[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016127330A1 - 一种二维液相色谱仪 - Google Patents

一种二维液相色谱仪 Download PDF

Info

Publication number
WO2016127330A1
WO2016127330A1 PCT/CN2015/072727 CN2015072727W WO2016127330A1 WO 2016127330 A1 WO2016127330 A1 WO 2016127330A1 CN 2015072727 W CN2015072727 W CN 2015072727W WO 2016127330 A1 WO2016127330 A1 WO 2016127330A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
flow path
port
column
connecting line
Prior art date
Application number
PCT/CN2015/072727
Other languages
English (en)
French (fr)
Inventor
王峰
Original Assignee
王峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王峰 filed Critical 王峰
Priority to PCT/CN2015/072727 priority Critical patent/WO2016127330A1/zh
Priority to JP2017560846A priority patent/JP6639527B2/ja
Publication of WO2016127330A1 publication Critical patent/WO2016127330A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features

Definitions

  • the invention belongs to the field of liquid chromatography, and in particular relates to a two-dimensional liquid chromatograph with parallel running function.
  • Two-dimensional liquid chromatography is a chromatographic instrument developed on the basis of ordinary liquid chromatography. It increases the separation ability by increasing the number of chromatographic separation stages and the number of columns.
  • the first-dimensional liquid chromatography is responsible for sample concentration and primary separation.
  • the second-dimensional liquid chromatography is responsible for the further separation and detection of the sample, thereby enabling the sample to be processed online to separate the target component from the complex matrix.
  • common liquid chromatography analysis of target components in blood samples and urine often requires complicated and complicated liquid-liquid extraction or solid-phase extraction processes. These processes sometimes cause large deviations, and even fail to target. The substance is extracted.
  • Two-dimensional liquid chromatography can highly concentrate the concentration, transfer and separation of samples, greatly improving the accuracy and automation of chromatographic separation.
  • the first-dimensional liquid chromatography system of the conventional two-dimensional chromatographic sample is subjected to preliminary separation and concentration treatment, and then transferred to a second-dimensional liquid chromatograph for subsequent treatment, so the analysis time of the sample is the first-dimensional liquid phase.
  • the sum of the chromatographic processing time and the second-dimensional liquid chromatography processing time In order to improve the speed of sample analysis, there is a two-dimensional chromatograph with parallel operation.
  • the first-dimensional liquid chromatography of the instrument has two identical sample concentration and primary separation columns for alternately processing and transferring target components in the sample.
  • the two-dimensional chromatogram of the above technology has such a problem that the two columns of the first-dimensional column must have the same specifications, properties, and advantages and disadvantages in order to obtain a consistent analysis result.
  • the column After analyzing a large number of samples, the column will be Different degrees of deterioration occur, so the same two first-dimensional columns are inconsistent in terms of retention capacity, chromatographic peak shape, etc. after a period of use, resulting in differences in analysis results, and in serious cases, continuous analysis is impossible.
  • Another problem is that when analyzing samples in batches, it is necessary to specify which of the two first-dimensional columns corresponds to the sample, which is very troublesome when preparing the sample processing sequence, increasing the complexity of the injection sequence table writing.
  • the two-dimensional liquid chromatograph of the present invention aims to realize the parallel operation of the first-dimensional liquid chromatography and the second-dimensional liquid chromatography processing sample using only one first-dimensional column.
  • the two-dimensional liquid chromatograph switches the position of the intermediate column in the flow channel by switching the valve between the multi-channel switching valve and the registered valve, so that the intermediate column is in the downstream path of the first flow channel or in the second
  • the downstream channel of the flow channel is either in the downstream path of the first flow channel or in the downstream path of the second flow channel, and the registration function of the intermediate column is realized, thereby achieving the first-dimensional liquid chromatography and the second-dimensional liquid chromatography.
  • the purpose of the parallel operation of the sample work.
  • a two-dimensional liquid chromatograph comprising: a first flow path connected to a first chromatography column for conveying a first mobile phase and preliminary separation of the sample; and a second flow channel for conveying the second flow The moving phase; the analysis of the flow path for separating and detecting the captured material; the waste liquid flow path for discharging the waste liquid; and the multi-channel switching valve having a plurality of interfaces and the registration with a plurality of ports a valve; an intermediate chromatography column is connected between any two ports of the registered valve; any three interfaces of the multiple flow path switching valve are respectively connected to the first connecting pipe, the second connecting pipe, and the third connecting pipe The other end of the first connecting line and the second connecting line are respectively connected to the idle port of the registered valve; the other end of the third connecting line is connected to the second connecting line through the three-way I; The first flow path, the second flow path, the analysis flow path, and the waste liquid flow path are respectively connected to any one of the remaining interfaces on the multi-flow path switching valve.
