれば-153~-152ppmに、アニオンがBF(CN)3 -であれば-121~-120ppmに11Bとのカップリングによる特徴的な四重線を確認できる。
 さらに、13C-NMRを測定することにより、アニオンの同定をすることができる。具体的には、13C-NMRスペクトルにおいて、128~133ppm付近にBFaCN4-aの炭素(C)由来のピークが確認できる。BFa(CN)4-aの炭素(C)由来のピークは19Fと11Bによるカップリングから特徴的に分裂し、例えばBF2(CN)2塩の場合では12本(11Bにより4本に分裂し2つの19Fによりさらに3本)に分裂したピークが見られる。
 また、液体クロマトグラフィー-質量分析計(LC-MS)でマイナスイオンを検出した場合、アニオンに化合物が1つ以上付加した分子量に対応する質量のピークが検出される。例えば、カチオンを「C」分子量を有するイオンとし、アニオンが「A」分子量を有するイオンとした場合、(2A+C)、(3A+2C)等の分子量に相当する質量のピークが検出される。一方、プラスイオンを検出した場合、カチオンに化合物が1つ以上付加した分子量に対応する質量のピークが検出される。具体的には、カチオンを「C」分子量を有するイオンとし、アニオンが「A」分子量を有するイオンとした場合、(A+2C)、(2A+3C)等に相当する質量のピークが検出される。どちらの測定でも周期的に出現するピークの差から塩の分子量とカチオンあるいは、アニオンの分子量からカチオンとアニオンの分子量が判明し同定することができる。
 また、イオン性化合物が非水溶媒に溶解した電解液をLC-MSで測定する場合では、電解質として用いられているリチウム化合物、例えば、LiPF6等が影響し、プラスイオン、本発明のイオン性化合物のカチオン部分のカチオンに、LiPF6、リチウムシアノフルオロボレートが付加した質量のピークが検出される。マイナスイオンは、シアノフルオロボレートアニオンに、LiPF6、リチウムシアノフルオロボレートが付加した質量のピークが検出される。ただし、本発明のイオン性化合物のカチオンとアニオンに由来する質量のピークであることを判別することは容易であり、そのようなピークの存在で同定することができる。
 本発明のイオン性化合物は、蓄電デバイスの非水電解液に好適に配合することができる。次に、該イオン性化合物を含む非水電解液について説明する。
 <非水電解液>
 本発明のイオン性化合物を非水電解液として使用する場合には、以下の配合とすることが好ましい。具体的には、前記式(1)で示されるイオン性化合物、リチウム化合物、及び非水溶媒を含む非水電解液とすることが好ましい。なお、この非水電解液とは、水を含まない電解液を指す。前記式(1)で示されるイオン性化合物は、前項で説明したものを使用すればよい。
 (非水溶媒)
 本発明に係る非水電解液を構成する非水溶媒としては、公知の有機溶媒を制限なく使用することができる。具体的には、鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトンおよびエーテルよりなる群から選ばれる少なくとも1種を含む。なお、この非水溶媒は水を含まないものである。本発明において使用可能な有機溶媒としては以下の有機溶媒(非水溶媒)が例示される。
 鎖状カーボネートとしては、炭素数3~6の鎖状カーボネートが好ましい。具体的な鎖状カーボネートとしては、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルが挙げられる。
 環状カーボネートとしては、炭素数3~6の環状カーボネートが好ましい。具体的な環状カーボネートとしては、炭酸エチレン、炭酸プロピレンが挙げられる。
 鎖状エステルとしては、炭素数3~6の鎖状エステルが好ましい。具体的な鎖状エステルとしては、プロピオン酸エチル、プロピオン酸メチル、酢酸エチル、酢酸メチルが挙げられる。
 ラクトンとしては、炭素数3~6のラクトンが挙げられる。具体的なラクトンとしては、γ-ブチロラクトンが挙げられる。
 エーテルとしては、炭素数3~8のエーテルが好ましい。具体的なエーテルとしては、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンおよびトリエチレングリコールジメチルエーテルが挙げられる。
 以上の例示の有機溶媒(非水溶媒)において、電解液の調製時、または電解液の使用時に固体であるものについては、液状である上記他の有機溶媒(非水溶媒)と混合して液状の混合溶媒として使用することができる。
 上記以外の有機溶媒は通常、電気化学安定性が不十分であったり、電解質塩の溶解度が小さい、粘度が高く電気伝導度が小さいなどの理由で電解液として適さない。
 上記溶媒は1種単独で用いても、あるいは、2種以上を併用してもよい。例えば、環状カーボネートのような高誘電率の溶媒と鎖状カーボネートおよび鎖状エステル類のような低粘度の溶媒とを組み合わせることで良好な溶解性と高い電気伝導性が得られることが知られていて、これらを好適に用いることができる。
 その中でも、保護膜を形成するという点で環状カーボネートを使用することが好ましい。さらにリチウム化合物の溶解性と得られる電解液の性能(優れた電気伝導度および電気化学安定性等)とを考慮すると、非水溶媒として、特に、鎖状カーボネートと環状カーボネートとの混合溶媒を使用することが好ましい。
 前記混合溶媒を使用する場合、混合溶媒中の鎖状カーボネート含有割合が体積%(23℃)として15%以上であると電解液の粘度を調整し易く、かつ電気伝導度を高くすることができるために好適である。また、鎖状カーボネート含有割合が体積%(23℃)として90%以下であると、溶媒の誘電率の低下による電気伝導度の低下を少なくすることができる。そのため、混合溶媒とする場合には、鎖状カーボネート含有割合が15%以上90%以下、環状カーボネート含有割合が10%以上85%以下であることが好ましく、鎖状カーボネート含有割合が20%以上85%以下、環状カーボネート含有割合が15%以上80%以下であることがより好ましく、鎖状カーボネート含有割合が25%以上80%以下、環状カーボネート含有割合が20%以上75%以下であることがさらに好ましい(ただし、23℃における鎖状カーボネートと環状カーボネートとの合計体積%は100%とする。)。上記の混合溶媒の中でも、環状カーボネートとして炭酸エチレンを使用した場合には、体積%(23℃)として、鎖状カーボネートが40%以上85%以下、炭酸エチレンが15%以上60%以下であることが好ましく、鎖状カーボネートが45%以上80%以下、炭酸エチレンが20%以上55%以下であることがより好ましい。
