WO2016139826A1 - 流動性改善剤及びそれを含むポリアミド樹脂組成物 - Google Patents
流動性改善剤及びそれを含むポリアミド樹脂組成物 Download PDFInfo
- Publication number
- WO2016139826A1 WO2016139826A1 PCT/JP2015/071524 JP2015071524W WO2016139826A1 WO 2016139826 A1 WO2016139826 A1 WO 2016139826A1 JP 2015071524 W JP2015071524 W JP 2015071524W WO 2016139826 A1 WO2016139826 A1 WO 2016139826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- fluorene
- bis
- polyamide resin
- compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/06—Ethers; Acetals; Ketals; Ortho-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
Definitions
- the present invention relates to a fluidity improver (or melt viscosity reducing agent) useful for improving the melt fluidity of a polyamide resin, a thermoplastic resin composition containing the melt fluidity improver, and the fluidity of a polyamide resin. On how to improve.
- a fluidity improver or melt viscosity reducing agent
- a resin having an excellent function such as a high refractive index and high heat resistance is produced. Yes.
- a fluorene compound is added to a resin to improve the refractive index, heat resistance, mechanical strength, and the like.
- JP 2005-162785 A (Patent Document 1) describes that a fluorene compound is added to a thermoplastic resin to increase the refractive index of the thermoplastic resin.
- Patent Document 2 describes that a fluorene compound is added to a transparent resin to reduce the birefringence of the transparent resin.
- Patent Document 3 discloses 9,9-bis (4-hydroxy-3-methylphenyl) fluorene with respect to poly-L-lactic acid having an ⁇ crystal (melting point: 168 ° C.).
- Patent Document 4 JP 2014-218659 A (Patent Document 4) describes that a fluorene compound is added to a thermoplastic resin such as a polyethylene terephthalate resin to improve the strength of the resin.
- a fluorene compound is added to a thermoplastic resin such as a polyethylene terephthalate resin to improve the strength of the resin.
- This document exemplifies a number of resins such as polyamide resin as the thermoplastic resin.
- polyamide resins have high melt viscosity due to strong hydrogen bonds between molecules, and low flowability and moldability.
- a polyamide resin has a relatively high melting point, and it is necessary to heat at a temperature higher than the melting point for molding.
- the melt viscosity of the polyamide resin is highly temperature-dependent and the decomposition temperature is close to the melting point, strict temperature control is required. Therefore, it is conceivable that a plasticizer is added to alleviate intermolecular hydrogen bonding, the melt viscosity of the polyamide resin is lowered, and the moldability is improved.
- the addition of a plasticizer reduces the mechanical properties of the polyamide resin. For this reason, it is not possible to suppress a decrease in mechanical properties while improving moldability.
- an object of the present invention is to provide a fluidity improver capable of improving the melt fluidity (lowering the melt viscosity) of the polyamide resin and a polyamide resin composition containing the fluidity improver.
- Another object of the present invention is to provide a fluidity improver capable of improving the melt fluidity of a polyamide resin with a small amount of addition, and a polyamide resin composition containing the fluidity improver.
- Still another object of the present invention is to improve the melt fluidity of the polyamide resin, a fluidity improver that can improve the melt fluidity without impairing the properties of the polyamide resin, the polyamide resin composition containing the fluidity improver, and the polyamide resin. It is to provide a way to do.
- the present inventors have added a compound having a 9,9-bisarylfluorene skeleton to a polyamide resin and analyzed by a Fourier transform infrared spectrophotometer (FT-IR). Then, the absorption peak intensity in the vicinity of 3300 cm ⁇ 1 derived from the NH group decreases, the fluorene compound relaxes the hydrogen bond of the amide bond, and the melt viscosity of the polyamide resin greatly decreases due to such relaxation of the hydrogen bond. As a result, the present invention was completed.
- FT-IR Fourier transform infrared spectrophotometer
- the fluidity improving agent of the present invention is a fluidity improving agent (melting viscosity reducing agent) for improving the melt fluidity (or lowering the melt viscosity) of the polyamide resin, which is a 9,9-bisaryl.
- a compound having a fluorene skeleton is included.
- the compound having a 9,9-bisarylfluorene skeleton may be, for example, a compound represented by the following formula (1).
- ring Z is an aromatic hydrocarbon ring, R 1 and R 2 are substituents
- X is a group — [(OR 3 ) n —Y] (where Y is a hydroxyl group, mercapto group, glycidyl An oxy group or a (meth) acryloyloxy group, R 3 is an alkylene group, n is 0 or an integer of 1 or more) or an amino group, k is an integer of 0 to 4, m is an integer of 0 or more, and p is 1 The above integers are shown.
- the compound having a 9,9-bisarylfluorene skeleton may be a compound represented by the following formula (1A).
- each ring Z may be a benzene ring or a naphthalene ring
- each R 1 may be an alkyl group
- each k may be 0 to 1.
- Each R 2 may be an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkoxy group
- each m may be 0 to 2
- each R 3 is a C 2-4 alkylene group.
- Each n may be 0 to 20, and each p may be 1 to 3.
- Compounds having a 9,9-bisarylfluorene skeleton typically include 9,9-bis (hydroxyphenyl) fluorene, 9,9-bis (alkyl-hydroxyphenyl) fluorene, 9,9-bis (aryl- Hydroxyphenyl) fluorene, 9,9-bis (di or trihydroxyphenyl) fluorene, 9,9-bis (hydroxynaphthyl) fluorene, 9,9-bis (hydroxyalkoxyphenyl) fluorene, 9,9-bis (alkyl-) Hydroxyalkoxyphenyl) fluorene, 9,9-bis (aryl-hydroxyalkoxyphenyl) fluorene, 9,9-bis (hydroxyalkoxynaphthyl) fluorene, and alkylene oxide adducts of these compounds (eg, C 2-4 alkylene oxide) (Adjunct) It may be at least one selected.
- alkylene oxide adducts of these compounds eg
- the polyamide resin may be at least one selected from an aliphatic polyamide resin, an alicyclic polyamide resin, and an aromatic polyamide resin.
- the addition amount of the fluidity improver may be about 0.1 to 50 parts by weight with respect to 100 parts by weight of the polyamide resin.
- the fluidity improver (melt viscosity reducing agent) of the present invention reduces the melt viscosity of the polyamide resin and improves the melt fluidity without reducing the mechanical properties of the polyamide resin. Therefore, the present invention includes a thermoplastic resin composition containing a polyamide resin and the fluidity improver (melt viscosity reducing agent), and further a molded body formed from the resin composition.
- the present invention provides a method for adding (or mixing) the fluidity improver (melt viscosity reducing agent) to the polyamide thermoplastic resin to reduce the melt viscosity of the polyamide resin (method for improving melt fluidity). Including.
- 9,9-bis (hydroxyaryl) fluorenes and “9,9-bis (hydroxy (poly) alkoxyaryl) fluorenes” mean “9,9-bis (hydroxyaryl)”. As long as it has “) fluorene skeleton” or “9,9-bis (hydroxy (poly) alkoxyaryl) fluorene skeleton”, it also includes compounds having substituents on aryl groups and fluorene skeletons (specifically, positions 2 to 7 of fluorene) Use for meaning.
- 9,9-bis (hydroxy (poly) alkoxyaryl) fluorene means 9,9-bis (hydroxyalkoxyaryl) fluorene and 9,9-bis (hydroxypolyalkoxyaryl) fluorene. Used to mean both.
- the melt fluidity and moldability of the polyamide resin can be improved by adding a predetermined fluorene compound. Moreover, the melt fluidity of the polyamide resin can be improved with a small amount of addition, and even if the fluorene compound is a low molecular compound, the properties of the polyamide resin are not impaired. Therefore, the melt fluidity can be improved and the molded product can be molded efficiently without impairing the properties of the polyamide resin.
- FIG. 1 is a graph showing the results of a melt fluidity test of the resin compositions obtained in Comparative Example 1 and Examples 1 and 2.
- FIG. 2 is a graph showing the results of the melt fluidity test of the resin compositions obtained in Comparative Examples 2-4.
- FIG. 3 is a chart in which the absorption spectra of the resin compositions obtained in Comparative Example 1 and Example 1 using a Fourier transform infrared spectrophotometer are superimposed, the dotted line is the spectrum of Comparative Example 1, and the solid line is that of Example 1. The spectrum is shown.
- FIG. 4 is an enlarged view of the vicinity of the wave number of 3300 cm ⁇ 1 in the chart of FIG. FIG.
- FIG. 5 is a graph showing the results of the melt fluidity test (injection speed: 20 mm / second) of the resin compositions obtained in Examples 5 to 6 and Comparative Example 5.
- FIG. 6 is a graph showing the results of the melt fluidity test (injection speed: 50 mm / sec) of the resin compositions obtained in Examples 5 to 6 and Comparative Example 5.
- FIG. 7 is a graph showing the results of the melt fluidity test (injection speed: 80 mm / sec) of the resin compositions obtained in Examples 5 to 6 and Comparative Example 5.
- the fluidity improving agent of the present invention contains a compound having a 9,9-bisarylfluorene skeleton (hereinafter sometimes simply referred to as a fluorene compound).
- the fluorene compound is a compound having no reactive group or functional group [a compound in which p is 0 in the following formula (1), for example, 9,9-bisarylfluorene such as 9,9-bisphenylfluorene, etc. However, it usually has a reactive group or a functional group.
- reactive groups or functional groups include hydroxyl groups, mercapto groups, carboxyl groups, alkoxycarbonyl groups, amino groups, N-substituted amino groups, (meth) acryloyloxy groups, epoxy groups (eg, glycidyloxy groups), etc. Is mentioned.
- the fluorene compound may have these reactive groups singly or in combination of two or more.
- the reactive group or functional group may be directly bonded to 9,9-bisarylfluorene, and 9,9-bisaryl may be bonded via an appropriate linking group (for example, (poly) oxyalkylene group). It may be bonded to fluorene.
- an appropriate linking group for example, (poly) oxyalkylene group.
- fluorene Specific examples of the fluorene compound include a compound represented by the following formula (1).
- ring Z is an aromatic hydrocarbon ring, R 1 and R 2 are substituents
- X is a group — [(OR 3 ) n —Y] (where Y is a hydroxyl group, mercapto group, glycidyl An oxy group or a (meth) acryloyloxy group, R 3 is an alkylene group, n is 0 or an integer of 1 or more) or an amino group, k is an integer of 0 to 4, m is an integer of 0 or more, and p is 1 The above integers are shown.
- examples of the aromatic hydrocarbon ring represented by the ring Z include a benzene ring, a condensed polycyclic aromatic hydrocarbon ring [for example, a condensed bicyclic hydrocarbon (for example, indene, naphthalene, etc. Condensed bicyclic to tetracyclic hydrocarbons such as C 8-20 condensed bicyclic hydrocarbons, preferably C 10-16 condensed bicyclic hydrocarbons), condensed tricyclic hydrocarbons (eg anthracene, phenanthrene, etc.), etc.
- a condensed polycyclic aromatic hydrocarbon ring for example, a condensed bicyclic hydrocarbon (for example, indene, naphthalene, etc. Condensed bicyclic to tetracyclic hydrocarbons such as C 8-20 condensed bicyclic hydrocarbons, preferably C 10-16 condensed bicyclic hydrocarbons), condensed tricyclic hydrocarbons (eg anthracene, phen
- a ring assembly hydrocarbon ring (bi or ter C 6-10 arene ring such as biphenyl ring, terphenyl ring, binaphthyl ring).
- the two rings Z may be different rings, and may usually be the same ring.
- Preferred rings Z include a benzene ring, a naphthalene ring, and a biphenyl ring, and may be a benzene ring.
- examples of the group R 1 include a cyano group, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, etc.), a hydrocarbon group [eg, an alkyl group, an aryl group (C 6 such as a phenyl group). -10 aryl group), etc.], acyl group (e.g., methyl group, an ethylcarbonyl group, and a non-reactive substituent such as an alkyl group), such as pentyl group, in particular, if that is a an alkyl group Many.
- a cyano group e.g., a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, etc.)
- a hydrocarbon group eg, an alkyl group, an aryl group (C 6 such as a phenyl group). -10 aryl group), etc.
- acyl group e.g.
- alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, such as C 1-8 alkyl group (e.g., C 1-6 alkyl groups, especially methyl groups, such as t- butyl group C 1- 4 alkyl group) and the like.
- k is plural (2 to 4)
- the types of the plural groups R 1 may be the same or different from each other.
- the types of the groups R 1 substituted on different benzene rings may be the same or different from each other.
- the bonding position (substitution position) of the group R 1 is not particularly limited, and examples thereof include the 2nd, 7th, 2nd and 7th positions of the fluorene ring.
- the preferred substitution number k is 0 to 1, in particular 0.
- the two substitution numbers k may be the same or different.