  • the two-dimensional liquid chromatograph further comprises a modulation flow channel for conveying the modulation solution; the modulation flow channel is connected to the second connection line through the tee II.
  • the preparation solution may be an acidic, neutral, alkaline solution, or a high proportion of an organic solvent.
  • the target component in the sample can be enhanced by the capture of the intermediate column to prevent the loss of the target component, and the first-dimensional column is additionally
  • the eluted components minimize diffusion on the intermediate column, so when the column of the first-dimensional chromatographic column deteriorates and deteriorates for a period of time, the diffusion and change of the target in the sample on the intermediate column is not obvious.
  • the analysis results and the peak shape of the chromatogram can be stabilized.
  • the multi-channel switching valve comprises an interface a, an interface b, an interface c, an interface d, an interface e, an interface f, an interface g and an interface j;
  • the interface a is connected to the first flow channel, the interface b Connected to the waste liquid flow path, the interface c is connected to one end of the first connecting pipe, the interface d is connected to the analysis flow channel, the interface e is connected to the second flow channel, and the interface f is connected to the second connection One end of the pipeline is connected, the interface j and the third connecting pipeline Connected at one end.
  • the modulation flow channel can also be connected to the interface g of the multi-channel switching valve.
  • the multi-channel switching valve may further include an interface h and an interface i. If an interface h and an interface i exist, the interface g and the interface i are in a blocked state.
  • the registration valve includes a port a, a port b, a port c, a port d, a port e, and a port f; an intermediate chromatography column is disposed between the port a and the port d, and the port e is connected to the second port The other end of the pipe is connected, and the port f is connected to the other end of the first connecting pipe.
  • the intermediate column is a column having a strong effect on the target component flowing out of the first column.
  • the first column and the intermediate column are columns or loops that have a storage capacity for a target component in the sample.
  • the multi-channel switching valve and the register valve of the present invention are generally connected to only one port or port.
  • the multi-channel switching valve and the registered valve of the present invention are both two-position switching valves.
  • a port or interface that is not connected to a pipe is called an idle port or an idle interface, except for a port or interface that is in a closed state.
  • the two-dimensional liquid chromatograph has only one first-dimensional column, which reduces the complexity of the instrument operation and can reduce the influence of the degradation of the first-dimensional column on the separation and detection of the second-dimensional column.
  • the two-dimensional liquid chromatograph prepares for injection because there is only one first-dimensional column.
  • the sequence does not need to specify the correspondence between the sample and the first dimension column, reducing the complexity of processing sequence compilation.
  • Example 1 is a schematic structural view of a liquid chromatograph of Example 1;
  • Figure 2 is a view showing an operation state of the two-dimensional liquid chromatograph of Example 1;
  • Figure 3 is a view showing an operation state of the two-dimensional liquid chromatograph of Example 1;
  • Figure 4 is a view showing an operation state of the two-dimensional liquid chromatograph of Example 1;
  • Figure 5 is a view showing an operation state of the two-dimensional liquid chromatograph of Example 1;
  • Figure 6 is a view showing an operation state of the two-dimensional liquid chromatograph of Example 1;
  • Figure 7 is a view showing an operation state of the two-dimensional liquid chromatograph of Example 1;
  • Figure 8 is a view showing an operation state of the two-dimensional liquid chromatograph of Example 2.
  • a two-dimensional liquid chromatograph includes:
  • the first flow channel L3 of the first column C1 is connected to the injector AS and the first column C1, and the first mobile phase S1 is transported, and the sample is initially separated;
  • a multi-channel switching valve V1 having a plurality of interfaces and a register valve V2 having a plurality of ports; an intermediate column C2 is connected between any two ports of the register valve V2;
  • the first connecting line L9, the second connecting line L12 and the third connecting line L5 are respectively connected to any three interfaces of the multi-channel switching valve V1, and the first connecting line L9 and the second connection are respectively connected
  • the pipelines L12 are respectively connected to the idle ports of the registration valve V2; the third connecting pipelines L5 are connected to the second connecting pipelines L12 through the three-way IT1;
  • the first flow path L3, the second flow path L11, the analysis flow path L14, and the waste liquid flow path L4 are respectively connected to any of the remaining interfaces on the multi-channel switching valve V1.