 (リチウム化合物)
 本発明において、非水電解液を構成するリチウム化合物としては、公知の化合物を使用することができ、上述の非水溶媒に溶解するリチウム化合物を用いることができる。なお、本発明に係るリチウム化合物は、非水電解液を構成する非水溶媒に溶解すればよく、上述の非水溶媒の少なくとも一つに溶解すればよいのであって、必ずしも上述のすべての非水溶媒に溶解しなくてもよい。
 中でも、公知の蓄電デバイスの電解液に使用されるリチウム化合物を用いることができ、具体的には、LiPF6、LiBF4、CF3SO3Li、LiN(FSO22、LiN(FSO2)(CF3SO2)、LiN(CF3SO22、LiN(C25SO22、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO23、LiC(CF3SO23、LiC(C25SO23、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBF3CF3、LiBF325、LiPF3(CF33、LiPF3(C253等の有機リチウム塩、および/又はLiPF6、LiBF4、LiClO4などの無機リチウム塩などが挙げられる。中でも、優れた効果を発揮するためには、LiPF6、LiBF4、LiBF2CN2、及びLiBFCN3よりなる群から選ばれる少なくとも1種のリチウム化合物であることが好ましく、LiPF6、および/又はLiBF4であることがより好ましい。さらに、有機溶媒(非水溶媒)への溶解性、伝導度のことを考慮すると、LiPF6であることが特に好ましい。
 (その他の添加物)
 本発明の非水電解液は、上述したイオン性化合物、非水溶媒およびリチウム化合物に加えて、本発明の目的を損なわない範囲でその他の成分を含んでもよく、たとえば、既存の電池用または電気二重層キャパシタの電解液に用いられる添加物を含んでいても良い。リチウムイオン電池用電解液は、難燃化およびサイクル特性向上等の目的で様々な添加剤を含んでいるが、当該非水電解液は既存の添加剤がそのまま使える。添加剤の例としては二重結合を含む不飽和カーボネート、フッ化カーボネートなどが挙げられる。
 二重結合を含む不飽和カーボネートの具体的な例としては、炭酸ビニレン、炭酸ビニルエチレン等が挙げられ、フッ化カーボネートの具体的な例としては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
 <非水電解液の好ましい配合割合と製造方法>
 (イオン性化合物の配合量)
 本発明において、非水電解液の好ましい配合割は、特に制限されるものではないが、以下の配合割合とすることが好ましい。具体的には、非水溶媒100質量部に対して、前記式(1)で示されるイオン性化合物が0.1~10質量部とすることが好ましい。この範囲を満足することにより、両電極表面で高性能な保護膜を効率よく製膜できるものと考えられる。より性能を高めるためには、非水溶媒100質量部に対して、前記式(1)で示されるイオン性化合物が0.2~5質量部であることが好ましく、0.5~2.5質量部であることがさらに好ましい。
 (リチウム化合物の配合量)
 また、リチウム化合物の濃度は、非水電解液中に0.3~4mol/Lであることが好ましい。通常0.3mol/L以上、より好ましくは0.5mol/L以上、さらに好ましくは0.7mol/L以上であり、通常4mol/L以下、より好ましくは3mol/L以下、さらに好ましくは1.5mol/L以下である。この濃度であれば、電流の媒体であるリチウムイオンの濃度が少なすぎず、電解液の粘度の範囲が適切であり、適切な電気伝導度を得ることができる。
 (非水電解液の製造方法)
 本実施の形態の非水電解液は、例えば、前記の非水溶媒に前記電解質塩を加え、さらに添加剤として(1)式で表わされるイオン性化合物を所定量添加して調製することにより得られる。この際、前記有機溶媒や電解質塩、(1)式で表わされるイオン性化合物、その他の添加剤等は、予め精製して、不純物が極力少ないものを用いることが好ましい。また、水分の混入を避けるためにドライルーム等の低水分環境下で行うことが望ましい。
 <蓄電デバイス>
 前記非水電解液は、リチウム電池(リチウム一次電池)、リチウムイオン電池(リチウム二次電池)およびリチウムイオンキャパシタ等の蓄電デバイスに使用することができる。その中でも、リチウム電池およびリチウムイオン電池として用いることが更に好ましく、リチウムイオン電池として用いることが最も好ましい。また、非水電解液は、液体状のものだけでなくゲル化して使用してもよい。更に本発明の非水電解液は固体高分子電解質用としても使用できる。
 本発明の蓄電デバイスは、式(1)で示されるイオン性化合物を配合しているため、高温保存後の抵抗上昇が抑えることができると共に低温での放電容量の減少を低減できる。
 <リチウム電池>
 リチウム電池は、負極と、正極と、正極と負極との間に配されたセパレータと、前記の本発明の非水電解液とを備えるものである。
 リチウム電池は、非水電解液以外の構成については公知のリチウム電池と同様であり、通常は、前記非水電解液が含浸されている多孔膜を介し正極と負極とが積層され、これらがケースに収納された形態を有する。従って、リチウム電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
 負極には、活物質として、リチウムおよびリチウム合金からなる群より選ばれる少なくとも1種が用いられる。
 正極は、正極活物質を含有し、好ましくは、さらに導電材および結着剤を含む。正極活物質としては、リチウム電池の分野で常用される材料をそのまま使用でき、その中でも、二酸化マンガンなどの金属酸化物、フッ化黒鉛、塩化チオニルなどが好適に使用できる。二酸化マンガンは、放電特性が良好であり、特に好ましい。
