WO2017038675A1 - 二次元測色装置及び二次元測色方法 - Google Patents
二次元測色装置及び二次元測色方法 Download PDFInfo
- Publication number
- WO2017038675A1 WO2017038675A1 PCT/JP2016/074958 JP2016074958W WO2017038675A1 WO 2017038675 A1 WO2017038675 A1 WO 2017038675A1 JP 2016074958 W JP2016074958 W JP 2016074958W WO 2017038675 A1 WO2017038675 A1 WO 2017038675A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional
- value
- measurement
- flicker
- frame rate
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 144
- 238000000691 measurement method Methods 0.000 title description 4
- 230000003287 optical effect Effects 0.000 claims abstract description 70
- 238000005070 sampling Methods 0.000 claims description 17
- 238000004737 colorimetric analysis Methods 0.000 claims description 7
- 239000003086 colorant Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 40
- 238000004364 calculation method Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 18
- 239000004973 liquid crystal related substance Substances 0.000 description 16
- 230000008859 change Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000012935 Averaging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/04—Diagnosis, testing or measuring for television systems or their details for receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/75—Circuitry for compensating brightness variation in the scene by influencing optical camera components
Definitions
- the present invention relates to a technique for measuring characteristics related to the color of a screen of a liquid crystal display, for example.
- a two-dimensional colorimeter is a device that measures a surface, that is, a two-dimensional region. Two-dimensional colorimeters are applied in various industrial fields, and are used, for example, for measuring the chromaticity distribution of the screen of a liquid crystal display.
- Patent Document 1 discloses a beam splitter that divides light from a measurement object into two parts, an imaging unit that receives one of the two divided lights, and the other of the two divided lights.
- the tristimulus value is calculated using the spectroscopic sensor and the spectral distribution of the measurement point measured by the spectroscopic sensor, and the tristimulus value and the data of each pixel in the measurement region imaged by the imaging unit are used.
- a two-dimensional colorimeter including a calculation unit that calculates a tristimulus value of each pixel is disclosed.
- the liquid crystal display is driven by alternating current because the life of the liquid crystal display is shortened when driven by direct current.
- AC driving the polarity is reversed for each frame.
- line inversion driving method and a dot inversion driving method as AC driving methods for liquid crystal displays.
- the line inversion driving method is a method of inverting the polarity of the pixel for each horizontal line. This method is often used for small liquid crystal displays.
- the dot inversion driving method is a method of inverting the polarity of pixels adjacent in the vertical direction and the polarity of pixels adjacent in the horizontal direction. This method is often used for large liquid crystal displays.
- FIG. 15 and 16 are explanatory diagrams for explaining the change of the polarity of the frame in a state where the same screen is continuously displayed on the liquid crystal display. Frames with positive polarity and frames with negative polarity appear alternately. As shown in FIG. 15, when the reference potential (Vcom) and the amplitude center of the waveform of the polarity change are equal, the absolute value of the level of the video signal is equal between the positive polarity frame and the negative polarity frame.
- Vcom reference potential
- the absolute value of the video signal level is different between the positive polarity frame and the negative polarity frame.
- the video signal changes at a half frequency of the frame frequency. For example, when the frame frequency is 60 Hz, the change frequency of the video signal is 30 Hz. Since 30 Hz is lower than the maximum frequency that the human eye can respond to, it is recognized as flicker (flickering of the screen). When flicker occurs, the screen becomes difficult to see. For this reason, the manufacturing process of the liquid crystal display includes a flicker inspection process.
- Patent Document 2 generates a plurality of image data related to an image captured in step (a) and a step (a) of capturing an image displayed on a display device for a predetermined time.
- Step (b) for dividing each of the plurality of image data obtained in step (b) into a plurality of minute regions, and each of the divided minute regions for the predetermined
- a step (d) for obtaining a luminance change amount based on a luminance transition in time
- a luminance information processing method is disclosed.
- the reference potential is adjusted for the liquid crystal display in which flicker occurs. It is difficult to adjust the reference potential so that the reference potential matches the amplitude center of the waveform of the polarity change, and an error inevitably occurs. For this reason, flicker can be reduced, but it is difficult to eliminate it completely.
- An object of the present invention is to provide a two-dimensional colorimetry apparatus and a two-dimensional colorimetry method that can reduce the influence of flicker in the measurement of color-related characteristics using an optical sensor having a two-dimensional region as a measurement range.
- a two-dimensional colorimetric apparatus includes a first optical sensor, a second optical sensor, a first measurement unit, a second measurement unit, and a setting unit.
- the first optical sensor captures an image of a two-dimensional region in the measurement target as a measurement range, and outputs a signal indicating the color of each pixel for the captured image of the two-dimensional region.
- the second optical sensor outputs a signal indicating the brightness of the spot region, with a spot region included in the two-dimensional region and narrower than the two-dimensional region as a measurement range.
- the first measurement unit measures characteristics regarding the color of the two-dimensional region using the first optical sensor under a predetermined exposure time and a predetermined frame rate.
- the second measurement unit uses the second optical sensor to measure a flicker cycle that is a cycle of flicker generated in the measurement target.
- the setting unit sets the frame rate with a frame time that is a value obtained by multiplying the flicker cycle by an integer of 1 or more when the reciprocal of the frame rate is a frame time and the exposure time is the flicker cycle or more; When the exposure time is shorter than the flicker cycle, the frame rate is set such that a value obtained by dividing the flicker cycle by an integer greater than 1 is the frame time.
- the first measuring unit measures characteristics relating to the color of the two-dimensional region under the frame rate set by the setting unit.
- FIG. 6 is a schematic diagram showing a first example of the relationship between the exposure time, flicker cycle, and frame time when the initial value of the exposure time is equal to or greater than the flicker cycle. It is a schematic diagram showing a second example of the relationship between the exposure time, flicker cycle and frame time when the initial value of the exposure time is equal to or greater than the flicker cycle. It is a schematic diagram showing a third example of the relationship between the exposure time, flicker cycle and frame time when the initial value of the exposure time is equal to or greater than the flicker cycle.
- FIG. 13 it is a schematic diagram which shows the case where the phase of a frame is shifted. It is explanatory drawing explaining the change of the polarity of a flame
- FIG. 1 is a block diagram illustrating a configuration of a two-dimensional colorimetric apparatus 1 according to the present embodiment.
- the two-dimensional colorimetric device 1 is a two-dimensional colorimeter that measures a light source color, and includes a light receiving unit 2 and a main body unit 3.
- the measurement object 4 of the two-dimensional colorimetric device 1 is a light emitter such as a liquid crystal display screen.
- a characteristic (for example, chromaticity) regarding the color of the measuring object 4 and the luminance of the measuring object 4 are measured by the two-dimensional colorimetric device 1.
- the light receiving unit 2 includes an optical lens 5, a beam splitter 6, a two-dimensional area colorimetric sensor 7, and a spot area colorimetric sensor 8.
- the two-dimensional area colorimetric sensor 7 is a first optical sensor
- the spot area colorimetric sensor 8 is a second optical sensor.
- the optical lens 5 focuses the light L from the measurement object 4.
- the beam splitter 6 (an example of a light splitting unit) splits the focused light L into two. More specifically, the beam splitter 6 transmits part of the focused light L and reflects the rest. The transmitted light is referred to as light L1, and the reflected light is referred to as light L2.
- the beam splitter 6 transmits, for example, 10 percent of the focused light L and reflects 90 percent.
- a two-dimensional colorimetric sensor 7 is disposed in the optical path of the light L1.
- the two-dimensional area colorimetric sensor 7 includes a two-dimensional image sensor (not shown), and receives the light L1 to thereby detect a two-dimensional area (for example, the entire screen of the liquid crystal display or a part of the screen) in the measurement object 4.
- the light source color is imaged, and a signal indicating the color of each pixel is output for the captured image of the two-dimensional region.
- Each pixel refers to each pixel of the two-dimensional image sensor.
- the X, Y, and Z signals in the XYZ color system are described as examples of signals indicating the color of each pixel.
- any signal indicating the color of each pixel may be used (for example, an R signal). , G signal, B signal).
- the Y signal is a luminance signal and indicates the luminance of each pixel of the image in the two-dimensional area.
- the two-dimensional image sensor is, for example, a CCD, and is an optical sensor having a two-dimensional region as a measurement range.
- a spot area colorimetric sensor 8 is disposed in the optical path of the light L2.
- the spot area colorimetric sensor 8 uses a spot area (for example, one point in the entire screen of the liquid crystal display) included in the two-dimensional area of the measurement object 4 imaged by the two-dimensional area colorimetry sensor 7 as a measurement range.
- the spot area has an angle of view of, for example, 0.1 to 3 degrees and is narrower than the two-dimensional area.
- the spot area colorimetric sensor 8 includes three photodiodes, and outputs X, Y, and Z signals of the XYZ color system indicating the light source color of the spot area by receiving the light L2.
- the Y signal is a luminance signal and indicates the luminance of the spot area.
- FIG. 2 is a schematic diagram illustrating a configuration of the light receiving unit 2a according to the first modification.
- the two-dimensional area colorimetric sensor 7 is disposed on the optical axis of the optical lens 5.
- the spot area colorimetric sensor 8 is disposed at a position where light L that has passed through the optical lens 5 can be received from a location other than the optical axis of the optical lens 5.
- FIG. 3 is a schematic diagram showing a configuration of the light receiving unit 2b according to the second modification.
- the two-dimensional area colorimetric sensor 7 is disposed on the optical axis of the optical lens 5.
- the spot area colorimetric sensor 8 is disposed at a position where the component reflected by the light receiving surface 70 of the two-dimensional area colorimetric sensor 7 in the light L can be received.
- the light L from the measuring object 4 is supplied to the two-dimensional area colorimetric sensor 7 and the spot area colorimetric sensor 8 without providing the beam splitter 6 (FIG. 1). Light can be received.
- the main body unit 3 includes a control processing unit 9, an input unit 10, and an output unit 11.
- the control processing unit 9 is a microcomputer realized by an AD conversion circuit, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc., and has functions as shown in FIG. As a block, a two-dimensional area luminance / chromaticity calculation unit 21, a spot area luminance / chromaticity calculation unit 22, a luminance calibration unit 23, a chromaticity calibration unit 24, a flicker measurement unit 25, and a setting unit 26 are provided. Details of these blocks will be described later.
- the input unit 10 is a device for inputting commands (commands), data, and the like from the outside to the two-dimensional colorimetric device 1, and is, for example, a touch panel or a keyboard.
- the input unit 10 includes an interface unit (such as a USB terminal) for inputting commands, data, and the like set by an external controller (such as a personal computer) to the two-dimensional colorimetric device 1 according to the measurement object 4 and measurement conditions.
- the device used may be used.
- the output unit 11 is a device for outputting the command and data input from the input unit 10 and the calculation result of the control processing unit 9.
- the output unit 11 is a display device such as an LCD (liquid crystal display) or an organic EL display. Or, for example, a printing apparatus such as a printer.