  • the multi-channel switching valve V1 includes an interface a1, an interface b2, an interface c3, an interface d4, an interface e5, an interface f6, an interface g7, an interface h8, an interface i9, and an interface j10;
  • A1 is connected to the first flow path L3, the interface b2 is connected to the waste liquid flow path L4, the interface c3 is connected to the first connection line L9, and the interface d4 is connected to the analysis flow path L14, the interface e5 and the
  • the second flow path L11 is connected, the interface f6 is connected to the second connecting line L12, and the interface j10 is connected to the third connecting line L5.
  • the interface g7 and the interface i9 are in a blocked state.
  • the registration valve V2 includes a port a11, a port b12, a port c13, a port d14, a port e15, and a port f16.
  • An intermediate column C2 is disposed between the port a11 and the port d14, and the port e15 and the second connecting line are provided.
  • L12 is connected, and the port f16 is connected to the first connecting line L9.
  • the first column separation function the transfer pump IP1 is turned on, so that the first mobile phase moves downstream under the push of IP1, and the sample is introduced into the first mobile phase through the sampler AS, and contains the sample.
  • a mobile phase enters the first column C1, and the components in the sample begin to separate under the chromatographic separation mechanism of the first mobile phase and the first column, and the multi-channel switching valve V1 port a1 and port b2 are turned on, so that the first The mobile phase flows to the waste liquid flow path L4 and is discharged.
  • the intermediate column capture function the transfer pump IP1 is turned on, the first mobile phase is transported to the downstream, and sequentially passes through the injector AS and the first column C1, and the sample is introduced into the first mobile phase through the AS. Then, the target component in the sample is separated by the chromatographic force of the first mobile phase and the first column, and when the target component in the sample is about to flow out from the first column, the multi-channel switching valve V1 port a1 and the port are turned on.
  • the valve V2 flows through the second column C2, and the target component having a stronger interaction with the second column C2 can be captured by the second column C2, and the uncaptured component passes through the first mobile phase.
  • the connecting line L9 is moved by the turned-in multi-channel switching valve V1 port c3 and port b2, flows to the waste liquid flow path L4, and is discharged.
  • the registration function switching the registration valve V2, so that the intermediate column is connected to the ports b12, c13, because the ports b12, c13 and no fluid enter and flow, the intermediate column C2 is neither in the first channel downstream path It is also not in the downstream passage of the second flow path; at this time, the components remaining on the intermediate column are in a stationary state, and are flushed down while waiting for the next fluid to pass, thereby realizing the registration function of the target component in the intermediate column C2.
  • the parallel operation function in the same period of time, the transfer pump IP1 starts, transports the first mobile phase to the downstream pipeline, passes through the injector AS and the first column C1 in turn, and the sample is introduced into the first through the AS.
  • the first column C1 starts the separation of the components in the sample; at the same time, the solution in the second channel is pushed by the infusion pump IIP2, and sequentially passes through the multi-channel switching valve V1 and the intermediate column C2 on the registered valve V2.
  • the target component registered in the intermediate column C2 is pushed into the second column C3, and the registered target component starts to be separated at C3, so that the first column C1 and the second column C3 are simultaneously in the sample processing work.
  • Parallel running state in the same period of time, the transfer pump IP1 starts, transports the first mobile phase to the downstream pipeline, passes through the injector AS and the first column C1 in turn, and the sample is introduced into the first through the AS.
  • the first column C1 starts the separation of the components in the sample;
  • the position of the registered valve is selected so that the intermediate column C2 is neither connected to the first flow path L3 nor to the second flow path L11.
  • the second column C3 is simultaneously in the working state of separating the previous sample component; the intermediate column C2 is registered and the second column C3 is separated.
  • the function of running in parallel Repeat the working process shown in Figure 5 - Figure 7 to achieve continuous parallel operation of the continuous two-dimensional liquid chromatograph.
  • a two-dimensional liquid chromatograph based on the first embodiment, further comprising a modulation flow path L17 for conveying the modulation solution S3; the modulation flow path L17 is connected to the second connection line L12 via the three-way IIT2 Or it is directly connected to the port g7 on the multi-flow valve. And the intermediate column C2 selects a chromatographic stationary phase that retains the target component in the sample.
  • the transfer pump P3 is turned on, and the preparation solution S3 is sent to the second connecting line L12 to merge with the first mobile phase, and the modulation is performed.
  • the solution S3 changes the pH, ionic strength or organic phase of the first mobile phase S1 such that the retention of the target component on the intermediate column C2 is enhanced to prevent the target component from flowing out during the C2 capture process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