- the substituent R 2 substituted on the ring Z is usually a non-reactive substituent, for example, an alkyl group (eg, a C 1-8 alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Preferably a C 1-6 alkyl group), a cycloalkyl group (eg, a C 5-10 cycloalkyl group such as a cyclohexyl group), an aryl group (eg, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, etc.) an alkoxy group (e.g., methoxy group,; C 6-10 aryl group and the like), and an aralkyl group (e.g., benzyl group, a hydrocarbon group, such as such as C 6-10 aryl -C 1-4 alkyl group such as
- a group —OR such as an alkylthio group (eg, a C 1-8 alkylthio group such as a methylthio group), etc. (wherein R is as defined above); an acyl group (eg, a C 1-6 acyl group such as an acetyl group)
- An alkoxycarbonyl group eg, a C 1-4 alkoxy-carbonyl group such as a methoxycarbonyl group
- a halogen atom eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
- a nitro group a cyano group
- Examples thereof include a substituted amino group (for example, a di-C 1-4 alkylamino group such as a dimethylamino group).
- Preferred group R 2 includes a hydrocarbon group [eg, alkyl group (eg, C 1-6 alkyl group etc.), cycloalkyl group (eg, C 5-8 cycloalkyl group etc.), aryl group (eg, C 6 -10 aryl group, etc.), aralkyl groups (eg C 6-8 aryl-C 1-2 alkyl group etc.)], alkoxy groups (C 1-4 alkoxy group etc.) and the like.
- Further preferred groups R 2 include an alkyl group [for example, a C 1-4 alkyl group (particularly a methyl group)], an aryl group [for example, a C 6-10 aryl group (particularly a phenyl group)] and the like.
- the group R 2 is an aryl group, a group R 2, together with the ring Z, it may form the ring assembly hydrocarbon ring.
- the types of the groups R 2 may be the same or different from each other.
- the type of the group R 2 may be the same or different.
- the number of substitutions m can be selected according to the type of the ring Z, and may be, for example, 0 to 8, preferably 0 to 4 (eg, 0 to 3), and more preferably 0 to 2. In different rings Z, the number of substitutions m may be the same or different from each other.
- examples of the alkylene group represented by the group R 3 include C 2-6 alkylene such as ethylene group, propylene group, trimethylene group, 1,2-butanediyl group, and tetramethylene group.
- a group preferably a C 2-4 alkylene group, and more preferably a C 2-3 alkylene group.
- the type of alkylene group may be composed of different alkylene groups, and may be generally composed of the same alkylene group.
- the type of the group R 3 may be the same or different.
- the number (number of added moles) n of the oxyalkylene group (OR 3 ) may be 0 or 1 or more (for example, about 0 to 20), for example, 0 to 15 (for example, 1 to 12), preferably 0. It may be about 10 to 10 (for example, 1 to 8), more preferably about 0 to 7 (for example, 1 to 6), and particularly about 0 to 5 (for example, 0 to 2).
- the number of substitutions n may be the same or different in two or more groups — [(OR 3 ) n —Y] substituted on the same ring Z.
- the number of substitutions n may be the same or different in the group — [(OR 3 ) n —Y] substituted on different rings Z.
- the preferred group X is the group — [(OR 3 ) n —Y], and the group Y is preferably a hydroxyl group.
- the compound whose group Y is a hydroxyl group, and the alkylene oxide adduct of these compounds are represented by following formula (1A).
- substitution number p of the group X may be 1 or more (for example, 1 to 6), for example, 1 to 4, preferably 1 to 3, more preferably 1 to 2, particularly 1.
- substitution number p may be the same or different in each ring Z, and is usually the same in many cases.
- the substitution position of the group X is not particularly limited, and it may be substituted at an appropriate substitution position on the ring Z.
- the group X may be substituted at the 2-6 position of the phenyl group, and may preferably be substituted at the 4 position.
- the group X is a hydrocarbon ring different from the hydrocarbon ring bonded to the 9-position of fluorene in the condensed polycyclic hydrocarbon ring (for example, naphthalene In many cases, the ring is substituted at least on the 5-position, 6-position, etc. of the ring.
- Specific fluorene compounds include 9,9-bis (hydroxyaryl) fluorenes [eg, 9,9-bis (hydroxyphenyl) fluorenes, 9,9-bis (hydroxynaphthyl) fluorenes], 9,9 -Bis (hydroxy (poly) alkoxyaryl) fluorenes [eg, 9,9-bis (hydroxy (poly) alkoxyphenyl) fluorenes, 9,9-bis (hydroxy (poly) alkoxynaphthyl) fluorenes], etc .;
- a compound in which a hydroxyl group is substituted with a mercapto group, a glycidyloxy group, or a (meth) acryloyloxy group is included.
- the 9,9-bis (hydroxyphenyl) fluorenes include, for example, 9,9-bis (hydroxyphenyl) fluorene [for example, 9,9-bis (4-hydroxyphenyl) fluorene], 9,9-bis (alkyl 9,9-bis such as 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene (Mono or di C 1-4 alkyl-hydroxyphenyl) fluorene], 9,9-bis (aryl-hydroxyphenyl) fluorene [eg, 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene, etc.
- the 9,9-bis (hydroxynaphthyl) fluorenes correspond to the 9,9-bis (hydroxyphenyl) fluorenes, and are compounds in which the phenyl group is substituted with a naphthyl group, for example, 9,9-bis ( Hydroxynaphthyl) fluorene [eg, 9,9-bis (6-hydroxy-2-naphthyl) fluorene, 9,9-bis (5-hydroxy-1-naphthyl) fluorene] and the like.
- 9,9-bis ( Hydroxynaphthyl) fluorene eg, 9,9-bis (6-hydroxy-2-naphthyl) fluorene, 9,9-bis (5-hydroxy-1-naphthyl) fluorene
- 9,9-bis (hydroxy (poly) alkoxyphenyl) fluorenes include, for example, 9,9-bis (hydroxyalkoxyphenyl) fluorene ⁇ eg, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-hydroxypropoxy) phenyl] fluorene such as 9,9-bis (hydroxy C 2-4 alkoxyphenyl) fluorene ⁇ , 9,9-bis (alkyl - hydroxy alkoxyphenyl) Fluorene ⁇ eg, 9,9-bis [4- (2-hydroxyethoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-hydroxypropoxy) -3-methylphenyl] fluorene, Such as 9-bis [4- (2-hydroxyethoxy) -3,5-dimethylphenyl] fluorene 9,9-bis (mono or di C 1-4 alkyl-hydroxy C 2-4 alkoxy
- 9,9-bis (hydroxy (poly) alkoxynaphthyl) fluorenes compounds corresponding to the 9,9-bis (hydroxy (poly) alkoxyphenyl) fluorenes, wherein a phenyl group is substituted with a naphthyl group
- 9,9-bis (hydroxyalkoxynaphthyl) fluorene ⁇ eg, 9,9-bis [6- (2-hydroxyethoxy) -2-naphthyl] fluorene, 9,9-bis [6- (2-hydroxypropoxy) 9,9-bis (hydroxyalkoxynaphthyl) fluorenes such as 9,9-bis (hydroxyC 2-4 alkoxynaphthyl) fluorene ⁇ such as) -2-naphthyl] fluorene.
- Fluorene compounds may be used alone or in combination of two or more.
- the fluorene compound may be a commercially available product or may be synthesized by a conventional method.
- the additive (fluorene compound) of the present invention reduces the melt viscosity of the polyamide resin and improves (or improves) the melt fluidity. That is, when a fluorene compound is added to or mixed with a polyamide resin, the absorption intensity in the vicinity of 3300 cm ⁇ 1 derived from the NH group of the amide bond decreases in the FT-IR spectrum, and the intermolecular hydrogen bond due to the amide bond is relaxed. Or it can be reduced. Therefore, even if the addition amount of the fluorene compound is small, the melt viscosity of the polyamide resin can be lowered, the melt fluidity can be improved, and the moldability can be greatly improved.
- the polyamide resin (PA) may be formed of an aliphatic, alicyclic and / or aromatic monomer.
- aliphatic monomers examples include aliphatic diamines [eg, tetramethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, nonamethylene diamine, 2-methyloctamethylene diamine, trimethylhexamethylene diamine, decamethylene diamine, dodeca diamine.
- aliphatic diamines eg, tetramethylene diamine, hexamethylene diamine, 2-methylpentamethylene diamine, nonamethylene diamine, 2-methyloctamethylene diamine, trimethylhexamethylene diamine, decamethylene diamine, dodeca diamine.
- Linear or branched C 2-20 alkylene diamine such as methylene diamine (preferably linear or branched C 4-12 alkylene diamine, more preferably linear or branched C 6-9 alkylene diamine) ) Etc.]; aliphatic dicarboxylic acids [eg linear or branched C 2-18 alkanedicarboxylic acids such as adipic acid, sebacic acid, 1,10-decanedicarboxylic acid (preferably linear or branched) C 4-10 alkanedicarboxylic acid, more preferably Linear or branched C 4-8 alkanedicarboxylic acid)], etc.]; lactam [eg, 4- to 12-membered (preferably 7-12-membered) lactam such as ⁇ -caprolactam, ⁇ -laurolactam, etc.] Aliphatic aminocarboxylic acids [eg amino C 2-20 alkyl carboxylic acids such as 6-aminohexanoic acid, 11-aminounde
- the alicyclic monomer only needs to have an alicyclic skeleton (cycloalkane skeleton), for example, an alicyclic diamine [for example, diaminocycloalkane, di (aminoalkyl) cycloalkane (for example, diaminomethylcycloalkane, etc.) Etc.]; alicyclic dicarboxylic acids (for example, cycloalkane dicarboxylic acids); alicyclic aminocarboxylic acids (for example, aminocycloalkane carboxylic acids) and the like.
- an alicyclic diamine for example, diaminocycloalkane, di (aminoalkyl) cycloalkane (for example, diaminomethylcycloalkane, etc.) Etc.
- alicyclic dicarboxylic acids for example, cycloalkane dicarboxylic acids
- alicyclic aminocarboxylic acids for example, aminocycloalkane carb
- the aromatic monomer may have an aromatic ring skeleton, for example, an aromatic (or araliphatic) diamine [for example, diaminoarene such as m-phenylenediamine and p-phenylenediamine, m-xylylenediamine, etc. Di (aminoalkyl) arene etc.]; aromatic (or araliphatic) dicarboxylic acids [eg dicarboxyarenes such as terephthalic acid, isophthalic acid etc.]; aromatic aminocarboxylic acids (eg amino aminobenzoic acid etc. An aryl carboxylic acid etc.) can be illustrated.
- aromatic (or araliphatic) diamine for example, diaminoarene such as m-phenylenediamine and p-phenylenediamine, m-xylylenediamine, etc. Di (aminoalkyl) arene etc.]
- the polyamide resin can be obtained by polymerizing these monomers alone or in combination of two or more.
- the polyamide resin may be a homopolyamide formed of a single monomer (a single diamine and dicarboxylic acid, or a single lactam and / or aminocarboxylic acid), and a copolyamide obtained by copolymerizing a plurality of monomers. It may be.
- Representative polyamide resins include, for example, aliphatic polyamide resins, alicyclic polyamide resins, aromatic polyamide resins and the like.
- the aliphatic polyamide resin may be formed of an aliphatic monomer unit.
- a homopolyamide of an aliphatic diamine and an aliphatic dicarboxylic acid for example, polyamide 46, polyamide 66, polyamide 610, polyamide 612, etc.
- lactam And / or homopolyamides of aliphatic aminocarboxylic acids corresponding to lactams eg polyamide 6, polyamide 11, polyamide 12 etc.
- copolymers of a plurality of aliphatic monomers eg copolyamide 6/66, copolyamide 6) / 11, copolyamide 66/12, etc.
- the alicyclic polyamide resin only needs to have at least an alicyclic monomer unit, and may be formed by combining an aliphatic monomer and an alicyclic monomer.
- a homopolyamide for example, a polymer of diaminomethylcyclohexane and adipic acid
- alicyclic diamine and aliphatic dicarboxylic acid can be exemplified.
- the aromatic polyamide resin only needs to have at least an aromatic monomer unit, for example, a semi-aromatic polyamide resin formed from an aromatic monomer and an aliphatic (or alicyclic) monomer, and an aromatic monomer. And wholly aromatic polyamide resins that do not contain aliphatic and alicyclic monomer units.
- the semi-aromatic polyamide resin examples include a homopolyamide of an aromatic (or araliphatic) diamine and an aliphatic dicarboxylic acid (for example, polyamide MXD6 (polymer of m-xylylenediamine and adipic acid)); Homopolyamides of aliphatic diamines and aromatic dicarboxylic acids [eg, polyamide 6T (polymer of hexamethylenediamine and terephthalic acid), polyamide 9T (polymer of nonamethylenediamine and terephthalic acid), polyamide 10T (decamethylene) Polymer of diamine and terephthalic acid), polyamide 12T (polymer of dodecamethylenediamine and terephthalic acid), polyamide M5T (polymer of 2-methylpentamethylenediamine and terephthalic acid), polyamide M8T (2-methylocta Between methylenediamine and terephthalic acid.