- the two-dimensional area luminance / chromaticity calculation unit 21 (an example of a first measurement unit) is a two-dimensional area colorimetric sensor under a predetermined exposure time and a predetermined frame rate.
- the chromaticity of the two-dimensional region of the measuring object 4 is calculated using the X signal, Y signal, and Z signal output from 7.
- the spot area luminance / chromaticity calculation unit 22 (an example of a third measurement unit) calculates the chromaticity of the spot area using the X signal, the Y signal, and the Z signal output from the spot area colorimetric sensor 8. .
- the brightness calibrating unit 23 uses the brightness of the spot area calculated by the spot area brightness / chromaticity calculation unit 22 for each pixel of the image of the two-dimensional area calculated by the 2D area brightness / chromaticity calculation unit 21. , Calibrate the brightness. Thereby, the brightness
- the chromaticity calibration unit 24 uses the chromaticity of the spot region calculated by the spot region luminance / chromaticity calculation unit 22 and uses the two-dimensional region luminance / chromaticity calculation unit 21 to calculate The chromaticity is calibrated for each pixel of the image in the dimension area. Thereby, the chromaticity of the two-dimensional region can be measured with higher accuracy.
- a process similar to this process is described in detail in Patent Document 1 described above.
- the flicker measurement unit 25 (an example of a second measurement unit) measures flicker generated in the measurement target 4. Flicker is measured using a luminance signal (Y signal) output from the spot area colorimetric sensor 8.
- a flicker measuring method there are a contrast method and a JEITA (Japan Electronics and Information Technologies Association) method.
- the flicker measuring unit 25 measures flicker by the contrast method, but may measure flicker by the JEITA method.
- FIG. 5 is a graph showing an example of the luminance signal output from the spot area colorimetric sensor 8.
- the horizontal axis represents time, and the vertical axis represents the luminance signal.
- the luminance signal can be seen as an AC component stacked on a DC component.
- the waveform of the luminance signal has a sine curve shape. When the maximum value of the luminance signal is Vmax and the minimum value is Vmin, Vmax and Vmin are alternately repeated.
- the flicker value by the contrast method is defined by the following equation.
- the flicker measuring unit 25 calculates an index value indicating the flicker cycle and the flicker size.
- the flicker cycle is a cycle of the luminance signal, and a value obtained by doubling these time intervals T1 between the adjacent Vmax and Vmin is the flicker cycle.
- the index value indicating the flicker size is Vmax ⁇ Vmin.
- the flicker value may be used as an index value.
- the flicker measurement unit 25 obtains Vmax and Vmin as follows using a contrast method.
- FIG. 6 is an explanatory diagram for explaining a series of processes for obtaining these.
- the flicker measurement unit 25 uses a low-pass filter having frequency characteristics shown in (B) for the analog luminance signal output from the spot area colorimetric sensor 8 shown in (A), and is included in this luminance signal. Remove harmonic components. This low pass filter cuts frequencies greater than 60 Hz. (C) shows the luminance signal after the harmonic component is removed.
- the flicker measuring unit 25 samples the luminance signal shown in (C) with a sampling period T2 as shown in (D) and converts the luminance signal from an analog signal to digital as shown in (E). Convert to signal.
- the sampling frequency is set higher than the frame rate when the characteristics relating to the color of the two-dimensional region are measured by the two-dimensional region colorimetric sensor 7.
- the sampling frequency and the sampling period T2 are set so that the black circles correspond to digital values and the digital values are several hundred.
- the maximum value is V1max and the minimum value is V1min.
- the flicker measurement unit 25 determines V1max and V1min, and calculates a time interval T1 between time t1 indicating V1max and time t2 indicating V1min.
- the flicker measuring unit 25 processes the digital value of the sampling period T2 shown in (E) with a digital low-pass filter having frequency characteristics shown in (F).
- the frequency characteristics of this low-pass filter are the same as the frequency characteristics shown in (B).
- the flicker measuring section 25 attenuates the luminance signal by processing the luminance signal with a low-pass filter having the frequency characteristics shown in FIG. Therefore, the flicker measuring unit 25 restores attenuation by processing the digital value of the sampling period T2 shown in (E) with a low-pass filter having the frequency characteristics shown in (F).
- V1max and V1min after processing by this low-pass filter are Vmax and Vmin, respectively.
- the flicker measuring unit 25 samples the luminance signal output from the spot area colorimetric sensor 8 for a predetermined period, and among the values obtained by sampling, the maximum value Vmax and the minimum value Vmin are obtained. To decide. This means the maximum value and the minimum value determined by the contrast method, which is one of the flicker value calculation methods. Since the flicker value can be measured at high speed according to the contrast method, the flicker measuring unit 25 using the contrast method can improve the speed at which the flicker period is measured, and as a result, the two-dimensional colorimetric device 1. Accordingly, the time required for measuring the color characteristics of the two-dimensional region can be shortened.
- the flicker measurement unit 25 measures flicker using the spot area colorimetric sensor 8 that measures the brightness of the spot area. Therefore, the sampling frequency of the signal output from the spot area colorimetric sensor 8 (signal indicating the brightness of the spot area) is measured using the two-dimensional area colorimetric sensor 7 (measurement of characteristics relating to the color of the two-dimensional area). Since it can be higher than the frame rate, the time required for measuring the flicker period can be shortened. Therefore, in the two-dimensional colorimetric apparatus 1, the time required for measuring the color characteristics of the two-dimensional region can be shortened.
- the setting unit 26 shown in FIG. 4 will be described.
- the reciprocal of the frame rate when the luminance and chromaticity of the measuring object 4 is measured by the two-dimensional area luminance / chromaticity calculator 21 is defined as a frame time.
- the setting unit 26 sets the flicker cycle when the exposure time when measuring the luminance and chromaticity of the measurement target 4 by the two-dimensional area luminance / chromaticity calculating unit 21 is equal to or longer than the flicker cycle calculated by the flicker measuring unit 25.
- a frame rate is set with a value obtained by multiplying an integer of 1 or more as a frame time.
- a frame rate with a value obtained by dividing the flicker cycle by an integer greater than 1 is set.
- control processing unit 9 stores the input exposure time and frame rate as the initial value of the exposure time and the initial value of the frame rate (step S1). Note that the control processing unit 9 may calculate and store the initial value of the exposure time and the initial value of the frame rate based on the brightness around the measurement object 4.
- the spot area colorimetric sensor 8 (an example of the second optical sensor) is used for the spot area of the measurement object 4 (for example, a screen of a liquid crystal display). Light from one point), and outputs an X signal, a Y signal, and a Z signal indicating the color of the spot area (step S2).
- the flicker measuring unit 25 uses an Y signal (luminance signal) in step S2 to indicate an index value indicating the flicker size of the flicker generated in the measurement target 4, and A flicker cycle is calculated (step S3).
- the index value is a difference between the maximum value Vmax and the minimum value Vmin described in FIG.
- the two-dimensional area luminance / chromaticity calculation unit 21 determines whether or not the index value calculated in step S3 exceeds a predetermined value (step S4).
- the two-dimensional area luminance / chromaticity calculation unit 21 determines that the index value is equal to or smaller than a predetermined value (No in step S4), that is, the size of the flicker generated in the measurement target 4 is the measurement target.
- a predetermined value that is, the size of the flicker generated in the measurement target 4 is the measurement target.
- the luminance and chromaticity of the two-dimensional area are measured by a normal method. More specifically, the two-dimensional area luminance / chromaticity calculation unit 21 uses the two-dimensional area colorimetric sensor 7 (first optical sensor) under the initial exposure time value and the initial frame rate value stored in step S1.
- the chromaticity of each pixel is calculated for the image of the two-dimensional region of the measurement object 4 using the X signal, the Y signal, and the Z signal output from the example), and the Y signal is used to calculate the chromaticity of the measurement object 4.
- the luminance of each pixel is calculated (step S5).
- the spot area luminance / chromaticity calculation unit 22 uses the X signal, the Y signal, and the Z signal output from the spot area colorimetric sensor 8 described in step S2 to calculate the spot area.
- the chromaticity is calculated, and the luminance of the spot area is calculated using the Y signal (luminance signal).
- the luminance calibration unit 23 calibrates the luminance calculated in step S5 for each pixel of the image of the two-dimensional region of the measurement target 4 using the luminance of the spot region (step S6).
- the chromaticity calibration unit 24 calibrates the chromaticity calculated in step S5 for each pixel of the image of the two-dimensional region of the measurement target 4 using the chromaticity of the spot region (step S6).
- the output unit 11 displays the brightness and chromaticity calibrated in step S6 (step S7). Thereby, the operation of the two-dimensional colorimetric apparatus 1 is completed.
- step S4 determines that the index value exceeds a predetermined value (Yes in step S4), that is, the size of the flicker generated in the measurement object 4 is If the measurement of the luminance and chromaticity of the two-dimensional area of the measuring object 4 is affected, the process proceeds to step S8. 4 and 8, in step S8, setting unit 26 determines whether or not the initial value of the exposure time stored in step S1 is equal to or greater than the flicker cycle measured in step S3.
- the frame time is determined (step S9).
- the frame time is the reciprocal of the frame rate.
- FIGS. 9, 10, and 11 are schematic diagrams illustrating a first example, a second example, and a third example of the relationship between the exposure time, the flicker cycle, and the frame time when the initial value of the exposure time is equal to or greater than the flicker cycle. It is.
- the waveform of the graph indicates the waveform of the luminance signal
- the horizontal axis of the graph indicates time
- the vertical axis of the graph indicates the value (voltage) of the luminance signal.
- the setting unit 26 determines a frame time that is a value obtained by multiplying the flicker cycle by an integer N1 of 1 or more. An example of this determination method will be described.
- the setting unit 26 determines the initial value of the exposure time as the frame time.
- the integer N1 here is 3, for example.
- the setting unit 26 calculates a value obtained by adding the time d1 to the initial value of the exposure time.
- a time d1 that is a value obtained by multiplying the flicker cycle by an integer N1 of 1 or more is calculated, or a value obtained by subtracting the time d2 from the initial value of the exposure time is a value obtained by multiplying the flicker cycle by an integer of 1 or more.
- Time d2 is calculated.
- a value is selected so that the value obtained by adding the time d1 to the initial value of the exposure time does not cause excessive exposure.
- a value is set such that the value obtained by subtracting the time d2 from the initial value of the exposure time does not cause an underexposure.
- the setting unit 26 is a value obtained by adding the calculated time d1 to the initial value of the exposure time as shown in FIG. 10, or a value obtained by subtracting the calculated time d2 from the initial value of the exposure time as shown in FIG. Is determined as a frame time.
- the setting unit 26 sets a frame rate with the frame time determined in step S9 as the frame time (step S10). That is, the reciprocal of the frame time determined in step S9 is set as the frame rate.
- the two-dimensional area luminance / chromaticity calculation unit 21 uses the frame time determined in step S9 as the exposure time, and the two-dimensional area colorimetric sensor 7 under the exposure time and the frame rate set in step S10.