一种二维液相色谱仪,该二维液相色谱仪包括依次连接有第一色谱柱(C1)的第一流道(L3)、第二流道(L11)、分析流道(L14)、废液流道(L4)、中间色谱柱(C2)、多流道切换阀(V1)以及寄存阀(V2)等,该二维液相色谱仪通过多流道切换阀(V1)与寄存阀(V2)之间阀的切换,可以改变中间色谱柱(C2)在流道(L3、L11、L14、L4)中所处的位置,实现中间色谱柱(C2)的寄存功能,该二维液相色谱仪只采用一支第一色谱柱(C1),实现第一维液相色谱与第二维液相色谱处理不同样品处理工作的并列运行。

Description

一种二维液相色谱仪 技术领域
本发明属于液相色谱领域,具体涉及一种具有并列运行功能的二维液相色谱仪。
背景技术
二维液相色谱是在普通液相色谱基础上发展起来的色谱仪器,它通过增加色谱分离级数和色谱柱数量来提高分离能力,通常第一维液相色谱负责样品的浓缩和初级分离,第二维液相色谱负责样品的进一步分离与检测,从而能够在线处理样品,使目标组分从复杂基质中分离出来。与普通液相色谱比较,普通液相色谱分析血样、尿液中的目标组分时,往往需要繁琐复杂的液液萃取或固相萃取过程,这些过程有时候导致很大偏差,甚至不能将目标物质提取出来。而二维液相色谱则可以高度自动化的完成样品的浓缩、转移与分离,极大提高色谱分离准确性与自动化程度。
常规的二维色谱常样品的第一维液相色谱系统对样品进行初步的分离、浓度处理,然后传递给第二维液相色谱仪进行后续处理,因此样品的分析时间为第一维液相色谱处理时间与第二维液相色谱处理时间的总和。为提高样品分析速度,目前已有具有并列运行的二维色谱仪,该仪器第一维液相色谱具有两支相同的样品浓缩和初级分离色谱柱,用以交替处理和传递样品中目标组分,即当第一维液相的一支色谱柱与第二维液相的色谱柱连接,并处于样品的分离检测工作状态时,另一支第一维色谱柱处于下一个样品的浓度或初级分离工作状 态,这种运行方式使得第一维液相色谱和第二维液相色谱同时工作,因此比常规二维液相色谱的分析速度更快,效率更高。
但以上技术的二维色谱存在这样的问题:第一维色谱柱的两支色谱柱必须规格、性质、优劣相同,才能获得一致的分析结果,在分析较多数量样品后,色谱柱均会出现不同程度的劣化,因此相同的两支第一维色谱柱在一段使用时间后,保留能力、色谱峰型等方面的变化并不一致,从而导致分析结果的差别,严重时导致无法进行持续分析工作;另一问题是在批量分析样品时,必须指定两支第一维色谱柱中的哪一支与样品对应,这样在编制样品处理序列时非常麻烦,增加进样序列表编写的复杂性。
发明内容
针对现有技术的不足,本发明的二维液相色谱仪旨在:只采用一支第一维色谱柱,实现第一维液相色谱与第二维液相色谱处理样品工作的并列运行。该二维液相色谱仪通过多流道切换阀与寄存阀之间阀的切换,改变中间色谱柱在流道中所处的位置,可以使中间色谱柱处于第一流道下游通路中或者处于第二流道下游通路中或者既不处于第一流道下游通路中也不处于第二流道下游通路中,实现中间色谱柱的寄存功能,从而达到第一维液相色谱与第二维液相色谱处理样品工作的并列运行工作的目的。
为实现上述目的,本发明的技术方案是:
一种二维液相色谱仪,包括:连接有第一色谱柱的第一流道,用于输送第一流动相,并对样品进行初步分离;第二流道,用于输送第二流 动相;分析流道,用于对捕获的物质进行分离和检测;废液流道,用于排出废液;还包括设有多个接口的多流道切换阀以及设有多个端口的寄存阀;所述寄存阀的任意两端口之间连接有中间色谱柱;所述多流道切换阀的任意三个接口分别与第一连接管路、第二连接管路和第三连接管路的一段,所述第一连接管路和第二连接管路的另一端均分别与寄存阀的空闲端口连通;所述第三连接管路的另一端通过三通I与第二连接管路连通;所述第一流道、第二流道、分析流道和废液流道分别连接在多流道切换阀上的其余任意一个接口上。
优选方案:所述二维液相色谱仪还包括调制流道,用于输送调制溶液;所述调制流道通过三通II连接在第二连接管路上。所述调制溶液可以是酸性、中性、碱性溶液,或者高比例有机溶剂。通过调制进入中间柱的第一维流动相pH、溶剂组分比例、离子强度,使得试样中目标组分被中间色谱柱捕获能增强,防止目标组分的丢失,另外使得第一维色谱柱洗脱下来的组分在中间色谱柱上尽可能减少扩散,因此当第一维色谱的色谱柱使用一段时间发生劣化和变差时,样品中目标物在中间柱上的扩散与变化并不明显,这样传递给第二维色谱柱以后,可以保持分析结果和色谱峰型的稳定。