 式(1)で示されるイオン性化合物を含む本発明の非水電解液は、高温保存後の抵抗上昇が抑えることができると共に低温での放電容量の減少を低減できる。
 <リチウムイオン電池>
 リチウムイオン電池は、リチウムイオンを吸蔵および放出し得る、負極および正極と、正極と負極との間に配されたセパレータと、前記の本発明の非水電解液とを備えるものである。
 リチウムイオン電池は、非水電解液以外の構成については、公知のリチウムイオン電池と同様であり、通常は、前記非水電解液が含浸されている多孔膜を介し正極と負極とが積層され、これらがケースに収納された形態を有する。従って、リチウムイオン電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
 リチウムイオン電池に使用する負極は、集電体上に負極活物質層を有する。負極活物質としては、電気化学的にリチウムイオンを吸蔵および放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
 正極活物質としては、電気化学的にリチウムイオンを吸蔵および放出可能なものであれば特に制限されず用いることができる。正極活物質としてはリチウムと少なくとも1種の遷移金属とを含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。これらの正極活物質は、1種を単独で用いてもよく、また、2種以上を任意に組み合わせて併用してもよい。
 式(1)で示されるイオン性化合物を含む本発明の非水電解液は、高温保存後の抵抗上昇が抑えることができると共に低温での放電容量の減少を低減できる。
 <リチウムイオンキャパシタ>
 リチウムイオンキャパシタ(LIC)とは、負極にグラファイト等の炭素材料を用い、それへのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。正極は、例えば活性炭電極と電解液との間の電気二重層を利用したもの、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。
 電解液として前述の電解液が使用されるため、LICは、高温保存後の抵抗上昇低減と低温での出力低下低減が図れる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 先ず、本発明のイオン性化合物の分析、同定方法について説明する。
 (イオン性化合物の分析、同定方法)
 以下の(1)~(3)の方法により、得られたイオン性化合物の分析、同定を行った。
 (1)NMR測定
 実施例で製造したイオン性化合物10~20mgを約1mlのCDCl3に溶解し、日本電子製核磁気共鳴装置JNM-ECA400IIにより1H、19F-NMRを測定した。1H-NMRスペクトルの化学シフト値は、溶媒中のテトラメチルシランのピーク(0ppm)を標準値として決定した。また、19F-NMRスペクトルの化学シフト値は、水溶液中のKFのピーク(-125.3ppm)を標準値として決定した。
 (2)元素分析
 実施例で製造したイオン性化合物10~20mgを秤量し、エレメンタール社vario MICRO cubeにて測定した。
 (3)質量分析
 実施例で製造したイオン性化合物 約10μlをシリンジで取り、グリセロール10μlを加えた後、直接導入によりウォーターズ社製Xevo QTof MSで測定した。
 [実施例1]
 200mlの3つ口フラスコに80mlのアセトニトリルを入れ、さらにN-アリル-N,N-ジメチルアミン4.0gを入れた。次いで、1-ブロモ-2-(2-メトキシエトキシ)エタン5.2gを加え、62から65℃で8時間撹拌した。得られた生成物を真空乾燥して溶媒を除去した後、15mlの塩化メチレンを加え25gの活性アルミナを充填したカラムで処理した。回収した溶液を真空乾燥し、薄黄色の8.75g(69.4%)の固体(N-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム臭化物)を得た。
 上記合成したN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム臭化物6.00gとトリシアノフルオロボレートリチウム塩2.50gとをそれぞれイオン交換水5mlに溶解した。N-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム臭化物の水溶液をフラスコに入れ、トリシアノフルオロボレートリチウムの水溶液を滴下した。滴下後、溶液は二層に分離した。この中に塩化メチレン10mlを添加し、塩化メチレン層を分離した。分離した塩化メチレン層にイオン交換水10mlを加えよく攪拌した後に静置した後、塩化メチレン層を分離した。この操作を水層に濁りが出なくなるまで5回繰り返した。その後、塩化メチレン層を減圧乾燥し、6.2gのN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレート(液体)を得た。
 得られた液体の1H-NMRスペクトル(溶媒 CDCl3)結果は、
5.75ppm(dd,1H)、5.88ppm(dd,1H)、6.07ppm(m,1H)、4.44ppm(d,2H)、3.91ppm(m,2H)、3.64ppm(m,2H)、3.56ppm(m,2H)、3.49(m,2H)、3.41ppm(s,9H)であった。
 また、19F-NMRスペクトルは、-211.0ppm(q)であった。
 質量分析の結果は、検出された質量数 484(カチオンの質量数188+化合物の質量数296)、検出された質量数 780(カチオンの質量数188+化合物の質量数×2(592))であった。
 さらに元素分析の結果は、炭素原子(理論値52.72質量%、分析値52.87質量%)、水素原子(理論値7.50質量%、分析値7.72質量%)、窒素原子(理論値18.92質量%、分析値18.77質量%)であった。