- the chromaticity of each pixel is calculated for the image of the two-dimensional region of the measurement target 4 using the X signal, Y signal, and Z signal output from the signal, and the two-dimensional region of the measurement target 4 is calculated using the Y signal.
- the luminance of each pixel is calculated (step S11).
- the spot area luminance / chromaticity calculation unit 22 calculates the chromaticity of the spot area using the X signal, Y signal, and Z signal output from the spot area colorimetric sensor 8 described in step S2, and generates a Y signal ( The brightness of the spot area is calculated using the brightness signal.
- the luminance calibration unit 23 calibrates the luminance calculated in step S11 for each pixel of the image of the two-dimensional region of the measurement target 4 using the luminance of the spot region (step S12).
- the chromaticity calibration unit 24 calibrates the chromaticity calculated in step S11 for each pixel of the image of the two-dimensional region of the measurement target 4 using the chromaticity of the spot region (step S12). Then, the process proceeds to step S7.
- the frame time is determined (step S13).
- FIGS. 12 and 13 are schematic diagrams showing a first example and a second example of the relationship between the exposure time, flicker cycle, and frame time when the initial value of the exposure time is smaller than the flicker cycle.
- the waveform of the graph indicates the waveform of the luminance signal
- the horizontal axis of the graph indicates time
- the vertical axis of the graph indicates the value (voltage) of the luminance signal.
- the setting unit 26 determines a frame time that is a value obtained by dividing the flicker cycle by an integer N2 greater than 1. An example of this determination method will be described.
- the setting unit 26 determines, as the frame time, a value obtained by dividing the flicker cycle by an integer N2 greater than 1 among the frame times equal to or greater than the initial value of the exposure time. A value that does not cause underexposure is selected for N2.
- N2 is described as 3, for example.
- FIG. 12 shows a case where the frame time determined by the setting unit 26 matches the initial value of the exposure time
- FIG. 13 shows a case where the frame time determined by the setting unit 26 becomes larger than the initial value of the exposure time. Yes.
- the setting unit 26 sets a frame rate with the frame time determined in step S13 as the frame time (step S14). That is, the reciprocal of the frame time determined in step S13 is set as the frame rate.
- the two-dimensional area luminance / chromaticity calculation unit 21 uses the initial value of the exposure time stored in step S1 as the exposure time, and measures the two-dimensional area under the exposure time and the frame rate set in step S14. Using the X signal, Y signal, and Z signal output from the color sensor 7, the chromaticity of each pixel is calculated for the image of the two-dimensional region of the measurement object 4, and the Y signal is used to calculate the chromaticity of the measurement object 4. For the image of the two-dimensional area, the luminance of each pixel is calculated (step S15).
- the two-dimensional area luminance / chromaticity calculation unit 21 determines whether the frame time determined in step S13 is greater than or coincides with the exposure time (initial value of the exposure time) in step S15 (step S16). . When the two-dimensional area luminance / chromaticity calculation unit 21 determines that the frame time and the exposure time match as shown in FIG. 12 (No in step S16), the process proceeds to step S17.
- the spot area luminance / chromaticity calculation unit 22 calculates the chromaticity of the spot area using the X signal, Y signal, and Z signal output from the spot area colorimetric sensor 8 described in step S2, and generates a Y signal ( The brightness of the spot area is calculated using the brightness signal.
- the luminance calibration unit 23 calibrates the luminance calculated in step S15 for each pixel of the image of the two-dimensional region of the measurement target 4 using the luminance of the spot region (step S17).
- the chromaticity calibration unit 24 calibrates the chromaticity calculated in step S15 for each pixel of the image of the two-dimensional region of the measurement target 4 using the chromaticity of the spot region (step S17). Then, the process proceeds to step S7.
- step S16 When the two-dimensional area luminance / chromaticity calculation unit 21 determines that the frame time is longer than the exposure time as shown in FIG. 13 (Yes in step S16), the process proceeds to step S18. As shown in FIG. 14, the two-dimensional area luminance / chromaticity calculation unit 21 shifts the phase of the frame by a value D obtained by subtracting the exposure time (initial value of the exposure time) from the frame time, and the exposure time in step S15.
- the two-dimensional area luminance / chromaticity calculation unit 21 calculates a value obtained by averaging the luminance calculated in step S15 and the luminance calculated in step S18 for each pixel of the image in the two-dimensional area.
- the luminance of each pixel of the image is set (step S19).
- the two-dimensional area luminance / chromaticity calculation unit 21 calculates a value obtained by averaging the chromaticity calculated in step S15 and the chromaticity calculated in step S18 for each pixel of the image in the two-dimensional area.
- the chromaticity of each pixel of the image of the dimension area is set (step S19).
- the spot area luminance / chromaticity calculation unit 22 calculates the chromaticity of the spot area using the X signal, Y signal, and Z signal output from the spot area colorimetric sensor 8 described in step S2, and generates a Y signal ( The brightness of the spot area is calculated using the brightness signal.
- the luminance calibration unit 23 calibrates the luminance calculated in step S19 for each pixel of the image of the two-dimensional region of the measurement target 4 using the luminance of the spot region (step S20).
- the chromaticity calibration unit 24 calibrates the chromaticity calculated in step S19 for each pixel of the image of the two-dimensional region of the measurement target 4 using the chromaticity of the spot region (step S20). Then, the process proceeds to step S7.
- the two-dimensional region luminance / chromaticity calculation unit 21 sets the screen size (for example, 2380 ⁇ 1200) of the measurement target 4 to, for example, , 7 ⁇ 5, and the uniformity is calculated.
- the two-dimensional colorimetric apparatus 1 focuses on the case where the exposure time is longer than the flicker cycle (Yes in step S8) and the case where the exposure time is shorter than the flicker cycle (No in step S8).
- the setting unit 26 sets a frame rate in which a value obtained by multiplying the flicker cycle by an integer of 1 or more is set as a frame time (step S9, FIG. 9 to FIG. 11).
- a frame rate is set in which a value obtained by dividing by a large integer is set as a frame time (step S13, FIG. 12, FIG. 13). If such a relationship is established between the frame time and the flicker cycle, the influence of flicker can be reduced. Therefore, according to the two-dimensional colorimetric apparatus 1 according to the present embodiment, the influence of flicker in the measurement of the color-related characteristics using the optical sensor (two-dimensional region colorimetric sensor 7) having the two-dimensional region as the measurement range. Can be reduced.
- the first measurement value is calculated by measuring the color characteristics of the two-dimensional area under the conditions of the initial value of the exposure time and the frame rate set by the setting unit 26 (step S15). ), The phase of the frame is shifted by a value D obtained by subtracting the exposure time from the frame time, and the color characteristics of the two-dimensional region are measured under the same conditions as described above to obtain the second A measurement value is calculated (step S18), and a value obtained by averaging the first measurement value and the second measurement value is calculated (step S19).
- the two-dimensional area luminance / chromaticity calculation unit 21 shifts the phase of the frame by a value D obtained by subtracting the exposure time from the frame time, as shown in FIG. Under the exposure time and frame rate when the value was obtained, the color characteristic of the measurement object 4 was measured to calculate the second measurement value, and the first measurement value and the second measurement value were averaged. Calculate the value. Thereby, luminance fluctuations within the frame time are canceled out, and the influence of flicker can be canceled.
- the two-dimensional colorimetric apparatus 1 includes the luminance calibration unit 23 and the chromaticity calibration unit 24, but may be configured without these components.
- an optical sensor luminance sensor capable of measuring the brightness of the spot area is provided.
- the two-dimensional colorimetric apparatus images a two-dimensional region in a measurement target as a measurement range, and outputs a signal indicating the color of each pixel for the imaged two-dimensional region.
- a first optical sensor a second optical sensor that is included in the two-dimensional region and has a spot region narrower than the two-dimensional region as a measurement range, and outputs a signal indicating the luminance of the spot region;
- a first measurement unit that measures characteristics related to the color of the two-dimensional region
- a second measurement unit that measures a flicker period that is a flicker period generated in a measurement target; and a reciprocal of the frame rate as a frame time, and the exposure time is equal to or greater than the flicker period
- the frame rate is set to a value obtained by multiplying 1 by an integer of 1 or more and the exposure time is shorter than the flicker cycle, a value obtained by dividing the flicker cycle by an integer greater than 1 is set as the frame time.
- a setting unit configured to set the frame rate, and the first measurement unit measures characteristics relating to the color of the two-dimensional region under the frame rate set by the setting unit.
- the two-dimensional colorimetric apparatus focuses on the case where the exposure time is longer than the flicker cycle and the case where the exposure time is shorter than the flicker cycle.
- the setting unit sets a frame rate in which a value obtained by multiplying the flicker cycle by an integer of 1 or more is used as a frame time.
- a value obtained by dividing the flicker cycle by an integer greater than 1 is used as the frame time. Set the frame rate. If such a relationship is established between the frame time and the flicker cycle, the influence of flicker can be reduced.
- the influence of flicker can be reduced in the measurement of the color-related characteristics using the optical sensor having the two-dimensional region as the measurement range.
- Each pixel refers to each pixel of the first optical sensor.
- the second measurement unit uses the second optical sensor to measure an index value indicating the size of flicker generated in the measurement target, and the first measurement unit includes the index value. If the value exceeds a predetermined value, a characteristic relating to the color of the two-dimensional area is measured under the frame rate set by the setting unit, and the index value is not more than a predetermined value. For example, the characteristics relating to the color of the two-dimensional region are measured under the frame rate determined in advance before the frame rate is set by the setting unit.
- the flicker size generated in the measurement target is a characteristic measurement related to the color of the two-dimensional area of the measurement target.
- the characteristics relating to the color of the two-dimensional area are measured under the frame rate set by the setting unit.
- the first measurement unit determines that the index value is equal to or smaller than a predetermined value, that is, the size of the flicker generated in the measurement object relates to the color of the two-dimensional area of the measurement object.
- the characteristics regarding the color of the two-dimensional area are measured at a predetermined frame rate. That is, the characteristics relating to the color of the two-dimensional region are measured by a normal method.
- the second measurement unit samples the signal indicating the brightness of the spot region output from the second optical sensor for a predetermined period, and outputs the maximum value from the values obtained by sampling. A value and a minimum value are determined, and twice the difference between the time indicating the maximum value and the time indicating the minimum value is set as the flicker cycle.
- the second measurement unit samples a signal (a signal indicating the brightness of the spot area) output from the second optical sensor for a predetermined period, and calculates a maximum value and a minimum value from the values obtained by sampling. To decide.
- the contrast method the flicker value can be measured at high speed. Therefore, according to this configuration using the contrast method, the speed of measuring the flicker period can be improved, and as a result, the color characteristics of the two-dimensional region can be improved. The time required for measurement can be shortened.
- the second measurement unit samples a signal indicating the brightness of the spot area output from the second optical sensor at a sampling frequency higher than the frame rate.
- the first measurement unit when the exposure time is shorter than the flicker cycle and shorter than the frame time at the frame rate set by the setting unit, the first measurement unit is configured to set the exposure time and the setting unit.