进一步优选方案:所述多流道切换阀包括接口a、接口b、接口c、接口d、接口e、接口f、接口g和接口j;所述接口a与第一流道连接,所述接口b与废液流道连接,所述接口c与第一连接管路的一端连接,所述接口d与分析流道连接,所述接口e与第二流道连接,所述接口f与第二连接管路的一端连接,所述接口j与第三连接管路 的一端连接。
所述调制流道也可以连接在多流道切换阀的接口g上。
所述多流道切换阀还可以包括接口h、接口i,若有接口h、接口i存在,则所述接口g、和接口i处于封堵状态。
进一步优选方案:所述寄存阀包括端口a、端口b、端口c、端口d、端口e、端口f;所述端口a与端口d之间设有中间色谱柱,所述端口e与第二连接管路的另一端连接,所述端口f与第一连接管路的另一端连接。
优选方案:所述中间色谱柱是对第一色谱柱流出来的目标组分具有较强作用的色谱柱。
优选方案:所述第一色谱柱和所述中间色谱柱为对样品中目标组分有储存能力的色谱柱或者定量环。
除特别说明以外,本发明所述多流道切换阀以及寄存阀一般一个端口或者接口只与一根管路连接。本发明所述多流道切换阀以及寄存阀均为二位切换阀。
除处于封闭状态的端口或者接口外,没有连接管路的端口或者接口称为空闲端口或者空闲接口。
与现有技术相比,本发明的优势在于:
1、所述二维液相色谱仪只有一支第一维色谱柱,减少仪器操作复杂性,并可以减少第一维色谱柱劣化对第二维色谱柱分离检测的影响。
2、所述二维液相色谱仪由于只有一只第一维色谱柱,编制进样 序列的时候无需指定样品与第一维色谱柱的对应关系,减少处理序列编制的复杂性。
3、通过增加的调制功能加强第一维色谱柱洗脱下来的试样中目标组分在中间色谱柱上的保持能力,并使得所诉目标组分转移完全和稳定。
附图说明
图1是实施例1的液相色谱仪结构示意图;
图2是实施例1的二维液相色谱仪的一种工作状态图;
图3是实施例1的二维液相色谱仪的一种工作状态图;
图4是实施例1的二维液相色谱仪的一种工作状态图;
图5是实施例1的二维液相色谱仪的一种工作状态图;
图6是实施例1的二维液相色谱仪的一种工作状态图;
图7是实施例1的二维液相色谱仪的一种工作状态图;
图8是实施例2的二维液相色谱仪的一种工作状态图;
其中,1是接口a,2是接口b,3是接口c,4是接口d,5是接口e,6是接口f,7是接口g,8是接口h,9是接口i,10是接口j,11是端口a,12是端口b,13是端口c,14是端口d,15是端口e,16是端口f;AS是进样器,W1是废液端口,DE是检测器;S1是第一流动相,S2是第二流动相,S3是调制溶液;P1是输送泵I,P2是输送泵II,P3是输送泵III;C1是第一色谱柱,C2是中间色谱柱,C3是第二色谱柱;L3是第一流道,L11是第二流道,L14是分析流道,L4是废液流道,L9是第一连接管路,L12是第二连接管路,L5是第 三连接管路,L17是调制流道;T1是三通I,T2是三通II;V1是多流道切换阀,V2是寄存阀。图中的实点表示封堵状态,粗实线表示流动相流动路线。
具体实施方式
下面结合附图和实施例对本发明做进一步的解释和说明
实施例1
如图1所示,一种二维液相色谱仪,包括:
依次连接有进样器AS和第一色谱柱C1的第一流道L3,用于输送第一流动相S1,并对样品进行初步分离;
第二流道L11,用于输送第二流动相S2;
分析流道L14,用于对捕获的物质进行分离和检测;
废液流道L4,用于排出废液;
还包括设有多个接口的多流道切换阀V1以及设有多个端口的寄存阀V2;所述寄存阀V2的任意两端口之间连接有中间色谱柱C2;
所述多流道切换阀V1的任意三个接口上分别连接有第一连接管路L9、第二连接管路L12和第三连接管路L5,所述第一连接管路L9和第二连接管路L12均分别与寄存阀V2的空闲端口连通;所述第三连接管路L5通过三通IT1与第二连接管路L12连通;
所述第一流道L3、第二流道L11、分析流道L14和废液流道L4分别连接在多流道切换阀V1上的其余任意一个接口上。