- polyamide 6I polymer of hexamethylenediamine and isophthalic acid
- copolymer containing at least aliphatic diamine and aromatic dicarboxylic acid for example, Copolyamide 6T / 66, copolyamide 6T / M5T, copolyamide 6T / 6I, copolyamide 6T / 6I / 6, copolyamide 6T / 6I / 66, etc.
- wholly aromatic polyamide resins include homopolyamides of aromatic diamines and aromatic dicarboxylic acids (for example, polymers of m-phenylenediamine and isophthalic acid, polymers of p-phenylenediamine and terephthalic acid, etc.) Etc.
- the polyamide resin may be a polyamide having an N-alkoxymethyl group, a polymerized fatty acid-based polyamide resin having a polymerization component of dimer acid which is a dimer of unsaturated higher fatty acid. These polyamide resins can be used alone or in combination of two or more.
- the polyamide resin may be crystalline or amorphous, or may be a transparent polyamide resin (amorphous transparent polyamide resin).
- a crystalline resin is usually used in many cases.
- the present invention is applied to a polyamide resin having low melt fluidity (high melt viscosity) and poor moldability.
- the melting point of such a polyamide resin may be about 200 to 300 ° C. (preferably 210 to 280 ° C., more preferably 220 to 260 ° C.), or 200 to 400 ° C. (preferably 220 to 350 ° C., more preferably 230 to 330 ° C.).
- the fluidity improver of the present invention is effective in melt viscosity. Can be reduced to improve moldability.
- the number average molecular weight of the polyamide resin is about 0.7 ⁇ 10 4 to 100 ⁇ 10 4 (preferably 1 ⁇ 10 4 to 75 ⁇ 10 4 , more preferably 2 ⁇ 10 4 to 50 ⁇ 10 4 ). It may be about 3 ⁇ 10 4 to 100 ⁇ 10 4 (for example, 5 ⁇ 10 4 to 50 ⁇ 10 4 ).
- the molecular weight can be measured using a conventional method such as gel permeation chromatography (GPC), and may be evaluated as a molecular weight in terms of polystyrene.
- GPC gel permeation chromatography
- polyamide resins include aliphatic polyamide resins such as polyamide 46, polyamide 6 and polyamide 66, alicyclic polyamide resins such as a polymer of diaminomethylcyclohexane and adipic acid, and polyamide 6T. And aromatic polyamide resins such as polyamide 9T and polyamide 6I.
- These polyamide resins may contain an aliphatic monomer having an alkylene group having a repeating unit having at least 4 to 12 carbon atoms (preferably about 6 to 11, more preferably 6 to 9, particularly at least 6).
- the aromatic monomer contained in the aromatic polyamide resin may have, for example, a phenylene group, preferably a p- or m-phenylene group, more preferably a p-phenylene group.
- the fluorene compound has a high thermal decomposition temperature.
- the thermal decomposition temperature of 9,9-bis (4-hydroxyphenyl) fluorene (BPF) The decrease in temperature by 5 wt% is about 301 ° C., and the thermal decomposition temperature of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (BPEF), which is a typical fluorene compound, is 5 wt%.
- Decrease temperature is about 342 ° C.
- the fluorene compound can improve the melt fluidity of the polyamide resin without being decomposed even at a high temperature.
- olefin resin ethylene resin, propylene resin, cyclic olefin resin, etc.], halogen-containing vinyl resin (polyvinyl chloride, fluorine resin, etc.), acrylic resin (polymethyl methacrylate (PMMA), etc.)
- Copolymers such as styrene resins (polystyrene (PS); styrene-methyl methacrylate copolymer (MS resin), styrene-acrylonitrile copolymer (AS resin)); high-impact polystyrene (HIPS), acrylonitrile-butadiene -Styrene copolymers (ABS resin), methyl methacrylate-butadiene-styrene copolymers (MBS resin) and other rubber graft styrene copolymers, etc., aromatic polyester resins (polyethylene terephthalate (PET), polybutylene terephthalate) (PBT), ter
- the polyamide resin (PA) may form a polymer alloy with the thermoplastic resin.
- the polymer alloy include an alloy with the styrene resin (for example, ABS resin, MBS resin, etc.); an alloy with an aromatic polyester resin (for example, PET, PBT, PEN, PAR, etc.); an alloy with PPE; Examples include alloys with PC (for example, aromatic polycarbonate resin); alloys with PPS; alloys with LCP; alloys with PSF (including PES) and PEK (including PEEK). These polymer alloys may contain a compatibilizing agent.
- the use ratio of the fluidity improver can be selected, for example, from a range of about 0.1 to 100 parts by weight (for example, 1 to 75 parts by weight) with respect to 100 parts by weight of the polyamide resin.
- 1 to 50 parts by weight eg 1 to 40 parts by weight
- 2 to 30 parts by weight eg 5 to 25 parts by weight
- 1 to 20 parts by weight eg 2.5 May be about 15 to 15 parts by weight
- 3 to 10 parts by weight eg, 3 to 5 parts by weight.
- the present invention also includes such a resin composition, that is, a thermoplastic resin composition containing a polyamide resin and a fluidity improver.
- the resin composition may contain various additives [for example, fillers or reinforcing agents, colorants (dye pigments), conductive agents, flame retardants, plasticizers, lubricants, stabilizers (antioxidants, ultraviolet rays). Absorbers, heat stabilizers, etc.), mold release agents, antistatic agents, dispersants, flow regulators, leveling agents, antifoaming agents, surface modifiers, low stress agents, carbon materials, etc.] Good. These additives may be used alone or in combination of two or more.
- the polyamide resin composition is prepared by mixing a polyamide resin, a fluorene compound (fluidity improver) and other components (additives, etc.) as required by a conventional method such as dry mixing or melt kneading.
- the resin composition may be in the form of pellets.
- the present invention also includes a molded body formed of the resin composition.
- the shape of the molded body is not particularly limited and can be selected according to the application.
- a one-dimensional structure such as a linear body
- a two-dimensional structure such as a film, sheet, or plate
- a three-dimensional structure such as a structure (block shape, tubular shape, rod shape, tube shape, hollow shape, or the like) may be used.
- the molded body can be produced by using a conventional molding method such as an injection molding method, an injection compression molding method, an extrusion molding method, a transfer molding method, a blow molding method, a pressure molding method, or a casting molding method. .
- Test specimens obtained in Examples and Comparative Examples were subjected to predetermined test conditions (test speed) using a tensile tester (“5566 type” manufactured by Instron) in accordance with JIS K7161-1994 and JIS K7162-1994.
- Tensile strength, elongation, and tensile modulus were measured at 50 mm / min (the tensile modulus was measured at 1 mm / min), the distance between marked lines was 50 mm, the test temperature was 23 ⁇ 1 ° C., and the humidity was 50 ⁇ 5% RH.
- N 5 and computed the average value of the obtained measured value.
- Example 1 90 parts by weight of polyamide 66 (“Amilan CM3001-N” manufactured by Toray Industries, Inc.) and fluorene compound 1 (9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, manufactured by Osaka Gas Chemical Co., Ltd.
- BPEF BPEF
- melt-kneading was performed in the same manner as described above to prepare a pellet-shaped resin composition for measuring melt viscosity characteristics.
- Example 2 to 4 A flat plate test piece was prepared by injection molding in the same manner as in Example 1 except that the following fluorene compound was used in place of the fluorene compound 1, and a pellet-shaped resin composition was prepared.
- Example 2 Fluorene Compound 2 (9,9-bis (4-hydroxy-3-methylphenyl) fluorene, “BCF” manufactured by Osaka Gas Chemical Co., Ltd.)
- Example 3 Fluorene Compound 3 (9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene, “BOPPEF” manufactured by Osaka Gas Chemical Co., Ltd.)
- Example 4 Fluorene Compound 4 (Adduct obtained by adding 9 mol of ethylene oxide to 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, “BPEF-9EO” manufactured by Osaka Gas Chemical Co., Ltd.).
- Example 2 70 parts by weight of maleic acid-modified polypropylene PP (“Admer QF551” manufactured by Mitsui Chemicals, Inc.) was melt-kneaded in the same manner as in Example 1 and carbon black (“MA-100” manufactured by Mitsubishi Chemical Corporation) 30 Weight parts were charged by side feed of a biaxial kneading extruder and melt-kneaded, and injection molded in the same manner as in Example 1 to prepare a flat plate test piece and a pellet-shaped resin composition.
- Admer QF551 manufactured by Mitsui Chemicals, Inc.
- Comparative Example 4 A flat plate test piece was prepared by injection molding in the same manner as in Comparative Example 3 except that the fluorene compound 2 was used in place of the fluorene compound 1, and a pellet-shaped resin composition was prepared.
- FIG. 1 shows the results of the melt fluidity test of Comparative Example 1 and Examples 1 and 2
- FIG. 2 shows the results of the melt fluidity test of Comparative Examples 2 and 4.
- the modified propylene PP showed similar melt flow characteristics regardless of the addition of the fluorene compound.
- the melt viscosity was greatly reduced by the addition of the fluorene compound 1 or 2.
- Example 1 the resin composition of Example 1 was analyzed by FT-IR and the spectrum of Comparative Example 1 (dotted line) and the spectrum of Example 1 (solid line) were superimposed. In comparison with Comparative Example 1, it was found that the absorption intensity in the vicinity of 3300 cm ⁇ 1 due to the NH group of the amide bond was small. From this, it is considered that by adding the fluorene compound, the hydrogen bond of the polyamide resin is relaxed, the melt viscosity is lowered, and the melt fluidity is improved. In addition, as shown in Table 2, even if a fluorene compound is added, the mechanical properties are not improved so much.
- Example 5 100 parts by weight of polyamide 6T (“SOLDEL AT-1002” manufactured by SOLVAY) and 3 parts by weight of fluorene compound 1 were dry blended, and then a feeder (“KS60” manufactured by K-Tron, a gravimetric metering single-axis feeder. ), And kneaded at 320 ° C. using a twin-screw kneading extruder (“HK25D” manufactured by Parker Corporation, co-rotating twin-screw extruder), injection molded, and JIS K7139 A1 type (multipurpose) The flat plate test piece prescribed
- KS60 manufactured by K-Tron, a gravimetric metering single-axis feeder.
- HK25D twin-screw kneading extruder
- injection molded and JIS K7139 A1 type (multipurpose)
- melt-kneading was performed in the same manner as described above to prepare a pellet-shaped resin composition for measuring melt viscosity characteristics.
- Example 6 A flat plate test piece was prepared by injection molding in the same manner as in Example 5 except that the fluorene compound 1 was changed to 5 parts by weight, and a pellet-shaped resin composition was prepared.
- Table 3 shows the compositions of Examples 5 to 6 and Comparative Example 5, results of mechanical properties, and part of the results of melt flowability (spiral flow), and FIGS. 5 to 7 show Examples 5 to 6 and Comparative Examples.
- the result of the melt fluidity test (spiral flow) of Example 5 is shown.
- the fluidity improver (melt viscosity reducing agent) of the present invention can improve the melt fluidity of the polyamide resin without deteriorating the mechanical properties of the polyamide resin, and can greatly improve the moldability including the molding cycle. Therefore, the resin composition of the present invention is molded into various molded products to which polyamide resin is applied in the form of unreinforced polyamide, reinforced polyamide reinforced with reinforcing agent (glass fiber, carbon fiber, etc.), polymer alloy, and the like. It can be used as an engineering plastic.