 以上の結果から得られた液体は、N-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートであることが確認できた。
 [実施例2]
 200mlの3つ口フラスコに80mlのアセトニトリルを入れ、さらにN-アリル-N-メチルアミン2.0gを入れた。次いで、1-ブロモ-2-メトキシエタン8.0gを加え、62~65℃で8時間撹拌した。得られた生成物を減圧乾燥し、溶媒を除去した後、15mlの塩化メチレンを加え、25gの活性アルミナを充填したカラムで処理した。回収した溶液を減圧乾燥し、薄黄色の4.42g(58.6%)の液体(N-アリル-N-メチル-N,N-ジメトキシエチルアンモニウム臭化物)を得た(1日放置後、固体となった。)。
 上記合成した(N-アリル-N-メチル-N,N-ジメトキシエチルアンモニウム臭化物4.00gとトリシアノフルオロボレートリチウム塩1.70gとをそれぞれイオン交換水5mlに溶解した。N-アリル-N,N-ジメチル-N-メトキシエチルアンモニウム臭化物の水溶液をフラスコに入れ、トリシアノフルオロボレートリチウムの水溶液を滴下した。滴下後、溶液は二層に分離した。この中に塩化メチレン10mlを添加し、塩化メチレン層を分離した。分離した塩化メチレン層にイオン交換水10mlを加えよく攪拌した後、静置して塩化メチレン層を分離した。この操作を水層に濁りが出なくなるまで5回繰り返した。その後、塩化メチレン層を減圧乾燥し、3.70gのN-アリル-N-メチル-N,N-ジメトキシエチルアンモニウム・トリシアノフルオロボレート(液体)を得た。
 得られた液体の1H-NMRスペクトル(溶媒 CDCl3)結果は、5.78ppm(dd,1H)、5.89ppm(dd,1H)、6.06ppm(m,1H)、4.41ppm(d,2H)、3.89ppm(m,8H)、3.41ppm(s,6H)3.36ppm(s,3H)であった。
 また、19F-NMRスペクトルは、-210.7ppm(q)であった。
 質量分析の測定結果は、検出された質量数 484(カチオンの質量数188+化合物の質量数296)、検出された質量数 780(カチオンの質量数188+化合物の質量数×2(592))、検出された質量数 1076(カチオンの質量数188+化合物の質量数×3(888))であった。
 さらに元素分析の結果は、炭素原子(理論値52.72質量%、分析値52.91質量%)、水素原子(理論値7.50質量%、分析値7.74質量%)、窒素原子(理論値18.92質量%、分析値18.76質量%)であった。
 以上の結果から得られた液体は、N-アリル-N-メチル-N,N-ジメトキシエチルアンモニウム・トリシアノフルオロボレートであることが確認できた。
 [実施例3]
 200mlの3つ口フラスコに80mlのアセトニトリルを入れ、さらにジアリルアミン2.5gを入れた。次いで、1-ブロモ-2-メトキシエタン8.0gを加え、62から65℃で8時間撹拌した。得られた生成物を減圧乾燥し溶媒除去後、15mlの塩化メチレンを加え25gの活性アルミナを充てんしたカラムで処理し、回収した溶液を減圧乾燥し、薄黄色の3.76g(49.7%)の液体(N,N-ジアリル-N,N-ジメトキシエチルアンモニウム臭化物)を得た(1日放置後、固体となった。)。
 上記合成したN,N-ジアリル-N,N-ジメトキシエチルアンモニウム臭化物3.50gとトリシアノフルオロボレートリチウム塩1.36gとをそれぞれイオン交換水5mlに溶解した。N,N-ジアリル-N,N-ジメトキシエチルアンモニウム臭化物の水溶液をフラスコに入れ、トリシアノフルオロボレートリチウムの水溶液を滴下した。滴下後、溶液は二層に分離した。この中に塩化メチレン10mlを添加し、塩化メチレン層を分離した。分離した塩化メチレン層にイオン交換水10mlを加えよく攪拌した後に静置し塩化メチレン層を分離した。この操作を水層に濁りが出なくなるまで5回繰り返した。その後に塩化メチレン層を減圧乾燥後、3.60gのN,N-ジアリル-N,N-ジメトキシエチルアンモニウム・トリシアノフルオロボレート(液体)を得た。
 得られた液体の1H-NMRスペクトル(溶媒 CDCl3)結果は、5.75ppm(dd,4H)、5.95ppm(m,2H)、3.94ppm(d,4H)、3.89ppm(m,4H)、3.41ppm(s,6H)であった。
 19F-NMRスペクトルは、-210.6ppm(q)であった。
 質量分析の結果は、検出された質量数 536(カチオンの質量数214+化合物の質量数322)、検出された質量数 858(カチオンの質量数214+化合物の質量数×2(644))であった。
 さらに元素分析の結果は、炭素原子(理論値55.91質量%、分析値56.05質量%)、水素原子(理論値7.52質量%、分析値7.75質量%)、窒素原子(理論値17.39質量%、分析値17.22質量%)であった。
 以上の結果から得られた液体は、N,N-ジアリル-N,N-ジメトキシエチルアンモニウム・トリシアノフルオロボレートであることが確認できた。
 [実施例4]
 市販の1mol/L LiPF6の炭酸エチレン(EC)-炭酸ジエチル(DEC)の混合溶媒(非水溶媒;体積比 EC:DEC=1:1)98gに、実施例1で作製した2gのN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレート(イオン性化合物)を溶解し、非水電解液を作製した。この時、得られた非水電解液中、LiPF6は1mol/Lであり、N-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレート(イオン性化合物)は0.085mol/Lであった。また、この非水電解液は、非水溶媒100質量部に対して、イオン性化合物2.3質量部であった。
 得られた非水電解液を下記(3)の方法で電池とし、(4)、(5)の試験を行うことにより、評価した。
 (3)電池の作製
 正極は、活物質としてLiNi1/3Co1/3MN1/3O293部、導電材としてアセチレンブラック4部、および、バインダーとしてポリビニリデンフルオライド3部をスラリー状にし、集電箔にアプリケーターで塗工し、120℃で10分乾燥後プレスして作製した。負極は、活物質として黒鉛93部、導電材としてアセチレンブラック2部、および、バインダーとしてポリビニリデンフルオライド5部を用い、正極と同じ工程で作製した。