所述多流道切换阀V1包括接口a1、接口b2、接口c3、接口d4、接口e5、接口f6、接口g7、接口h8、接口i9和接口j10;所述接口 a1与第一流道L3连接,所述接口b2与废液流道L4连接,所述接口c3与第一连接管路L9连接,所述接口d4与分析流道L14连接,所述接口e5与第二流道L11连接,所述接口f6与第二连接管路L12连接,所述接口j10与第三连接管路L5连接。工作时,所述接口g7、和接口i9处于封堵状态。
所述寄存阀V2包括端口a11、端口b12、端口c13、端口d14、端口e15、端口f16;所述端口a11与端口d14之间设有中间色谱柱C2,所述端口e15与第二连接管路L12连接,所述端口f16与第一连接管路L9连接。
功能描述:
如图2所示,第一色谱柱分离功能:开启输送泵IP1,使得第一流动相在IP1的推动下向下游移动,样品通过进样器AS导入到第一流动相中,含有样品的第一流动相进入第一色谱柱C1,样品中各组分在第一流动相与第一色谱柱的色谱分离机理下开始分离,导通多流道切换阀V1端口a1和端口b2,使得第一流动相流至废液流道L4,排出。
如图3所示,中间色谱柱捕获功能:开启输送泵IP1,将第一流动相输送至下游,依次经过进样器AS和第一色谱柱C1,样品通过AS导入到第一流动相中,而后样品中目标组分被第一流动相和第一色谱柱的色谱作用力分离,当样品中目标组分即将从第一色谱柱流出的时候,导通多流道切换阀V1端口a1和端口j10,使得含有目标组分的第一流动相通过第三连接管路L5、第二连接管路L12流入寄存 阀V2,再流经第二色谱柱C2,与第二色谱柱C2有较强作用力的目标组分即可被第二色谱柱C2捕获,未捕获的组分随第一流动相通过第一连接管路L9,通过导通的多流道切换阀V1端口c3和端口b2移动,流至废液流道L4,排出。
如图4所示,寄存功能:切换寄存阀V2,使得中间柱与端口b12、c13导通,由于端口b12、c13与无流体进入及流出,因此中间色谱柱C2既不处于第一流道下游通路中也不处于第二流道下游通路中;此时中间柱上保留的组分处于静止状态,等待下一次流体通过时被冲洗下来,从而实现目标组分在中间色谱柱C2中的寄存功能。
如图5所示,并列运行功能:在同一时间段内,输送泵IP1启动,输送第一流动相至下游管路,依次经过进样器AS和第一色谱柱C1,样品通过AS导入到第一流动相后,第一色谱柱C1开始样品中组分的分离工作;同时第二流道中溶液在输液泵IIP2推动下,依次经过多流道切换阀V1与寄存阀V2上的中间色谱柱C2,将中间色谱柱C2中寄存的目标组分推入第二色谱柱C3中,寄存的目标组分在C3开始分离工作,从而实现第一色谱柱C1、第二色谱柱C3同时处于样品处理工作的并列运行状态。
如图6所示,在第一色谱柱C1上待分析溶液中目标组分即将被第一流道L3溶液推出时,选择寄存阀与多流道切换阀位置,使中间色谱柱C2与第一色谱柱C1连通,从而目标组分被推入中间色谱柱C2中,与C2保留作用力较强的组分将被C2柱捕获;此时第二色谱柱C3也处于分离上一个样品组分的工作状态;从而实现了中间色谱 柱C2的捕获与第二色谱柱C3分离并列运行的功能。
如图7所示,待第一色谱柱C1流出的目标组分进入中间色谱柱C2后,选择寄存阀位置,使中间色谱柱C2既不与第一流道L3相连也不与第二流道L11相连,从而目标物组分被寄存在中间色谱柱C2中;此时第二色谱柱C3同时处于分离上一个样品组分的工作状态;实现了中间色谱柱C2的寄存与第二色谱柱C3分离并列运行的功能。再重复图5-图7所示的工作过程,实现连续二维液相色谱仪的连续并列运行功能。
实施例2
一种二维液相色谱仪,在实施例1的基础上,还包括调制流道L17,用于输送调制溶液S3;所述调制流道L17通过三通IIT2连接在第二连接管路L12上或者是直接连接在多流道阀上的端口g7上。并且所述中间色谱柱C2选取对样品中目标组分有保持能力的色谱固定相。
功能描述:如图8所示,在实施例1进行中间色谱柱C2捕获功能的同时,开启输送泵P3,将调制溶液S3输送至第二连接管路L12上与第一流动相汇合,通过调制溶液S3改变第一流动相S1的pH值、离子强度或者有机相比例,从而使得目标组分在中间色谱柱C2上的保留能力增强,防止目标组分在C2捕获工序中流出。