- polyamide resin's excellent properties such as wear resistance, lubricity, heat resistance, and chemical resistance
- fibers, films, daily necessities, automobile-related parts, electrical / electronic-related parts, machinery-related can be used for a wide range of applications such as parts, construction-related parts, sports / leisure-related parts, such as ropes, tire cords, fishing nets, filter cloths, clothing core materials, packaging films, radiator tanks, manifolds, piping tubes and pipes , Hoses, air cleaners, clutch parts, connectors (including electrical circuit connectors, etc.), switches, gears, pulleys, cams, bushes, rollers, bearings, housings, casings, wire coverings, doors, rail parts, casters, shoes, shuttlecocks Can be used for a wide range of applications such as reels.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】ポリアミド樹脂の溶融流動性を改善できる流動性改善剤、及びそれを含むポリアミド樹脂組成物を提供する。 【解決手段】ポリアミド樹脂に、下記式(1)で表される9,9-ビスアリールフルオレン骨格を有する化合物を樹脂に添加し、溶融粘度を低下させ流動性を改善する。 [式中、環Zは芳香族炭化水素環、R1およびR2は置換基、Xは、基-[(OR3)n-Y](式中、Yは、ヒドロキシル基、メルカプト基、グリシジルオキシ基又は(メタ)アクリロイルオキシ基、R3はアルキレン基、nは0又は1以上の整数を示す。)又はアミノ基、kは0~4の整数、mは0以上の整数、pは1以上の整数を示す。]
Description
本発明は、ポリアミド樹脂の溶融流動性を改善するのに有用な流動性改善剤(又は溶融粘度低下剤)、及びこの溶融流動性改善剤を含む熱可塑性樹脂組成物、並びにポリアミド樹脂の流動性を改善する方法に関する。
9,9-ビスフェニルフルオレン骨格を有する化合物(単に、フルオレン化合物という場合がある)を単量体として重合反応に用い、高屈折率、高耐熱性などに優れた機能を有する樹脂が製造されている。また、フルオレン化合物を、樹脂に添加し、屈折率、耐熱性や機械的強度などを向上させることも行われている。
例えば、特開2005-162785号公報(特許文献1)には、フルオレン化合物を熱可塑性樹脂に添加し、熱可塑性樹脂の屈折率を高めることが記載されている。また、特開2011-8017号公報(特許文献2)には、フルオレン化合物を透明樹脂に添加し、透明樹脂の複屈折を低下することが記載されている。さらに、特開2011-21083号公報(特許文献3)には、α晶(融点168℃)のポリL-乳酸に対して、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンを1~5重量%添加して溶融混練し、β晶(融点163℃)が形成されたポリL-乳酸を調製し、Tgが56.5℃から、60.9~62.1℃に変化したことが記載されている。
特開2014-218659号公報(特許文献4)には、ポリエチレンテレフタレート樹脂などの熱可塑性樹脂にフルオレン化合物を添加し、樹脂の強度を向上させることが記載されている。この文献には、熱可塑性樹脂として、ポリアミド樹脂などの多数の樹脂が例示されている。
一方、ポリアミド樹脂は、分子間の強い水素結合により溶融粘度が高く、流動性及び成形性も低い。例えば、ポリアミド樹脂は融点が比較的高く、成形には融点よりも高い温度で加熱する必要がある。また、ポリアミド樹脂の溶融粘度は温度依存性が高く、しかも分解温度が融点に近いため、厳密な温度管理が要求される。そのため、分子間水素結合を緩和するため可塑剤を添加し、ポリアミド樹脂の溶融粘度を低下させ、成形性を向上させることが考えられる。しかし、可塑剤の添加により、ポリアミド樹脂の機械的特性が低下する。そのため、成形性を向上しつつ機械的特性の低下を抑制することができない。
従って、本発明の目的は、ポリアミド樹脂の溶融流動性を向上(溶融粘度を低下)できる流動性改善剤、この流動性改善剤を含むポリアミド樹脂組成物を提供することにある。
本発明の他の目的は、少量の添加でポリアミド樹脂の溶融流動性を向上できる流動性改善剤、この流動性改善剤を含むポリアミド樹脂組成物を提供することにある。
本発明のさらに他の目的は、ポリアミド樹脂の特性を損なうことなく、溶融流動性を向上できる流動性改善剤、この流動性改善剤を含むポリアミド樹脂組成物、並びにポリアミド樹脂の溶融流動性を改善する方法を提供することにある。
本発明者らは、前記課題を解決するため鋭意検討した結果、9,9-ビスアリールフルオレン骨格を有する化合物を、ポリアミド樹脂に添加し、フーリエ変換赤外分光光度計(FT-IR)で分析すると、NH基に由来する3300cm-1付近の吸収ピーク強度が低下し、フルオレン化合物がアミド結合の水素結合を緩和すること、このような水素結合の緩和により前記ポリアミド樹脂の溶融粘度が大きく低下することを見いだし、本発明を完成した。
すなわち、本発明の流動性改善剤は、ポリアミド樹脂の溶融流動性を改善する(又は溶融粘度を低下させる)ための流動性改善剤(溶融粘度低下剤)であって、9,9-ビスアリールフルオレン骨格を有する化合物を含んでいる。
9,9-ビスアリールフルオレン骨格を有する化合物は、例えば、下記式(1)で表される化合物であってもよい。
[式中、環Zは芳香族炭化水素環、R1およびR2は置換基、Xは、基-[(OR3)n-Y](式中、Yは、ヒドロキシル基、メルカプト基、グリシジルオキシ基又は(メタ)アクリロイルオキシ基、R3はアルキレン基、nは0又は1以上の整数を示す。)又はアミノ基、kは0~4の整数、mは0以上の整数、pは1以上の整数を示す。]
9,9-ビスアリールフルオレン骨格を有する化合物は、下記式(1A)で表される化合物であってもよい。
9,9-ビスアリールフルオレン骨格を有する化合物は、下記式(1A)で表される化合物であってもよい。
(式中、Z、R1、R2、k、m、R3、n、pは前記式(1)と同じ。)
上記式(1)又は(1A)において、各環Zは、ベンゼン環又はナフタレン環であってもよく、各R1はアルキル基であってもよく、各kは0~1であってもよく、各R2はアルキル基、シクロアルキル基、アリール基、アラルキル基又はアルコキシ基であってもよく、各mは0~2であってもよく、各R3はC2-4アルキレン基であってもよく、各nは0~20であってもよく、各pは1~3であってもよい。
上記式(1)又は(1A)において、各環Zは、ベンゼン環又はナフタレン環であってもよく、各R1はアルキル基であってもよく、各kは0~1であってもよく、各R2はアルキル基、シクロアルキル基、アリール基、アラルキル基又はアルコキシ基であってもよく、各mは0~2であってもよく、各R3はC2-4アルキレン基であってもよく、各nは0~20であってもよく、各pは1~3であってもよい。
9,9-ビスアリールフルオレン骨格を有する化合物は、代表的には、9,9-ビス(ヒドロキシフェニル)フルオレン、9,9-ビス(アルキル-ヒドロキシフェニル)フルオレン、9,9-ビス(アリール-ヒドロキシフェニル)フルオレン、9,9-ビス(ジ又はトリヒドロキシフェニル)フルオレン、9,9-ビス(ヒドロキシナフチル)フルオレン、9,9-ビス(ヒドロキシアルコキシフェニル)フルオレン、9,9-ビス(アルキル-ヒドロキシアルコキシフェニル)フルオレン、9,9-ビス(アリール-ヒドロキシアルコキシフェニル)フルオレン、9,9-ビス(ヒドロキシアルコキシナフチル)フルオレン、及びこれらの化合物のアルキレンオキサイド付加体(例えば、C2-4アルキレンオキサイド付加体)から選択された少なくとも1種であってもよい。
前記ポリアミド樹脂は、脂肪族ポリアミド樹脂、脂環族ポリアミド樹脂、および芳香族ポリアミド樹脂から選択された少なくとも1種であってもよい。
流動性改善剤の添加量は、ポリアミド樹脂100重量部に対して0.1~50重量部程度であってもよい。
本発明の流動性改善剤(溶融粘度低下剤)は、ポリアミド樹脂の機械的特性を低下することなく、ポリアミド樹脂の溶融粘度を低下させるとともに、溶融流動性を改善する。そのため、本発明は、ポリアミド樹脂と前記流動性改善剤(溶融粘度低下剤)とを含む熱可塑性樹脂組成物、さらには、前記樹脂組成物で形成された成形体も包含する。
さらに、本発明は、前記ポリアミド熱可塑性樹脂に、前記流動性改善剤(溶融粘度低下剤)を添加(又は混合)し、ポリアミド樹脂の溶融粘度を低下させる方法(溶融流動性を改善する方法)も含む。
なお、本明細書において、「9,9-ビス(ヒドロキシアリール)フルオレン類」および「9,9-ビス(ヒドロキシ(ポリ)アルコキシアリール)フルオレン類」とは、「9,9-ビス(ヒドロキシアリール)フルオレン骨格」や「9,9-ビス(ヒドロキシ(ポリ)アルコキシアリール)フルオレン骨格」を有する限り、アリール基やフルオレン骨格(詳細にはフルオレンの2~7位)に置換基を有する化合物も含む意味に用いる。また、本明細書において、「9,9-ビス(ヒドロキシ(ポリ)アルコキシアリール)フルオレン」とは、9,9-ビス(ヒドロキシアルコキシアリール)フルオレンおよび9,9-ビス(ヒドロキシポリアルコキシアリール)フルオレンの双方を含む意味に用いる。
本発明では、所定のフルオレン化合物を添加することにより、ポリアミド樹脂の溶融流動性及び成形性を改善できる。しかも、少量の添加でポリアミド樹脂の溶融流動性を向上でき、かつフルオレン化合物が低分子化合物であっても、前記ポリアミド樹脂の特性を損なうことがない。そのため、ポリアミド樹脂の特性を損なうことなく、溶融流動性を向上でき、成形品を効率よく成形できる。
本発明の流動性改善剤は、9,9-ビスアリールフルオレン骨格を有する化合物(以下、単にフルオレン化合物ということがある)を含んでいる。
[フルオレン化合物]
フルオレン化合物は、反応性基又は官能基を有していない化合物[後述の式(1)においてpが0である化合物、例えば、9,9-ビスフェニルフルオレンなどの9,9-ビスアリールフルオレンなど]であってもよいが、通常、反応性基又は官能基を有している。
フルオレン化合物は、反応性基又は官能基を有していない化合物[後述の式(1)においてpが0である化合物、例えば、9,9-ビスフェニルフルオレンなどの9,9-ビスアリールフルオレンなど]であってもよいが、通常、反応性基又は官能基を有している。
反応性基又は官能基としては、例えば、ヒドロキシル基、メルカプト基、カルボキシル基、アルコキシカルボニル基、アミノ基、N-置換アミノ基、(メタ)アクリロイルオキシ基、エポキシ基(例えば、グリシジルオキシ基)などが挙げられる。フルオレン化合物は、これらの反応性基を、単独で又は2種以上組み合わせて有していてもよい。
反応性基又は官能基は、9,9-ビスアリールフルオレンに直接的に結合していてもよく、適当な連結基(例えば、(ポリ)オキシアルキレン基など)を介して9,9-ビスアリールフルオレンに結合していてもよい。具体的なフルオレン化合物としては、例えば、下記式(1)で表される化合物などが挙げられる。
[式中、環Zは芳香族炭化水素環、R1およびR2は置換基、Xは、基-[(OR3)n-Y](式中、Yは、ヒドロキシル基、メルカプト基、グリシジルオキシ基又は(メタ)アクリロイルオキシ基、R3はアルキレン基、nは0又は1以上の整数を示す。)又はアミノ基、kは0~4の整数、mは0以上の整数、pは1以上の整数を示す。]
上記式(1)において、環Zで表される芳香族炭化水素環としては、ベンゼン環、縮合多環式芳香族炭化水素環[例えば、縮合二環式炭化水素(例えば、インデン、ナフタレンなどのC8-20縮合二環式炭化水素、好ましくはC10-16縮合二環式炭化水素)、縮合三環式炭化水素(例えば、アントラセン、フェナントレンなど)などの縮合二乃至四環式炭化水素など]、環集合炭化水素環(ビフェニル環、テルフェニル環、ビナフチル環などのビ又はテルC6-10アレーン環)が挙げられる。なお、2つの環Zは異なる環であってもよく、通常、同一の環であってもよい。好ましい環Zには、ベンゼン環、ナフタレン環、ビフェニル環が含まれ、特に、ベンゼン環であってもよい。
上記式(1)において、環Zで表される芳香族炭化水素環としては、ベンゼン環、縮合多環式芳香族炭化水素環[例えば、縮合二環式炭化水素(例えば、インデン、ナフタレンなどのC8-20縮合二環式炭化水素、好ましくはC10-16縮合二環式炭化水素)、縮合三環式炭化水素(例えば、アントラセン、フェナントレンなど)などの縮合二乃至四環式炭化水素など]、環集合炭化水素環(ビフェニル環、テルフェニル環、ビナフチル環などのビ又はテルC6-10アレーン環)が挙げられる。なお、2つの環Zは異なる環であってもよく、通常、同一の環であってもよい。好ましい環Zには、ベンゼン環、ナフタレン環、ビフェニル環が含まれ、特に、ベンゼン環であってもよい。
前記式(1)において、基R1としては、例えば、シアノ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子など)、炭化水素基[例えば、アルキル基、アリール基(フェニル基などのC6-10アリール基)など]、アシル基(例えば、メチルカルボニル基、エチルカルボニル基、ペンチルカルボニル基などのアルキルカルボニル基)などの非反応性置換基が挙げられ、特に、アルキル基などである場合が多い。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基などのC1-8アルキル基(例えば、C1-6アルキル基、特にメチル基などのC1-4アルキル基)などが例示できる。なお、kが複数(2~4)である場合、複数の基R1の種類は互いに同一又は異なっていてもよい。また、異なるベンゼン環に置換した基R1の種類は互いに同一又は異なっていてもよい。また、基R1の結合位置(置換位置)は、特に限定されず、例えば、フルオレン環の2位、7位、2および7位などが挙げられる。好ましい置換数kは、0~1、特に0である。なお、2つの置換数kは、同一又は異なっていてもよい。
