[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017073299A1 - 超音波半田付け方法および超音波半田付け装置 - Google Patents

超音波半田付け方法および超音波半田付け装置 Download PDF

Info

Publication number
WO2017073299A1
WO2017073299A1 PCT/JP2016/079948 JP2016079948W WO2017073299A1 WO 2017073299 A1 WO2017073299 A1 WO 2017073299A1 JP 2016079948 W JP2016079948 W JP 2016079948W WO 2017073299 A1 WO2017073299 A1 WO 2017073299A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste
solder
soldering
ultrasonic
bus bar
Prior art date
Application number
PCT/JP2016/079948
Other languages
English (en)
French (fr)
Inventor
浩一 上迫
傑也 新井
ミエ子 菅原
小林 賢一
秀利 小宮
正五 松井
周平 横山
Original Assignee
アートビーム株式会社
農工大ティー・エル・オー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アートビーム株式会社, 農工大ティー・エル・オー株式会社 filed Critical アートビーム株式会社
Publication of WO2017073299A1 publication Critical patent/WO2017073299A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/06Soldering, e.g. brazing, or unsoldering making use of vibrations, e.g. supersonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • B23K20/106Features related to sonotrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an ultrasonic soldering method and an ultrasonic soldering apparatus in which a paste is applied to an arbitrary part on a substrate and soldered to a sintered part.
  • the solar cell has an N-type / P-type silicon substrate 43 that converts solar energy into electric energy, and a silicon substrate. 43, a silicon nitride film 45 that is an insulator thin film, a finger electrode 42 that extracts electrons generated in the silicon substrate 43, a bus bar electrode 41 that collects electrons extracted by the finger electrode 42, It consists of each element of an extraction lead electrode 47 for extracting electrons collected on the bus bar electrode 41 to the outside.
  • silver (silver paste) and lead (lead glass) are used for the bus bar electrode (bus electrode) 41 and the finger electrode 42, and the amount of silver used is eliminated or reduced. It is desired to reduce or eliminate the amount of (lead glass) used, and to reduce costs and pollution.
  • a silver paste (or a part of Cu paste) has been conventionally used to sinter and form the electrodes (the bus bar electrode 41 and the finger electrode 42).
  • the silver paste includes a silver component (powder), a glass component ( (Lead glass), organic material component, organic solvent component, resin component, so the first two silver components (powder) and glass component (lead glass) are eliminated and replaced with (for example, It is desired to solder an extraction lead wire or the like to an electrode (without Ag, Cu.Pb) formed by screen printing and sintering this (replaced with NTA glass (described later)).
  • the silver component (powder) and glass component (lead glass) in the conventional silver paste are eliminated and replaced in order to sinter and form the electrodes (such as the bus bar electrode 41 and the finger electrode 42) that constitute the solar cell described above.
  • the electrodes such as the bus bar electrode 41 and the finger electrode 42
  • NTA glass and the electrode part formed by sintering NTA paste (Japanese Patent Application No. 2015-191857) in which silver or lead is eliminated or reduced does not contain Ag (or Ag etc.) For this reason, the conventional soldering cannot be performed.
  • NTA paste a paste that does not contain Ag or glass (lead glass) or is slightly mixed.
  • the method of soldering the NTA paste to the sintered part (electrodes or the like) is not limited to the above-described solar cell bus electrode or the like, but is a soldering method that can be used when electrodes or the like are produced by screen printing or the like.
  • the present invention is made by sintering a paste (for example, NTA paste) that eliminates or slightly mixes silver and reduces or eliminates the use of lead (lead glass).
  • a paste for example, NTA paste
  • Ultrasonic soldering which will be described later, on the battery bus electrode (bus bar electrode) and soldering to the surface (so-called solder plating), and soldering lead wires etc. can be attached as usual, and as a result, Soldering to an electrode or the like that does not contain Ag or lead or has reduced the amount of contamination is made possible.
  • the present invention relates to a soldering method in which a paste is applied to an arbitrary portion on a substrate and soldered to a sintered portion, and a paste that does not contain Ag, Cu, Pb is applied to an arbitrary portion and sintered.
  • the paste portion on the substrate is brought into contact with the preheating step for preheating the first predetermined temperature lower than the melting temperature of the solder and the paste portion of the first predetermined temperature substrate preliminarily heated in the preheating step.
  • the solder iron tip portion is adjusted to a second predetermined temperature, which is lower than the temperature at which the solder melts when no ultrasonic wave is applied.
  • an ultrasonic soldering step of soldering to the paste part by moving while abutting on the paste part.
  • the first predetermined temperature is set to a temperature within the range from room temperature to the second predetermined temperature.
  • the second predetermined temperature is set to a temperature within a range of 10 to 40 ° C. lower than the temperature at which the solder melts when no ultrasonic wave is applied.
  • NTA paste is an acid salt glass.
  • the solder contains at least Sn, Zn, and Cl.
  • the paste applied on the substrate is sintered so as to be as smooth as possible.
  • the ultrasonic wave is set to have a frequency of 20 KHz to 150 KHz.
  • the present invention includes, for example, a conductive NTA glass 100% NTA paste that does not contain Ag, Cu, and Pb, and an NTA paste that is further reduced to about 50% (the content can be further reduced).
  • the electrode is fired instead of the conventional silver (or Cu) paste, and the solder is ultrasonically soldered to eliminate or reduce the amount of silver used in the conventional silver paste, and lead (lead) It has been discovered that even if the amount of glass used is reduced or eliminated, it is possible to solder the paste sintered part and attach a lead wire or the like. These have the following characteristics.
  • NTA glass which is a conductive vanadate glass (see registered trademark 5009023, Japanese Patent No. 5333976, etc.) 100%, and further 50%
  • silver paste instead of silver paste, the amount of Ag used is eliminated or reduced, and even if the amount of lead (lead glass) is reduced or eliminated, paste sintering is performed by ultrasonic soldering of the present invention. It was possible to solder to the part.
  • NTA glass is (1) conductive
  • the NTA glass is used so that the finger electrode has the same height as the upper surface of the bus bar electrode (bus electrode) or the portion protruding through the upper surface.
  • the finger electrode and the bus bar electrode are formed using a paste containing glass frit that is different.
  • a phenomenon called fire-through is a finger electrode that breaks through the insulating layer of the silicon nitride film formed on the surface layer of the silicon substrate by the action of component molecules in the glass frit used as a sintering aid for silver, for example, lead molecules in lead glass.
  • the fire-through phenomenon is not necessary for the formation of the bus bar electrode.
  • the bus bar electrode was also sintered using lead glass containing lead component as a sintering aid, but although the structure is different, an electrical conduction path between the bus bar electrode and the silicon substrate is formed to reduce the conversion efficiency. It was a thing.
  • NTA glass that does not cause a fire-through phenomenon as the sintering aid used for forming the bus bar electrode, reduction in conversion efficiency could be eliminated. Then, it becomes possible to take out the electric charge by soldering the lead wire to the portion of the bus bar electrode sintered with the NTA paste by the ultrasonic soldering of the present invention.
  • FIG. 1 shows a block diagram of one embodiment of the present invention.
  • FIG. 1 is an example of ultrasonic soldering of electrodes of a solar cell, and will be described in detail below by taking an example of ultrasonic soldering a ribbon 7 as a lead lead wire to a bus bar electrode 5.
  • ultrasonic soldering includes solder plating on electrodes (without lead wires) and soldering leads to electrodes, etc.
  • FIG. 1 (a) schematically shows a front view of the main part subjected to ultrasonic soldering, and FIG. 1 (b) schematically shows an enlarged side view of a dotted circular portion.
  • the solar cell penetrates the back electrode 2 provided on the back side of the silicon substrate 1, the nitride film 3, the bus bar electrode 5, and the nitride film 3 provided on the front side of the silicon substrate 1.
  • it has a structure comprising a finger electrode 4 for taking out electrons generated in the PN layer of the silicon substrate 1 and a ribbon 7 (lead lead wire) ultrasonically soldered on the finger electrode 4 with solder 6 on the finger electrode 4 of the present invention. is there.
  • a state in which the ribbon 7 is ultrasonically soldered with the solder 6 on the bus bar electrode 5 as an electrode is schematically shown.
  • the bus bar electrode 5 is formed by sintering NTA paste (Japanese Patent Application No. 2015-202461) which does not contain Ag, Cu, Pb and is 100% by weight vanadate glass discovered by the present inventors.
  • NTA paste Japanese Patent Application No. 2015-202461
  • an NTA paste which does not contain Ag, Cu, Pb, or does not contain Cu, Pb and contains Ag from 0 to 50 wt% and the rest is made of vanadate glass. Since Ag is 50% or less, it is an electrode that is impossible or extremely difficult to solder by conventional ordinary soldering. In particular, in the case of the bus bar electrode 5 which does not contain Ag, Cu, Pb at all, the conventional soldering is completely impossible.
  • ultrasonic soldering (ultrasonic solder plating) is performed over the entire surface of a portion where the NTA paste is sintered, that is, a portion where there is no Ag, Cu, Pb or the like, or a portion where there is not. As a result of the experiment, it was found that this is possible (see the photographs in FIGS. 7 and 8).
  • the solder 6 is solder to be ultrasonically soldered onto the bus bar electrode 5 and contains at least Sn, Zn, and Cl, and is melted at the ultrasonic soldering tip portion 24 of the present invention. It is to be soldered.
  • the ribbon 7 is a lead wire for taking out electric charge from the bus bar electrode 5 to the outside.
  • pre-solder 72 is preliminarily attached to the upper and lower surfaces of the copper ribbon, and the ribbon 71 of the copper 71 is soldered by the solder 6. 5 is easy to ultrasonic soldering.
  • the preheating table 21 is used to preheat the entire solar cell to a first predetermined temperature (a temperature within a range of room temperature or higher and a temperature within which the solder is dissolved when ultrasonic soldering is performed).
  • a first predetermined temperature a temperature within a range of room temperature or higher and a temperature within which the solder is dissolved when ultrasonic soldering is performed.
  • FIG. 2 shows a configuration diagram (part 2) of one embodiment of the present invention.
  • FIG. 2A schematically shows a side view of the main part of the solar cell corresponding to FIG. 1B
  • FIGS. 2B and 2C show an ultrasonic soldering iron 22 and a bus bar electrode 5.
  • FIG. 2B shows a configuration in which the solder 6 is soldered to the bus bar electrode 5, that is, a configuration in which solder plating is performed on the bus bar electrode 5.