Claims (6)

  1. 一种二维液相色谱仪,包括:
    连接有第一色谱柱(C1)的第一流道(L3),用于输送第一流动相(S1),并对样品进行初步分离;
    第二流道(L11),用于输送第二流动相(S2);
    分析流道(L14),用于对捕获的物质进行分离和检测;
    废液流道(L4),用于排出废液;
    其特征是,还包括设有多个接口的多流道切换阀(V1)以及设有多个端口的寄存阀(V2);所述寄存阀(V2)的任意两端口之间连接有中间色谱柱(C2);
    所述多流道切换阀(V1)的任意三个接口分别与第一连接管路(L9)、第二连接管路(L12)和第三连接管路(L5)的一端连接,所述第一连接管路(L9)和第二连接管路(L12)的另一端均分别与寄存阀(V2)的空闲端口连通;所述第三连接管路(L5)的另一端通过三通I(T1)与第二连接管路(L12)连通;
    所述第一流道(L3)、第二流道(L11)、分析流道(L14)和废液流道(L4)分别连接在多流道切换阀(V1)上的其余任意一个接口上。
  2. 根据权利要求1所述二维液相色谱仪,其特征是,还包括调制流道(L17),用于输送调制溶液(S3);所述调制流道(L17)通过三通II(T2)连接在第二连接管路(L12)上或者调制流道(L17)连接在多流道切换阀(V1)的空闲接口上。
  3. 根据权利要求1或2所述二维液相色谱仪,其特征是,所述多流道切换阀(V1)包括接口a(1)、接口b(2)、接口c(3)、接口d(4)、接口e(5)、接口f(6)、接口g(7)和接口j(10);所述接口a(1)与第一流道(L3)连接,所述接口b(2)与废液流道(L4)连接,所述接口c(3)与第一连接管路(L9)的一端连接,所述接口d(4)与分析流道(L14)连接,所述接口e(5)与第二流道(L11)连接,所述接口f(6)与第二连接管路(L12)的一端连接,所述接口j(10)与第三连接管路(L5)的一端连接。
  4. 根据权利要求2所述二维液相色谱仪,其特征是,所述调制流道(L17)连接在多流道切换阀(V1)的接口g(7)上。
  5. 根据权利要求1或2所述二维液相色谱仪,其特征是,所述寄存阀(V2)包括端口a(11)、端口b(12)、端口c(13)、端口d(14)、端口e(15)、端口f(16);所述端口a(11)与端口d(14)之间设有中间色谱柱(C2),所述端口e(15)与第二连接管路(L12)另一端连接,所述端口f(16)与第一连接管路(L9)另一端连接。
  6. 根据权利要求1或2所述二维液相色谱仪,其特征是,所述第一色谱柱(C1)和所述中间色谱柱(C2)为对样品中目标组分有储存能力的色谱柱或者定量环。
PCT/CN2015/072727 2015-02-11 2015-02-11 一种二维液相色谱仪 WO2016127330A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/072727 WO2016127330A1 (zh) 2015-02-11 2015-02-11 一种二维液相色谱仪
JP2017560846A JP6639527B2 (ja) 2015-02-11 2015-02-11 二次元液体クロマトグラフィー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072727 WO2016127330A1 (zh) 2015-02-11 2015-02-11 一种二维液相色谱仪

Publications (1)

Publication Number Publication Date
WO2016127330A1 true WO2016127330A1 (zh) 2016-08-18

Family

ID=56613967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072727 WO2016127330A1 (zh) 2015-02-11 2015-02-11 一种二维液相色谱仪

Country Status (2)