環Zに置換する置換基R2としては、通常、非反応性置換基、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などのC1-8アルキル基、好ましくはC1-6アルキル基など)、シクロアルキル基(例えば、シクロへキシル基などのC5-10シクロアルキル基など)、アリール基(例えば、フェニル基、トリル基、キシリル基、ナフチル基などのC6-10アリール基など)、アラルキル基(例えば、ベンジル基、フェネチル基などのC6-10アリール-C1-4アルキル基など)などの炭化水素基;アルコキシ基(例えば、メトキシ基、エトキシ基などのC1-8アルコキシ基など)、シクロアルコキシ基(例えば、シクロへキシルオキシ基などのC5-10シクロアルキルオキシ基など)、アリールオキシ基(例えば、フェノキシ基などのC6-10アリールオキシ基など)、アラルキルオキシ基(例えば、ベンジルオキシ基などのC6-10アリール-C1-4アルキルオキシ基など)などの基-OR[式中、Rは前記例示の炭化水素基を示す。];アルキルチオ基(例えば、メチルチオ基などのC1-8アルキルチオ基など)などの基-SR(式中、Rは前記と同じ);アシル基(例えば、アセチル基などのC1-6アシル基など);アルコキシカルボニル基(例えば、メトキシカルボニル基などのC1-4アルコキシ-カルボニル基など);ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など);ニトロ基;シアノ基;置換アミノ基(例えば、ジメチルアミノ基などのジC1-4アルキルアミノ基など)などが挙げられる。
好ましい基R2としては、炭化水素基[例えば、アルキル基(例えば、C1-6アルキル基など)、シクロアルキル基(例えば、C5-8シクロアルキル基など)、アリール基(例えば、C6-10アリール基など)、アラルキル基(例えば、C6-8アリール-C1-2アルキル基など)など]、アルコキシ基(C1-4アルコキシ基など)などが挙げられる。さらに好ましい基R2には、アルキル基[例えば、C1-4アルキル基(特にメチル基)など]、アリール基[例えば、C6-10アリール基(特にフェニル基)など]などが含まれる。なお、基R2がアリール基であるとき、基R2は、環Zとともに、前記環集合炭化水素環を形成してもよい。
なお、同一の環Zにおいて、mが複数(2以上)である場合、基R2の種類は互いに同一又は異なっていてもよい。また、2つの環Zにおいて、基R2の種類は同一又は異なっていてもよい。また、置換数mは、環Zの種類に応じて選択でき、例えば、0~8、好ましくは0~4(例えば、0~3)、さらに好ましくは0~2であってもよい。なお、異なる環Zにおいて、置換数mは、互いに同一又は異なっていてもよい。
前記式(1)の基Xにおいて、基R3で表されるアルキレン基としては、例えば、エチレン基、プロピレン基、トリメチレン基、1,2-ブタンジイル基、テトラメチレン基などのC2-6アルキレン基、好ましくはC2-4アルキレン基、さらに好ましくはC2-3アルキレン基が挙げられる。なお、nが2以上であるとき、アルキレン基の種類は異なるアルキレン基で構成されていてもよく、通常、同一のアルキレン基で構成されていてもよい。また、2つの芳香族炭化水素環Zにおいて、基R3の種類は同一又は異なっていてもよい。
オキシアルキレン基(OR3)の数(付加モル数)nは、0又は1以上(例えば、0~20程度)であればよく、例えば、0~15(例えば、1~12)、好ましくは0~10(例えば、1~8)、さらに好ましくは0~7(例えば、1~6)、特に0~5(例えば、0~2)程度であってもよい。なお、pが2以上であるとき、置換数nは、同一の環Zに置換する2以上の基-[(OR3)n-Y]において、同一又は異なっていてもよい。また、置換数nは、異なる環Zに置換した基-[(OR3)n-Y]において、同一又は異なっていてもよい。
好ましい基Xは、基-[(OR3)n-Y]であり、基Yはヒドロキシル基であるのが好ましい。なお、式(1)において、基Yがヒドロキシル基である化合物、及びこれらの化合物のアルキレンオキサイド付加体は、下記式(1A)で表される。
(式中、Z、R1、R2、k、m、R3、n、pは前記式(1)と同じ。)
基Xの置換数pは、1以上(例えば、1~6)であればよく、例えば、1~4、好ましくは1~3、さらに好ましくは1~2、特に1であってもよい。なお、置換数pは、それぞれの環Zにおいて、同一又は異なっていてもよく、通常、同一である場合が多い。
基Xの置換数pは、1以上(例えば、1~6)であればよく、例えば、1~4、好ましくは1~3、さらに好ましくは1~2、特に1であってもよい。なお、置換数pは、それぞれの環Zにおいて、同一又は異なっていてもよく、通常、同一である場合が多い。
また、前記式(1)[又は(1A)]において、基Xの置換位置は、特に限定されず、環Zの適当な置換位置に置換していればよい。例えば、基Xは、環Zがベンゼン環である場合、フェニル基の2~6位に置換していればよく、好ましくは4位に置換していてもよい。また、基Xは、環Zが縮合多環式炭化水素環である場合、縮合多環式炭化水素環において、フルオレンの9位に結合した炭化水素環とは別の炭化水素環(例えば、ナフタレン環の5位、6位など)に少なくとも置換している場合が多い。
具体的なフルオレン化合物には、9,9-ビス(ヒドロキシアリール)フルオレン類[例えば、9,9-ビス(ヒドロキシフェニル)フルオレン類、9,9-ビス(ヒドロキシナフチル)フルオレン類]、9,9-ビス(ヒドロキシ(ポリ)アルコキシアリール)フルオレン類[例えば、9,9-ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン類、9,9-ビス(ヒドロキシ(ポリ)アルコキシナフチル)フルオレン類]など;これらの化合物において、ヒドロキシル基が、メルカプト基、グリシジルオキシ基又は(メタ)アクリロイルオキシ基に置換した化合物などが含まれる。
9,9-ビス(ヒドロキシフェニル)フルオレン類には、例えば、9,9-ビス(ヒドロキシフェニル)フルオレン[例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン]、9,9-ビス(アルキル-ヒドロキシフェニル)フルオレン[例えば、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレンなどの9,9-ビス(モノ又はジC1-4アルキル-ヒドロキシフェニル)フルオレン]、9,9-ビス(アリール-ヒドロキシフェニル)フルオレン[例えば、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレンなどの9,9-ビス(モノ又はジC6-10アリール-ヒドロキシフェニル)フルオレン]、9,9-ビス(ポリヒドロキシフェニル)フルオレン[例えば、9,9-ビス(3,4-ジヒドロキシフェニル)フルオレン、9,9-ビス(2,4-ジヒドロキシフェニル)フルオレンなどの9,9-ビス(ジ又はトリヒドロキシフェニル)フルオレン]などが挙げられる。
また、9,9-ビス(ヒドロキシナフチル)フルオレン類としては、前記9,9-ビス(ヒドロキシフェニル)フルオレン類に対応し、フェニル基がナフチル基に置換した化合物、例えば、9,9-ビス(ヒドロキシナフチル)フルオレン[例えば、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン、9,9-ビス(5-ヒドロキシ-1-ナフチル)フルオレン]などが含まれる。
9,9-ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン類には、例えば、9,9-ビス(ヒドロキシアルコキシフェニル)フルオレン{例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)フェニル]フルオレンなどの9,9-ビス(ヒドロキシC2-4アルコキシフェニル)フルオレン}、9,9-ビス(アルキル-ヒドロキシアルコキシフェニル)フルオレン{例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレンなどの9,9-ビス(モノ又はジC1-4アルキル-ヒドロキシC2-4アルコキシフェニル)フルオレン}、9,9-ビス(アリール-ヒドロキシアルコキシフェニル)フルオレン{例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)-3-フェニルフェニル]フルオレンなどの9,9-ビス(モノ又はジC6-10アリール-ヒドロキシC2-4アルコキシフェニル)フルオレン}などの9,9-ビス(ヒドロキシアルコキシフェニル)フルオレン類(前記式(1A)において、nが1である化合物);9,9-ビス(ヒドロキシジアルコキシフェニル)フルオレン{例えば、9,9-ビス{4-[2-(2-ヒドロキシエトキシ)エトキシ]フェニル}フルオレンなどの9,9-ビス(ヒドロキシジC2-4アルコキシフェニル)フルオレン}などの9,9-ビス(ヒドロキシポリアルコキシフェニル)フルオレン類(前記式(1A)において、nが2以上である化合物)などが含まれる。
また、9,9-ビス(ヒドロキシ(ポリ)アルコキシナフチル)フルオレン類としては、前記9,9-ビス(ヒドロキシ(ポリ)アルコキシフェニル)フルオレン類に対応し、フェニル基がナフチル基に置換した化合物、例えば、9,9-ビス(ヒドロキシアルコキシナフチル)フルオレン{例えば、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン、9,9-ビス[6-(2-ヒドロキシプロポキシ)-2-ナフチル]フルオレンなどの9,9-ビス(ヒドロキシC2-4アルコキシナフチル)フルオレン}などの9,9-ビス(ヒドロキシアルコキシナフチル)フルオレン類などが含まれる。
これらのフルオレン化合物のうち、前記式(1A)において、基-[O-(R3O)n-H]を「A」で表すと、2つの置換数kがともに0である下記表に示す化合物が好ましい。
上記表1のnは平均値であってもよく、n=2~10である化合物において、通常、n=2~8、好ましくはn=2~7(例えば、2~5)程度であってもよい。
なお、ポリアミド樹脂の種類によっては、n=0である化合物又はnが1以上である化合物が、ポリアミド樹脂の溶融粘度を顕著に低減する場合がある。そのため、フルオレン化合物として、n=0である化合物、又はnが1以上である化合物を選択できる。n=0の化合物に比べて、nが1以上の化合物(例えば、n=1~10である化合物)は、樹脂組成物の機械的特性を損なうことなく、環Zがベンゼン環のみならず、ビフェニル環などの多環式芳香族炭化水素環であっても、ポリアミド樹脂の溶融粘度を有効に低減するようである。そのため、フルオレン化合物は、フェノール性ヒドロキシル基よりもアルコール性ヒドロキシル基を有するのが好ましいようである。
フルオレン化合物は、単独で又は2種以上組み合わせてもよい。なお、フルオレン化合物は、市販品を用いてもよく、慣用の方法により合成してもよい。
[流動性改善剤および樹脂組成物]
本発明の添加剤(フルオレン化合物)は、ポリアミド樹脂の溶融粘度を低下させ、溶融流動性を向上(又は改善)させる。すなわち、フルオレン化合物をポリアミド樹脂に添加又は混合すると、FT-IRスペクトルにおいて、アミド結合のNH基に由来する3300cm-1近傍の吸収強度が低下し、アミド結合に起因する分子間の水素結合を緩和又は低減できる。そのためか、前記フルオレン化合物の添加量が少量であってもポリアミド樹脂の溶融粘度を低下でき、溶融流動性を改善でき、成形性を大きく改善できる。
本発明の添加剤(フルオレン化合物)は、ポリアミド樹脂の溶融粘度を低下させ、溶融流動性を向上(又は改善)させる。すなわち、フルオレン化合物をポリアミド樹脂に添加又は混合すると、FT-IRスペクトルにおいて、アミド結合のNH基に由来する3300cm-1近傍の吸収強度が低下し、アミド結合に起因する分子間の水素結合を緩和又は低減できる。そのためか、前記フルオレン化合物の添加量が少量であってもポリアミド樹脂の溶融粘度を低下でき、溶融流動性を改善でき、成形性を大きく改善できる。
前記ポリアミド樹脂(PA)は、脂肪族、脂環族及び/又は芳香族モノマーで形成してもよい。
脂肪族モノマーとしては、例えば、脂肪族ジアミン[例えば、テトラメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ノナメチレンジアミン、2-メチルオクタメチレンジアミン、トリメチルヘキサメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミンなどの直鎖状又は分岐鎖状C2-20アルキレンジアミン(好ましくは直鎖状又は分岐鎖状C4-12アルキレンジアミン、さらに好ましくは直鎖状又は分岐鎖状C6-9アルキレンジアミン)など];脂肪族ジカルボン酸[例えば、アジピン酸、セバシン酸、1,10-デカンジカルボン酸などの直鎖状又は分岐鎖状C2-18アルカンジカルボン酸(好ましくは直鎖状又は分岐鎖状C4-10アルカンジカルボン酸、さらに好ましくは直鎖状又は分岐鎖状C4-8アルカンジカルボン酸)など];ラクタム[例えば、ε-カプロラクタム、ω-ラウロラクタムなどの4~12員環(好ましくは7~12員環)のラクタムなど];脂肪族アミノカルボン酸[例えば、6-アミノヘキサン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノC2-20アルキルカルボン酸(好ましくはアミノC4-16アルキルカルボン酸、さらに好ましくはアミノC5-11アルキルカルボン酸)など]などが例示できる。
脂環族モノマーは、脂環骨格(シクロアルカン骨格)を有していればよく、例えば、脂環族ジアミン[例えば、ジアミノシクロアルカン、ジ(アミノアルキル)シクロアルカン(例えば、ジアミノメチルシクロアルカンなど)など];脂環族ジカルボン酸(例えば、シクロアルカンジカルボン酸など);脂環族アミノカルボン酸(例えば、アミノシクロアルカンカルボン酸など)などが例示できる。