  • FIG. A configuration in which the ribbon 7 is soldered to the bus bar electrode 5, that is, a configuration in which the ribbon 7 is soldered on the bus bar electrode 5 is shown.
  • FIG. 2 (a) is the same as FIG. 1 (b), and a description thereof will be omitted.
  • an ultrasonic soldering iron 22 shows an example of an ultrasonic soldering apparatus according to the present invention.
  • the soldering iron tip portion 24 is heated and superposed. It is comprised from the ultrasonic transmitter and the heater 23 which supply a sound wave (refer FIG. 6).
  • a frequency in the range of 20 KHz to 150 KHz and 60 KHz was used in the experiment.
  • the heating capacity depends on the temperature of the preheating table 11, but in the experiment, about 10 W (with automatic temperature control) was used (corresponding to the heat capacity depending on the size of the part to be ultrasonically soldered (the part of the bus bar electrode 5)). Use the capacity.)
  • the soldering iron tip portion 24 is for melting the solder 6 and heating the ultrasonic soldering portion of the bus bar electrode 5 for ultrasonic soldering.
  • the soldering iron tip portion 24 was obtained by cutting the top of a cylinder with a slope of about 45 degrees.
  • the shape of the soldering iron tip 24 is not limited to this shape. Further, it may be a rotating body that rotates, a slide base that slides, or any other shape as long as it can conduct ultrasonic waves and heat to the ultrasonic soldering part.
  • solder 6 supplied to the soldering iron tip portion 24 of the ultrasonic soldering iron 22 is ultrasonically soldered onto the busbar electrode 5, so that Solder plating can be performed.
  • the solder 6 supplied to the solder iron tip portion 24 of the ultrasonic soldering iron 22 and the pre-soldered ribbon 7 are ultrasonically soldered onto the bus bar electrode 5.
  • the ribbon 7 (lead lead wire) can be soldered on the bus bar electrode 5.
  • pre-soldering may be performed in advance as shown in FIG. 2B, and the ribbon 7 may be ultrasonically soldered thereon.
  • FIG. 3 shows an explanatory diagram of the present invention.
  • FIG. 3 shows solder materials and the like.
  • FIG. 3 shows an example of the material of the bus bar electrode 5 of the solar cell already described in FIGS. 1 and 2, the material of the solder 6 for soldering the ribbon 7 and the like.
  • solder Coating As described above, in the present invention, since the bus bar electrode 5 is formed by firing NTA glass paste (NTA paste), soldering is impossible or extremely difficult with conventional solder. In addition, by soldering with the solder 6 in a preheated state, solder plating or ribbon 7 (lead lead wire) can be soldered onto the bus bar electrode 5 by ultrasonic soldering very well. This was confirmed by experiments (see the photographs in FIGS. 7 and 8).
  • FIG. 4 is a flowchart for explaining the operation of the present invention.
  • S1 forms an NTA bus bar electrode.
  • the bus bar electrode 5 shown in FIGS. 1 to 3 is screen-printed with NTA glass 100 wt% ( ⁇ 50 wt%) NTA paste and sintered to form the bus bar electrode 5 made of NTA. And, as described on the right side, the NTA bus bar electrode 5 is 1. The paste is treated so that the organic solvent disappears (solvent removal).
  • the NTA paste is screen-printed on the portion to be the bus bar electrode 5 in FIGS. 1 and 2 so that it becomes as flat as possible. Care is taken to screen print and sinter as flat as possible during firing and after sintering. In other words, care should be taken not to form small irregularities and sintering should be as flat as possible. If it is not flat, the phenomenon that ultrasonic soldering does not work well appears.
  • the substrate is placed on the heating table, and the temperature is raised to a temperature equal to or lower than the temperature at which the solder melts when ultrasonically supplied.
  • This preheating temperature is such that when the ultrasonic soldering iron tip 24 is brought into contact with the solder 6 and heated simultaneously with the supply of ultrasonic waves, the solder 6 melts at a slightly lower temperature than when no ultrasonic waves are supplied.
  • a temperature lower than a temperature at which the solder 6 melts when ultrasonic waves are supplied (referred to as a second predetermined temperature) (first predetermined temperature (above room temperature and below the melting temperature of solder when ultrasonic waves are supplied))
  • the temperature of the soldering iron tip portion 24 is set (adjusted) to the soldering iron portion 24.
  • the second predetermined temperature is a temperature range in which the solder 6 melts when the solder 6 is heated while supplying ultrasonic waves.
  • the temperature is usually in the range of 10 to 40 ° C. lower than the melting temperature of the solder 6 when no sound wave is supplied (determined by experiment because it depends on the type of solder).
  • the temperature of the soldering iron tip portion 24 is raised within a temperature range in which the soldering iron tip portion 24 is melted when ultrasonic waves are supplied to the solder.
  • S4 provides the soldering iron tip portion 24 with ultrasonic waves of 20 to 150 KHz. These S3 and S4 are set (adjusted) to a temperature at which the solder 6 dissolves (second predetermined temperature) by raising the temperature while supplying the ultrasonic wave 20 to 150 KHz to the soldering tip portion 24.
  • S5 follows S4 and solders (solder plating) the upper surface of the bus bar electrode.
  • soldering iron tip portion 24 which has been prepared for ultrasonic soldering by S1 to S4 is supplied to the upper surface of the bus bar electrode 5 while supplying the solder 6 as shown in FIG.
  • the soldering iron tip portion 24 is brought into contact, the solder 6 is melted, and ultrasonic soldering is performed on the bus bar electrode 5.
  • the solder 6 is soldered to the upper surface of the bus bar electrode 5 as shown in FIGS. 7B and 8B.
  • solder 6 can be ultrasonically soldered (solder plated) on the upper surface of the bus bar electrode 5.
  • S6 is the same as S3 and S4 as ribbon attachment 1.
  • the solder iron tip portion 24 is set (adjusted) to a second predetermined temperature.
  • an ultrasonic wave is supplied so that the ribbon 7 can be ultrasonically soldered. If the solder to be melted is the same solder as when the bus bar electrode 5 is solder-plated, the second predetermined temperature and ultrasonic wave are the same as those at S3 and S4. The second predetermined temperature and the ultrasonic wave that are obtained by experiment for each type are supplied (applied).
  • the ultrasonic soldering iron tip is brought into contact with the ribbon and soldered. This is because the ultrasonic soldering iron tip 24 is brought into contact with the ribbon 7 and the solder pre-soldered 72 on the ribbon 7 or the solder plated on the bus bar electrode 5 or the solder supplied from the outside is dissolved. Then, the ribbon 7 is ultrasonically soldered to the bus bar electrode 5.
  • solder plating and further ribbon 7 can be soldered by ultrasonic soldering on the bus bar electrode 5 that constitutes the solar cell and is screen-printed and fired with NTA paste.
  • FIG. 6 shows a characteristic example of the ultrasonic soldering apparatus of the present invention. This shows an example of the characteristics of the ultrasonic soldering apparatus used in the prototype experiment described with reference to FIGS.
  • FIG. 6 the following ones shown in the figure were used for the prototype experiment as the characteristics of the ultrasonic soldering apparatus. Since mass production is considered in mass production, what kind of characteristics can be obtained if ultrasonic soldering can be satisfactorily performed on the upper surface of the bus bar electrode 5 or the like prepared by firing the NTA paste described in FIGS. Good thing to adopt.
  • FIG. 7 shows an example of ultrasonic soldering according to the present invention (NTA 100%).
  • the photographs shown in FIG. 4 and FIG. 5 show the pictures before and after ultrasonic soldering of the bus bar electrode (NTA 100%) 5 formed by screen printing and sintering the NTA paste (NTA 100%). Show.
  • FIG. 7 shows an example of a photograph before ultrasonic soldering (NTA 100%).
  • the bar in the horizontal direction is the finger electrode 4 (Ag 100%, see FIGS. 1 and 2), and the band in the vertical direction so as to cover the finger electrode 4
  • this is a bus bar electrode (NTA 100%) 5 formed by firing the NTA paste (100%) which was experimentally produced this time.
  • a soldering iron tip portion 24 is brought into contact with the bus bar electrode (NTA 100%) 5 for soldering, ribboning, or a trial experiment.
  • FIG. 7 (b) shows an example of a photograph in which only the solder 6 is ultrasonically soldered on the bus bar electrode (NTA 100%) 5 in FIG. 7 (a) according to the procedure of FIGS. 4 and 5 described above.
  • the ribbon 7 used as an extraction lead wire for taking out the electric charge is ultrasonically soldered.
  • the state below the ribbon 7 becomes invisible. This is an ultrasonic soldered product.
  • the portion of the bus bar electrode (NTA 100%) 5 shines white and clearly shows that the solder is soldered onto the bus bar electrode (NTA 100%).
  • FIG. 8 shows an example of ultrasonic soldering (NTA 50%) of the present invention.
  • the photographs shown in FIG. 4 and FIG. 5 are photographs of the bus bar electrode (NTA 50%) 5 formed by screen printing and sintering the NTA paste (NTA 50%) before and after ultrasonic soldering. Show.
  • FIG. 8 shows an example of a photograph before ultrasonic soldering (NTA 50%).
  • 8A is a finger electrode 4 (Ag 100%, see FIG. 1 and FIG. 2) at the top end of the upper end portion on the photograph.
  • a soldering iron tip portion 24 was brought into contact with the bus bar electrode (NTA 50%) 5 for soldering, ribboning, or a trial experiment.
  • FIG. 8B shows an example of a photograph in which only the solder 6 is ultrasonically soldered on the bus bar electrode (NTA 50%) 5 in FIG. 8A in accordance with the procedure shown in FIGS.
  • the ribbon 7 used as an extraction lead wire for taking out the electric charge is ultrasonically soldered.
  • the state below the ribbon 7 becomes invisible. This is an ultrasonic soldered product.
  • the portion of the bus bar electrode (NTA 50%) 5 shines white and clearly shows that the solder is soldered onto the bus bar electrode (NTA 50%).
  • the NTA 50% As described above, by performing ultrasonic soldering on the bus bar electrode (NTA 50%) according to the procedure of FIGS. 4 and 5 of the present invention, the NTA 50 which is impossible or extremely difficult by conventional soldering or easily peeled off. It was confirmed that the solder 6 could be soldered onto the% bus bar electrode 5 (discovered by the present inventors).
  • FIG. 9 shows a structural diagram of one embodiment of the present invention (process completed drawing: sectional view).
  • a silicon substrate 11 is a known semiconductor silicon substrate.
  • the high electron concentration region (diffusion doping layer) 12 is a known region (layer) in which a desired p-type / n-type layer is formed on the silicon substrate 11 by diffusion doping or the like. This is a region where electrons are generated (power generation) in the silicon substrate 11 when light is incident and the electrons are accumulated. Here, the accumulated electrons are taken out upward by an electron outlet (finger electrode (silver)) 14 (see the effect of the invention).
  • the insulating film (silicon nitride film) 13 is a known film that allows sunlight to pass (transmits) and electrically insulates the bus bar electrode 15 from the high electron concentration region 14.