- the first measurement value is calculated by measuring the color characteristics of the two-dimensional region under the condition of the frame rate set by the step, and the phase of the frame is obtained by subtracting the exposure time from the frame time.
- the second measured value is calculated by measuring the color characteristics of the two-dimensional region under the above conditions, and the average value of the first measured value and the second measured value is calculated. To do.
- the first measurement unit shifts the phase of the frame by a value obtained by subtracting the exposure time from the frame time, and under the exposure time and the frame rate when the first measurement value is obtained. Then, the characteristics of the color to be measured are measured to calculate the second measurement value, and the average value of the first measurement value and the second measurement value is calculated. Thereby, luminance fluctuations within the frame time are canceled out, and the influence of flicker can be canceled.
- the second optical sensor outputs three signals indicating the tristimulus values of the spot region, and one of the three signals is a signal indicating the luminance of the spot region, Measured by the first measuring unit using the third measuring unit that measures the color-related characteristics of the spot region using the optical sensor of No. 2 and the value measured by the third measuring unit.
- a calibrating unit that calibrates the characteristic value relating to the color of each pixel in the two-dimensional region;
- the characteristics relating to the color of the two-dimensional region can be measured with higher accuracy.
- a light splitting unit that splits the light from the measurement target into two parts is further provided, and the first optical sensor is disposed in the optical path of the one split light, and the second optical sensor The sensor is arranged in the optical path of the other divided light.
- light from the measurement target can be sent to the first optical sensor and the second optical sensor using the light splitting unit.
- the two-dimensional colorimetric method images a two-dimensional region in a measurement target as a measurement range, and outputs a signal indicating the color of each pixel for the captured image of the two-dimensional region.
- a second step of measuring a flicker period which is a flicker period generated in the measurement object, using the second optical sensor, and a reciprocal of the frame rate as a frame time.
- the frame rate is set to a value obtained by multiplying the flicker cycle by an integer equal to or greater than 1.
- the flicker cycle is set to 1
- a third step of setting the frame rate with the frame time being a value divided by a larger integer, wherein the first step is under the frame rate set by the third step. , Measuring the color-related characteristics of the two-dimensional region.
- the two-dimensional color measurement method according to the second aspect of the present embodiment can reduce the influence of flicker for the same reason as the two-dimensional color measurement device according to the first aspect of the present embodiment.
- a two-dimensional color measurement device and a two-dimensional color measurement method can be provided.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Spectrometry And Color Measurement (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
第1の光学センサは、測定対象における二次元領域を測定範囲として撮像する。第2の光学センサは、前記二次元領域に含まれるスポット領域の輝度を示す信号を出力する。第2の測定部は、前記第2の光学センサを用いて、前記測定対象のフリッカ周期を測定する。設定部は、フレームレートの逆数をフレーム時間とし、露光時間が前記フリッカ周期以上のとき、前記フリッカ周期に1以上の整数を掛けた値をフレーム時間とする前記フレームレートを設定し、前記露光時間が前記フリッカ周期より短いとき、前記フリッカ周期を1より大きい整数で割った値を前記フレーム時間とする前記フレームレートを設定する。第1の測定部は、設定された前記フレームレートの下で、前記第1の光学センサを用いて、前記二次元領域の色に関する特性を測定する。
Description
本発明は、例えば、液晶ディスプレイの画面の色に関する特性を測定する技術に関する。
二次元測色計は、面、すなわち、二次元領域を測色する装置である。二次元測色計は、様々な産業分野で応用されており、例えば、液晶ディスプレイの画面の色度分布の測定に利用される。
二次元測色計として、例えば、特許文献1は、測定対象からの光を二分割するビームスプリッタと、二分割された光の一方を受光する撮像部と、二分割された光の他方を受光する分光センサと、分光センサによって測定された測定点の分光分布を用いて、三刺激値を算出し、この三刺激値と、撮像部によって撮像された測定領域の各画素のデータとを用いて、各画素の三刺激値を算出する演算部と、を備える二次元測色計を開示している。
液晶ディスプレイは、直流駆動されると寿命が短くなるので、交流駆動される。交流駆動では、フレーム毎に極性を反転させる。液晶ディスプレイの交流駆動の方式には、ライン反転駆動方式とドット反転駆動方式とがある。
ライン反転駆動方式は、水平方向の1ライン毎に画素の極性を反転させる方式である。この方式は、小型の液晶ディスプレイで多く用いられている。ドット反転駆動方式は、垂直方向に隣り合う画素の極性、及び、水平方向に隣り合う画素の極性を反転させる方式である。この方式は、大型の液晶ディスプレイで多く用いられている。
図15及び図16は、液晶ディスプレイに同じ画面を表示し続けている状態において、フレームの極性の変化を説明する説明図である。極性が正のフレームと極性が負のフレームとが交互に表れている。図15に示すように、基準電位(Vcom)と極性変化の波形の振幅中心とが等しい場合、極性が正のフレームと極性が負のフレームとでは、映像信号のレベルの絶対値が等しくなる。
これに対して、図16に示すように、基準電位と極性変化の波形の振幅中心とが異なる場合、極性が正のフレームと極性が負のフレームとでは、映像信号のレベルの絶対値が異なる。この場合、フレーム周波数の二分の一の周波数で映像信号が変化することになる。例えば、フレーム周波数が60Hzの場合、映像信号の変化の周波数は、30Hzとなる。30Hzは、人間の目が応答できる周波数の最大値より低いので、フリッカ(画面のちらつき)として認識される。フリッカが発生すると、画面が見づらくなる。このため、液晶ディスプレイの製造工程には、フリッカの検査工程が含まれる。
フリッカを検査できる装置として、例えば、特許文献2は、表示装置に表示された画像を所定時間だけ撮像するステップ(a)と、前記ステップ(a)で撮像された画像に関する複数の画像データを生成するステップ(b)と、前記ステップ(b)で得られた前記複数の画像データごとに複数の微小領域に分割するステップ(c)と、分割された前記複数の微小領域の各々について、前記所定時間内における輝度の推移に基づく輝度変化量を求めるステップ(d)と、所定の周波数に対する輝度変化量を前記画像に対応付けてマッピングしてマッピング・データを生成するステップ(e)と、を備える輝度情報の処理方法を開示している。
フリッカ検査の結果、フリッカが発生している液晶ディスプレイに対して、基準電位が調整される。基準電位を調整して、基準電位と極性変化の波形の振幅中心とを一致させることは難しく、誤差が不可避的に発生する。このため、フリッカを低減させることはできるが、完全になくすことは難しい。
しかし、フリッカを低減させることができても、フリッカが発生していれば、液晶ディスプレイの色に関する特性の測定精度を低下させる原因となる。
本発明は、二次元領域を測定範囲とする光学センサを用いた、色に関する特性の測定において、フリッカの影響を少なくできる二次元測色装置、及び、二次元測色方法を提供することを目的とする。
上記目的を達成する本発明の第1の局面に係る二次元測色装置は、第1の光学センサ、第2の光学センサ、第1の測定部、第2の測定部、及び、設定部を備える。前記第1の光学センサは、測定対象における二次元領域を測定範囲として撮像し、撮像した前記二次元領域の画像について、各画素の色を示す信号を出力する。前記第2の光学センサは、前記二次元領域に含まれ、かつ、前記二次元領域より狭いスポット領域を測定範囲とし、前記スポット領域の輝度を示す信号を出力する。前記第1の測定部は、所定の露光時間及び所定のフレームレートの下で、前記第1の光学センサを用いて、前記二次元領域の色に関する特性を測定する。前記第2の測定部は、前記第2の光学センサを用いて、前記測定対象に生じるフリッカの周期であるフリッカ周期を測定する。前記設定部は、前記フレームレートの逆数をフレーム時間とし、前記露光時間が前記フリッカ周期以上のとき、前記フリッカ周期に1以上の整数を掛けた値をフレーム時間とする前記フレームレートを設定し、前記露光時間が前記フリッカ周期より短いとき、前記フリッカ周期を1より大きい整数で割った値を前記フレーム時間とする前記フレームレートを設定する。前記第1の測定部は、前記設定部によって設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定する。