芳香族モノマーは、芳香環骨格を有していればよく、例えば、芳香族(又は芳香脂肪族)ジアミン[例えば、m-フェニレンジアミン、p-フェニレンジアミンなどのジアミノアレーン、m-キシリレンジアミンなどのジ(アミノアルキル)アレーンなど];芳香族(又は芳香脂肪族)ジカルボン酸[例えば、テレフタル酸、イソフタル酸などのジカルボキシアレーンなど];芳香族アミノカルボン酸(例えば、アミノ安息香酸などのアミノアリールカルボン酸など)などが例示できる。
ポリアミド樹脂は、これらのモノマーを単独で又は2種以上組み合わせて重合することにより得ることができる。ポリアミド樹脂は、単一のモノマー(単一のジアミン及びジカルボン酸、あるいは単一のラクタム及び/又はアミノカルボン酸)で形成されたホモポリアミドであってもよく、複数のモノマーが共重合したコポリアミドであってもよい。代表的なポリアミド樹脂としては、例えば、脂肪族ポリアミド樹脂、脂環族ポリアミド樹脂、芳香族ポリアミド樹脂などが挙げられる。
脂肪族ポリアミド樹脂は、脂肪族モノマー単位で形成されていればよく、例えば、脂肪族ジアミンと脂肪族ジカルボン酸とのホモポリアミド(例えば、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612など);ラクタム及び/又はラクタムに対応する脂肪族アミノカルボン酸のホモポリアミド(例えば、ポリアミド6、ポリアミド11、ポリアミド12など);複数の脂肪族モノマーの共重合体(例えば、コポリアミド6/66、コポリアミド6/11、コポリアミド66/12など)などが例示できる。
脂環族ポリアミド樹脂は、少なくとも脂環族モノマー単位を有していればよく、脂肪族モノマーと脂環族モノマーとを組み合わせて形成されていてもよい。例えば、脂環族ジアミンと脂肪族ジカルボン酸とのホモポリアミド(例えば、ジアミノメチルシクロヘキサンとアジピン酸との重合体など)などが例示できる。
芳香族ポリアミド樹脂は、少なくとも芳香族モノマー単位を有していればよく、例えば、芳香族モノマー及び脂肪族(又は脂環族)モノマーから形成される半芳香族ポリアミド樹脂と、芳香族モノマーで形成され、脂肪族及び脂環族モノマー単位を含まない全芳香族ポリアミド樹脂とに分けられる。
半芳香族ポリアミド樹脂としては、例えば、芳香族(又は芳香脂肪族)ジアミンと脂肪族ジカルボン酸とのホモポリアミド(例えば、ポリアミドMXD6(m-キシリレンジアミンとアジピン酸との重合体)など);脂肪族ジアミンと芳香族ジカルボン酸とのホモポリアミド[例えば、ポリアミド6T(ヘキサメチレンジアミンとテレフタル酸との重合体)、ポリアミド9T(ノナメチレンジアミンとテレフタル酸との重合体)、ポリアミド10T(デカメチレンジアミンとテレフタル酸との重合体)、ポリアミド12T(ドデカメチレンジアミンとテレフタル酸との重合体)、ポリアミドM5T(2-メチルペンタメチレンジアミンとテレフタル酸との重合体)、ポリアミドM8T(2-メチルオクタメチレンジアミンとテレフタル酸との重合体)、ポリアミド6I(ヘキサメチレンジアミンとイソフタル酸との重合体)、トリメチルヘキサメチレンジアミンとテレフタル酸との重合体など];少なくとも脂肪族ジアミン及び芳香族ジカルボン酸を含む共重合体(例えば、コポリアミド6T/66、コポリアミド6T/M5T、コポリアミド6T/6I、コポリアミド6T/6I/6、コポリアミド6T/6I/66など)などが例示できる。
全芳香族ポリアミド樹脂としては、例えば、芳香族ジアミンと芳香族ジカルボン酸とのホモポリアミド(例えば、m-フェニレンジアミンとイソフタル酸との重合体、p-フェニレンジアミンとテレフタル酸との重合体など)などが挙げられる。
ポリアミド樹脂は、N-アルコキシメチル基を有するポリアミド、不飽和高級脂肪酸の二量体であるダイマー酸を重合成分とする重合脂肪酸系ポリアミド樹脂でなどあってもよい。これらのポリアミド樹脂は単独で又は二種以上組合せて使用できる。
ポリアミド樹脂は、結晶性又は非晶性であってもよく、透明性ポリアミド樹脂(非晶性透明ポリアミド樹脂)であってもよい。ポリアミド樹脂としては、成形品の機械的特性の観点からは、通常、結晶性樹脂を用いる場合が多い。
特に、ポリアミド樹脂の溶融粘度が溶融温度に大きく依存し、かつ分解温度が融点に近いため、本発明は、溶融流動性が小さく(溶融粘度が高く)、成形性の劣るポリアミド樹脂に適用するのが有利である。このようなポリアミド樹脂の融点は200~300℃(好ましくは210~280℃、さらに好ましくは220~260℃)程度であってもよく、200~400℃(好ましくは220~350℃、さらに好ましくは230~330℃)程度であってもよい。特に、ポリアミド樹脂の中でも、例えば、半芳香族ポリアミド樹脂などの比較的融点が高く、溶融流動性が小さい傾向にあるポリアミド樹脂であっても、本発明の流動性改善剤は、有効に溶融粘度を低減して、成形性を向上できる。また、ポリアミド樹脂の数平均分子量は、0.7×104~100×104(好ましくは1×104~75×104、さらに好ましくは2×104~50×104)程度であってもよく、3×104~100×104(例えば、5×104~50×104)程度であってもよい。分子量は、例えば、ゲルパーミエーションクロマトグラフィ(GPC)などの慣用の方法を利用して測定でき、ポリスチレン換算の分子量として評価してもよい。
このようなポリアミド樹脂の代表的な例としては、例えば、ポリアミド46、ポリアミド6、ポリアミド66などの脂肪族ポリアミド樹脂、ジアミノメチルシクロヘキサンとアジピン酸との重合体などの脂環族ポリアミド樹脂、ポリアミド6T、ポリアミド9T、ポリアミド6Iなどの芳香族ポリアミド樹脂などが例示できる。これらのポリアミド樹脂は、繰り返し単位の炭素数が少なくとも4~12(好ましくは6~11程度、さらに好ましくは6~9、特に少なくとも6)のアルキレン基を有する脂肪族モノマーを含んでいてもよい。また、芳香族ポリアミド樹脂に含まれる芳香族モノマーは、例えば、フェニレン基、好ましくはp-又はm-フェニレン基、さらに好ましくはp-フェニレン基を有していてもよい。
なお、前記フルオレン化合物は、熱分解温度が高く、例えば、熱重量測定示差熱分析(TG-DTA)で測定したとき、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPF)の熱分解温度は、5重量%減少温度が301℃程度であり、代表的なフルオレン化合物である9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)の熱分解温度は、5重量%減少温度が342℃程度である。このようにn=0の化合物に比べて、n=1以上の整数の化合物の熱分解温度が高いようである。さらに、環Zが、環集合炭化水素環(ビフェニル環など)、縮合多環式芳香族炭化水素環(例えば、ナフタレン環など)である化合物の熱分解温度はさらに高くなる。そのため、通常、前記式(1)又は(1A)で表されるフルオレン化合物(例えば、n=0~2程度の化合物)の熱分解温度は、例えば、300~400℃(例えば、320~380℃)程度であってもよい。このように、フルオレン化合物は、高温でも分解することなく、ポリアミド樹脂の溶融流動性を改善できる。
さらに必要であれば、オレフィン樹脂[エチレン系樹脂、プロピレン系樹脂、環状オレフィン樹脂など]、ハロゲン含有ビニル系樹脂(ポリ塩化ビニル、フッ素樹脂など)、アクリル樹脂(ポリメタクリル酸メチル(PMMA)など)、スチレン系樹脂(ポリスチレン(PS);スチレン-メタクリル酸メチル共重合体(MS樹脂)、スチレン-アクリロニトリル共重合体(AS樹脂)などの共重合体;耐衝撃性ポリスチレン(HIPS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、メタクリル酸メチル-ブタジエン-スチレン共重合体(MBS樹脂)などのゴムグラフトスチレン系共重合体など)、芳香族ポリエステル樹脂(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリアリレート樹脂(PAR)など)、ポリカーボネート樹脂(PC)(例えば、芳香族ポリカーボネート樹脂など)、ポリアセタール樹脂(POM)、ポリフェニレンエーテル樹脂(PPE)、ポリフェニレンスルフィド樹脂(PPS)、ポリスルホン樹脂(PSF)(ポリエーテルスルホン(PES)などを含む)、ポリエーテルケトン樹脂(PEK)(ポリエーテルエーテルケトン樹脂(PEEK)を含む)、ポリイミド樹脂(ポリエーテルイミド(PEI)、液晶性ポリマー(LCP)を含む)、熱可塑性エラストマーなどの熱可塑性樹脂を併用してもよい。これらの熱可塑性樹脂は、単独で又は2種以上組み合わせてもよい。
なお、必要であれば、ポリアミド樹脂(PA)は、前記熱可塑性樹脂とのポリマーアロイを形成してもよい。ポリマーアロイとしては、例えば、前記スチレン系樹脂(例えば、ABS樹脂、MBS樹脂など)とのアロイ;芳香族ポリエステル樹脂(例えば、PET、PBT、PEN、PARなど)とのアロイ;PPEとのアロイ;PC(例えば、芳香族ポリカーボネート樹脂など)とのアロイ;PPSとのアロイ;LCPとのアロイ;PSF(PESなどを含む)、PEK(PEEKなどを含む)などとのアロイなどが例示できる。これらのポリマーアロイは相溶化剤を含んでいてもよい。
流動性改善剤(フルオレン化合物)の使用割合は、例えば、ポリアミド樹脂100重量部に対して、0.1~100重量部(例えば、1~75重量部)程度の範囲から選択でき、通常、0.1~50重量部(例えば、1~40重量部)、好ましくは2~30重量部(例えば、5~25重量部)程度であってもよく、1~20重量部(例えば、2.5~15重量部)、特に3~10重量部(例えば、3~5重量部)程度であってもよい。
本発明の流動性改善剤により、ポリアミド樹脂の強度(機械的強度)が向上又は改善することもあるが、溶融流動性、成形性を大きく改善できる。そのため、本発明は、このような樹脂組成物、すなわち、ポリアミド樹脂と流動性改善剤とを含む熱可塑性樹脂組成物も含む。
なお、樹脂組成物は、必要に応じて、各種添加剤[例えば、充填剤又は補強剤、着色剤(染顔料)、導電剤、難燃剤、可塑剤、滑剤、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、離型剤、帯電防止剤、分散剤、流動調整剤、レベリング剤、消泡剤、表面改質剤、低応力化剤、炭素材など]を含んでいてもよい。これらの添加剤は単独で又は2種以上組み合わせてもよい。
前記ポリアミド樹脂組成物は、ポリアミド樹脂とフルオレン化合物(流動性改善剤)と必要に応じて他の成分(添加剤など)とを、乾式混合、溶融混練などの慣用の方法で混合することにより調製でき、樹脂組成物はペレットなどの形態であってもよい。
本発明は、前記樹脂組成物で形成された成形体も含む。成形体の形状は、特に限定されず、用途に応じて選択でき、例えば、一次元的構造(線状体など)、二次元的構造(フィルム状、シート状、板状など)、三次元的構造(ブロック状、管状、棒状、チューブ状、中空状など)などであってもよい。
成形体は、例えば、射出成形法、射出圧縮成形法、押出成形法、トランスファー成形法、ブロー成形法、加圧成形法、キャスティング成形法などの慣用の成形法を利用して製造することができる。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例において、各種特性は、以下のようにして測定した。
[溶融流動性]
実施例1~4及び比較例1~4で得られた樹脂組成物を、流動特性試験機((株)東洋精機製作所製「キャピログラフ1D」)を用い、JIS K7199に準拠して、温度270℃、押出速度1,2,5,10,20,50,100,200,500,1000(mm/分)で溶融粘度を測定した。
実施例1~4及び比較例1~4で得られた樹脂組成物を、流動特性試験機((株)東洋精機製作所製「キャピログラフ1D」)を用い、JIS K7199に準拠して、温度270℃、押出速度1,2,5,10,20,50,100,200,500,1000(mm/分)で溶融粘度を測定した。
実施例5~6及び比較例5で得られた樹脂組成物については、電動射出成型機[住友重機械工業(株)製「SE18-DUZ」、最大型締力:18tf、スクリュー径:φ16mm(SLスクリュー)]を用いて、以下に示す条件でスパイラルフローにより溶融流動性を評価した。
金型のスパイラル形状:巾5mm、厚み3mm、最大長さ750mm(EIMS T901に準拠した金型)
金型温度:80℃(実測値79~82℃)
樹脂乾燥:100℃×24時間(真空乾燥)
成型温度:300~320℃
射出速度:20、50、80mm/秒
射出圧力;50、100、150MPa。
金型のスパイラル形状:巾5mm、厚み3mm、最大長さ750mm(EIMS T901に準拠した金型)
金型温度:80℃(実測値79~82℃)
樹脂乾燥:100℃×24時間(真空乾燥)
成型温度:300~320℃
射出速度:20、50、80mm/秒
射出圧力;50、100、150MPa。
[機械的特性]
実施例及び比較例で得られた試験片について、引張試験機(インストロン社製「5566型」)を用い、JIS K7161-1994及びJIS K7162-1994に準拠して、所定の試験条件(試験速度50mm/分(引張弾性率については1mm/分で測定)、標線間距離50mm、試験温度23±1℃、湿度50±5%RH)で引張強度、伸度及び引張弾性率を測定した。それぞれのサンプルについて、N=5で測定を行い、得られた測定値の平均値を算出した。
実施例及び比較例で得られた試験片について、引張試験機(インストロン社製「5566型」)を用い、JIS K7161-1994及びJIS K7162-1994に準拠して、所定の試験条件(試験速度50mm/分(引張弾性率については1mm/分で測定)、標線間距離50mm、試験温度23±1℃、湿度50±5%RH)で引張強度、伸度及び引張弾性率を測定した。それぞれのサンプルについて、N=5で測定を行い、得られた測定値の平均値を算出した。
[実施例1]
ポリアミド66(東レ(株)製「アミランCM3001-N」)90重量部と、フルオレン化合物1(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、大阪ガスケミカル(株)製「BPEF」)10重量部とをドライブレンドした後、フィーダ(K-トロン社製「KS60」、重量式計量単軸フィーダ)のホッパーへ移送し、二軸混練押出機((株)パーカーコーポレーション製「HK25D」、同方向回転二軸押出機)を用いて270℃で混練し、射出成形してJIS K7139 A1形(多目的試験片)に規定する平板試験片を調製した。