  • the electron outlet (finger electrode (silver)) 14 is an opening (finger electrode) for taking out electrons accumulated in the high electron concentration region 12 through a hole formed in the insulating film 13.
  • the finger electrode 14 is the same as the height of the upper surface of the bus bar electrode 15 or A portion protruding through and projecting to the upper surface is formed (fired) (by controlling the thickness of the NTA paste), and electrons in the high electron concentration region 12 directly flow into the lead wire 17 through the finger electrode 14 (Electrons can be taken out directly).
  • a bus bar electrode (electrode 1 (NTA glass 100%)) 15 is an electrode for electrically connecting a plurality of electron outlets (finger bar electrodes) 14, and an electrode to be used to eliminate or reduce the amount of Ag used (See the effect of the invention).
  • the back electrode (electrode 2 (aluminum)) 16 is a known electrode formed on the lower surface of the silicon substrate 11.
  • the lead wire (solder formation) 17 takes out electrons (current I) electrically connected to the plurality of bus bar electrodes 15 to the outside, and in the present invention, the finger electrode 14 has the same height as the upper surface of the bus bar electrode 15. It is a lead wire that takes out the electrons (current) to the outside by ultrasonic soldering the lead wire to the portion or the protruding portion.
  • the bus bar electrode 15 is mixed with NTA glass (conductive glass) 100% to 71% (more or less, see FIG. 17) as glass frit in the paste. It is possible to eliminate or reduce the amount of Ag used. Details will be sequentially described below.
  • FIG. 10 shows a flowchart for explaining the operation of the present invention
  • FIGS. 11 and 12 show the detailed structure of each process.
  • S1 prepares a silicon substrate.
  • S2 is cleaned. These S1 and S2 cleanly clean the surface (surface on which the high electron concentration region 12 is formed) of the silicon substrate 11 prepared in S1, as shown in FIG.
  • S3 is diffusion doped. As shown in FIG. 11B, this involves performing known diffusion doping on the silicon substrate 11 cleaned in FIG. 11A to form a high electron concentration region 12.
  • S4 forms an antireflection film (silicon nitride film).
  • the high electron concentration region 12 of FIG. 11 (b) is formed, and an antireflection film (sunlight is passed through and surface reflection is made as much as possible.
  • a silicon nitride film is formed by a known method as the reduced film.
  • S5 screen-prints the finger electrodes.
  • the pattern of the finger electrode 14 to be formed is screen-printed on the silicon nitride film 13 shown in FIG. 11 (c).
  • the printing material for example, silver mixed with lead glass as a frit is used.
  • the finger electrode is fired and fired through. This is because the finger electrode 14 pattern (mixed with silver and lead glass frit) screen-printed in FIG. 11 (d) is baked, and the silicon nitride film 13 is formed as shown in FIG. 11 (e).
  • the finger electrode 14 in which silver (conductivity) is formed is formed through fire-through.
  • S7 screen-prints the bus bar electrode (electrode 1). As shown in FIG. 12 (f), the pattern of the bus bar electrode 15 to be formed is screen-printed on the finger electrode 14 shown in FIG. 11 (e).
  • NTA gas 100%) is used as a frit.
  • the bus bar electrode is fired. This is because the bus bar electrode 15 pattern (NTA glass (100%) frit) screen-printed in FIG. 12 (f) is fired (fired within 1 minute at the longest and fired within 1 to 3 seconds). As shown in FIG. 12G, the bus bar electrode 15 is formed in the uppermost layer, and the finger electrode 14 is the same height as the upper surface of the bus bar electrode 15 formed in the uppermost layer, which is a feature of the present invention. Or a portion that has been penetrated. (This is done by controlling the film thickness.) Note that S5 and S7 may be printed and both may be fired simultaneously.
  • S9 forms the back electrode (electrode 2).
  • an aluminum electrode is formed on the lower side (back surface) of the silicon substrate 11 as shown in FIG.
  • S10 solders the lead wire.
  • the lead wires for electrically connecting the bus bar electrodes in FIG. 12 (g) are formed by solder, for example, formed by ultrasonic soldering and electrically connected.
  • High electron concentration region 12, finger electrode 14, bus bar electrode 16, path 1 of lead wire 17 (conventional path 1) and high electron concentration region 12, finger electrode 14, lead wire 17 path 2 (added in the present invention) In both the paths 2) and 2), the electrons (current) in the high electron concentration region 12 can be taken out via the lead wire 17, and the resistance between the high electron concentration region 12 and the lead wire 17 can be extracted. The value can be made very small to reduce loss and improve solar cell efficiency.
  • one end of the finger electrode 14 is in the high electron concentration region 12, and the other end is a portion having the same height as the upper surface of the bus bar electrode 15 made of NTA glass 100% Since the lead wire is directly joined to this portion (direct joining by ultrasonic soldering), the path 2 of the high electron concentration region 12, the finger electrode 14, and the lead wire 17 is formed.
  • the route 1 is a conventional route.
  • a solar cell can be formed on a silicon substrate.
  • FIG. 13 is a detailed explanatory view of the present invention (firing of bus bar electrodes).
  • FIG. 13A schematically shows an example in which the bus bar electrode is baked with 100% silver and 0% NTA (weight ratio)
  • FIG. 13B shows the bus bar electrode with 50% silver and NTA 50% weight ratio
  • FIG. 13C schematically shows an example in which the bus bar electrode is fired at 100% NTA (weight ratio). The firing time was 1 to 3 seconds or longer within 1 minute at the longest.
  • iron is strongly bonded internally and stays in the interior, and its bonding property is extremely small even when mixed with other materials. (See Japanese Patent No. 5333976 and the like), and it is presumed to be due to the improvement of the path between the high electron concentration region of the present invention and the lead wire (path 1 and path 2 are in parallel).
  • FIG. 14 (a) and 14 (b) are NTA 50% and Ag 50%
  • FIG. 14 (a) shows an overall plan view
  • FIG. 14 (b) shows an enlarged view
  • (C) in FIG. 15 is NTA 100% Ag 0%
  • (c) in FIG. 15 is an enlarged view.
  • the bus bar electrode 15 is a long bar-shaped electrode as shown in the overall plan view of FIG. 14 (a), and this is enlarged by an optical microscope. Then, a structure as shown in FIG. 14B was observed.
  • the bus bar electrode 15 was fired with the conventional Ag and NTA glass frit when it was fired with the conventional Ag and lead glass frit.
  • the conversion efficiency when manufactured as a solar cell was about 16.9% even in the experiment.
  • the firing temperature is 500 ° C. to 900 ° C., but it is necessary to determine the optimum temperature by experiment when it is produced as a solar cell. If it is too low or too high, the structure as shown in FIG. 14B cannot be obtained, and it is necessary to determine by experiment.
  • the bus bar electrode 15 is a bar-like electrode having a wide lateral width at the center portion shown in the figure, and shows an example of an enlarged photograph of 100% NTA according to the present invention.
  • the bus bar electrode 15 in FIG. 15C has a portion in which the finger electrode 14 narrow in the vertical direction penetrates the bus bar electrode 15 and slightly protrudes upward, and the periphery of the protruding portion is the original finger. It turns out that it is thicker than the width of the electrode 14. Then, ultrasonic soldering is performed on the bus bar electrode 15 as shown in FIG. 16 to be described later in detail with a width that is the same as the width of the bus bar electrode 15, slightly smaller or slightly larger. High in both paths 1 (path 1 of photoelectron concentration region 12, finger electrode 14, bus bar electrode 15, lead wire 17) and path 2 (path 2 of photoelectron concentration region 12, finger electrode 14, lead wire 17) described above. The concentration electron region and the lead wire are conductively connected to reduce the loss of electrons (current) and can be efficiently extracted to the outside. The conversion efficiency is substantially the same as that shown in FIGS. Alternatively, a slightly high conversion efficiency (about 17.2%) was obtained.
  • the firing temperature is approximately 500 ° C. to 900 ° C. as in FIGS. 14A and 14B, but it is necessary to determine the optimum temperature by experiment when it is fabricated as a solar cell. If it is too low or too high, the structure as shown in FIG. 15C cannot be obtained, and it is necessary to determine by experiment.
  • FIG. 16 shows an explanatory diagram (ultrasonic soldering) of the present invention. This is the case of the NTA 100% in FIG. 15C described above (in the same manner, it may be applied to FIGS. 14A and 14B).
  • FIG. 16 shows the state after the finger electrode 14 is baked.
  • FIG. 16B shows a conventional method in which a slightly larger (or the same or smaller) lead wire 17 is soldered on the bus bar electrode 15 shown in FIG.
  • a slightly larger (or the same or smaller) lead wire 17 is soldered on the bus bar electrode 15 shown in FIG.
  • An example of In this conventional example since normal soldering is performed, the portion (Ag) where the finger electrode 14 protrudes and the lead wire 17 are soldered together, but the portion where the finger electrode 14 does not protrude (portion of NTA 100%) The lead wire 17 is not sufficiently soldered and the mechanical strength is not sufficient.
  • ultrasonic soldering of FIG. 16C described later solder bonding was performed, and the mechanical strength was greatly improved.
  • FIG. 16C a slightly larger lead wire 17 indicated by a dotted line is ultrasonically soldered on the bus bar electrode 15 in FIG. 16A (the bus bar electrode 15 in FIG. 15C).
  • the example of this invention is shown.
  • the soldering is performed by ultrasonic soldering, the portion (Ag) from which the finger electrode 14 protrudes and the lead wire 17 are soldered together, and further, the portion without the finger electrode 14 (portion of NTA 100%)
  • the lead wire 17 is also soldered to significantly improve the mechanical strength, and the conductivity of the path 2 (the high electron concentration region 12, the finger electrode 14, the bus bar electrode 15, the path 2 of the lead wire 17) described above is improved. did.
  • FIG. 17 shows a measurement example (efficiency) of the present invention.
  • FIG. 17 is a good measurement example when the NTA is changed from 100% to 70% for the bus bar electrode 15 described above.
  • the horizontal axis in FIG. 17 indicates the sample number, and the vertical axis indicates the efficiency. (%).
  • sample, ⁇ NTA 100% Ag 0% ⁇ NTA 90% Ag 10% ⁇ NTA 80% Ag 20% ⁇ NTA 70% Ag 30% were used to make solar cells, and each measurement result (efficiency) was as shown.
  • FIG. 1 is a configuration diagram of one embodiment of the present invention.
  • FIG. 3 is a configuration diagram (Part 2) of an embodiment of the present invention. It is explanatory drawing (solder material etc.) of this invention. It is an operation
  • FIG. 1 is a structural view of one embodiment of the present invention (process completion drawing: sectional view).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【目的】本発明は、超音波半田付け方法および超音波半田付け装置に関し、被半田付け部分にAgや鉛を含まないあるいは混入量を削減した電極等への半田付けを可能にすることを目的とする。 【構成】Ag、Cu、Pbを含まないペーストを任意部分に塗布して焼結した基板あるいは該基板上のペースト部分を、半田の溶融温度よりも低い第1の所定温度に予備加熱する予備加熱ステップと、予備加熱ステップで予備加熱した第1の所定温度の基板のペースト部分に、当接する半田コテ先部分に超音波を印加した状態で供給した半田が溶融する、超音波を印加しないときに半田が溶融する温度よりも低い、第2の所定温度に調整した状態で、半田コテ先部分をペースト部分に当接してあるいは当接しながら移動して当該ペースト部分に半田付けする超音波半田付けステップとを有する。