 セパレータは、ポリエチレン製微多孔膜(厚さ20μm、気孔率40%)を用いた。
 上記で作製した正極と負極とを30×50mm2に打ち抜き、170℃にて10時間それぞれ乾燥した後、セパレータを介して対向させアルミニウム製のラミネート内に挿入し、実施例1で作製した非水電解液を注液、減圧含浸後、真空シールして電池性能評価用単層ラミネートセル(電池)を作製した。
 (4)充電容量および放電容量
 (3)で作製した電池の初期充放電特性(充電容量および放電容量)、低温動作性の評価で測定した放電容量は以下の方法で測定した。初期充放電特性の評価で測定した充電容量および放電容量、ならびに、低温動作性の評価で測定した放電容量は、充放電試験装置(北斗電工製HJ0501SD8)で測定した。充放電試験の条件は、室温23℃で0.2Cに相当する電流で4.2VまでCCCV充電(0.05Cカット)した後に、0.2Cに相当する電流で2.7Vまで放電を行った。この条件で繰り返し充放電を行い、3回目の結果を初期充放電特性とした。
 (5)高温保存性能の評価、および低温動作性の評価
 以下の高温保存性能の評価、および低温動作性の評価で測定した抵抗は、東陽テクニカ製VersaSTAT4で測定した。
 <高温保存性能>
 (3)で作製した電池の初期充放電試験を行った後、抵抗を測定した(初期抵抗値)。その後、85℃にて10日保存し、再度、抵抗を測定した(高温保存後の抵抗)。
 <低温動作性>
 (3)で作製した電池の初期充放電試験を行った後、-30℃にて、放電容量および抵抗を測定した。
 以上の評価結果、使用した成分、その使用量を表1にまとめた。また、初期充放電特性の測定結果を図1に示した。
 [実施例5]
 実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、実施例2で作製したN-アリル-N-メチル-N,N-ジメトキシエチルアンモニウム・トリシアノフルオロボレートを用いた以外は実施例4と同様にして非水電解液の作製し、さらに、同様の方法で電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表1にまとめた。また、初期充放電特性の測定結果を図2に示した。
 [実施例6]
 実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、実施例3で作製したN,N-ジアリル-N,N-ジメトキシエチルアンモニウム・トリシアノフルオロボレートを用いた以外は実施例4と同様にして非水電解液の作製し、さらに、同様の方法で電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表1にまとめた。また、初期充放電特性の測定結果を図3に示した。
Figure JPOXMLDOC01-appb-T000004
 [比較例1]
 500mlの4つ口フラスコに250mlのアセトニトリルを入れ、さらにN-メチル-N,N-ジエチルアミン14.6gを入れ、さらに、1-ブロモ-2-メトキシエタン15.5gを加え、62~65℃で16時間撹拌した。得られた生成物を減圧乾燥し、溶媒を除去した後、1400mlの酢酸エチル/アセトン=3/7溶液で再結晶を行い、1000mlの溶液分を減圧して除去した。回収した溶液を濾過後、酢酸エチル50mlで洗浄した。その後、40℃、16時間真空乾燥し、薄黄色の21.53g(85.5%)の結晶(N,N-ジエチル-N-メチル-N-メトキシエチルアンモニウム臭化物)を得た。
 上記合成したN,N-ジエチル-N-メチル-N-メトキシエチルアンモニウム臭化物7.4gとトリシアノフルオロボレートリチウム塩4.00gとをそれぞれイオン交換水7mlに溶解した。N,N-ジエチル-N-メチル-N-メトキシエチルアンモニウム臭化物水溶液をフラスコに入れ、トリシアノフルオロボレートリチウム水溶液を滴下した。滴下後、溶液は二層に分離した。この中に塩化メチレン10mlを添加し、塩化メチレン層を分離した。分離した塩化メチレン層にイオン交換水10mlを加えよく攪拌した後に静置して塩化メチレン層を分離した。この操作を水層に濁りが出なくなるまで5回繰り返した。その後に塩化メチレン層を減圧乾燥し、5.98gのN,N-ジエチル-N-メチル-N-メトキシエチルアンモニウム・トリシアノフルオロボレート(液体)を得た。
 次いで、実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、上記方法で作製したN,N-ジエチル-N-メチル-N-メトキシエチルアンモニウム・トリシアノフルオロボレートを用いた以外は、実施例4と同様にして非水電解液の作製し、さらに、同様の方法で電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表2にまとめた。
 [比較例2]
 実施例4で用いた市販の電解液をそのままを非水電解液として用いた以外は、実施例4と同様に、電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表2にまとめた。
 [比較例3]
 実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、トリシアノフルオロボレート・リチウム塩を用いた以外は、実施例4と同様にして電解液の作製し、さらに電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表2にまとめた。
Figure JPOXMLDOC01-appb-T000005
 表1と表2からわかるように本発明のイオン性化合物を添加することにより、無添加の場合、リチウム塩等の添加時に比べて高温保存後の抵抗上昇と低温時の抵抗増大を低減できることが分かった。この結果から、本発明のイオン性化合物は、高温・低温時の抵抗増加を抑制できるため、その構造等から考えて、正極・負極の近傍で良好なSEI膜を形成しているものと考えられる。