ポリアミド66(東レ(株)製「アミランCM3001-N」)90重量部と、フルオレン化合物1(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、大阪ガスケミカル(株)製「BPEF」)10重量部とをドライブレンドした後、フィーダ(K-トロン社製「KS60」、重量式計量単軸フィーダ)のホッパーへ移送し、二軸混練押出機((株)パーカーコーポレーション製「HK25D」、同方向回転二軸押出機)を用いて270℃で混練し、射出成形してJIS K7139 A1形(多目的試験片)に規定する平板試験片を調製した。
また、上記と同様にして溶融混練し、溶融粘度特性を測定するためのペレット状樹脂組成物を調製した。
[実施例2~4]
フルオレン化合物1に代えて、下記のフルオレン化合物を用いる以外、実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
フルオレン化合物1に代えて、下記のフルオレン化合物を用いる以外、実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
実施例2:フルオレン化合物2(9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、大阪ガスケミカル(株)製「BCF」)
実施例3:フルオレン化合物3(9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、大阪ガスケミカル(株)製「BOPPEF」)
実施例4:フルオレン化合物4(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンにエチレンオキサイドが9モル付加した付加体、大阪ガスケミカル(株)製「BPEF-9EO」)。
実施例3:フルオレン化合物3(9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、大阪ガスケミカル(株)製「BOPPEF」)
実施例4:フルオレン化合物4(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンにエチレンオキサイドが9モル付加した付加体、大阪ガスケミカル(株)製「BPEF-9EO」)。
[比較例1]
フルオレン化合物を添加することなく、ポリアミド66を実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
フルオレン化合物を添加することなく、ポリアミド66を実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
[比較例2]
マレイン酸変性ポリプロピレンPP(三井化学(株)製「アドマーQF551」)70重量部を、実施例1と同様にして溶融混練するとともに、カーボンブラック(三菱化学(株)製「MA-100」)30重量部を二軸混練押出機のサイドフィードにより投入して溶融混練し、実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
マレイン酸変性ポリプロピレンPP(三井化学(株)製「アドマーQF551」)70重量部を、実施例1と同様にして溶融混練するとともに、カーボンブラック(三菱化学(株)製「MA-100」)30重量部を二軸混練押出機のサイドフィードにより投入して溶融混練し、実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
[比較例3]
63重量部のマレイン酸変性ポリプロピレンPPと7重量部のフルオレン化合物1とをドライブレンドし、実施例1と同様にして溶融混練するとともに、カーボンブラック30重量部をサイドフィードにより二軸混練押出機内に投入して溶融混練し、実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
63重量部のマレイン酸変性ポリプロピレンPPと7重量部のフルオレン化合物1とをドライブレンドし、実施例1と同様にして溶融混練するとともに、カーボンブラック30重量部をサイドフィードにより二軸混練押出機内に投入して溶融混練し、実施例1と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
[比較例4]
フルオレン化合物1に代えて、フルオレン化合物2を用いる以外、比較例3と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
フルオレン化合物1に代えて、フルオレン化合物2を用いる以外、比較例3と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
そして、ペレット状樹脂組成物の溶融流動性、平板試験片の機械的特性を評価したところ、表2、図1及び図2に示す結果を得た。なお、図1は比較例1及び実施例1~2の溶融流動性試験の結果を示し、図2は比較例2~4の溶融流動性試験の結果を示す。
図2に示すように、変性プロピレンPPでは、フルオレン化合物の添加に拘わらず、同様の溶融流動特性を示した。一方、図1に示すように、ポリアミド樹脂では、比較例1との対比から明らかなように、フルオレン化合物1又は2の添加により溶融粘度が大きく低下した。
さらに、図3及び図4に示すように、FT-IRで分析し、比較例1のスペクトル(点線)と実施例1のスペクトル(実線)とを重ね合わせたところ、実施例1の樹脂組成物では、比較例1に比べて、アミド結合のNH基に起因する3300cm-1近傍の吸収強度が小さいことが判明した。このことから、フルオレン化合物を添加することによりポリアミド樹脂の水素結合が緩和され、溶融粘度が低下し、溶融流動性が向上したものと思われる。なお、表2に示すように、フルオレン化合物を添加しても、機械特性はさほど向上していない。
[実施例5]
100重量部のポリアミド6T(SOLVAY社製「AMODEL AT-1002」)と、3重量部のフルオレン化合物1とをドライブレンドした後、フィーダ(K-トロン社製「KS60」、重量式計量単軸フィーダ)のホッパーへ移送し、二軸混練押出機((株)パーカーコーポレーション製「HK25D」、同方向回転二軸押出機)を用いて320℃で混練し、射出成形してJIS K7139 A1形(多目的試験片)に規定する平板試験片を調製した。
100重量部のポリアミド6T(SOLVAY社製「AMODEL AT-1002」)と、3重量部のフルオレン化合物1とをドライブレンドした後、フィーダ(K-トロン社製「KS60」、重量式計量単軸フィーダ)のホッパーへ移送し、二軸混練押出機((株)パーカーコーポレーション製「HK25D」、同方向回転二軸押出機)を用いて320℃で混練し、射出成形してJIS K7139 A1形(多目的試験片)に規定する平板試験片を調製した。
また、上記と同様にして溶融混練し、溶融粘度特性を測定するためのペレット状樹脂組成物を調製した。
[実施例6]
フルオレン化合物1を5重量部に変更する以外、実施例5と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
フルオレン化合物1を5重量部に変更する以外、実施例5と同様に射出成形して平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
[比較例5]
フルオレン化合物1を添加することなく、ポリアミド6Tを射出成形し、実施例5と同様に平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
フルオレン化合物1を添加することなく、ポリアミド6Tを射出成形し、実施例5と同様に平板試験片を調製するとともに、ペレット状樹脂組成物を調製した。
このようにして得られた平板試験片の機械的特性と、樹脂組成物の溶融流動性とを評価して、表3~4及び図5~7に示す結果を得た。なお、表3は実施例5~6及び比較例5の組成、機械的特性の結果及び溶融流動性(スパイラルフロー)の結果の一部を示し、図5~7は実施例5~6及び比較例5の溶融流動性試験(スパイラルフロー)の結果を示す。
表3及び図5~7から分かるように、ポリアミド6Tにフルオレン化合物1を添加した実施例5~6は、添加していない比較例5と比べて、機械的特性を損なうことなく、さらに、いずれの射出条件においてもスパイラルフロー長が増加しており、溶融流動性が向上している。
本発明の流動性改善剤(溶融粘度低下剤)は、ポリアミド樹脂の機械的特性を低下させることなく、ポリアミド樹脂の溶融流動性を改善でき、成形サイクルを含む成形性を大きく向上できる。そのため、本発明の樹脂組成物は、未強化ポリアミド、補強剤(ガラス繊維、炭素繊維など)で強化された強化ポリアミド、ポリマーアロイなどの形態で、ポリアミド樹脂が適用される種々の成形体の成形に適しており、エンジニアリングプラスチックとしても利用できる。例えば、ポリアミド樹脂が、耐摩耗性、潤滑性、耐熱性、耐薬品性などの特性に優れていることを利用して、繊維、フィルム、日用品、自動車関連部品、電気・電子関連部品、機械関連部品、建築関連部品、スポーツ・レジャー関連部品などの幅広い用途に利用でき、例えば、ロープ、タイヤコード、漁網、濾過布、衣料用芯材、包装用フィルム、ラジエータタンク、マニホールド、配管用チューブ及びパイプ、ホース、エアクリーナ、クラッチ部品、コネクタ(電気回路コネクタなどを含む)、スイッチ、ギヤ、プーリ、カム、ブッシュ、ローラ、軸受け、ハウジング、ケーシング、電線被覆、戸車、レール部品、キャスタ、シューズ、シャトルコック、リールなどの幅広い用途に利用できる。
Claims (10)
- ポリアミド樹脂の溶融流動性を改善するための流動性改善剤であって、9,9-ビスアリールフルオレン骨格を有する化合物を含む流動性改善剤。
- 環Zがベンゼン環又はナフタレン環、R1がアルキル基、kが0~1、R2がアルキル基、シクロアルキル基、アリール基、アラルキル基又はアルコキシ基、mが0~2、R3がC2-4アルキレン基、nが0~20、pが1~3である請求項2又は3記載の流動性改善剤。
- 9,9-ビスアリールフルオレン骨格を有する化合物が、9,9-ビス(ヒドロキシフェニル)フルオレン、9,9-ビス(アルキル-ヒドロキシフェニル)フルオレン、9,9-ビス(アリール-ヒドロキシフェニル)フルオレン、9,9-ビス(ジ又はトリヒドロキシフェニル)フルオレン、9,9-ビス(ヒドロキシナフチル)フルオレン、9,9-ビス(ヒドロキシアルコキシフェニル)フルオレン、9,9-ビス(アルキル-ヒドロキシアルコキシフェニル)フルオレン、9,9-ビス(アリール-ヒドロキシアルコキシフェニル)フルオレン、9,9-ビス(ヒドロキシアルコキシナフチル)フルオレン、及びこれらの化合物のアルキレンオキサイド付加体から選択された少なくとも1種である請求項1~4のいずれかに記載の流動性改善剤。
- ポリアミド樹脂が、脂肪族ポリアミド樹脂、脂環族ポリアミド樹脂、および芳香族ポリアミド樹脂から選択された少なくとも1種である請求項1~5のいずれかに記載の流動性改善剤。
- ポリアミド樹脂100重量部に対して0.1~50重量部の割合で添加される請求項1~6のいずれかに記載の流動性改善剤。
- ポリアミド樹脂と、請求項1~7のいずれかに記載の流動性改善剤とを含む熱可塑性樹脂組成物。
- 請求項8記載の熱可塑性樹脂組成物で形成された成形体。
- ポリアミド樹脂に請求項1~7のいずれかに記載の流動性改善剤を添加し、前記ポリアミド樹脂の溶融流動性を改善する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017503306A JP6580670B2 (ja) | 2015-03-02 | 2015-07-29 | 流動性改善剤及びそれを含むポリアミド樹脂組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-040197 | 2015-03-02 | ||
JP2015040197 | 2015-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016139826A1 true WO2016139826A1 (ja) | 2016-09-09 |
Family
ID=56849303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/071524 WO2016139826A1 (ja) | 2015-03-02 | 2015-07-29 | 流動性改善剤及びそれを含むポリアミド樹脂組成物 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6580670B2 (ja) |
WO (1) | WO2016139826A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026250A1 (ja) * | 2015-08-07 | 2017-02-16 | 大阪ガスケミカル株式会社 | 繊維強化ポリアミド樹脂組成物及びその成形体 |
JP2017210514A (ja) * | 2016-05-24 | 2017-11-30 | 旭化成株式会社 | ポリアミド樹脂組成物 |
WO2019181912A1 (ja) * | 2018-03-23 | 2019-09-26 | 株式会社クラレ | 半芳香族ポリアミド繊維およびその製造方法 |
JPWO2021171756A1 (ja) * | 2020-02-28 | 2021-09-02 | ||
CN115151526A (zh) * | 2020-02-28 | 2022-10-04 | 大阪燃气化学有限公司 | 芴衍生物及其制造方法和用途 |
JP2023516222A (ja) * | 2020-04-30 | 2023-04-18 | エスエイチピーピー グローバル テクノロジーズ べスローテン フェンノートシャップ | 組成物、その製造法、それから作られた物品、およびその組成物を含む強化熱可塑性複合材 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60106877A (ja) * | 1983-11-14 | 1985-06-12 | Mitsui Petrochem Ind Ltd | 有機化合物の安定化方法 |