Description

超音波半田付け方法および超音波半田付け装置
 本発明は、基板上の任意部分にペーストを塗布して焼結した部分に半田付けする超音波半田付け方法および超音波半田付け装置に関するものである。
 従来、再生可能エネルギー利用の一つである太陽電池は、20世紀の主役である半導体技術をベースにその開発が行われている。人類の生存を左右する地球レベルの重要な開発である。その開発の課題は太陽光を電気エネルギーに変換する効率ばかりではなく製造コストの低減および無公害という課題にも向き合いながら進められている。これらを実現する取り組みは、特に、電極に使用されている銀(Ag)や鉛(Pb)の使用量を低減ないし無くすことが重要とされている。
 一般に、太陽電池の構造は、図18の(a)の平面図および(b)の断面図に示すように、太陽光エネルギーを電気エネルギーに変換するN型/P型のシリコン基板43、シリコン基板43の表面の反射を防止する機能を有し、絶縁体薄膜である窒化シリコン膜45、シリコン基板43中に発生した電子を取り出すフィンガー電極42、フィンガー電極42で取り出した電子を集めるバスバー電極41、バスバー電極41に集めた電子を外部に取り出す引出リード電極47の各要素より構成されている。
 このうち、バスバー電極(バス電極)41、フィンガー電極42に、銀(銀ペースト)および鉛(鉛ガラス)が使用されており、これの銀の使用量を無くし、あるいは低減し、更に、鉛(鉛ガラス)の使用量を低減ないし無くし、低コストかつ無公害にすることが望まれている。
 特に、上記電極(バスバー電極41、フィンガー電極42を焼結して形成するために従来は銀ペースト(あるいは一部Cuペースト)を用い、この銀ペーストには、銀成分(粉末)、ガラス成分(鉛ガラス)、有機材の成分、有機溶媒の成分、樹脂の成分を含んでいるので、この先頭2つの銀成分(粉末)およびガラス成分(鉛ガラス)を無くし、代わりのものに置き換えて(例えばNTAガラス(後述する)に置き換えて)、これをスクリーン印刷して焼結して形成した電極(Ag,Cu.Pb無)に引出リード線等を半田付けすることが望まれている。
 上述した例えば太陽電池を構成する電極(バスバー電極41およびフィンガー電極42等)を焼結して形成するために従来の銀ペースト中の銀成分(粉末)およびガラス成分(鉛ガラス)を無くし、代わりのものに置き換え(例えばNTAガラス)で置き換えて、銀、鉛を無くしあるいは低減したNTAペースト(特願2015-191857)を焼結して形成した電極部分にはAg等がない(あるいはAg等が僅かしかない)ために従来の半田付けができないという事態が発生した。
 これを解決して、Ag等がないあるいは僅かしかない部分(電極等)に半田付けすることが要望されている。
 本発明者らは、ペーストに後述するNTAガラス(バナジン酸塩ガラス)100%を用いてAgとガラス(鉛ガラス)を含まない、あるいは若干混入したペースト(以下NTAペーストという)を焼結して作成したバス電極等上に半田付けを可能する方法を発見した。該方法で半田付けした太陽電池は従来の銀ペーストを用いた場合よりも優れた特性を有する太陽電池の作成が可能(後述する)であることも発見した。このNTAペーストを焼結した部分(電極等)に半田付けする手法は、上述した太陽電池のバス電極等に限らず、スクリーン印刷などで電極等を作成する場合にも使える半田付け手法である。
 本発明は、これら発見に基づき、銀の使用量を無くし、ないし若干混入し、および鉛(鉛ガラス)の使用量を低減ないし無くしたペースト(例えばNTAペースト)を焼結して作成した例えば太陽電池のバス電極(バスバー電極)上に後述する超音波半田付けして表面に半田付け(いわゆる半田メッキ)、および引出リード線等を半田付けして従来通りに取り付けることを可能にし、その結果、被半田付け部分にAgや鉛を含まないあるいは混入量を削減した電極等への半田付けを可能にした。
 そのため、本発明は、基板上の任意部分にペーストを塗布して焼結した部分に半田付けする半田付け方法において、Ag、Cu、Pbを含まないペーストを任意部分に塗布して焼結した基板あるいは基板上のペースト部分を、半田の溶融温度よりも低い第1の所定温度に予備加熱する予備加熱ステップと、予備加熱ステップで予備加熱した第1の所定温度の基板のペースト部分に、当接する半田コテ先部分に超音波を印加した状態で供給した半田が溶融する、超音波を印加しないときに半田が溶融する温度よりも低い、第2の所定温度に調整した状態で、半田コテ先部分をペースト部分に当接してあるいは当接しながら移動して当該ペースト部分に半田付けする超音波半田付けステップとを有する。
 この際、第1の所定温度を、室温以上から第2の所定温度の範囲内の温度とするようにしている。
 また、第2の所定温度を、超音波を印加しないときに半田が溶融する温度よりも10から40℃低い範囲内の温度とするようにしている。
 また、Ag,Cu、Pbを含まないペーストとして、Ag,Cu、Pbを含まなくかつバナジン酸塩ガラスを100wt%、あるいはCu,Pbを含まなくかつAgを0以上から50wt%を含み残りをバナジン酸塩ガラス、としたNTAペーストとするようにしている。
 また、半田は、少なくともSn、Zn、Clを含むようにしている。
 また、超音波半田付けステップで半田付けする際に、ペースト部分に当該ペースト中の有機溶剤が残留しないように予め乾燥あるいは加熱乾燥するようにしている。
 また、基板上に塗布するペースト部分が、可及的に滑らかになるようにして焼結するようにしている。
 また、超音波は、20KHzから150KHzの周波数とするようにしている。
 本発明は、上述したように、Ag,Cu、Pbを含まない例えば導電性のNTAガラス100%のNTAペースト、更に50%程度迄(更に含有量を少なくしても可)にしたNTAペーストを、従来の銀(あるいはCu)ペーストの代わりに用いて電極を焼成し、これに超音波半田付けすることにより、従来の銀ペースト中の銀の使用量を無くし、あるいは低減し、かつ鉛(鉛ガラス)の利用量を低減ないし無くしても、ペースト焼結部分に半田付けして引出リード線等を取り付けることができることを発見した。これらにより、下記の特徴がある。
 第1に、例えば太陽電池のバスバー電極(バス電極)を形成するのに導電性のバナジン酸塩ガラスであるNTAガラス(登録商標第5009023号、特許第5333976号等参照)100%、更に50%程度迄を、銀ペーストの代わりに用い、Agの使用量を無くし、ないし低減し、更に、鉛(鉛ガラス)の使用量を低減ないし無くしても、本願発明の超音波半田付けによってペースト焼結部分に半田付けすることができた。
 第2に、例えばバスバー電極(バス電極)をNTAガラス100%ないし50%程度(更に含有量を少なくしても可)を用いることにより、太陽光エネルギーを電子エネルギーに変換する効率がほぼ同じあるいは若干高い、バスバー電極としての効果を発揮する電極形成が現初期段階の実験結果として得られた(図17参照)。これはNTAガラスが(1)導電性を有すること、(2)NTAガラスを用いたことでフィンガー電極が当該バスバー電極(バス電極)の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分が形成され、これら部分がリード電極の本発明の超音波半田付けで接合され、結果として高電子濃度領域とリード電極とが直接にフィンガー電極で接続されること、その他の要因(例えば下記の「第3に」を参照)に起因すると考察される。
 第3に、従来と異なり、フィンガー電極の形成とバスバー電極の形成とを異なるガラスフリットを含有したペーストを用いることにある。従来、フィンガー電極の形成においてはファイアスルーと呼ばれる現象を生ずる必要があった。これは、銀の焼結助剤として用いているガラスフリットの中の成分分子、例えば鉛ガラス中の鉛分子の働きによってシリコン基板の表層に形成された窒化シリコン膜の絶縁層を突き破ってフィンガー電極を形成するようにしてシリコン基板に生成された電子を効率よく集めていた。しかし、バスバー電極の形成については、ファイヤースルー現象は必要でない。従来はバスバー電極も鉛成分を含んだ鉛ガラスを焼結助剤にして焼結していたので構造は異なるもののバスバー電極とシリコン基板との電気的な導通路が形成されて変換効率を低減する事となっていた。バスバー電極形成に用いる焼結助剤をファイヤースルー現象の生じないNTAガラスを用いることによって変換効率の低減を無くすことができた。そして、NTAペーストで焼結したバスバー電極の部分に本発明の超音波半田付けで引出リード線を半田付けして電荷を取り出すことが可能となった。
 図1は、本発明の1実施例構成図を示す。この図1は、太陽電池の電極の超音波半田付けの例であり、バスバー電極5に引出リード線であるリボン7を超音波半田付けする例を取り上げて以下詳細に説明する。ここで、超音波半田付けは、電極に半田メッキすること(引出リード線なし)や、電極にリード線等を半田付けすることを含む、以下同様。
 図1の(a)は超音波半田付けした要部の正面図を模式的に示し、図1の(b)は点線の円状部分の拡大した側面図を模式的に示す。
 図1の(a)および(b)において、太陽電池は、シリコン基板1の裏側に設けた裏面電極2、更にシリコン基板1の表側に設けた窒化膜3、バスバー電極5、窒化膜3を貫通する態様でシリコン基板1のPN層に発生した電子を取り出すフィンガー電極4、フィンガー電極4の上に半田6で本発明の超音波半田付けしたリボン7(引出リード線)からなる構造を持つものである。ここでは、電極であるバスバー電極5の上に半田6でリボン7を超音波半田付けするときの様子を模式的に示したものである。
 バスバー電極5は、本発明者らが発見したAg,Cu、Pbを含まなくかつバナジン酸塩ガラス100wt%としたNTAペースト(特願2015-202461号)を焼結して形成した当該バスバー電極5にはAg,Cu、Pbを全く含まない、あるいはCu,Pbを含まなくかつAgを0以上から50wt%を含み残りをバナジン酸塩ガラスからなるNTAペーストを焼結して形成した当該バスバー電極にはAgが50%以下であるため、従来の通常の半田付けでは半田付けが不可ないし極めて困難である電極である。特に、Ag、Cu,Pbを全く含まないバスバー電極5の場合には完全に従来の半田付け不可、Agを50%以下含む場合にAgの部分のみ半田付け可能で他の部分は半田付け不可で機械的強度が極めて弱く、剥離してしまう。本発明の超音波半田付けでは、NTAペーストを焼結した部分、すなわち、Ag,Cu,Pbなどがない部分あるいはある部分とない部分との全面に渡って超音波半田付け(超音波半田メッキ)が実験の結果、可能であることを発見した(図7、図8の写真参照)。
 図‐2では半田6は、バスバー電極5の上に超音波半田付けする半田であって、少なくともSn、Zn,Clを含む半田であり、本発明の超音波半田コテ先部分24で溶解して半田付けするものである。
 リボン7は、バスバー電極5から電荷を外部に取り出す引出リード線であって、ここでは、銅のリボンの上面および下面に予めプリ半田72を付けて、銅71のリボン7が半田6によってバスバー電極5に超音波半田付けしやすくしたものである。
 予備加熱台21は、太陽電池全体を載せて第1の所定温度(室温以上、超音波半田付けするときに半田が溶解する温度以下の範囲内の温度)に予備加熱するものである。予備加熱台21で予備加熱することにより、バスバー電極5の半田付け部分に、図示外の超音波半田付け装置の超音波半田コテ先部分24から供給する熱量が少なくて済み、小容量の超音波半田付け装置で超音波半田付けが可能となると共に、超音波半田コテ先部分24の温度制御がしやすくかつ超音波半田付けがスムーズに可能となる。
 次に、図1の構成もとで、超音波半田付けするときの構成を図2を用いて詳細に説明する。
 図2は、本発明の1実施例構成図(その2)を示す。
 図2の(a)は図1の(b)に対応する太陽電池の要部の側面図を模式的に示し、図2の(b)と(c)は超音波半田コテ22でバスバー電極5を超音波半田付けするときの正面図を模式的に示す。図2の(b)は半田6をバスバー電極5に半田付けする場合のもの、即ち、バスバー電極5の上に半田メッキする場合の構成を示し、図2の(c)は半田6とプリ半田したリボン7とをバスバー電極5に半田付けする場合のもの、即ち、バスバー電極5の上にリボン7を半田付けする場合の構成を示す。
 図2の(a)は図1の(b)と同一であるので説明を省略する。
 図2の(b)および(c)において、超音波半田コテ22は、本発明に係る超音波半田付け装置の1例を示し、図示のように、半田コテ先部分24とこれを加熱および超音波を供給する超音波発信機及びヒーター23から構成されるものである(図6参照)。通常は、20KHzないし150KHzの範囲内の周波数で、実験では60KHzのものを使用した。加熱容量は、予備加熱台11の温度に依存するが、実験では10W程度もの(自動温度調整付)を使用した(超音波半田付けする部分(バスバー電極5の部分)のサイズによる熱容量に対応した容量のものを使う)。
 半田コテ先部分24は、半田6を溶融すると共にバスバー電極5の超音波半田付けする部分を加熱して超音波半田付けするためのものである。半田コテ先部分24は、実験では図示のように、円柱の先頭を45度程度の斜面カットしたものを用いたが、この形状に限らず、量産性を高めるためなどに横長形状や任意形状や、更に回転する回転体やスライドするスライド台などでもよく、超音波と熱とを超音波半田付けする部分に伝導できればどのような形状でも良い。
 図2の(b)のように構成し、超音波半田コテ22の半田コテ先部分24に供給された半田6をバスバー電極5の上に超音波半田付けすることにより、バスバー電極5の上に半田メッキを行うことが可能となる。
 図2の(c)のように構成し、超音波半田コテ22の半田コテ先部分24に供給された半田6とプリ半田したリボン7とをバスバー電極5の上に超音波半田付けすることにより、バスバー電極5の上にリボン7(引出リード線)を半田付けすることが可能となる。
また、予め図2の(b)のようにしてプリ半田付けしておき、この上にリボン7を超音波半田付けしてもよい。
 図3は、本発明の説明図を示す。図3は、半田材料等を示す。図3は、図1、図2で既述した太陽電池のバスバー電極5の自身の材料、リボン7等を半田付けする半田6の材料などの1例を示す。
   工程順     従来          本発明(超音波半田付け)
 ・バスバー電極5  銀、約100wt%  NTAガラス100wt%
 (図1の(b)参照)            (~50wt%)
 ・半田6
 (図2の(b)参照)SAC(スズ、銀、銅)  半田6(スズ、亜鉛、イン
           の半田        シウム、アンチモン、アル
                      ミニウム等の金属の組み合
                      わせ又はその合金(スズー
                      亜鉛の合金で、スズ20-
                      40%程度、残りは添加)
 ・リボン7     銅の周りをSAC等の 銅の周りを上記半田6で
 (図2の(c)参照)半田でコーティング  コーティング(超音波半田
                                            付け)
 以上のように、本発明では、バスバー電極5がNTAガラスのペースト(NTAペースト)を焼成して形成するため、従来の半田では半田付けが不可ないし極めて困難であるが、本発明の超音波半田付けで、予備加熱した状態で半田6を用いて半田付けすることにより、極めて良好にバスバー電極5の上に超音波半田付けで半田メッキや、リボン7(引出リード線)を半田付けすることが、実験により確かめられた(図7、図8の写真参照)。
 次に、図4および図5のフローチャートの順番に従い、図1から図3の構成もとで、太陽電池の電極部(例えばバスバー電極5)の超音波半田付けの手順を詳細に説明する。
 図4は、本発明の動作説明フローチャート示す。
 図4において、S1は、NTAバスバー電極を形成する。これは、図1から図3のバスバー電極5をNTAガラス100wt%(~50wt%)のNTAペーストをスクリーン印刷して焼結し、NTAからなるバスバー電極5を形成する。そして、NTAバスバー電極5は、右側に記載したように、
 1.ペーストの有機溶剤がなくなるように処理(溶剤飛ばし)する。
 2.NTAガラス電極表面が平になるように焼結する。
 また、1.のペーストの有機溶剤がなくなるように処理(溶剤飛ばし)するとは、NTAペースト中の有機溶剤がなくなるように、乾燥処理、あるいは加熱乾燥処理を行い、ペースト中の溶剤を十分に蒸発させて(飛ばして)無くする。溶剤が残留すると、超音波半田つけはうまくゆかない現象が現れる。
 