 [実施例7]
 実施例1でトリシアノフルオロボレートリチウム塩2.50gの代わりにジシアノジフルオロボレートリチウム塩2.35gを用いた以外同様にして6.3gのN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・ジシアノジフルオロボレート(液体)を得た。
 得られた液体の1H-NMRスペクトル(溶媒 CDCl3)結果は、5.75ppm(dd,1H)、5.88ppm(dd,1H)、6.07ppm(m,1H)4.47ppm(d,2H)、3.91ppm(m,2H)、3.64ppm(m,2H)、3.58ppm(m,2H)、3.48(m,2H)、3.39ppm(s,9H)であった。
 19F-NMRスペクトルは、-153.4ppm(q)であった。
 質量分析の結果は、質量数 477(カチオンの質量数188+化合物の質量数289)、質量数 766(カチオンの質量数188+化合物の質量数×2(578))であった。
 さらに元素分析の結果は、炭素原子(理論値49.84質量%、分析値49.60質量%)、水素原子(理論値7.68質量%、分析値7.45質量%)、窒素原子(理論値14.53質量%、分析値14.37質量%)であった。
 以上の結果から得られた液体は、N-アリル-N-ジメチル-N,N-メトキシエトキシエチルアンモニウム・ジシアノジフルオロボレートであることが確認できた。
 [実施例8]
 100mlの3つ口フラスコに市販のエピクロルヒドリン5.0ml(5.9g)を入れ、水浴で冷却しながら市販の50%ジメチルアミン6.0ml(5.2g)を滴下、撹拌した。6時間そのまま撹拌した後、6.7ml(9.6g)の40%水酸化ナトリウム水溶液を滴下し1時間撹拌した。撹拌後、3mlのイオン交換水を加え静置し有機層を抽出した。また、水層にジエチルエーテル5mlを加え良く撹拌後静置し有機層を分離しジエチルエーテルを減圧除去し、残留層を左記の有機層に合わせグリシジルジメチルアミン4.8g(回収率81%)を得た。得られたグリシジルジメチルアミン4.0gを100mlの3つ口フラスコに入れ10mlのアセトンを加え、室温で市販の1-ブロモ-2-(2-メトキシエトキシ)エタン6.6gを滴下し撹拌しながら2時間反応させた。淡黄色の析出物を脱水アセトン10mlで3回洗浄し、7.9g(回収率77%)のN-グリシジル-N,N-ジメチル-N-(2-メトキシエトキシ)エチルアンモニウム・臭化物を得た。
 上記合成したN-グリシジル-N,N-ジメチル-N-(2-メトキシエトキシ) エチルアンモニウム臭化物6.0gとトリシアノフルオロボレートリチウム塩2.4gとをそれぞれイオン交換水5mlに溶解したN-グリシジル-N,N-ジメチル-N-(2-メトキシエトキシ) エチルアンモニウム臭化物の水溶液をフラスコに入れ、トリシアノフルオロボレートリチウムの水溶液を滴下した。滴下後、溶液は二層に分離した。この中に塩化メチレン10mlを添加し、塩化メチレン層を分離した。分離した塩化メチレン層にイオン交換水10mlを加えよく攪拌した後に静置し塩化メチレン層を分離した。この操作を水層に濁りが出なくなるまで5回繰り返した。その後に塩化メチレン層を減圧乾燥し、5.4gのN-グリシジル-N,N-ジメチル-N-(2-メトキシエトキシ)エチルアンモニウム・トリシアノフルオロボレート(液体)を得た。
 得られた液体の1H-NMRスペクトル(溶媒 CDCl3)結果は、3.93ppm(dd,1H)、3.68ppm(m,3H)、3.61ppm(m,4H)、3.51ppm(t,2H)、3.35~3.41ppm(s,9H)、3.32ppm(m,1H)、3.12ppm(m,1H)、2.94(m,1H)であった。
 19F-NMRスペクトルは、-210.7ppm(q)であった。
 質量分析の結果は、質量数 516(カチオンの質量数204+化合物の質量数312)であった。
 さらに元素分析の結果は、炭素原子(理論値50.02質量%、分析値49.82質量%)、水素原子(理論値7.11質量%、分析値6.97質量%)、窒素原子(理論値17.95質量%、分析値17.90質量%)であった。
 以上の結果から得られた液体は、N-グリシジル-N,N-ジメチル-N-(2-メトキシエトキシ)エチルアンモニウム・トリシアノフルオロボレートであることが確認できた。
 [実施例9]
 実施例8においてトリシアノフルオロボレートリチウム塩2.4gの代わりにジシアノジフルオロボレートリチウム塩2.3gを使用した以外は、同様の操作を行い、5.1g(80%)のN-グリシジル-N,N-ジメチル-N-(2-メトキシエトキシ)エチルアンモニウム・ジシアノジフルオロボレート(液体)を得た。
 得られた液体の1H-NMRスペクトル(溶媒 CDCl3)結果は、3.93ppm(dd,1H)、3.68ppm(m,3H)、3.59ppm(m,4H)、3.51ppm(t,2H)、3.35~3.42ppm(s,9H)、3.32ppm(m,1H)、3.12ppm(m,1H)、2.93(m,1H)であった。
 19F-NMRスペクトル-153.6ppm(q)
 質量分析の結果は、質量数 509(カチオンの質量数204+化合物の質量数305)であった。
 さらに元素分析の結果は、炭素原子(理論値47.23質量%、分析値47.02質量%)、水素原子(理論値7.23質量%、分析値7.04質量%)、窒素原子(理論値13.77質量%、分析値13.84質量%)であった。
 以上の結果から得られた液体は、N-グリシジル-N,N-ジメチル-N-(2-メトキシエトキシ)エチルアンモニウム・トリシアノフルオロボレートであることが確認できた。
 [実施例10]
 実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、実施例7で作製したN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・ジシアノジフルオロボレートを用いた以外は実施例4と同様にして非水電解液の作製し、さらに、同様の方法で電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表3にまとめた。