Country Link
JP (1) JP6639527B2 (zh)
WO (1) WO2016127330A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257483A (zh) * 2018-11-30 2020-06-09 湖南德米特仪器有限公司 一种能够降低液质联用仪基质效应的二维液相色谱仪
CN111289631A (zh) * 2018-12-07 2020-06-16 湖南德米特仪器有限公司 一种能够直接分析生物液体样品的二维液相色谱仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158630A (en) * 1978-02-24 1979-06-19 Stearns Stanley D Chromatographic multi-sample valving apparatus
US20010019843A1 (en) * 2000-03-03 2001-09-06 Mitsubishi Materials Corporation Method and apparatus for analyzing organic macromolecular component and application thereof
CN101166564A (zh) * 2005-04-29 2008-04-23 瑞士联邦苏黎世技术大学 色谱纯化的方法和装置
US20110097813A1 (en) * 2006-02-03 2011-04-28 Hitachi High-Technologies Corporation Three-dimensional liquid chromatography
CN102612648A (zh) * 2010-06-25 2012-07-25 高丽大学校产学协力团 多功能选择器阀、具有多功能选择器阀的全自动多功能液相色谱装置和用该装置分析样本的方法
CN104330502A (zh) * 2014-11-27 2015-02-04 王峰 一种液相色谱仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6802967B2 (en) * 2002-03-06 2004-10-12 Shimadzu Corporation Multi-dimension liquid chromatography separation system
JP4467454B2 (ja) * 2005-03-31 2010-05-26 株式会社日立ハイテクノロジーズ 多次元液体クロマトグラフ及びそれを用いた分析方法
WO2010026742A1 (ja) * 2008-09-02 2010-03-11 ジーエルサイエンス株式会社 液体クロマトグラフ
US9679757B2 (en) * 2013-04-12 2017-06-13 Waters Technologies Corporation Liquid chromatography systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158630A (en) * 1978-02-24 1979-06-19 Stearns Stanley D Chromatographic multi-sample valving apparatus
US20010019843A1 (en) * 2000-03-03 2001-09-06 Mitsubishi Materials Corporation Method and apparatus for analyzing organic macromolecular component and application thereof
CN101166564A (zh) * 2005-04-29 2008-04-23 瑞士联邦苏黎世技术大学 色谱纯化的方法和装置
US20110097813A1 (en) * 2006-02-03 2011-04-28 Hitachi High-Technologies Corporation Three-dimensional liquid chromatography
CN102612648A (zh) * 2010-06-25 2012-07-25 高丽大学校产学协力团 多功能选择器阀、具有多功能选择器阀的全自动多功能液相色谱装置和用该装置分析样本的方法
CN104330502A (zh) * 2014-11-27 2015-02-04 王峰 一种液相色谱仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257483A (zh) * 2018-11-30 2020-06-09 湖南德米特仪器有限公司 一种能够降低液质联用仪基质效应的二维液相色谱仪
CN111289631A (zh) * 2018-12-07 2020-06-16 湖南德米特仪器有限公司 一种能够直接分析生物液体样品的二维液相色谱仪

Also Published As

Publication number Publication date
JP6639527B2 (ja) 2020-02-05
JP2018505429A (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
JP4790435B2 (ja) 3次元液体クロマトグラフィ
Chen et al. Advance in on-line two-dimensional liquid chromatography modulation technology
JP5012148B2 (ja) 液体クロマトグラフ
WO2016082154A1 (zh) 一种液相色谱仪
US7347936B2 (en) Liquid chromatograph
CN107589190A (zh) 大体积进样‑双固相萃取‑高效液相色谱在线联用设备
US11573212B2 (en) Flow channel mechanism and liquid chromatograph including the same
CN104678014B (zh) 一种二维液相色谱仪
US20190391117A1 (en) Preparative liquid chromatograph
US20100000301A1 (en) Liquid chromatograph
CN104678015B (zh) 一种液相色谱仪
US7958774B2 (en) Device and method for sample preparation
CN110286174A (zh) 一种多维在线高效液相色谱装置
WO2016127330A1 (zh) 一种二维液相色谱仪
CN110208401A (zh) 固相脱水萃取-超临界流体色谱-质谱在线分析系统及方法
US20070023639A1 (en) Liquid chromatographic apparatus
JP6260719B2 (ja) 液体クロマトグラフ
CN204405612U (zh) 一种液相色谱仪
CN211086206U (zh) 一种三维在线超高效液相色谱仪
CN204405613U (zh) 一种二维液相色谱仪
JP6672781B2 (ja) 流路機構及びこれを備えた液体クロマトグラフ
JPWO2018051610A1 (ja) 液体クロマトグラフ
CN110286173A (zh) 一种血药浓度检测用液相色谱装置
CN110455942A (zh) 一种三维在线超高效液相色谱仪
CN206489129U (zh) 一体式形态及总量分析原子荧光进样与预处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.11.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15881492

Country of ref document: EP

Kind code of ref document: A1