JPH06239879A (ja) * | 1992-12-22 | 1994-08-30 | Ciba Geigy Ag | ポリアミドの分子量の増加 |
JP2005187661A (ja) * | 2003-12-25 | 2005-07-14 | Osaka Gas Co Ltd | フルオレン系樹脂組成物およびその成形体 |
JP2008517117A (ja) * | 2004-10-20 | 2008-05-22 | ビーエーエスエフ ソシエタス・ヨーロピア | 超分枝したポリエステル/ポリカーボナートを有する流動性ポリアミド |
JP2010111876A (ja) * | 2003-04-22 | 2010-05-20 | Osaka Gas Co Ltd | フルオレン系組成物及びその成形体 |
WO2010084845A1 (ja) * | 2009-01-20 | 2010-07-29 | ユニチカ株式会社 | 樹脂組成物およびそれからなる成形体 |
JP2011008017A (ja) * | 2009-06-25 | 2011-01-13 | Osaka Gas Co Ltd | 光学用樹脂組成物及び成形体 |
JP2011021083A (ja) * | 2009-07-14 | 2011-02-03 | Osaka Gas Co Ltd | β晶核剤およびβ晶構造が形成された結晶性樹脂組成物 |
JP2011079889A (ja) * | 2009-10-05 | 2011-04-21 | Sumitomo Bakelite Co Ltd | 樹脂組成物、光学部品および光学デバイス |
WO2014168108A1 (ja) * | 2013-04-10 | 2014-10-16 | 大阪ガスケミカル株式会社 | フルオレン化合物を含む樹脂組成物および成形体並びに波長分散調整剤および樹脂の波長分散調整方法 |
JP2014205734A (ja) * | 2013-04-10 | 2014-10-30 | 大阪瓦斯株式会社 | アッベ数向上剤 |
JP2014218660A (ja) * | 2013-04-10 | 2014-11-20 | 大阪瓦斯株式会社 | 環状オレフィン樹脂組成物 |
JP2014218659A (ja) * | 2013-04-10 | 2014-11-20 | 大阪瓦斯株式会社 | 強度向上剤 |
JP2014218655A (ja) * | 2013-04-10 | 2014-11-20 | 大阪ガスケミカル株式会社 | 耐熱性向上剤 |
JP2014218656A (ja) * | 2013-04-10 | 2014-11-20 | 大阪瓦斯株式会社 | 結晶化促進剤 |
-
2015
- 2015-07-29 WO PCT/JP2015/071524 patent/WO2016139826A1/ja active Application Filing
- 2015-07-29 JP JP2017503306A patent/JP6580670B2/ja active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60106877A (ja) * | 1983-11-14 | 1985-06-12 | Mitsui Petrochem Ind Ltd | 有機化合物の安定化方法 |
JPH06239879A (ja) * | 1992-12-22 | 1994-08-30 | Ciba Geigy Ag | ポリアミドの分子量の増加 |
JP2010111876A (ja) * | 2003-04-22 | 2010-05-20 | Osaka Gas Co Ltd | フルオレン系組成物及びその成形体 |
JP2005187661A (ja) * | 2003-12-25 | 2005-07-14 | Osaka Gas Co Ltd | フルオレン系樹脂組成物およびその成形体 |
JP2008517117A (ja) * | 2004-10-20 | 2008-05-22 | ビーエーエスエフ ソシエタス・ヨーロピア | 超分枝したポリエステル/ポリカーボナートを有する流動性ポリアミド |
WO2010084845A1 (ja) * | 2009-01-20 | 2010-07-29 | ユニチカ株式会社 | 樹脂組成物およびそれからなる成形体 |
JP2011008017A (ja) * | 2009-06-25 | 2011-01-13 | Osaka Gas Co Ltd | 光学用樹脂組成物及び成形体 |
JP2011021083A (ja) * | 2009-07-14 | 2011-02-03 | Osaka Gas Co Ltd | β晶核剤およびβ晶構造が形成された結晶性樹脂組成物 |
JP2011079889A (ja) * | 2009-10-05 | 2011-04-21 | Sumitomo Bakelite Co Ltd | 樹脂組成物、光学部品および光学デバイス |
WO2014168108A1 (ja) * | 2013-04-10 | 2014-10-16 | 大阪ガスケミカル株式会社 | フルオレン化合物を含む樹脂組成物および成形体並びに波長分散調整剤および樹脂の波長分散調整方法 |
JP2014205734A (ja) * | 2013-04-10 | 2014-10-30 | 大阪瓦斯株式会社 | アッベ数向上剤 |
JP2014218660A (ja) * | 2013-04-10 | 2014-11-20 | 大阪瓦斯株式会社 | 環状オレフィン樹脂組成物 |
JP2014218659A (ja) * | 2013-04-10 | 2014-11-20 | 大阪瓦斯株式会社 | 強度向上剤 |
JP2014218655A (ja) * | 2013-04-10 | 2014-11-20 | 大阪ガスケミカル株式会社 | 耐熱性向上剤 |
JP2014218656A (ja) * | 2013-04-10 | 2014-11-20 | 大阪瓦斯株式会社 | 結晶化促進剤 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026250A1 (ja) * | 2015-08-07 | 2017-02-16 | 大阪ガスケミカル株式会社 | 繊維強化ポリアミド樹脂組成物及びその成形体 |
JP2017210514A (ja) * | 2016-05-24 | 2017-11-30 | 旭化成株式会社 | ポリアミド樹脂組成物 |
JP7042329B2 (ja) | 2018-03-23 | 2022-03-25 | 株式会社クラレ | 半芳香族ポリアミド繊維およびその製造方法 |
KR102401622B1 (ko) * | 2018-03-23 | 2022-05-24 | 주식회사 쿠라레 | 반방향족 폴리아미드 섬유 및 그 제조 방법 |
CN111902575A (zh) * | 2018-03-23 | 2020-11-06 | 株式会社可乐丽 | 半芳香族聚酰胺纤维及其制造方法 |
US20210002791A1 (en) * | 2018-03-23 | 2021-01-07 | Kuraray Co., Ltd. | Semi-aromatic polyamide fiber and method for producing same |
JPWO2019181912A1 (ja) * | 2018-03-23 | 2021-02-25 | 株式会社クラレ | 半芳香族ポリアミド繊維およびその製造方法 |
KR20200118886A (ko) * | 2018-03-23 | 2020-10-16 | 주식회사 쿠라레 | 반방향족 폴리아미드 섬유 및 그 제조 방법 |
US12037715B2 (en) | 2018-03-23 | 2024-07-16 | Kuraray Co., Ltd. | Semi-aromatic polyamide fiber and method for producing same |
EP3770308A4 (en) * | 2018-03-23 | 2021-12-29 | Kuraray Co., Ltd. | Semi-aromatic polyamide fiber and method for producing same |
WO2019181912A1 (ja) * | 2018-03-23 | 2019-09-26 | 株式会社クラレ | 半芳香族ポリアミド繊維およびその製造方法 |
TWI798393B (zh) * | 2018-03-23 | 2023-04-11 | 日商可樂麗股份有限公司 | 半芳香族聚醯胺纖維及其製造方法 |
JPWO2021171756A1 (ja) * | 2020-02-28 | 2021-09-02 | ||
CN115103880A (zh) * | 2020-02-28 | 2022-09-23 | 大阪燃气化学有限公司 | 树脂组合物和流动性改善方法 |
CN115151526A (zh) * | 2020-02-28 | 2022-10-04 | 大阪燃气化学有限公司 | 芴衍生物及其制造方法和用途 |
JP7052163B2 (ja) | 2020-02-28 | 2022-04-11 | 大阪ガスケミカル株式会社 | 樹脂組成物および流動性改善方法 |
US11760717B2 (en) | 2020-02-28 | 2023-09-19 | Osaka Gas Chemicals Co., Ltd. | Resin composition and fluidity improvement method |
CN115151526B (zh) * | 2020-02-28 | 2024-01-02 | 大阪燃气化学有限公司 | 芴衍生物及其制造方法和用途 |
WO2021171756A1 (ja) * | 2020-02-28 | 2021-09-02 | 大阪ガスケミカル株式会社 | 樹脂組成物および流動性改善方法 |
JP2023516222A (ja) * | 2020-04-30 | 2023-04-18 | エスエイチピーピー グローバル テクノロジーズ べスローテン フェンノートシャップ | 組成物、その製造法、それから作られた物品、およびその組成物を含む強化熱可塑性複合材 |
US11814479B2 (en) | 2020-04-30 | 2023-11-14 | Shpp Global Technologies B.V. | Composition, method for the manufacture thereof, article formed therefrom, and reinforced thermoplastic composite comprising the composition |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016139826A1 (ja) | 2017-12-14 |
JP6580670B2 (ja) | 2019-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6580670B2 (ja) | 流動性改善剤及びそれを含むポリアミド樹脂組成物 | |
KR102221899B1 (ko) | 폴리아미드 조성물 및 성형품 | |
JP5306368B2 (ja) | ポリエーテルアミン類を有する熱可塑性ポリアミド | |
TWI687484B (zh) | 纖維強化聚醯胺樹脂組成物及其成形體 | |
JP6039945B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
KR20140090463A (ko) | 폴리케톤 수지 조성물 및 그 제조방법 | |
WO2013012980A1 (en) | Device housings having excellent surface appearance | |
US11565513B2 (en) | Polyamide resin composition and molded article comprising the same | |
TW202210587A (zh) | 樹脂組合物及電磁波吸收體 | |
JP2003238802A (ja) | ポリアミド含有成形用組成物およびそれから得られる成形品 | |
JP6097203B2 (ja) | ポリアミド樹脂組成物 | |
JP2016147955A (ja) | ポリアリーレンスルフィド樹脂組成物及びその成形品 | |
JP7137404B2 (ja) | 樹脂組成物及び成形品 | |
TWI834940B (zh) | 樹脂組成物及流動性的改善方法 | |
JP6937226B2 (ja) | ポリアミド組成物及び成形品 | |
JP2004083792A (ja) | 熱可塑性樹脂組成物 | |
KR102275120B1 (ko) | 폴리아미드 수지 조성물 및 이의 성형품 | |
JP2014111752A (ja) | ポリアミド樹脂組成物 | |
KR102240967B1 (ko) | 열가소성 수지 조성물 및 이로부터 형성된 성형품 | |
JP2024141582A (ja) | 樹脂組成物及び流動性改善方法 | |
JP7014633B2 (ja) | ポリアミド組成物及び成形品 | |
JP2020023649A (ja) | ポリアミド樹脂組成物およびその成形品 | |
JP2020125377A (ja) | ポリアミド組成物及び成形品 | |
JP2012184306A (ja) | ポリアミド組成物及び成形体 | |
JPH06234914A (ja) | 熱可塑性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15883992 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017503306 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15883992 Country of ref document: EP Kind code of ref document: A1 |