 この2.のNTAガラス電極が平になるように焼結するとは、図1、図2のバスバー電極5となる部分に、NTAペーストをスクリーン印刷して焼結するときに可及的に平になるようにスクリーン印刷すると共に焼成時および焼結後に可及的に平になるように焼結するように注意する。逆に言えば、小さな凹凸が形成されないように注意し、可及的に平になるように焼結する。平でないと、超音波半田付けがうまくゆかない現象が現れる。
 S2は、基板を加熱台に乗せ、半田が超音波供給したときに溶ける温度以下の温度にあげる。この予備加熱温度は、超音波半田コテ先部分24を半田6に当接して超音波を供給と同時に加熱したときには、超音波を供給しないときよりも若干低い温度で半田6が溶融するので、この半田6が超音波を供給したときに溶融する温度(第2の所定温度という)よりも低い温度(第1の所定温度(室温以上であって、超音波供給したときに半田の溶融温度以下)に半田コテ先部分24の温度を設定(調整)する。尚、第2の所定温度は、超音波を供給しつつ半田6を加熱したときに半田6が溶融する温度の範囲であって、超音波を供給しない場合の半田6の溶融温度よりも通常、10~40℃位低い範囲の温度(半田の種類に依存するので実験によって求める)である。
 S3は、半田コテ先部分24を、半田に超音波を供給したときに溶解する温度の範囲内に温度をあげる。
 S4は、半田コテ先部分24に、超音波20~150KHzを供する。これらS3、S4は、半田コテ先部分24に超音波20~150KHzを供給しつつその温度をあげて、半田6が溶解する温度(第2の所定温度)に設定(調整)する。
 以上のS1からS4により、NTAペーストを焼成して形成したバスバー電極5の上に、超音波半田付けする準備が完了、即ち、半田コテ先部分24を半田6に当接して半田6を溶解してバスバー電極5に超音波半田付けする準備が完了したこととなる。
 図5において、S5は、S4に続き、バスバー電極の上面に半田を付ける(半田メッキする)。これは、S1からS4によって超音波半田付けの準備が完了した半田コテ先部分24を、既述した図2の(b)に示すように、バスバー電極5の上面に半田6を供給しつつ当該半田コテ先部分24を当接し、半田6を溶解してバスバー電極5に超音波半田付けする。この超音波半田付けにより、図7(b)及び図8(b)に示すように、バスバー電極5の上面に半田6が半田付けする。
 以上によって、バスバー電極5の上面に半田6を超音波半田付け(半田メッキ)することが可能となる。
 S6は、リボン付け1として、S3とS4と同様にする。これは、図4のS3とS4と同様にして、プリ半田72されたリボン7をバスバー電極5に超音波半田付けするために、半田コテ先部分24を第2の所定温度に設定(調整)すると共に超音波を供給し、リボン7を超音波半田付け可能な状態にする。溶融する半田がバスバー電極5を半田メッキしたときと同じ半田であれば、第2の所定温度および超音波はS3、S4とのときと同じであり、異なればそれに適合(半田6、プリ半田72などの種別毎に実験で求める)した第2の所定温度および超音波を供給(印加)する。
 S7は、リボン付け2として、超音波半田コテ先部分をリボンに当接して半田付けする。これは、超音波半田コテ先部分24をリボン7に当接し、当該リボン7にプリ半田72されている半田、あるいはバスバー電極5に半田メッキされている半田、あるいは外部から供給した半田、を溶解してリボン7をバスバー電極5に超音波半田付けする。
 S8は、完成する。これは、バスバー電極5の上面に銅のリボン7の超音波半田付けを完了したことを意味する。
 以上によって、太陽電池を構成する、NTAペーストをスクリーン印刷して焼成したバスバー電極5の上に超音波半田付けにより、半田メッキ、更にリボン7を半田付けすることが可能となった。
 図6は、本発明の超音波半田付け装置の特性例を示す。これは、図1から図5で既述した試作実験で用いた超音波半田付け装置の特性の1例を示す。
 図6において、超音波半田付け装置の特性として、図示の下記のものを試作実験に用いた。量産では量産性を考慮するので、既述した図1から図5に既述したNTAペーストを焼成して作成したバスバー電極5などの上面に、良好に超音波半田付けができれば、どのような特性のものを採用しての良い。
   項目      内容          備考
 ・超音波発信周波数 60KHz±5KHz  
 ・発信出力     最大15W(実効10W) 
 ・ヒーター温度   200~500℃     電源容量200W
           (ヒーター部分の温度で、
            半田コテ先部分の温度ではない。)
 尚、半田コテ先部分24の温度は、図示外の温度計で計測する(例えば熱電対を半田コテ先部分24に埋め込んでおき実測する。そして、この実測値をもとに第2の所定温度に自動調整する)。
 図7は、本発明の超音波半田付け例(NTA100%)を示す。図示の写真は、図4および図5で説明した、NTAペースト(NTA100%)をスクリーン印刷して焼結して形成したバスバー電極(NTA100%)5について、超音波半田付け前と後の写真を示す。
 図7の(a)は超音波半田付け前(NTA100%)の写真の例を示す。図7の(a)の写真上で、横方向の棒状のものがフィンガー電極4(Ag100%,図1、図2参照)であり、フィンガー電極4の上に覆うように縦方向の帯状のものが、今回の試作実験したNTAペースト(100%)を焼成して形成したバスバー電極(NTA100%)5であある。このバスバー電極(NTA100%)5の部分に、本発明では半田コテ先部分24を当接して半田付けしたり、リボン付けしたり、試作実験した。
 図7の(b)は図7の(a)のバスバー電極(NTA100%)5の上に、半田6のみを既述した図4、図5の手順に従い超音波半田付けした写真例を示す。実際は、電荷を外部に取り出す引出リード線として使うリボン7を超音波半田付けするが、リボン7を半田付けしたのではその下の状態が見えなくなってしまうので、ここでは、実験的に半田6のみを超音波半田付けしたものを示す。図示のように、バスバー電極(NTA100%)5の部分は、白く光り半田がバスバー電極(NTA100%)の上に半田付けされている様子が明確に判明する。
 以上のように、バスバー電極(NTA100%)の上に本発明の図4、図5の手順に従い超音波半田付けすることにより、従来の半田付けで不可能であったNTA100%のバスバー電極5の上に半田6を半田付けできることが確認できた(本発明者らが発見した)。
 次に、図7のNTA100%と同様に、NTA50%のバスバー電極5についての写真の例を図8に示す。
 図8は、本発明の超音波半田付け例(NTA50%)を示す。図示の写真は、図4および図5で説明した、NTAペースト(NTA50%)をスクリーン印刷して焼結して形成したバスバー電極(NTA50%)5について、超音波半田付け前と後の写真を示す。
 図8の(a)は超音波半田付け前(NTA50%)の写真の例を示す。図8の(a)の写真上の上端部分の横方向の棒状のものがフィンガー電極4(Ag100%,図1、図2参照)であり、フィンガー電極4の上に覆うように縦方向の帯状のものが、今回の試作実験したNTAペースト(50%)を焼成して形成したバスバー電極(NTA50%)5である。このバスバー電極(NTA50%)5の部分に、本発明では半田コテ先部分24を当接して半田付けしたり、リボン付けしたり、試作実験した。
 図8の(b)は図8の(a)のバスバー電極(NTA50%)5の上に、半田6のみを既述した図4、図5の手順に従い超音波半田付けした写真例を示す。実際は、電荷を外部に取り出す引出リード線として使うリボン7を超音波半田付けするが、リボン7を半田付けしたのではその下の状態が見えなくなってしまうので、ここでは、実験的に半田6のみを超音波半田付けしたものを示す。図示のように、バスバー電極(NTA50%)5の部分は、白く光り半田がバスバー電極(NTA50%)の上に半田付けされている様子が明確に判明する。
 以上のように、バスバー電極(NTA50%)の上に本発明の図4、図5の手順に従い超音波半田付けすることにより、従来の半田付けで不可能あるいは極めて困難、あるいは剥離しやすかったNTA50%のバスバー電極5の上に半田6を半田付けできることが確認できた(本発明者らが発見した)。
 以下、上述した本発明の超音波半田付けした太陽電電のバスバー電極5等を作成したときの実施例(実験例)を詳細に説明する(以下の実施例は特願2015-180720号(出願日:平成27年9月14日)の発明者、出願人が同一の出願の実施例である)。
 図9は、本発明の1実施例構造図(工程の完成図:断面図)を示す。
 図9において、シリコン基板11は、公知の半導体のシリコン基板である。
 高電子濃度領域(拡散ドーピング層)12は、シリコン基板11の上に所望のp型/n型の層を拡散ドーピングなどで形成した公知の領域(層)であって、図では上方向から太陽光が入射するとシリコン基板11で電子を発生(発電)し、その電子を蓄積する領域である。ここでは、蓄積した電子は電子取出口(フィンガー電極(銀))14によって上方向に取り出されるものである(発明の効果参照)。
 絶縁膜(窒化シリコン膜)13は、太陽光を通過(透過)させ、かつバスバー電極15と高電子濃度領域14とを電気的に絶縁する公知の膜である。
 電子取出口(フィンガー電極(銀))14は、高電子濃度領域12中に蓄積した電子を絶縁膜13に形成した穴を介して取り出す口(フィンガー電極)である。フィンガー電極14は、本発明では、図示のように、バスバー電極15をNTAガラス100%(ないし71%程度)で焼成した場合には、フィンガー電極14がバスバー電極15の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分を形成(焼成)し(NTAペーストの厚さをコントロールすることで行う)、高電子濃度領域12中の電子を当該フィンガー電極14を介してリード線17に直接に流入させる(電子を直接に取り出させる)ことが可能となる。つまり、高電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路1(従来の経路1)と、高電子濃度領域12、フィンガー電極14、リード線17の経路2(本発明で追加された経路2)との2つの経路で高電子濃度領域12中の電子(電流)をリード線17を介して外部に取り出すことができ、結果として、高電子濃度領域12とリード線17との間の抵抗値を非常に小さくすることが可能となり、損失を低減して結果として太陽電池の効率を向上させることができる。
 バスバー電極(電極1(NTAガラス100%))15は、複数の電子取出口(フィンガーバー電極)14を電気的に接続する電極であって、Agの使用量を無くす、ないし削減する対象の電極である(発明の効果参照)。
 裏面電極(電極2(アルミ))16は、シリコン基板11の下面に形成した公知の電極である。
 リード線(ハンダ形成)17は、複数のバスバー電極15を電気的に連結した電子(電流I)を外部に取り出したり、更に、本発明ではフィンガー電極14がバスバー電極15の上面と同じ高さの部分あるいは突き抜けた部分に、当該リード線を超音波半田付けして接合し電子(電流)を外部に取出したりするリード線である。
 以上の図9の構造のもとで、上から下方向に太陽光を照射すると、太陽光はリード線17および電子取出口14の無い部分と絶縁膜13を通過し、シリコン基板11に入射して電子を発生する。その後、高電子濃度領域12に蓄積した電子は、電子取出口(フィンガー電極)14、バスバー電極15、リード線17の経路1、および電子取出口(フィンガー電極)14、リード線17の経路2の両経路を介して外部に取り出される。この際、図13から図17で後述するように、バスバー電極15を、ペーストにガラスフリットとしてNTAガラス(導電性ガラス)100%ないし71%(更に少なくても可、図17参照)を混入して焼成して形成し、Agの使用量を無くし、ないし低減することが可能となる。以下順次詳細に説明する。
 図10は、本発明の動作説明フローチャートを示し、図11および図12は各工程の詳細構造を示す。
 図10において、S1は、シリコン基板を準備する。