 [実施例11]
 実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、実施例8で作製したN-グリシジル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートを用いた以外は実施例4と同様にして非水電解液の作製し、さらに、同様の方法で電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表3にまとめた。
 [実施例12]
 実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、実施例9で作製したN-グリシジル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・ジシアノジフルオロボレートを用いた以外は実施例4と同様にして非水電解液の作製し、さらに、同様の方法で電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表3にまとめた。
 [比較例4]
 実施例1においてトリシアノフルオロボレートリチウム塩2.5gの代わりに六フッ化リン酸カリウム塩3.9gを用いた以外は同様の操作を行い、6.8gのN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・六フッ化リン酸塩(固体)を得た。
 次いで、実施例4で用いたN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・トリシアノフルオロボレートの代わりに、前記方法で作製したN-アリル-N,N-ジメチル-N-メトキシエトキシエチルアンモニウム・六フッ化リン酸塩を用いた以外は実施例4と同様にして非水電解液の作製し、さらに、同様の方法で電池性能評価用単層ラミネートセルを作製し、電池特性を評価した。評価結果、使用した成分、その使用量を表3にまとめた。
Figure JPOXMLDOC01-appb-T000006
 本発明のイオン性化合物は、特に非水電解液の用途に好適に利用できる。本発明の非水電解液は、各種電気機器や自動車用などの蓄電デバイスの非水電解液として好適に利用できる。本発明の蓄電デバイスは、リチウム電池、リチウムイオン電池、リチウムイオンキャパシタなどとして好適に利用できる。

Claims (7)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     R1は、ビニル基、又はエポキシ基であり、
     R2及びR3は、それぞれ、炭素数が1~3のアルキル基であり、
     aは、1~3の整数であり、
     bは、1~2の整数であり、
     cは、1~3の整数であり、
     kは、1~3の整数であって、
     b+kは、2~4の整数である)
    で示されるイオン性化合物。
  2.  請求項1に記載のイオン性化合物、
     鎖状カーボネート、環状カーボネート、鎖状エステル、ラクトン、及びエーテルよりなる群から選ばれる少なくとも1種の非水溶媒、および、
     前記非水溶媒に溶解する少なくとも1種のリチウム化合物
    を含むことを特徴とする非水電解液。
  3.  前記リチウム化合物が、LiPF6、LiBF4、LiBF2CN2、及びLiBFCN3よりなる群から選ばれる少なくとも1種のリチウム化合物を含むことを特徴とする請求項2に記載の非水電解液。
  4.  前記非水溶媒100質量部に対して、前記式(1)で示されるイオン性化合物が0.1~10質量部含まれることを特徴とする請求項2または3に記載の非水電解液。
  5.  前記リチウム化合物の濃度が、0.3~4mol/Lであることを特徴とする請求項2~4のいずれかに記載の非水電解液。
  6.  請求項2~5のいずれかに記載の非水電解液を用いた蓄電デバイス。
  7.  リチウム電池、リチウムイオン電池、またはリチウムイオンキャパシタであることを特徴とする請求項6に記載の蓄電デバイス。
PCT/JP2017/004704 2016-02-18 2017-02-09 イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス WO2017141806A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028701 2016-02-18
JP2016028701A JP2019064923A (ja) 2016-02-18 2016-02-18 イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス

Publications (1)

Publication Number Publication Date
WO2017141806A1 true WO2017141806A1 (ja) 2017-08-24

Family

ID=59625091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004704 WO2017141806A1 (ja) 2016-02-18 2017-02-09 イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス

Country Status (2)

Country Link
JP (1) JP2019064923A (ja)
WO (1) WO2017141806A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845833A (zh) * 2017-11-30 2018-03-27 武汉中原长江科技发展有限公司 一种高低温兼顾倍率型锂离子电池电解液及锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611123A (zh) * 2019-10-23 2019-12-24 东莞维科电池有限公司 一种锂离子电池电解液和锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175666A (ja) * 2002-11-22 2004-06-24 Tokuyama Corp オニウム塩