上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
以下、図面に基づいて本発明の実施形態を詳細に説明する。図1は、本実施形態に係る二次元測色装置1の構成を示すブロック図である。二次元測色装置1は、光源色を測定する二次元測色計であり、受光部2及び本体部3を備える。
二次元測色装置1の測定対象4は、液晶ディスプレイの画面のような発光体である。測定対象4の色に関する特性(例えば、色度)及び測定対象4の輝度が、二次元測色装置1によって測定される。
受光部2は、光学レンズ5、ビームスプリッタ6、二次元領域測色センサ7及びスポット領域測色センサ8を備える。本実施形態において、二次元領域測色センサ7が、第1の光学センサであり、スポット領域測色センサ8が、第2の光学センサである。
光学レンズ5は、測定対象4からの光Lを集束する。ビームスプリッタ6(光分割部の一例)は、集束された光Lを二分割する。詳しく説明すると、ビームスプリッタ6は、上記集束された光Lの一部を透過し、残りを反射する。透過した光を光L1とし、反射した光を光L2とする。ビームスプリッタ6は、集束された光Lのうち、例えば、10パーセントを透過し、90パーセントを反射する。
光L1の光路には、二次元領域測色センサ7が配置されている。二次元領域測色センサ7は、二次元イメージセンサ(不図示)を備え、光L1を受光することにより、測定対象4における二次元領域(例えば、液晶ディスプレイの画面全体又は画面の一部)の光源色を撮像し、撮像した二次元領域の画像について、各画素の色を示す信号を出力する。各画素とは、二次元イメージセンサの各画素を指している。本実施形態では、各画素の色を示す信号として、XYZ表色系のX信号、Y信号、Z信号を例に説明するが、各画素の色を示す信号であればよい(例えば、R信号、G信号、B信号)。Y信号は、輝度信号であり、二次元領域の画像の各画素の輝度を示す。二次元イメージセンサは、例えば、CCDであり、二次元領域を測定範囲とする光学センサである。
光L2の光路には、スポット領域測色センサ8が配置されている。スポット領域測色センサ8は、二次元領域測色センサ7が撮像する測定対象4の二次元領域に含まれるスポット領域(例えば、液晶ディスプレイの画面全体の中の一点)を測定範囲とする。スポット領域は、画角が、例えば0.1~3度であり、二次元領域よりも狭い。
スポット領域測色センサ8は、三つのフォトダイオードを備え、光L2を受光することにより、スポット領域の光源色を示す、XYZ表色系のX信号、Y信号、Z信号をそれぞれ出力する。Y信号は、輝度信号であり、スポット領域の輝度を示す。
受光部には第1変形例及び第2変形例がある。図2は、第1変形例に係る受光部2aの構成を示す模式図である。二次元領域測色センサ7は、光学レンズ5の光軸上に配置されている。スポット領域測色センサ8は、光学レンズ5の光軸以外の箇所から、光学レンズ5を通過した光Lを受光できる位置に配置されている。
図3は、第2変形例に係る受光部2bの構成を示す模式図である。二次元領域測色センサ7は、光学レンズ5の光軸上に配置されている。スポット領域測色センサ8は、光Lのうち、二次元領域測色センサ7の受光面70で反射された成分を受光できる位置に配置されている。第1変形例及び第2変形例によれば、ビームスプリッタ6(図1)を設けることなく、測定対象4からの光Lを、二次元領域測色センサ7及びスポット領域測色センサ8にそれぞれ受光させることができる。
図1を参照して、本体部3は、制御処理部9、入力部10及び出力部11を備える。
制御処理部9は、AD変換回路、CPU(Central Processing Unit)、RAM(Random Access Memory)、及び、ROM(Read Only Memory)等によって実現されるマイクロコンピュータであり、図4に示すように、機能ブロックとして、二次元領域輝度・色度演算部21、スポット領域輝度・色度演算部22、輝度校正部23、色度校正部24、フリッカ測定部25及び設定部26を備える。これらのブロックの詳細は、後で説明する。
入力部10は、外部からコマンド(命令)やデータ等を二次元測色装置1に入力するための装置であり、例えば、タッチパネルやキーボード等である。あるいは、入力部10は、測定対象4や測定条件に応じて、外部コントローラ(パソコン等)が設定したコマンドやデータ等を二次元測色装置1に入力するためのインターフェース部(USB端子等)を利用した装置でもよい。出力部11は、入力部10から入力されたコマンドやデータ、及び、制御処理部9の演算結果等を出力するための装置であり、例えば、LCD(液晶ディスプレイ)や有機ELディスプレイ等の表示装置や、例えば、プリンタ等の印刷装置である。
図1及び図4を参照して、二次元領域輝度・色度演算部21(第1の測定部の一例)は、所定の露光時間及び所定のフレームレートの下で、二次元領域測色センサ7から出力されたX信号、Y信号及びZ信号を用いて、測定対象4の二次元領域の色度を演算する。スポット領域輝度・色度演算部22(第3の測定部の一例)は、スポット領域測色センサ8から出力されたX信号、Y信号及びZ信号を用いて、スポット領域の色度を演算する。
輝度校正部23は、スポット領域輝度・色度演算部22で演算されたスポット領域の輝度を用いて、二次元領域輝度・色度演算部21で演算された二次元領域の画像の各画素について、輝度を校正する。これにより、二次元領域の輝度をより高精度で測定することができる。
色度校正部24(校正部の一例)は、スポット領域輝度・色度演算部22で演算されたスポット領域の色度を用いて、二次元領域輝度・色度演算部21で演算された二次元領域の画像の各画素について、色度を校正する。これにより、二次元領域の色度をより高精度で測定することができる。なお、この処理に類似する処理が、上記特許文献1に詳細に説明されている。
フリッカ測定部25(第2の測定部の一例)は、測定対象4に発生するフリッカを測定する。フリッカは スポット領域測色センサ8から出力された輝度信号(Y信号)を用いて測定される。フリッカの測定方式として、コントラスト方式とJEITA(Japan Electronics and Information Technology Industries Association)方式とがある。フリッカ測定部25は、コントラスト方式でフリッカを測定するが、JEITA方式でフリッカを測定してもよい。
図5は、スポット領域測色センサ8から出力された輝度信号の一例を示すグラフである。横軸が時間を示し、縦軸が輝度信号を示す。輝度信号は、直流成分の上に交流成分が積み重なっていると見ることができる。輝度信号の波形は、サインカーブ状である。輝度信号の最大値をVmax、最小値をVmin、とすると、VmaxとVminとが交互に繰り返される。
コントラスト方式によるフリッカ値は、以下の式で定義される。
フリッカ値=交流成分/直流成分
=(Vmax-Vmin)/{(Vmax+Vmin)/2}×100
フリッカ値=交流成分/直流成分
=(Vmax-Vmin)/{(Vmax+Vmin)/2}×100
フリッカ測定部25は、フリッカ周期及びフリッカの大きさを示す指標値を算出する。フリッカ周期は、輝度信号の周期であり、隣り合うVmaxとVminとにおいて、これらの時間間隔T1を2倍した値がフリッカ周期となる。
フリッカの大きさを示す指標値は、Vmax-Vminである。フリッカ値を指標値にしてもよい。
このように、フリッカ周期及び指標値は、Vmax及びVminを基にして算出される。フリッカ測定部25は、コントラスト方式を利用して、Vmax及びVminを以下のようにして求める。図6は、これらを求めるための一連の処理を説明する説明図である。フリッカ測定部25は、(A)に示すスポット領域測色センサ8から出力されたアナログの輝度信号に対して、(B)に示す周波数特性を有するローパスフィルタを用いて、この輝度信号に含まれる高調波成分を除去する。このローパスフィルタは、60Hzより大きい周波数をカットする。(C)は、高調波成分が除去された後の輝度信号を示す。
フリッカ測定部25は、(C)に示す輝度信号に対して、(D)に示すように、サンプリング期間をT2として、サンプリングをし、(E)に示すように、輝度信号をアナログ信号からデジタル信号に変換する。このサンプリングの周波数は、二次元領域測色センサ7によって二次元領域の色に関する特性を測定するときのフレームレートより高くされている。(E)において、黒丸がデジタル値に対応しており、デジタル値が数百個となるように、サンプリング周波数及びサンプリング期間T2が設定される。
サンプリング期間T2におけるデジタル値の中で、最大値をV1max、最小値をV1minとする。フリッカ測定部25は、V1max、V1minを決定し、V1maxを示す時刻t1とV1minを示す時刻t2との時間間隔T1を算出する。
フリッカ測定部25は、(E)に示すサンプリング期間T2のデジタル値を、(F)に示す周波数特性を有するデジタルローパスフィルタで処理する。このローパスフィルタの周波数特性は、(B)に示す周波数特性と同じである。フリッカ測定部25は、(B)に示す周波数特性を有するローバスフィルタで輝度信号を処理することにより、輝度信号が減衰している。そこで、フリッカ測定部25は、(F)に示す周波数特性を有するローパスフィルタで、(E)に示すサンプリング期間T2のデジタル値を処理することにより、減衰を回復させる。
このローパスフィルタで処理がされた後のV1max、V1minがそれぞれ、Vmax、Vminとなる。
以上説明したように、フリッカ測定部25は、スポット領域測色センサ8から出力された輝度信号を、所定期間についてサンプリングし、サンプリングして得られた値の中から最大値Vmaxと最小値Vminとを決定する。これは、フリッカ値の算出方式の1つであるコントラスト方式によって決定された最大値及び最小値を意味する。コントラスト方式によれば、フリッカ値を高速で測定できるので、コントラスト方式を利用するフリッカ測定部25によれば、フリッカ周期を測定する速度を向上させることができ、その結果、二次元測色装置1によれば、二次元領域の色の特性の測定に要する時間を短くできる。
二次元領域測色センサ7は、CCDのような二次元撮像素子を備えており、二次元撮像素子を用いた測定は、フレームレートが低い。従って、二次元領域測色センサ7を用いてフリッカを測定した場合、サンプリング周波数(=フレームレート)が低いので、測定時間が長くなる。フリッカ測定部25によれば、スポット領域の輝度を測定するスポット領域測色センサ8を用いてフリッカを測定する。従って、スポット領域測色センサ8から出力された信号(スポット領域の輝度を示す信号)のサンプリング周波数を、二次元領域測色センサ7を用いた測定(二次元領域の色に関する特性の測定)のフレームレートより高くできるので、フリッカ周期の測定に要する時間を短くでる。従って、二次元測色装置1において、二次元領域の色の特性の測定に要する時間を短くできる。
図4に示す設定部26について説明する。二次元領域輝度・色度演算部21によって測定対象4の輝度及び色度を測定するときのフレームレートの逆数をフレーム時間とする。設定部26は、二次元領域輝度・色度演算部21によって測定対象4の輝度及び色度を測定するときの露光時間が、フリッカ測定部25で算出されたフリッカ周期以上のとき、フリッカ周期に1以上の整数を掛けた値をフレーム時間とするフレームレートを設定し、露光時間がフリッカ周期より短いとき、フリッカ周期を1より大きい整数で割った値をフレーム時間とするフレームレートを設定する。
本実施形態に係る二次元測色装置1の動作を説明する。図7及び図8は、その動作を説明するフローチャートである。図4及び図7を参照して、操作者は、入力部10(図1)を操作して、露光時間及びフレームレートを入力する。これにより、制御処理部9は、入力された露光時間及びフレームレートを、露光時間の初期値及びフレームレートの初期値として記憶する(ステップS1)。なお、制御処理部9が、測定対象4の周囲の明るさを基にして、露光時間の初期値及びフレームレートの初期値を計算して、記憶してもよい。
操作者が入力部10を操作して測定開始を指示する入力をしたとき、スポット領域測色センサ8(第2の光学センサの一例)は、測定対象4のスポット領域(例えば、液晶ディスプレイの画面の一点)からの光を受光し、スポット領域の色を示すX信号、Y信号、Z信号を出力する(ステップS2)。
フリッカ測定部25(第2の測定部の一例)は、ステップS2のY信号(輝度信号)を用いて、測定対象4で発生しているフリッカについて、フリッカの大きさを示す指標値、及び、フリッカ周期を算出する(ステップS3)。指標値は、図5で説明した最大値Vmaxと最小値Vminとの差である。
二次元領域輝度・色度演算部21(第1の測定部の一例)は、ステップS3で算出された指標値が予め定められた値を超えているか否かを判断する(ステップS4)。
二次元領域輝度・色度演算部21が、指標値が予め定められた値以下と判断した場合(ステップS4でNo)、すなわち、測定対象4で発生しているフリッカの大きさが、測定対象4の二次元領域の輝度及び色度の測定に影響を与えない場合、二次元領域の輝度及び色度が通常の方法で測定される。詳しく説明すると、二次元領域輝度・色度演算部21は、ステップS1で記憶された露光時間の初期値及びフレームレートの初期値の下で、二次元領域測色センサ7(第1の光学センサの一例)から出力されたX信号、Y信号、Z信号を用いて、測定対象4の二次元領域の画像について、各画素の色度を演算し、そのY信号を用いて、測定対象4の二次元領域の画像について、各画素の輝度を演算する(ステップS5)。
スポット領域輝度・色度演算部22(第3の測定部の一例)は、ステップS2で説明したスポット領域測色センサ8から出力されたX信号、Y信号、Z信号を用いて、スポット領域の色度を演算し、Y信号(輝度信号)を用いて、スポット領域の輝度を演算する。輝度校正部23は、スポット領域の輝度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS5で演算された輝度を校正する(ステップS6)。色度校正部24は、スポット領域の色度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS5で演算された色度を校正する(ステップS6)。
出力部11は、ステップS6で校正された輝度及び色度を表示する(ステップS7)。これにより、二次元測色装置1の動作が終了する。
二次元領域輝度・色度演算部21が、指標値が予め定められた値を超えている判断した場合(ステップS4でYes)、すなわち、測定対象4で発生しているフリッカの大きさが、測定対象4の二次元領域の輝度及び色度の測定に影響を与える場合、ステップS8へ進む。図4及び図8を参照して、ステップS8において、設定部26は、ステップS1で記憶された露光時間の初期値が、ステップS3で測定されたフリッカ周期以上であるか否かを判断する。
設定部26が、露光時間の初期値が、フリッカ周期以上であると判断した場合(ステップS8でYes)、フレーム時間を決定する(ステップS9)。フレーム時間とは、フレームレートの逆数である。
図9、図10及び図11は、露光時間の初期値が、フリッカ周期以上の場合において、露光時間、フリッカ周期及びフレーム時間の関係の第1例、第2例、第3例を示す模式図である。これらの図において、グラフの波形は、輝度信号の波形を示し、グラフの横軸は、時間を示し、グラフの縦軸は、輝度信号の値(電圧)を示している。設定部26は、フリッカ周期に1以上の整数N1を掛けた値となるフレーム時間を決定する。この決定方法の一例を説明する。
図9を参照して、設定部26は、露光時間の初期値が、フリッカ周期に1以上の整数N1を掛けた値の場合、露光時間の初期値をフレーム時間と決定する。ここでの整数N1は、例えば、3である。
図10及び図11を参照して、設定部26は、露光時間の初期値が、フリッカ周期に1以上の整数N1を掛けた値でない場合、露光時間の初期値に時間d1を加えた値が、フリッカ周期に1以上の整数N1を掛けた値になる時間d1を演算し、又は、露光時間の初期値から時間d2を引いた値が、フリッカ周期に1以上の整数を掛けた値になる時間d2を演算する。時間d1は、露光時間の初期値に時間d1を加えた値が、露光過多にならない値が選択される。時間d2は、露光時間の初期値から時間d2を引いた値が、露光過少にならない値が選択される。
設定部26は、図10に示すように、露光時間の初期値に演算した時間d1を加えた値、又は、図11に示すように、露光時間の初期値から演算した時間d2を引いた値をフレーム時間と決定する。
設定部26は、ステップS9で決定されたフレーム時間を、フレーム時間とするフレームレートを設定する(ステップS10)。すなわち、ステップS9で決定されたフレーム時間の逆数が、フレームレートに設定される。
二次元領域輝度・色度演算部21は、ステップS9で決定されたフレーム時間を露光時間とし、この露光時間、及び、ステップS10で設定されたフレームレートの下で、二次元領域測色センサ7から出力されたX信号、Y信号、Z信号を用いて、測定対象4の二次元領域の画像について、各画素の色度を演算し、そのY信号を用いて、測定対象4の二次元領域の画像について、各画素の輝度を演算する(ステップS11)。
スポット領域輝度・色度演算部22は、ステップS2で説明したスポット領域測色センサ8から出力されたX信号、Y信号、Z信号を用いて、スポット領域の色度を演算し、Y信号(輝度信号)を用いて、スポット領域の輝度を演算する。輝度校正部23は、スポット領域の輝度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS11で演算された輝度を校正する(ステップS12)。色度校正部24は、スポット領域の色度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS11で演算された色度を校正する(ステップS12)。そして、ステップS7へ進む。
設定部26が、露光時間の初期値が、フリッカ周期より小さいと判断した場合(ステップS8でNo)、フレーム時間を決定する(ステップS13)。
図12及び図13は、露光時間の初期値が、フリッカ周期より小さい場合において、露光時間、フリッカ周期及びフレーム時間の関係の第1例、第2例を示す模式図である。これらの図において、グラフの波形は、輝度信号の波形を示し、グラフの横軸は、時間を示し、グラフの縦軸は、輝度信号の値(電圧)を示している。設定部26は、フリッカ周期を1より大きい整数N2で割った値となるフレーム時間を決定する。この決定方法の一例を説明する。
設定部26は、露光時間の初期値以上のフレーム時間のうち、フリッカ周期を1より大きい整数N2で割った値をフレーム時間として決定する。N2は、露出過少とならない値が選択される。ここでは、N2が、例えば、3として説明する。
図12は、設定部26が決定したフレーム時間が露光時間の初期値と一致する場合を示し、図13は、設定部26が決定したフレーム時間が露光時間の初期値より大きくなる場合を示している。
設定部26は、ステップS13で決定されたフレーム時間を、フレーム時間とするフレームレートを設定する(ステップS14)。すなわち、ステップS13で決定されたフレーム時間の逆数が、フレームレートに設定される。
二次元領域輝度・色度演算部21は、ステップS1で記憶された露光時間の初期値を露光時間とし、この露光時間、及び、ステップS14で設定されたフレームレートの下で、二次元領域測色センサ7から出力されたX信号、Y信号、Z信号を用いて、測定対象4の二次元領域の画像について、各画素の色度を演算し、そのY信号を用いて、測定対象4の二次元領域の画像について、各画素の輝度を演算する(ステップS15)。
二次元領域輝度・色度演算部21は、ステップS13で決定されたフレーム時間が、ステップS15の露光時間(露光時間の初期値)より大きいか、又は、一致するかを判断する(ステップS16)。二次元領域輝度・色度演算部21が、図12に示すように、フレーム時間と露光時間とが一致すると判断した場合(ステップS16でNo)、ステップS17へ進む。
スポット領域輝度・色度演算部22は、ステップS2で説明したスポット領域測色センサ8から出力されたX信号、Y信号、Z信号を用いて、スポット領域の色度を演算し、Y信号(輝度信号)を用いて、スポット領域の輝度を演算する。輝度校正部23は、スポット領域の輝度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS15で演算された輝度を校正する(ステップS17)。色度校正部24は、スポット領域の色度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS15で演算された色度を校正する(ステップS17)。そして、ステップS7へ進む。
二次元領域輝度・色度演算部21が、図13に示すように、フレーム時間が露光時間より大きいと判断した場合(ステップS16でYes)、ステップS18へ進む。図14に示すように、二次元領域輝度・色度演算部21は、フレームの位相を、フレーム時間から露光時間(露光時間の初期値)を引いた値Dだけシフトさせ、ステップS15の露光時間(露光時間の初期値)及びフレームレートの条件の下で、二次元領域測色センサ7から出力されたX信号、Y信号、Z信号を用いて、測定対象4の二次元領域の画像について、各画素の色度を演算し、そのY信号を用いて、測定対象4の二次元領域の画像について、各画素の輝度を演算する(ステップS18)。
二次元領域輝度・色度演算部21は、二次元領域の画像の各画素のそれぞれについて、ステップS15で演算された輝度とステップS18で演算された輝度とを加算平均した値を、二次元領域の画像の各画素の輝度とする(ステップS19)。二次元領域輝度・色度演算部21は、二次元領域の画像の各画素のそれぞれについて、ステップS15で演算された色度とステップS18で演算された色度とを加算平均した値を、二次元領域の画像の各画素の色度とする(ステップS19)。
スポット領域輝度・色度演算部22は、ステップS2で説明したスポット領域測色センサ8から出力されたX信号、Y信号、Z信号を用いて、スポット領域の色度を演算し、Y信号(輝度信号)を用いて、スポット領域の輝度を演算する。輝度校正部23は、スポット領域の輝度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS19で演算された輝度を校正する(ステップS20)。色度校正部24は、スポット領域の色度を用いて、測定対象4の二次元領域の画像の各画素について、ステップS19で演算された色度を校正する(ステップS20)。そして、ステップS7へ進む。
なお、ユニフォミティを求める場合、ステップS6、ステップS12、ステップS17、ステップS20の後、二次元領域輝度・色度演算部21は、測定対象4の画面のサイズ(例えば、2380×1200)を、例えば、7×5に分割して、ユニフォミティを算出する。
本実施形態の主な効果を説明する。本実施形態に係る二次元測色装置1は、露光時間がフリッカ周期以上の場合(ステップS8でYes)と、露光時間がフリッカ周期より短い場合(ステップS8でNo)とに着目する。設定部26は、前者の場合、フリッカ周期に1以上の整数を掛けた値をフレーム時間とするフレームレートを設定し(ステップS9、図9~図11)、後者の場合、フリッカ周期を1より大きい整数で割った値をフレーム時間とするフレームレートを設定する(ステップS13、図12、図13)。このような関係が、フレーム時間とフリッカ周期との間に成立すれば、フリッカの影響を少なくすることができる。従って、本実施形態に係る二次元測色装置1によれば、二次元領域を測定範囲とする光学センサ(二次元領域測色センサ7)を用いた、色に関する特性の測定において、フリッカの影響を少なくできる。
また、本実施形態によれば、図13に示すように、露光時間の初期値が、フリッカ周期より短く、かつ、設定部26によって設定されたフレームレートにおけるフレーム時間より短い場合(ステップS8でNo、ステップS16でYes)、露光時間の初期値及び設定部26によって設定されたフレームレートの条件の下で、二次元領域の色の特性を測定して第1の測定値を算出し(ステップS15)、図14に示すように、フレームの位相を、フレーム時間から露光時間を引いた値Dだけずらし、上記条件と同じ条件の下で、二次元領域の色の特性を測定して第2の測定値を算出し(ステップS18)、第1の測定値と第2の測定値とを平均した値を算出する(ステップS19)。
露光時間の初期値が、フリッカ周期より短く、かつ、設定部26によって設定されたフレームレートにおけるフレーム時間より短いとき(ステップS8でNo、ステップS16でYes)、フリッカ周期の一部の期間しか露光されないことになり(図13)、この時の測定値(すなわち第1の測定値)だけでは、フリッカの影響をキャンセルできない。そこで、本実施形態によれば、二次元領域輝度・色度演算部21は、図14に示すように、フレームの位相を、フレーム時間から露光時間を引いた値Dだけずらし、第1の測定値を求めたときの露光時間及びフレームレートの下で、測定対象4の色の特性を測定して第2の測定値を算出し、第1の測定値と第2の測定値とを平均した値を算出する。これにより、フレーム時間内の輝度変動が相殺され、フリッカの影響をキャンセルすることができる。
本実施形態に係る二次元測色装置1は、図4に示すように、輝度校正部23及び色度校正部24を備えているが、これらを備えない態様でもよい。この態様では、スポット領域測色センサ8の替わりに、スポット領域の輝度を測定できる光学センサ(輝度センサ)を備える。
(実施形態の纏め)
本実施形態の第1の局面に係る二次元測色装置は、測定対象における二次元領域を測定範囲として撮像し、撮像した前記二次元領域の画像について、各画素の色を示す信号を出力する第1の光学センサと、前記二次元領域に含まれ、かつ、前記二次元領域より狭いスポット領域を測定範囲とし、前記スポット領域の輝度を示す信号を出力する第2の光学センサと、所定の露光時間及び所定のフレームレートの下で、前記第1の光学センサを用いて、前記二次元領域の色に関する特性を測定する第1の測定部と、前記第2の光学センサを用いて、前記測定対象に生じるフリッカの周期であるフリッカ周期を測定する第2の測定部と、前記フレームレートの逆数をフレーム時間とし、前記露光時間が前記フリッカ周期以上のとき、前記フリッカ周期に1以上の整数を掛けた値をフレーム時間とする前記フレームレートを設定し、前記露光時間が前記フリッカ周期より短いとき、前記フリッカ周期を1より大きい整数で割った値を前記フレーム時間とする前記フレームレートを設定する設定部と、を備え、前記第1の測定部は、前記設定部によって設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定する。
本実施形態の第1の局面に係る二次元測色装置は、測定対象における二次元領域を測定範囲として撮像し、撮像した前記二次元領域の画像について、各画素の色を示す信号を出力する第1の光学センサと、前記二次元領域に含まれ、かつ、前記二次元領域より狭いスポット領域を測定範囲とし、前記スポット領域の輝度を示す信号を出力する第2の光学センサと、所定の露光時間及び所定のフレームレートの下で、前記第1の光学センサを用いて、前記二次元領域の色に関する特性を測定する第1の測定部と、前記第2の光学センサを用いて、前記測定対象に生じるフリッカの周期であるフリッカ周期を測定する第2の測定部と、前記フレームレートの逆数をフレーム時間とし、前記露光時間が前記フリッカ周期以上のとき、前記フリッカ周期に1以上の整数を掛けた値をフレーム時間とする前記フレームレートを設定し、前記露光時間が前記フリッカ周期より短いとき、前記フリッカ周期を1より大きい整数で割った値を前記フレーム時間とする前記フレームレートを設定する設定部と、を備え、前記第1の測定部は、前記設定部によって設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定する。
本実施形態の第1の局面に係る二次元測色装置は、露光時間がフリッカ周期以上の場合と、露光時間がフリッカ周期より短い場合とに着目する。設定部は、前者の場合、フリッカ周期に1以上の整数を掛けた値をフレーム時間とするフレームレートを設定し、後者の場合、フリッカ周期を1より大きい整数で割った値をフレーム時間とするフレームレートを設定する。このような関係が、フレーム時間とフリッカ周期との間に成立すれば、フリッカの影響を少なくすることができる。従って、本実施形態の第1の局面に係る二次元測色装置によれば、二次元領域を測定範囲とする光学センサを用いた、色に関する特性の測定において、フリッカの影響を少なくできる。なお、各画素とは、第1の光学センサの各画素を指している。
上記構成において、前記第2の測定部は、前記第2の光学センサを用いて、前記測定対象に生じるフリッカの大きさを示す指標値を測定し、前記第1の測定部は、前記指標値が予め定められた値を超えていれば、前記設定部で設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定し、前記指標値が予め定められた値以下であれば、前記設定部で前記フレームレートが設定される前に予め定められていた前記フレームレートの下で、前記二次元領域の色に関する特性を測定する。
第1の測定部が、指標値が予め定められた値を超えている判断した場合、すなわち、測定対象で発生しているフリッカの大きさが、測定対象の二次元領域の色に関する特性の測定に影響を与える場合、設定部で設定されたフレームレートの下で、二次元領域の色に関する特性を測定する。これに対して、第1の測定部が、指標値が予め定められた値以下と判断した場合、すなわち、測定対象で発生しているフリッカの大きさが、測定対象の二次元領域の色に関する特性の測定に影響を与えない場合、予め定められていたフレームレートの下で、二次元領域の色に関する特性を測定する。すなわち、通常の方法で二次元領域の色に関する特性を測定する。
上記構成において、前記第2の測定部は、前記第2の光学センサから出力された、前記スポット領域の輝度を示す信号を、所定期間についてサンプリングし、サンプリングして得られた値の中から最大値と最小値とを決定し、前記最大値を示す時刻と前記最小値を示す時刻との差の二倍を、前記フリッカ周期とする。
第2の測定部は、第2の光学センサから出力された信号(スポット領域の輝度を示す信号)を、所定期間についてサンプリングし、サンプリングして得られた値の中から最大値と最小値とを決定する。これは、フリッカ値の算出方式の1つであるコントラスト方式によって決定された最大値及び最小値を意味する。コントラスト方式によれば、フリッカ値を高速で測定できるので、コントラスト方式を利用するこの構成によれば、フリッカ周期を測定する速度を向上させることができ、その結果、二次元領域の色の特性の測定に要する時間を短くできる。
上記構成において、前記第2の測定部は、前記第2の光学センサから出力された、前記スポット領域の輝度を示す信号を、前記フレームレートより高いサンプリング周波数でサンプリングする。
二次元領域測色センサは、CCDのような二次元撮像素子を備えており、二次元撮像素子を用いた測定は、フレームレートが低い。従って、二次元領域測色センサを用いてフリッカを測定した場合、サンプリング周波数(=フレームレート)が低いので、測定時間が長くなる。この構成によれば、スポット領域の輝度を測定する第2の光学センサを用いてフリッカを測定する。従って、第2の光学センサから出力された信号(スポット領域の輝度を示す信号)のサンプリング周波数を、二次元領域測色センサを用いた測定(二次元領域の色に関する特性の測定)のフレームレートより高くできるので、フリッカ周期の測定に要する時間を短くでき、その結果、二次元領域の色の特性の測定に要する時間を短くできる。
上記構成において、前記第1の測定部は、前記露光時間が、前記フリッカ周期より短く、かつ、前記設定部によって設定された前記フレームレートにおける前記フレーム時間より短い場合、前記露光時間及び前記設定部によって設定された前記フレームレートの条件の下で、前記二次元領域の色の特性を測定して第1の測定値を算出し、フレームの位相を、前記フレーム時間から前記露光時間を引いた値だけずらし、前記条件の下で、前記二次元領域の色の特性を測定して第2の測定値を算出し、前記第1の測定値と前記第2の測定値とを平均した値を算出する。
露光時間が、フリッカ周期より短く、かつ、設定部によって設定されたフレームレートにおけるフレーム時間より短いとき、フリッカ周期の一部の期間しか露光されないことになり、この時の測定値(すなわち第1の測定値)だけでは、フリッカの影響をキャンセルできない。そこで、この構成によれば、第1の測定部は、フレームの位相を、フレーム時間から露光時間を引いた値だけずらし、第1の測定値を求めたときの露光時間及びフレームレートの下で、測定対象の色の特性を測定して第2の測定値を算出し、第1の測定値と第2の測定値とを平均した値を算出する。これにより、フレーム時間内の輝度変動が相殺され、フリッカの影響をキャンセルすることができる。
上記構成において、前記第2の光学センサは、前記スポット領域の三刺激値を示す三つの信号を出力し、前記三つの信号の一つは、前記スポット領域の輝度を示す信号であり、前記第2の光学センサを用いて、前記スポット領域の色に関する特性を測定する第3の測定部と、前記第3の測定部で測定された値を用いて、前記第1の測定部で測定された前記二次元領域の各画素の色に関する特性の値を校正する校正部と、をさらに備える。
この構成によれば、二次元領域の色に関する特性をより高精度に測定することができる。
上記構成において、前記測定対象からの光を二分割する光分割部をさらに備え、前記第1の光学センサは、前記二分割された一方の光の光路に配置されており、前記第2の光学センサは、前記二分割された他方の光の光路に配置されている。
この構成によれば、測定対象からの光を、光分割部を利用して、第1の光学センサ及び第2の光学センサに送ることができる。
本実施形態の第2の局面に係る二次元測色方法は、測定対象における二次元領域を測定範囲として撮像し、撮像した前記二次元領域の画像について、各画素の色を示す信号を出力する第1の光学センサと、前記二次元領域に含まれ、かつ、前記二次元領域より狭いスポット領域を測定範囲とし、前記スポット領域の輝度を示す信号を出力する第2の光学センサと、を備える二次元測色装置を用いる測色方法であって、所定の露光時間及び所定のフレームレートの下で、前記第1の光学センサを用いて、前記二次元領域の色に関する特性を測定する第1のステップと、前記第2の光学センサを用いて、前記測定対象に生じるフリッカの周期であるフリッカ周期を測定する第2のステップと、前記フレームレートの逆数をフレーム時間とし、前記露光時間が前記フリッカ周期以上のとき、前記フリッカ周期に1以上の整数を掛けた値をフレーム時間とする前記フレームレートを設定し、前記露光時間が前記フリッカ周期より短いとき、前記フリッカ周期を1より大きい整数で割った値を前記フレーム時間とする前記フレームレートを設定する第3のステップと、を備え、前記第1のステップは、前記第3のステップによって設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定する。
本実施形態の第2の局面に係る二次元測色方法は、本実施形態の第1の局面に係る二次元測色装置と同様の理由により、フリッカの影響を少なくできる。
この出願は、2015年9月2日に出願された日本国特許出願特願2015-172696を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明によれば、二次元測色装置及び二次元測色方法を提供することができる。
Claims (8)
- 測定対象における二次元領域を測定範囲として撮像し、撮像した前記二次元領域の画像について、各画素の色を示す信号を出力する第1の光学センサと、
前記二次元領域に含まれ、かつ、前記二次元領域より狭いスポット領域を測定範囲とし、前記スポット領域の輝度を示す信号を出力する第2の光学センサと、
所定の露光時間及び所定のフレームレートの下で、前記第1の光学センサを用いて、前記二次元領域の色に関する特性を測定する第1の測定部と、
前記第2の光学センサを用いて、前記測定対象に生じるフリッカの周期であるフリッカ周期を測定する第2の測定部と、
前記フレームレートの逆数をフレーム時間とし、前記露光時間が前記フリッカ周期以上のとき、前記フリッカ周期に1以上の整数を掛けた値をフレーム時間とする前記フレームレートを設定し、前記露光時間が前記フリッカ周期より短いとき、前記フリッカ周期を1より大きい整数で割った値を前記フレーム時間とする前記フレームレートを設定する設定部と、を備え、
前記第1の測定部は、前記設定部によって設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定する二次元測色装置。 - 前記第2の測定部は、前記第2の光学センサを用いて、前記測定対象に生じるフリッカの大きさを示す指標値を測定し、
前記第1の測定部は、前記指標値が予め定められた値を超えていれば、前記設定部で設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定し、前記指標値が予め定められた値以下であれば、前記設定部で前記フレームレートが設定される前に予め定められていた前記フレームレートの下で、前記二次元領域の色に関する特性を測定する請求項1に記載の二次元測色装置。 - 前記第2の測定部は、前記第2の光学センサから出力された、前記スポット領域の輝度を示す信号を、所定期間についてサンプリングし、サンプリングして得られた値の中から最大値と最小値とを決定し、前記最大値を示す時刻と前記最小値を示す時刻との差の二倍を、前記フリッカ周期とする請求項1又は2に記載の二次元測色装置。
- 前記第2の測定部は、前記第2の光学センサから出力された、前記スポット領域の輝度を示す信号を、前記フレームレートより高いサンプリング周波数でサンプリングする請求項3に記載の二次元測色装置。
- 前記第1の測定部は、前記露光時間が、前記フリッカ周期より短く、かつ、前記設定部によって設定された前記フレームレートにおける前記フレーム時間より短い場合、前記露光時間及び前記設定部によって設定された前記フレームレートの条件の下で、前記二次元領域の色の特性を測定して第1の測定値を算出し、フレームの位相を、前記フレーム時間から前記露光時間を引いた値だけずらし、前記条件の下で、前記二次元領域の色の特性を測定して第2の測定値を算出し、前記第1の測定値と前記第2の測定値とを平均した値を算出する請求項1~4のいずれか一項に記載の二次元測色装置。
- 前記第2の光学センサは、前記スポット領域の三刺激値を示す三つの信号を出力し、
前記三つの信号の一つは、前記スポット領域の輝度を示す信号であり、
前記第2の光学センサを用いて、前記スポット領域の色に関する特性を測定する第3の測定部と、
前記第3の測定部で測定された値を用いて、前記第1の測定部で測定された前記二次元領域の各画素の色に関する特性の値を校正する校正部と、をさらに備える請求項1~5のいずれか一項に記載の二次元測色装置。 - 前記測定対象からの光を二分割する光分割部をさらに備え、
前記第1の光学センサは、前記二分割された一方の光の光路に配置されており、
前記第2の光学センサは、前記二分割された他方の光の光路に配置されている請求項1~6のいずれか一項に記載の二次元測色装置。 - 測定対象における二次元領域を測定範囲として撮像し、撮像した前記二次元領域の画像について、各画素の色を示す信号を出力する第1の光学センサと、前記二次元領域に含まれ、かつ、前記二次元領域より狭いスポット領域を測定範囲とし、前記スポット領域の輝度を示す信号を出力する第2の光学センサと、を備える二次元測色装置を用いる測色方法であって、
所定の露光時間及び所定のフレームレートの下で、前記第1の光学センサを用いて、前記二次元領域の色に関する特性を測定する第1のステップと、
前記第2の光学センサを用いて、前記測定対象に生じるフリッカの周期であるフリッカ周期を測定する第2のステップと、
前記フレームレートの逆数をフレーム時間とし、前記露光時間が前記フリッカ周期以上のとき、前記フリッカ周期に1以上の整数を掛けた値をフレーム時間とする前記フレームレートを設定し、前記露光時間が前記フリッカ周期より短いとき、前記フリッカ周期を1より大きい整数で割った値を前記フレーム時間とする前記フレームレートを設定する第3のステップと、を備え、
前記第1のステップは、前記第3のステップによって設定された前記フレームレートの下で、前記二次元領域の色に関する特性を測定する二次元測色方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017537833A JP6915539B2 (ja) | 2015-09-02 | 2016-08-26 | 二次元測色装置及び二次元測色方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-172696 | 2015-09-02 | ||
JP2015172696 | 2015-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038675A1 true WO2017038675A1 (ja) | 2017-03-09 |
Family
ID=58187386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/074958 WO2017038675A1 (ja) | 2015-09-02 | 2016-08-26 | 二次元測色装置及び二次元測色方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6915539B2 (ja) |
WO (1) | WO2017038675A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019069633A1 (ja) * | 2017-10-05 | 2019-04-11 | コニカミノルタ株式会社 | 二次元フリッカ測定装置及び二次元フリッカ測定方法 |
KR102056554B1 (ko) | 2016-03-23 | 2019-12-16 | 코니카 미놀타 가부시키가이샤 | 이차원 측색 장치 |
WO2021090689A1 (ja) * | 2019-11-07 | 2021-05-14 | コニカミノルタ株式会社 | フリッカ計測装置及び計測方法 |
KR20210109032A (ko) | 2019-02-12 | 2021-09-03 | 코니카 미놀타 가부시키가이샤 | 플리커 측정 장치, 플리커 측정 방법 및 플리커 측정 프로그램 |
US11776101B1 (en) | 2022-12-15 | 2023-10-03 | Microsoft Technology Licensing, Llc | Optical sensor signal processing for visual artifact detection and display self-diagnostics |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06201472A (ja) * | 1993-01-06 | 1994-07-19 | Minolta Camera Co Ltd | 二次元測色計 |
JP2003163832A (ja) * | 2001-11-26 | 2003-06-06 | Mitsubishi Electric Corp | 撮像装置 |
JP2006135381A (ja) * | 2004-11-02 | 2006-05-25 | Olympus Corp | キャリブレーション方法およびキャリブレーション装置 |
JP2009077057A (ja) * | 2007-09-19 | 2009-04-09 | Olympus Imaging Corp | 撮像装置、撮像装置の制御方法 |
JP2009141613A (ja) * | 2007-12-05 | 2009-06-25 | Seiko Epson Corp | 面内均一性評価装置、および面内均一性評価方法 |
JP2009152919A (ja) * | 2007-12-21 | 2009-07-09 | Olympus Imaging Corp | 撮像装置および画像信号処理方法 |
JP2015111252A (ja) * | 2013-11-05 | 2015-06-18 | キヤノン株式会社 | 撮像装置及びその制御方法、プログラム、記憶媒体 |
-
2016
- 2016-08-26 JP JP2017537833A patent/JP6915539B2/ja active Active
- 2016-08-26 WO PCT/JP2016/074958 patent/WO2017038675A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06201472A (ja) * | 1993-01-06 | 1994-07-19 | Minolta Camera Co Ltd | 二次元測色計 |
JP2003163832A (ja) * | 2001-11-26 | 2003-06-06 | Mitsubishi Electric Corp | 撮像装置 |
JP2006135381A (ja) * | 2004-11-02 | 2006-05-25 | Olympus Corp | キャリブレーション方法およびキャリブレーション装置 |
JP2009077057A (ja) * | 2007-09-19 | 2009-04-09 | Olympus Imaging Corp | 撮像装置、撮像装置の制御方法 |
JP2009141613A (ja) * | 2007-12-05 | 2009-06-25 | Seiko Epson Corp | 面内均一性評価装置、および面内均一性評価方法 |
JP2009152919A (ja) * | 2007-12-21 | 2009-07-09 | Olympus Imaging Corp | 撮像装置および画像信号処理方法 |
JP2015111252A (ja) * | 2013-11-05 | 2015-06-18 | キヤノン株式会社 | 撮像装置及びその制御方法、プログラム、記憶媒体 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102056554B1 (ko) | 2016-03-23 | 2019-12-16 | 코니카 미놀타 가부시키가이샤 | 이차원 측색 장치 |
WO2019069633A1 (ja) * | 2017-10-05 | 2019-04-11 | コニカミノルタ株式会社 | 二次元フリッカ測定装置及び二次元フリッカ測定方法 |
CN111164406A (zh) * | 2017-10-05 | 2020-05-15 | 柯尼卡美能达株式会社 | 二维闪烁测定装置及二维闪烁测定方法 |
JPWO2019069633A1 (ja) * | 2017-10-05 | 2020-12-17 | コニカミノルタ株式会社 | 二次元フリッカ測定装置及び二次元フリッカ測定方法 |
CN111164406B (zh) * | 2017-10-05 | 2022-04-15 | 柯尼卡美能达株式会社 | 二维闪烁测定装置及二维闪烁测定方法 |
US11490028B2 (en) | 2017-10-05 | 2022-11-01 | Konica Minolta, Inc. | Two-dimensional flicker measurement apparatus and two-dimensional flicker measurement method |
JP7310606B2 (ja) | 2017-10-05 | 2023-07-19 | コニカミノルタ株式会社 | 二次元フリッカ測定装置及び二次元フリッカ測定方法 |
KR20210109032A (ko) | 2019-02-12 | 2021-09-03 | 코니카 미놀타 가부시키가이샤 | 플리커 측정 장치, 플리커 측정 방법 및 플리커 측정 프로그램 |
US11812161B2 (en) | 2019-02-12 | 2023-11-07 | Konica Minolta, Inc. | Flicker measuring device, flicker measuring method, and flicker measuring program |
WO2021090689A1 (ja) * | 2019-11-07 | 2021-05-14 | コニカミノルタ株式会社 | フリッカ計測装置及び計測方法 |
JP7476904B2 (ja) | 2019-11-07 | 2024-05-01 | コニカミノルタ株式会社 | フリッカ計測装置及び計測方法 |
US11776101B1 (en) | 2022-12-15 | 2023-10-03 | Microsoft Technology Licensing, Llc | Optical sensor signal processing for visual artifact detection and display self-diagnostics |
Also Published As
Publication number | Publication date |
---|---|
JP6915539B2 (ja) | 2021-08-04 |
JPWO2017038675A1 (ja) | 2018-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017038675A1 (ja) | 二次元測色装置及び二次元測色方法 | |
JP5200547B2 (ja) | ディスプレイ用カラーセンサおよびそれを用いるディスプレイシステムならびにディスプレイの校正方法 | |
US11272121B2 (en) | Two-dimensional flicker measurement device, two-dimensional flicker measurement system, two-dimensional flicker measurement method, and two-dimensional flicker measurement program | |
KR100783666B1 (ko) | 컬러 디스플레이 패널을 캘리브레이션하는 보정 방법, 이를 이용한 디스플레이 장치 및 이와 관련된 제조 방법 | |
US20110249116A1 (en) | Color measuring apparatus and color measuring method | |
US11490028B2 (en) | Two-dimensional flicker measurement apparatus and two-dimensional flicker measurement method | |
CN111025698A (zh) | 用于测量显示面板闪烁度的检测装置及检测方法 | |
JP2015173891A (ja) | 測定装置、画像表示装置、及びその制御方法 | |
US11651747B2 (en) | Flicker measurement device and measurement method | |
JP2013098900A (ja) | 表示装置の評価方法 | |
WO2020149068A1 (ja) | フリッカ測定装置、フリッカ測定方法及びフリッカ測定プログラム | |
JP5082137B2 (ja) | 投射型画像表示装置、画像表示システム、および色むら補正方法 | |
JP2007093477A (ja) | 色測定装置の校正方法および校正装置、色測定方法、色測定装置 | |
JP2013085062A (ja) | ガンマ調整プログラムおよびガンマ調整方法 | |
US11812161B2 (en) | Flicker measuring device, flicker measuring method, and flicker measuring program | |
CN107709941B (zh) | 光学特性测量装置以及光学特性测量装置的设定方法 | |
US9269287B2 (en) | Method and system for measuring the response time of a liquid crystal display | |
JP2012163486A (ja) | 測定システム、表示装置、測定装置、補正装置及び測定方法 | |
KR102571243B1 (ko) | 색채측정 장치 및 방법 | |
JP2010206661A (ja) | 輝度ムラ評価装置及び輝度ムラ評価方法 | |
JP5300177B2 (ja) | 液晶プロジェクタ装置 | |
KR100633157B1 (ko) | 디스플레이장치 및 디스플레이장치의 색상 조정방법 | |
JP2014142227A (ja) | 環境光評価装置 | |
JP2017107052A (ja) | 表示システム、表示装置測定方法、表示装置測定プログラムならびに表示装置 | |
CN111947891A (zh) | 影像测量装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841707 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017537833 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841707 Country of ref document: EP Kind code of ref document: A1 |