 S2は、クリーニングする。これらS1、S2は、図11の(a)に示すように、S1で準備したシリコン基板11の面(高電子濃度領域12を形成する面)を綺麗にクリーニングする。
 S3は、拡散ドーピングする。これは、図11の(b)に示すように、図11(a)でクリーニングしたシリコン基板11の上に公知の拡散ドーピングを行い、高電子濃度領域12を形成する。
 S4は、反射防止膜(窒化シリコン膜)を形成する。これは、図11の(c)に示すように、図11の(b)の高電子濃度領域12を形成した上に、反射防止膜(太陽光を通過させ、かつ表面反射を可及的に低減した膜)として例えば窒化シリコン膜を公知の手法で形成する。
 S5は、フィンガー電極をスクリーン印刷する。これは、図11の(d)に示すように、図11の(c)の窒化シリコン膜13を形成した上に、形成するフィンガー電極14のパターンをスクリーン印刷する。印刷材料は、例えば銀にフリットとして鉛ガラスを混入したものを用いる。
 S6は、フィンガー電極を焼成し、ファイヤースルーさせる。これは、図11の(d)でスクリーン印刷したフィンガー電極14のパターン(銀と鉛ガラスのフリットを混入したもの)を焼成し、図11の(e)に示すように、窒化シリコン膜13にファイヤースルーさせてその中に銀(導電性)を形成したフィンガー電極14を形成する。
 S7は、バスバー電極(電極1)をスクリーン印刷する。これは、図12の(f)に示すように、図11の(e)のフィンガー電極14を形成した上に、形成するバスバー電極15のパターンをスクリーン印刷する。印刷材料は、例えばフリットとしてNTAガス(100%)のものを用いる。
 S8は、バスバー電極を焼成する。これは、図12の(f)でスクリーン印刷したバスバー電極15のパターン(NTAガラス(100%)のフリット)を焼成(焼成時間は長くても1分以内、1~3秒以上で焼成)し、図12の(g)に示すように、バスバー電極15が最上層に形成され、かつ本発明の特徴である、フィンガー電極14が当該最上層に形成されたバスバー電極15の上面と同じ高さの部分、あるいは突き抜けた部分が形成される。(これは膜厚コントロールで行う。)
 尚、S5及びS7の印刷を行い、両者を同時に焼成してもよい。
 S9は、裏面電極(電極2)を形成する。これは、図12の(h)に示すように、シリコン基板11の下側(裏面)に例えばアルミ電極を形成する。
 S10は、リード線をハンダ形成する。これは、図12の(i)に示すように、図12の(g)のバスバー電極を電気的に接続するリード線をハンダで形成、例えば超音波半田付けで形成して電気的に接続すると、高電子濃度領域12、フィンガー電極14、バスバー電極16、リード線17の経路1(従来の経路1)と、高電子濃度領域12、フィンガー電極14、リード線17の経路2(本発明で追加した経路2)との両経路で、高電子濃度領域12中の電子(電流)をリード線17を介して外部に取り出すことが可能となり、高電子濃度領域12とリード線17との間の抵抗値を非常に小さくしてロスを低減して太陽電池の効率を向上させることができる。すなわち、本発明で追加した経路2は、フィンガー電極14の一端が高電子濃度領域12の中にあり、他端がNTAガラス100%のバスバー電極15の上面と同じ高さの部分あるいは突き抜けた部分があり、この部分にリード線が直接接合(超音波半田付けで直接接合)されるので、高電子濃度領域12、フィンガー電極14、リード線17の経路2が形成される。なお、経路1は、従来の経路である。
 以上の工程により、シリコン基板に太陽電池を作成することが可能となる。
 図13は、本発明の詳細説明図(バスバー電極の焼成)を示す。
 図13の(a)はバスバー電極を銀100%、NTA0%(重量比)で焼成した例を模式的に示し、図13の(b)はバスバー電極を銀50%、NTA50%(重量比)で焼成した例を模式的に示し、図13の(c)はバスバー電極をNTA100%(重量比)で焼成した例を模式的に示す。焼成時間は、長くても1分以内で、1~3秒以上とした。
 図13の(a)と図13の(b)と図13の(c)とで図示のようにほぼ同構造となるように形成した太陽電池の試作実験では下記のような実験結果が得られた。
                         太陽電池の変換効率
 図13の(a)のAg 100%、NTA   0% 平均約17.0%
 図13の(b)のAg  50%、NTA  50% 平均約17.0%
 図13の(c)のAg   0%、NTA 100% 平均約17.2%
 試作実験結果は、バスバー電極のパターンを印刷する材料として、図13の(a)と、図13の(b)とでは太陽電池を作成したときの変換効率が平均約17.0%でほぼ同じ結果が得られ、更に、図13の(c)では変換効率が平均約17.2%が得られた。これら図13の(a)から(c)のいずれもほぼ同じ変換効率の範囲内か、あるいは図13の(c)のNTA 100%が若干高い変換効率であることが初期実験結果から判明する。尚、NTAガラスは、バナジウム、バリウム、鉄から構成され、特に鉄は内部的に強く結合して当該内部に留まっており、他の材料と混合してもその結合性は極めて小さい性質を有すること(特許第5333976号等参照)、更に既述した本発明の高電子濃度領域とリード線との間の経路(経路1と、経路2とが並列)の改善によると推測される。
 図14および図15は、本発明の説明図(バスバー電極)を示す。
 図14の(a)および図14の(b)はNTA 50%、Ag50%のものであって、図14の(a)は全体平面図を示し、図14の(b)は拡大図を示す。図15の(c)はNTA 100% Ag 0%のものであって、図15の(c)は拡大図を示す。
 図14の(a)および図14の(b)において、バスバー電極15は、図14の(a)の全体平面図に示すように、長いバー状の電極であって、これを光学顕微鏡で拡大すると図14の(b)に示すような構造が観察された。
 図14の(b)において、バスバー電極15は、従来のAgと鉛ガラスのフリットで焼成した場合にはAgが均一に分散していたが、本発明のAgとNTAガラスのフリットで焼成(長くても1分以内、1~3秒以上の焼成)した場合には当該図14の(b)に示すように、バスバー電極15の中央部分にAgが集まって形成されることが判明した。そのため、発明の効果の欄で説明したように、AgにNTAガラスを混入して短時間焼成(長くても1分、1~3秒以上の焼成)するとAgが中央部分に集まって導電性が向上し(従来はAgは均一に分散していた場合に比較して導電性が向上し)、かつNTAガラス自身も導電性を有することなどの総合的な作用によりAgの割合を減らしてNTAガラスを増やしても、太陽電池として製造した場合の変換効率は既述したように約16.9%と実験ではほぼ同じ結果が得られた。
 尚、焼成温度は、500℃から900℃であるが、太陽電池として作成した場合に最適な温度を実験により決定することが必要である。低すぎても高すぎても図14の(b)のような構造が得られず、実験で決定することが必要である。
 図15の(c)において、バスバー電極15は、図示の中央部分の横方向の幅の広いバー状の電極であって、本発明に係るNTA 100%の拡大写真の1例を示す。
 この図15の(c)のバスバー電極15は、縦方向に幅の狭いフィンガー電極14が当該バスバー電極15を突き抜けて上側に少し突出した部分があり、かつ当該突出した部分の周囲が元のフィンガー電極14の幅よりも太くなっていることが判明する。そして、図示のバスバー電極15の上に、当該バスバー電極15の幅と同じ、若干小さい、あるいは若干大きい幅で、後述する図16で詳細に説明するように、超音波半田付けすることにより、既述した経路1(光電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路1)および経路2(光電子濃度領域12、フィンガー電極14、リード線17の経路2)の両経路で高濃度電子領域と当該リード線とを導電接続し、電子(電流)の損失を低減して外部に効率的に取り出すことが可能となり、図14の(a)、(b)とほぼ同じ変換効率、あるいは若干高い変換効率(約17.2%)が得られた。
 尚、焼成温度は、図14の(a)、(b)とほぼ同じ500℃から900℃であるが、太陽電池として作成した場合に最適な温度を実験により決定することが必要である。低すぎても高すぎても図15の(c)のような構造が得られず、実験で決定することが必要である。
 図16は、本発明の説明図(超音波半田付け)を示す。これは、既述した図15の(c)のNTA 100% の場合のものである(尚、同様に、図14の(a)、(b)に適用してもよい)。
 図16の(a)は、フィンガー電極14を焼成した後の状態を示す。
 図16の(b)は、図16の(a)のバスバー電極15の上に、点線で示す、ここでは、若干大きめ(あるいは同じ、あるいは小さくてもよい)のリード線17を半田付けする従来の例を示す。この従来の例では、通常の半田付けで行うので、フィンガー電極14が突出した部分(Ag)とリード線17とは半田接合するが、フィンガー電極14の突出していない部分(NTA100%の部分)とリード線17とは十分に半田接合しなく、機械的強度が十分ではない。一方、後述する図16の(c)の超音波半田付けした場合には、半田接合し、機械的強度が大幅に向上した。
 図16の(c)は、図16の(a)のバスバー電極15(図15の(c)のバスバー電極15)の上に、点線で示す、若干大きめのリード線17を超音波半田付けする本発明の例を示す。この本発明の例では、超音波半田付けで行うので、フィンガー電極14が突出した部分(Ag)とリード線17とは半田接合し、更に、フィンガー電極14のない部分(NTA100%の部分)とリード線17とも半田接合し、機械的強度が大幅に向上すると共に、既述した経路2(高電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路2)の導電性が向上した。
 図17は、本発明の測定例(効率)を示す。本図17は、既述したバスバー電極15について、NTAを100%から70%に変化させたときの良好な測定例であって、図17の横軸はサンプルの番号を示し、縦軸は効率(%)を示す。サンプルは、
  ・NTA 100% Ag  0%
  ・NTA  90% Ag 10%
  ・NTA  80% Ag 20%
  ・NTA  70% Ag 30%
とし、これらで太陽電池を作成し、各測定結果(効率)は図示の通りであった。尚、初期実験であるので、測定結果には図示のようにかなりのバラツキがあるが、16.9から17.5の範囲内に収まっており、NTA 100%でバスバー電極15を作成(つまり、Agなしで作成)して太陽電池を製造した場合でも、NTA 70%(あるいは、更に80%、90%)に比して同程度ないし若干高い効率が得られ、NTA 100%でも使えることが判明した(発明者らはこの事実を発見した)。
本発明の1実施例構成図である。 本発明の1実施例構成図(その2)である。 本発明の説明図(半田材料等)である。 本発明の動作説明フローチャートである。 本発明の動作説明フローチャート(続き)である。 本発明の超音波半田付け装置の特性例である。 本発明の超音波半田付け例(NTA100%)である。 本発明の超音波半田付け例(NTA50%)である。 本発明の1実施例構造図(工程の完成図:断面図)である。 本発明の動作説明フローチャートである。 本発明の詳細工程説明図(その1)である。 本発明の詳細工程説明図(その2)である。 本発明の詳細説明図(バスバー電極の焼成)である。 本発明の説明図(バスバー電極)である。 本発明の説明図(バスバー電極)である。 本発明の説明図(超音波半田付け)である。 本発明の測定例(効率)である。 従来技術の説明図である。
1:シリコン基板
2:裏面電極
3:窒化膜
4:フィンガー電極
5:バスバー電極
6:半田
7:リボン
71:銅
72:プリ半田
21:予備加熱台
22:超音波半田コテ
23:超音波発信機及びヒーター
24:半田コテ先部分
11:シリコン基板
12:高電子濃度領域(拡散ドーピング)
13:絶縁膜(窒化シリコン膜)
14:電子取出口(フィンガー電極)
15:バスバー電極
16:裏面電極
17:リード線

Claims (10)

  1.  基板上の任意部分にペーストを塗布して焼結した部分に半田付けする半田付け方法において、
     Ag、Cu、Pbを含まないペーストを任意部分に塗布して焼結した基板あるいは該基板上のペースト部分を、半田の溶融温度よりも低い第1の所定温度に予備加熱する予備加熱ステップと、
     前記予備加熱ステップで予備加熱した第1の所定温度の前記基板のペースト部分に、当接する半田コテ先部分に超音波を印加した状態で供給した半田が溶融する、超音波を印加しないときに半田が溶融する温度よりも低い、第2の所定温度に調整した状態で、前記半田コテ先部分を前記ペースト部分に当接してあるいは当接しながら移動して当該ペースト部分に半田付けする超音波半田付けステップと
    を有することを特徴とする超音波半田付け方法。
  2.  前記第1の所定温度を、室温以上から前記第2の所定温度の範囲内の温度としたことを特徴とする請求項1記載の超音波半田付け方法。
  3.  前記第2の所定温度を、超音波を印加しないときに半田が溶融する温度よりも10から40℃低い範囲内の温度としたことを特徴とする請求項1ないし請求項2のいずれかに記載の超音波半田付け方法。
  4.  前記Ag,Cu、Pbを含まないペーストとして、Ag,Cu、Pbを含まなくかつバナジン酸塩ガラスを100wt%、あるいはCu,Pbを含まなくかつAgを0以上から50wt%を含み残りをバナジン酸塩ガラス、としたNTAペーストとしたことを特徴とする請求項1から請求項3のいずれかに記載の超音波半田付け方法。
  5.  前記半田は、少なくともSn、Zn、Clを含むことを特徴とする請求項1から請求項4のいずれかに記載の超音波半田付け方法。
  6.  前記超音波半田付けステップで半田付けする際に、ペースト部分に当該ペースト中の有機溶剤が残留しないように予め乾燥あるいは加熱乾燥したことを特徴とする請求項1から請求項5のいずれかに記載の超音波半田付け方法。
  7.  前記基板上に塗布するペースト部分が、可及的に滑らかになるようにして焼結したことを特徴とする請求項1から請求項6のいずれかに記載の超音波半田付け方法。
  8.  前記超音波は、20KHzから150KHzの周波数としたことを特徴とする請求項1から請求項7のいずれかに記載の超音波半田付け方法。
  9.  前記基板上のペーストを塗布する部分を、太陽電池の電極の部分としたことを特徴とする請求項1から請求項8のいずれかに記載の超音波半田付け方法。
  10.  基板上の任意部分にペーストを塗布して焼結した部分に半田付けする半田付け装置において、
     Ag、Cu、Pbを含まないペーストを任意部分に塗布して焼結した基板あるいは該基板上のペースト部分を、半田の溶融温度よりも低い第1の所定温度に予備加熱する予備加熱手段と、
     前記予備加熱手段で予備加熱した第1の所定温度の前記基板のペースト部分に、当接する半田コテ先部分に超音波を印加した状態で供給した半田が溶融する、超音波を印加しないときに半田が溶融する温度よりも低い、第2の所定温度に調整した状態で、前記半田コ
    テ先部分を前記ペースト部分に当接してあるいは当接しながら移動して当該ペースト部分に半田付けする超音波半田付け手段と
    を備えたことを特徴とする超音波半田付け装置。
PCT/JP2016/079948 2015-10-25 2016-10-07 超音波半田付け方法および超音波半田付け装置 WO2017073299A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015209440A JP6696665B2 (ja) 2015-10-25 2015-10-25 超音波半田付け方法および超音波半田付け装置
JP2015-209440 2015-10-25

Publications (1)

Publication Number Publication Date
WO2017073299A1 true WO2017073299A1 (ja) 2017-05-04

Family

ID=58614773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079948 WO2017073299A1 (ja) 2015-10-25 2016-10-07 超音波半田付け方法および超音波半田付け装置

Country Status (5)

Country Link
JP (1) JP6696665B2 (ja)
KR (2) KR20170048135A (ja)
CN (1) CN106607644B (ja)
TW (1) TWI630049B (ja)
WO (1) WO2017073299A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108672867B (zh) * 2018-05-28 2021-03-02 东莞市新玛博创超声波科技有限公司 铜基材料的无助焊剂脉冲超声低温钎焊方法
TWI699899B (zh) * 2018-06-26 2020-07-21 日商亞特比目有限公司 太陽能電池及太陽能電池的製造方法
CN108838507A (zh) * 2018-06-28 2018-11-20 北京铂阳顶荣光伏科技有限公司 一种汇流条的焊接方法
JPWO2020129410A1 (ja) * 2018-12-18 2021-10-14 アートビーム有限会社 超音波半田付け装置および超音波半田付け方法
CN116646409A (zh) 2023-05-23 2023-08-25 晶科能源股份有限公司 太阳能电池、光伏组件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510714A (ja) * 2008-11-28 2012-05-10 ショット・ゾラール・アーゲー 層を備えた半導体デバイス上に金属コンタクトを作るための方法
JP2014524153A (ja) * 2011-07-28 2014-09-18 ハンファ キュー セルズ ゲーエムベーハー 太陽電池およびそれを作製する方法
JP5725180B2 (ja) * 2011-07-25 2015-05-27 日立化成株式会社 素子および太陽電池
JP2015165487A (ja) * 2014-01-09 2015-09-17 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー 低銀導電性ペースト

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205423B2 (ja) * 1993-03-25 2001-09-04 黒田電気株式会社 はんだ付方法及び装置
JP3232963B2 (ja) * 1994-10-11 2001-11-26 株式会社日立製作所 有機基板接続用鉛レスはんだ及びそれを用いた実装品
DE19842276A1 (de) * 1998-09-16 2000-03-30 Bosch Gmbh Robert Paste zum Verschweißen von Keramiken mit Metallen und Verfahren zur Herstellung einer Schweißverbindung
US6464324B1 (en) * 2000-01-31 2002-10-15 Picojet, Inc. Microfluid device and ultrasonic bonding process
JPWO2004039526A1 (ja) * 2002-11-01 2006-02-23 有限会社 テクノラボ ハンダ付け方法と装置
US20060091184A1 (en) * 2004-10-28 2006-05-04 Art Bayot Method of mitigating voids during solder reflow
JP2009072827A (ja) * 2007-08-24 2009-04-09 Hitachi Metals Ltd はんだ層形成部材の製造方法
JP2010142848A (ja) * 2008-12-19 2010-07-01 Ijr:Kk ろう付け方法及びろう付け装置
JP2011005545A (ja) * 2009-05-25 2011-01-13 Hitachi Metals Ltd はんだ合金およびこれを用いたはんだ接合体
US20110180139A1 (en) * 2010-01-25 2011-07-28 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
CN102751359A (zh) * 2012-07-05 2012-10-24 合肥海润光伏科技有限公司 一种晶体硅太阳能电池片串及其制作方法
JP5958701B2 (ja) * 2012-07-17 2016-08-02 デクセリアルズ株式会社 配線材、太陽電池モジュール及び太陽電池モジュールの製造方法
CN103107242B (zh) * 2013-01-29 2015-12-02 上海交通大学 在玻璃基板上制备钒酸铋太阳能电池的方法
CN103418876A (zh) * 2013-08-21 2013-12-04 宁波海融电器有限公司 一种超声波钎焊装置
CN103681922A (zh) * 2013-11-26 2014-03-26 青岛宇泰新能源科技有限公司 一种太阳能电池片的连接方法
CN203875447U (zh) * 2014-05-27 2014-10-15 张曹 超声波低温钎焊装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510714A (ja) * 2008-11-28 2012-05-10 ショット・ゾラール・アーゲー 層を備えた半導体デバイス上に金属コンタクトを作るための方法
JP5725180B2 (ja) * 2011-07-25 2015-05-27 日立化成株式会社 素子および太陽電池
JP2014524153A (ja) * 2011-07-28 2014-09-18 ハンファ キュー セルズ ゲーエムベーハー 太陽電池およびそれを作製する方法
JP2015165487A (ja) * 2014-01-09 2015-09-17 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー 低銀導電性ペースト

Also Published As

Publication number Publication date
KR20170048135A (ko) 2017-05-08
CN106607644B (zh) 2020-02-14
TW201714691A (zh) 2017-05-01
KR102002796B1 (ko) 2019-07-23
TWI630049B (zh) 2018-07-21
JP6696665B2 (ja) 2020-05-20
KR20190000346A (ko) 2019-01-02
JP2017080753A (ja) 2017-05-18
CN106607644A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2017073299A1 (ja) 超音波半田付け方法および超音波半田付け装置
JP5116363B2 (ja) 導体線の製造方法
KR20200138136A (ko) 태양전지 및 태양전지의 제조방법
CN107408587A (zh) 太阳能电池装置及其制造方法
CN104103335A (zh) 太阳能电池背电极用金属丝及制备方法、太阳能电池片及制备方法和太阳能电池组件
WO2018012248A1 (ja) 太陽電池および太陽電池の製造方法
JP2021010299A (ja) 太陽電池および太陽電池の製造方法
JP5433729B2 (ja) 太陽電池の製造方法
KR102299228B1 (ko) 태양전지 및 태양전지의 제조방법
JP7058390B2 (ja) 太陽電池および太陽電池の製造方法
KR102314772B1 (ko) 태양전지 및 태양전지의 제조방법
Adachi et al. Development of innovative application films for silicon solar cells using a copper–phosphorus alloy by an atmospheric sintering process
KR101791480B1 (ko) 태양전지 및 태양전지의 제조방법
JP6659074B2 (ja) Ntaペースト
TWI720664B (zh) 太陽電池及太陽電池的製造方法
JP2020141141A (ja) 太陽電池および太陽電池の製造方法
WO2020004290A1 (ja) 太陽電池および太陽電池の製造方法
JP2009194013A (ja) 焼成電極の形成方法とそれを利用する光電変換素子の製造方法。
CN110379868A (zh) 太阳电池及太阳电池的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859536

Country of ref document: EP

Kind code of ref document: A1