JP2010111707A (ja) * 2007-02-22 2010-05-20 Nisshinbo Holdings Inc ポリマー処理剤およびドープ
US20110244254A1 (en) * 2010-03-30 2011-10-06 Zhiqiang Song Anticorrosion coatings with reactive polyelectrolyte complex system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175666A (ja) * 2002-11-22 2004-06-24 Tokuyama Corp オニウム塩
JP2010111707A (ja) * 2007-02-22 2010-05-20 Nisshinbo Holdings Inc ポリマー処理剤およびドープ
US20110244254A1 (en) * 2010-03-30 2011-10-06 Zhiqiang Song Anticorrosion coatings with reactive polyelectrolyte complex system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARNA, MINNA K. ET AL.: "Properties of New Asymmetrically Quaternized Dicationic Ammonium Based Room-Temperature Ionic Liquids with Ether Functionality", JOURNAL OF CHEMICAL & ENGINEERING DATA, vol. 58, no. 7, 2013, pages 1893 - 1908, XP055410500 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845833A (zh) * 2017-11-30 2018-03-27 武汉中原长江科技发展有限公司 一种高低温兼顾倍率型锂离子电池电解液及锂离子电池
CN107845833B (zh) * 2017-11-30 2020-09-29 武汉中原长江科技发展有限公司 一种高低温兼顾倍率型锂离子电池电解液及锂离子电池

Also Published As

Publication number Publication date
JP2019064923A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5274562B2 (ja) リチウム二次電池用非水電解液及びリチウム二次電池
CN113841280B (zh) 电解质组合物、溶剂组合物、非水电解液及其用途
US11050087B2 (en) Silane functionalized ionic liquids
US20120225359A1 (en) Electrolytes in Support of 5 V Li ion Chemistry
EP3240094B1 (en) Electrolyte solution for secondary batteries, and secondary battery comprising the same
CA2688952A1 (en) Nonaqueous electrolyte for use in a lithium ion cell
JP2010108940A (ja) 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP2019505955A (ja) 高エネルギーリチウムイオン電池のための電解質組成物のためのシアノアルキルスルホニルフルオリド
JP2007019012A (ja) 非水系電解液及び非水系電解液二次電池
JP5062459B2 (ja) 非水電解質二次電池
WO2016024496A1 (ja) モノフルオロリン酸エステル塩を含む非水電解液、及びそれを用いた非水電解液電池
JP2017515919A (ja) ゲル化剤としての無機配位ポリマー
JP5165862B2 (ja) 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス
JP2018115122A (ja) シアノフルオロボレートリチウム塩、該シアノフルオロボレートリチウム塩を含む非水電解液、および該非水電解液を有する蓄電デバイス
EP2937918A1 (en) Hindered glymes for electrolyte compositions
CN108346824A (zh) 非水电解液和非水电解液二次电池
CN111512488A (zh) 包含双(氟磺酰基)酰亚胺锂的非水性电解质组合物
US10615456B2 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
JP2010061851A (ja) ジイソチオシアナート誘導体を含有する非水電解液、及びその二次電池
JP2009252681A (ja) 一次電池用非水電解液、及びそれを用いた非水電解液一次電池
WO2017141806A1 (ja) イオン性化合物、該イオン性化合物を含む非水電解液、及び該非水電解液を用いた蓄電デバイス
JP2017004638A (ja) 電解質塩、該電解質塩を含む非水電解液、及びそれを用いた蓄電デバイス
TW201611376A (zh) 非水電解液及使用該非水電解液之蓄電裝置
JP6681721B2 (ja) 非水電解液及びそれを用いた非水系二次電池
CN109119687A (zh) 电解液及电化学储能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP